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A phase diagram for a one-dimensional fiber bundle model is constructed with a
continuous variation in two parameters guiding the dynamics of the model: strength of
disorder and range of stress relaxation. When the range of stress relaxation is very low, the
stress concentration plays a prominent role and the failure process is nucleating where a
single crack propagates from a particular nucleus with a very high spatial correlation unless
the disorder strength is high. On the other hand, a high range of stress relaxation
represents the mean-field limit of the model where the failure events are random in
space. At an intermediate disorder strength and stress release range, when these two
parameters compete, the failure process shows avalanches and precursor activities. As
the size of the bundle is increased, it favors a nucleating failure. In the thermodynamic limit,
we only observe a nucleating failure unless either the disorder strength is extremely high or
the stress release range is high enough so that the model is in the mean-field limit. A
complex phase diagram on the plane of disorder strength, stress release range, and
system size is presented showing different failure modes - 1) nucleation 2) avalanche, and
3) percolation, depending on the spatial correlation observed during the failure process.

Keywords: disordered systems, fiber bundle model, stress release range, nucleation and growth, percolation,
spatial correlation

1 INTRODUCTION

It is nearly a century since Alan Arnold Griffith developed his energy criterion for the fracture
propagation of cracks in near-continuous solids [1, 2]. His celebrated work has revolutionized the
world of materials science. Griffith considered a single sharp crack in an otherwise homogeneous
elastic medium. In Griffith’s theory, the crack propagation is considered as an equilibrium problem
where the balance between two energies: reduction of strain energy, and increment in surface energy
is measured during the crack propagation. He found that the critical stress σc to cause a crack of
length l, to extend is σc � (2Yg/πl)1/2 [3], where Y is Young’s modulus and g is the surface energy per
unit area. However, this is an idealized case that requires a pre-existing crack or notch in a
homogeneous medium to concentrate the applied stress. In general, the initiation of a fracture in a
solid is a much more complex process. Most engineering materials are far from homogeneous, there
will always be a distribution of dislocations, flaws, and other heterogeneities present. The nucleation
and propagation of a crack in heterogeneous systems are not understood because of the complexities
of the stress singularities at the crack tip [4]. As the applied stress is increased, micro-cracks are likely
to occur randomly on the heterogeneity and are uncorrelated. As the density of micro-cracks
increases, the stress fields of the micro-cracks interact and the micro-cracks become correlated. The
micro-cracks eventually may coalesce to form a through-going fracture. This irreversible process is a
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part of damage mechanics and is an integral part of the nucleation
and propagation of fracture in heterogeneous environments.

During the failure process of a disordered system, a complex
interplay is observed between quenched heterogeneities and local
stress concentration. The former one leads to non-localized
damage mechanics while the latter favors the formation of
localized cracks. As a consequence of this interplay, we observe
system size dependence of nominal stress distribution [5–7], scale-
free avalanche size statistics [8–11], self-affine crack morphology
[12], etc. In the limit of infinitesimal disorder strength, the crack
grows within a disordered system in a nucleating manner [13–16].
On the other hand, when disorder strength is infinitely high, the
effect of local stress concentration becomes irrelevant and the
failure process is random in space [17, 18] like percolation. The
reason behind the damage mechanics at high disorder is the
heterogeneities in a material that create energy barriers which
act as a resistance on the way of crack propagation and ultimately
arrest the crack motion: a phenomenon known as lattice trapping
or intrinsic crack resistance [19–24]. At intermediate disorder, the
situation is more interesting, where the failure process takes place
through a number of avalanches showing scale-free distributions of
energies emitted during the avalanches [9] and mean-field
exponents [25–28].

Tuning the strength of disorder is not achievable easily in
experiments. Though through heat treatment one can tune the
length scale of disorder in phase-separated glasses [29]. Earlier
experiments also studied the role of a varying disorder strength
during pattern formation in random spring network [30–32], the
study of roughness of a fracture surface [33], the transition from
nucleation to damage mechanics in random fuse network [34,
35], etc. Linear elastic fracture mechanics, on the other hand,
predicts the load distribution around an Inglis crack [36, 37] to be
1/r2-type where r is the distance from the crack tip. However, this
form for relaxation of local stress can be affected by many
parameters like correlation among defects [38] and effect of
the limited size of the sample [39]. This in turn can change
the dynamics of crack propagation.We will explore here the effect
all three important parameters: disorder strength, stress release
range and sample size in detail.

