
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 1

ACCURATE: Accuracy Maximization for
Real-Time Multi-core systems with Energy Efficient

Way-sharing Caches
Sangeet Saha§, Shounak Chakraborty§, Xiaojun Zhai, Shoaib Ehsan, and Klaus McDonald-Maier

Abstract—Improving result-accuracy in approximate comput-
ing (AC) based real-time applications without violating deadline
has recently become an active research domain. Execution-time of
AC real-time tasks can individually be separated into: execution
of the mandatory part to obtain a result of acceptable quality,
followed by a partial/complete execution of the optional part
to improve result-accuracy of the initial result within a given
deadline. However, obtaining higher result-accuracy at the cost
of enhanced execution time may lead to deadline violation, along
with higher energy usage. We present ACCURATE, a novel hybrid
offline-online approximate real-time scheduling approach that
first schedules AC-based tasks on multi-core with an objective to
maximize result-accuracy and determines operational processing
speeds for each task constrained by system-wide power limit,
deadline, and task-dependency. At runtime, by employing a way-
sharing technique (WH LLC) at the last level cache, ACCURATE
improves performance, which is further leveraged, to enhance
result-accuracy by executing more from the optional part, and
to improve energy efficiency of the cache by turning off a
controlled number of cache-ways. ACCURATE also exploits the
slacks either to improve result-accuracy of the tasks, or to
enhance energy efficiency of the underlying system, or both.
ACCURATE achieves 85% QoS with 36% average reduction in
cache leakage consumption with a 24% average gain in energy
delay product for a 4-core based chip-multiprocessor with 6.4%
average improvement in performance.

Index Terms—Real-time scheduling, Approximated Comput-
ing, Multi-cores, Energy Efficiency, Dynamic Cache Way-
Shutdown, Dynamic Associativity Management

I. INTRODUCTION

In real-time computing, the correctness not only depends
on the precision of the results, but also on the time at which
they are produced. For such critical systems, approximated
results obtained on-time are preferable over accurate results
generated after the deadline has passed. For example, in a real-
time video application, initially an inaccurate, but acceptable
quality image is generated from the received data. Then,
based on the available resources, the obtained image may
further be refined [1]. Thus, Approximate Computation (AC)
approaches [2] can minimize the possibility of tasks missing
their deadlines due to strict resource requirements. In AC
approaches, a task is decomposed into a mandatory part,
followed by an optional part [3]. The mandatory part must

S.Saha, X.Zhai, S.Ehsan K. McDonald-Maier are with the Embedded and
Intelligent Systems Lab, University of Essex, Colchester, UK. S. Chakraborty
is with the Department of Computer Science, NTNU, Norway.

e-mail: (sangeet.saha@essex.ac.uk, shounak.chakraborty@ntnu.no,
xzhai@essex.ac.uk, sehsan@essex.ac.uk, kdm@essex.ac.uk).

§Equal contribution

be executed entirely in order to produce an acceptable result,
while the result-accuracy increases with the execution cycles
spent on the optional part. Specifically, to obtain a substantial
amount of increase in result-accuracy, a certain number of
additional cycles need to be executed from the optional part.
In order to maximize the result-accuracy, while meeting the
power and deadline constraints, proper scheduling approaches
have to explore both the architectural characteristics of the
system and the approximation tolerance of the applications.

Energy efficient scheduling of the approximated real-time
tasks that target to maximize result-accuracy without violating
the underlying system constraints have become a research
topic of paramount importance in recent past. Stavrinides and
Karatza were among the first to propose real-time scheduling
of an AC based task-set [4]. In recent theoretical analysis [3],
authors improved system level result-accuracy through task
to processor allocation, and task adjustment constrained by
a preset energy budget. But, restricting the energy usage
does not guarantee thermal safety of the chip, which can be
addressed by incorporating power constraint together with a
runtime power management technique by considering several
architectural parameters. However, comprehensive studies that
combine the theoretical aspects of energy-efficient processing
of approximated applications in real-time paradigm along with
due consideration to the runtime architectural characteristics
(e.g. cache performance, IPC, etc.) have not conducted so far.

A homogeneous chip-multiprocessor (CMP) platform along
with a set of AC real-time tasks can be represented by
precedence-constrained task graphs (PTG), equipped with
multiple distinct implementable versions having various result-
accuracy levels based on the respective amount of the op-
tional part that is executed. By exploiting start time and the
versions of the individual task nodes, our work, ACCURATE
presented here, first determines task-to-processor allocation
with an appropriate version of the individual task, the oper-
ating voltage/frequency (V/F) level, as well as their order of
execution, such that the system level result-accuracy (i.e. QoS)
is maximized, while meeting both the deadline, precedence,
and power constraints. After the offline phase, task-executions
are triggered as per the pre-computed schedule and each task
will be executed with its associated V/F level assigned. During
the execution, the cache based dynamic accuracy enhancement
and energy minimization techniques of ACCURATE first at-
tempt to improve the performance by adopting a way sharing
mechanism at the last level cache (LLC). This LLC-based
runtime strategy ensures that improving performance through

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 2

way-shared LLC (WH LLC) can potentially finish the task
early, which will be traded against either (i) to enhance result-
accuracy by executing higher version of the tasks selected on-
the-fly, or (ii) to improve energy efficiency by dynamically
resizing the LLC.

As contemporary applications [5], [6], [7], that include
approximations spend a significant amount of time accessing
memory, employing way-shared LLC can reduce the total
execution-time of the tasks and can generate slacks. ACCU-
RATE attempts to exploit such slacks to enhance the result-
accuracy by executing a higher optional version of the task
(subject to availability), or by dynamically resizing the LLC
to enhance energy efficiency while maintaining performance.
Additionally, ACCURATE exploits slacks to enhance energy-
efficiency of the system by enabling sleep/power-gated mode
at the cores and LLC. However, our performance-cognizant
online approach enhances result-accuracy for the tasks, and
improves energy efficiency, without effecting the predeter-
mined schedule. Figure 1 depicts the working mechanism of
ACCURATE.

The major contributions of the ACCURATE are thus sum-
marized as follows:

1) We propose an ILP based scheduling scheme, ACCU-
RATE:Offline, for the AC real-time PTGs on a power-
constrained CMP with an objective to maximize the
result-accuracy, where the tasks are executed with a
selected version (see Sec. IV-A).

2) We further propose a dynamic accuracy enhancement
along with an online energy minimization techniques,
i.e. ACCURATE:Online (see Sec. IV-B), which improves
performance of the individual tasks, where improved
performance is traded off either (i) to enhance result-
accuracy by executing higher task-version selected on-
the-fly, or (ii) to improve energy efficiency by dynamic
LLC resizing. Additionally, in presence of any sufficiently
large slacks, the system will be put into sleep/power-gated
mode for more energy saving.

We argue and empirically validate the significance of our
task scheduling approach in combination with our online cache
based strategy (see Sec. V). The benchmark application based
evaluation with a 4-core based baseline CMP (equipped with
2MB 8-way associative shared L2 cache) in our simulation
setup (consisted of gem5 [8] and McPAT [9]) exhibits that
through ILP-based task scheduling ACCURATE achieves 85%
QoS, and the cache based online strategy reduces LLC leak-
age consumption by 36% on an average with 24% average
gain in energy delay product (EDP) combined with 6.4%
average performance improvement. The scheduling strategy of
ACCURATE outperforms a prior Task Deploy [3] scheduling
mechanism that offers a QoS of 55% for our considered task-
set with 70% system workload, while ACCURATE achieves a
QoS of 70%. We further empirically justify the exploitation of
way-shared LLC (having a performance improvement of 10%)
over another prior technique, Zcache [10] (having an average
performance improvement of less than 6%) in ACCURATE. To
the best of our knowledge, ACCURATE is the first scheduling
mechanism that trades off the performance gained by employ-

T
1

T
2

T
3

T
n

Precedence, Power & Temporal Constraints

 ILP-based Scheduling
to Maximize QoS

 (Sec. 4.1)

For each T
i
, Select

(i) Version ID
(ii) Processor ID
(iii) V/F Level
(iv) Start & Finish Time

LLC-based runtime Technique
[WH_LLC + Way Shutdown

+ Sleep] (Sec. 4.2)

(i) Apply WH_LLC at the LLC to stimulate performance
(ii) Trade off gained performance to-
→ (a) enhance the system level result-accuracy
→ (b) improve energy efficiency of the CMP

Ti with highest version?

WH_LLC
+

LLC Resizing

WH_LLC
+

Update Oi

yes no

Sleep During Slack

Execute
Tasks
as per

Schedule

Fig. 1: Overview of ACCURATE.

ing a way-sharing technique at LLC to improve both runtime
energy efficiency and result-accuracy of the AC real-time task-
set. After discussing the relevant related work in Sec. II, we
show how ACCURATE is different from the state-of-the-art.

Article Organization. After presenting the relevant related
work in Sec. II, we will model the system in Sec. III where
our processor and task models will be discussed along with the
scheduling criteria. After modelling the system, the detailed
mechanisms of ACCURATE will be illustrated in Sec. IV,
in which Sec. IV-A and IV-B discuss ILP-based scheduling
mechanism, and dynamic LLC based performance improve-
ment and energy-efficient techniques, respectively. The effi-
cacy of the ACCURATE is demonstrated in Sec. V along with
detailing the description of our simulation setup. The paper
is concluded in Sec. VI. The acronyms used in our paper are
abbreviated in Table I.

TABLE I: Acronyms and their Abbreviations

Acronyms Abbreviations Acronyms Abbreviations
AC Approximate Computing ILP Integer Linear Programming
IC Imprecise Computing PTG Precedence-constrained Task Graph
QoS Quality of Service NAQ Normalized Achieved QoS
CMP Chip Multiprocessor LLC Last Level Cache
IPC Instructions Per Cycle DAM Dynamic Associativity Management
EDP Energy Delay Product V/F Voltage/Frequency
TCMP Tiled CMP OoO Out of Order

II. RELATED WORK

Now-a-days, energy minimization in contemporary multi-
processor embedded systems has become a topic of paramount
importance [11], [12]. Energy efficient scheduling for the time-
critical tasks, with precedence constraints on multiprocessor
platform, imposes significant research challenges [13], [14].
Over the last few years, several research attempts [15], [16],
[17], [18] were undertaken to devise energy and fault-aware
real-time scheduling for a set of time-critical task-sets.

