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The causes and consequences of Alzheimer’s
disease: phenome-wide evidence from
Mendelian randomization

Roxanna Korologou-Linden 1,2 , Laxmi Bhatta3, Ben M. Brumpton 3,4,5,
Laura D. Howe1,2, Louise A. C. Millard1,2,6, Katarina Kolaric1,2, Yoav Ben-Shlomo2,
Dylan M. Williams7,8, George Davey Smith 1,2, Emma L. Anderson1,2,9,
Evie Stergiakouli 1,2,9 & Neil M. Davies 1,2,3,9

Alzheimer’s disease (AD) has no proven causal and modifiable risk factors, or
effective interventions. We report a phenome-wide association study (Phe-
WAS) of genetic liability for AD in 334,968 participants of the UK Biobank
study, stratified by age. We also examined the effects of AD genetic liability on
previously implicated risk factors. We replicated these analyses in the HUNT
study. PheWAS hits and previously implicated risk factors were followed up in
a Mendelian randomization (MR) framework to identify the causal effect of
each risk factor onAD risk. A higher genetic liability for ADwas associatedwith
medical history and cognitive, lifestyle, physical and blood-based measures as
early as 39 years of age. These effects were largely driven by the APOE gene.
The follow-up MR analyses were primarily null, implying that most of these
associations are likely to be a consequence of prodromal disease or selec-
tion bias, rather than the risk factor causing the disease.

Late-onset Alzheimer’s disease is an irreversible neurodegenerative
disorder which accounts for the majority of dementia cases1. Despite
major private and public investments in research, there are no effec-
tive treatments for preventing the disease2. Many risk factors and
biomarkers have been identified to be associated with the risk of Alz-
heimer’s disease3. Most treatments (99.6%) developed to halt Alzhei-
mer’s disease failed in phase I, II, or III trials4. One explanation for these
failures is that the identified risk factors and drug targets are a con-
sequence of Alzheimer’s disease rather than underlying causes.

Genetic epidemiologic methods, such as Mendelian randomiza-
tion (MR), can potentially providemore reliable insights into the causal
mechanisms underlying the associations between risk factors and
disease5. To date, hypothesis-driven MR studies have found mixed

evidence for a causal role of cardiovascular risk factors in the devel-
opment of Alzheimer’s disease6–8.

Phenome-wide association studies (PheWAS) are a hypothesis-
free method, similar to genome-wide association studies (GWAS),
which estimate the associations between a genotype or polygenic risk
score (PRS) and the phenome9. PheWAS can potentially elucidate the
phenotypic consequences of Alzheimer’s disease, and critically when
in the life course, these effects emerge.

Here, we estimated the associations of genetic liability for Alz-
heimer’s disease and the phenome by age to identify the earliest
effects of the disease process (i.e., genetic liability to Alzheimer’s dis-
ease as a risk factor). We then tested whether the identified variables
were a cause or a consequence of Alzheimer’s disease using two-
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sample MR (i.e., phenome associated with Alzheimer’s disease genetic
liability as the exposure).

Results
Sample characteristics
The UK Biobank sample is 55% female (39–53 years, mean= 47.2 years,
standard deviation (SD) = 3.8 years) in tertile 1, 55% female (53–62
years, mean= 58.03 years, SD = 2.4 years) in tertile 2 and 49% female
(62–72 years,mean = 65.3 years, SD = 2.7 years) in tertile 3. In thewhole
sample, the Alzheimer’s disease PRSwas associated with a lower age at
recruitment (β: −0.006 years; 95% confidence interval (CI): −0.01,
−0.0002; P = 0.007). The mean standardized PRS (95% CI) in each
tertile was as follows: 0.006 (−0.0003, 0.01); and 0.001 (−0.01, 0.009)
and −0.007 (−0.02, 0.002) (P for trend =0.01).

