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Abstract—The growing need for autonomous systems in off-
shore industries has contributed to the increased use of machine
learning methods. These systems promise to improve safety
in operations. However, the methods as enablers of autonomy
are susceptible to various failures while interpreting data and
making decisions. Several studies have highlighted the lack of
research on the reliability and resilience of autonomous systems
powered by these standard methods. Recent research provides
sets of data interpretation methods. Despite the popularity of
machine learning, there is a significant drop in knowledge
when these methods result in failures. These failures further
support autonomous systems in making wrong decisions. For
autonomous systems, resilience and safety management should be
an integrated functionality for recovery from risky situations and
reporting of incidents. This research proposes an overview of ma-
chine learning methods for interpreting sensor data captured by
drones operated manually and autonomously. We apply Isolation
Forest for anomaly detection analysis and evaluate the Decision
tree, Random forest, kNN, Logistic Regression, SVM, and,
Naive Bayes for classification analysis. The methods are chosen
based on their adequacy and comparative research prevalence.
Comparison between the two drone operation modes contributes
to understanding the reliability level for autonomously collected
data. This research’s results provide an evaluation of machine
learning methods’ performance across sensor data.

Index Terms—autonomous systems, sensor data analysis, ma-
chine learning, classification, anomaly detection

I. INTRODUCTION

Autonomous systems (AS) have shown potential in enhanc-
ing safety in the industry by replacing human activities during
dangerous operations in remote environments. These systems
can perform tasks that require little to no human intervention
by actively interpreting the real-time collected data. Timely
decisions based on previously learned knowledge come from
historical insights and domain expert inputs. There is a consid-
erable number of machine learning (ML) methods that enable
autonomy. However, these methods need to be reliable and
trusted within safety-critical circumstances. The potential of
ML depends on the data that the AS collects. In particular,
sensor data can be overwhelming for the methods to answer
with desired results. This data is most often varying from
sound, video, image, pressure, temperature, and gas sensor
measurements. The environment can potentially overwhelm
the collected data with extensive noise that impacts the final
decisions and results that AS provide.

During operations and asset surveillance, researchers are often
interested in occurrences in the environment that are distinct
from expected operating times, such as the presence of mate-
rial degradation, misplaced objects, or biological growth. It is
possible that during ML analysis, considerable amounts of data
would lack distinct samples that are interesting to research.
Therefore, methods can discard the data outside of the ordinary
as noise. It is important to curate the data to avoid disregarding
vital information hidden in the noise. Over the last decade, the
industry interest in employing AS to perform tasks and reduce
human efforts has continuously increased.
This paper compares ML performance on the sensor data
collected by a manual and an autonomously operated under-
water drone. Data collected by the same drone under different
operating modes can widen our comprehension of autonomy
dependability. We analyze the data through anomaly detection
and classification methods. Anomaly detection identifies ab-
normalities in the data, contributing to fault prevention and
predictive maintenance [1]. Classification methods, known as
classifiers, are learning tasks that predict the data category of
given data points. By applying these methods to the manually
and autonomously collected sensor data, we build machine
learning models that provide us with an insight into the
reliability of the methods that enable autonomy.

II. RELATED WORK

There is a considerable amount of research on finding
the best methods to evaluating sensor data. Related work
of this paper presents semi-organized comparative research.
We single out the studies within the context of autonomous
systems and highlight the motivation of using ML methods. In
the following paragraphs, we discuss the sensor data analysis
challenges through applied anomaly detection and predictive
capabilities of classification methods in AS.

A. Anomaly Detection in Sensor Data

As earlier mentioned, environments in which drones operate
can be noisy and disruptive. Anomaly or outlier detection is an
important research area that contributes to fault prevention and
predictive maintenance [1]. Erhan et al. [1] review anomaly
detection methods employed in sensor systems. Authors high-
light the data volumes, network efficiencies, information fu-



sion, and biases as some of the anomaly detection challenges.
Due to the ample employment of sensors in smart devices
such as the Internet of Things, Erhan et al. [1] argue that the
sensor systems have become dominant generators of data. The
authors identify different anomaly detection methods. Their
research contributes to the study of sensor systems constraints
and their impact on machine learning and anomaly detection.
Authors also classify anomalies based on their source. These
are typically sensor recordings that are distinct from expected
behavior. Erhan et al. [1] point out that real-world data is
necessary to validate the effectiveness of anomaly detection
methods. However, anomalies occur unexpectedly and can be
scarce in real-world data. Therefore, it can be challenging to
generate them artificially [1].
Anwar et al. [2] propose a novel ML framework using feature
extraction and SVM with varying kernels. The motivation
behind their research is to eliminate disruptive sounds such
as birds, airplanes, or thunderstorms as anomalies. This elim-
ination would provide the detection of nearby amateur drones
more accurate. Authors approach the problem by gathering
real-time acoustic data and classifying the noise with Mel
frequency cepstral coefficients, Linear predictive cepstral coef-
ficients, and SVM. SVM has proved to be an efficient method
for classifying noisy environments using small batches of data.
In this research, ML promised a cost-effective and accurate
tool with minimized chances of misclassification between
classes [2].