Recently, in [19], Cao et al. introduce the concept of
AC to meet the energy budget of a large scale real-time
system that executes tasks without precedence constraints.
Other prior efforts also explored energy-efficient AC tasks
scheduling [19], [20], [21], without considering the precedence
relations among the tasks. Yu et al. coined the concept of
an “Imprecise Computation (IC)” tasks [22], where tasks also
have a mandatory and an optional portions. Authors further
proposed a “dynamic-slack-reclamation” technique to improve
the system QoS to incorporate more energy efficiency, but

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 3

task-dependencies were not considered. To the best of our
knowledge, the first attempt to schedule IC/AC dependent
tasks can be found in [4], where the authors compared the
performance of conventional real-time scheduling approaches
like Highest Level First (HLF) and Least Space Time First
(LSTF) between two task-sets, where one set contains the AC
tasks. However, this work did not include the energy efficiency.

The energy aware scheduling of dependent AC tasks are
considered in [23], [3] that employ DVFS at the cores to
improve energy efficiency. However, as DVFS curtails the
supply voltage and frequency to save power, the transient
faults of the system can significantly raise up the reliability
issues [24]. Hence, in ACCURATE, we first propose an offline
task allocation technique that schedules AC real-time tasks
with respective frequency levels by considering precedence-
power-temporal constraints. In addition, during execution, a
way-sharing LLC strategy is employed to enhance the perfor-
mance which will be further traded off towards stimulating
result-accuracy as well as improving energy efficiency by
dynamic cache resizing.

Authors in [25], [26] surveyed a number of performance
cognizant low power on-chip cache design techniques along
with their pros and cons. By employing Gated-VDD [27] at
the circuit level to power gate the cache lines, a prediction
based energy-efficient cache was proposed in [28] for TCMP
static non-uniform cache access (SNUCA) based architecture,
that incurs a remapping technique for the gated cache lines.
To reduce cache leakage power significantly, a bank shutdown
policy based on run-time bank usages was proposed in [29].
In [30], [31], the authors kept selected cache lines into
low power drowsy/sleep mode, for minimizing cache leakage
power where sleep mode consumes less power but retains
stored data. In addition with effective reduction in overall
energy consumption of a CMP, dynamic cache resizing can
also assist in reducing chip temperature significantly [32], [33].

Towards uniformly distributing the cache loads across the
cache sets, dynamic associativity management (DAM) tech-
niques have been developed where heavily used sets are
benefited by utilizing the idle ways of the underused ones.
Several DAM based approaches [34], [10], [35] have already
been proposed with variable implementation overheads. Out
of these, FS-DAM [35] has been adopted in our work for its
lesser implementation complexities along with the privilege of
dynamic restructuring of the groups.

ACCURATE over State-of-the-Art. The majority of the
prior scheduling approaches attempted to minimize the
makespan time, however, in case of AC based precedence-
constrained tasks, the objective becomes to maximize the
overall result-accuracy, rather than makespan minimization.
Moreover, most of these prior energy efficient scheduling
mechanism employed DVFS at the cores, but have not con-
sidered on-chip LLCs that significantly contributes to the total
on-chip power consumption [25]. As the majority of LLC
power comes from their leakage consumption and a large
portion of these LLCs remain underutilized during execution,
prudential LLC resizing can be a viable knob to achieve energy
efficiency [33], [32]. To exercise such energy-efficient mech-
anisms in real-time systems, promising techniques like DAM

can be employed at the LLCs to safeguard the performance.
In ACCURATE, after generating the schedule of the tasks
through an ILP-based strategy (see Sec. IV-A), we have studied
the potential of a DAM based way-sharing technique at the
LLC in performance improvement for AC real-time task-set.
During execution, ACCURATE further trades off this gained
performance (see Sec. IV-B), either
• to save runtime energy by selective shutdown of LLC

ways, where ways will be turned on if performance
degrades, or

• to improve result-accuracy by executing higher version
of the optional parts of the tasks, subject to availability.

ACCURATE also exploits the sufficiently large slacks to save
more energy by enabling power-gated/sleep mode at the cores
and LLCs. Our results also show, ACCURATE surpasses
state-of-the-art techniques. To the best of our knowledge,
ACCURATE is the first technique that considers LLC based
online mechanism to enhance both result-accuracy and energy
efficiency without violating the deadline constraint.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a CMP consisting of m homogeneous cores,
denoted as P = {P1, P2, ..., Pm}. Each core supports L
distinct V/F settings denoted as V = {V1, V2, ..., VL} and F =
{F1, F2, ..., FL}, where Vi < Vi+1 and Fi < Fi+1. A real-time
AC application (A) is modelled, as a PTG, G = (T,E), where
T is a set of tasks (T = {Ti | 1 ≤ i ≤ n}) and E is a set
of directed edges (E = {〈Ti, Tj〉 | 1 ≤ i, j ≤ n; i 6= j}),
representing the precedence relations between a distinct pair
of tasks. An edge 〈Ti, Tj〉 refers to the fact that a task Tj
can begin its execution only after the completion of Ti. The
source and sink tasks have no predecessors and no successors,
respectively. Being a real-time application,A must be executed
within the given deadline, DPTG, by executing all of its
associated task nodes within the interval.

The worst-case execution length, leni, for each task Ti
(1 ≤ i ≤ n) is logically decomposed into Mi cycles for the
mandatory part, and Oi, the maximum cycles for the optional
part. We further assume that a task Ti may have ki different
versions, that is, Ti = {T 1

i , T
2
i , . . . , T

ki
i }, which are distinct

by their given execution lengths of their respective optional
parts (Oi), denoted as O1

i , O2
i , ..., Okii , where Opi achieves a

higher result-accuracy than Oqi , if p > q. The length (lenji) of
the jth version of task Ti (i.e. T ji where 1 ≤ j ≤ ki) can now
be defined as:

lenji =Mi +Oji (1)

Note that, length of T ji (i.e., lenji) includes the memory
cycles needed to access LLC, which has been obtained by
executing individual tasks for a particular configuration (see
Figure 4). The result-accuracy Accji of the T ji is defined by
the executed optional part of the task, Oji (i.e., Accji = Oji).
Thus, the overall system level result-accuracy, which we also
use to define the QoS of the system, is defined as the sum
of the executed cycles of Oji for all the tasks [19] and can be
represented as:

QoS(A) =
n∑
i=1

Oji | Ti = T ji (2)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 4

If a task Ti executes at frequency Fi then its execution
time ETi can be denoted as b leni

Fi
c, which is a bound on task

execution time. We used this execution time for the offline
phase. If Fa > Fb, then b leni

Fa
c < b leni

Fb
c. To enhance the

result-accuracy of an individual task, while maintaining its
deadline, a higher version of the task needs to be executed
at a higher clock frequency of the core. However, increasing
the clock frequency increases the power consumption (Pow),
which might increase the core’s temperature. Hence, we fur-
ther assume an overall system-wide power limit (Pow BGT),
which includes both dynamic and static power, where the
estimation for the static power in our theoretical model has
been performed by considering a fixed temperature1. Note
that, Pow BGT includes power consumption of both cores
and caches, where dynamic power consumption at the cores is
higher than the static counterpart and caches are accounted for
their static power consumption [25], [32]. However, towards
maintaining accuracy in estimating the power consumption,
both dynamic and static power have to be considered. Hence,
our runtime power consumption is modeled by employing
McPAT [9] tool, that estimates power consumption values
(both dynamic and static power) for both cores and caches
for our specific system configuration detailed in Sec. V-B1.

IV. ACCURATE

In this section, the working mechanism of ACCURATE
is illustrated. After elaborating the ILP based scheduling in
Sec. IV-A, we will discuss the runtime LLC based power
minimization and accuracy enhancement mechanism of AC-
CURATE in Sec. IV-B. Firstly, ACCURATE generates the
schedule and provides the following information: (i) task to
core mapping, (ii) start- and end-times of the individual tasks,
(iii) assigned frequency, and (iv) respective tasks’ versions. A
dispatch table stores the generated scheduling information by
arranging the tasks as per their execution-order, which will
be used to execute the tasks at runtime. During execution,
ACCURATE traverses the dispatch table, selects and fetches
individual tasks to execute according to their start time-stamps.
Basically, while running the task-set, ACCURATE: Online
allows the measurements of release and completion times for
each task. These measures of time correspond to the generated
schedule which is presented afterwards in Table IV and the
respective pictorial timing diagram is shown in Figure 3. Note
that, the dispatch table is stored and maintained in a repository
residing in memory.

To empirically validate ACCURATE, at first we employ the
tool CPLEX [36] to verify the constrained scheduling, with an
example task-set represented as a DAG, where we created task
with PARSEC applications2 [5] (see Sec. V). After that, by ac-
cessing dispatch table, the generated information for this task-
set will be used in our online simulation framework consisting
of gem5 [8] (a full system simulator for performance traces)
and McPAT [9] (power simulator). Our evaluation framework

1Our assumed fixed temperature is 350K, which is a reasonable average
temperature of our considered processing platform while executing PARSEC
benchmarks [33], [32]

2We have also collected both CPU and memory cycles and power usages
for each task by executing them on our simulation setup.

for the online mechanism considers a 4 out-of-order (OoO)
core based tiled CMP architecture (TCMP) [37] (discussed
further in Sec. V with the detailed simulation setup). To enable
way-gating at the cores, ACCURATE incorporates power-
gating mechanism [27] at the way-level granularity of each
LLC bank, having negligible implementation overhead.

A. ACCURATE:Offline (ILP based Scheduling)

We present a scheduling strategy based on integer linear
programming (ILP). For this purpose, we define a binary
decision variable, Ziklθ, where, i = 1, 2, ..., n; k = 1, 2, ..., ki;
l = 1, 2, ..., L; θ = 1, 2, ...,m; Here indices, i, k, l, and
θ denote task ID, corresponding version ID, particular V/F
level, and the processor ID, respectively. Ziklθ = 1, if the
k-th version of Ti (i.e. T ki) executes on processor θ at l-th
V/F level, otherwise 0. We define another binary variable Yij ,
where Yij = 1, if task Ti starts before Tj , else 0.

