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Abstract: Accurate models are required for obtaining accurate simulation results. High fidelity 
numerical models exist, but for the simulations of large hydropower conduit systems one-
dimensional (1D) models are still required. For the operation and characteristics of hydraulic 
machinery the state variables in 1D pipe computation are not necessarily providing sufficient 
level of detail on what happens inside the machine to accurately predict component and system 
behaviour. This work is looking into the physics of the spatial distribution of the flow at the 
outlet of a Francis turbine runner in order to include 2D effects into a 1D analysis. The key 
finding is a differential equation describing the distribution of the relative velocity W between 
the flow and the runner outlet, which enables numerical integrating for finding the distribution 
of W itself, and subsequently the circumferential and meridional components needed to execute 
the integrals turning the 2D results into functions of the 1D state variables. The presented work 
is reflecting condition at the best efficiency point, but ongoing work is expanding this to map 
the entire region of a turbine runner. The approach should be very relevant for future 
implementations into digitalization schemes such as digital twins 

1. Introduction 
Simulations are an important tool for investigation of transients and dynamic behaviour of systems. For 
hydraulic systems, the characteristics of hydraulic machinery are important for the simulation results 
and their reliability. If experimental results are not available for the characteristics, a model must be 
used. Actually, a model is preferred over experimental results because such results are obtained from 
steady-state measurements, where all dynamic effects are excluded. The drawback of a model is that 
losses are possibly not properly implemented. 

Even in 2022 the costs of computational power and time are so high that a highly resolved CFD 
simulation of a turbine unit for the purpose of dynamic simulations of hydropower operation is too high, 
let alone including 3D or even 2D models of the entire hydraulic system being simulated. This is a 
problem for the further development of applications such as digital twins and further digitalization. The 
problem can be addressed in two ways; speeding up the highly resolved CFD simulations or improving 
the quality of the simpler representations of complex components in the system. This work is oriented 
towards the latter. 

The work presented is seeking to find a model of a hydraulic turbine for the use in simulations of 
hydropower operation. The model is based on first principles and rely on the velocity distribution at the 
outlet region of the turbine runner, more specifically where the flow has been completely diverted into 
axial flow in the draft tube cone section. To be able to find this velocity distribution a differential 
equation describing the relative velocity between fluid and runner at such outlet section is established. 
This equation is not analytically solvable (to the current knowledge of the authors, that is), and is 
numerically solved by performing a Euler integration. A ‘goal seek’ procedure is then performed where 
the starting value for the relative velocity is changed, and the desired flow is the target for the procedure. 
The relative velocity is then used to find the meridional (for the analysed cross section assumed to be 
the axial velocity) and the circumferential velocity components of the absolute velocities, as these ones 
are required in the analysis. To verify that the velocity distributions are ballpark, inviscid numerical 
simulations have been performed on the Francis99 model runner at NTNU. The results agree well, and 
the distributions of the velocity components are combined to form the expression for local angular 
momentum, which then is integrated across the outlet section giving rise to the “quasi 2D” terminology 
in this paper’s title.  
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Having the velocity distribution at the outlet available presents many interesting possibilities. First, it 
can be used to find the pressure distribution at the outlet. Knowing the velocity- and pressure 
distributions the efficiency can be found, as the head over the machine can be determined. This is subject 
to losses being included in the analysis. The “turbine” is according to standards defined between the 
spiral casing inlet and the draft tube outlet, and since the investigated runner outlet cross section is the 
boundary to the draft tube cone and subsequently also the draft tube elbow more detailed information 
of the conditions in these components can open for implementation of more detailed description of 
losses, and even the possibility of identifying and including the effects of things like part load vortex 
rope and high load vortex cavity in a 1D simulation. 

Many different models exist, and many of them are using the Euler turbine and pump equation, which 
is often referred to as a 1D equation since it is only required to have information on the variables 
included in a so-called 1D simulation of fluid flow (combined with geometrical values of the runner, 
that is), meaning the flow Q through the unit and the head H removed from the flow through the unit 
[1-6]. This 1D version is obtained if the assumption of constant angular momentum at the turbine outlet 
section is applied to the more physically correct integration of the flux of angular momentum at the 
outlet. This assumption is avoided in this work and leads to the new model containing more detailed 
information, despite the intention of ultimately being used in a 1D representation of the dynamics. 

A model for the use in a 1D simulation of hydraulic and mechanical rotating domains must link the 
head, flow, torque, and rotational speed to each other. Finding this using first principles we must turn 
to the fundamental governing equations for the motion of fluids.  

2. Governing equations and the relative velocity W 
The governing equations for all incompressible flows are the equations of motion; The Navier-Stokes 
equation and equation of continuity (The latter will not be elaborated in this paper). For inviscid flows, 
the Navier-Stokes equation loses the term describing viscous effects and becomes the Euler equation[7] 

 𝐷𝐷𝑉𝑉�⃗
𝐷𝐷𝐷𝐷

= �⃗�𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∂𝑉𝑉�⃗
∂𝐷𝐷

+ �𝑉𝑉�⃗ ∇�𝑉𝑉�⃗ = −
∇𝑝𝑝
𝜌𝜌

+ X��⃗  

 

(1) 

Where 𝑉𝑉�⃗  is the absolute velocity vector, t is the time, ∇𝑝𝑝 is the pressure gradient and 𝜌𝜌 is the constant 
fluid density. The last term �⃗�𝑋 is representing the body forces acting on the fluid parcel that is 
accelerating and often the only body force considered is the gravity, leading to �⃗�𝑋 = �⃗�𝑔. However, in the 
case of a conservative system, the body force may also be considered to be the gradient of a potential 
function, ie �⃗�𝑋 = −∇𝜑𝜑 [7]. Expanding these equations using a cylindrical coordinate system (𝑉𝑉�⃗ =
𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟���⃗ + 𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃����⃗ + 𝑉𝑉𝑧𝑧𝑒𝑒𝑧𝑧���⃗  ) we get one equation for each of the directions, but we will focus on the equation 
that investigate the radial acceleration, and rearranging we get an expression for the pressure gradient 
in the radial direction: 

 1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑟𝑟 −
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= −�
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝐷𝐷

+ 𝑉𝑉𝑟𝑟
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

+
𝑉𝑉𝜃𝜃
𝜕𝜕
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

−
𝑉𝑉𝜃𝜃2

𝜕𝜕
+ 𝑉𝑉𝑧𝑧

𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕 �

−
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

 

 

(2) 

The potential function turns out to be the angular momentum itself (the classical assumption used when 
analysing turbomachinery when the blades have been assumed to be infinitely thin and infinitely many),  
𝜑𝜑 = 𝑢𝑢𝑉𝑉𝜃𝜃 = 𝜔𝜔𝜕𝜕𝑉𝑉𝜃𝜃 [8]. The pressure gradient can be integrated to get the pressure difference in the radial 
direction. Another expression for the pressure difference between two points along a (relative) 
streamline can be obtained using the Rothalpy equation, i.e. the Bernoulli equation in a rotating frame 
of reference [9]. This can be done for the outlet of the runner, as seen in figure 4. Combining these 
expressions along with assumptions used for the outlet of the runner we can derive an expression for 
the relative velocity W at the outlet. 
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Figure 1: Schematics of the figure used to obtain the expression for Vm and Vθ 

This work can be seen in Appendix A, and the resulting expression for W is a differential equation: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

=
𝑑𝑑2 �𝑠𝑠𝑠𝑠𝑠𝑠

2 𝛽𝛽
𝜕𝜕𝑐𝑐 − 𝜕𝜕 −

𝑐𝑐𝑐𝑐𝑠𝑠2 𝛽𝛽
𝜕𝜕 � − 𝜔𝜔𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 2𝜔𝜔2𝜕𝜕

(𝑑𝑑 −𝜔𝜔𝜕𝜕𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽)  

 

(3) 

Finding W from this differential equation is not a trivial task. However, a distribution for W can be 
found using a numerical Euler integration, if the distribution of the angle β is known. Since we are 
investigating a cross section which is different from where the actual outlet of the blades is, we cannot 
say that the distribution of the angles at the cross-section under investigation is equal to the distribution 
at the outlet of the blades. For the work presented here the flow angles found from the results of the 
CFD analysis is used as the β distribution in the above equation. The numerical simulations are 
described in Appendix B. When having W and the flow angle, other velocity components needed can 
be found using the trigonometric equations, which we shall see is important to establish the model. The 
model is established by describing the temporal acceleration of the flow Q through the turbine as a 
function of the sum of head (linear momentum consideration) and the acceleration of the rotational 
speed as a function of the sum of the torques (angular momentum consideration). We will start with the 
latter.  