Association of Alzheimer’s disease polygenic risk score and the
phenome
We examined the effects of genetic liability to Alzheimer’s disease on
the UK Biobank phenome, using 18 single-nucleotide polymorphisms
(SNPs), robustly and independently associated with Alzheimer’s dis-
ease (P ≤ 5 × 10−8) (Fig. 1A). Phenome-wide association analyses were
performedwithin each age tertile of UKBiobank. The age tertiles ofUK
Biobank are tertile 1, ages 39–53 years; tertile 2, ages 53–62 years and
tertile 3, 62–72 years. Each tertile consisted of 111,656 participants.
Selected PheWAS hits are presented in Figs. 2–4 and Supplementary
Figs. 3–5. Results for continuous outcomes are in terms of a 1 SD
change of inverse rank normal transformed outcome and log-odds or
odds for binary or categorical outcomes. A higher PRS for Alzheimer’s
disease was associated with own diagnosis and family history of
dementia, diagnoses of cardiovascular diseases, and self-reported
history of high cholesterol and pure hypercholesterolemia. Further-
more, participants with a higher PRS had an increased risk of using
cholesterol-lowering drugs, in addition to beta-blockers and aspirin in
all age tertiles (SupplementaryFig. 3). A higher PRSwasassociatedwith
lower body mass index and various body fat measures, lower diastolic
blood pressure and higher spherical power in the oldest participants
(i.e., the strength of lens needed to correct focus) (Fig. 2). In addition,
on average, participants with higher PRS performed worse and took
longer to complete cognitive tests in all age tertiles (39–72 years)
(Fig. 3). Participantswith a higher PRS alsohad ahigherweighted-mean
mode of anisotropy in the left inferior fronto-occipital fasciculus for
participants aged 53–72 years (Fig. 3). There was evidence of an asso-
ciation between higher PRS and blood cell composition markers and
these associations increased with age (Fig. 4). On average, the parents
of participants with a higher PRS for Alzheimer’s disease died at a
younger age (Supplementary Fig. 4). There was strong evidence that a
higher PRS was associated with healthier dietary choices (Supple-
mentary Fig. 4) and lifestyles (e.g., frequent exercise) in the two oldest
tertiles (ages 53–72 years) (Supplementary Fig. 5). For previously
implicated factors in Alzheimer’s disease, a higher PRS was associated
with higher systolic blood pressure only in participants aged 39–53
years and higher pulse pressure for all age ranges. There was some
evidence of an association between the PRS and a lower number of
pack-years of smoking for the oldest participants (Supplemen-
tary Fig. 5).

Sensitivity analysis. We replicated the top PheWAS hits from the
oldest age tertile (i.e., where most associations were observed) in the
Nord-Trøndelag Health Study (HUNT). In participants aged 62–72
years, of the 165 variables identified in the UK Biobank PheWAS, we
replicated 32 variables with adequate precision for the age-stratified
analysis, 20 of which were directionally consistent and replicated at
P ≤0.05. The effects of genetic liability to Alzheimer’s disease on
blood-based biomarkers and physical measures in HUNT closely mir-
ror those in UK Biobank (Figs. 5 and 6). Other replicated effects

included a lower odds of the participant’s mother having diabetes,
dietary habits suchas a higher oilyfish intake and fresh fruit intake, and
lifestyle habits such as frequent sleeplessness/insomnia (Supplemen-
tary Figs. 7–8, 10). Supplementary Figs. 6–10 show forest plots for all
measures. We repeated the analysis, estimating the associations of the
PRS and the 21,849variables inUKBiobank for the entire sample (there
are additional phenotypes due to the higher occurrenceof events in all
participants). We identified the effects of Alzheimer’s disease genetic
liability on the variables detected in the age-stratified analysis with
larger precision and additional variables (Supplementary Figs. 11–14).
For example, in the analysis using the entire sample, a higher PRS was
associated with metabolic dysfunction phenotypes such as diabetes
and obesity (Supplementary Fig. 11); a higher volume of gray matter in
the right and left intracalcarine and supracalcarine cortices (Supple-
mentary Fig. 13); and additional blood-based biomarkers (Supple-
mentary Fig. 13).

When we repeated the analysis by removing SNPs tagging the
APOE region from the PRS using the whole sample, we could not
replicate most of the hits detected in the oldest tertile. The non-APOE
PRS was associated with higher odds of own and family diagnosis of
Alzheimer’s disease (Supplementary Fig. 15) and lower odds of family
history of chronic bronchitis/emphysema (Supplementary Fig. 16).
There was evidence that the non-APOE PRS was associated with worse
performance in cognitive tests (Supplementary Fig. 17).

Two-sample Mendelian randomization of UK Biobank pheno-
types on Alzheimer’s disease
Weperformed a two-sampleMR of the identified PheWAS variables on
the risk of Alzheimer’s disease (i.e., the reversemodel to PheWAS). The
strongest associations following correction for multiple testing are
shown in Fig. 7. We found evidence that a one SD higher genetically
predicted whole body fat-free and water mass decreased the risk of
Alzheimer’s disease (OR: 0.78; 95% CI: 0.69, 0.88 and OR: 0.81; 95% CI:
0.71, 0.91, respectively). A one SD higher genetically predicted forced
vital capacity resulted in 22% lower odds of risk for Alzheimer’s disease
(OR: 0.78; 95%CI: 0.67, 0.91) (SupplementaryTable 12). Furthermore, a
higher genetically predicted basal metabolic rate was protective for
Alzheimer’s disease risk (OR: 0.75; 95% CI: 0.66, 0.85). We observed
that a higher genetic liability of doingmoremoderate physical activity
(at least 10minutes) but not self-reported vigorous activity increased
the odds of developing Alzheimer’s disease (OR: 2.69; 95% CI:1.39, 5.17
and OR: 1.02; 95% CI: 0.33, 3.18, respectively) (Supplementary
Table 16). For previously implicated risk factors for Alzheimer’s dis-
ease, we founda higher genetic liability for having a college degree and
Alevel qualifications reduced the risk of Alzheimer’s disease (Supple-
mentary Table 17).

