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ABSTRACT Short-Term Hydrothermal Scheduling (STHS) is a classic problem in power system operation
where the aim is to decide the dispatch of both thermal and hydroelectric units. This problem is complex due
to its non-linear non-convex nature, and the requirements for fast solving for daily operation. Technologies
such as wind and solar generation introduce stochastic behaviors, which have to be considered within the
mathematical model. Although the problem is frequently solved by traditional and heuristic techniques,
this paper proposes a new formulation based on convex approximations, and in particular, Second-Order
Cone optimization, which addresses the nonlinear relation among water discharge, reservoir volume, and
hydropower generation in a rigorous mathematical approach. Moreover, the impact of wind and solar
generation on the power system is analyzed, modeling their stochastic behavior in a robust way by using
chance-box constraints. Numerical results demonstrate that the Second-Order Cone approximation is precise
and faster than techniques proposed recently and that the chance-box constraint approach guarantees a robust
solution.

INDEX TERMS Hydrothermal scheduling, economic dispatch, solar generation, wind generation,
mathematical optimization, non-linear programming, chance-box constraints.

NOMENCLATURE
(·)g Type of generation unit with g ∈ {h, t,w, s}

for hydro, thermal, wind, and solar,
respectively

δit Instance of random variable dit
νcut−in Cut-in velocity of the wind turbine in m/s
νcut−out Cut-out velocity of the wind turbine in m/s
νit Wind velocity data for unit i at moment t in

m/s
νnom Nominal velocity of the wind turbine in m/s
�i Set of nodes that are connected to node i for

both the electrical and the hydraulic network
φ Quantile function
ρ

g
it Instance of random variable pg

it
τi Delay of hydroelectric unit i to immediate

downstream plant
θit Nodal angle at node i in time t
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x, x Minimum and maximum limits of variable x
ζ Probability to comply a constraint
ait Inflow of hydroelectric unit i in time t
c1i − c6i Coefficient of power generation function of

hydro unit i
cl1i − cl3i Coefficient of linearized power generation

function of hydro unit i
cfit Capacity factor of generation unit i in time t
CU Currency unit
dt Demand of the whole system in time t
dit Demand of node i in time t
eit Auxiliary variable
F Cumulative distribution function
fi Cost function of thermal unit i
hi Output function of hydroelectric unit i
kit Auxiliary variable
ng Number of type g generation units
O() Computational complexity function
pbase Nominal power of the system in MW
pinom Nominal power of generation unit i
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pf
ijt Power flow between nodes i and j in time t
pg
it Active power of generation unit i in time t in

MW
plhi Hydropower of unit i using the linearized

equation
pqh

i Hydropower of unit i using the quadratic
equation

qit Flow of hydroelectric unit i in time t
r Number of inputs of an algorithm
sit Spillage of hydroelectric unit i in time t
t Time in hours
Tplh Total hydropower by using the linearized

equations
Tpqh Total hydropower by using the quadratic

equations
uit Auxiliary variable
vit Water volume of reservoir i in time t

ACRONYMS
CPSO Couple-Based Particle Swarm

Optimization
CVX Package for defining and solving

convex problems
DE Differential Evolution Algorithm
DRQEA Differential Real-Coded Quantum-

Inspired Evolutionary Algorithm
DWS/STHS-SOC Deterministic Wind-Solar

Short-Term Hydrothermal Scheduling
using Second-Order Cone

HPDLQ Difference between the total
hydropower using linearized
equations and the total hydropower
using quadratic equations

inf Infimum
Prob Probability
PSO Particle Swarm Optimization
QRSOS Quasi-Reflected Symbiotic

Organisms Search Algorithm
RWS/STHS-SOC Robust Wind-Solar Short-Term

Hydrothermal Scheduling using
Second-Order Cone

SDP Semi-definite Programming
SOC Second-Order Cone
SOS Symbiotic Organisms Search

Algorithm
SPPSO Small Population-Based Particle

Swarm Optimization
STHS Short-Term Hydrothermal

Scheduling
STHS/SOC Second-Order Cone Approximation

for Short-Term Hydrothermal
Scheduling

I. INTRODUCTION
A. MOTIVATION
Short-TermHydrothermal Scheduling (STHS) is a non-linear
optimization problem required in the operation of power
systems including both hydroelectric and thermoelectric

units. The problem is intrinsically non-convex and stochas-
tic; moreover, modern power systems include wind and
solar generation, which introduce new challenges. Therefore,
it is necessary to develop approximations that deal effec-
tively with the problem in this new context. Second-Order
Cone optimization emerges as a suitable alternative to
transform the problem into a convex model. Additionally,
the stochastic behaviour of the problem can be considered
as chance-box constraints generating a robust deterministic
problem.

B. STATE OF THE ART
A large number of studies has been carried out concerning the
STHS problem. Linear programming methods were consid-
ered in the early stage of the research [1], [2]. Mathematical
decomposition has also been considered to determine the
optimal scheduling [3]. At the beginning of the ’90s, network
flow programming was used to develop industrial applica-
tions for energy management systems. This approach implied
a lower CPU time compared with other methodologies of
this epoch [4], [5]. Additionally, the problem was studied
under a Lagrangian relaxation approach in [6], [7]. Another
conventional technique utilized to find a suitable solution
was dynamic programming [8], [9]. This technique was
widely used since results were provided at discrete load steps
rather than at continuous load levels, which was satisfactory
when the number of discrete states was not too large [10].
Furthermore, a four-dimensional piecewise linear model was
proposed in [11], where spillage effects were considered, and
the water head was taken into account as a function of fore-
bay and tailrace levels. Mixed-integer linear programming
formulations were also proposed for solving the
problem in [12]–[15].