In this article, we study the spatial correlation during failure
process of a fiber bundle model (FBM) [40, 41]. Fiber bundle
model is very effective yet arguably the most simplest model to
understand failure process of heterogeneous materials. The effect
of a variable stress release range has already been observed in the
context of this model [42, 43]. With a very low stress release
range, the failure process is observed to be nucleating and at the
same time, the failure abruptness is affected by the size of the
bundle [42, 44]. The spatial correlation, in this limit, decreases as
the disorder strength is increased [45]. On the other hand, at a
very high stress release range (the mean-field limit), the failure
abruptness is not a function of system size and only controlled by
the strength of disorder [46]. A high thermal fluctuation as well
leads to a failure process, random in space, with the same
universality class of a site percolation [47]. When we combine
both the effects of stress release range and disorder strength, the
model produces rich relaxation dynamics with different modes of
failure − abrupt, non abrupt, nucleating, and random in space

[48]. The avalanche statistics as well as the effect of system sizes
has also been discussed recently in the context of fiber bundle
model [49, 50]. Moreover, the record statistics in the avalanche
statistics and study of elastic energy has been observed to be a
vital key to predicting an upcoming failure [51]. The occurrence
of different regimes with increasing disorder strength is also
observed in spin systems as well. Recent work in the random field
Ising model shows many small avalanches at high disorder and
depinning behavior when disorder strength is very weak. At an
intermediate critical value of disorder strength, avalanches of all
possible sizes are observed [52, 53]. A study similar to the present
one is explored in the context of random fuse network [34, 35]. In
the former study, the avalanche size distribution as well as the
system size scaling of average avalanche size and average crack
size. In the latter study, the authors have studied the masses of the
largest cluster, the mass of the backbone (the number of burnt
bonds forming the chain that effectively disconnects the bottom
from the top of the system), and how those masses scale with the
system size in order to compare them with percolation. Here we
carry out a study, similar to what was observed in the resistor
network for a variable stress release range and construct a phase
diagram on the plane of disorder, stress release range and system
size. We have mainly studied the behavior of crack density to
observe the spatial correlation. The crack density is explored
earlier by the same author [42, 48] but a systematic study with
system size, especially a systematic study of maximum crack
density with the size of the bundle was missing there. Such a
study is carried out in the present article and can offer a nice
insight into the fracture pattern.

2 DESCRIPTION OF FIBER BUNDLE
MODEL

After its introduction by Pierce in 1926 [54], the fiber bundle
model [40] has been proven to be very effective in understanding
the failure event of a disordered system. Due to this, fiber bundle
model is growing popularity among engineering, material science
as well as academics. This model is very effective yet arguably the
most simple model guided by threshold activated dynamics.

A conventional fiber bundle model consists of L parallel
Hookean fibers in between two plates which are pulled apart
creating a stress σ on each fiber. The fluctuation among the
strength values of individual fibers is the measure of disorder
within the model. In the present work, we chose such strength
values (h) from a power law distribution with a slope −1 and span
from 10−β to 10β.

p(h) ∼ h−1, 10−β ≤ h≤ 10β( )
0. (otherwise){ (1)

Here β is related to the span of the distribution and a measure
of disorder strength. We have chosen such a distribution as such
long-tailed power-law distribution [55] has already been observed
for the distribution of material strength. A certain fiber breaks
irreversibly when the stress applied on it exceeds its strength. The
stress of that fiber is then redistributed among rest of the model.
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Here, we have adopted a generalized rule for stress redistribution.
If σi is the stress on the broken fiber i, then the stress
redistribution on fiber j at a distance rij from fiber i will be as
follows

σj → σj +
r−cij
Z
σ i (2)

Where σ j is the stress on fiber j and Z is the normalization factor
given by

Z � ∑
i,k

r−cik (3)