Assessing pleiotropy. To evaluate the validity of theMR assumptions,
we quantified pleiotropy using heterogeneity statistics and pleiotropy-
robust methods (e.g., MR Egger regression). Due to the large sample
size of the exposures, the instrument strength of all SNPswas relatively
high (F > 30). However, the SNPs used for each body measurement
impliedhighly heterogeneous effects on the riskof Alzheimer’s disease
(all heterogeneity Q statistic P < 1.99 × 10−5). This heterogeneitymay be
due to horizontal pleiotropy (Supplementary Figs. 19–25). The causal
effect estimates for forced vital capacity and basal metabolic rate were
also heterogenous (Supplementary Table 12 and Supplementary
Figs. 19 and 20).

Assessing causal direction. We used Steiger filtering to evaluate the
direction of causation between Alzheimer’s disease and the pheno-
types identified in the PheWAS10. We found little evidence that SNPs
explained more variance in the outcome than the exposure for most
results reported in the two-sample MR section (Supplementary
Data 7–18).
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Discussion
In our study, we conducted a hypothesis-free phenome-wide scan to
investigate howand atwhat age theAlzheimer’s diseasePRS affects the
phenome. The effects of a higher genetic liability for Alzheimer’s dis-
ease are stronger in participants of aged 62–72 years, although the
direction of effect is similar across age groups. We investigated whe-
ther the effects observed are likely to be causes or consequences of the
disease process using two-sample bidirectional MR. We found evi-
dence that a minority of the variables identified in the PheWAS are
likely to causally affect the liability to Alzheimer’s disease. Of the
variables associated with Alzheimer’s disease genetic liability in the
PheWAS, these included basal metabolic rate, forced vital capacity,
whole body fat-free and whole body water mass, and self-reported
moderate physical activity. Of the factors previously implicated in
Alzheimer’s disease risk, these included A level/AS qualifications and
college degree qualifications (Fig. 7).

The PheWAS suggested that increased genetic liability for Alz-
heimer’s disease affected a diverse array of phenotypes such as med-
ical history, brain-related phenotypes andphysical, lifestyle and blood-
based measures. However, these effects appear to be primarily driven
by variation in the APOE gene. Our sensitivity analysis, excluding the
APOE region, replicated only the effects for family history of Alzhei-
mer’s disease and some cognitive measures. These findings are in line
with a recent study which showed that a higher PRS excluding APOE
was particularly deleterious for the age of AD onset inAPOEε4 carriers,
with no evidence of such an effect in APOEε4 non-carriers11. Further-
more, these results are consistent with observational studies12–17 and
studies in APOE-deficient mice18–21, which demonstrate the multi-
functional role of APOE on longevity-related phenotypes such as
changes in lipoprotein profiles18,22,23, neurological disorders24, type II
diabete19, altered immune response20, and increased markers of oxi-
dative stress21. Therefore, this strongly suggests that the effects of

A. Phenome-wide associa�on study

B. Two sample Mendelian randomiza�on

SNPs for trait (e.g., body 
mass index)

Trait (e.g., body mass 
index)

(iii)

X

(i)

(ii)

PRS for Alzheimer’s disease Trait (e.g. body mass index)

X

Alzheimer’s disease

Confounders

Fig. 1 | Study design for the phenome-wide association study of Alzheimer's
disease genetic liability and follow-up Mendelian randomization of identified
phenotypes on Alzheimer‘s disease. Diagram (A) describes our study design
when conducting a phenome-wide association study, and diagram (B) describes
our study design when using Mendelian randomization. In A, the polygenic risk
score for Alzheimer's disease may either have a downstream causal effect on the
trait (e.g., bodymass index), or it may affect the trait through pathways other than
through Alzheimer's disease (i.e., pleiotropic effects). Diagram (B) describes our
follow-up analysis using Mendelian randomization to establish the causality and

directionality of the observed associations. In B, we test the hypothesis that the
trait (e.g., body mass index) causally affects liability to Alzheimer's disease, pro-
vided that the conditions (i), (ii), and (iii) are satisfied. The polygenic risk score for
the trait of interest is a valid instrument in that (i) the single nucleotide poly-
morphisms for a trait are strongly associated with the trait they proxy (relevance),
(ii) there are no confounders of the single nucleotide-outcome relationship
(independence), and (iii) the single nucleotide polymorphisms only affect the
outcome via their effects on the trait of interest (exclusion restriction).
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Alzheimer’s PRS on the phenome (e.g., atherosclerotic heart disease)
are likely to be due to biological pathways related to APOE.