Nevertheless, these methods present some drawbacks. The
size of the duality gap can affect the efficiency of Lagrangian
relaxation; analysis of the gradient-based methods have
shown that these methodologies tend to lead to local optimum
points, and dynamic programming suffers from the curse of
dimensionality. All of these methods use linearized models of
an objective function and constraints, which may prevent the
optimal solution of the problem from being obtained, due to
the limitations of the linearization process [16].

Therefore, several authors have focused their studies on
heuristic techniques. Among these techniques, genetic and
evolutionary algorithms have been widely used owing to their
flexibility, versatility, and ability to handle problems with
complex inter-functional and intra-functional relationships,
which each study presenting modifications of the crossover
and mutation operators to improve the performance of the
algorithms (see [17]–[20]). Nevertheless, these algorithms
suffer from premature convergence, which leads to local
optimums. To face this problem, particle swarm methodolo-
gies were proposed in [21]–[23]. Other approaches such as
cuckoo search algorithms, clonal selection algorithm, and
ant-lion optimization have shown several improvements in
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the solution of the problem such as faster convergence and
lower operation costs [24]–[26].

Despite their common use in power system applications,
metaheuristic techniques have some limitations in terms of
theory and practical implementations [27]. Therefore, a com-
mon approach dealing with non-linear problems is to gen-
erate convex approximations, which maintain the non-linear
nature of the problem and guarantee global optimum and
convergence of the algorithms. Convex approximations for
the STHS problem is a relatively new subject. In [28] a
semi-definite relaxation was proposed to face the combina-
torial characteristic of the medium-term hydrothermal dis-
patch. In parallel, a semi-definite relaxation was presented
in [29] to deal with the non-convexity of the hydropower
equations in a rigorous mathematical way. However, semi-
definite programming has to deal with a large number
of sparse matrices, which implies a large computational
burden.

Due to the renewable penetration in the system, the clas-
sic STHS problem needs to be modified to consider the
special characteristics of these units. Thus, the impact of
wind power was considered by deriving a closed form in
terms of the incomplete gamma function in [30]. Other-
wise, the uncertainty of wind and solar generation was taken
into account in [31] under a scenario approach. Moreover,
probabilistic Short-Term Hydrothermal Wind-Photovoltaic
Scheduling based on the point estimate method was
presented in [32].

A significant number of the investigations related to the
STHS problem are based on heuristic algorithms. However,
when it comes to the integration of renewable technologies,
not only the technical aspects are important but also the
economic element. By using a mixed-integer programming
approach, [33] assessed important economic issues that arise
with increased wind power penetration in hydrothermal sys-
tems. The results showed that restricting the injection of
mandatory wind generation into the grid can reduce the
total operation cost. This type of analysis requires concepts
such as dual variables, which are not directly available in
metaheuristic algorithms. Therefore, more formal techniques
are required to make economic assessments after solving the
optimization problem.

The STHS is closely related to the unit commitment (UC)
problem, which pursues establishing the on/off status of
the units for each period. Thus, several approaches have
been proposed to deal with the UC problem. On one hand,
mixed-integer linear programming has been used in [34]–[36]
where linearized models are utilized. On the other hand,
heuristic and metaheuristic techniques have also been imple-
mented in [37]–[39]. Moreover, Lagrangian relaxations and
Bender’s decomposition approaches have been proposed in
[40] and [41], respectively. The stochastic nature of wind
generation has been considered in this problem too. In doing
so, a chance-constrained two-stage programming approach is
developed in [42] to address the unit commitment problem

where compressed air energy storage, wind generation, and
demand response programs are considered. The UC problem
can be executed together with the STHS problem although
both problems have their own mathematical complexity.
Combined approaches of these two problems are usually
formulated in terms of mixed-integer linear programming
models that neglect the non-linear characteristics of hydraulic
units.

It is worth mentioning that other aspects like the topology,
time delays, and tailrace can make this problemmore compli-
cated. Thus, in [43] a junction networkmethod to model com-
plex tunnel networks in Short-Term Hydropower Scheduling
is presented. Otherwise, water delays can be represented as
multiples of the time resolution, an integer variable, a real
number constant or a continuous variable [44]. Moreover,
head loss due to the tailrace effect (an accumulation of
water downstream of the hydro plant) varies considerably in
the short term, and it is often represented by a polynomial
of the fourth degree. This issue has been recently faced
in [45], [46]. To better illustrate the proposed methodology,
topology issues and tailrace variation are not considered.
In addition, water delays are represented as a real number
constant.

C. CONTRIBUTION
The contributions of this paper are twofold. Firstly, a Second-
Order Cone (SOC) approximation is proposed based on mod-
ern convex optimization. To the authors’ knowledge, there are
few convex approximations for the problem, with the excep-
tion of the semi-definite approximations proposed in [29].
That approximation did not consider renewable energies but
demonstrated that it is possible to obtain convex approxima-
tions without resorting to linearizations and heuristics. The
Second-Order Cone approximation proposed here is more
efficient and scalable, with high accuracy. Secondly, load,
wind, and solar energies were included in the model via
chance-box constraints. This approach allows us to consider
the stochastic nature of the problem in a robust framework.
In addition, the model presented here includes the transmis-
sion grid by a DC power flow.

