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Simple Summary: Women at high risk for breast cancer are regularly screened using contrast-
enhanced magnetic resonance imaging (MRI) to identify potential malignancy. Diffusion-weighted
MRI (DW-MRI) is a non-contrast technique that measures the differential movement of water
molecules in tissues and is sensitive to cancer cells. In this study, we use a multi-exponential
advanced DW-MRI model called restriction spectrum imaging (RSI) to characterize the diffusion
characteristics of malignant lesions, benign lesions, and healthy breast tissue to help differentiate
benign from malignant disease. In a cohort of patients, we show that cancer exhibits more restricted
diffusion compared to benign breast lesions and healthy tissue, whereas benign and healthy tissue
are not different from each other.

Abstract: Diffusion-weighted MRI (DW-MRI) offers a potential adjunct to dynamic contrast-enhanced
MRI to discriminate benign from malignant breast lesions by yielding quantitative information about
tissue microstructure. Multi-component modeling of the DW-MRI signal over an extended b-value
range (up to 3000 s/mm2) theoretically isolates the slowly diffusing (restricted) water component
in tissues. Previously, a three-component restriction spectrum imaging (RSI) model demonstrated
the ability to distinguish malignant lesions from healthy breast tissue. We further evaluated the
utility of this three-component model to differentiate malignant from benign lesions and healthy
tissue in 12 patients with known malignancy and synchronous pathology-proven benign lesions.
The signal contributions from three distinct diffusion compartments were measured to generate
parametric maps corresponding to diffusivity on a voxel-wise basis. The three-component model
discriminated malignant from benign and healthy tissue, particularly using the restricted diffusion
C1 compartment and product of the restricted and intermediate diffusion compartments (C1 and C2).
However, benign lesions and healthy tissue did not significantly differ in diffusion characteristics.
Quantitative discrimination of these three tissue types (malignant, benign, and healthy) in non-pre-
defined lesions may enhance the clinical utility of DW-MRI in reducing excessive biopsies and aiding
in surveillance and surgical evaluation without repeated exposure to gadolinium contrast.
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1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) demonstrates
the highest sensitivity (71–94%) to detect breast cancer compared to conventional imaging
(ultrasound, mammography, and tomography). DCE breast MRI evaluation is based on
morphology, distribution, and kinetics; these features are incorporated in the assessment of
malignancy potential by the Breast Imaging Reporting and Data System (BI-RADS) [1–5].
The American College of Radiology Commission on Breast Imaging appropriateness criteria
recommend that women at high risk for breast cancer begin annual screening with DCE-
MRI as early as 25 years old [6]. However, DCE-MRI is associated with limitations including
variable specificity rate (61–97%), which leads to excessive biopsies and increases patient
anxiety [1–3,7].

Diffusion-weighted MRI (DW-MRI) has emerged as a method with the potential to
differentiate benign from malignant breast lesions and yields quantitative information about
tissue microstructure without the use of exogenous contrast [8,9]. Information about tissue
structure can be provided by measuring an apparent diffusion coefficient (ADC) in varying
degrees of diffusion weighting (b-values), due to the differential Brownian diffusion of water
molecules [8]. Although DW-MRI is part of the standard of care for many body applications
and included in the final assessment for detection of malignancies in the liver, prostate,
and ovaries, there continue to be limitations and no lexicon descriptors or quantification of
DW-MRI and ADC in BI-RADS at this time. These include limitations due to significant
geometric distortions which can impair the evaluation of small lesions [9], variations in
ADC values related to acquisition parameters across sites [10–12], and substantial overlap
in ADC values for malignant and benign lesions [13,14]. Therefore, the clinical utility of
using ADC as a robust imaging biomarker of the probability of malignancy of lesions
is limited and mostly recommended as an adjunct measurement with DCE-MRI [15,16].
To advance DW-MRI as a reliable non-contrast adjunct to DCE-MRI in evaluating breast
lesions, a more comprehensive diffusion model is needed that more accurately describes
the complex microenvironment of the breast, consisting of healthy fat and fibroglandular
tissues, benign lesions, and malignant lesions.