Previous observational studies have reported conflicting evi-
dence on the association of cardiovascular risk factors with Alz-
heimer’s disease, including hypertension. The results depend on the
age at which these risk factors were measured25–27. Similarly, in our
study, a higher PRS for Alzheimer’s disease was associated with
lower body mass index and body fat in participants of ages 53-72
years and lower diastolic blood pressure in the participants of ages
62-72 years. In agreement with some previous MR studies6,7,28,29, we

found little evidence that body mass index and blood pressure
causally affect the risk of developing Alzheimer’s disease. Hence,
the association observed in the PheWAS between the PRS, lower
body fat measures, and diastolic blood pressure is likely to reflect
the prodromal disease process. We found evidence that a higher
self-reported number of days of moderate physical activity
increased the odds of Alzheimer’s disease. A study30 found direc-
tionally consistent effects with the results of our analysis, but the
evidence that moderate to vigorous physical activity affected the
risk of Alzheimer’s disease was weak.

Body fat (%)

Body mass index

Hip circumference

Trunk fat (%)

Waist circumference

Weight

Whole body fat mass

Whole body fat−free mass

Whole body water mass

Basal metabolic rate

Diastolic blood pressure

Pulse rate

Spherical power (left)

Spherical power (right)

−0.05 −0.025 0 0.025 0.05
ß−coefficient (95% CI)

39−53 years 53−62 years 62−72 years

Fig. 2 | Forest plot showing the effect estimates for the associationbetween the
polygenic risk score for Alzheimer’s disease (including the APOE region) and
physicalmeasures. Legends at the bottomof each graph indicate age tertiles. Each
tertile consists of 111,656participants, ordered by age. Effect estimates represent an
SD change in the phenotype per 1 unit increase in the standardized polygenic risk

score for Alzheimer’s disease. Error bars represent 95% confidence intervals. All
statistical tests were two-sided. There is evidence that the polygenic risk score for
Alzheimer’s disease is related to physical measures in older but not younger par-
ticipants. This suggests that Alzheimer’s disease causes these changes rather than
vice versa.
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We found the genetic liability for Alzheimer’s disease associated
with several variables involving inflammatory pathways such as self-
reported wheeze/whistling, monocyte count, and blood-based mea-
sures. This agrees with previous evidence of genetic correlations
between Alzheimer’s disease and asthma31 and longitudinal studies32,33.
In our study, red blood cell indices show the earliest evidence of asso-
ciation with the genetic liability of Alzheimer’s disease. Still, we found
little evidence that these measures caused Alzheimer’s disease using
MR, indicating that cell composition changes may be an early

consequence of Alzheimer’s disease pathophysiology. Previous studies
found genetic variants associated with red blood cell distribution width
are linked to autoimmune disease and Alzheimer’s disease34,35. Once the
function of the specific variants involved in specific biological pathways
related to Alzheimer’s disease is further elucidated, pathway-specific
PRS may be used to inform the causality of the biological phenotypes
identified in our PheWAS, such as blood-based biomarkers. We found
evidence that a PRS for Alzheimer’s disease was associated with a lower
fluid intelligence score, as previously reported36 but not educational

Duration to complete alphanumeric path test

Duration to entering value in symbol digit substitution test

Fluid intelligence score*

Interval between previous point and current one in alphanumeric path test

Number of correct matches in pairs matching round*

Number of symbol digit matches attempted in symbol digit substitution test

Number of symbol digit matches made correctly in symbol digit substitution test

Time to answer prospective memory test

Time to complete round for pairs matching test

Weighted−mean MO in tract inferior fronto−occipital fasciculus (left)

−0.2 −0.1 0 0.1 0.2
ß−coefficient (95% CI)

39−53 years 53−62 years 62−72 years

Fig. 3 | Forest plot showing the effect estimates for the associationbetween the
polygenic score for Alzheimer’s disease (including the APOE region), cognitive
and brain-related measures. Legends at the bottom of each graph indicate age
tertiles. Each tertile consists of 111,656 participants, ordered by age. Effect esti-
mates represent an SD change in the phenotype per 1 unit increase in the stan-
dardized polygenic risk score for Alzheimer’s disease. Error bars represent 95%

confidence intervals. All statistical tests were two-sided. *Effect estimates were
derived from ordered logistic models, and effect estimates are on the log-odds
scale. We found evidence that the polygenic risk score for Alzheimer’s disease is
related to some cognitive measures in all age ranges examined. Thismay suggest a
bidirectional relationship between cognitive measures and Alzheimer’s disease.
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attainment. Although previous MR studies have suggested that higher
educational attainment reduces liability for Alzheimer’s disease6,37,38, a
multivariable MR study found little evidence that educational attain-
ment directly increased the risk of Alzheimer’s disease over and above
the underlying effects of intelligence39.

