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1.  INTRODUCTION 

Uneaten feed drifting out from aquaculture sea 
cages is likely to be a significant attractant for wild 
fish (Tuya et al. 2006). Substantial aggregations of 
wild fish have been observed around Norwegian 
salmon farms (Dempster et al. 2009, Uglem et al. 
2009, Otterå & Skilbrei 2014) and in other areas 
such as the Mediterranean Sea (Dempster et al. 2002, 
2004), the Canary Islands (Dempster et al. 2005), 
and the coast of Australia (Dempster et al. 2004). 

More than 160 fish species have been observed 
around open-cage farms worldwide (reviewed in 
Uglem et al. 2014). In Norway, common species ob -
served at farm sites are saithe Pollachius virens, 
Atlantic mackerel Scomber scombrus, and Atlantic 
cod Gadus morhua (Dempster et al. 2009). 

The aggregations of wild fish pose numerous con-
cerns. Wild fish may act as vectors for pathogens (e.g. 
Snow et al. 2002, Uglem et al. 2009). For instance, 
saithe are known to be preferred hosts for sea lice 
Caligus elongatus and may act as vectors for trans-
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ferring sea lice among farms (Bruno & Stone 1990). 
Migration patterns of wild fish may be altered (e.g. 
Bjordal & Johnstone 1993), with wild fish becoming 
resident at farm sites, which may reduce their avail-
ability to fisheries, since farms are restricted sites for 
fishing vessels (Uglem et al. 2014). In addition, 
access to high-energy feed pellets may benefit wild 
fish and increase their growth and reproduction 
(Uglem et al. 2014, Gonzalez-Silvera et al. 2020). 
Commercial feed can affect the composition of fatty 
acid components in liver and muscle tissues of saithe 
(Arechavala-Lopez et al. 2015), and consumers have 
been found to slightly prefer the taste of fillets from 
saithe caught near fish farms over that of conspecifics 
caught away from those sites (Uglem et al. 2017). 
Some farmed fish species such as Atlantic cod have 
the ability to create holes in nets (Damsgård et al. 
2012, Uglem et al. 2014). Wild cod might also show 
this behaviour, which could lead to farmed fish 
escaping. 

Methods for wild fish abundance monitoring in -
clude visual counts by SCUBA divers (Dempster et 
al. 2002, 2004, 2005, Boyra et al. 2004, Fernandez-
Jover et al. 2008, Oakes & Pondella 2009), under -
water video systems combined with manual quantifi-
cation of fish (Dempster et al. 2009, 2010, Uglem et 
al. 2009, Bacher et al. 2012), stationary stereo video 
systems (e.g. AQ1 AM100; AQ1 Systems 2022) 
(Stagličić et al. 2017), and hydroacoustic tools (Gian-
noulaki et al. 2005, Goodbrand et al. 2013). These 
methods have provided valuable knowledge about 
wild fish abundance around aquaculture farms but 
are either time-consuming or their precision and re -
peatability depend strongly on the skill and training 
of their operators. Hydroacoustic methods can be 
used for long-term monitoring but do not allow 
detailed investigations about individual fish such as 
species determination. 

The use of artificial intelligence (AI) in fish recog-
nition is a potential solution for long-term monitoring 
of wild fish abundance. Much effort has been made 
to recognize fish species using deep learning tech-
niques based on deep neural networks (DNNs) (Hos-
sain et al. 2016, Mandal et al. 2018, Siddiqui et al. 
2018, Rauf et al. 2019, Salman et al. 2020, Zhang et 
al. 2020). Such methods allow a drastic reduction in 
human workload by supporting human decision-
making and automating some tasks. To perform good 
quality fish detection, the neural networks need to be 
trained with large, annotated image data sets. 
Crescitelli et al. (2021) used computer vision tech-
niques to create a data set containing saithe and 
salmonid fish images that can be used to train DNNs 

to recognize those species. Some preliminary tests 
have evaluated the performance of the system devel-
oped in their study and suggest that the system is 
promising for the use of automatic detection of wild 
fish at farm sites. 

Given the potential impact of wild fish aggrega-
tions on wild and farmed fish, as well as on commer-
cial fisheries, it is important to have thorough knowl-
edge about wild fish abundance patterns around sea 
cages. In addition, obtaining more information about 
wild fish around the sea cages can be helpful for the 
farmers because they can, for instance, inspect the 
cage nets more carefully when wild cod are present. 
This process may prevent salmon escaping events 
that otherwise might have been caused by wild cod 
biting the nets. Moreover, a good understanding of 
wild fish abundance is necessary for a proper assess-
ment of aquaculture impacts on the environment. 
Wild fish have the potential to utilize particulate 
wastes from the sea cages and mitigate the impacts 
of sea-cage farming on the surrounding environment 
(Ballester-Moltó et al. 2017). If it is known that large 
aggregations of wild fish exist around the sea cages, 
these mitigating impacts need to be taken into 
account. The creation and existence of wild fish 
aggregations is something that aquaculture policy 
should consider. However, our understanding of wild 
fish aggregation dynamics is still limited, partly 
because of a lack of observation methods that can 
provide continuous and timely information on wild 
fish abundance patterns. 