Multi-component modeling of the DW-MRI signal over extended ranges of b-values
(typically up to 2000–3000 s/mm2) theoretically isolates the slowly diffusing (restricted)
water component in tissues [8]. The magnitude of this restricted diffusion component is
hypothesized to be modulated by both cellularity and nuclear volume fraction of individual
cells [17]. In the restriction spectrum imaging (RSI) model, each component is defined by
a constant apparent diffusion coefficient representing a distinct pool of water diffusion
signal [18]. The main outputs of this technique are maps of the relative size of each
component. In brain [19], prostate [20,21], and breast [22–24], RSI has demonstrated
potential to distinguish cancer tissues from non-cancer tissues by isolating this slowly
diffusing water signal, and corresponding magnitude. Vidić et al. demonstrated that the
normalized magnitude of the slowest element in a two-component model performed well
in discriminating signal intensity within pre-defined benign and malignant breast lesion
regions of interest (ROIs) [22].

A further optimized three-component RSI model to fit the DW-MRI signal in the breast
demonstrated the ability to differentiate malignant from healthy fibroglandular tissue [23],
with comparable contrast-to-noise ratio and area-under-the-curve to conventional DCE-
MRI [23,24]. This three-component model was used to generate a classification algorithm
for non-predefined lesions which demonstrated the clinical utility of RSI in breast cancer
diagnosis [24]. However, the study did not investigate the model’s ability to discriminate
malignant and benign breast lesions. Further refining this model to include discrimination
of benign lesions from both malignant lesions and healthy tissue would increase the clinical
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robustness of the model and increase the radiologist’s confidence in ascribing a lesion as
malignant or benign. Therefore, the aim of this study was to evaluate the utility of the
three-component RSI model to distinguish between malignant, benign, and healthy tissue
in a small patient population with biopsy-proven malignant and benign breast lesions.

2. Materials and Methods
2.1. Subjects

A retrospective study of the RSI characteristics of benign and malignant breast lesions
was conducted. This study was approved by the Institutional Review Board of the authors’
institution. All patients were females, 20–78 years old. Patients with known breast malig-
nancy and who were imaged with DCE-MRI and the relevant diffusion protocol at our
single institution between July 2015 and December 2019 were identified (208 total patients)
(Figure 1).
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Figure 1. Patient selection flow chart.

Patients with both pathology-proven malignancy and one or more synchronous
pathology-proven benign lesion(s) in either the contralateral or ipsilateral breast were
included (122 patients) to control for interpatient variability. Therefore, 79 patients without
synchronous benign lesions were excluded. Patients previously treated with a cytotoxic
regimen, chemotherapy, or ipsilateral radiation therapy prior to MRI scanning were ex-
cluded from analysis (86 patients). Additionally, patients with simple cysts that are readily
identified with standard imaging (11 patients), non-pathology-proven benign lesions (8 pa-
tients), and incomplete or alternative MRI protocol (12 patients) were excluded from the
analysis. Therefore, our final patient population consisted of 12 patients with concurrent
pathology-proven malignant and benign lesions in either breast.

2.2. Histopathology

Lesions were pathologically assessed via core needle or excisional biopsy. All 12 pa-
tients had only one malignant lesion and at least one benign lesion, with 2 of these patients
having an additional ipsilateral benign lesion for a total of 14 benign lesions (Table 1). All
of the 14 total benign lesions were pathology-proven benign and included stromal fibrosis,
fibroadenomas, focal ductal hyperplasia, benign sclerosing adenosis, radial scar, and benign
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breast parenchyma. The size of the benign lesions ranged from 0.5 × 0.5 cm to 7.1 × 1.4 cm
based on the radiologists’ reports.

Table 1. Lesion histology.