B. Classification Methods in Sensor Data

Increased interest in autonomous systems has led to
an increase in the use of machine learning methods.
Choi et al. [3] explore the application of traditional ML
methods employed in Unmanned Aerial Vehicles (UAVs) for
autonomous operations. The authors explain that the collected
data can show the method’s performance more realistically
when the testing environment is heterogeneous, consisting of
various operational circumstances. They also advise testing
the models in smaller batches of non-ideal settings to track
AUVs’ performance under disturbances.
Moustafa et al. [4] propose an autonomous Intrusion Detection
Scheme (IDS) for real-time complex attack scenarios from
drone networks. They use the predictive capabilities of
ML for autonomous detection of malicious events in drone
networks. Their research compares the following methods
to classify cyber-attacks in drone networks: Decision tree,
k-Nearest Neighbor (kNN), Naive Bayes, Support Vector
Machine (SVM), and Deep learning Multi-layer Perceptron.
The authors have synthetically created three different attack
scenarios for testing vulnerabilities and recognizing attacks
on time. Moustafa et al. [4] depicted a concept of targeted
awareness towards different settings and involved detecting
false alarm samples. In this research, the Decision tree has
proven to be the best classifier, followed by multi-layer
perceptron and kNN. The least performing classifier was
Naive Bayes. The authors mention the opportunity to extend
their research for more complex networks, simulating more

sophisticated attacks. However, there is a usual lack of
justification of the method failure in the context of their
model.
The sensor data collected by the AS can be challenging to
evaluate. Consequently, the employment of machine learning
has a remarkable impact on the performance and efficiency
of the AS [5]. The authors highlight that among the benefits
of machine learning, there are three main issues: security,
certification, and cost. To establish strong evidence behind
these methods, De Dominicis et al. [5] suggest having a
quantitative assessment about the system performance after
introducing ML. The advice is to carry out a benchmarking
analysis comparing ‘novel methods’ with the traditional
solutions. The comparison should encompass prediction
capabilities, robustness, integrity, and reliability.

III. DATA AND METHODS

A. Research Purpose and Expectations

This research analyzes the differences between the data
collected by a manual and autonomous drone operation by
applying anomaly detection and classification methods. The
expected result is that the differences between manual and au-
tonomous operations are minimal due to the same sensors and
pre-programmed mission plans. Therefore, the autonomously
operated drone should provide the same level of reliability as
the manually operated drone. The second expectation is that
the non-linear classifiers that perform well on high dimen-
sional and correlated data, such as Random Forest, will prevail
over the linear methods (SVM, Logistic Regression, and Naive
Bayes) due to the dataset’s dimensionality, non-variability, and
imbalance.

B. Research Data

The data used for this research, collected by Castellini et al.
[6], is multivariate data containing sensor measurements of six
data acquisition campaigns performed by underwater drones
for water monitoring. The authors explored lakes and rivers
of different locations in Spain and Italy for data collection.
There are 11 monitored features in the dataset that results
in 20,187 total samples. We have separated these features
into general information of the area, water measurements, and
drone measurements (see Table I). The available information
of the site contains area location and time during drone
exploration. Water measurements are specific sensor data that
monitor water temperature, dissolved oxygen in the water, and
electrical conductivity. Finally, drone-specific measurements
monitor the drone’s internal state, such as battery voltage,
signals to propellers, and direction of the drone’s bow.
Additionally, the data of each campaign is labeled by Castellini
et al. [6] based on the drone operation status, drone curving,
location in the water, and the status of the water flow. These
four labels consist of set values. In the dataset, each value is
represented by a number:

• Drive values: autonomous (2) , manual (1), unlabeled (0);



• Flow values: upstream (3), downstream (2), no water flow
(1), unlabeled (0);

• Curves values: turning (2), no turning (1) ;
• Water values: out of water (2), in the water (1), unlabeled

(0);
For this research, we merged the six data acquisition cam-
paigns into one complete dataset. We then divided the com-
plete dataset based on the ‘Drive’ label into manual and
autonomous datasets. Division by drive allows exploring the
data collected by the drone when it is manually operated and
compare it to the data collected during autonomous operation.
We select the Flow label as the ground truth (GT). GT is
a measurement that classification methods predict. The GT
Flow contains values for water monitoring that yield essential
contextual information for the domain experts [7].
The sensor data represented in this paper is non-varied data
with limited sensor inputs collected by simple drone missions.
Additionally, the ground truth consists of a more significant
number of samples within upstream and unknown water flow
values than downstream and no water flow values. The im-
balanced representation of the ground truth values in this data
can restrict the performance of ML models.