3. Torque: The angular momentum equation 
The angular momentum equation is the equivalent of the linear momentum equation for angular motion. 
In words, it describes that the sum of the time rate of the change of angular momentum of the water 
inside a control volume and the net flux of angular momentum out of a control volume must be equal 
to the sum of all the external torques acting on the control volume, as seen in Eq. 4 [9]: 

 
�𝑀𝑀��⃗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑎𝑎𝑒𝑒 =

𝑑𝑑
𝑑𝑑𝐷𝐷
� 𝜌𝜌�𝜕𝜕 × 𝑉𝑉�⃗ �𝑑𝑑∀
𝐶𝐶𝐶𝐶�������������

time rate of change of AM
in CV

+ � 𝜌𝜌�𝜕𝜕 × 𝑉𝑉�⃗ ��𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ �𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶���������������

Net flux of AM out of CV

 (4) 

 

Our CV is placed outside the outer geometry of a Francis turbine runner, as seen in Figure 2 and Figure 
3. Considering steady state conditions and a CV of fixed size, only the net flux integral remains. 
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Figure 2: Control Volume CV (inside the control surface, 
CS) and the runner blade cascade of a Francis runner 
viewing the inlet CS 

Figure 3: Control Volume CV (inside the control surface, 
CS) and the runner blade cascade of a Francis runner 
viewing both inlet and outlet CS 

 In this work we will use a coordinate system where the positive z-axis is defined pointing upwards, so 
the normal vector of the outlet cross section area is pointing in the negative z direction. Following this, 
the ω as drawn in Fig. 2 and 3 has a negative value. 

3.1. Net flux of AM out of CV 
The net flux integral is a vector integral, and the vector integrated is the cross product of the radii vector 
and the velocity vector. This is evaluated easiest in a cylindrical coordinate system described by unit 
vectors re



, eθ


 and ze


. The cross product becomes 

 𝜕𝜕 × 𝑉𝑉�⃗ = −𝜕𝜕𝑉𝑉𝑧𝑧𝑒𝑒𝜃𝜃����⃗ + 𝜕𝜕𝑉𝑉𝜃𝜃𝑒𝑒𝑧𝑧���⃗  (5) 

The only term contributing to rotational motion is the z-component, so this is the only one we will 
continue to investigate 

 � 𝜌𝜌�𝜕𝜕 × 𝑉𝑉�⃗ �𝑧𝑧�𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ �𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶
= � 𝜌𝜌𝜕𝜕𝑉𝑉𝜃𝜃

𝐶𝐶𝐶𝐶
�𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ �𝑑𝑑𝑑𝑑 (6) 

Furthermore, the dot product between the relative velocity and the normal vector of the control surface 
is giving the magnitude of the velocity component carrying the mass over the surface. This is commonly 
called the meridional component in hydraulic machines. The dot product is therefore giving the 
magnitude of this velocity and including a sign depending on whether the relative velocity vector has a 
component in the same, or opposing, direction of the normal vector; �𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ � = −𝑉𝑉𝑚𝑚 for an inlet, and  
�𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ � = 𝑉𝑉𝑚𝑚 for an outlet.  Eq. 6 can then be divided into two integrals: One for the inlet (later using 
subscripts 1) and one for the outlet (later using subscripts 2),  

 � 𝜌𝜌𝜕𝜕𝑉𝑉𝜃𝜃
𝐶𝐶𝐶𝐶

�𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ �𝑑𝑑𝑑𝑑 = −� 𝜌𝜌𝜕𝜕𝑉𝑉𝜃𝜃
𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑 + � 𝜌𝜌𝜕𝜕𝑉𝑉𝜃𝜃
𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑 (7) 

If the angular momentum is equal across the inlet and outlet, this equation returns the torque which 
multiplied by angular velocity gives the left-hand side of the Euler pump and turbine equation expressed 
in unit power. This assumption is not imposed on the work presented here, and the integrals must be 
further investigated. The integrals are best treated individually, and we’ll start with the inlet integral. 

3.2. Inlet flux integral 
For the inlet CS, which is a cylindrical shell at constant radii, the rotor stator interaction and the potential 
flow effect of the guide vanes will give a periodicity of the magnitude of the Vθ component [10]. 
However, let us for simplicity assume that the Vθ is constant everywhere. The parenthesis term is 
carrying the information on the magnitude of the velocity that is normal to the CS surface, ie the velocity 
component commonly called the meridional velocity component. Noting the consequence of the 
direction of the normal vector on the sign discussed above, be aware that the property being carried by 
the flow might also have a negative sign, thus alter the sign once more. This is the case here, where the 
Vθ component is negative, as it is geometrically defined as 𝑉𝑉𝜃𝜃1 = −𝑉𝑉1𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼1 = − 𝐶𝐶𝑚𝑚

𝑒𝑒𝑎𝑎𝑒𝑒𝛼𝛼1
= − 𝑄𝑄

𝐴𝐴1𝑒𝑒𝑎𝑎𝑒𝑒𝛼𝛼1
. If 

we assume a uniform distribution of the meridional velocity component at the inlet, the entire integrand 
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is a constant and we are only left with integrating dA, which simply returns the inlet area A1. The density, 
meridional velocity and the area are multiplied to obtain the flow. Using all these assumptions, the inlet 
integral becomes 

 
�𝜌𝜌𝜕𝜕1𝑉𝑉𝜃𝜃1(−𝑉𝑉𝑚𝑚)𝑑𝑑𝑑𝑑
1

= −𝜌𝜌𝜕𝜕1𝑉𝑉𝜃𝜃1𝑄𝑄1 = 𝜌𝜌𝜕𝜕1
𝑄𝑄2

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
 

 

(8) 

3.3. Outlet flux integral 
The outlet of the control volume is a circular disk, and the radii is obviously not a constant at the outlet. 
Furthermore, the velocity component Vθ is generally not a constant across the cross section. This makes 
it impossible to assess the integral simply because the non-constant velocity components are not known 
a priori.  When designing a turbine, the Vθ velocity component is often set to be zero, because this is 
the objective of the design; to have no swirl at the outlet thus extracting as much angular momentum 
from the flow as possible. This design criteria is typically using some assumption on the local Vm 
component of the flow and the known circumferential speed of the runner in order to choose blade 
angles which gives zero rotation at all outlet radii. At other operational points than the design point, the 
zero-rotation condition is surely not met, and we also need to have a description of this component. If 
we consider the assumption that the flow must leave the outlet of the runner blades in the direction of 
the blades, we can make a geometrical relation between the local blade angle β, local circumferential 
velocity of the blade outlet u, and the local velocity components of the absolute velocity; Vθ and Vm. 
This is seen in Figure 4. The link between them is, however, the relative velocity between the flow and 
the runner, W. 