Malignant (n = 12) Benign (n = 14)

Histology n Histology n

IDC 1 7 Stromal fibrosis 6
IMC 2 1 Fibroadenoma 4
ILC 3 1 Focal ductal hyperplasia 1

IDC + DCIS 1,4 1 Benign sclerosing adenosis 1
IMC + DCIS 2,4 1 Radial scar 1

DCIS 4 1 Benign breast parenchyma 1

Type n Type n

Mass 9 Mass 10
NME 5 1 NME 5 3

Mass + NME 5 2 Mass + NME 5 1

Abbreviations: 1 Invasive ductal carcinoma; 2 invasive mammary carcinoma, 3 invasive lobular carcinoma; 4 ductal
carcinoma in situ; 5 non-mass enhancement.

Malignant lesions included invasive ductal carcinoma (IDC), invasive mammary carci-
noma (IMC), invasive lobular carcinoma (ILC), ductal carcinoma in situ (DCIS), IDC + DCIS,
and IMC + DCIS. Lesions ranged from 2.1× 1.9 cm to 6.2× 5.8 cm based on the radiologists’
reports and represented masses, non-mass enhancement (NME), and mass + NME (Table 1).

2.3. MRI Data Acquisition

MRI data were collected using a 3.0T scanner (MR750, DV25-26, GE Healthcare, Mil-
waukee, WI, USA) with an 8-channel breast array coil. DCE-MRI images were acquired
following gadolinium administration, and contrast kinetic graphs were generated using
CADstream (Merge Healthcare Inc., Chicago, IL, USA) software. Images were reported
according to BI-RADS recommendations [25]. In addition to T1- and T2-weighted im-
ages, axial reduced field-of-view (FOV) echo-planar imaging DW-MRI was performed
with the following parameters: spectral attenuated inversion recovery (SPAIR) fat sup-
pression, echo time (TE) = 82 ms, repetition time (TR) = 9000 ms, b-values (number of
diffusion directions) = 0, 500 (6), 1500 (6), and 4000 (15) s/mm2, gradient pulse duration
(δ) = 29.34 ms, gradient pulse time interval (∆) = 37.67 ms, FOV = 160 × 320 mm2, acquisi-
tion matrix = 48 × 96, reconstruction matrix = 128 × 128, voxel size = 2.5 × 2.5 × 5.0 mm3,
phase-encoding (PE) direction anterior-posterior (A/P), and no parallel imaging. The
b = 0 s/mm2 volumes were collected in the A/P and posterior–anterior (P/A) PE directions
to correct DW-MRI data for geometric and intensity distortions due to B0 inhomogeneities
using the reverse polarity gradient (RPG) method [26,27]. For the diffusion sequence, δ and
∆ time constants were fixed, while the gradient magnitude was manipulated to produce
different b-values.

2.4. Data Processing

Data were processed and analyzed using MATLAB R2016b (The MathWorks Inc.,
Natick, MA, USA), as previously described in Rodríguez-Soto et al. [23]. Briefly, after
distortion correction with RPG, datasets were noise corrected by estimating the noise floor
as the average of the background signal determined from a histogram of the DW-MRI data.
The noise floor value was then subtracted from all voxels. Following noise correction, data
were corrected for eddy current artifacts, then all diffusion directions at a given b-value
were averaged. Averaged DW-MRI datasets were normalized by the 98th percentile of the
b = 0 s/mm2 volume to preserve T2 information while mitigating the chance of using an
arbitrarily high noise value for normalization, as done previously [23].
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Previously, Rodríguez-Soto et al. established that the diffusion signal, Sdiff, in breast
cancer is best modeled as a linear combination of three exponential decays as described by
the RSI framework [18,23]:

Sdi f f (b) = C1 + C2e−b·1.5×10−3
+ C3e−b·10.8×10−3

(1)

where Ci is the signal contribution of each exponential component (i = 1, 2, and 3 for the
three-component breast model) and b represents the b-values. In brief, Rodríguez-Soto et al.
first estimated diffusion coefficients of each exponential component (D1 = 0 mm2/s (re-
stricted diffusion), D2 = 1.5× 10−3 mm2/s (hindered diffusion), and D3 = 10.8× 10−3 mm2/s
(pseudo-diffusion)) through global fitting of the tri-exponential model to cancer and control
tissue. To estimate the parametric Ci maps, these diffusion coefficients are fixed to enable
comparison of signal contributions across different voxels and patients, and a non-negative
least squares fitting of the model to the signal versus b-value curve from each voxel is
performed [23].