Where k runs overall intact fibers. Two extreme limits of this
redistribution rule are global load sharing (GLS) [54] and local
load sharing (LLS) [4, 56] limit. c has a very low value for the
former case and stress of the broken fiber here is redistributed among
all surviving fibers in almost same amount. This is also the mean-field
limit of the model. In the other extreme limit, c has a very high value
and a large amount of the redistributed stress is carried by the
neighboring fibers of the broken one only. The effect of stress
concentration is most prominent here. Earlier studies show a
critical value cc of the stress release range, for both 1d [42] and 2d
[43], around which the model transit from the mean-field limit to the
local load sharing limit. After such redistribution, due to the elevated
local stress profile, further fibers may also break starting an avalanche.
With such a process, the bundlemay break through a single avalanche
or comes to a steady state with some fibers broken and some intact. In
the latter situation, the external stress is increased to break the next
weakest fiber starting a new avalanche. Such process goes on until all
fibers are broken.

3 NUMERICAL RESULTS

A one dimensional fiber bundle model is studied numerically with
varying disorder strength (β), stress release range (c), and system
sizes (L). In Local Load Sharing Fiber Bundle Model: Variation in β,
we explore the local load sharing limit of the model which can be
achieved by setting a very high c. On the other hand, Generalized
Model: Variation in Both β and c, deals with a generalized version of
the model where the stress of a broken fiber is redistributed
depending on the exponent c keeping β constant. β is varied
between 0.4 and 2.0 while c varies from 0 to 3. The size of the
bundle varies from 103 to 105.104 realizations (bundle replications)
are considered for our numerical simulation. Universality shows
numerical results for uniform and Weibull threshold distribution,
discussing the universal behavior of our result. Finally, inDiscussions
we have provided the concluding remarks on the present article.

3.1 Local Load Sharing Fiber Bundle Model:
Variation in β
In this section, we have studied the fiber bundle model in the local
load sharing limit. In this limit, the stress of a broken fiber is
redistributed among the nearest neighbors only. This scenario
can be achieved by setting a very high value of c.

We start our numerical simulation by observing the
characteristics of the patches (or cracks) that are generated
within the bundle during the evolution of the model. A certain
patch is defined by the combination of an intact fiber and a
broken fiber in its neighborhood. If we denote the intact fiber by 1
and broken fiber by 0, then any (1,0) or (0,1) combination on the
one-dimensional chain of fibers will be characterized as a patch or
crack. The patch density ρ at time t is defined by the number of
patches at that time, normalized by the size L of the system. We
also note the fraction B of broken fibers at time t. B is defined as
the number of broken fibers divided by size L of the system. Time,
in this case, is represented as the sum of stress increment and
redistribution steps (see Ref. 1 for details). Figure 1 shows the

FIGURE 1 | (A) Variation of patch density ρ with fraction broken B for β
values ranging from 0.4 to 2.0. The red dots denotes ρm, the maximum
possible patch density. The dotted line is the locus of B(1 − B) and represents
random failure events for a 1d bundle. (B) Variation of ρm as the disorder
strength β is varied continuously. We see three different regions (1) ρm is 1/L
here suggesting a single crack propagates through the bundle in a nucleating
manner (2) Here number of cracks originates and the number increases with β
(3) The failure process here random in space. ρm has a value close to 0.25
here. The system size is kept constant at 105.

1At a certain point during the evolution of the model, if it goes through m stress
increment with n1, n2, . . . , nm redistribution steps for 1st, 2nd, . . . , mth stress
increment, then the time corresponding to this scenario will be:m +∑

m
nm .
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variation of ρwith B for different disorder strength values ranging
in between 0.4 and 2.0 for a bundle of size L � 105.