Our study shows that the most likely reason for the contrast
between the primarily null MR findings in our study, and the vast
evidence base for Alzheimer’s disease risk factors in observational
studies, is that none of the factors identified to be associated with
Alzheimer’s disease in such studies are likely to be causal. Instead,

they are either symptoms of prodromal Alzheimer’s disease (i.e.,
biased by reverse causation) or spurious associations due to con-
founding and/or selection bias. This conclusion is corroborated by
the findings observed in the PheWAS, which are similar to those in
observational studies (such as body mass index and sleep dis-
turbances). In addition, our study’s lack of positive findings was not
due to insufficient statistical power, as the effects were precisely
estimated. Unlike PRS and association studies, MR aims to disen-
tangle causality from correlation. Observational studies are prone
to biases such as confounding and reverse causation. On the

Red blood cell distribution width

Red blood cell count

Haematocrit (%)

Haemoglobin concentration

Mean reticulocyte volume

Mean sphered cell volume

Monocyte count

Platelet count

Platelet crit

−0.05 −0.025 0 0.025 0.05
ß−coefficient (95% CI)

39−53 years 53−62 years 62−72 years

Fig. 4 | Forest plot showing the effect estimates for the associationbetween the
polygenic score for Alzheimer’s disease (including the APOE region) and bio-
logicalmeasures. Legends on the bottom of each graph indicate age tertiles. Each
tertile consists of 111,656participants, ordered by age. Effect estimates represent an
SD change in the phenotype per 1 unit increase in the standardized polygenic risk

score for Alzheimer’s disease. Error bars represent 95% confidence intervals. All
statistical tests were two-sided. The UK Biobank included an age-dependent
increase in the effect of the polygenic risk score on blood-based measures. This
may indicate that blood-based markers may be causal in the development of Alz-
heimer’s disease.

Article https://doi.org/10.1038/s41467-022-32183-6

Nature Communications |         (2022) 13:4726 6



contrary, as MR uses genetic variants as proxies for the tested
exposures, the possibility of confounding andmeasurement error is
negligible5. Hence, our study highlights that most of the risk factors
identified in observational literature are likely a response to Alz-
heimer’s disease pathological processes.

The large sample of UK Biobank provided unparalleled statistical
power to investigate the phenotypic manifestation of a higher genetic
liability for Alzheimer’s disease by age group. Furthermore, the

systematic approach of searching for effects using PheWAS reduces
the bias associated with hypothesis-driven investigations.

The Alzheimer’s disease PRS may have horizontal pleiotropic
effects on different traits and disorders, which may result in het-
erogeneity. MR and instrumental variable estimators for binary out-
comes also cannot assume a constant treatment effect; as such it is
expected that the MR estimates if sufficiently powered, would be
heterogeneous40. With the available data, it is impossible to

Body fat percentage

Body mass index (BMI)

Waist circumference

Whole body fat−free mass

Whole body fat mass

Weight

Diastolic blood pressure

Pulse rate

−0.1 −0.05 0 0.05 0.1
ß−coefficient (95% CI)

UKB 39−53y HUNT 39−53y UKB 53−62y HUNT 53−62y UKB 62−72y HUNT 62−72y

Fig. 5 | Forest plot showing the age-stratified effect estimates for the associa-
tion between the polygenic score for Alzheimer’s disease (including the APOE
region) and physical measures in UK Biobank (diamond markers) and HUNT
(replication sample, circle markers). Legends at the bottom of each graph indi-
cate age tertiles in both cohorts. The colors represent blue, the youngest age tertile
(39–53 years); red; middle age tertile (53–62 years); green, the oldest age tertile
(62–72 years). Effect estimates represent an SD change in the phenotype per 1 unit

increase in the standardized polygenic risk score for Alzheimer’s disease. Error bars
represent 95% confidence intervals. All statistical tests were two-sided. The UK
Biobank analyses included 9,043–111,485 participants in each tertile. The HUNT
analyses included 7,267–18,307 participants in each age tertile. The confidence
intervals are smaller in UK Biobank due to the larger sample size of the cohort
compared to HUNT.
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determine whether this heterogeneity is due to pleiotropy or het-
erogeneous treatment effects. The results from both the PheWAS
and the MR follow-up could be explained by collider bias, which may
have been introduced into our study by selecting the study sample.
The UK Biobank includes a highly selected, healthier sample of the
UK population41. Compared to the general population, participants
are less likely to be obese, smoke, drink alcohol daily, and have fewer
self-reported medical conditions42. Selection bias may occur if those

with a lower genetic liability to Alzheimer’s disease and a specific trait
(e.g., higher education or higher levels of physical activity) are more
likely to participate in the study. This could induce an association
between genetic liability for Alzheimer’s disease and the traits in our
study43. Furthermore, if both the PRS for Alzheimer’s disease and the
examined traits associate with survival, sampling only living people
can induce spurious associations that do not exist in the general
population44,45. Such bias may have affected our findings for body

Haemoglobin concentration

Monocyte count

Monocyte percentage

Red blood cell count

−0.1 −0.05 0 0.05 0.1
ß−coefficient (95% CI)