D. OUTLINE
The rest of the paper is organized as follows: Section 2 pre-
sents the traditional non-linear non-convex STHTS model
and its Second-Order Cone approximation; Section 3 presents
the procedure for including the grid and the renewable
sources in this problem; In Section 4, a methodology to
deal with the stochastic aspects of the load and renewable
sources is developed; Section 5 shows the results obtained
for the proposed models; results are summarized in Section 6;
conclusions are presented in Section 7; Appendix A presents
the equivalence between a quadratic inequality constraint
and a Second-Order Cone constraint; and Appendix B
shows results given by a common linearization and some
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of the drawbacks of working with it. Finally, references
are presented.

II. SHORT-TERM HYDROTHERMAL SCHEDULING
To illustrate how to deal with the non-convexity of the prob-
lem, let us explain the traditional STHSmodel and the convex
relaxation carried out.

A. BASIC STHS MODEL
The basic model for the STHS is presented in (1)

min
nt∑
i=1

fi(pt
it )

ph
it = hi(vit , qit )

vit = vit−1 + ait − qit − sit +
∑
j∈�i

qjt−τi + sjt−τi

nt∑
i=1

pt
it +

nh∑
i=1

ph
it = dt

vi ≤ vit ≤ vi
q
i
≤ qit ≤ qi

pg
i
≤ pg

it ≤ p
g
i

0 ≤ sit ≤ si
vi1 = vinitiali

vi24 = vendi (1)

The objective function consists of a sum of functions fi,
which represents either cost or CO2 emission. These func-
tions are usually quadratic and convex. Each hydroelectric
power plant is represented by a non-linear function hi given
by (2) [20], [29].

ph
it = h(vit , qit ) = −c1iv2it − c2iq

2
it

+c3ivitqit + c4ivit + c5iqit + c6i (2)

where [c1i, . . . , c6i] are known constants for each hydroelec-
tric unit i. This equation is clearly non-convex and shows the
complexity of the problem. Figure 1 depicts this function for
a particular hydroelectric unit.

The model deals with hydraulic chains like the one shown
in Figure 2. This hydro-reservoir network considers natural
inflows of each unit ait , spillage sit , and actual flow that gen-
erates power qit . The volume in the reservoir is consequently
modified by these flows. Note that the flow that comes from
an upper reservoir to a lower reservoir does not arrive imme-
diately; therefore, a time delay τi must be considered in each
branch of the hydraulic network.

The other constraints of Model (1) are the balance of
power, box constraints of the variables, and initial/final con-
ditions of the reservoir.

B. SECOND-ORDER CONE APPROXIMATION
Note that most of the constraints in Model (1) are convex.
However, (2) is a non-affine equality equation. Recent
investigations ( [28] and [29]) have proposed semi-definite

FIGURE 1. Quadratic function for a hydro-power unit with c1 = 0.0042,
c2 = 0.42, c3 = 0.03, c4 = 0.9, c5 = 10 and c6 = −50.

FIGURE 2. Example of a hydraulic chain. ai represents inflows, vi volume,
qi flow, si spillage, and τi delays.

approximations for these constraints. This approach trans-
forms the non-convex constraints into a matrix-space with
convex geometry. Although this type of transformation
improves the geometric properties of the problem, it increases
the feasible region from Rn to Rn×n. Therefore, the problem
can be computationally expensive.

On the other hand, Second-Order Cone optimization is a
convex programming alternative that has been widely used
in several electrical engineering problems such as designing
even-order finite-impulse-response variable fractional-delay
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digital filters [47], developing new control strategies [48] and
AC-DC power flow [49]. SOC requires less computational
effort than semi-definite programming. To the best of the
authors’ knowledge, SOC programming has not been used to
solve the STHS problem.

A Second-Order Cone is a convex space represented by (3).

‖x‖ ≤ z (3)

where x ∈ Rn and z ∈ R. ‖x‖ is the norm-2 of the vector x
(hence it is also called a Euclidean cone). Figure 3 shows a
Second-Order Cone inR3 with components x1, x2 and z. This
is clearly a convex cone.

FIGURE 3. Representation of the second-order cone � = {‖x‖ ≤ z} with
x ∈ R2 and z ∈ R.

Moreover, SOC algorithms are well-known for their low
computational complexity of

√
r for problemswith r Second-

Order Cone inequalities [50], which is essential to escalate
said algorithm in problems with a large number of inputs.

FIGURE 4.
√

r ( ), rlog(r ) ( ),r/log(r ) and r ( )
computational complexity functions.

Figure 4 depicts how the computational complexity
increases as the inputs increase. In computational science,
algorithms that run in linear or r-log-r times are consid-
ered algorithms with a suitable scalability [51]. From the
aforementioned figure, it can be observed that SOC has
a computational complexity that is lower than linear and
r-log-r times, which proves its robustness when it comes to
increasing the number of inputs of the problem.

To obtain a SOC approximation of (2), a matrix represen-
tation of the quadratic form h is proposed as given in (4).

h(x) = −x>Ax + b>x + c6i (4)

with x = (vit , qit )>, A is a matrix given by (5) and b is a
vector given by (6).

A =

 c1i −
1
2
c3i

−
1
2
c3i c2i

 (5)

b = (c4i, c5i)> (6)

Note that A � 0 (i.e., is positive semi-definite) if c1i ≥ 0
and c1ic2i− 1

4c
2
3i ≥ 0. In that case, A has Cholesky factoriza-

tion A
1
2 given by (7).