Let tstart(Ti) and tfinish(Ti) denote the start time and
finish time of the task Ti, respectively. Then we have

tfinish(Ti) = tstart(Ti) +

ki∑
k=1

L∑
l=1

m∑
θ=1

b len
k
i

Fl
cZiklθ (3)

The required constraints on the decision variable to model
our scheduling strategy are stated as follows:

1) Each task Ti is assigned to exactly one processor with a
particular version and executed at one frequency level-

ki∑
k=1

L∑
l=1

m∑
θ=1

Ziklθ = 1 (4)

2) The application A meets its end-to-end absolute deadline
DPTG. Hence, the sink node Tn must be finished by
DPTG. This constraint can be represented as:

tfinish(Tn) ≤ DPTG (5)

3) The peak power consumption of the system should not
exceed the given power budget. Let Powpeak represents
the peak power consumption of the system-

Powpeak = max{Powsys} (6)

where,
Powpeak ≤ Pow BGT (7)

Powsys is the power (both dynamic and static) con-
sumption of all the busy cores, and can be obtained by
summing up power consumption of all the tasks executing
at that instant.

4) Execution dependency between tasks should be satisfied.
The execution of Tj must commence only after the
completion of its predecessor Ti.

∀(〈Ti, Tj〉) ∈ E |tstart(Tj) ≥ tfinish(Ti) (8)

5) To ensure, the tasks have no overlapping executions in
the same processors, the following inequalities need to
be satisfied: ∀(〈Ti, Tj〉) ∈ A, where i 6= j,

Yij + Yji > 0 (9)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 5

Yij + Yji ≤ 1 (10)

tfinish(Ti) ≤ tstart(Tj) + (1− Yij)×M (11)

Equation 11 prevents time-wise overlap of two tasks on the
same processor, i.e. Tj must start after completion of Ti, if
Ti starts before Tj . If tasks are executed in opposite order,
we use big-M nullification to deactivate the constraint. M has
been considered as: M = max{b len

k
i

Fl
c}∀i,∀l.

Objective. The objective of the formulation is to choose
the feasible solution, which maximizes QoS of the application.
Hence, the objective can be written as follows:

Maximize QoS(A) (12)

Here, in the context of this ILP formulation, QoS(A) can be
found as:

QoS(A) =
m∑
θ=1

n∑
i=1

ki∑
k=1

L∑
l=1

Ziklθ ×Oki (13)

subject to the constraints presented in Equation 4 to 11.
TABLE II: Complexity of ILP

Equation # Constraints # Variables Per Constraints

Equation 4 O(n) O(K)

Equation 5 O(1) O(K)

Equation 6 O(n) O(K)

Equation 7 O(n) O(K)

Equation 8 O(n2) O(K)

Complexity analysis: We present the complexity analysis
for our ILP in Table II. The second column of this table
lists the upper bound of the number of constraints for each
equation. The unique resource constraint in Equation 4 should
be determined for all n tasks, hence, for a given PTG, overall n
constraints will be required. Similarly, the number of variables
for this constraint can be represented as O(K ·L·m), where K
denotes the maximum number of possible versions of a task.
However, as the number of processors (m), and the number of
frequency levels (L) are typically constants for a given system,
thus the complexity may be considered as O(K). For deadline
constraint in Equation 5, this condition should be checked for
a single sink node, and thus, only O(1) constraints will be
required. In this way, the total complexity of ILP (in terms
of the number of constraints) can be represented as O(n2). It
may be noted that the complexity of ILP is independent of the
number of processing elements in a platform and deadline of
a PTG.

TABLE III: Parameters and their values, for example task-set

Task Mi Oi Powi Task Mi Oi Powi
(#cycles) (#cycles) (#cycles) (#cycles)

T 1
1 10 6 20 T 1

4 20 6 30
T 1
2 20 5 T 2

4 20 12
T 2
2 20 7 30 T 1

5 8 3
T 3
2 20 10 T 2

5 8 4 40
T 1
3 20 4 T 3

5 8 5
T 2
3 20 8 20 T 1

6 20 8 20
T 3
3 20 10 T 2

6 20 10

Example: Constrained scheduling at work: Let us con-
sider the real-time task graph according to Table III and Fig-
ure 2. This PTG application needs to be scheduled on two

T
1

T
2

T
3

T
4

T
5

T
6

Critical Path

D
PTG

k
2
 X 1

T1

2
T2

2
Tk

2

Available Versions

Selected
Version

2

V
1
/F

1
V

2
/F

2
V

L
/F

L

Available V/F Levels

Selected
V/F Level

L X 1

Fig. 2: Task graph

processors (m = 2), with a deadline DPTG = 100 time
units. Our assumed power budget for both processors is set as
Pow BGT = 50. As per the constrained scheduling strategy,
CPLEX [36], the ILP solver generates the scheduling output
shown in Figure 3. The results are also represented in tabular
form in Table IV.

From Figure 3, it can be found that tasks T1, T3 and T5 were
executed with their highest versions on processor P1. Out of
these three tasks, T5 executes in lower V/F level (i.e. 0.5) for
satisfying the power constraint. On the other hand, task T2 is
able to execute with its highest version (of the available three
versions) on the processor P2 to maximize the overall QoS
of the system. However, T4 and T6 executed on P2 with their
respective lowest versions, in order to maintain the temporal
constraint. It is evident that the entire PTG is able to finish by
100 time units and thus, DPTG = 100 has been fulfilled. The
total obtained QoS value is 45.

TABLE IV: Outputs of the constrained scheduling

Tasks Mapped Selected Execute
Oi

Assigned
Processor Version Start Time V/F Level

T1 P1 1 0 6 1

T2 P2 3 16 10 1

T3 P1 3 16 10 1

T4 P2 1 46 6 1

T5 P1 3 46 5 0.5

T6 P2 1 72 8 1

Achieved QoS 45

T
1

T
3

T
5

10 20 30 40 50 60 70 80 90 100

T
2

T
4

10 20 30 40 50 60 70 80 90 100

T
6

Single
Version

Highest
Version

Lowest
Version

P
1

P
2

Highest Version
in Lowest Frequency

DPTG = 100

Fig. 3: Task allocation by constrained scheduling

B. ACCURATE:Online (Dynamic Accuracy Enhancement and
Power Minimization)

Once the tasks are scheduled, the execution will be trig-
gered and our runtime mechanism will first boost up the
performance by incorporating a way-sharing based technique

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 6

(WH LLC) [35] at the LLC (detailed in Sec. IV-B1). By log-
ically increasing the cache associativity on-the-fly, WH LLC
reduces the number of cache misses, that limits the number
of off-chip (memory) accesses. Thus, the running time of the
task is reduced, and it generates a set of idle processor-cycles
(which will be called private slack for individual tasks in
this paper from here onward) at the end of the execution
of each individual tasks in the predetermined schedule. Next,
our online technique will utilize the private slack for each
task in a couple of ways (see Sec. IV-B2). The tasks, those
have been scheduled with their highest version, will exploit
the private slack only for improving energy efficiency by
turning off a set of LLC ways on-the-fly for reducing LLC
leakage power consumption. This dynamically trimmed LLC
might affect the performance by increasing the number of
cache misses. However, our online mechanism periodically
monitors the performance and turns on cache ways, if needed,
to maintain the predetermined schedule. On the other hand,
the tasks scheduled with a result-accuracy, having room for
further improvement, might exploit the private slack by run-
ning the highest possible versions from their optional parts
to enhance the result-accuracy. Note that, in both the cases,
the predetermined schedule will not be violated. However, our
online mechanism can be tuned further, to balance the power-
performance trade off as per the system requirements.

Before applying WH LLC, we first analyzed nine PAR-
SEC applications [5] by running them in gem5 [8] for a
stipulated number of clock cycles with our simulation setup
(see Sec. V-B). Most of the prior analyses of the PARSEC
regarding cache access patterns have shown the sufficiency
of using 70 − 100M clock cycles, as by considering this
analysis overall trend of cache access patterns can be realized
for most of the PARSEC applications [5], [32], [33], [28].
In ACCURATE, we have used 80M clock cycles (in RoI) for
all of our simulations related to background analyses.

Our simulation shows, a significant amount of their
execution-times, these PARSEC applications spend in access-
ing memory, which is shown in Figure 4. In case of memory
intensive applications, like Can, Ded, Fluid, and Stream,
more than 50% of the execution-times are spent on access-
ing memory. The adopted LLC-based way-sharing technique,
WH LLC, and a prior way-sharing policy Zcache [10] that
significantly curtail the memory accesses by reducing capacity
and conflict misses through better utilization of the LLC space
and thus, improve performance. We further implemented and
compared WH LLC and Zcache with our simulation setup
(mentioned above), and showed the performance improve-
ments for the individual benchmarks in Figure 5. As per this
figure, WH LLC outperforms Zcache for all of these nine
applications with 10.5% improvement in IPC (on average),
whereas Zcache achieves 5.6% average IPC improvement,
which motivated us to adopt WH LLC in the time-critical
environment of ACCURATE.

1) Improving Performance at the LLC: Prior empirical
analyses [35], [38] showed that, due to locality of reference,
the LLC accesses of applications are distributed non-uniformly
across different granularity levels (bank, set, way, etc.) of the
LLC, that keeps a big chunk of the LLC portion underutilized.

Fig. 4: Percentage of execution time for memory access.

Fig. 5: Improving performance with WH LLC.

Several dynamic associativity management (DAM) based tech-
niques [10], [38], [35] have been evolved to logically handle
such load distributions by providing heavily used cache sets
the privilege of using the idle ways of the underutilized ones.

Figure 6 illustrates the entire WH LLC mechanism for an
8-way set associative (A) cache having 8 cache sets (S). First,
a number of cache sets are grouped together to form a Fellow-
group based on their usages, such that each group contains a
mix of lightly and heavily used cache sets. Next, each of these
cache sets is divided into two logical regions: normal ways
(NT) and reserved ways (RT), where any cache set within
a fellow group can use RT portions of all member cache
sets. In Figure 6, cache sets 0, 1, 3 and 5 are in a same
fellow group, and can share their RT ways, and similarly,
cache sets 2, 4, 6 and 7 will also share their RT ways,
respectively. Logically, the associativity of each cache set is
now increased to 20 (from originally 8), which drastically
reduces the capacity and conflict misses at the heavily used
cache sets and improves the overall system performance.
Note that, WH LLC handles the existing diversities in cache
set usages during different execution phases of the task, by
dynamically restructuring these Fellow-groups. The functional
correctness of the addressing mechanism in addition with the
detailed discussion on this way-sharing mechanism is out of
the scope of this paper.