The aim of the present study was to test a wild fish 
abundance monitoring procedure using a combina-
tion of multiple cameras and automatic fish detection 
by AI. We evaluated and propose a monitoring sys-
tem to analyze wild fish abundance around sea cages 
autonomously which exhibits acceptable accuracy 
compared to manual analysis. To demonstrate that 
the presented monitoring method is suitable for the 
study of wild fish abundance around the sea cages, 
some examples of the wild fish distribution patterns 
are presented in this article. However, the focus of 
this study was on the monitoring method itself. 
Detailed investigation of wild fish distribution pat-
terns in relation to various abiotic and biotic factors 
was outside the scope of this study. As a first step, 
this study aimed at automatic quantification of wild 
fish in general without species identification. 

Considering that automatic recognition models 
such as salmon individual recognition (e.g. Cermaq 
2022) and automatic sea lice counting (e.g. Aquabyte 
2022) have already been developed and used in 
aquaculture, the automatic wild fish detection sys-
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tem presented in this study is not the 
most advanced technology. The novelty 
of this study is that the available tech-
nology (i.e. underwater video monitor-
ing and automatic fish detection tech-
niques) was adjusted for the purpose of 
monitoring wild fish around coastal sea 
cages. The setup of multiple cameras 
around the sea cages combined with 
the use of an automatic fish detection 
system is novel and potentially a great 
help to deepen our understanding of 
the dynamics of wild fish occurrence 
and aggregations at farm sites. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

This study was conducted at the commercial 
salmon aquaculture site Gjermundnes (62°63’ N, 7° 
19’ E), located in Møre and Romsdal county, Nor -
way (Fig. 1). Wild fish abundance was monitored 
around 2 sea cages (126 m circumference, 33 m deep, 
18 850 m3 water volume), which were located next to 
each other in a common 2-row mooring framework 
(Cage 1 and Cage 2 in Fig. 2). These 2 cages were 
selected for this study because they were stocked 
with salmon throughout the entire study period. At 
the end of the study period, Cage 1 and Cage 2 con-
tained roughly 190 000 (average weight: 1.6 kg) and 
140 000 (average weight: 2.5 kg) salmon, respec-
tively. An inner and outer buoy, part of the mooring 
framework located approximately 100 and 360 m 

away from Cage 1, were used as farm-internal 
 control sites (Fig. 2). 

2.2.  Video recording 

Video recordings of wild fish around Cage 1, Cage 
2, and the 2 control sites (buoys) were collected using 
GoPro cameras (GoPro 4 and 5) fixed to a cylindrical 
plastic pipe on 5 separate days in July and October 
2020. Three cameras fixed to the cylinder recorded 
videos simultaneously, covering approximately 2/3 of 
a circular horizontal angle (Fig. 3). One camera had 
approximately 80° horizontal field of view when used 
underwater. Video recording was conducted at 6 dif-
ferent positions equally spaced around a cage, where 
0° was located between 2 feed spreaders, and at a 
single position at each buoy. The feed spreaders 
were oriented in a south-west direction from the cen-
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Fig. 1. Farming locality in Gjermundnes (blue dot), Møre and Romsdal  
county, Norway

Fig. 2. The 2 sea cages and 2 buoys where video monitoring of wild fish was conducted
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ter of the cages. At each position (0, 60, 120, 180, 240, 
and 300° around the cages and at the 2 buoys), the 
cameras were lowered down to 2, 7, 13, 20, 30, and 
40 m depths and recorded for 2 min at each depth 
(Fig. 4). Videos were recorded during the morning 
hours (09:00−12:00 h), when feed was provided from 
the feed spreaders. Throughout the 5 sampling days, 
approximately 24 h of video footage was obtained, 
including the time used for camera transfer between 
different depths. 

2.3.  Video quality check, adjustment, and image 
extraction 

The videos from each position around the cages 
and at each buoy were cut into 6 separate videos 
(2 min each, corresponding to each depth). The light 
intensity was low in some of the videos from 30 and 

40 m depths, and it was difficult to detect the fish 
in the original videos. In such cases, lightness and 
contrast were manually adjusted using the video 
 processing tool VideoProc 3.9 (Digiarty Software). 
The original videos were replaced by the adjusted 
videos when the adjustment enabled the discovery of 
new fish that were initially hidden in dark areas. In 
VideoProc, it was possible to adjust lightness and 
contrast manually while playing videos. This soft-
ware also allowed us to save new videos with the 
adjusted settings. The adjusted videos were identical 
to the originals except for the lightness and contrast 
settings. The replacement of the original videos 
with the adjusted videos was done manually, with 
great caution not to duplicate the video files. In 
total, 33 out of 120 videos from 30 and 40 m depths 
were adjusted. From each 2 min video, 8 frames 
were extracted with an interval of 5 s (starting point: 
40 s; ending point: 75 s). The first 40 s and the last 
45 s were discarded to avoid extracting images 
when cameras were transitioning between different 
depths. In total, 10 080 images were extracted for fur-
ther analyses. 

2.4.  Automated counts of wild fish 

Wild fish in the extracted images were counted 
both manually and automatically, the latter by using 
an automated system based on deep learning. The 
fish detection systems (hereafter, ‘models’) were 
implemented based on the real-time object detector 
framework YOLOv4 (Bochkovskiy et al. preprint 
https://arxiv.org/abs/2004.10934). The detector can 
be trained for multiple types of objects (classes). In 
this work, the models were trained to detect fish as 
one class, without specifying species. Three different 
models were tested, and their performance was com-
pared. Each of the models was trained with a differ-
ent set of images (Table 1). 