 

 

Figure 4: Outlet velocity triangles at Q>*Q 
(corresponding to blue), Q=*Q (corr. To 
black) and Q<*Q (corr. To red) 

 

The other components can be determined using the knowledge of the radii, angular velocity and the 
blade angle, the latter being fixed after construction of a Francis runner. Mathematically, the relation 
for Vθ and Vm are described by 

 𝑉𝑉𝜃𝜃 = 𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕 (9) 

 𝑉𝑉𝑚𝑚 = 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 (10) 

Finding the relative velocity W is key to unlocking the velocity component necessary for completing 
the outlet integral from the AME equation, and as we have seen this has been found using the differential 
Eq. 3, which used information regarding the angle β. So, both W and β are known making the velocity 
components known as well. This makes it possible to evaluate the outlet flux integral expressed as 

 � 𝜌𝜌𝜕𝜕𝑉𝑉𝜃𝜃
𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒

𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑 = � 𝜌𝜌𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕)
𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑 (11) 

Then we can complete the flux integrals by combining the inlet and outlet expressions: 
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� 𝜌𝜌�𝜕𝜕 × 𝑉𝑉�⃗ �𝑧𝑧�𝑉𝑉𝑟𝑟���⃗ ⋅ 𝑠𝑠�⃗ �𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶

= 𝜌𝜌𝜕𝜕1
𝑄𝑄2

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
+ � 𝜌𝜌𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 +𝜔𝜔𝜕𝜕)

𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑 (12) 

 

3.4. The final torque equation 
Combining all terms from the original AME we end up with 

 
�𝑀𝑀𝑧𝑧,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑎𝑎𝑒𝑒 = 𝜌𝜌𝜕𝜕1

𝑄𝑄2

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
+ � 𝜌𝜌𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 +𝜔𝜔𝜕𝜕)

𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑 (13) 

We have not yet even discussed the left-hand side of the equation, which is dealing with so-called 
“external” torques. These torques are acting on the rotating control volume arising from other 
interactions than what is due to the flow in and out of the control volume. The biggest ones of these 
torques should be the torque acting on the rotating part by the generator, 𝑀𝑀𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑜𝑜𝑟𝑟. The other ones 
are due to some kind of loss present in on the boundary of the control volume. These losses are typically 
disc friction losses due to shear forces in the water between stationary and rotating parts, and losses in 
bearings, both radial and axial, whatever present at the unit. The power dissipated by such losses are 
typically a function of the angular velocity cubed [11], thus the reduction in torque due to such losses 
will be a function of the angular velocity squared. All these external torques are positive as they are all 
trying to slow down the runner, i.e., reducing the negative value, thus accelerating it: a positive torque. 
The torque we are interested in describing is the generator torque, as this is the one which in turn is 
providing the power transformed into electricity. This leads to the AME equation giving us the below 
expression for the steady state generator torque: 

 
𝑀𝑀𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑜𝑜𝑟𝑟 = 𝜌𝜌𝜕𝜕1

𝑄𝑄2

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
+ � 𝜌𝜌𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕)

𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑 − (𝐶𝐶1 + 𝐶𝐶2)𝜔𝜔2 

 

(14) 

Where C1 and C2 are constants used to include the disc friction losses and bearing losses, respectively. 

4. Head 
“The head” of a turbine unit is defined as the difference in mechanical energy in unit meters (specific 
energy divided by the gravitational acceleration) from the inlet pipe to the outlet of the draft tube. We 
can also find this by knowledge of the individual physical phenomena that make up the total difference. 
Considered in this work is the head extracted by an ideal machine (the “perfect” turbine runner), and 
the losses due to friction in the runner, the losses due to inlet mismatch of flow and geometry often 
called incidence losses, and finally what is lost in the draft tube. This is seen in the equation below, and 
we will discuss these terms individually. 

 𝜌𝜌𝑔𝑔𝑄𝑄𝑄𝑄 = 𝜌𝜌𝑔𝑔𝑄𝑄�𝑄𝑄𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑒𝑒 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑜𝑜𝑒𝑒 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒� 
 

(15) 

4.1. The head of an ideal machine 
The classical representation of lifting height of a pump, where subscript 1 indicates high-pressure side 
and subscript 2 indicates low-pressure side [11] is given in Eq. 16: 

 
𝑔𝑔𝑄𝑄 =

𝐶𝐶12−𝐶𝐶22

2
+
𝑈𝑈12 − 𝑈𝑈22

2
+
𝑑𝑑2

2−𝑑𝑑1
2

2
 

(16) 

An ideal pump will work as an ideal turbine if the flow and rotation is reversed, so the equation is valid 
for an ideal turbine as well. The basis for this equation is the Euler pump and turbine equation, where 
the law of cosines has been applied to the velocity component to obtain the above relation. This is an 
important point because the implication to this is that no losses are included in this equation. 
Furthermore, there is a reason for concern when assessing the applicability of this equation for the work 
presented here. The simplification of the outlet integral leading to the Euler pump and turbine equation 
was not acceptable for the development of the torque equation, and it shouldn’t be acceptable for the 
work on describing the head either. However, we will use the method that’s used to obtain the Euler 
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pump and turbine equation, which is to say that the mechanical power transferred to the rotating domain 
is the same as the hydraulic power removed from the flow, implying a hydraulic efficiency equal to 
unity and a so-called “ideal machine”. This means that 

 𝜌𝜌𝑔𝑔𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑒𝑒 = −𝑀𝑀��⃗ 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑜𝑜𝑟𝑟 ∙ 𝜔𝜔��⃗ = −𝑀𝑀𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑜𝑜𝑟𝑟𝑒𝑒𝑧𝑧���⃗ ∙ 𝜔𝜔𝑒𝑒𝑧𝑧���⃗ = −𝑀𝑀𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝑜𝑜𝑟𝑟𝜔𝜔 (17) 

Where the negative sign comes from the fact that when using the mechanical torque in this way we are 
including that this torque is balancing the driving torque from the flow, and is opposite in direction to 
this.  Rearranging for gHideal machine and substituting for Mgenerator the terms that was obtained from the 
AME equation (disregarding the losses, aligning to the “ideal machine” assumption), we get 

 𝑔𝑔𝑄𝑄𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑒𝑒 = −𝜔𝜔𝜕𝜕1
𝑄𝑄

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
−

1
𝑄𝑄
� 𝜔𝜔𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕)
𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑 (18) 

 

4.2. Friction loss 
The friction loss will always be present when a flow is going through a runner, and friction is dependent 
on relative velocity. A factor is multiplied with the relative velocity, and since for the presented work 
the factor will need to be calibrated, we can choose at which position to link it to. It is then convenient 
to link it to the inlet relative velocity W1, and we get 

 𝑔𝑔ℎ𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑜𝑜𝑒𝑒 = 𝜆𝜆𝑑𝑑1
2 (19) 

Where λ is a dimensionless head-loss coefficient. However, we will not look into detail on this because 
we are only investigating one operational point, and this point will have to be the one we use for 
calibration as well, so we will not get any verification or validation of this term still. 

4.3. Incidence losses 
There are also losses when there’s a mismatch between the actual flow angle and the angle the runner 
is designed for, so-called incidence losses. These losses are complicated to represent accurately, because 
there’s several effects arising due to a mismatch between these angles. It is likely that these losses are 
originating due to phenomena comparable to what is seen on a hydrofoil experiencing different angle 
of attacks, combined with cascade effects due to proximity of other foils. Still, such effects are not 
accurately quantified for the purpose of this work, but a loss proportional to the stagnation pressure of 
the relative velocity component normal to the physical blade inlet angle is assumed, as in [2]. 

 
𝑔𝑔ℎ𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶3

𝑑𝑑1
2𝑠𝑠𝑠𝑠𝑠𝑠2�𝛽𝛽1 − 𝛽𝛽1,𝑖𝑖𝑒𝑒𝑎𝑎𝑖𝑖𝑔𝑔𝑒𝑒�

2
 

 

(20) 

Where C3 is a dimensionless head-loss coefficient. This makes the loss small for small values of the 
argument but increasing more rapidly when the angle increases more. The coefficient C3 must be 
determined or calibrated, but for the work presented herein we conclude that the entire term describing 
the incidence losses is zero, since we are investigating the BEP where the flow angle and the design 
flow angle should be identical. 