TABLE I
FEATURE DESCRIPTION OF THE DATASET BY CASTELLINI ET AL. [6]

Feature Category Description
Latitude General Latitude of the area
Longitude General Longitude of the area
Altitude General Height above sea level
Date and time General 5,6 h of runtime
EC Water Water electrical conductivity
Temperature Water Water temperature
DO Water Water dissolved oxygen
m0 current Drone Signal to propeller 0
m1 current Drone Signal to propeller 1
Heading Drone Compass direction in which

the drone’s bow is pointed
Voltage Drone Drone’s battery voltage

C. Research Methods

Different methods allow the evaluation of model
performance to justify the best methods across this dataset.
We select the ML methods following their adequacy
and comparative research prevalence. We identify the
abnormalities in the data through the anomaly detection
method, Isolation Forest. Following the anomaly detection,
we analyze the data features by applying feature selection and
ranking to understand the relationships among the dataset’s
features and their relationship with the ground truth. We
apply data validation with the hold-out method to divide
the data into training and testing datasets to prepare for
classification. Finally, we compare different classification
methods to analyze the predictive performance of the model.
In this section, we justify the selected methods for analyzing
the Castellini et al. [6] data.

1) Anomaly Detection with Isolation Forest: This model-
based approach to anomaly detection isolates anomalies with
low computational requirements. Isolation Forest works well
in high-dimensional problems, and deals well with many
irrelevant attributes [8]. Liu et al. [8] highlight the problem of
anomalies being few, making them prone to isolation. Isolation
Forest partitions instances repeatedly and recursively until they
are isolated, producing shorter paths for anomalies [8]. The
method does not use distance or density measures to detect
outliers that eliminate computational costs making it a good
fit for large and non-linear datasets.

2) Feature Selection and Ranking: Choosing a reduced
feature set makes the model easier to interpret, removes
inessential information, reduces the dataset’s size, and lowers
the possibility of overfitting [9]. Overfitting the model is an
error that occurs when the training on the data results with high
accuracy. However, the testing results with poor accuracy and
is typically caused by high variance in the data.

a) Lasso Regularization: The Least Absolute Shrinkage
and Selection Operator (Lasso) is a powerful regularization
and feature selection method. This method applies the regular-
ization or shrinking process by penalization of the coefficients
of regression features [9]. The features regularized to zero are
pruned from the model. The model, therefore, has the potential
of reduced variance without a considerable increase of bias.

b) Filter Method with Pearson Correlation: Filter meth-
ods choose features through statistical tests and correlation by
ranking them on their usefulness to the model [9].

3) Data Validation with Hold-Out Method: This validation
method divides the data into two non-overlapping sets, training
and testing. The hold-out is the testing set and can contain any
percentage of the original dataset. The time for learning in the
hold-out method is lesser than in comparable cross-validation
methods [10]. The hold-out can eliminate the problem of
overfitting, avoid uneven distribution, and introduce a clear
division of data with stratification [10].

4) Classification Methods:
a) Decision Tree: The Decision tree classifier performs

well on nonparametric, complex datasets. This method clas-
sifies samples into branch-like elements and constructs an
inverted tree to make decisions [11]. However, the Decision
tree can result in overfitting when working on small datasets
or datasets with strongly correlated features.

b) Random Forest: A popular classifier, Random forest,
constructs multiple decision trees with randomly selected
subsets of features and training data. It is less sensitive to
overfitting because of the considerable number of decision
trees produced randomly. Random forest performs well on
datasets with high dimensionality and highly correlated data,
making this method a promising approach in heterogeneous
research [12].

c) k-Nearest Neighbor (kNN): Classifier kNN forms
around finding similarities in data. Therefore data quality is
crucial to this method. KNN calculates the nearest points
in data and nominates the sign of majority. Choosing the k
number is often considered arbitrary; however, a larger value



of k number can reduce the effects of anomalous points [13].
Due to its sensitiveness to data quality, the method performs
the best with smaller data batches with eliminated anomalies.