0

1

2

3

4

5

6

7

6 7543210

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d3d2d1d0

e0 e1 e2 e3

f0 f1 f2 f3

g3g2g1g0

h0 h1 h2 h3

Reserve Ways (RT)Normal Ways (NT)

Cache Ways

C
ac

h
e

S
et

s

* Total sets (S) = 8

* Total ways (A) = 8

* RT-ways per set (R) = 4

* Fellow-group size (F) = 4

– Set 0, 1, 3 and 5 can
share their RT ways

– Set 2, 4, 6 and 7 can
share their RT ways

Fig. 6: An example of WH LLC.
Figure 7 illustrates how WH LLC will improve the perfor-

mance in ACCURATE. The darker task-blocks for individual
tasks imply the modified execution spans of the respective
ones with WH LLC in action, while the corresponding brighter

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 7

portions with dotted borderlines are representing the older
schedule (see Figure 3). We have also shown the generated
private slack only for T5. Practically, the improved memory
latency by employing WH LLC will boost up the overall
performance, which is reflected through the reduced execution
times for the individual tasks. The change in execution time
(Exec. Time) for T3 after applying WH LLC is explicitly
shown in the figure. Note that, the performance improvements
for the tasks in Figure 7 are not to scale/measure. Our simu-
lation results in Sec. V will show the changes in performance
for the individual tasks consisted of PARSEC benchmarks [5]
(see Table VI).

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

P
1

P
2

T
1

T
3

T
5

T
2

T
4

T
6

Exec. Time
without WH_LLC

Exec. Time
with WH_LLC

Private Slack

Fig. 7: Performance improvement with WH LLC.
2) Enhancing Power Efficiency and Result-Accuracy: In-

corporating WH LLC logically divides each LLC set into two
parts, as discussed earlier. Hence, shutting down a physical
cache way will have different impacts on the task’s perfor-
mance, depending upon if it is an NT or an RT way. Figure 8
shows how way shutdown will change the associativity for an
8-way LLC, having a fellow-group size of 4 with 4 dedicated
ways per set for RT. Shutting down 2 physical cache ways
from NT portion will reduce the logical associativity to 18.
On the other hand, if 2 physical ways can be turned off from
the RT part, logical associativity will be reduced by 2 × 4,
i.e. 8, so finally it will be 12. And shutting down 2 ways
individually from NT as well as from RT will entail the logical
associativity to 10, which is still higher than the original one
(8). So, by employing WH LLC, even after shutting down 50%
(physical)3 ways from a cache bank, we can still maintain
an associativity of 10. This can however partially curtail the
gained benefits of WH LLC, but will still be able to maintain
the performance over the baseline while significantly reducing
the power consumption. Note that, in this work, we set the
upper limit for way shutdown at 50% from each of the NT
and RT ways. For all tasks, that have been scheduled with their
highest version, the way-shutdown will be applied for reduc-
ing LLC power consumption. To avoid any implementation
conflicts, ACCURATE does not allow concurrent execution of
dynamic LLC resizing and reconstruction of the Fellow-group
in WH LLC.

Algorithm 1 to 6 present the complete procedure for per-
forming way-shutdown at the individual LLC banks along
with the result-accuracy enhancement. Once the schedule is
generated, the individual tasks’ start- as well as end-times are
determined. ACCURATE: Online next converts all such timing
parameters to cycles and stored in dispatch table, whereas the
duration (in cycles) of the deadline is named as FRAME.

3By considering our system configuration (see Sec. V-B1), we restricted
ourselves to ensure the available cache size at least 50% during execution
based on prior cache requirement analyses of PARSEC [5]. Note that, the
value of this limit is application dependent.

0

1

2

3

4

5

6

7

6 7543210

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d3d2d1d0

e0 e1 e2 e3

f0 f1 f2 f3

g3g2g1g0

h0 h1 h2 h3

Reserve Ways (RT)Normal Ways (NT)

Cache Ways

C
ac

h
e

S
et

s

* Total Physical Ways per
 Set (A) = 8
* Total Logical Ways per
 Set with FS-DAM (F) = 20
* Ways per Set after
 Gating 2 Physical Ways
 from NT = 18
* Ways per Set after
 Gating 2 Physical Ways
 from RT and 2 Physical
 Ways from NT = 10

Turned-off or Gated
Cache Ways

Fig. 8: WH LLC with gated cache ways.

Algorithm 1: Per-core power reduction and result-
accuracy enhancement within a FRAME

Input: Interval length, Sleep Thr, Turn ON OH ,
#available higher versions of Ti

1 Interval = Interval length, #Off ways at NT[B] = 0,
#Off ways at RT[B] = 0;

2 cycle cntr = 0;
3 No LLC resize flag[Ti] = 0;
4 # Counts number of cycles completed within a period ;
5 # Check dispatch table if init slack exists for the current core with the

beginning of the FRAME ;
6 # (due to execution of the source task at some other core) ;
7 if init slack ≥ (Sleep Thr + Turn ON OH) then
8 # Put the core into sleep mode for gated cycles ;
9 gated cycles = init slack − Turn ON OH ;

10 cycle ctr + = Algorithm 2 (gated cycles) ;

11 for each task (Ti) assigned to this core do
12 if Highest version is scheduled for Ti then
13 # Fetch Ti and execute ;
14 Call Algorithm 4 (Ti);
15 else
16 No LLC resize flag[Ti] = 1 ;
17 # Fetch Mi (of Ti) and execute ;
18 Call Algorithm 4 (Mi);
19 Cycles Left Oi =

Extended End Time Ti − cycle ctr;
20 Oi = Algorithm 3 (available higher versions of Oi);
21 # Fetch the updated Oi ;
22 Call Algorithm 4 (Oi);

23 # After execution of Ti, check if slack exists;
24 gated cycles =

Extended End Time Ti − cycle cntr − Turn ON OH;
25 if gated cycles > Sleep Thr then
26 cycle cntr = Algorithm 2 (gated cycles);

Algorithm 1 takes the following parameters as the in-
puts: Interval length, Sleep Thr, Turn ON OH , and
#available higher versions of Oi. During execution, Al-
gorithm 1 checks the LLC usages periodically at the end of
each Interval length number of cycles, which is set by
considering prior analyses of LLC usages [33], [32], [28].
Sleep Thr is a minimum threshold value for a slack-span
which is also known as the processor’s break-even time [39],
and whose value is architecture dependent. Turn ON OH
represents the time taken for the core to be turned on from
its sleep mode. The number of available higher versions
of Oi of task Ti over its scheduled one is represented by
#available higher versions of Oi.
cycle cntr, a variable, keeps track of the number of

cycles within a FRAME. #Off ways at NT [B] and
#Off ways at RT [B] counters keep track of the number
of turned off NT and RT ways, respectively, at a particular
LLC bank B. We also use a flag No LLC resize flag[Ti]
to decide (initialized to 0 at line 3), if LLC resizing for Ti will

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 8

Algorithm 2: Sleep-Manager
Input: gated cycles

1 update cycle = gated cycles+ Turn ON OH ;
2 Apply power gating at the core;
3 while gated cycles > 0 do
4 gated cycles--;

5 Turn on the core ;
6 return update cycle ;

Algorithm 3: Enhance-Accuracy
Input: #available higher versions of Oi

1 if #available higher versions of Oi ≥ 1 then
2 while Cycles Left Oi > Exec Len Curr Oi do
3 if Cycles Left Oi < Exec Len next Oi || Curr Oi

== Highest Oi then
4 # Update and return Oi ;

5 # Go to next version of Oi ;

be enabled. The end time-stamp for the individual tasks (within
a FRAME on the assigned core) is modified and called
as extended end time (Extended End T ime Ti), which is
defined as follows:
• Extended End T ime Ti is the scheduled start time of

the next task (say Ti′) assigned on the same core, if the
current task is not the last task on its assigned core within
the same FRAME.

• Extended End T ime Ti is set to the length of the
FRAME for the last task of a particular core within
the FRAME.

For example, Extended End T ime T2 at core P2 in Fig-
ure 3, is 46, which is the start time of T4. The
Extended End T ime T5 will be 100, as T5 is the last task
of the FRAME at P1. For ease of understanding, all of these
time values can be assumed as cycles, e.g. 100 time units can
be considered as 100 cycles.

With the onset of the FRAME, the algorithm first checks
if any initial slack exists at the current core by looking at
the dispatch table. Such slack can only exist, if the tasks are
waiting at the current core for the execution of the source task
at some other core. For a sufficiently large init slack having a
length of at least Sleep Thr + Turn ON OH , sleep mode
will be enabled at the current core for the duration of the
slack (line 7 to 10). For enabling sleep mode at the core,
Sleep-Manager() subroutine, i.e. Algorithm 2 is called, that
maintains a counter (gated cycles) during sleep, and turns
the core on if the counter is exhausted (line 1 to 6).