The last term of assumed importance when describing the losses for the turbine unit are the draft tube 
losses. Until now we have only considered effects in, and related to, the runner. But we must include 
losses in the draft tube as well as this, by definition, is a part of the hydraulic turbine. 

4.4. Draft tube losses 
The losses in the draft tube are also difficult to assess, and swirl in the flow is giving rise to several 
well-known physical phenomena, the rotating vortex rope and the vortex cavity being the most visual 
ones in lab setups. Friction is also present, and the detail of the flow is very much dependent on 
operating conditions. Typically, the efficiency of a draft tube is linked to a variable called the swirl 
number, and this variable is also used to indicate the existence of vortex phenomena. Not investigated 
any further in this work, it will be indicated as a symbol in the below equation. The development of the 
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mathematical representation of the draft tube losses below can be seen in Appendix C, assuming steady 
state conditions.  

 ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒 = ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧

+
1

𝜌𝜌𝑔𝑔𝑄𝑄
� ��

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 − �
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕

𝑟𝑟𝑚𝑚

𝑟𝑟=0

+ 𝜌𝜌
𝑉𝑉𝑚𝑚2

2
�𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑

𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

−
𝑄𝑄2

2𝑔𝑔𝑑𝑑 𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

2 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑎𝑎𝑠𝑠𝑖𝑖𝑟𝑟𝑒𝑒 𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑜𝑜𝑚𝑚𝑒𝑒𝑒𝑒𝑎𝑎 

(21) 

 

4.5. The head of the turbine unit 
Combining all elements discussed in the head section, we end up with the head of the turbine unit for 
steady state conditions described as 

 𝑔𝑔𝑄𝑄𝑒𝑒𝑜𝑜𝑟𝑟𝑎𝑎𝑖𝑖𝑒𝑒𝑒𝑒 𝑜𝑜𝑒𝑒𝑖𝑖𝑒𝑒 = 𝑔𝑔𝑄𝑄𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑒𝑒 +  𝑔𝑔ℎ𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑜𝑜𝑒𝑒 + 𝑔𝑔ℎ𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑔𝑔ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

= −𝜔𝜔𝜕𝜕1
𝑄𝑄

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
−

1
𝑄𝑄
� 𝜔𝜔𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕)
𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑

+  𝜆𝜆𝑑𝑑1
2 + 𝐶𝐶3

𝑑𝑑1
2𝑠𝑠𝑠𝑠𝑠𝑠2�𝛽𝛽1 − 𝛽𝛽1,𝑖𝑖𝑒𝑒𝑎𝑎𝑖𝑖𝑔𝑔𝑒𝑒�

2
+𝑔𝑔ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧

+
1
𝜌𝜌𝑄𝑄

� ��
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 − �
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕

𝑟𝑟𝑚𝑚

𝑟𝑟=0

+ 𝜌𝜌
𝑉𝑉𝑚𝑚2

2
�𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑

𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

−
𝑄𝑄2

2𝑑𝑑 𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

2 + 𝑔𝑔ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑎𝑎𝑠𝑠𝑖𝑖𝑟𝑟𝑒𝑒 𝑖𝑖ℎ𝑒𝑒𝑒𝑒𝑜𝑜𝑚𝑚𝑒𝑒𝑒𝑒𝑎𝑎 

 

(22) 

5. Results and discussion 
The final goal of this work is to have a model which exhibits all familiar characteristics when used in 
transient simulations of a turbine and a hydraulic system. This is for the time being not how far the 
work has progressed. Currently we have compared with CFD results for one steady state operating 
point, namely the BEP of the Francis99 runner at NTNU. This is explained in Appendix B. The relative 
velocity distribution has been found using the condition that the flow (post-processes from using the 
relative flow distribution) is the same as for the CFD results. In practise, the starting value for the 
relative velocity distribution is changed so that the flow is the same as in the CFD results. The flow 
angle β between the relative velocity W and the circumferential component obtained from the CFD 
results are used in the equation for the relative velocity gradient and is seen in Figure 5. 
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Figure 5: Distribution of the 
flow angle inside the pipe 
section 

The spatial resolution of the scheme used to numerically integrate (Euler’s method) the differential 
equation for W was using 340 equally spaced increments in radial position between 0,0053 m and 
0,1753 m, making the increment in radial distance only 0,0005 m. Knowing the angle beta from the 
CFD results, the distribution of W could then be found assuming a starting value at r=0,0053m. The 
values for β were spaced farther apart in the numerical results so in between data points linear 
interpolation was used. When this was implemented the Vm component was found (Same as the Wm 
component), and the flow could then be found integrating the Vm component over the cross section. The 
value for the flow was then compared to the value for the CFD results, and if there was a mismatch the 
starting value for W was changed. This was performed using the “goal seek” function in Microsoft 
Excel. This function stopped when the integrated flow was Q= 0,26302 m3/s, while the target flow was 
Q=0,2629 m3/s. The CFD results were extracted some distance down into the draft tube cone, 0,243 m 
below the centre line of the inlet of the turbine. The reason for this is that one of the assumptions used 
to develop the differential equation for W was that there is no radial velocity component. We had to 
look a distance down into the draft tube cone to find where the radial component was as close to zero 
as possible for the purpose of comparing to the analytical results. For this reason, the r�-value was chosen 
so big that it would mathematically mimic axial flow, so it was set to 500000, effectively cancelling all 
terms involving it from the differential equation. 

5.1. Relative velocity W 
The relative velocity W can be seen in Figure 6 on next page, along with the circumferential and 
meridional velocity components and pressures. The results from the analytical equations are shown as 
dash-dot lines, whereas the CFD results are shown in solid lines. For the CFD results the radial velocity 
component is shown, but no line for the analytical results is drawn as it has been assumed that the radial 
component is zero when the equations were developed.  

Given the fact that the numerical results include real turbine geometry, and the analytical results only 
includes the angle from the numerical results, the match between the analytical and numerical results 
seems good. The largest deviation in the meridional component is close to the centre, and that’s where 
the presence of the runner cone is influencing the flow, making the mismatch between the actual 
geometry and the assumption in the analytical equations greatest. At larger radii the meridional 
components match very well. The match between the circumferential components is not as good, in fact 
there are multiple regions where the rotation is in the opposite direction of each other. They are identical 
at the same radii as where the meridional components are identical, and when the analytical meridional 
component is smaller than the CFD result, the analytical circumferential velocity is higher than the CFD 
results, and vice versa. This is a cause for concern but remembering that this is at BEP and the flow 
rotation generally is small at this operational point, it is likely that the sign and magnitude of the 
circumferential component will be sensitive and differences will easily occur. The swirl number of the 
two flows are found to be S=-0,0387 for the CFD results, and S=0,0417 for the analytical counterpart. 
They’re both small, but the most important difference is the sign. 
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Figure 6: Velocities and pressure. For the CFD results W has been post-calculated using the formula 𝑑𝑑 =

�(𝑉𝑉𝜃𝜃 − 𝜔𝜔𝜕𝜕)2 + 𝑉𝑉𝑚𝑚2, thus omitting the radial component. Solid lines are all numerical results. 