d) Logistic Regression: This classifier produces quick
outputs that can be interpreted as probability and therefore
used for ranking. Logistic Regression is not sensitive to
overfitting; however, it underperforms on non-linear data.

e) Support Vector Machine (SVM): The SVM classifier
has the advantage of performing well within high-dimensional
space [14]. It fits a hyperplane that separates classes in data
and positions every new data point within this hyperplane.
However, this method is computationally expensive, slow on
extensive data, and challenging to interpret.

f) Naive Bayes: Naive Bayes represents decision-making
under uncertainty, or probabilistic approach to deduction [13].
This simple method is computationally fast, easy to inter-
pret, and performs well with high-dimensional data. However,
Naive Bayes will underperform if the data features are highly
correlated or calculate the probability of zero if an unknown
class in test data appears [15].

IV. IMPLEMENTATION, RESULTS AND DISCUSSION

For this research, we implemented the models using the
sklearn module1 for Python with default hyperparameters. For
every experiment, we analyzed the complete dataset contain-
ing 20,187 samples, manual and autonomous datasets. After
removing the non-labeled or unknown Drive value, the manual
set results in 7,586, and the autonomous set in 7,530 samples.

A. Anomaly Detection Results

TABLE II
ANOMALIES ANALYZED WITH ISOLATION FOREST

Analyzed data Number of anomalies % of anomalies
Complete dataset 2019 10.0014
Manual operation 759 10.0052
Autonomous operation 753 10.0000

Isolation Forest for anomaly detection outputs compelling
results for the three datasets. According to the results (see
Table II), the distribution of anomalies is comparable. A
similar number of samples, approx.10%, of each dataset
are identified as anomalies. Uniform distribution of detected
anomalies promises a comparable data reliability level by
manually or autonomously operated drones. Almost all of the
identified anomalies have a GT value of 0. In the autonomous
operation dataset, all anomaly samples belong to GT value 0.
The anomaly detection method removed 100% of the samples
with GT value 0, leaving only GT value 3 in the data.
Similarly, in the manual operation dataset, only 0.0052% of
the anomalies are not samples with GT value 0. This small
number of non-zero anomalies are scattered around the manual
dataset without showing a significant pattern. Autonomous

1Scikit-learn Machine Learning in Python: https://scikit-learn.org/stable/

and manual operation datasets display uniform distribution
of anomalies, making them nearly equivalent in performance.
However, GT value 0 represents unlabeled or unknown water
flow which can be essential contextual information for the
domain experts [7], particularly when analyzing sensor data
performance. Hence, we retain the samples with GT value 0
in the dataset.

B. Feature Selection and Correlation Ranking Results

Pearson correlation results in uneven distribution of highly
correlated features regarding the GT. For the complete dataset,
there are seven highly correlated features: electrical current
(ec), drive, water, altitude, longitude, latitude, and water tem-
perature. For the manual dataset, only four features highly
correlate to the GT: altitude, longitude, latitude, and water
temperature. Lastly, for autonomous data, highly correlated
features are voltage, altitude, longitude, latitude, m0 current
and, m1 current. A high correlation between features can
impact the classification, such as biased predictions due to
a strong relationship of two or more features. The impact of
these results is visible in the classification analysis.
Contrastingly, the Lasso Regularization method resulted in
a more uniform set of selected features regarding their im-
portance in the dataset: ec, dissolved oxygen, temperature,
altitude, and heading. Furthermore, selected features are penal-
ized to a significantly low coefficient, nearly pruned from the
dataset. This method typically penalizes correlated features,
potentially removing important information and creating un-
stable models [16]. With this information, we retain the entire
set of features for the classification analysis.

C. Data Validation

We use the hold-out method for the data validation, where
60% of the data is split for training and 40% for testing
the model. GT values’ distribution is undeviating for train
and test sets (Table III and Table IV). The autonomous
operation dataset does not contain the GT values 2 and 1,
and there is a heavy imbalance of the existing values, 3 and
0. The complete and manual operation datasets also contain
differences between the GT values. However, a more uniform
distribution of the GT values can contribute to the model’s
lessened sensitivity for the data’s bias.