For each ready task (Ti), Algorithm 1 first checks if the
task is scheduled with its highest version, and the execution
will be started (line 11 to 14). If a task is not scheduled with
its highest version, the system checks for the best possible
schedulable higher version available for the task by executing
Enhance-Accuracy process given in Algorithm 3 (see line 1
to 5). Before inspecting the availability of the higher Oi, the
algorithm will start executing Mi (line 18), and on completion
the time left for executing Oi, i.e. Cycles Left Oi, will be
determined (line 19). Based upon the available higher versions
which can be fitted within the time left, Oi will be updated
with the best possible one by calling Algorithm 3 and will be

Algorithm 4: Task-Execution
Input: Ti

1 if Ti is fetched then
2 Set the predetermined V/F level and start execution ;
3 while Task is being executed do
4 if cycle cntr == Interval and No LLC resize flag[Ti]

6= 1 then
5 Interval = cycle cntr + Interval length;
6 For each bank (B) do in parallel (Line 7 to 8);
7 # Call Algorithm 5 with #Off ways at NT[B] and

#Off ways at RT[B] as inputs, and update the cycles after
LLC-resizing;

8 cycle cntr+ = Algorithm 5 (#Off ways at NT[B],
#Off ways at RT[B]);

9 # Execute as normal;
10 # update the counter at the end of each clock cycle;
11 cycle cntr + +;

Algorithm 5: Dynamic LLC Resizing
Input: POWER DOWN , POWER UP , Limit

1 resize cycles = 0, total cycles = 0;
2 ratio = #misses(B)/#accesses(B);
3 if (ratio < POWER DOWN) then
4 if (#Off ways at NT[B] < Limit) then
5 # Select a victim way from NT;
6 total cycles = Algorithm 6 (resize cycles, Way i);
7 #Off ways at NT[B]++;
8 else
9 if (#Off ways at RT[B] < Limit) then

10 # Select a (physical) victim way from RT;
11 total cycles = Algorithm 6 (resize cycles, Way i);
12 #Off ways at RT[B]++;

13 else
14 if (ratio > POWER UP) then
15 if (#Off ways at RT[B] > 0) then
16 Turn a (physical) way on from RT;
17 #Off ways at RT[B]−−;
18 else
19 if (#Off ways at NT[B] > 0) then
20 Turn a way on from NT[B];
21 #Off ways at NT[B]−−;

22 Return total cycles;

executed accordingly (line 20 to 22). In our example, we were
able to dynamically schedule and execute the higher version
for T6 (see Figure 9) by prudentially exploiting its private
slack (included in Cycles Left Oi). Note that, our algorithm
does not allow dynamic LLC-resizing if a task’s version can
be updated online, which, if allowed, might lead to deadline
violation. Hence, the flag No LLC resize flag[Ti] is set
to 1 for the tasks whose version can be updated dynamically
(see line 16). Our algorithm also looks for the availability of
the sufficiently large slack-span after execution of each task,
and on availability of such slacks, sleep mode will be enabled
at the processor core by calling Algorithm 2 (line 23 to 26).

To execute tasks, Algorithm 1 calls Task-Execution method
given in Algorithm 4, that executes each task in the fol-
lowing manner. Once a task is fetched, the predetermined
V/F level for this task will be set at the assigned processor
core and the execution will be started (see line 2). During
execution of a task, cycle cntr is updated at each clock
cycle, and this value is used to determine if an Interval
is encountered and current task is eligible for LLC resizing
(i.e. No LLC resize flag[Ti] 6= 1) (see line 4). Once the
cycle cntr is at the Interval, and the task is eligible for

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 9

Algorithm 6: Evict-Way
Input: resize cycles, Way i

1 while blocks available at Way i do
2 # evict/invalidate blocks from Way i;
3 # keeps track of cycles by updating resize cycles counter;
4 resize cycles+ +;

5 # Turn off Way i;
6 Return resize cycles;

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

P
1

P
2

Exec. Time with
higher accuracy

Tasks with dynamically enhanced accuracy

T

1
T

3

T
2

T
4

T
6

Exec. Time
without WH_LLC

Exec. Time with
WH_LLC + WS

Performance degraded due to Way Shutdown

Sleep

private slack

T
5

Fig. 9: WH LLC increases power efficiency and system
result-accuracy by exploiting the private slacks.

LLC resizing, the algorithm will attempt to resize the LLC by
calling Algorithm 5. ACCURATE is implemented with a multi-
banked LLC, in which we will enable our way-level dynamic
LLC resizing strategy at each bank B. Hence, Algorithm 5 will
be called for all of these LLC banks (line 6 to 8). However,
once resizing is done, the execution will proceed normally.

Existing diversities in cache access pattern across differ-
ent execution phases of individual applications excogitate
diverse cache requirements on-the-fly. As the time-criticality
is enforced, keeping track of the task’s cache requirements
during different execution phases is inevitable, which can
be monitored by considering the miss rate at the bank
level granularity. Therefore, at first, a ratio is calculated by
#misses(B)/#accesses(B) for the individual banks (B)
on completion of an interval (Interval) (see line 2). If
this ratio is smaller than POWER DOWN (line 3), the
algorithm will first check if the number of turned off ways
(#Off ways at NT [B]) is less than the maximum allowed
(#Limit) then an NT way is selected as victim, and it
will be shutdown eventually after invalidation or eviction of
its blocks (line 4 to 7). If the number of turned off ways
(#Off ways at NT [B]) reaches the maximum allowed
(#Limit), then if the number of turned off ways in the RT
portion (#Off ways at RT [B]) is less than the maximum
allowed (#Limit) (line 9), a way from RT will be turned
off after invalidation or eviction of its blocks (line 10 to 12).
Note that, during eviction of the blocks from the victim way,
the bank can still serve external memory accesses. The main
difference is that, an eviction caused by a cache miss will not
evict the data from the victim way.

On the other hand, if the ratio is larger than POWER UP
(line 14) and there exists at least one power-gated way at
the RT portion, then one RT way is turned on (line 15 to
17). If RT has no gated ways at present, our algorithm will
attempt to turn on a powered off NT way (see line 17 to 20).
Note that, incorporation of two separate limits for ratio, where
POWER UP is larger than POWER DOWN reduces the
chance for oscillating resizing where one (physical) way is
repeatedly turned on and off during stable execution phases.

Depending on the system parameters and the average expected
workload of the system, a suitable Interval length and other
thresholds (POWER UP and POWER DOWN) can be
determined (see Sec. V-B1). Hence, these may either be set
at design time or may be made configurable. The number of
sets that can be evicted per cycle during way shutdown is to
be limited by the number of memory ports (per bank). Note
that, the block invalidation or eviction at the LLC ways are
performed by Evict-Way method in Algorithm 6 (line 6 and
11). As long as the blocks are available at a particular way, this
algorithm will either write the block back to main memory, if
dirty, or invalidate the block. Once this operation is done, the
way will be turned off (line 1 to 6).

3) ACCURATE: Online Computational Overheads:

Theorem 1. The amortized complexity of ACCURATE: Online
(Algorithm 1 to 6) is O(n log n)/FRAME per time-slot.

Proof. Algorithm 1 is the heart of ACCURATE: Online tech-
nique that executes at each core, which at first investigates the
dispatch table to identify if there exists a slack at the beginning
of the FRAME. Such slacks can be determined just by
looking at the dispatch table, hence, it incurs a computational
overhead of O(1). A step-wise analysis of computational
overhead of Algorithm 1 due to the called functions/algorithms
is as follows:

1) On presence of a slack at the beginning of the FRAME
the core will be gated, only if the slack-span is sufficiently
large, by calling Algorithm 2, that keeps track of the time
during sleeping. As sleep duration typically takes a small
value, Algorithm 2 will incur a computational overhead
of O(1).

2) The “for loop” from line 11 to 26 may be executed
O(n) times in worst-case, although the number of tasks
assigned to a core usually takes a small value.
• In worst-case, the loop will execute line 16 to 22.

This loop calls Algorithm 3 and 4. The “while loop”
in Algorithm 3 can have a worst-case complexity of
O(k), where k is the maximum number of versions
for a task Ti.

• Algorithm 4, 5 and 6 are called during task execution.
For all practical purposes, computational overheads
of these algorithms may be considered to be constant,
however, implementation overheads for Algorithm 5
and 6 are limited [27].

3) Hence, the worst-case computational complexity of Al-
gorithm 1 is O(n · k).

4) The number of processor cores is constant. Hence, at any
FRAME, the total overhead for generating the schedules
over all processor cores for the duration of a FRAME
is O(n · k) in the worst case.

5) As the FRAME length is in O(DPTG), the amortized
complexity of ACCURATE: Online is O(n·k)

O(DPTG) .

V. RESULTS AND ANALYSIS

In this section, we will illustrate the efficacy of ACCU-
RATE by evaluating ILP based task allocation and scheduling
(see Sec. V-A) and runtime energy efficiency and performance

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 10

improvement (see Sec. V-B). Based upon the tasks’ parameters
(e.g. execution time-spans, interdependencies among the tasks)
and the number of available processor-cores along with the
V/F levels, the tasks are allocated by the ILP based scheduling.
Once the task-allocation is over, with the onset of the execu-
tion, our online cache based policy trims the execution spans of
the individual tasks by activating WH LLC. In case the current
task is scheduled with its highest version, then LLC leakage
consumption will be reduced through selective power gating of
the cache ways. On the other hand, while the task is scheduled
with compromised accuracy, by trimming the execution span
with WH LLC, the highest possible version of the task is
selected for execution. Towards standardizing our evaluations,
we have considered task-execution parameters as per AC real-
time task-model of [3] in case of our offline strategy, whereas
our online architectural technique is evaluated by employing a
mixture of compute and memory bound PARSEC benchmark
applications [5]. Moreover, a prior art claimed the eligibility
of PARSEC in real-time environment [40].

A. Evaluating ACCURATE: ILP based scheduling

Performance evaluation has been carried out through a
comprehensive set of simulation based experiments, consid-
ering a homogeneous multiprocessor system that executes
a set of real-time precedence constrained tasks. Normalized
Achieved QoS (NAQ) is the principal metric based on which
the evaluation has been performed. NAQ can be defined as
the ratio between the actually achieved QoS (see Equation 2)
for the entire PTG and the maximum possible achievable
QoS by executing the highest version of each task node.
Mathematically, NAQ can be formulated as:

NAQ =

∑n
i=1 Accji∑n
i=1 Accki

i

, (14)

It can be inferred that NAQ contributes to derive a measure
of the efficacy of the offline phase. Specifically, it determines
how much optional portion of each task has been executed, de-
pending upon the chosen version, by satisfying the constraints.
Now, to show the efficacy of our offline technique, we model
a multiprocessor system along with a task-set as follows:
• Processor System: For our experiment, we consider a

multiprocessor platform equipped with 4 Alpha 21364
cores, where per core Pow BGT is set at 2.7W which
is obtained through power-profiling for individual tasks
in McPAT [9].