The resulting C1, C2, and C3 maps were directly estimated from the model. Addition-
ally, C1C2, the product of the C1 and C2 components, was demonstrated by Andreassen et al.
to discriminate between cancer and healthy breast tissue in a clinically helpful manner
and was thus included in our analysis [24]. In the present work, the square root of the
product,

√
C1C2, was also estimated to provide the information of C1C2 at the same scale

as the RSI Ci map outputs. Additionally, conventional mono-exponential ADC maps were
computed using averaged DW-MRI datasets without noise correction, using b-values up to
1500 s/mm2. Negative and undefined ADC values were excluded.

Using all available data in the exam protocol (including DCE-MRI and anatomical
T2-weighted images), full volume regions of interest (ROIs) were manually drawn on
DW-MRI images for all malignant and benign lesions, as shown in Figure 2.
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Figure 2. Representative lesions in one patient. Malignant (magenta), benign (cyan), and healthy
(yellow) tissues are shown on (a–c) DW-MRI b = 0 s/mm2 and (d–f) DCE-MRI peak intensity images.

Malignant ROIs were drawn for the lesions corresponding to pathology-proven cancer,
and benign ROIs were drawn for those corresponding to pathology-proven benign lesions.
Healthy control ROIs containing healthy fat and fibroglandular tissue were defined as
boxes of 33,600 voxels placed in the contralateral breast relative to the malignancy being
evaluated, drawn on DCE-MRI images. Healthy control ROIs were then resampled to the
DW-MRI resolution to cover 500 voxels. Any benign lesion voxels contained within healthy
control ROIs were excluded. Additionally, the axillary region, large cysts (>2.5 cm), and
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susceptibility artifacts (e.g., from surgical clips) were excluded. ROIs were reviewed and
approved by a breast radiologist (RRP). After assessing data normality, the median of each
ROI was computed, resulting in a single data point per tissue type per patient.

2.5. Statistical Analysis

Statistical analyses were performed using R statistical programming (R Foundation
for Statistical Computing, Vienna, Austria). Shapiro–Wilk test for normality was used to
evaluate the normality of data within each ROI. Levene’s test for homogeneity of variance
was used to examine the normality of data across patients, followed by ranked two-way
repeated-measures analysis of variance (ANOVA) to evaluate the effects of tissue type and
diffusion components. Individual differences were evaluated by post hoc Wilcoxon signed-
rank test with Bonferroni correction to preserve rigor. The threshold for significance (α) was
set at 0.05 for all analyses. Results are reported as median and interquartile range values.

3. Results
3.1. Contrast Enhancement Kinetics of Benign Lesions Suggest Suspicious Pathology

Pre-biopsy MRI reports were reviewed for all benign lesions in the study group. All
benign lesions were interpreted as suspicious and required biopsy (Figure 3). These lesions
displayed either Type II or Type III contrast enhancement pattern, thus increasing suspicion
for malignancy per BI-RADS criteria. [1–5] (Figure 3).
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Figure 3. Enhancement pattern of benign and malignant lesions. (a) Enhancement patters are defined
as: “Fast/washout” (fast initial enhancement with washout on delayed sequences); “Fast/plateau”
(fast initial enhancement with plateau on delayed sequences); “Medium/washout” (medium initial
enhancement with washout on delayed sequences); “Medium/plateau” (medium initial enhancement
with washout on delayed sequences); “None provided” (no kinetic assessment was provided in the
report). (b) Representative graph of a benign lesion showing fast initial enhancement with plateau on
delayed sequences.

3.2. Malignant Lesions Display Higher C1 and C2 Compartment Values Compared to Benign
Lesions and Healthy Tissue

On average, malignant lesion ROIs contained approximately 20-fold the number of
voxels compared to benign lesion ROIs (Table 2). A representative example of malignant,
benign, and healthy tissue ROIs on both DW-MRI b = 0 s/mm2 images and peak intensity
post-contrast images in a single patient are shown in Figure 3.