A
1
2 =


√
c1i −

c3i
2
√
c1i

0

√
c2i −

c23i
4c1i

 (7)

The approximation of (2) is obtained by transforming the
equality into an inequality constraint using the matrix repre-
sentation (4) as follows:

ph
it + x

>Ax − b>x − c6i ≤ 0 (8)

which can be transformed into a SOC constraints as
given in (9).∥∥∥∥∥∥

 A
1
2 x

1− b>x − c6i + ph
it

2

∥∥∥∥∥∥ ≤ 1+ b>x + c6i − ph
it

2
(9)

This constraint is convex and can be solved efficiently
using interior point methods [50] (further information is pro-
vided in [52]). It is important to highlight that the approxima-
tion remains inR3 in contrast to semi-definite approximations
that transform the problem into a spaceR3×3. Therefore, SOC
problems can be solved more efficiently than semi-definite
programming. The SOC approximation of (1) consists of
replacing (9) in the constraint that includes h. This model
will be referred as STHS-SOC for the rest of the paper.
Appendix A explains the equivalence between (8) and (9).

III. INCORPORATING THE GRID AND
RENEWABLE GENERATION
The traditional STHS problem must be modified to consider
renewable generation units, which are more common nowa-
days, and the constraints that the grid imposes. Therefore, it is
necessary to model the power produced by wind and solar
units and include the effects of the grid.

A. WIND AND SOLAR GENERATION
The power produced by photovoltaic solar units depends on
several factors: poor orientation and inclination of the solar
panels imply a reduction of the generated power; the latitude
of the place where they are installed is a key factor when
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FIGURE 5. Output power as a function of the wind speed for typical
control.

establishing the amount of available resources; cloudiness is
another factor that impacts considerably on the availability
of these generation units; and high temperatures reduce the
efficiency of the energy conversation carried out in these
devices. In doing so, all of these elements that constrain
the solar power produced must be taken into account with
regard to analyzing their operation. However, the concept of
power capacity allows us to calculate the generated power as
a function of its power capacity and nominal power. By doing
so, the output power of a unit i at the time instant t is given by
(10). Note that the power irradiation is zero at hours without
sun and reaches its peak around noon.

ps
it = cf s

it · p
s
inom (10)

On the other hand, the output power of a wind turbine
presents a discontinuous characteristic due to its type of
control. For wind velocities below νcut-in, the output power
is zero; from νcut-in ≤ ν ≤ νnom the turbine is controlled for
maximumpower tracking, therefore, the output power depicts
a cubic function; from νnom ≤ ν ≤ νcut-out, the pitch angle
control maintains constant power; finally, for ν ≥ νcut-out
the turbine is mechanically blocked to protect the internal
devices. Figure 5 shows the output power as a function of the
wind speed for a wind turbine, while (11) is its corresponding
equation.

pw
it =


0 νit ≤ νcut-in

pw
inom (

νit − νcut-in

νnom − νcut-in
)3 νcut-in ≤ νit ≤ νnom

pw
inom νnom ≤ νit ≤ νcut-out

0 νit ≥ νcut-out

(11)

B. INCLUDING THE GRID AND WIND/SOLAR
GENERATION
The STHS-SOCmodel is modified to include grid constraints
as well as wind and solar generation. The grid is represented
by a linear model with power flows pf

ijt and angles θit , while
the renewable generation units are modeled by (10) and (11).

For the sake of completeness, themodel is presented below.

min
nt∑
i=1

fi(pt
it )∥∥∥∥∥∥∥∥∥∥


√
c1ivit −

c3iqit
2
√
c1i√

c2i −
c23i
4c1i

qit
1
2 (1− uit )


∥∥∥∥∥∥∥∥∥∥
≤

1+ uit
2

uit = c4ivit + c5iqit + c6i − ph
it

vit = vit−1 + ait − qit − sit +
∑
j∈�i

qjt−τi + sjt−τi

pg
it − dit =

∑
j∈�i

pf
ijt

pf
ijt = pbase

θit − θjt

xij
vi ≤ vit ≤ vi
q
i
≤ qit ≤ qi

pg
i
≤ pg

it ≤ p
g
i

0 ≤ sit ≤ si
−pf

ij ≤ pijt ≤ p
f
ij

−θ i ≤ θit ≤ θ i

θ1t = 0

vi1 = vinitiali

vi24 = vendi

pg
it = cf g

it · p
g
inom , for g ∈ {s}

pg
it =


0 νit ≤ νcut-in

pw
inom (

νit − νcut-in

νnom − νcut-in
)3 νcut-in ≤ νit ≤ νnom

pw
inom νnom ≤ νit ≤ νcut-out

0 νit ≥ νcut-out

(12)

where uit is an auxiliary variable. Note that this model
is deterministic and does not consider the stochastic-
ity of renewable sources. Consequently, it will be called
DWS/STHS-SOC from now on.

IV. CONSIDERING THE STOCHASTICITY OF
THE RANDOM VARIABLES
The stochastic nature of the load, wind, and solar generation
is represented by probability constraints with a given proba-
bility ζ as follows:

Prob
(
pg
it ≥ ρ

g
it

)
≥ ζ, for g ∈ {w, s} (13)

Prob (dit ≤ δit) ≥ ζ (14)

In this way, the model that considers the stochastic behav-
ior of the load, wind, and solar generation is given by (15) in
which wind and solar power equations are replaced by (13),
and (14) is included to consider the stochastic nature of the
load.

min
nt∑
i=1

fi(pt
it )∥∥∥∥∥∥∥∥∥∥∥∥



√
c1ivit −

c3iqit
2
√
c1i√

c2i −
c23i
4c1i

qit

1
2
(1− uit )