UKB 39−53y HUNT 39−53y UKB 53−62y HUNT 53−62y UKB 62−72y HUNT 62−72y

Fig. 6 | Forest plot showing the age-stratified effect estimates for the associa-
tion between the polygenic score for Alzheimer’s disease (including the APOE
region) and blood-based biomarker measures in UK Biobank (diamond mar-
kers) and HUNT (replication sample, circle markers). Legends at the bottom of
each graph indicate age tertiles in both cohorts. The colors represent blue, the
youngest age tertile (39–53 years); red; middle age tertile (53–62 years); green, the
oldest age tertile (62–72 years). Effect estimates represent an SD change in the

phenotype per 1 unit increase in the standardized polygenic risk score for Alzhei-
mer’s disease. Error bars represent 95% confidence intervals. All statistical tests
were two-sided. The HUNT analyses included 7,267–18,307 participants for these
measures. The UK Biobank analyses included 108,095–108,391 participants for
blood-based biomarkers. The confidence intervals are smaller in UKBiobank due to
the larger sample size of the cohort compared to HUNT.
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mass and physical activity, as individuals with a higher body mass
index or infrequent physical activity and those with higher values of
the Alzheimer’s PRS are less likely to survive and participate in UK
Biobank. The PRS for Alzheimer’s disease in our analysis was asso-
ciated with lower age at recruitment, suggesting that older people
with higher score values are less likely to participate. Hence, con-
sidering these limitations, the variables that may be associated with
selection or survival41 should be interpreted with caution. In this
PheWAS, we identified that a higher genetic liability for Alzheimer’s
disease is associated with 165 of the 15,402 UK Biobank variables. MR
analysis follow-up showed evidence that only seven of these factors
were implicated in the etiology of Alzheimer’s disease. We found
little evidence that the remaining phenotypes examined are likely to
modify the disease process, but the association with the Alzheimer’s
disease PRS is likely due to reverse causation or selection bias. Fur-
ther research should exploit the full array of potential relationships
between the genetic variants implicated in Alzheimer’s disease,
intermediate phenotypes, and clinical phenotypes by using other
omics and phenotypic data to identify possible biological pathways
changing the risk of Alzheimer’s disease.

Methods
Study design
Our analysis proceeded in two steps. First, we ran a PheWAS of the
Alzheimer’s disease PRS and all available variables in the UK Biobank,
stratifying the sample by age. Second, we followed up all variables
associated with the PRS in a bidirectional MR analysis. We outline the
research questions answered by the PheWAS and the MR approach
in Fig. 1.

Sample description
UK Biobank is a population-based study of 503,325 people recruited
between 2006 and 2010 from across Great Britain46,47. This work was
done under application number 16729 (version 2 genetic data [500K

with HRC imputation] and phenotype dataset 21753). In Supplemen-
tary Fig. 1, the flowchart shows the number of participants removed at
each stage of the quality control pipeline. The UK Biobank study
resource has ethical approval and its own ethics committee (https://
www.ukbiobank.ac.uk/learn-more-about-uk-biobank/governance/
ethics-advisory-committee). A full description of the study design,
participants, and quality control (QC)methods has been published48,49.
Briefly, participantswere excludeddue to familial relatedness andnon-
Caucasian ancestry. A total sample of 334,968 remained after QC
(Supplementary Fig. 1).

Polygenic risk score
We constructed a standardized weighted PRS including single-
nucleotide polymorphisms (SNPs) associated with Alzheimer’s dis-
ease at P ≤ 5 × 10−8 for UK Biobank participants, based on the summary
statistics from a meta-analysis of the International Genomics of Alz-
heimer’s Project (IGAP)50, the Alzheimer’s Disease Sequencing Project
(ADSP)51 and the Psychiatric Genetics Consortium (PGC)52 (24,087
cases and 55,058 controls). SNPs were clumped using r2> 0.001 and a
physical distance for clumping of 10,000 kb. A polygenic risk score
including 18 genetic variants was calculated for each participant with
genetic data using PLINK (version 1.9). Each score was calculated from
the effect size (logarithm (log) odds)-the weighted sum of 18 alleles
associated with Alzheimer’s disease within each participant. Our pri-
mary analysis used the PRS, including variants near theAPOE gene (Chr
19: 44,400–46,500 kb)53. The APOE region explains a large proportion
of the variance in the polygenic risk score (R2 = 84%). The PRS was
standardized by subtracting the mean and dividing it by the standard
deviation (SD) of the PRS.