Visually, the malignant, benign, and healthy tissue displayed different signal intensities
across compartment maps (Figure 4). For example, malignant lesions (Figure 4b,c,e,f) dis-
play the highest signal in C1, C2, C1C2, and

√
C1C2 compared to benign lesions (Figure 4h,i,k,l)

and healthy tissue (Figure 4n,o,q,r).
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Table 2. Summary of ROI and compartment map values. Data are reported as median (interquartile
range). Ranked two-way repeated measures ANOVA results are indicated in the last column and row
(across compartment and tissue type, respectively) (ns: p > 0.05).

Tissue
Type

ROI Volume
[cm3]

ADC × 10−3

[mm2/s] C1 C2 C3 C1C2
√

C1C2 p

Malignant 6.4 (10.5) 0.94 (0.23) 0.32 (0.18) 2.6 (1.7) 0.13 (0.40) 0.70 (1.0) 0.82 (0.58) 3.5 × 10−5

Benign 0.5 (0.8) 1.16 (0.27) 0.05 (0.12) 1.6 (1.5) 0.34 (0.70) 0.08 (0.29) 0.29 (0.46) 0.003
Healthy 199.2 (10.5) 0.97 (0.25) 0.08 (0.13) 0.90 (0.73) 0.34 (0.43) 0.03 (0.05) 0.16 (0.16) 3.3 × 10−4

p ns 1.4 × 10−5 0.001 ns 6.2 × 10−6 5.9 × 10−6
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Figure 4. Representative maps for each compartment (C1, C2, C3, C1C2,
√

C1C2), with (a–f) malignant
lesions, (g–l) benign lesions, and (m–r) healthy tissue ROIs indicated.

Malignant lesions had the highest signal contributions in the C1 (p < 0.001) compart-
ment compared to benign lesions and healthy tissue, with median (interquartile range)
values of 0.32 (0.18) for malignancy, 0.05 (0.12) for benign tissue, and 0.08 (0.13) for healthy
tissue, respectively (Figure 5, Tables 2 and 3). In the C2 compartment, benign lesions were
not different from malignant lesions (p = 0.30) or healthy tissue (p = 0.90), but malignant
lesions had higher (p < 0.01) C2 values compared to healthy tissue. The C2 values were
2.6 (1.7) for malignant lesions, 1.7 (1.5) for benign lesions, and 0.90 (0.73) for healthy tis-
sue. The C3 signal was comparable (p = 1) for all tissue types: 0.13 (0.40) for malignancy,
0.34 (0.70) for benign tissue, and 0.34 (0.43) for healthy tissue. Benign lesions were not
significantly different from healthy tissue in any of the compartments (Figure 5, Table 3).
Additionally, mono-exponential ADC did not significantly differ between the three tissue
types (Table 2).

3.3. Combinations of C1 and C2 Also Discriminate Malignant and Benign Lesions

Overall, C1C2 and
√

C1C2 combination maps resulted in significantly higher (p < 0.05)
values for malignant lesions compared to benign lesions and healthy tissue (Table 2,
Figure 5). The C1C2 median values were 0.7 (1.0), 0.08 (0.29), and 0.03 (0.05) for malignant
lesions, benign lesions, and healthy tissue, respectively. The product C1C2 discriminated
malignant lesions from benign (p < 0.01) and healthy (p < 0.001) tissues (Table 3). Addition-
ally, the square root of the product

√
C1C2 separated malignant from benign (p < 0.01) and

healthy (p < 0.01) tissues (Table 3). The values for
√

C1C2 were 0.81 (0.58), 0.29 (0.46), and
0.16 (0.16) for malignant, benign, and healthy tissue, respectively. However, neither C1C2
nor
√

C1C2 significantly distinguished between benign lesions and healthy tissue.
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Figure 5. Comparison of tissue types per compartment C1, C2, C3, C1C2, and Magenta, cyan, and
yellow boxes indicate malignant, benign, and healthy breast tissues, respectively. Significance
from ranked two-way repeated measures ANOVA are indicated by the black bars and asterisks
(** p < 0.001).