Model 1 was trained with a subset of images from 
Open Images Dataset (OID) v.6. OID is a publicly 
available data set containing 1.9 million anno -
tated images distributed across 600 classes (https://
storage.googleapis.com/openimages/web/download.
html; accessed 19 Aug 2021). The ‘Fish’ class con-
tained 5774 annotated images with a variety of fish 
species and backgrounds, which were used to train 
Model 1. Model 2 was trained with a set of 2072 
unpublished images taken at salmon farm sites along 
the Norwegian coast. Those images contained only 
saithe Pollachius virens at varying densities and with 
similar backgrounds to those in the footage evalu-
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Fig. 3. Simplified sketch of the top view of the video moni-
toring equipment. Approximately 2/3 of the circular angle  

was covered by the 3 GoPro cameras. FoV: field of view

Fig. 4. The 6 positions around a cage (left) and 6 depths 
(right) where video filming of wild fish was conducted (total:  

36 positions)
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ated in this study. Annotation of fish (saithe) was 
done automatically by software using the methodol-
ogy given in Crescitelli et al. (2021). To ensure that 
these annotations were correct, the images with the 
annotations were manually checked and corrected in 
case they were wrong. OID included several types of 
images that were not suitable for our work (Fig. 5), 
which was initially not known. Some of the images 
were of fish processed as food, some were incorrectly 
labeled, and others had missing annotations (i.e. 
bounding boxes). After discarding such undesired 
images and correcting the annotations, a total of 4924 
properly annotated OID images were kept and com-
bined with the 2072 saithe images used in the previ-
ous model to train Model 3. We initially planned to 
use Models 1 and 2, and then created Model 3 after it 
was discovered that not all images from OID were 
suitable for training the models. 

The 3 different models were evaluated using the 
set of images extracted from the video footage 
around the fish farm. For each input image, the sys-
tem generated a new image; this image contained 
bounding boxes surrounding areas where it pre-
dicted the presence of a fish as well as corresponding 
confidence scores. Any predicted bounding box with 

confidence scores below 30% was discarded. This 
threshold was chosen empirically based on pre-tests 
over a small number of images. The number of 
detected fish per image was automatically stored in 
.csv files for further analyses. 

2.5.  Manual counts of wild fish 

Images processed by the models were manually 
assessed for the correct number of fish and false 
detections. Counter 1 (hereafter C1) checked the 
entire set of 10 080 images to avoid potential biases 
and for a complete comparison with the automated 
analysis. Objects in the images were identified and 
counted as fish when they showed visible character-
istics of fish e.g. body shape, color, lateral line, pat-
tern (in the case of mackerel), regardless of size and 
regardless of whether they were part of a fish or the 
full body (strict threshold). This excluded many 
objects that were likely fish but did not show any of 
the aforementioned visible characteristics. Another 
less strict count method was used to assess the error 
rates of the automatic detection system (see below). 
Taxonomical identification to species level was per-
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                         Data set           No. of images        Image features 
                                               used for training       
 
Model 1        Open Image              5774                Images from public data set 
                    Dataset (OID)                                     Various fish species and backgrounds 
                    v.6, class: fish                                      Presence of wrong labels 
                                                                                 Presence of fish in the form of food 
                                                                                 Presence of inaccurate annotations 

Model 2        Saithe image              2072                Images taken around salmon fish farms in Norway 
                         data set                                           Only saithe images, in various densities 

Model 3      Corrected OID            6996                Combination of images from OID (with corrected annotation) and saithe  
                       plus saithe       (4924 from OID,          image data set  
                                               2072 from saithe      Undesired images in OID were discarded 
                                                      data set)             Undesired annotations in OID were manually corrected

Table 1. Data sets used to train each neural network model tested in this study

Fig. 5. Types of undesired images and annotations in the Open Image Dataset. (a) Fish processed as food; (b) wrong label 
(something that is not a fish but labeled as a fish); (c) wrong bounding box alignment; (d) wrong label and missing bounding  

boxes (original box in black and added bounding boxes in green); (e) individuals grouped as one fish
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formed when possible; otherwise, the objects were 
categorized as ‘unidentified fish’. The manual count-
ing categories were as follows: (1) false positive (FP): 
objects that were wrongly identified as fish by AI; (2) 
false negative (FN): objects that were clearly fish but 
were not identified as fish by AI; (3) saithe: objects 
that were clearly saithe; (4) mackerel: objects that 
were clearly mackerel; (5) cod: objects that were 
clearly cod; and (6) unidentified fish: objects that 
were clearly fish, but doubtful which species it was. 

Salmon inside the cages were present in a small 
number of images because the camera lenses were 
occasionally directed towards the cage net. In such 
cases, salmon were excluded from the categories, 
since our interests were in monitoring wild fish. 

2.6.  Estimation of error/deviation (manual) 

To evaluate the accuracy of the automated detec-
tion system, it was necessary to benchmark human 
accuracy. Potential deviations caused by manual 
counts needed to be considered in the benchmarking 
process, and therefore the following types of poten-
tial deviations were estimated: (1) within-person 
deviation; (2) deviation among different people; and 
(3) effects of the presence of bounding boxes. 

Deviation within a person’s counts was estimated 
as follows. C1 counted fish in 10 images 5 times each, 
randomly in between other images so that the previ-
ous count could not be remembered. The test images 
were selected with the purpose of including different 
varieties of fish densities. The standard deviation 
among the counting results of the 5 trials was calcu-
lated. 