Figure 1A shows a non-monotonic behavior of ρ when B
increases from 0 to 1. Earlier papers [42, 48] have already
discussed that such crack density shows a non-monotonic
behavior as the model evolves. B � 0 stands for the initial
configuration where all fibers are intact while we obtain B � 1
when all fibers are broken. The patch density ρ is zero for B � 0 as
no cracks are there in the bundle. On the other hand, when the
model is close to the failure point, there will be a single patch,
making ρ � 1/L when B approaches 1. At an intermediate B, ρ
reaches a maximum value ρm. Before this maxima, ρ is an
increasing function of B as new patches are generated within
the bundle. After the maxima, the patches start to coalesce with
each other and we observe a lesser and lesser number of cracks
with increasing time (hence increasing B). Figure 1A shows as
disorder strength is increased, ρm shifts to a higher value. We will
discuss the variation of ρm with disorder next. The dotted line in
the same figure is the locus of ρ � B(1 − B). This dotted line
represents failure events random in space for a 1d FBM. This can
be understood as follows. If B is the fraction of fibers broken, then
the probability of having a broken and an intact fiber will be B and
(1 − B) respectively. A patch then will be created by placing an
intact fiber beside a broken one, the probability of which will be
B(1 − B) on a 1d lattice. By equating dρ/dB for this locus to zero
we get the maximum ρm � 0.25 and the B value to be 0.5 at this
maxima. The failure pattern becomes more and more random
when β, the disorder strength, is high enough. On the other hand,
when the disorder strength is very low (β � 0.4), we see ρ � 1/L
independent of the value of B. This suggests a pure nucleating
failure starting from the very beginning until the global failure.

Figure 1B shows the variation of ρm explicitly when β is
continuously varied. We observe three different regions.

1) Nucleation (β ≤ 0.4) − Here ρm has a value close to 1/L. This
suggests that only a single crack is generated within the bundle in
this limit and this crack nucleates to create global failure. Due to
the low strength of the disorder, the failure process here is guided
by the local stress concentration at the crack tips.

2) Percolation (β ≥ 1.2) − In this limit the behavior of B vs ρ
matches closely with ρ � B(1 − B). ρm has a value close to 0.25.
The failure events are random in space here making it
reminiscent of percolation in 1d lattice. The failure process
is completely guided by the disorder strength and the local
stress concentration is almost non-existing.

3) Avalanche (0.4 < β < 1.2) − in the intermediate disorder
strength, there is an interplay between the disorder strength
and the local stress concentration. The failure process here
starts in a percolating manner but later the local stress
concentration takes over making the rest of the failure
events nucleating. We will be discussing this spatial
correlation in more detail later in this paper.

Figure 2A shows how the maximum patch density ρm
responds to the size of the bundle. The results are repeated for
three different β values 0.3, 0.7, and 1.2, in order to cover all
three regions − nucleation, avalanche, and percolation,

mentioned above. When disorder strength β is low (0.3),
ρm decreases with L in a scale-free manner with exponent −1.
This suggests that the maximum number of cracks observed
in the bundle decreases with increasing size and the model
goes towards nucleation more and more as the model
approaches the thermodynamic limit. On the other hand,
for β � 1.2, ρm is independent of L and saturates at a value
close to 0.25. As mentioned above, the failure process is
percolating here and remains the same irrespective of the
size of the bundle. In the intermediate disorder, where the
disorder strength and local stress concentration compete with
each other, we observe

ρm ∼ L−ξ(β) (4)

Where the exponent ξ is a function of β.
Figure 2B shows the variation of exponent ξ with the strength

of disorder β. ξ remains at 1 for low β where the failure is
nucleating, gradually decreases in region avalanche, and becomes
constant at 0 in the limit of percolation. The nature of patch
density remains the same in the percolation region (ξ � 0) only. In
both avalanche and nucleation, fewer patches grow as the size of

FIGURE 2 | (A) Effect of system size L on ρm for β � 0.3, 0.7 and 1.2. L is
varied in between 5 × 103 and 105. Three regions are observed here (1)
Nucleation: ρm ∼ L−1 (2) Avalanche: ρm ∼ L−ξ(β) (3) Percolation: ρm ∼ L0. (B)
Variation of ξ with β. ξ � 1 and 0 in the region 1 and 3 respectively. In the
intermediate region II, ξ decreases continuously with β.
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the bundle is increased, suggesting that the effect of the local
stress concentration becomes more prominent here as the model
goes towards the thermodynamic limit.