• Task Characteristic: Each PTG consists of a set of
subtasks under dependency constraints with a deadline
DPTG. Each subtask (Ti) is a multithreaded task (see Ta-
ble VI), where all threads of a single task are executed
on the same core (in a quasi-parallel manner) which
is characterized by the execution times, ETi. We also
assumed that a subtask can consume between 4×107 and
6×108 clock cycles [3]. Note that these WCET values of
tasks have been assumed to be calculated by employing
the framework as stated in [41]. This framework enables
to quantify the possible overestimation of WCET upper
bounds obtained by the static analysis. The prime ob-
jective was to derive a lower bound on the WCET to

Fig. 10: Analysis of running time of ILP-formulation.

complement the upper bound. As ACCURATE employs
hybrid offline-online approach, such static analysis will
be beneficial for us to eliminate the overestimation, and
we can expect much realistic WCET.
It is further assumed that each task node can have
a maximum of 5 versions, i.e. k = 5. The assump-
tions regarding execution lengths also include memory
cycles for our individual tasks, consisting of PARSEC
benchmark applications [5], [35]. The total execution
requirement of a PTG (CPTG) is defined as the sum of
the execution times of its subtasks, CPTG =

∑n
i=1ETi.

Hence, the utilization Ui of a PTG can be denoted as
CPTG

DPTG
. The average utilization of a PTG is taken from

normal distribution by considering normalized frequency
0.5. Given the PTG’s utilization, we can obtain the total
system-utilization (Sysuti) by summing up the utilization
of all the PTGs. Given the system utilization, the total
system workload (SysWL) or system pressure can be
derived by: SysWL = Sysuti

m × 100%.
For a given system utilization, we have generated the
PTGs by following the method proposed by Qamhieh
and Midonnet [42]. Given a SysWL, a set of DAGs is
created. The number of DAGs (ρ) within a set can be
measured as:

ρ =
m× SysWL

Ui
(15)

In our generated PTGs, the minimum number of tasks
(nodes) is equal to 5 and the maximum number of nodes
is set to 20. For each of our PTGs in the set, the
number of nodes have been randomly generated within
the specified limit. It can also be noted that, as individual
utilization (Ui) of a DAG is lower than the given system
workload (SysWL), the number of DAGs (ρ) within the
set will always be higher than m. All of our experiments
are carried out by using the CPLEX optimizer version
12.10.0, with a timeout of 5 hours.

• Task Temporal Parameters: For each task Ti, based on
which portion of the leni is considered as its mandatory
portion (Mi), we considered the following cases: (i)
man low : Mi ∼ U(0.2, 0.4) × leni (low portion of a
task Ti’s length (leni) is for the mandatory portion). (ii)
man med : Mi ∼ U(0.4, 0.6) × leni (medium portion
of a task Ti’s length (leni) is for the mandatory portion).
(iii) man high : Mi ∼ U(0.6, 0.8)× leni (high portion
of a task Ti’s length (leni) is for the mandatory portion).

• Frequency Level: We have chosen two distinct normalized
frequency levels as: fnorm = 0.5 and 1 for task execution.
The respective actual V/F settings for our considered
cores are given in Table V.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 11

Scalability analysis of ILP. Figure 10 depicts average
solving time per number of tasks (nodes) in each PTG. We
observed that, when the number of tasks in each PTG is
within 10, the average solving time remains comparable. This
implies, if the number of tasks lies within 10, the increase in
solving time does not significantly vary with the number of
tasks. However, when the number of tasks increases further,
i.e. more than 10, the average solving time also increases.
This observation is also supported by the complexity analysis
provided in Table II. Empirically, we further noticed, with
n = 20, the ILP generates on average 5000 constraints for
which the solving time reaches approximately 140 minutes.

Fig. 11: Change in NAQ for various system workloads.

Fig. 12: Comparing NAQ: ACCURATE vs. Task Deploy.

1) Results: Figure 11 shows the NAQ obtained by AC-
CURATE for various values of SysWL. It can be observed
that ACCURATE is able to achieve 85% QoS when the system
workload is low. However, QoS is reduced by 20% on average
when the workload increases by 40%. Other two insightful
observations can be derived from this figure. Firstly, as the
system workload increases the average number of PTGs in
the system also increases (as Ui is fixed at 0.2) and this
eventually contributes to low NAQ values. This happens due
to higher number of tasks decreases the possibility of obtain-
ing sufficient free slots in the scheduling period within the
deadline. Insufficient free slots in turn reduces the probability
of obtaining feasible schedules by selecting higher versions of
the tasks.

Secondly, in case of man high, it imposes less adverse
effect on the achieved NAQ with the increasing value of
SysWL. This is because when the mandatory portions of
individual tasks are high, the length of the optional portions
will be low. As a result, the variance among the different
versions of a task become less. However, due to fewer varia-
tions among the optional portions of a task, there will be less
impact on the achieved result-accuracy. On the other hand,
in case of man low, we can observe the alternative trend,
and man med offers a performance between man high and
man low. However, the NAQ sharply decreases while the
SysWL increases. We have also compared our policy with
a prior strategy (Task Deploy) [3] and the results are shown
in Figure 12 in case of man med. For a fair comparison
with Task Deploy, we firstly derived the overall energy limit

based on our considered power budget (PowBGT) of ACCU-
RATE’s experimental framework. The same value is used as
energy limit for Task Deploy as well. It can be observed,
as the number of task increases (due to increase in SysWL),
ACCURATE maintains more QoS by achieving higher NAQ
than Task Deploy. ACCURATE is able to maintain 70%
QoS with 70% workload where Task Deploy achieves 55%
QoS. This is because Task Deploy did not consider any
power limit, but assumed energy budget would increase with
higher number of tasks. Moreover, Task Deploy also allows
unlimited task migration that incurs extra overheads.

1 2

3 4

C L1-D

L1-I L2

Off-Chip Memory
Interface

Fig. 13: Tiled CMP Architecture.

B. Evaluating ACCURATE: Online LLC-based Technique

The evaluation of the WH LLC-based dynamic accuracy-
enhancement and power minimization is carried out by em-
ploying architectural simulators, where our entire online tech-
nique (discussed in Sec. IV-B) has been implemented. Before
demonstration of our results, we will first discuss the simula-
tion setup.

1) Simulation Setup: We simulated two 4 core based homo-
geneous TCMP with 4 replicated tiles (see Figure 13) in gem5
full system simulator [8] as our baseline system, where each of
these TCMP is representing a single processing element (i.e.
Pi in Figure 13). However, each tile of these TCMP contains
an In-Order (InO) Alpha 21364 core together with its private
L1 (Data and Instruction) caches. The whole L2 cache (LLC
in our case) is physically distributed/sliced uniformly among
the tiles, called L2-bank, but logically the L2-banks share a
single address space. The tiles are connected through a 2D-
mesh NoC, hence, each tile is also equipped with a router
(depicted by the circles in Figure 13). We implemented Al-
gorithm 1 to 6 in the Ruby module of gem5, and associated
performance overheads for implementing these algorithms are
also considered in our simulation. For estimating power/energy
consumption (based on 32nm technology nodes), performance
traces are fed to another simulator, McPAT [9]. The incurred
energy overheads for implementing the online mechanism of
ACCURATE are also derived from McPAT.

ca
ch

e
m

is
s

ra
ti

o

Fig. 14: Range of cache miss ratio (ratio in Algorithm 5).

By considering prior empirical analysis based on cache
locality [28], [33], the length of an interval (Interval length
in Algorithm 1) is set to 2 million clock cycles. To set
POWER UP and POWER DOWN in Algorithm 5, the
range of the ratio for nine PARSEC applications was observed

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 12

over 80 million clock cycles (within RoI), while applying FS-
DAM at the LLC. Figure 14 shows the ranges of ratio for
individual PARSEC benchmarks. It can be noticed that the
miss ratio is varying between less than 1% and more than 8%
with an average of 2.75%. This small difference between mini-
mum and the average values indicates that for most intervals
the miss ratio is small. For our evaluation, in this work we
set the values for POWER UP and POWER DOWN as
0.04 and 0.025, respectively, i.e., for a bank, the miss ratio
of more than 0.04 will turn on a physical cache way while a
value less than 0.025 will turn off a physical cache way in the
LLC-bank.

TABLE V: System parameters and their values

Parameters Values Parameters Values

Technology used 32nm ISA Alpha 21364
Max. V/F 1.02v/1800MHz Min. V/F 0.70v/900MHz
MUL per core 1 ALU per core 2
FPU per core 1 Fetch Width 4
Decode width 4 Issue width 4
#Int Reg. 32 #Float Reg. 32
Cache Model SNUCA #LLC Banks 4
L1 I/D Cache 64KB, 4-ways L1 Latency 3 Cycle
L2 Cache bank 512KB, 8-ways Cache Block Size 64 Bytes
L2 Latency (512KB) 10 Cycles Memory bank 1GB, 4KB/page

Table V contains the configuration parameters for the
processor cores and memories used in the evaluations. We
generated our tasks by using PARSEC benchmark suite [5]
which can be fitted in an AC based paradigm [7], [43]. In their
work, Sidiroglou et al. showed how PARSEC benchmark pro-
grams can be used in the approximation paradigm through the
loop perforation technique [43]. To simulate our application
(mentioned in Table III), we use 6 tasks where each processor
(i.e. each 4-core based TCMP) executes the allocated tasks
without any preemption. The tasks are framed by randomly
combining executions of multiple PARSEC benchmark pro-
grams together, where each one might also appear multiple
times (see Table VI). This implies, each of our tasks is multi-
programmed, hence, our application (A) is a collection of
multi-programmed tasks. Basically, in Table VI, we show how
each Ti in Figure 2 (described in Sec. IV-A) is formed by
PARSEC benchmark programs. Towards simulating the whole
system with PARSEC, we further scale up the values of Mi, Oi
and DPTG by 100 million. Note that, the individual task cycles
include both processor and memory cycles for the specific
cache configuration given in Table V. Towards empirically
validating and verifying ACCURATE with the contemporary
workloads, we employ multithreaded PARSEC benchmark
programs, where each individual program is executed with
4 threads. However, the discussion related to the detailed
allocation of the benchmarks and their threads inside each
task to the cores of the TCMP, which is internally managed
by our simulation setup, is out of scope of this paper.

The Baseline values in all of our results that evaluate
runtime techniques of ACCURATE are produced by executing
the schedule generated by ILP based scheduling (discussed
in Sec. IV-A) without incorporating any changes during ex-
ecution. Also note that, as we mentioned earlier, all timing
parameters derived from the scheduling strategy are converted
to clock cycles while filling up the dispatch table with the
task details. The task details regarding their execution length

(for mandatory and optional parts) in cycles for a particular
configuration of the processing platforms needs to be made
available beforehand. Details of the processing platform in-
cludes the number of cores per processor (e.g. it is 4 in
ACCURATE), available operational processing frequencies,
cache configurations and memory sizes (see Table V). The
processor and memory cycles for each task are also derived
prior task-scheduling through pre-executions of the tasks.
The percentage of execution time spent for memory accesses
are shown in Figure 4 for individual PARSEC benchmark
program.