TABLE III
DISTRIBUTION OF THE GROUND TRUTH VALUES ON TRAIN SET

Ground truth value Complete Manual Autonomous
3 6880 2357 4316
2 514 532 0
1 383 381 0
0 4335 1281 202



TABLE IV
DISTRIBUTION OF THE GROUND TRUTH VALUES ON TEST SET

Ground truth value Complete Manual Autonomous
3 4499 1569 2862
2 341 323 0
1 259 261 0
0 2976 882 150

Fig. 1. Imbalanced data: Choosing Performance Metrics, adapted from [17]

D. Supervised Classification Results

Choosing a metric is likely the most critical phase in the
project. Figure 1 illustrates the steps necessary for choosing an
appropriate performance metric for imbalanced datasets. The
metric is used to evaluate and compare all models. Choosing
the incorrect metric can result in selecting the incorrect algo-
rithm. The measure must reflect the most critical facts about a
model or its forecasts for the project or its stakeholders [17].
Furthermore, essential indicators of models’ performance are
the trade-offs in the data: bias and variance. Bias in the data
indicates the inaccuracy of the model’s prediction compared
to the data’s actual values. The biases can occur during the
training phase, where the model is ‘simplified’ to make the GT
easier to predict. Alternatively, high variance indicates that the
method learned the noise instead of the output. The high vari-
ance can cause overfitting. High variance and low bias relate to
the high model complexity. The optimal model performance is
the crossing point of bias error with variance error. Results of
feature selection, feature correlation, and imbalance of the GT
values can set expectations for the prediction capabilities. The
test data results (see Figure 2) of the three datasets show high
accuracy for all classifiers. Accuracy, the selected performance
metric, describes the measure of correctly classified records.

The results are presented in a box plot, Figure 2, showing the
spread of the accuracy scores across data validation for each
algorithm.

Fig. 2. Algorithm Comparison: Autonomous, Manual and Complete Datasets

a) Manually-Collected Sensor Data Classification:
There is a considerable difference between linear and non-
linear methods for the manually-collected dataset. As ex-
pected, non-linear methods, Decision Tree and Random Forest,
performed with higher accuracy than all three linear methods.
The prevalence of GT value ‘0’ contributes to good predic-
tion results. However, through observation of the confusion
matrices resulted by linear methods, it is evident that the less
represented GT values’ prediction is erroneous. Generally, the
performance of non-linear methods on this model is adequate,
making Random Forest the most reliable classifier for this
dataset.



b) Autonomously-Collected Sensor Data Classification:
The autonomously-collected data illustrates significantly dif-
ferent results when compared to the manual data. The GT
in the autonomous operation set contains only two values,
0 and 3. The 100% accuracy on the testing set can happen
if the test set overlaps with the training set. However, in
this case, the test and training sets are separate and not
overlapping. In earlier anomaly detection results, the Isolation
Forest has eliminated the samples with GT value 0, which
can indicate a clear difference between these two values in
the dataset. The poor distribution of the GT values results in
an uncomplicated model that predicts with 100% accuracy.
Arguably, the autonomous drone operated when the operation
is unobserved (value 0) or even exclusively within the selected
upstream environment (value 3). This model requires data
complex enough to avoid bias and with a significantly less
data imbalance.

c) Complete Sensor Data Classification: A complete
dataset exhibits both previous analysis’ results as a
combination of manually and autonomously collected
data. The high correlation of features in the data causes the
model’s high performance with Decision trees and Naive
Bayes classifiers. Other classifiers that are less sensitive to
high correlation, such as Logistic Regression or kNN, are
sensitive to data quality, such as data imbalance in this dataset.

The results of the autonomous operation model do not
meet reliability expectations. Therefore, repeated data col-
lection methods in more complicated scenarios can improve
the balance and complexity of the dataset [7]. Alternatively,
manually-collected data proved to be inherently different from
the autonomously-collected data. As a novel contribution, we
suggest that future data is collected from planned manual and
autonomous drone missions in more complex environments,
recording the same sensor measures. A human operator of
the manual drone should follow the same path as the prepro-
grammed autonomous drone. Following these requirements,
we can obtain consistent data from both operations and avoid
significant data differences.

V. CONCLUSION AND FUTURE WORK

This paper analyzed the difference between manual opera-
tion and an autonomous operation of an underwater drone.
We explicitly identified the similarities and the differences
between the two operation modes through anomaly detection
and classification methods during the analysis. Our research
recognized the vital role of sensor data variations of different
operation modes in the context of prevalent machine learning
methods’ performance and identified the gaps in which these
methods underperformed. Unfortunately, unbalanced data is
pervasive in research and industry, resulting in skewed clas-
sification results and reduced reliability for machine learning
methods.
Future research will elaborate the connection between au-
tonomous operations and the machine learning methods’ per-
formance with more varied and balanced testing data. Anal-

ysis of the sensor data through machine learning methods’
performance can indicate reliability under more complex au-
tonomous drone operations environments.
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