5.2. Torque, head and efficiency 
The torque is found using Eq. 14, but as the coefficients of the disc friction losses and bearing losses 
are not known they must be calibrated if the torque is to be compared to experimental results. The same 
issue is linked to the losses in the head of the unit, as they rely on coefficients not known a priori. Setting 
all the losses to zero, we can calculate the efficiency, and reassuringly it is computed and found to be 
unity: 

 𝜂𝜂 =
−𝑀𝑀𝜔𝜔

𝜌𝜌𝑔𝑔𝑄𝑄𝑖𝑖𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒 𝑚𝑚𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑒𝑒𝑄𝑄

=
−𝜔𝜔𝜕𝜕1𝜌𝜌

𝑄𝑄2
𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1

− 𝜌𝜌∫ 𝜔𝜔𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕)𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑

−𝜔𝜔𝜕𝜕1𝜌𝜌
𝑄𝑄2

𝑑𝑑1𝐷𝐷𝑎𝑎𝑠𝑠𝛼𝛼1
− 𝜌𝜌∫ 𝜔𝜔𝜕𝜕(𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 𝜔𝜔𝜕𝜕)𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 𝑑𝑑𝑑𝑑

≡ 1 

 

(23) 

Not surprisingly this must be the case, and it only shows that unless some losses are mathematically 
included into the models of torque and head, you will always find an efficiency equal to 1 when 
performing desk top studies. If the torque and head are measured in experimental test the measurements 
include losses, and the efficiency will be less than 1. Guesstimates of the losses (linking to the chosen 
values for λ, C1 and C2) are included in a calculation example, see section 5.2.2 below. 

5.2.1 Draft tube losses 
The losses computed due to the pressure distribution at the inlet of the draft tube that comes in excess 
to the losses assuming axial flow can be computed, as everything required is known. Interestingly, it 
turns out to be negative; 

 1
𝜌𝜌𝑄𝑄

� ��
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 − �
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕

𝑟𝑟𝑚𝑚

𝑟𝑟=0

+ 𝜌𝜌
𝑉𝑉𝑚𝑚2

2
�𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑

𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

= −0,42566 [𝑔𝑔ℎ] (24) 
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As this is only a part of the total loss for the draft tube, it is not automatically in violation of the first 
law of thermodynamics. The total loss for the draft tube must be positive for the first law of 
thermodynamics to be fulfilled, but the negative contribution is highly interesting as it is well known 
that it is beneficial to have a small rotation in a draft tube flow because this reduces the overall loss 
[12]. 

5.2.2 Calculation example 
As an example of a full calculation as well as for the possibility of reviewing the equations, we give a 
calculation example. For the efficiency to be calculated one must have the values of λ, C1 and C2. These 
have been chosen arbitrarily within reasonable ranges for such coefficients. We also need to know the 
value for the friction in the draft tube, 𝑔𝑔ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧 and this has been assumed to be the same as 
the friction in the runner. These, together with required parameters, are given in Table 1. The value of 
W1 used for this case is W1=3,05 m/s, corresponding to the BEP value.  

Using these numbers, together with the velocity components and flow angle distribution seen in Figure 
5 obtained from the analytical approach, we get the efficiency: 

 
𝜂𝜂 =

−𝑀𝑀𝜔𝜔
𝜌𝜌𝑔𝑔𝑄𝑄𝑒𝑒𝑜𝑜𝑟𝑟𝑎𝑎𝑖𝑖𝑒𝑒𝑒𝑒 𝑜𝑜𝑒𝑒𝑖𝑖𝑒𝑒𝑄𝑄

=
74055,93
79107,85

= 0,9361 (25) 

Table 1: Coefficients, parameters and constants (first row), their units (below) and their values (second row) 

λ 
 

C1 
 

C2 
 

𝑔𝑔ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒
𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧

 

 

r1 
 

A1 
 

α1 
 

r2 (at  z = 
-0,243 

ω 
 

𝜌𝜌 
 

rm 
 

Q 
 

g 
 

[-] 

[N
m

s 2] 

[N
m

s 2] 

[m
2/s 2] 

[m
] 

[m
2] 

[ͦ] 

   [m
] 

[rad/s] 

[m
3/kg] 

[m
] 

[m
3/s] 

[m
/s 2] 

0,02 0,01 0,02 = 𝑔𝑔ℎ𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑜𝑜𝑒𝑒
= λ𝑑𝑑1

2 
0,315 0,087 10 0,1753 -55,68  998,5 0,14 0,2629  9,821 

6. Conclusions 
This paper presents ongoing work aiming to develop a dynamic model for a Francis turbine which has 
the possibility to include more detailed information than simple 1D models but omitting full CFD 
simulations and everything this entails. The key finding is an equation which describes the distribution 
of the relative velocity at the outlet of a Francis runner. Knowing this, the information required to 
perform 2D analysis by executing integrals appearing in the Angular Momentum Equation and Linear 
Momentum Equation becomes available. Executing these integrals will then give the added level of 
detail into the models of the turbine unit in a quasi 2D way for the 1D analysis. Furthermore, parameters 
used to classify the presence of different phenomena can be calculated, and models of those phenomena 
can be incorporated into the turbine model. The work seems to be very relevant for the topic of digital 
twins for hydropower plants. 

7. Further Work 
Much work is needed before the model can be considered complete. Until now, only the Best Efficiency 
operation Point has been investigated, as well as steady state conditions. The real test of any model is 
at off-design operating conditions, so this will be investigated, as well as including the unsteady terms 
in the model. Furthermore, it is paramount that it is possible to include the a priori known distribution 
of the outlet angle a runner rather than what is done in this work; using the flow angle from a CFD 
simulation. Including swirl phenomena linked to the swirl number is also something that will extend 
the model’s applicability. 
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Appendix A. The relative velocity W 

We will find an expression for the relative velocity W using the Euler equation (Not to be mistaken 
with the Euler pump and turbine equation), including the potential function 𝜑𝜑 = 𝜔𝜔𝜕𝜕𝑉𝑉𝜃𝜃. We will be 
focusing on the radial direction component of the N.-S. equations and the gradient of the potential 
function in radial direction is thus 

 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

=
𝜕𝜕(𝑢𝑢𝑉𝑉𝜃𝜃)
𝜕𝜕𝜕𝜕

= 𝜔𝜔
𝜕𝜕(𝜕𝜕𝑉𝑉𝜃𝜃)
𝜕𝜕𝜕𝜕

= 𝜔𝜔𝑉𝑉𝜃𝜃 +𝜔𝜔𝜕𝜕
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

= 𝜔𝜔(𝑑𝑑𝜃𝜃 + 𝜔𝜔𝜕𝜕) + 𝜔𝜔𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑑𝑑𝜃𝜃 + 𝜔𝜔𝜕𝜕)

= 𝜔𝜔𝑑𝑑𝜃𝜃 +𝜔𝜔𝜕𝜕
𝜕𝜕𝑑𝑑𝜃𝜃

𝜕𝜕𝜕𝜕
+ 2𝜔𝜔2𝜕𝜕 

(A1) 

  

Where it has been used that the component of absolute velocity in the circumferential direction is linked 
to the rotation of the runner and the relative velocity by 𝑉𝑉𝜃𝜃 = 𝑑𝑑𝜃𝜃 + 𝜔𝜔𝜕𝜕. Substituting this into Eq. 1 we 
get 

 1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= 

−
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝐷𝐷

− 𝑉𝑉𝑟𝑟
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

−
(𝑑𝑑𝜃𝜃 + 𝜔𝜔𝜕𝜕)

𝜕𝜕
𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

+
(𝑑𝑑𝜃𝜃 + 𝜔𝜔𝜕𝜕)2

𝜕𝜕
− 𝑉𝑉𝑧𝑧

𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

− 𝜔𝜔𝑑𝑑𝜃𝜃 −𝜔𝜔𝜕𝜕
𝜕𝜕𝑑𝑑𝜃𝜃

𝜕𝜕𝜕𝜕
− 2𝜔𝜔2𝜕𝜕 

 

(A2) 

At the outlet section under investigation, we assume no radial component of the flow, meaning we 
assume it is turned into an axial flow exactly at this cross section (Vz=Vm). We further assume 
axisymmetric conditions, as well as steady state conditions. This reduces the above equation to 