Table 3. Pairwise comparisons of tissue type per compartment (ns: p > 0.05; **: p < 0.01).

Compartment Groups Bonferroni-Adjusted
p-Value Significance

C1

Malignant vs. Benign 0.001 **
Malignant vs. Healthy 0.001 **

Benign vs. Healthy 1.0 ns

C2

Malignant vs. Benign 0.30 ns
Malignant vs. Healthy 0.01 **

Benign vs. Healthy 0.90 ns

C3

Malignant vs. Benign 1.0 ns
Malignant vs. Healthy 0.70 ns

Benign vs. Healthy 1.0 ns

C1C2

Malignant vs. Benign 0.004 **
Malignant vs. Healthy 0.001 **

Benign vs. Healthy 0.11 ns

√
C1C2

Malignant vs. Benign 0.003 **
Malignant vs. Healthy 0.008 **

Benign vs. Healthy 0.23 ns

4. Discussion

The main objective of this study was to evaluate how the breast-optimized three-
component RSI model can discriminate malignant lesions, benign lesions, and healthy
breast tissue. We sought to understand the limitations of this technique and assess the
degree of overlap between malignant, benign, and healthy breast tissue to evaluate the
potential clinical utility of the model in decreasing the number of excessive biopsies.

Our results show that a three-component advanced DW-MRI model can discriminate
malignant tissue from benign lesions and healthy breast tissue in a small group of patients.
Additionally, the product and the square root of the product of two of the compartments
(C1 and C2) perform similarly to C1 alone in discriminating malignant lesions from benign
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lesions and healthy tissue. Importantly, we found that benign lesions were not significantly
different from healthy breast tissue in any compartment or compartment combination.

Understanding what differences comprise these three groups may increase our under-
standing of the diffusion metric results. The three compartments theoretically represent
different degrees of diffusion, where C1 is hypothesized to represent the most restricted
diffusion derived from cancer cells or the restricted water component within adipocytes
in fatty tissue [28], C2 is hypothesized to represent intermediate or hindered diffusion
predominantly from fibroglandular tissue, and C3 is hypothesized to represent the least
restricted diffusion such as pools of fluid or flow through blood vessels [23,24]. Our data
suggest that malignant lesions display high conspicuity in the C1 compartment, both
in the individual C1 map and in the context of a derived C1C2 or

√
C1C2 parameter. In

other words, C1 can be used to distinguish the malignancy of a lesion due to increased
restricted diffusion compared to benign lesions and healthy tissue. Though benign le-
sions had a generally higher C2 compartment than healthy tissue, there was considerable
variability between samples in this compartment, resulting in nonsignificant differences
between malignant and benign tissues and benign and healthy tissues. Further, all three
tissue types demonstrated comparable degrees of unhindered diffusion, represented by the
C3 compartment, suggesting that vascular flow was similar across tissue types. Overall,
the compartment demonstrating the most restricted diffusion separated malignant from
benign lesions, regardless of lesion subtype and size.

Interestingly, we found no significant differences between benign lesions and healthy
breast tissue in any of the compartments. The three-compartment RSI model used in this
study follows that used in Andreassen et al. and Rodríguez-Soto et al., where control
ROIs comprised the entire contralateral breast, including any benign lesions, were used
to establish the model [23,24]. Our findings support their assumption that benign lesions
generally display similar diffusion properties as healthy breast tissue in a model where
the diffusion signal is decomposed into three distinct compartments. Only a few studies
have evaluated the ability of DW-MRI in discriminating healthy and benign breast tissues,
with mixed results: Sharma et al. [29] found significantly higher ADC values for healthy
tissues compared to benign lesions, while Woodhams et al. [14] demonstrated no significant
differences between the tissue types. Since the ADC of healthy breast tissue has been found
to vary with breast density [30], our study was limited to subjects with concurrent benign
and malignant lesions, with the healthy control also derived from the same patient. This
allowed us to perform a paired analysis to mediate the potential effects of breast density on
diffusion metrics.