To determine deviation among the counters, 4 dif-
ferent people (C1, C2, C3, and C4) independently 
counted wild fish in the same set of 864 images taken 
around Cage 1 on 8 July 2020 (hereafter the ‘test 
cage’) under the above-mentioned counting criteria. 
These were employees at the Department of Biologi-
cal Sciences Ålesund, Norwegian University of Sci-
ence and Technology (NTNU), and therefore they 
had prior experience identifying fish. The standard 
deviation among the 4 people’s total fish counts was 
calculated. 

Lastly, biases caused by the presence of bounding 
boxes were assessed by counting a set of 50 images 
twice, with and without the bounding boxes. The 
images that had the largest number of bounding 
boxes were used for this test, which was performed 
by C1. The percentage difference in total number of 
detected fish based on images with and without the 

bounding boxes was calculated. In addition, the 
effect of the presence of bounding boxes on manual 
counts was assessed by using a Wilcoxon signed-
rank test. This analysis was performed using R 
v.4.0.2 (R Core Team 2020). 

2.7.  Estimation of error (AI — Models 1, 2, and 3) 

To evaluate the accuracy of automated fish counts, 
2 types of error were calculated: (1) FP rate: the per-
centage of incorrect detections of fish by the auto-
mated detection system; and (2) FN rate: the percent-
age of fish that were missed by the automated 
detection system out of all fish that were detected 
manually. 

For Model 1, FPs and FNs for all 10 080 images 
were manually assessed, and an overall FP and FN 
rate including all 5 sampling days was obtained. For 
Models 2 and 3, FPs and FNs were manually as -
sessed in 200 images with the 100 highest numbers 
of FPs and FNs, based on the manual FP and FN 
counts of the Model 1 output. In addition, manual 
counts of FPs and FNs were conducted for all 864 
images from the test cage for all the models to evalu-
ate whether the use of different types of training 
image data sets could reduce errors. 

In addition, the quality of the models was assessed 
by calculating an F1 score, which is a harmonic mean 
of precision and recall. Calculation of F1 was made 
based on the results from the 864 images from the 
test cage, using the formula: F1 = 2 × (precision × 
recall) / (precision + recall). Precision and recall can 
be calculated as follows (Powers 2007): precision = 
TP/(TP + FP); recall = TP/(TP + FN); where TP is true 
positive (the number of positives determined by a 
model that were actually positive identifications). 
When we use the F1 score to compare models, the 
model with the highest score is considered the best. 

An additional assessment of the FPs of Model 3 was 
performed for the automated counts of wild fish in 
the 864 images from the test cage. In addition to the 
initial counts of FPs under the strict threshold, FPs in 
these images under a relaxed detection threshold 
were counted. This assessment was made because 
Model 3 identified more fish than the manual assess-
ments under the strict threshold. Most of the FPs cre-
ated by Model 3 were, however, not true FPs (i.e. 
detection of non-fish objects), but rather detection of 
blurred or small objects that most likely were fish. 
Under the relaxed threshold, we counted all objects 
as fish except those objects that were obviously not 
fish or individual fish that were identified multiple 
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times. We also subtracted FPs from the outcome of 
Model 3 to assess how it affected the overall fit of the 
manual and automated counting results. 

3.  RESULTS 

3.1.  Results of manual counting 

Manual counting of 10 080 images resulted in the 
identification of 10 102 wild fish (Table 2). Through-
out the 5 sampling dates, only 3 wild fish were 
detected at the control sites, whereas an average of 
841 wild fish were counted in the same volume of 
water around the sea cages. In many images, it was 
not possible to identify species, as the majority of the 
wild fish were blurred or their orientation made it dif-
ficult to recognize their body shape and appearance. 
This issue was independent of depth and light inten-
sity; rather, it was caused by factors such as water 
turbidity, distance from the cameras, camera set-
tings, and motion blur. Overall, the most abundant 
category in the manual counts was ‘unidentified 
fish’, which accounted for 78% of the fish detected. 
In total, 1939 saithe Pollachius virens, 281 mackerel 

Scomber scombrus, 2 Atlantic cod Gadus morhua, 
and 7880 unidentified fish were detected.  

Most of the mackerel (99.6%) were detected at 
depths above 7 m, while most of the saithe (99.9%) 
were detected at depths below 20 m. Horizontal dis-
tribution patterns of wild fish varied among different 
sampling dates and cages. Fig. 6 shows the horizon-
tal and vertical distribution of saithe, mackerel, and 
total fish detected around Cage 1 as an example. We 
chose to show wild fish distribution around the sea 
cages and at the control sites to highlight the need for 
enough sampling stations to detect spatial distribu-
tion patterns, as there was clearly variation in fish 
distribution within a single farm site (Table 2, Fig. 6). 