 1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑟𝑟 −
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝜃𝜃

2

𝜕𝜕
− 𝑉𝑉𝑚𝑚

𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

+ 𝜔𝜔𝑑𝑑𝜃𝜃 − 𝜔𝜔2𝜕𝜕 − 𝜔𝜔𝜕𝜕
𝜕𝜕𝑑𝑑𝜃𝜃

𝜕𝜕𝜕𝜕
 

 

(A3) 

The second term on the right-hand side, 𝑉𝑉𝑚𝑚
𝜕𝜕𝐶𝐶𝑟𝑟
𝜕𝜕𝑧𝑧

, requires some attention. It stems from the absolute 
acceleration, and the link between absolute acceleration and relative acceleration is given as 

 �⃗�𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �⃗�𝑎𝑟𝑟𝑒𝑒𝑒𝑒 + �⃗�𝑎𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑒𝑒𝑖𝑖𝑎𝑎 + �⃗�𝑎𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 = �⃗�𝑎𝑟𝑟𝑒𝑒𝑒𝑒 + 2𝜔𝜔��⃗ × 𝑑𝑑���⃗ + 𝜔𝜔��⃗ × (𝜔𝜔��⃗ × 𝜕𝜕) 
 

(A4) 

And in the radial direction 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑟𝑟 = 𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒,𝑟𝑟 + 𝑎𝑎𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑖𝑖𝑜𝑜𝑒𝑒𝑖𝑖𝑎𝑎,𝑟𝑟 + 𝑎𝑎𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒,𝑟𝑟 = 𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒,𝑟𝑟 − 2𝜔𝜔𝑑𝑑𝜃𝜃 − 𝜔𝜔2𝜕𝜕 
 

(A5) 

Finding the relative acceleration’s component in the radial direction we can turn to a relative frame of 
reference, as viewed in Figure 1. We realize that the flow crossing the cross section under investigation 
experience two accelerations, one in towards the axis of rotation due to the component of relative 
velocity in the circumferential direction, −𝑊𝑊𝜃𝜃

2

𝑟𝑟
, and another one out from the axis of the rotation due to 

the curvature of the streamline at this section, 𝑊𝑊𝑚𝑚
2

�̂�𝑟
, where �̂�𝜕 is the radius of curvature of the streamline 

at this section; 

 
𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒,𝑟𝑟 =

𝑑𝑑𝑚𝑚
2

𝜕𝜕

̂
−
𝑑𝑑𝜃𝜃

2

𝜕𝜕
 

 

(A6) 

If our frame of reference is relative to the rotation of the runner and considering the outlet as the end of 
a curved channel similar to sketched in Figure 1, we can describe the acceleration in the radial direction 
in this relative frame of reference as ,rel ra , as 
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−
𝑑𝑑𝜃𝜃

2

𝜕𝜕
− 2𝜔𝜔𝑑𝑑𝜃𝜃 − 𝜔𝜔2𝜕𝜕 + 𝑉𝑉𝑚𝑚

𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝑚𝑚

2

𝜕𝜕

̂
−
𝑑𝑑𝜃𝜃

2

𝜕𝜕
− 2𝜔𝜔𝑑𝑑𝜃𝜃 − 𝜔𝜔2𝜕𝜕 

 

(A7) 

We see that 

 
𝑉𝑉𝑚𝑚

𝜕𝜕𝑉𝑉𝑟𝑟
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝑚𝑚

2

𝜕𝜕

̂
 

 

(A8) 

We substitute back into Eq. A3 and get 

 1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

=
𝑑𝑑𝜃𝜃

2

𝜕𝜕
−
𝑑𝑑𝑚𝑚

2

𝜕𝜕

̂
+ 𝜔𝜔𝑑𝑑𝜃𝜃 − 𝜔𝜔2𝜕𝜕 − 𝜔𝜔𝜕𝜕

𝜕𝜕𝑑𝑑𝜃𝜃

𝜕𝜕𝜕𝜕
 

 

(A9) 

This can be integrated to obtain an expression for the pressure difference from points 2b to 2a. Assuming 
that the streamlines follow the path of concentrical circles when crossing the outlet cross section, the 
radius of curvature �̂�𝜕 is the fixed radius value 𝜕𝜕𝑐𝑐 plus the negative of the increment in radial position. 
Using this to integrate Eq. A9 from the smallest outlet radius (at 2b) to the largest outlet radius (at 2a) 
one finds an expression for the pressure difference 

 𝑝𝑝2𝑎𝑎 − 𝑝𝑝2𝑎𝑎
𝜌𝜌

= −�
𝑑𝑑𝑚𝑚

2

𝜕𝜕𝑐𝑐 − 𝜕𝜕
𝑑𝑑𝜕𝜕 +

2𝑎𝑎

2𝑎𝑎
�

𝑑𝑑𝜃𝜃
2

𝜕𝜕
𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎
+ � 𝜔𝜔𝑑𝑑𝜃𝜃𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎
− � 𝜔𝜔𝜕𝜕

𝜕𝜕𝑑𝑑𝜃𝜃

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎

− � 𝜔𝜔2𝜕𝜕𝑑𝑑𝜕𝜕
2𝑎𝑎

2𝑎𝑎
 

 

(A10) 

We can also get an expression for the pressure difference by applying the rothalpy equation, aka 
Bernoulli in a rotating frame, between points 1a to 2a, and from 1b to 2b, solving for pressures in 2a 
and 2b and taking the difference. The rothalpy equation is a version of the Bernoulli equation for flow 
observed from a rotating inertial frame. It compensates for the fact that we are able to observe the 
pressure due to the rotational motion even if the rotational speed is invisible to us and the fact that this 
pressure is not able to accelerate the relative flow; the velocity we can observe is no longer the velocity 
from the stationary frame, we can only observe the relative velocity; The last important feature of the 
equation is that it describes the relative energy content of the flow, and use the fact that this is constant, 
even if energy is extracted from the absolute reference frame flow. Points 1a and 1b are at points where 
the flow is parallel and is not yet being diverted downwards, hence the only pressure difference between 
them is the static contribution of the water column from point 1b to 1a. This contribution in very small 
compared to the other terms, and neglecting this yields p1a=p1b, and in fact the elevation term in the 
Bernoulli equation can be omitted altogether, as the potential in the Euler equation also has omitted 
gravity. The velocities at 1a and 1b can also be regarded as the same. Using the rothalpy equation twice, 
solving for the pressures at point 2a and 2b, and taking the difference between them one finds 

 
𝑝𝑝1𝑎𝑎 − 𝜌𝜌

𝜔𝜔2𝜕𝜕1𝑎𝑎2

2
+ 𝜌𝜌

𝑑𝑑1𝑎𝑎
2

2
= 𝑝𝑝2𝑎𝑎 − 𝜌𝜌

𝜔𝜔2𝜕𝜕2𝑎𝑎2

2
+ 𝜌𝜌

𝑑𝑑2𝑎𝑎
2

2
 

 

(A11) 

 𝑝𝑝2𝑎𝑎 = 𝑝𝑝1𝑎𝑎 +
𝜌𝜌
2

(𝑑𝑑1𝑎𝑎
2 − 𝜔𝜔2𝜕𝜕1𝑎𝑎2 + 𝜔𝜔2𝜕𝜕2𝑎𝑎2 −𝑑𝑑2𝑎𝑎

2 ) 
 

(A12) 

 
𝑝𝑝1𝑎𝑎 − 𝜌𝜌

𝜔𝜔2𝜕𝜕1𝑎𝑎2

2
+ 𝜌𝜌

𝑑𝑑1𝑎𝑎
2

2
= 𝑝𝑝2𝑎𝑎 − 𝜌𝜌

𝜔𝜔2𝜕𝜕2𝑎𝑎2

2
+ 𝜌𝜌

𝑑𝑑2𝑎𝑎
2

2
 

 