DW-MRI is a potential complement to DCE-MRI that may reduce the number of
excessive biopsies from false-positive interpretations. In our cohort, all benign lesions
were classified as suspicious from contrast enhancement kinetics and thus required tissue
biopsy. Several groups have already demonstrated the ability of the mono-exponential
ADC diffusion estimate in discriminating between benign and malignant lesions in the
breast [22,31,32]. However, the translation of DW-MRI into clinical practice has been
limited by a lack of consensus in cut-off values from variation due to geometric distor-
tions [9], chosen sequence parameters [12], and vendor- and system-specific bias [10].
Additionally, in the literature, reported absolute ADC threshold values are in the range
0.55 × 10−3–1.88 × 10−3 mm2/s for malignant lesions and 1.10× 10−3–2.06× 10−3 mm2/s
for benign lesions [33]. In our small cohort, we found that malignant lesions, benign lesions,
and healthy breast tissue had ADC values that overlapped considerably. The wide overlap
between ADC measurements for benign and malignant lesions makes ADC less robust
of an imaging biomarker on a per-patient basis, and only a handful of studies have been
conducted regarding separating benign lesions from healthy breast tissue [14,29]. This
study extends the work by Andreassen et al. in demonstrating the potential clinical utility
of an advanced DW-MRI framework that compartmentalizes diffusion on a voxel-level and
is specific to the breast [24]. In a small sample of patients, the three-component RSI model
was able to discriminate malignant lesions from benign lesions and healthy breast tissue.
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Small sample size is the primary limitation of our study. We limited our sample
subset to patients who had both concurrent biopsy-proven malignancies and biopsy-proven
benign lesions from a single institution. While this aided in reducing interpatient variability,
this significantly limited the number of patients eligible for evaluation. Additionally,
malignant lesions were enriched in our population given that our study group consisted of
women with known malignancy. Future work will also focus on prospectively analyzing
women at high risk and average risk of breast cancer to further evaluate the robustness of
this model as it pertains to the general population. While our data is statistically significant
in this small patient sample, continued evaluation in a larger population across several
institutions may lead to further optimization of the model, and this may include evaluation
of even higher b-values (over 4000 s/mm2) to better discriminate the restricted diffusion
compartment from intermediate and free diffusion, at the cost of increased scan time. Large
components of fat in breast tissue may also require further optimization in this model,
which was initially developed in less fatty tissues (e.g., brain and prostate) [8,18]. Though
DW-MRI data was fat-suppressed using SPAIR, incomplete suppression may affect the
derived coefficients in our small sample set. Additionally, water trapped within adipocytes
and lipids may produce artificially restricted signal within fat. It is also possible that our
ROIs may contain more than one tissue type (e.g., small benign lesions containing some
fatty tissue, or healthy tissue ROIs containing occult malignancy). Lastly, an assumption of
the RSI model is that diffusion within each voxel is isotropic, which is a gross approximation
of the diffusion process. Future iterations of the model will consider anisotropic diffusion
such as fractional anisotropy to address the diffusion directionality within breast tissue.

5. Conclusions

This three-component RSI model, along with T2-weighted information, provides a
promising supplement to DCE-MRI for improved specificity and may play a role in the
development of future non-contrast breast MRI protocols. Institution-standardized DW-
MRI sequences are already included in breast imaging MRI protocols and their limitations
have been briefly described in this paper. Our findings indicate that malignant lesions
demonstrate high conspicuity on compartment maps indicating the most restricted diffu-
sion compared to benign lesions and healthy breast tissue, which showed no significant
differences. The model may increase radiologists’ confidence in ascribing a lesion as malig-
nant versus benign. Future directions include applying this technique to a larger subset of
patients, evaluating early high-risk atypical benign lesions and DCIS, and investigating the
model’s ability to differentiate lesions of various molecular subtypes.
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