∥∥∥∥∥∥∥∥∥∥∥∥
≤

1+ uit
2
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uit = c4ivit + c5iqit + c6i − ph
it

vit = vit−1 + ait − qit − sit +
∑
j∈�i

qjt−τi + sjt−τi

pg
it − dit =

∑
j∈�i

pf
ijt

pf
ijt = pbase

θit − θjt

xij
vi ≤ vit ≤ vi
q
i
≤ qit ≤ qi

pg
i
≤ pg

it ≤ p
g
i

0 ≤ sit ≤ si
−pf

ij ≤ pijt ≤ p
f
ij

−θ i ≤ θit ≤ θ i

θ1t = 0

vi1 = vinitiali

vi24 = vendi

Prob
(
pg
it ≥ ρ

g
it

)
≥ ζ, for g ∈ {w, s}

Prob (dit ≤ δit) ≥ ζ (15)

The probabilistic constraints are transformed into deter-
ministic counterparts using a robust approach. Both the wind
velocity and the solar radiation are adjusted to Weibull dis-
tributions. Figure 6 shows a density function and a cumula-
tive function for wind speeds with Weibull distribution. The
output power for a solar-photovoltaic system is proportional
to the radiation and therefore, the distribution of ps is also
expected to be Weibull. However, the output power of a wind
turbine presents a discontinuous characteristic due to its type
of control as Figure 5 depicts.

FIGURE 6. Density function ( ) and cumulative function ( ) for
the Weibull distribution.

Consequently, the output power pw presents a distribution
that is not smooth and needs to be evaluated numerically; its
density function presents dirac-type discontinuities in pw

= 0
and pw

= pnom whereas it is continuous between 0 and pnom.
Provided the cumulative distribution of the power F(ρ),

the probability of a specific output power is given by (16).

F(ρ) = Prob (p ≥ ρ) (16)

A quantile function associated with the probability distri-
bution of the generated power is defined as (17) [53].

φ(ζ ) = inf {ρ ∈ R : ζ ≤ F(ρ)} (17)

Therefore, it is possible to define an upper bound for the
generated power given a probability ζ as given in (18).

pg
it = φρ(1− ζ ) for g ∈ {w, s} (18)

This upper bound is included directly into the optimization
model as a constraint of the form of (19) [54].

0 ≤ pg
it ≤ p

g
it , for g ∈ {w, s} (19)

This constraint is guaranteed with a probability ζ , thus, ζ is
a measure of robustness for the problem. The same procedure
is applied to the power demand, obtaining a lower bound d it
as follows.

d it = φδ(ζ ) (20)

This lower bound is included in the model as a determinis-
tic constraint as given below:

dit ≥ d it (21)

The power demand is represented by a uniform distribu-
tion.

The model with the Second-Order Cone approximation,
the grid, and the chance-box constraints for the load, wind,
and solar generators will be called RWS/STHS-SOC from
this point forward.

V. RESULTS
Four sets of simulations were carried out to test the proposed
models and compare them. First, it was only considered a
hydrothermal model (STHS-SOC model) for the purpose of
comparing the obtained results with previous studies that
had used the same test system (see [20]). In this model,
the spillage was considered equal to zero as in the previous
research.

Then, a convex-deterministic Short-Term Hydrothermal-
Wind Solar model was tested without considering the
stochastic nature of the renewable resources and load
(DWS/STHS-SOC model). For this simulation, the values of
wind speed and solar capacity were considered as the mean
value of the data per hour.

Next, a stochastic model was implemented by considering
a robust set of 80% to comply the chances constraint of
this model (RWS/STHS-SOC, case I). After that, the same
model was tested but, in this case, the probability to comply
the chance constraints was considered 60% (RWS/STHS-
SOC, case II). Note that a probability of 100% would be
an extremely robust approach that would lead to pessimistic
solutions of the problem since the equivalent values, for
wind and solar generation, would be zero (see (18), and
Figures 17 and 18). On the other hand, probabilities under
50% would not be of interest since they are not going to be
robust enough. Therefore, it makes sense to assume probabil-
ities of 60% and 80% to illustrate the proposed methodology.
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TABLE 1. Characteristics of wind farm.

Nevertheless, this is a parameter that is going to depend on
the requirements of the system operator.

Finally, it is important to highlight that for the DWS/
STHS-SOC and RWS/STHS-SOC models, the upper limits
of spillage were considered equal to 2 × 104 m

3

h to study
how these variables affect the optimization process [29].
All models were solved in a 3.2GHz Intel Core i8-8700 PC
with 8 GB RAM using CVX in MATLAB, a package for
defining and solving convex problems.

A. TEST SYSTEM
The test system used to evaluate the performance of the
DWS/STHS-SOC and RWS/STHS-SOC models consists of
a multi-chain cascade of 4 hydro units, a number of thermal
units represented by an equivalent thermal plant, a photo-
voltaic solar farm, and a wind farm. Additionally, the new
England IEEE-39 bus system was considered. The loca-
tion of the generators and the distribution of load are pre-
sented in Figure 7. Moreover, the power limits of the lines
were considered as the inverse of the reactance per unit
divided 6.5. This assumption was based on the maximum
angle stability and its relation to the maximum temperature
capability [55], [56].

FIGURE 7. New England, IEEE 39 bus-system.

The wind farm considered in this test system consists
of 340 wind turbines. Their characteristics are presented
in Table 1. On the other hand, the solar farm consists
of 2,500,000 photovoltaic panels, each with a nominal power
equal to 240 watts, which adds a nominal power for the solar
farm equal to 600 megawatts.

The quantile function of solar power was built with capac-
ity factor data taken from [57]. These data pertain to the
recorded hourly data for every month of June between

1979 and 2017 in Spain. Said data correspond to units with
solar trackers.

Wind speed data used to build the quantile function of wind
power were taken from the wind prospector of The National
Renewable Energy Laboratory of The United States. These
data belong to the recorded hourly data for June in Hawaii.