(A13) 

 𝑝𝑝2𝑎𝑎 = 𝑝𝑝1𝑎𝑎 +
𝜌𝜌
2 �
𝑑𝑑1𝑎𝑎

2 − 𝜔𝜔2𝜕𝜕1𝑎𝑎2 + 𝜔𝜔2𝜕𝜕2𝑎𝑎2 −𝑑𝑑2𝑎𝑎
2 � 

 
(A14) 
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 𝑝𝑝2𝑎𝑎 − 𝑝𝑝2𝑎𝑎 = 𝑝𝑝1𝑎𝑎 +
𝜌𝜌
2

(𝑑𝑑1𝑎𝑎
2 − 𝜔𝜔2𝜕𝜕1𝑎𝑎2 + 𝜔𝜔2𝜕𝜕2𝑎𝑎2 −𝑑𝑑2𝑎𝑎

2 )

− �𝑝𝑝1𝑎𝑎 +
𝜌𝜌
2 �
𝑑𝑑1𝑎𝑎

2 − 𝜔𝜔2𝜕𝜕1𝑎𝑎2 + 𝜔𝜔2𝜕𝜕2𝑎𝑎2 −𝑑𝑑2𝑎𝑎
2 �� 

 

(A15) 

 𝑝𝑝2𝑎𝑎 − 𝑝𝑝2𝑎𝑎 = 𝑝𝑝1𝑎𝑎 − 𝑝𝑝1𝑎𝑎
+
𝜌𝜌
2 �
𝑑𝑑1𝑎𝑎

2 −𝑑𝑑1𝑎𝑎
2 + 𝜔𝜔2𝜕𝜕1𝑎𝑎2 − 𝜔𝜔2𝜕𝜕1𝑎𝑎2 +𝜔𝜔2𝜕𝜕2𝑎𝑎2 − 𝜔𝜔2𝜕𝜕2𝑎𝑎2 +𝑑𝑑2𝑎𝑎

2

−𝑑𝑑2𝑎𝑎
2 � 

 

(A16) 

 𝑝𝑝2𝑎𝑎 − 𝑝𝑝2𝑎𝑎 =
𝜌𝜌
2
�𝜔𝜔2𝜕𝜕2𝑎𝑎2 − 𝜔𝜔2𝜕𝜕2𝑎𝑎2 − �𝑑𝑑2𝑎𝑎

2 −𝑑𝑑2𝑎𝑎
2 �� 

 
(A17) 

This appears to be the integration of differential pressure from b to a and the pressure differential can 
be written as 

 𝑝𝑝2𝑎𝑎 − 𝑝𝑝2𝑎𝑎
𝜌𝜌

= � 𝜔𝜔2𝜕𝜕𝑑𝑑𝜕𝜕
2𝑎𝑎

2𝑎𝑎
− � 𝑑𝑑𝑑𝑑𝑑𝑑

2𝑎𝑎

2𝑎𝑎
 

 

(A18) 

Setting the expression for the pressure differential equal will yield the following integral relation 

 
−�

𝑑𝑑𝑚𝑚
2

𝜕𝜕𝑐𝑐 − 𝜕𝜕
𝑑𝑑𝜕𝜕 +

2𝑎𝑎

2𝑎𝑎
�

𝑑𝑑𝜃𝜃
2

𝜕𝜕
𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎
+ � 𝜔𝜔𝑑𝑑𝜃𝜃𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎
− � 𝜔𝜔𝜕𝜕

𝜕𝜕𝑑𝑑𝜃𝜃

𝜕𝜕𝜕𝜕
𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎
− � 𝜔𝜔2𝜕𝜕𝑑𝑑𝜕𝜕

2𝑎𝑎

2𝑎𝑎

= � 𝜔𝜔2𝜕𝜕𝑑𝑑𝜕𝜕
2𝑎𝑎

2𝑎𝑎
− � 𝑑𝑑𝑑𝑑𝑑𝑑

2𝑎𝑎

2𝑎𝑎
 

 

(A19) 

All integral limits are the same and we can look at the differential relation instead 

 
−

𝑑𝑑𝑚𝑚
2

𝜕𝜕𝑐𝑐 − 𝜕𝜕
𝑑𝑑𝜕𝜕 +

𝑑𝑑𝜃𝜃
2

𝜕𝜕
𝑑𝑑𝜕𝜕 + 𝜔𝜔𝑑𝑑𝜃𝜃𝑑𝑑𝜕𝜕 − 2𝜔𝜔2𝜕𝜕𝑑𝑑𝜕𝜕 − 𝜔𝜔𝜕𝜕𝑑𝑑𝑑𝑑𝜃𝜃 = −𝑑𝑑𝑑𝑑𝑑𝑑 

 

(A20) 

The components Wm and Wθ of the relative velocity are linked to the relative velocity by the blade outlet 
angle beta through the geometrical relations in the velocity triangle, sinmW W β= and cosW Wθ β=   

 𝑑𝑑𝑚𝑚
2

𝜕𝜕𝑐𝑐 − 𝜕𝜕
𝑑𝑑𝜕𝜕 −

𝑑𝑑𝜃𝜃
2

𝜕𝜕
𝑑𝑑𝜕𝜕 − 𝜔𝜔𝑑𝑑𝜃𝜃𝑑𝑑𝜕𝜕 + 2𝜔𝜔2𝜕𝜕𝑑𝑑𝜕𝜕 = (𝑑𝑑 −𝜔𝜔𝜕𝜕𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽)𝑑𝑑𝑑𝑑 

 

(A21) 

Rearranging, we can write 

 𝑑𝑑2 �𝑠𝑠𝑠𝑠𝑠𝑠
2 𝛽𝛽

𝜕𝜕𝑐𝑐 − 𝜕𝜕 −
𝑐𝑐𝑐𝑐𝑠𝑠2 𝛽𝛽
𝜕𝜕 � − 𝜔𝜔𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 2𝜔𝜔2𝜕𝜕

(𝑑𝑑 −𝜔𝜔𝜕𝜕𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽) 𝑑𝑑𝜕𝜕 = 𝑑𝑑𝑑𝑑 

 

(A22) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

=
𝑑𝑑2 �𝑠𝑠𝑠𝑠𝑠𝑠

2 𝛽𝛽
𝜕𝜕𝑐𝑐 − 𝜕𝜕 −

𝑐𝑐𝑐𝑐𝑠𝑠2 𝛽𝛽
𝜕𝜕 � − 𝜔𝜔𝑑𝑑𝑐𝑐𝑐𝑐𝑠𝑠 𝛽𝛽 + 2𝜔𝜔2𝜕𝜕

(𝑑𝑑 −𝜔𝜔𝜕𝜕𝑐𝑐𝑐𝑐𝑠𝑠𝛽𝛽)  

 

(A23) 
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Appendix B. Numerical investigations 

 

 
Figure B1 :Computational domain of the turbine. Draft tube is not shown. 

 

For numerical investigations, a high head model Francis turbine, Francis-99, is considered. The 
computational domain consists of guide vanes, runner and draft tube. Hexahedral mesh was created in 
the turbine. Figure A1 shows computational domain of guide vane and runner. The mesh in the guide 
vane and the blade passages was created using ANSYS® TurboGrid™, whereas mesh in the draft tube 
was created using ANSYS® ICEM CFD™. A passage modelling approach is considered, which 
includes two guide vanes, a blade, a splitter and a draft tube. A periodic boundary condition was 
considered for the guide vanes and the runner. This allows information transfer on both sides of the 
periodicity. Furthermore, to connect stationary (guide vane and draft tube) domains to the rotating 
domain (runner), a rotating reference frame method, frozen rotor type, is considered. Though, this 
method is not true transient type, it allows data exchange at fixed position of the runner, and it does not 
average over the complete circumference of the runner. Data exchange takes place at the corresponding 
fixed locations of the interface and wake effect from the guide vanes can be modelled, if any. The 
simulations are conducted using ANSYS® CFX®, where all parameters related to the turbulence model 
were deactivated. The viscosity of water was set close to zero. Steady state simulations of the turbine 
are conducted. The present focus is only the best efficiency point (BEP). The parameters of BEP are 
shown in Table A1. 