3.2.  Potential deviation in manual counting 

When C1 counted fish in 10 images 5 times each, 
the standard deviation among counts in the 5 trials 
varied between 0 and 1.1, which accounted for 
0−14.3% of average fish counts per image. Based on 
the 10 images, percentage of standard deviations to 
the average manual fish counts among the 5 trials 
was 4.8% (Table 3). 
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Date                           Location                     Saithe                Mackerel                Cod               Unidentified               Total 
(yyyy-mm-dd)                                                                                                                                       fish                             
 
2020-07-08                Cage 1                          791                           8                        0                           861                       1660 
                                  Cage 2                          310                           0                        0                           679                         989 
                                  Inner buoy                       0                           0                        0                               0                             0 
                                  Outer buoy                      0                           0                        0                               0                             0 

2020-07-15                Cage 1                              4                           0                        0                             41                           45 
                                  Cage 2                          166                           3                        0                           735                         904 
                                  Inner buoy                       0                           0                        0                               0                             0 
                                  Outer buoy                      1                           0                        0                               2                             3 

2020-07-24                Cage 1                            65                           0                        0                           506                         571 
                                  Cage 2                            21                       134                        0                           329                         484 
                                  Inner buoy                       0                           0                        0                               0                             0 
                                  Outer buoy                      0                           0                        0                               0                             0 

2020-07-31                Cage 1                          209                           7                        0                           838                       1054 
                                  Cage 2                          117                         44                        0                           813                         974 
                                  Inner buoy                       0                           0                        0                               0                             0 
                                  Outer buoy                      0                           0                        0                               0                             0 

2020-10-01                Cage 1                          180                         82                        2                         2525                       2789 
                                  Cage 2                            75                           3                        0                           551                         629 
                                  Inner buoy                       0                           0                        0                               0                             0 
                                  Outer buoy                      0                           0                        0                               0                             0 
                                                                                                                                                                                                     
Total                                                              1939                       281                        2                         7880                     10102

Table 2. Manual fish count results. Each value is the sum of detected objects under each category. Values for each cage are 
the sum of detected objects in a total of 864 images per sampling date. Values for each buoy are the sum of detected objects  

in a total of 144 images per sampling date
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C1, C2, C3, and C4 counted a total of 1660, 
1468, 1802, and 1660 fish, respectively, in the 
same set of 864 images taken around the test 
cage. The largest difference was between C2 and 
C3. The latter counted 22.8% more fish than C2, 
whereas C1 and C4 had exactly the same total fish 
counts. However, on a single image basis, the 
number of detected fish also differed between C1 
and C4 as well as among all the counters (Fig. 7). 
The standard deviation among the 4 counters was 
112.3. This accounted for 6.9% of the average total 
fish counts. Two distinct outliers were observed in 

C3’s counts, and those were excluded from the 
calculation of the average fish counts and the stan-
dard deviation. 

In total, 1065 fish were detected when images 
without bounding boxes were assessed, while 1119 
fish were detected when images with the bounding 
boxes were checked. C1 detected 4.8% more fish 
when bounding boxes were present on the images. 
The median number of wild fish detected by manual 
work was significantly different when images were 
examined with and without bounding boxes (Wil -
coxon signed-rank test, p < 0.001).  
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Fig. 6. Average (+SE) number of (a) total manual fish counts, (b) saithe counts, and (c) mackerel counts per day at each filming  
point around Cage 1 throughout 5 sampling dates
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3.3.  Results of automated counting 

Model 1 (fish OID) detected a total of 8350 wild 
fish (Table 4). Overall, FP and FN rates were 21.3 
and 35.0%, respectively. Large numbers of FPs 
occurred in images that contained objects such 
as cage structures, lice skirts, and biofouling or -
ganisms attached to such structures. FNs often 
occurred in images where wild fish individuals 
overlapped substantially or in high-density situa-

tions (Fig. 8). Based on 100 images with the 
largest numbers of FPs (hereafter ‘FP test set’), the 
FP rate was 37.2%. Similarly, based on 100 images 
with the largest numbers of FNs (hereafter ‘FN 
test set’), the FN rate was 67.2%. Based on 200 
images in the combined test set (combination of FP 
and FN test sets), FP and FN rates were 25.8 and 
49.6%, respectively. Based on 864 images taken 
around the test cage, FP and FN rates were 7.5 
and 26.8%, respectively (Fig. 9). 

Model 2 (saithe) detected a total of 14 945 wild fish 
(a 79.0% increase from Model 1’s counts). The FP 
rate calculated based on the FP test set was 36.3%. 
The FN rate calculated based on the FN test set was 
17.4%. Based on the combined test set, the FP and 
FN rates were 21.4 and 15.1%, respectively. Based 
on the 864 images from the test cage, the FP and FN 
rates were 19.9 and 4.0%, respectively (Fig. 9). 
Model 2 still detected background objects, and in 
some cases, the number of FPs was higher than in 
Model 1. On the other hand, fewer FNs occurred in 
images with high fish densities and overlapping fish 
compared to Model 1 (Fig. 8). 

Model 3 (corrected fish OID plus saithe) detected  
a total of 12 980 wild fish (55.4% increase from 
Model 1 counts). The FP rate calculated based on the 
FP test set was 22.2%. The FN rate calculated based 
on the FN test set was 7.2%. Based on the combined 

105

Image       Average counts among       SD/manual fish   
no.                  5 attempts (±SD)          counts average (%) 
 
 1                          26.8 (±0.4)                             1.5 
 2                          22.4 (±0.8)                             3.6 
 3                            5.8 (±0.4)                             6.9 
 4                          38.6 (±0.5)                             1.3 
 5                          10.0 (±1.1)                           11.0    
 6                            4.0 (±0.0)                             0.0 
 7                          31.2 (±1.0)                             3.1 
 8                          16.6 (±0.5)                             3.0 
 9                          26.4 (±0.8)                             3.0 
10                           5.6 (±0.8)                           14.3    