Here, we will discuss a dynamic parameter that helps us to
understand the onset of the nucleation process with time more
clearly. As explained earlier, time t here is analogous to the total
number of redistribution plus stress increment steps prior to the
global failure. We start by breaking the weakest fiber, say i, at time
t � 0 by the first stress increment. Let us assume further n1 fibers
break at the next time step (t � 1) upon redistributing the stress
carried by the weakest fiber. We consider the distance Δr between
these two consecutive events to be the minimum of distances
between fiber i and other n1 fibers that break after redistribution.
Here, Δr is not the exact lattice distance as only intact fibers are
considered while calculating it. The distance across a broken patch
is considered to be one independent of the size of the patch. This is
due to the LLS scheme that we have adopted. Whenever a fiber at a
notch breaks and the redistributed stress breaks the fiber at the
other notch, the failure is still nucleating, no matter how large this
patch is. Next, we square this distance and average it over 104

realizations to get 〈Δr2〉 at time t � 0. Next, we move our reference
frame to the fiber among those n1 fibers that had the minimum
distance from fiber i. Let’s denote this new fiber as j. If further n2

fibers break in the next redistribution, 〈Δr2〉 at t � 1 will be
calculated by the same procedure: find Δr from the minimum of
distances between fiber j and those n2 fibers, square it and average
over 104 realizations. Such a parameter was explored earlier by
Stormo et. al [57] in the context of the soft clamp model to point
out the onset of localization. Figure 3 shows this variation of 〈Δr2〉
with time t for β � 0.3, 0.7 and 1.2. For all three disorder strength
values, 〈Δr2〉 starts from a high value at low t and then decreases
towards 1 when t is high. A high value of 〈Δr2〉 suggests the fibers
that break consecutively are far from each other. This is a spatially
uncorrelated failure. On the other hand, when 〈Δr2〉 � 1, the
consecutive failures take place from the neighboring fibers only.
This behavior stands for pure nucleation. For β � 0.3, 〈Δr2〉
becomes 1 very fast and stays there independent of t until the
bundle reaches global failure. For β � 1.2, we observe the opposite
behavior where 〈Δr2〉 stays at a high value for a long time and falls
to 1 just before global failure. The former behavior is nucleating (1)
while the latter one is percolating (3). The visualization of the
failure process for both (1) and (3) is shown below Figure 3. The
x-axis of each plot is time and the y-axis is fiber index. The color
gradient is over the local stress profile. The yellow color stands for
the failed fibers. For (1), we see a single crack growing in a
nucleating manner from the very beginning. For (3), on the
other hand, there are no nucleating yellow-colored fibers and
the rupture events are spatially uncorrelated. For the avalanche
(2) behavior, there is a spatially uncorrelated failure in the
beginning as well as nucleation close to global failure. Figure 3
shows the point for β � 0.7 where 〈Δr2〉 becomes 1 indicating onset
of localized (nucleating) failure events.

Finally, we have constructed the phase diagram of disorder
strength β and system size L to show all three failure processes. In
Figure 4, 1/β is plotted against 1/L. This is done in this way so that
the origin (0,0) of this plot corresponds to L→∞ and β→∞, an
infinite disorder in the thermodynamic limit. As discussed
earlier, if the disorder strength is increased, we start with
nucleation, go through an avalanche, and finally reach

FIGURE 3 | Variation of 〈Δr2〉 with time t for three different disorder
strengths β � 0.3, 0.7 and 1.2. 〈Δr2〉 is average square distance between
consecutive rupture events. 〈Δr2〉 starts from a high value and decreases to 1
with time suggesting pure nucleation beyond this point. The spatial
correlation is shown explicitly for three different cases (1) nucleation (2)
avalanche and (3) percolation.

FIGURE 4 | Phase diagram of disorder strength β and system size L. 1/β
is plotted against 1/L to make the coordinate (0,0) represent infinite disorder at
thermodynamic limit. Three regions − nucleation, avalanche and percolation
are observed. The spatial correlation during fiber rupture is shown with
yellow being the broken patch.
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percolation behavior. The spatial correlation in rupturing events
are shown in the corresponding phases. Now, if the disorder
strength is kept constant and the size of the bundle is increased,
a percolating behavior moves towards avalanche and an
avalanche behavior moves towards nucleation. Due to weak
dependence of parameters like ρm on L (see Figure 2), it will not
be possible to see (as the system size has to be very high) this
change from percolation to avalanche if we are well inside the
percolation region. To see this change at relatively lower system
sizes, it is required to keep the disorder strength at a value so that
the model is closer to the percolation-avalanche interface. The
opposite happens if the system size is decreased instead of
increasing. This suggests we observe only nucleating failure
in the thermodynamic limit unless the disorder is infinitely high.
This effect of disorder was explored earlier in the context of
random fuse network by Shekhawat et al. [34] and Moreira et al.
[35]. We observe that the fiber bundle model in one dimension
follows the same trend.