Table B1. Range of parameters and boundary condition for simulation 

# Load Guide vane Net head Runner speed Inlet pressure Outlet pressure 
1 BEP 10° 30 m 531.6 rpm 3.4714 bar 0.5684 

 

Available experimental data of model test (see Figure A2) are used to prescribe the boundary conditions 
in simulations. The numerical model is verified and validated with the experimental data at BEP and 
part load operations. Computed discretization error is 0.5%. The error is determined using grid 
convergence index method [5] with respect to hydraulic efficiency and torque values. Complete 
description on the mesh independency study and the validation is presented in a previous publication 
[6]. The validation is performed with complete turbine, which includes complete spiral casing, stay 
vanes, 28 guide vanes. 15 blades, 15 splitters and draft tube. The selected mesh contains around 2 
million nodes in the turbine of one blade channel and the one guide vane channel. Guide vane passage, 
blade passage and draft tube contains, 0.35, 0.19 and 1.4 million nodes, respectively. 
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Figure B2. Iso-efficiency diagram of the model Francis turbine. The diagram is reproduced using available experimental data 
of the model performance test according to IEC 60193 in the Waterpower laboratory. Efficiency is presented in percentage; 
dash line indicates guide vane opening in percentage. 

 

 
Figure B3. Illustration of a model Francis turbine indicating the location of velocity data line in the draft tube. 

Appendix C. Draft tube losses 
 

The energy equation (units power) is obtained applying the Reynolds transport theorem using the 
hydraulic mechanical energy Emech as the extensive property which go into the equation [9]. This is seen 
in the equation below, where e= Emech /m, being the specific hydraulic mechanical energy, 𝑒𝑒 = 𝑖𝑖

𝜌𝜌
+ 𝐶𝐶2

2
. 
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 𝑑𝑑𝐸𝐸𝑚𝑚𝑒𝑒𝑐𝑐ℎ

𝑑𝑑𝐷𝐷
=
𝑑𝑑
𝑑𝑑𝐷𝐷

� 𝜌𝜌𝑒𝑒𝑑𝑑∀
𝐶𝐶𝐶𝐶

+ � 𝜌𝜌𝑒𝑒�𝑉𝑉𝑟𝑟���⃗ ∙ 𝑠𝑠�⃗ �𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

 

 

(C 1) 

 

Applying this between the cross section where we know the velocity distribution and the lower reservoir 
where the water has settled assuming steady state we can write 

 𝜌𝜌𝑔𝑔𝑄𝑄�ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒 + ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

= � �𝑝𝑝 + 𝜌𝜌
𝑉𝑉𝑚𝑚2 + 𝑉𝑉𝜃𝜃2

2 �𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑
𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

− 𝜌𝜌𝑔𝑔𝑄𝑄ℎ𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒𝑟𝑟 

(C 2) 

 

Unfortunately, we don’t know the pressure in the inlet of the draft tube, we only have information on 
the pressure gradient. We’re missing a boundary condition to be able to find the exact pressure 
distribution. If we have a uniform flow without any swirl the pressure would be uniform and the pressure 
gradient in the radial direction would be zero. Integrating this zero-gradient would only return a 
constant, and this constant would have been determined to be the pressure of the swirl-free flow. This 
pressure is easily linked to the losses in axisymmetric flows, as determined by friction factor or Manning 
number application. Investigating this flow case using the energy equation from the inlet of the draft 
tube to the outlet of the tailrace tunnel at the power plant we can write 

 𝜌𝜌𝑔𝑔𝑄𝑄�ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒,𝑧𝑧 + ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑧𝑧�

= � �𝑝𝑝𝑜𝑜𝑒𝑒𝑖𝑖 + 𝜌𝜌
𝑄𝑄2

2𝑑𝑑2�
𝑄𝑄
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒

− 𝜌𝜌𝑔𝑔𝑄𝑄ℎ𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒𝑟𝑟

= 𝑝𝑝𝑜𝑜𝑒𝑒𝑖𝑖𝑄𝑄 + 𝜌𝜌
𝑄𝑄3

2𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑒𝑒

2 − 𝜌𝜌𝑔𝑔𝑄𝑄ℎ𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒𝑟𝑟 

(C 3) 

 

The axial losses on the left-hand side are easy to calculate using standard equations for pipe flow. In 
practice the only unknown in this equation is the uniform pressure term puni. 

 
𝑝𝑝𝑜𝑜𝑒𝑒𝑖𝑖𝑄𝑄 = 𝜌𝜌𝑔𝑔𝑄𝑄�ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒,𝑧𝑧 + ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑧𝑧� − 𝜌𝜌

𝑄𝑄3

2𝑑𝑑𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑒𝑒

2

+ 𝜌𝜌𝑔𝑔𝑄𝑄ℎ𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒𝑟𝑟 

(C 4) 

 

So, we could solve for this, and use as a condition for the pressure at the radius rm where the local 
meridional velocity Vm=Q/A, as for the uniform flow assumption, when integrating the pressure 
gradient. The pressure would then be 

 
𝑝𝑝 = �

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 + 𝑝𝑝𝑜𝑜𝑒𝑒𝑖𝑖 − �
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕

𝑟𝑟𝑚𝑚

𝑟𝑟=0

 

 

(C 5) 

 

Where the latter integral is definite returning the value of the pressure differential from the centre to rm, 
to correct for the pressure puni not being the constant value to add to the distribution at r=0, but at r= rm. 
We can substitute back into Eq. C2 and get 
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 𝜌𝜌𝑔𝑔𝑄𝑄�ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒 + ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑒𝑒𝑎𝑎𝑖𝑖𝑒𝑒𝑟𝑟𝑎𝑎𝑐𝑐𝑒𝑒 + ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

= � ��
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 + 𝑝𝑝𝑜𝑜𝑒𝑒𝑖𝑖 − �
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕

𝑟𝑟𝑚𝑚

𝑟𝑟=0

+ 𝜌𝜌
𝑉𝑉𝑚𝑚2 + 𝑉𝑉𝜃𝜃2

2
�𝑉𝑉𝑚𝑚𝑑𝑑𝑑𝑑

𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒
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Solving for the head loss in the draft tube, we can write 
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Where the difference between the total losses and the axial losses must be the losses due to loss of 
rotation, which we use subscript θ to indicate. These losses might be difficult to quantify and assign to 
either tailrace or outlet, but at the outlet all the kinetic energy is lost, also the rotational component. It’s 
really not important to know where these losses occur either, because the origin of the rotation is the 
turbine runner, and the losses due to loss of rotation should be assigned to the turbine unit altogether. 
Therefore, all the flux of the rotational velocity component at the inlet of the draft tube is said to be 
these losses, 
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(C 9) 

 

If the flow is uniform, the pressure gradient is zero and the two pressure gradient integrals are zero, the 
latter term inside the integral becomes identical to the last term on the right-hand side and they cancel 
out, leaving only 

 𝜌𝜌𝑔𝑔𝑄𝑄ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒 = 𝜌𝜌𝑔𝑔𝑄𝑄ℎ𝑒𝑒𝑜𝑜𝑎𝑎𝑎𝑎,𝑖𝑖𝑟𝑟𝑎𝑎𝑓𝑓𝑒𝑒 𝑒𝑒𝑜𝑜𝑎𝑎𝑒𝑒,𝑧𝑧 
 

(C 10) 

 

Which is as should be if there is no rotation in the flow; the losses would be purely linked to axial flow. 
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