Average                                                             4.8

Table 3. Standard deviations (SD) in manual fish counts cal-
culated when a single person (Counter 1) counted 10 images  

5 times each (in between other images)

Fig. 7. Manual fish count results by Counters 1, 2, 3, and 4 in the 864 images taken around the test cage (Cage 1 on 8 July). 
Each mark represents the number of detected fish in each image; x-axis is the average count in each image by the 4 counters
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test set, FP and FN rates were 17.8 and 5.8%, respec-
tively. Based on the 864 images from the test cage, 
the FP and FN rates were 18.5 and 2.8%, respec-
tively (Fig. 9). In some images, Model 3 had a higher 
number of FPs because the system detected objects 
that were not identified as fish in the manual counts. 
Those objects were typically small, black, blurred 
objects in the background that were most likely fish 
but were not clear enough to convince C1 during the 
manual counts (Fig. 8). This phenomenon was also 
observed when Models 1 or 2 were used, but it was 
most notable with Model 3. 

The F1 scores of Model 1, Model 2, and Model 3 
were 0.82, 0.87, and 0.89, respectively. After sub-
tracting FPs from Model 3’s outcome based on the FP, 
FN, and combined test sets as well as images from 
the test cage, the percentage difference between 
Model 3 and the manual counts ranged from 
2.5−7.2% (Table 5). Based on the strict fish detection 
threshold, 366 FPs were identified by Model 3 in 
the 864 images from the test cage, whereas 53 (14% 
of 366) were detected with the relaxed detection 
threshold. The amount of time spent inspecting FPs 
in the 864 images based on the relaxed detection 
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Date                           Location                         Total,                 Total,                    Total,                       FP,                     FN, 
(yyyy-mm-dd)                                                Model 1            Model 2                 Model 3                 Model 1            Model 1 
 
2020-07-08                Cage 1                           1313                   1989                      1979                          98                    445 
                                  Cage 2                             793                   1177                      1148                          57                    253 
                                  Inner buoy                           7                       21                            5                            7                        0 
                                  Outer buoy                          0                         1                            1                            0                        0 
2020-07-15                Cage 1                               65                     174                        164                          35                      15 
                                  Cage 2                             674                   1173                      1078                          94                    324 
                                  Inner buoy                           3                         0                            1                            3                        0 
                                  Outer buoy                          7                       19                          11                            4                        0 
2020-07-24                Cage 1                             693                     919                        879                        198                      76 
                                  Cage 2                             560                     799                        736                        173                      97 
                                  Inner buoy                           1                       34                            4                            1                        0 
                                  Outer buoy                        10                       11                            5                          10                        0 
2020-07-31                Cage 1                           1009                   1505                      1367                        215                    260 
                                  Cage 2                           1070                   1774                      1386                        342                    246 
                                  Inner buoy                           2                         6                            3                            2                        0 
                                  Outer buoy                          4                         0                            2                            4                        0 
2020-10-01                Cage 1                           1610                   3546                      3317                        311                  1490 
                                  Cage 2                             511                   1743                        877                        208                    326 
                                  Inner buoy                           7                       34                          13                            7                        0 
                                  Outer buoy                        11                       20                            4                          11                        0 

Total                                                                  8350                 14945                    12980                      1780                  3532

Table 4. Automated wild fish count results. Values for each cage are the sum of objects detected as fish in a total of 864 images 
per sampling date. Values for each buoy are a sum of objects detected as fish in a total of 144 images per sampling date.  
Model 1: Open Image Dataset (OID) model; Model 2: saithe model; Model 3: corrected OID plus saithe model. FP: false  

positive; FN: false negative. For Model 1, the number of FPs and FNs in the 10080 images were manually counted

Images analyzed                               AI counts,       Manual          FPs          FP rate          AI counts,               AI counts,  
                                                             Model 3         counts                               (%)        overestimate (%)    overestimate (%) 
                                                                                                                                                                         after subtracting FPs 
 
100 images, FP test set (a)                    1574              1255             350             22.2                  25.4                          −2.5 
100 images, FN test set (b)                   3175              2890             494             15.6                    9.9                          −7.2 
200 images (a) + (b)                               4749              4145             844             17.8                  14.6                          −5.8 
864 images from the test cage             1979              1660             366             18.5                  19.2                          −2.8

Table 5. Total fish counts by manually counting and by artificial intelligence (AI) Model 3 using a false positive (FP) test set 
(100 images that had the highest number of FPs when Model 1 was used), false negative (FN) test set (100 images that had 
highest number of FNs when Model 1 was used), the combined test set, and images from the test cage (Cage 1 on 8 July 2020). 
The percentage of AI overestimates were determined as: [(AI counts − manual counts) / (manual counts)] × 100. The final  

column shows how subtraction of FPs changed the fit of the AI counts (by Model 3) to the manual counts
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Fig. 8. Examples of images processed by the automated counting system (models). Blue boxes were placed on objects which 
were identified as fish by the models. Some of them were false positives (FPs). Small letters on top of the bounding boxes are 
confidence scores. Any predicted bounding boxes with confidence scores below 30% were discarded. Large numbers of (a) 
false negatives (FNs, fish which were not in the blue bounding boxes) and (b) false positives (biofouling organisms in the blue 
bounding boxes) by Model 1. (c) Model 2 still had large registration of FPs; (d) Model 3 had fewer FPs. (e) Model 1 had some 
FNs, but these were fewer in (f) Model 2. (g) Model 2 and (h) Model 3 detected objects that were not counted as fish by manual  

work, which resulted in increased FPs (some of the blue bounding boxes on the small blurred objects)
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threshold was approximately 30 min, which ac -
counted for about 5% of the time spent counting wild 
fish manually in the same set of images. 