TABLE VI: Application formation with PARSEC.
(Acronyms: Blackscholes (Black), Bodytrack (Body),
Canneal (Can), Dedup (Ded), Fluidanimate (Fluid),

Freqmine (Freq), Streamcluster (Stream), Swaptions (Swap),
and X264 (X264)). Considered input-size (for all): Large.
The execution lengths (Exec. Length ([Mi], [Oi])) of the

tasks are in scale of 100 million cycles.

Tasks PARSEC Benchmarks Exec. Length
([Mi], [Oi])

T1 Black (2 copies), Fluid (4 copies) and Swap (2 copies) [10], [6]

T2 Body (3 copies), Freq (3 copies) and Stream (2 copies) [20], [5, 7, 10]

T3 Can (2 copies), Ded (2 copies) and Fluid (4 copies) [20], [4, 8, 10]

T4 Black (2 copies), Swap (4 copies) and X264 (2 copies) [20], [6, 12]

T5 Body (3 copies), Ded (2 copies) and X264 (3 copies) [8], [3, 4, 5]

T6 Can (2 copies), Swap (4 copies) and X264 (2 copies) [20], [8, 10]

2) Change in Performance at the task level: After im-
plementing WH LLC and dynamic way-shutdown techniques
(Algorithm 1 and 5) in ruby module of gem5, we noticed
the changes in IPC (Instructions Per Cycle) at the task levels
during execution. Employing WH LLC significantly boosts up
LLC performance, by reducing capacity and conflict misses
that further reduces off-chip accesses and resulting into im-
proved IPC. But, incorporation of way-shutdown (proposed
in Algorithm 5) further aggravates performance gained through
WH LLC, however this performance degradation is compen-
sated by a remarkable reduction in leakage consumption
(discussed next). We further compared WH LLC with another
DAM based prior work, Zcache [10], that yields increased
LLC associativity rather than the actual number of ways by
increasing the number of replacement candidates. Figure 15
shows the impacts on performance of WH LLC, ACCURATE
(WH LLC + LLC resizing), and Zcache for the individual
applications over the baseline. WH LLC is able to improve
performance by 10% on an average for all tasks, with a
minimum improvement of 9.5% in case of T1. However,
this result shows ACCURATE curtails performance gained
by WH LLC for individual applications, but is still able to
maintain a better IPC over baseline, which ensures meeting of
the real-time constraints.

Among all of our tasks (mentioned in Table VI), T2 and T5
are memory intensive, whereas the other tasks are comprised
of mixed (memory plus computational) workloads. Hence, the
performance degradation is comparatively higher in case of
T2 and T5 in ACCURATE, than in the other tasks. However,
our dynamic way turn on mechanism (in Algorithm 1) safe-
guards the executions from violation of deadlines by providing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 13

Fig. 15: Change in performance (IPC) by applying WH LLC
at the LLC along with Way-shutdown and Zcache.

more cache space to the tasks, on demand. Note that, even
after shutting down cache ways on-the-fly, our technique
still shows better performance than the baseline, as well as
Zcache. Our technique ACCURATE still maintains a mean
performance improvement of 6.4% over baseline, which is
10.4% with only WH LLC (over the baseline), whereas Zcache
boosts performance up by 5.7% over baseline. Moreover, this
empirical result implies that, any task for which a higher
version is available, with an additional execution span (in clock
cycles) of within 10% of the currently scheduled version, can
enhance the result-accuracy by executing its higher version.
Additionally, energy efficiency can be enhanced by enabling
the sleep mode, subject to availability of the private slack.

3) Reduction in LLC-Leakage: We set the upper limit for
way-shutdown to 50% in Algorithm 5 [44] that reduces around
36% of leakage power on an average across the applications.
Figure 16 exhibits the reduction in LLC-leakage consumption
for the individual applications, where the leakage reduction is
more in case of the mixed workload based tasks (T1, T3, T4
and T6). Requirement of higher run-time cache space curtails
the leakage reduction for the memory intensive tasks (T2
and T5) for which Algorithm 1 was unable to maintain a
lower cache size for a long time-span on-the-fly. Note that,
we executed all of these tasks with their respective highest
versions (i.e. the best possible ones) along with the assigned
V/F level (at the core) (by scheduling mechanism in Sec. IV)
towards illustration of the efficacy of our online mechanism.

4) EDP Gains: For the same set of applications executing
with their respective highest version, our cache based online
technique shows lesser EDP gains in the cases of memory
intensive tasks (T2 and T5), due to their comparatively lesser
reduction in LLC-leakage. On the other hand, mixed work-
loads (T1, T3, T4 and T6) are able to provide higher EDP
gains due to higher reduction in the LLC-leakage consumption
while applying ACCURATE. Figure 17 shows significant gains
in EDP across the tasks while applying ACCURATE. Our
online LLC based strategy is able to offer a significantly
higher average EDP gain of 24% and this gain lies between
the range of 19 − 28% for our task-set. Note that, EDP for
each application includes the power consumed by both the
processor-cores and the two levels of caches.

C. Gains from ACCURATE in a nutshell

The offline mechanism first generates the schedule and
is able to achieve around 85% NAQ (see Sec. V-A), while
maintaining the system constraints. Our online cache based
strategy shows a significant performance improvement of 6.4%

on average (see Sec. V-B2) while reducing 36% LLC leakage
power consumption on an average (see Sec. V-B3) by shut-
ting down a number of LLC-ways. The overall performance
improvement of the online policy ensures to meet the timing
constraints determined by the offline scheduling. However,
while maintaining the deadline constraint, our cache based
online technique is able to reduce a significant amount of
energy by generating private slacks, which are employed for
sleep that enables to noticeable overall energy reduction of
44% (see Figure 18).

By employing Algorithm 1 and 5, we have modified the
schedule online, which is reported in Table VII. For tasks
T1, T2, T3 and T5, Algorithm 1 applies WH LLC along
with the way-shutdown, whereas for T4 and T6, Algorithm 1
attempted to improve the result-accuracy. The Scheduled Time-
span column in Table VII shows the output of our offline
technique, and the next two columns present the actual run-
time with WH LLC and ACCURATE (that includes WH LLC
and dynamic LLC resizing), respectively. In our schedule, for
T4 and T6 we have scopes to improve the result-accuracy, as
they are not scheduled with their respective highest versions.
Our algorithm is able to improve the result-accuracy online
for T6, which is highlighted in green background whereas
red background in case of T4 implies it can not be executed
with its higher version due to violation of the schedule. For
T6, the actual running time with WH LLC and ACCURATE
are lower than its predetermined execution spans, and note
that for T6, way-shutdown was not performed. The private
slacks generated at the end of the execution of any tasks
will be employed for sleep. Note that, during execution of
source (T1) as well as sink (T6) tasks, only one core where
the source/sink task is assigned will be active, and the rest
will be kept in sleep mode. By executing higher version in
case of T6, our technique is able to achieve a result-accuracy
of 47, which was 45 at the end of our offline scheduling.
Finally, our overall energy savings for individual task-level
is shown in Figure 18. This figure shows, by incorporating
way-shutdown and sleep, we achieve 44% savings in overall
energy consumption for our task-set. So, the amalgamation of
these techniques in ACCURATE (offline plus online) can offer
an energy-efficient AC real-time task-allocation strategy with
higher achievable QoS.
TABLE VII: Final Schedule with enhanced result-accuracy.

The execution lengths of the tasks are in scale of 100
million cycles.

Tasks Scheduled
Time-span

Run-time only
with WH LLC

Run-time with
ACCURATE

Private
Slack

T1 16 14.5 14.9 1.1
T2 30 26.8 28.5 1.5
T3 30 27 27.9 2.1
T4 26 23.4 23.4 1.6
T5 23 20.5 22.0 1.0
T6 28 27.2 27.6 0.4

VI. CONCLUSIONS

QoS improvement in AC real-time system without violating
the precedence-power-temporal constraints has become an
active research topic in recent time. Accuracy of such AC
tasks can be stimulated by executing more from their optional

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 14

Fig. 16: Reduction in LLC-Leakage
with Way-shutdown. Fig. 17: ACCURATE: EDP gains. Fig. 18: Overall task-level energy

savings.

parts along with executing their respective mandatory parts.
In this paper, ACCURATE proposed (i) an efficient scheduling
strategy towards maximizing result-accuracy for a set of AC
real-time applications modeled as PTGs on multi-cores, along
with (ii) an online cache based mechanism towards further
refinement of the result-accuracy together with reducing run-
time energy of the underlying circuitry.

Once the tasks are allocated to the processor-cores by
employing an ILP based scheduling technique, our online
strategy orchestrates a DAM based way-sharing mechanism at
the shared LLC to significantly reduce the running time of the
applications. This improved performance is traded off towards
enhancing result-accuracy by executing more workload from
the optional part of the applications and by turning off a
controlled number of LLC ways to enhance energy efficiency,
dynamically, while respecting the system-wide constraints.
Our evaluation reveals that, the offline strategy of ACCURATE
achieves 85% QoS while maintaining the system constraints
and the cache based online mechanism reduces LLC leakage
by 36% on an average with 24% average gain in EDP and
6.4% improvement in performance for our 4-core based chip-
multiprocessor baseline system.

ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants
EP/R02572X/1, EP/P017487/1, EP/V 000462/1, and
EP/V 034111/1, and is also funded by Marie Curie Indi-
vidual Fellowship (MSCA-IF), EU (Grant Number 898296).

REFERENCES

[1] H. Aydin et al., “Optimal reward-based scheduling for periodic real-time
tasks,” IEEE TC, 2001.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
CSUR, 2016.

[3] L. Mo et al., “Approximation-aware task deployment on asymmetric
multicore processors,” in DATE, 2019.

[4] G. L. Stavrinides and H. D. Karatza, “Scheduling multiple task graphs
with end-to-end deadlines in distributed real-time systems utilizing
imprecise computations,” Elsevier JSS, 2010.