3.2 Generalized Model: Variation in Both
β and γ
In this section, the model is studied with a continuous variation in
both c when β. We start our numerical simulation by observing
the spatial correlation through the rupture events with increasing
time as the bundle fails.

Figure 5 shows such correlation for β values ranging in
between 0.3 and 1.2 and c values within 0 and 3. For each
small figure, the x-axis shows the time t and the y-axis shows the
fiber index. From left to right, the figures are plotted for

increasing values of c keeping the disorder strength β
constant. On the other hand, from bottom to the top, the
figures are plotted with increasing β and keeping c constant.
We observe the following behavior:

For low β and high c, the fibers break in a nucleating manner.
Due to the low stress release range, the stress concentration plays
a crucial role and dominates the failure process. Moreover, due to
the low value of disorder strength, the probability that the fibers
break with redistribution (without any increment in external
stress) from the neighborhood is high. On the other hand, for high
β and low c, the fluctuation between threshold strength as well as
the stress release range is high. As a result, we observe rupture
events random in space and through increment in external stress.

Now, keeping the β fixed at a low value, as we decrease c, the
model slowly goes towards the mean-field limit. In this limit, the
stress of the broken fibers are redistributed among all surviving
fibers. This increases the chance that whenever one fiber breaks, the
next rupture event may take place from somewhere which is not
the neighborhood of the broken fiber. The failure process, in this
case gradually deviates from the nucleating behavior as c decreases.

Instead, if we keep c fixed at a high value and increase β, the
fluctuation among fiber strengths increases. Here, the stress of the
broken fiber is redistributed in the neighborhood (as c is high)
but due to this increase in fluctuation we will find more strong
fibers in this neighborhood that will finally arrest the growth of a
crack - a phenomena known as lattice trapping or intrinsic crack
resistance [19–24]. This forces the growth of a different crack
from a different place.

As discussed in Figure 5, a single crack or a number of cracks
are observed in the bundle depending on what the values of

FIGURE 5 | The figure shows spatial correlation during a failure process when β varies between 0.3 and 1.2 and c varies between 0 and 3. Nucleating failure is
observed for high c and low β. The spatial correlation reduces as c is decreases (pushes the model towards MF limit) or β is increased.
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disorder strength β and the stress release range c are. In Figure 6,
we have studied how the maximum number of cracks (ρm) varies
as we vary both β and c. At first, we observe the variation of ρm
with c for a constant value of β. The study is then repeated for β
values ranging in between 0.2 and 0.8.

For low c, ρm has a higher value and decreases as c increases
and crosses the critical value cc [42]. The results can be discussed
in three parts. At an intermediate disorder (0.3 ≤ β ≤ 0.5), ρm
saturates close to 0.25 for low c and decreases to 1/L when c is
high. A ρm value close to 1/L suggests there is only one crack that
propagates throughout the system. On the other hand, as already
discussed in the manuscript, ρm close to 0.25 suggests a failure
process random in space. In this limit, all three regions are
accessible with a variation in c.

At low β (<0.3), we observe that ρm goes to 1/L for high c but
does not approach 0.25 even if c is very low. In this limit, we do not
see a percolation like a random failure. This is due to very low
disorder strength, where the bundle breaks very abruptly before it
can reach the real maximum value of ρm (≈0.25) at low c. On the
other hand, for high β (>0.5), ρm reaches 0.25 easily at low c but do
not reach 1/L for high c. In this case, ρm does not reach 1/L even at
high c due to the intrinsic crack resistance caused by the high
fluctuation in threshold strength, which arrests an propagating crack
in the process. As a result, a nucleating failure is not observed here.