In addition, the characteristics of the hydro-chain, thermal
power plant, and load were taken from [20]. It is worth
mentioning that the values of coefficients C1 and C2 con-
sidered in our research are equivalent to the values of −C1
and −C2 considered in [20] as Table 2 shows. Nevertheless,
the hydropower equations of the form of (2) remain the same
due to the structure that we chose to represent them. The data
of the considered grid were taken from [58].

TABLE 2. Hydropower coefficients.

To sum up, the total installed power of the system is
5,780 MW, where the hydro generation adds 43.3 % of the
total capacity (4 hydro units of 500 MW); 34.61 % is ther-
mal (an equivalent thermal plant of 2,500 MW); 11.76 %
is wind (340 wind turbines of 2 MW) and 10.38 % is solar
(2,500,000 photovoltaic panels of 240 watts).

B. STHS-SOC
To have a framework to compare the time convergence and
accuracy of the proposed methodology, STHS-SOC is tested
by using the system presented in [20]. Table 3 shows a
comparison of results obtained for several methodologies
implemented in the mentioned test system. For the sake of
simplicity, only time convergence and the value of the objec-
tive function are compared.

TABLE 3. Optimal cost and CPU time of SOC and other methodologies.

It is clear that SOC presents a superior performance
regarding time convergence compared with other techniques
proposed in the past. Additionally, its computational com-
plexity of

√
r presents a considerable computational advan-

tage compared with the most popular heuristic techniques,
which report computational complexity of r , rlog(r), and
r/log(r) [60]–[62]. Nevertheless, it is worth being careful
when it comes to comparing CPU times since they can be
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affected by the computing power where the simulations were
carried out.

Another interesting result from Table 3 is that SOC and
semi-definite programming find the same optimum, which
is one of the fundamental attributes of convex optimization.
This is a remarkable distinction contrasted with metaheuristic
techniques.

It is noteworthy that the results of metaheuristic techniques
presented in Table 3 only give us an idea about the possible
solution to the problem; these techniques do not guarantee a
global optimum since their operation is stochastic by nature.
The exact solution to non-convex optimization problems is
still an open problem. Therefore, there is no way to carry
out an exact comparison regarding the value of the objective
function.

C. DWS/STHS-SOC
The obtained results, for all simulations carried out, show the
same behavior for hydropower plants. This is explained by
considering the zero costs of the power produced by these
units. Consequently, the optimization algorithm schedules the
units with zero operation costs first, and then dispatches the
thermal units. Thus, when different renewable generation and
load values are considered, the hydropower is scheduled in
the same optimal way, while the thermal power is modified
regarding the values of load, wind generation, and solar gen-
eration.

For the sake of simplicity, only the behavior of hydro
units is analyzed for this model. However, as was mentioned
before, this behavior is the same for all sets of simulations.

Note that the previous analysis is only valid for hydro units
without a pumping system. If units have any kind of storage
system, without associated cost, they will take some of the
variation of the renewable units to avoid drastic variation of
the thermal power production.

FIGURE 8. Power produced by hydro units (all models) ( ) Unit 1,
( ) Unit 2, ( ) Unit 3, ( ) Unit 4.

From Figures 8, 9 and 10, it can be observed that the
amount of power produced by unit 3 tends to be low in some
intervals, even though the volume and the water discharge are
not low, which seems to contradict (2), where the hydropower
is proportional to the water discharges and the volume of
the reservoirs. Nevertheless, this behavior makes sense if we
consider that the coefficients ci of unit 3 are the smallest value

FIGURE 9. Water discharge of hydro units (all models) ( ) Unit 1,
( ) Unit 2, ( ) Unit 3, ( ) Unit 4.

FIGURE 10. Volumes of reservoirs (all models) ( ) Res 1, ( ) Res 2,
( ) Res 3, ( ) Res 4.

FIGURE 11. Spillage (all models) ( ) Res 1, ( ) Res 2,
( ) Res 3, ( ) Res 4.

compared with the others (see [20]). This means that unit 3 is
the least efficient of the hydro-chain.

In addition, Figures 8, 9, 10, and 11 show that the optimiza-
tion model tends to reduce the volume of reservoir 3 (without
violating the final values of the volume) while the volume
of reservoir 4 increases. The reason for this is that unit 4 is
more capable of producing power than unit 3 (an interested
reader can evaluate (2) with the coefficients of unit 3 and
unit 4 and will note that, for the same values of volume
and water discharges, the produced power by unit 4 will be
larger than the produced power of unit 3). That is why the
model tends to produce power by using unit 4 rather than
unit 3. Thus, the spillage of reservoir 3 tends to be as large
as possible until the volume of reservoir 4 needs to decrease
to reach the final value. Further, analyzing the dual variables
of the upper bound of spillage can be useful to understand
this behavior better. Figure 12 depicts the rate of change of
the objective function with respect to the upper bound of the
spillage. Note that this dual variable for reservoir 3 impacts
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FIGURE 12. Dual variable of spillage (all models) ( ) Res 1,
( ) Res 2, ( ) Res 3, ( ) Res 4.

the objective function considerably while the dual variables
of reservoir 1, 2, and 4 do not. This implies that allowing
spillage to be different from zero, can decrease the operation
cost of the power system. It is important to highlight that
this kind of analysis cannot be carried out when heuristic and
metaheuristic techniques are used.

FIGURE 13. Power produced by wind unit (models with renewable
energy) ( ) Deterministic, ( ) ζ = 80%, ( ) ζ = 60%.

FIGURE 14. Power produced by solar (models with renewable
energy) ( ) Deterministic, ( ) ζ = 80%, ( ) ζ = 60%.