Main analysis
The full UK Biobank sample was divided into three age-stratified sub-
samples (n = 111,656 in each tertile) with the aim of examining the age-
varying effects of the PRS for Alzheimer’s disease. We performed

Phenotype PRS with APOE PRS without APOE Reverse MR

PheWAS

Basal metabolic rate - X -

Forced vital capacity X X -

Whole body fat-free 
mass

- X -

Whole body water 
mass

- X -

Self-reported 
moderate-to-
vigorous physical 
activity

+ X +

Previously 
implicated risk 
factors

A levels/AS levels X X -

College degree X X -

Fig. 7 | Association of Alzheimer’s disease polygenic risk score with the phe-
nome, and estimated effect of each phenotype using Mendelian randomiza-
tion. These findings showed evidence of association in the MR framework,
following a correction for multiple testing using a strategy controlling for the false

discovery rate. + and – indicate the direction of the coefficient for phenotypes
associated with Alzheimer’s disease using two-sample MR. X represents associa-
tions that were consistent with the null.
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PheWASwithin each tertile. Age, sex, and the first ten genetic principal
components were included as covariates.

Outcomes
The Biobank data showcase enables researchers to identify variables
based on the field type (http://biobank.ctsu.ox.ac.uk/showcase/list.
cgi). Therewere 2655fields of the following types: integer, continuous,
and categorical (single and multiple). We excluded 55 fields a priori,
including age and sex, and technical variables (e.g., assessment center)
(Supplementary Table 2).

Statistical analyses
Phenome-wide association study. We estimated the association of an
Alzheimer’s disease PRS with each phenotype in the three age strata
using PHESANT (version 14). A description of PHESANT’s automated
rule-based method is published elsewhere54. We accounted for the
multiple tests performed by generating adjusted P values, controlling
for a 5% false discovery rate. The threshold (≤0.05) was used as a
heuristic to identify variables for follow-up in the MR analysis and not
as an indicator of significance55,56. Categories for the ordered catego-
rical variables are in Table 3 of the Supplementary Methods. We also
estimated the effects of genetic liability to ADonpreviously implicated
risk factors for Alzheimer’s disease, selecting four factors from the
Global BurdenofDisease Study (highBMI, high fastingplasmaglucose,
smoking, and a high intake of sugar-sweetened beverages) that con-
tributed tometrics for deaths, prevalence, years of life lost, years of life
lived with disability, and disability-adjusted life-years due to AD3. The
review identified the following as potentiallymodifiable risk factors for
dementia; less education, midlife hypertension, obesity and hearing
loss, later life smoking, depression, physical inactivity, social isolation,
and diabetes. Furthermore, a meta-analysis of case-control and
population-based studies showed that rheumatoid arthritis is asso-
ciatedwith a lower incidence of Alzheimer’s disease57. The relationship
between Alzheimer’s disease and rheumatoid arthritis has been stu-
died before using genetic-based methods such asMR57. Hence it is not
examined here. We examined the use of methotrexate (an anti-
inflammatory drug for rheumatoid arthritis), due to observational
studies58,59 suggesting anti-inflammatory medicines for rheumatoid
arthritis reduces the risk of Alzheimer’s disease58. At the time of the
analysis, plasma glucose was unavailable and not investigated.

Sensitivity analysis. We used the Nord-Trøndelag Health Study
(HUNT)60,61 to replicate the top PheWAShits identified in theoldest age
group (62–72 years) in UK Biobank, using the same ages for the stra-
tification of the sample. The Trøndelag Health Study (HUNT) is a
population-based study of ~125,000 participants, which invited the
entire adult (≥20 years) population of Trøndelag61–63. Adults were
invited for questionnaires, interviews, clinical examinations, labora-
torymeasurements, and storage ofbiological samples in at least one of
four study rounds so far, including HUNT1 (1984–1986, N = 75,027,
86.8% of invited), HUNT2 (1995–1997, N = 65,402, 69.7% of invited),
HUNT3 (2006–2008, N = 50,663, 54.0% of invited), and HUNT4
(2017–2019, N = 56,042, 54.0% of invited)62,63. The current analysis
includes genetic data from ~90% (N = 71,860) of participants from
HUNT2 and HUNT3 who were genotyped by genome-wide SNP arrays
in 201560,64. For the replication of Alzheimer’s disease PRS-outcome
associations in the HUNT study, we followed up 33 outcomes (i.e.,
those variables available in HUNT with sufficient sample numbers for
replication) thatwere associatedwith the AD PRS inUKBiobank. In the
HUNT study, there is a large amount of relatedness between
participants5 therefore, to avoid the need to exclude related partici-
pants and reduce the sample size, we used amethod that accounts for
the genetic relatedness using a restrictedmaximum likelihood (REML)
approach8. We fit a linear mixed model where a genome-wide genetic
relationship matrix (GRM) was used to account for the relatedness

across the sample60. The models were adjusted for age, sex, and study
participation round (if the outcome was measured in multiple rounds
of HUNT study), batch, and ten principal components. Analyses were
performed using R 4.0.3 (http://www.r-project.org) and GCTA soft-
ware (version 1.93.3beta2)8. More details on the cohort and variable
definition can be found in the Supplementary Methods. We repeated
the PheWAS for the entire sample in UK Biobank without stratifying by
age to maximize the power to detect associations. Furthermore, to
examine if any detected associations could be attributed to the var-
iants in or near the APOE gene, we repeated the PheWAS on the entire
sample, excluding this region from the PRS.