[5] C. Bienia et al., “The PARSEC benchmark suite: Characterization and
architectural implications,” in PACT, 2008.

[6] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in PPoPP, 2013.

[7] S. Achour and M. C. Rinard, “Approximate computation with outlier
detection in Topaz,” ACM SIGPLAN Not., 2015.

[8] N. Binkert et al., “The gem5 simulator,” ACM CAN, 2011.
[9] S. Li et al., “McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in MICRO, 2009.
[10] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and

Associativity,” in MICRO, 2010.
[11] S. Narayana et al., “Exploring energy saving for mixed-criticality

systems on multi-cores,” in RTAS, 2016.
[12] S. Pagani et al., “Energy and peak power efficiency analysis for the

single voltage approximation (SVA) scheme,” IEEE TCAD, 2015.

[13] Z. Guo et al., “Energy-Efficient Multi-Core Scheduling for Real-Time
DAG Tasks,” in ECRTS, 2017.

[14] S. Safari et al., “LESS-MICS: A low energy standby-sparing scheme
for mixed-criticality systems,” IEEE TCAD, 2020.

[15] A. Bhuiyan et al., “Energy-efficient real-time scheduling of DAG tasks,”
ACM TECS, 2018.

[16] Z. Guo et al., “Energy-efficient real-time scheduling of DAGs on
clustered multi-core platforms,” in RTAS, 2019.

[17] K. Kanoun et al., “Online energy-efficient task-graph scheduling for
multicore platforms,” IEEE TCAD, 2014.

[18] S. Saha et al., “Rasa: Reliability-aware scheduling approach for fpga-
based resilient embedded systems in extreme environments,” IEEE
TSMC, 2021.

[19] K. Cao et al., “QoS-Adaptive Approximate Real-Time Computation for
Mobility-Aware IoT Lifetime Optimization,” IEEE TCAD, 2019.

[20] I. Méndez-Dı́az et al., “Energy-aware scheduling mandatory/optional
tasks in multicore real-time systems,” International Transactions in
Operational Research, 2017.

[21] J. Zhou et al., “Energy-adaptive scheduling of imprecise computation
tasks for QoS optimization in real-time MPSoC systems,” in DATE,
2017.

[22] H. Yu et al., “Dynamic scheduling of imprecise-computation tasks in
maximizing QoS under energy constraints for embedded systems,” in
ASP-DAC, 2008.

[23] L. Mo et al., “Energy-quality-time optimized task mapping on DVFS-
enabled multicores,” IEEE TCAD, 2018.

[24] M. A. Haque et al., “On reliability management of energy-aware real-
time systems through task replication,” IEEE TPDS, 2016.

[25] W. Zang and A. Gordon-Ross, “A survey on cache tuning from a
power/energy perspective,” ACM CSUR, 2013.

[26] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” SUSCOM, 2014.

[27] M. Powell et al., “Gated-Vdd: A circuit technique to reduce leakage in
deep-submicron cache memories,” in ISLPED, 2000.

[28] A. Mandke et al., “Adaptive power optimization of on-chip SNUCA
cache on tiled chip multicore architecture using remap policy,” in
WAMCA, 2011.

[29] S. Chakraborty et al., “Static Energy Efficient Cache Reconfiguration
for Dynamic NUCA in Tiled CMPs,” in ACM SAC, 2016.

[30] B. Fitzgerald et al., “Drowsy cache partitioning for reduced static and
dynamic energy in the cache hierarchy,” in IGCC, 2013.

[31] H. Zhou et al., “Adaptive mode control: a static-power-efficient cache
design,” in PACT, 2001.

[32] S. Chakraborty and H. K. Kapoor, “Exploring the role of large cen-
tralised caches in thermal efficient chip design,” ACM TODAES, 2019.

[33] S. Chakraborty and H. K. Kapoor, “Analysing the role of last level
caches in controlling chip temperature,” IEEE TSUSC, 2018.

[34] S. Das and H. K. Kapoor, “Dynamic associativity management using
fellow sets,” in ISED, 2013.

[35] ——, “Dynamic associativity management in tiled CMPs by runtime
adaptation of fellow sets,” IEEE TPDS, vol. 28, no. 8, 2017.

[36] C. Bliek1ú et al., “Solving mixed-integer quadratic programming prob-
lems with IBM-CPLEX: a progress report,” in RAMP symposium, 2014.

[37] “Oracle. 2011. oracle’s sparc t3-1, sparc t3-2, sparc t3-4, and sparc t3-1b
server architecture,” 2011. [Online]. Available: http://www.oracle.com/.

[38] S. Das and H. K. Kapoor, “Dynamic associativity management using
utility based way-sharing,” in ACM SAC, 2015.

[39] M. E. T. Gerards and J. Kuper, “Optimal DPM and DVFS for frame-
based real-time systems,” ACM TACO, 2013.

[40] A. Farrell and H. Hoffmann, “MEANTIME: Achieving both minimal
energy and timeliness with approximate computing,” in USENIX ATC,
2016.

[41] H. Cassé et al., “A framework to quantify the overestimations of static
WCET analysis,” in WCET, 2015.

http://www.oracle.com/.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 15

[42] M. Qamhieh and S. Midonnet, “Simulation-based evaluations of DAG
scheduling in hard real-time multiprocessor systems,” ACM SIGAPP
Appl. Comput. Rev., 2015.

[43] S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy
trade-offs with loop perforation,” in ACM SIGSOFT, 2011.

[44] S. Chakraborty and H. K. Kapoor, “Static energy reduction by perfor-
mance linked dynamic cache resizing,” in VLSI-SoC. IEEE, 2016.

Sangeet Saha is currently associated with Depart-
ment of Computer Science, University of Hudder-
sfield, UK as a Lecturer and with the Embedded
and Intelligent Systems (EIS) Research Group, Uni-
versity of Essex, UK as a visiting fellow. Sangeet
received his PhD degree in Information Technology
from University of Calcutta, India in 2018 as a TCS
(TATA) research scholar. After submitting his PhD
thesis in 2017, he worked as a visiting scientist
at Indian Statistical Institute (ISI) Kolkata, India.
From May 1, 2018, to October 31, 2021, he was

a Senior Research Officer in EPSRC National Centre for Nuclear Robotics,
based in the EIS Lab, University of Essex. He is a recipient of YERUN
Research Mobility Award 2021. His current research interests include real-
time scheduling, scheduling for reconfigurable computers, real-time and fault-
tolerant embedded systems, and cloud computing. He published several of
his research contributions in conferences like CODES+ISSS, ISCAS, NASA
AHS, etc. and in journals like ACM TODAES, IEEE TMSCS, and Journal
of Supercomputing (Springer).

Shounak Chakraborty is currently associated with
Department of Computer Science, NTNU, Trond-
heim, Norway as a Post-Doc researcher (through
Marie Curie Individual Fellowship from European
Union [Grant No. 898296]). Primarily, his broad
area of research is Computer Architecture, however,
specifically, his research interests include High Per-
formance Computer Architectures, Emerging Mem-
ory Technologies, Thermal Aware Architectures, etc.
He published several of his research contributions
in conferences like DATE, ASAP, CODES+ISSS,

ACM SAC, IPDPS, VLSI-SoC, GLSVLSI etc. He has also published several
of his research outcomes in journals like ACM TACO, ACM TECS, ACM
TODAES, IEEE T-SUSC, The Journal of Supercomputing (Springer), etc.
He also serves as reviewers of Journal of Supercomputing (Springer), ACM
TECS, etc. Prior to his joining at NTNU, Norway, Shounak earned his PhD
degree in Computer Science and Engineering from IIT Guwahati, India in
February 2018.

Xiaojun Zhai (Member, IEEE) received the Ph.D.
degree from the University of Hertfordshire, U.K., in
2013. He is currently a Lecturer with the Embedded
Intelligent Systems Laboratory, University of Essex.
He has authored/co-authored over 60 scientific ar-
ticles in international journals and conference pro-
ceedings. His research interests include the design
and implementation of the digital image and signal
processing algorithms, custom computing using FP-
GAs, embedded systems, and hardware/software co-
design. He is also a member of BCS, and a Fellow

of HEA.

Shoaib Ehsan received the B.Sc. degree in electrical
engineering from the University of Engineering and
Technology, Taxila, Pakistan, in 2003, and the Ph.D.
degree in computing and electronic systems (with
specialization in computer vision) from the Univer-
sity of Essex, Colchester, U.K., in 2012. He has
an extensive industrial and academic experience in
the areas of embedded systems, embedded software
design, computer vision, and image processing. His
current research interests are in intrusion detection
for embedded systems, local feature detection and

description techniques, and image feature matching and performance analysis
of vision systems. He was a recipient of the University of Essex Post Graduate
Research Scholarship, the Overseas Research Student Scholarship, and the
prestigious Sullivan Doctoral Thesis Prize awarded annually by the British
Machine Vision Association.

Klaus McDonald-Maier is currently the Head of
the Embedded and Intelligent Systems Laboratory,
University of Essex, Colchester, U.K. He is also the
Chief Scientist with UltraSoC Technologies Ltd., the
CEO of Metrarc Ltd., and a Visiting Professor with
the University of Kent. His current research interests
include embedded systems and system-on-chip de-
sign, security, development support and technology,
parallel and energy-efficient architectures, computer
vision, data analytics, and the application of soft
computing and image processing techniques for real-

world problems. He is a member of VDE and a Fellow of the BCS and IET.

	Introduction
	Related Work
	System Model and Assumptions
	ACCURATE
	ACCURATE:Offline (ILP based Scheduling)
	ACCURATE:Online (Dynamic Accuracy Enhancement and Power Minimization)
	Improving Performance at the LLC
	Enhancing Power Efficiency and Result-Accuracy
	ACCURATE: Online Computational Overheads

	Results and Analysis
	Evaluating ACCURATE: ILP based scheduling
	Results

	Evaluating ACCURATE: Online LLC-based Technique
	Simulation Setup
	Change in Performance at the task level
	Reduction in LLC-Leakage
	EDP Gains

	Gains from ACCURATE in a nutshell

	Conclusions
	References
	Biographies
	Sangeet Saha
	Shounak Chakraborty
	Xiaojun Zhai
	Shoaib Ehsan
	Klaus McDonald-Maier