On the other hand, Figure 13 shows wind power behavior,
which reaches its peaks of power production in the inter-
vals of time between 10-12 hours and between 22-24 hours.
This behavior is due to the particular characteristics of the
wind resource in the place where the data were measured.
In another way, Figure 14 shows that the peak of solar gener-
ation is between 10 and 13 hours. This shaves the peak of ther-
mal power produced between this interval of time. Moreover,
the solar production continues until 18 hours. This means that
the production of thermal power has to increase quickly to
supply the maximum power consumption at 20 hours (see
Figures 15 and 16). Note that this analysis is valid for all

FIGURE 15. Power consumed (models with renewable energy) ( )
Deterministic, ( ) ζ = 80%, ( ) ζ = 60%.

FIGURE 16. Power produced by thermal unit (models with renewable
energy) ( ) Deterministic, ( ) ζ = 80%, ( ) ζ = 60%.

models studied; the only difference is the magnitude of the
aforementioned variables.

D. RWS/STHS-SOC MODEL
This model was used to evaluate two cases. First, the ζ values
were set in 80% (RWS/STHS-SOCmodel, case I). Then, they
were set in 60% (RWS/STHS-SOC model, case II) to see
how the results change when these parameters change. For
the sake of simplicity, the values of the quantile function were
calculated by using MATLAB’s quantile function.

In both cases, the behavior of hydro generation is the same
compared with DWS/STHS-SOC. The reason why it does not
change is that considering the stochasticity of the load, wind,
and solar generation in the optimization model will affect
the thermal power production, which is the only variable
that directly affects the value of the objective function since
the water costs are considered zero. Thus, the water dis-
charges (Figure 9) volume of reservoirs (Figure 10), spillage
(Figure 11) and dual variable of the upper limit of spillage
(Figure 12) remain the same.
On the other hand, wind generation (Figure 13), solar

generation (Figure 14), and load demand (Figure 15) are
modified when the stochasticity of these random variables

74104 VOLUME 9, 2021



J. C. Castaño et al.: STHS With Solar and Wind Farms Using Second-Order Cone Optimization

FIGURE 17. Quantile function of wind power at 12 pm ( ).

FIGURE 18. Quantile function of solar power at 12 pm ( ).

FIGURE 19. Quantile function of load at 12 pm ( ).

is considered. This alters the generation of thermal power
(Figure 16) which changes the value of the objective function
that is directly linked with the value of this variable. Thus,
the larger the renewable power is, the lower the thermal power
is until the lower limit of the thermal unit and line capacities
allow it.

Additionally, Figures 17, 18, and 19 depict the quantile
function for wind power, solar power, and power consumed.
For the sake of simplicity, these figures were drawn just for
an hour since the quantile functions keep the same shape for
all hours, except for the function of solar power at hours when
there is no solar radiation. In this case, said function is a
straight line located in φρ = 0. The reason for this is that
the power produced in this period is equal to zero.

Both the quantile functions of solar and wind power (see
Figures 17 and 18) show that, if it is required to comply
constraint (18) with a higher probability, the value of φρ is
going to be lower. The reason for this is that, as ζ increases,
the value 1− ζ decreases, which produces a movement to the
left in both figures. This implies that, in the quantile function,
which is always growing, the value of φρ decreases when
a movement to the left is carried out. Consequently, when

TABLE 4. Minimum operation costs.

ζ = 80% both wind, and solar generation are less than
when ζ = 60% (See Figures 13 and 14).

The behavior of the quantile function of load demand
is somewhat different (see Figure 19). In this case, if it is
required to increase the probability of holding constraint (20),
the value of φδ increases, which increases the value of load
demand when ζ = 80% compared with when ζ = 60%.
Figure 15 depicts this behavior.
Consequently, under this approach, the generation of

renewable sources is underestimated and the load is over-
estimated to ensure that the generated power is going to
supply the consumed power. This behavior impacts the objec-
tive function, as Table 4 shows. The reason for this is that
when the renewable source production decreases and the load
increases, the thermal unit has to produce more to keep the
power balance, as Figure 16 depicts. Thereby, the operation
costs are higher.

It addition, it can be seen that, for the DWS/STHS-SOC
model and the RWS/STHS-SOC model case II, the values of
solar power and power consumed are similar. Likewise, wind
power for both cases are comparable, with a gap between
0 and 11 hours. This implies that using mean values of data
to carry out the scheduling is an assumption that only allows
values around 60% of robustness.

It is important to mention that several simulations (for each
model) were carried out to verify the uniqueness of the pro-
posed methodology. All simulations gave the same optimal
value, which is one of the main characteristics and advan-
tages of convex optimization compared with metaheuristic
techniques, where the convergence point varies each time that
the algorithm is run. The costs of the objective function and
the CPU times are presented in Table 4.

VI. SUMMARY OF RESULTS
• The proposed SOC approximation for STHS gives an
optimum of 925866.00 CU with a convergence time
of 4.7 S. This value of the objective function is between
the range of results of other algorithms that do not
consider rigorous mathematics. Comparing these results
gives us a good idea of how close the proposed method-
ology is to the optimum.

• The impact of renewable energy integration in a
traditional hydrothermal system is analyzed. Thus,
the generation costs reduce 16.5% (DWS/STHS-SOC),
8.9% (RWS/STHS-SOC model case I), and 16%
(RWS/STHS-SOC case II), in comparison to results
obtained by STHS-SOC.

• The spillage of reservoir 3 tends to be 2 × 104 m
3

s
as much as possible. This can be explained from two
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different perspectives. First, the higher efficiency of unit
4 compared with unit 3 makes the optimization model
produce more power with unit 4 instead of unit 3, which
promotes spilling water from reservoir 3 to reservoir 4.
Second, by analyzing the dual variable of upper spillage,
it is observed that these constraints impact the objective
function considerably (see Figures 12).