4.  DISCUSSION 

4.1.  Filming methods and image quality 

Varying light intensity underwater is a common 
challenge in autonomous fish detection (e.g. Mandal 
et al. 2018, Marini et al. 2018). Light attenuation in 
deeper water and higher turbidity makes it difficult 
to capture objects clearly. Both light sensitivity and 
dynamic range can vary strongly among different 
cameras. Using cameras equipped with larger and 
more light-sensitive sensors can help improve image 
quality in low-light conditions. Every camera system 
has inherent physical limitations, and requirements 
vary with applications (Ulrich & Bonar 2020). One 
has to consider sensor and system size, resolution, 
cost, etc., to find the best compromise for a given 
application and budget (Struthers et al. 2015). In our 
system, GoPro cameras had the advantage of rela-
tively low cost, but their limited light sensitivity and 

dynamic range started to heavily impact image qual-
ity at 30−40 m depths. At these depths, there was 
rarely enough light for the cameras to accurately 
capture underwater objects. However, giving slight 
upward angles to the cameras and post-processing 
helped to improve the visibility of fish in the images. 
With these improvements, the automated models 
were able to discern fish in images from 30 and 40 m 
depths where light intensity was low, but some fish 
might have not been detectable even after the man-
ual adjustment of video quality. GoPro cameras cap-
tured most of the wild fish at depths down to 40 m 
during bright daylight hours (09:00−12:00 h) in rela-
tively non-turbid water. To ensure visibility of wild 
fish regardless of depth, cameras with better per-
formance under low light conditions or artificial light 
could be used as in some previous studies (e.g. 
Dempster et al. 2009). However, additional light 
might attract or scare away fish (e.g. Marchesan et al. 
2005), which would be an unwanted effect for wild 
fish monitoring. Therefore, cameras without addi-
tional lights are preferable if the image quality is 
acceptable. Filming needs to encompass multiple 
depths and positions around the sea cages in order to 
determine the 3-dimensional distribution patterns of 
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Fig. 9. Comparison of false positives (FPs) and false negatives (FNs) when different models were used in (a) the FP test set (100 
images that had the highest number of FPs when Model 1 was used), (b) the FN test set (100 images that had the highest num-
ber of FNs when Model 1 was used), (c) the combined test set (combination of FP and FN test sets), and (d) the 864 images 
taken around the test cage (Cage 1 on 8 July). Dotted line: total manual fish counts by manual work using the same images 



Banno et al.: Novel approach for wild fish monitoring

the wild fish aggregations, as the abundance and 
species composition of wild fish are not equal in 
space (e.g. Dempster et al. 2005, 2009). 

4.2.  Wild fish quantification in the images 

To assess whether the current automated system is 
accurate enough, we first needed to define the ac -
ceptable limit for accuracy. Therefore, we assessed 
deviations in fish counts when a single person was 
counting identical images multiple times as well as 
when different people were counting the same set of 
images independently. There was some potential 
uncontrollable variability in manual counts by mul -
tiple people; in our study, this error was >20% 
between 2 people. An explanation for the outliers 
identified by C3 was that salmon was confused with 
wild fish in turbid water far away from the cameras, 
even though all counters were given instruction not 
to count salmon in the sea cages. Within-person vari-
ation based on C1’s counts was about 5%. Images 
with low fish numbers tended to cause larger varia-
tion in the manual counts due to the higher impacts 
of each fish on calculation of the variation. Variability 
among the 4 people was slightly higher, at approxi-
mately 7%. Variability in manually counted fish in 
our tests was mostly due to the presence of objects 
that could be classified as either fish or non-fish 
objects, depending on the applied detection thresh-
olds. Such objects were often present in the images 
due to motion blur, low light conditions, and a long 
distance between the cameras and the objects. Based 
on our tests, the presence of bounding boxes had a 
significant effect on the numbers of detected wild 
fish by manual counting. However, we believe that 
the presence of bounding boxes did not considerably 
affect the evaluation of the models. The presence of 
bounding boxes increased the detection of wild fish 
by an average of 4.8% per image, but the same level 
of variation was observed even when a single person 
was assessing the images. 

Regarding automated wild fish detection, one limi-
tation was FNs in images with high densities of fish 
or highly overlapped fish, as also observed by Marini 
et al. (2018). Model 1 had the highest registration of 
FNs, which can be explained by the inappropriate 
annotations of fish in the training data set (e.g. origi-
nal images from OID included a group of fish anno-
tated as one individual). As a result, the neural net-
work was never exposed to high densities of fish 
during the training stage. This explanation is further 
supported by the decreased numbers of FNs ob -

served in the outputs of Models 2 and 3, where every 
fish in each training image was annotated individu-
ally. Another challenge was FPs in images that con-
tained background objects such as cage structures, 
lice skirts, and biofouling organisms attached to the 
structures. Previous work on autonomous underwa-
ter fish detection has also reported the challenge of 
FPs due to similarities between fish and backgrounds 
(e.g. Marini et al. 2018, Salman et al. 2020). The error 
rate was lowest in the output of Model 3, which was 
trained with images from both OID with corrected 
annotations and those from the saithe data set; thus, 
one explanation for Model 3 having the lowest error 
was the improved representation of training images 
to the images that were analyzed. The F1 score for 
Model 3 was also the highest among the 3 models, 
indicating that this model performed best. 