Follow-up using Mendelian randomization
We investigated whether the variables identified in our PheWAS or
previously reported risk factors3 were a cause or consequence of Alz-
heimer’s disease using bidirectional two-sample MR (details in the
Supplementary Methods). MR is a method that uses alleles randomly
allocated at conception as instrumental variables to estimate the
causal effect of an exposure on an outcome5. MR is less prone to the
bias of confounding and reverse causation associated with observa-
tional studies. However, for MR to produce unbiased causal effect
estimates, each genetic variant that is used as an instrumental variable
must fulfill three assumptions: (1) that it is associated with the expo-
sure (relevance assumption), (2) that it is not associated with the
outcome through a confounding pathway (exchangeability assump-
tion), and (3) is only associated with the outcome through the expo-
sure (exclusion restriction assumption). More details on terms related
to MR can be found in the MR dictionary65.

In this MR analysis, we only considered risk factors identified by
the PheWAS (in ages 62–72 years, which included the phenotypes
identified in the younger age groups) and literature reviews. We
identified SNPs that are strongly associated (P ≤ 5 × 10−8) with each
trait. SNPs in the APOE region53 were removed from instruments
proxying the exposures. For wheeze/whistling, we also examined the
measured phenotype of forced vital capacity as a better measure of
respiratory function. For spherical power, we derived four binary
variables to indicate myopia (spherical power < −0.5) and hypertropia
(spherical power > 0.5) in each eye. Exposure GWAS were based on
summary statistics from UK Biobank and were performed with the
BOLT-LMM software package66 using a published pipeline7 unless
there was a larger published GWAS.

Alzheimer’s disease GWAS. We used the same meta-analysis of the
IGAP consortium50, ADSP51, and PGC52 described above for the two-
sample MR analyses.

Estimating the effects of risk factors on Alzheimer’s disease. We
harmonized the exposure and outcome GWAS (details in Supple-
mentary Methods). We estimated the effect of each exposure on Alz-
heimer’s disease using MR and the inverse-variance weighted (IVW)
estimator67. This estimator assumes that there is no directional hor-
izontal pleiotropy (i.e., on average, the randomeffects on the outcome
through pathways other than the exposure are not equal to zero) and
that all the genetic variants are valid instrumental variables5. Further-
more, IVW uses weights that treat the genetic variant-exposure asso-
ciations to be known rather than estimated (i.e., the No Measurement
Error assumption). When genetic variants violate the NoME assump-
tion, causal effect estimates may exhibit weak instrument bias, esti-
mated with the F-statistic68,69. The F-statistic estimates the strength of
association of the genetic variant with the exposure, indicating
instrument strength (the larger the F-statistic, the stronger the
instrument and the larger the statistical power)68. We present adjusted
P values for inverse-variance weighted regression accounting for the
number of results in the follow-up using the false discovery rate
method.
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Assessing pleiotropy. We investigated whether the SNPs had pleio-
tropic effects on the outcome other than through the exposure using
MREgger regression70,71. Egger regression allows for pleiotropic effects
that are independent of the effect on the exposure of interest (InSIDE
assumption)70,72,73. Egger regression is similar to IVW, except that it
includes an intercept term representing the average pleiotropic effect.
Similar to IVW, MR Egger also assumes no measurement error. To
quantify the strength of the NOME violation for MR Egger, we report
the I2Gx statistic

74, which indicates the expected relative bias of theMR
Egger effect estimates.

Assessing causal direction. We used Steiger filtering to interrogate
the direction of causation between Alzheimer’s disease and the phe-
notypes identified in the PheWAS10. Steiger filtering assumes that a
valid instrumental variable should explain more variance in the expo-
sure (e.g., forced vital capacity) than the outcome (i.e., Alzheimer’s
disease), which should be true if the hypothesized direction frombody
mass index to Alzheimer’s disease is true. We repeated MR analyses
removing SNPs which explainedmore variance in the outcome than in
the exposure.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The UK Biobank Study provided the data in this study (www.
ukbiobank.ac.uk), received under the data request application no.
16729. The Alzheimer’s disease GWAS included IGAP, ADSP, and
PGC summary statistics. Summary statistics from IGAP are publicly
available at http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_
download.php. Summary statistics for ADSP can be obtained
through a data access request https://dss.niagads.org/documentation/
data-application-and-submission/application-instructions/. Summary
statistics from the PGC consortium are available at https://www.med.
unc.edu/pgc/download-results/. The exposure GWAS in the follow-up
MR studies were performed by Ben Elsworth and are publicly available
at https://gwas.mrcieu.ac.uk. The GWAS on the blood-based bio-
markers was performed by Roxanna Korologou-Linden, using the UK
Biobank pipeline and can be provided upon request.

Code availability
Scripts are available on Github at https://github.com/rskl92/AD_
PHEWAS_UKBIOBANK75.
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