• Since the main values of wind speed and solar
irradiation only ensure a robustness close to 60%
(Figures 13 and 14), these measures are an inaccurate
methodology to predict the power produced by renew-
able energy.

• As higher robustness is considered, lower renewable
generation and higher demand values are obtained,
which implies higher production costs.

VII. CONCLUSION
A SOC relaxation was carried out, which showed a superior
performance (faster CPU time and lower computational com-
plexity) compared with several techniques studied before,
thoughwe have to be careful with a direct comparison asmen-
tioned previously. Besides, under this approach, lineariza-
tions are not necessary since it faces the real geometry of
the problem, in a mathematically rigorous way, and it is
much simpler than the SDP relaxation presented in previous
studies.

It was confirmed that convex relaxation gives a global
optimum for the approximated Short-Term Hydrothermal
Coordination model, something that is not possible to find
when heuristic algorithms are used.

The dual variable of the upper limit of spillage was ana-
lyzed. It was found that the spillage should not be ignored
in this problem, since the study of its dual variable shows
that it affects the objective function considerably when hydro-
chains are considered. It is important to highlight that this
kind of analysis cannot be carried out with heuristic and
metaheuristic techniques.

A robust model, which considered the stochastic nature
of the renewable sources and load demand, was devel-
oped by defining upper bounds for the generated power
and lower bounds for power demand as chance-box con-
straints. This methodology turns out to be conservative for
wind generation due to the shape of its quantile function,
which increases slowly as probability increases. Therefore,
a scenarios approach can be more suitable when it comes
to wind power. Conversely, the quantile function of solar
power increases faster, which results in a not-so-conservative
deterministic equivalent for the constraint related to power
produced by solar units. Furthermore, the robustness of load
demand, under this approach, varies in a linear way in a
small interval; this makes sense if the high accuracy of load
prediction and its normal distribution are considered.

It was observed that using the mean value of data of
the stochastic variables does not represent the real behavior
of said variables. This is because, by using this approach,
a robustness of only 60% can be guaranteed.

Including the unit commitment and developing a more
accurate model that includes the topology, time delays, tail-
race, energy storage devices, polynomial hydro power func-
tions, and the interdependence of the stochastic variables will
be topics for further research and development.

APPENDIX A
EQUATION DEMONSTRATION
To prove that (8) can be rewritten as:∥∥∥∥∥∥∥∥∥∥∥∥
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Let us consider the following auxiliary variables:
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√
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c3iqit
2
√
c1i
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By replacing (23) and (24) in (22) and calculating the
Euclidean norm of the vector to the right side, we obtain the
following expression:√
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2
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2

)2
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2
(25)

By raising both sides of the previous expression to the
second power, we obtain:
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(
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2
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Note that k2it+e
2
it = c1iv2it+c2iq

2
it−c3iqitvit and

(
1−uit
2

)2
−(

1+uit
2

)2
= −uit . Therefore, (26) can be rewritten as:

c1iv2it + c2iq
2
it − c3iqitvit − uit ≤ 0 (27)

Recovering the value of the auxiliary variable uit = c4ivit+
c5iqit + c6i − ph

it and organizing our expression, we finally
obtain (28), which proves that a quadratic constraint can be
rewritten as a Second-Order Cone constraint.

ph
it ≤ −c1iv

2
it − c2iq

2
it + c3iqitvit + c4ivit + c5iqit + c6i

(28)

APPENDIX B
LINEARIZATION OF THE PROBLEM
To analyze the loss of information when linearizations are
carried out for the STHTS problem, the MATLAB curve
fitting tool was used to carry out linear approximations of the
hydropower equations. Thus, said equations take the follow-
ing structure:

plhit = cl1i vit + cl2iqit + cl3i (29)
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TABLE 5. Hydropower coefficients linearization.

where the coefficient of the linearization are given in Table 5.
It is worth mentioning that the linearizations were carried

out for the intervals between qmin − qmax and vmin − vmax ,
which were taken from [20]. Said linearization was a polyno-
mial one.

FIGURE 20. Water discharge of hydro units (linearized model).

FIGURE 21. Volumes of reservoirs (Linearized model).

Figures 20 and 21 present the water discharges and the vol-
umes of reservoirs obtained when (29) is considered. These
values were replaced in both (2) and (29), obtaining the power
produced for all units in both cases (Tables 6 and 7). In doing
so, the results show a considerable difference between the
power produced with the non-convex equation and the linear
equation, when the values of Figures 20 and 21 are considered
(Table 8).
Note that the hydropower difference between the linear

equations and the results of the quadratic equation are close to
20 MW (Table 8) in most time intervals, which sums to a total
difference in a day of 536.87 MW . This gap is considerable
if we take into account the size of the test system, and it
gives us an idea about how much information can be lost
when linearizations are carried out. In addition, the values of
volumes and water discharges for unit 3 in the first 5 hours,
provided by the linearized model, gives negative values when
they are replaced in the quadratic equation that models the
real behavior of this unit (see Table 7). This implies that the

TABLE 6. Power produced by hydro units using linearized equations
[MW].

TABLE 7. Power produced by hydro units using quadratic equations
[MW].

TABLE 8. Total hydropower using linearized equations, total hydropower
using quadratic equations and difference between the total hydropower
using linearized equations and the total hydropower using quadratic
equations (HPDLQ) [MW].

linearized model is giving non-feasible operation points since
these negative values would mean that unit 3 is working as a
pump that consumes power.
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