4.3.  Comparison of results — manual vs. automated 

The results from C1 were chosen as representative 
for manual counts, as they were in the middle range 
of the 4 people’s counts, and C1 counted the entire 
data set. In this study, the acceptable limit for accu-
racy was set based on between-person variation, 
which was about 7%, since we assume that multiple 
people would contribute to manual-based wild fish 
quantification work. 

In this study, when the FP and FN rates were <7%, 
the errors generated by the system were equivalent 
to those made by the human counters; therefore, we 
considered the model to be as good as manual 
counts. None of the models fulfilled the criteria of 
both rates being lower than 7%. However, the FN 
rate in Model 3 was close to or lower than this limit in 
all test image sets used to assess the error rate. The 
FP rate fluctuated depending on the fish detection 
threshold for manual counts. Considering that only 
14% of FP detections by Model 3 were obvious 
‘wrong detections’ and the rest of the detected 
objects were in ambiguous zones, the FP rate by 
Model 3 would have been lower than 7% if a more 
realistic threshold had been selected for manual 
detection. 

4.4.  How can we improve the automated detection 
of wild fish? 

In this study, the training of each model was done 
using the same parameters and settings — only the 
training images were different. The error rates of the 
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different models indicated that the training images 
had a direct influence on the accuracy of the detec-
tion system. Training images need to be chosen care-
fully, as the models can only learn based on the 
input, and their performance is directly dependent 
on the training image quality. 

A few thousand images were used for training the 
neural network in this study, which was a relatively 
small data set compared to some of the studies in 
which researchers developed automated counting 
systems for use in aquaculture (reviwed in Li et al. 
2020). Increasing the number of training images 
may improve the performance of the system; how-
ever, focusing on image quality and representative-
ness of the target scenario may be equally or more 
important. One way of increasing the system’s ac -
curacy is to re-train the models with new images 
(e.g. Casado-García et al. 2020). As an example, 
with fixed cameras and a continuously operating 
system, one could take a few hundred images with 
a defined frequency, check and correct annotations, 
and incorporate those images into the data set. The 
neural network can be re-trained with the new 
images, thus being constantly exposed to the envi-
ronment it is inspecting and therefore decreasing 
systematic FPs. 

In this study, some FPs occurred due to back-
ground objects regardless of which model was 
used. Such FPs could be reduced not only by 
improving the performance of the system itself but 
also by modifying filming methods. At shallower 
depths, our cameras were located close to lice 
skirts and occasionally captured only the surface of 
those structures. This led to high numbers of FPs 
because the system identified biofouling organisms 
attached to the lice skirt as fish. Filming only the 
area of interest and not directing the camera lenses 
towards cage structures could remove those sources 
of FPs. Reduction of FPs could also be achieved by 
manually correcting the output of the automatic 
detection system. Automatic counts followed by 
manual correction could bring the FP rate to within 
acceptable thresholds with little time and effort. 
Manual correction of FPs could also save time com-
pared to a fully manual analysis of the images 
(approximately 95% of time was saved in this 
study). Lastly, as mentioned above, proper detection 
thresholds must be identified in addition to using 
suitable images for training the neural network. It 
is therefore of utmost importance to decide on suit-
able detection criteria for any study that investi-
gates the number of fish or any objects using an 
automatic detection system. 

4.5.  Conclusions and future perspectives 

The performance of our automatic wild fish detec-
tion system is already satisfactory when it comes to 
not missing fish; i.e. the FN rate of our model was 
negligible (below the variation among multiple man-
ual counters in this study). The FP rate, however, 
could be further improved. We believe this improve-
ment could be achieved to a large extent by reducing 
any mismatches between detection thresholds for 
manual and automated counts and by improving the 
training image data sets and filming methods. In 
addition, FPs could be eliminated manually with little 
time and effort after running the automated detec-
tion, thus also obtaining quality assurance for the 
outcome of the automated system. Eliminating FNs 
manually is more time-consuming and needs to be 
reduced to a minimum in the automated system, 
which has already been achieved in this study. In 
case there is a trade-off between FNs and FPs, for 
example by thresholding or by choice of available 
training images, one should always prioritize the 
reduction of FNs. Model 3 seems suitable for the 
investigation of wild fish abundance in scenarios 
similar to the case presented in this study. In differ-
ent scenarios, such as more turbid waters or with dif-
ferent fish species, training data sets would need to 
be adjusted. 

Through further improvements in the quality of 
videos and images, it will become more feasible to 
perform automated fish species identification using 
computer vision. In this study, only 22% of the man-
ually detected fish were identified to species level, 
which indicates that better quality of videos/images 
is needed to achieve automatic species identification. 
It is thus worthwhile to explore different camera 
models and filming methods that obtain brighter and 
sharper images regardless of depths.  

Frequent or continuous monitoring of wild fish at 
more farm sites is needed, given their potential 
impacts on farmed and wild fish (e.g. Snow et al. 
2002, Uglem et al. 2009), the environment (e.g. 
Ballester-Moltó et al. 2017), and commercial fisheries 
(e.g. Uglem et al. 2014). We have presented here a 
novel procedure with great potential for autonomous 
monitoring of wild fish abundance at aquaculture 
sites through further development. 
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