Figure 7A shows the system size effect of ρm for β � 0.6 and for
wide range of stress relaxation c (0 ≤ c ≤ 3). We observe ρm to
decrease in a scale-free manner with system size L,

ρm ∼ L−ζ (5)

Where ζ is an increasing function of c. At low c, ρm is almost
independent of L and saturates around 0.25. When c is high, ρm
responds to the change in L very sharply and decreases as L
increases.

The variation of the exponent ζ is shown in Figure 7B ζ has a
value close to 0 independent of disorder strength βwhen c low. At
such a low value of c, the model is in the mean field limit and
changing the system size does not change the dynamics of the
model. As c increases, the model slowly deviates from the mean-
field limit and the effect of local stress concentration becomes
more and more prominent. In this limit, ζ starts to increase
slowly. When c crosses a certain value that depends on β, ζ finally
reaches 1. A Higher value of β will require a higher c value in
order to obtain ζ � 1. Finally, when β is very high, ζ remains close
to 0 independent of the stress release range c. Here, the failure
process is random in space, independent of both β and c.

Figure 8 shows above mentioned three regions from the study
of the maximum number of cracks (ρm) when both disorder
strength β and the stress release range c are varied
simultaneously. The color gradient in Figure 8 is on ρm, with
a maximum value of 0.25 (lightest color) and minimum value of
1/L (darkest color) which is 10–5 as the size of our bundle is 105.
We observe ρm to have the lowest value for lowest possible β and
highest possible c.

This is due to the fact that fluctuation among local strength values
are minimum here and at the same time stress release range is also
minimummaking the local stress concentrationmost prominent. At

FIGURE 6 | Variation of maximum number of cracks (ρm) with c for β
values ranging in between 0.2 and 0.8. ρm has a high value for low c and
gradually decreases with c and tends to saturate towards a low value. For low
β, ρm decreases close to 1/L for high c, suggesting propagation of a
single crack. On the other hand, for low c and high β, ρm ≈ 0.25, suggesting a
failure process which is random in space.

FIGURE 7 | (A) System size effect of ρm for β � 0.6 and c between 0 and
3.We observe ρm ∼ L−ζ, where ζ is an increasing function of c. (B) Variation of ζ
with c for 0.2 ≤ β ≤ 1.2. For low c, ζ ≈ 0 independent of β. For high c, on the
other hand, ζ � 1 depending on whether β is low enough or not.
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this situation, as we decrease c, we go towards percolation (light color)
through avalanche region. The same behavior is observed (1→ 2→ 3)
if we increase β keeping c fix. The figure also shows the existence of cc
[42, 43], the value of c below which the model enters the mean-field
limit. For c < cc, we have almost an uniform gradient of light color
suggesting ρm is close to 0.25 here independent of β.We observe a very
small change in the color gradient if we increase c at a high β.

Figure 9 shows different regions − nucleation, avalanche and
percolation, with their unique nature of crack propagation during
the failure process when the disorder strength (β), stress release
range (c), and system size (L) are continuously varied. Figure 9A
shows the plane separating the region nucleation from avalanche.
The plane seems to diverge for high β. This is due to the fact that, at
high beta the fluctuation among fiber strength values will be high
and the c value will also have to be very high to make the local stress
concentration prominent enough to create nucleation. At the same
time, since an increasing L has already been seen to favor nucleating
failure, we achieve such nucleation at relatively lower c value at
higher L when β is kept fixed. Figure 9B, on the other hand, shows
the plane between avalanche and percolation. We observe the
same effect of L here − as L increases, the transition from
percolation to avalanche takes place at a lower value of c. At
the same time, as β increases, we have to go to a higher c value to
enter the avalanche region from percolation. The sudden upward
curvature of nucleation − avalanche plane at high β suggests that if
the disorder strength is extremely high, we might not get a
nucleation region. Similarly, the sudden downward curvature
of avalanche − percolation plane at low β suggests that if the
disorder strength is extremely low, we might not get a percolation
region.

FIGURE 8 | Histogram of ρm on the plane of c vs β. The brightest color
corresponds to ρm ≈ 0.25 while the darkest color stands for ρm ≈ 1/L. At low β,
as c increases, we go from region 3 (percolation) to 2 (avalanche) to 1
(nucleation). Same transition is observed when β decreases at high c.

FIGURE 9 | (A) and (B) respectively shows the plane of transition from
avalanche to nucleation and percolation to avalanche respectively. The three
parameters constructing the plane are: disorder strength (β), stress release
range (c) and system size (L).

FIGURE 10 | Variation of ρm for uniform (upper) and Weibull (lower)
distribution when both the disorder strength (δ or k) and stress release range
(c) is varied continuously. Three distinct regions (1) nucleation (2) avalanche
and (3) percolation, is observed independent of the choice of threshold
distribution.
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4 UNIVERSALITY

In this section we will discuss the universality of our study by
using two different distributions other than the power law. For
this purpose, we have adopted an uniform and a Weibull
distribution as described below:

p(h) ∼
1
2δ
, (0.5 − δ ≤ h≤ 0.5 + δ)

0. (otherwise)

⎧⎪⎨⎪⎩ (6)

Where δ is the half-width of the distribution as well as the
measure of the disorder strength.

p(h) ∼ k

λ
( ) h

λ
( )k−1

e−
h
λ( )k (7)

Where k and λ are the Weibull modulus and scale parameter
respectively. k controls the disorder strength in this case. We
vary δ from 0 to 0.5 while k is varied between 1 and 10. The
scale parameter λ is kept constant at 1. Similar to the power
law distribution, the uniform distribution is also a bounded
distribution while the Weibull distribution is open.

Figure 10 shows the variation of ρm when both disorder strength
and stress release range is tuned continuously. The results for uniform
distribution are shown in the left figure. The rightfigure shows the same
for the Weibull distribution. Similar to Figure 8, the color gradient
represents the variation in ρm that spans from 1/L to 0.25. The results
suggest that all three regions (1) nucleation (2) avalanche, and (3)
percolation, are observed independent of the choice of the threshold
distribution. As c increases, the model goes from the nucleating failure
to a failure process random in space. On the other hand, a spatially
correlated failure process is not observed by increasing δ up to 0.5 (the
distribution spans from 0 to 1) as the disorder strength is not large
enough. Though forWeibull distribution, both nucleating and random
failure is observed at high and low k respectively.

5 DISCUSSIONS

As we have already discussed, two major factors governing the mode
of failure in disordered solids are the strength of heterogeneities and
the effective range over which the stress field is modified following a
local rupture event. On the other hand, studies in random resistor
network model [34, 35] claims the failure mode, in the large system
size limit, to be always nucleation-driven unless the strength of
disorder is extremely high. Qualitatively this is the main finding of
the present paper as well as what was observed in the random fuse

network model earlier [34, 35]. The simplicity of the fiber bundle
model allows us to include extra parameters like stress release range
compared to the random fuse network model and study its effect as
well on the spatial correlation as the model evolves. The precursor
events (such as scale-free size distribution of rupture events prior to
global failure and scale free distribution of emitted energies during
such avalanches), previously seen in the statistical models [7, 58],
would imply that a nucleation-like failure would not be achievable
even in the large system size limit. Such precursor events are observed
experimentally [59] as well for which the extreme disorder is not
necessarily the physical condition. The stress release range (analogous
to fracture process zone in real experiments) comes into play here that
might cause a different mode of failure, other than nucleation, even
when the system size is high.

In conclusion, we present a detailed study in fiber bundle model
by varying main three parameters, strength of disorder, range of
stress relaxation and system size, that determines the dynamics of the
model as it is acted by an external stress. An increasing disorder
strength (increasing β) or stress release range (decreasing c) favors a
failure that is random in space. On the other hand, an increasing
system size makes the failure more and more nucleating. The
avalanche behavior is observed for all β or c. If β is very high
then it is difficult to achieve the nucleating behavior unless the value
of c is very high. On the other hand, when β is low, achieving
nucleating failure is easy but it is difficult to observe pure random
failure by decreasing c. Finally, for the intermediate β value, we
achieve both nucleation and percolation like failure by increasing
and decreasing c respectively.
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