
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Sondre Sørbø

Corrective Source Term Approach for
Improving Physics Based Models

Master’s thesis in Applied Physics and Mathematics
Supervisor: Trond Kvamsdal and Adil Rasheed
June 2022

M
as

te
r’s

 th
es

is





Sondre Sørbø

Corrective Source Term Approach for
Improving Physics Based Models

Master’s thesis in Applied Physics and Mathematics
Supervisor: Trond Kvamsdal and Adil Rasheed
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





i

Abstract

Reliable predictive modelling techniques are paramount to innumerable industry objectives.
With the ever emerging big data revolution, traditional methods based on physical descrip-
tions are being challenged by the newer machine learning paradigm. Still, many industries
are reluctant to trusting black box models, with good reasons. Although these models in nu-
merous occasions offer more accurate predictions at a lower computational cost in the online
phase of the model, they come with significant disadvantages in terms of trustworthiness and
generalizability.

Hybrid analysis and modelling aim to combine ideas from physics based and data driven
modelling into more robust hybrid models. In this thesis we conduct a series of experiments
on modelling heat and elasticity using one of these hybrid methods, the corrective source
term approach (CoSTA), to correct for various modelling errors stemming from ignored di-
mensions, PDE linearization, unknown source terms, or just from discretization of the equa-
tion. We show that CoSTA produce significantly more accurate results than its counterpart
physics based or data driven models, also when generalizing to situations qualitatively dif-
ferent from the training data. Although CoSTA models has random variations, we argue that
the predictions are more than sufficiently consistent to outclass both the physics based and
the data driven models.

Samandrag

Pålitelege prediksjonsmodelleringsteknikkar er kritisk for eit utal av oppgåver i industrien.
Med ein stadig pågåande teknologisk revolusjon innen store datamengder, vert tradisjonelle
metodar basert på fysiske beskrivingar utfordra av det nyare maskinlæringsparadigmet. Sam-
stundes nøler mange industriar med å lita på modellar basert på ukjende berekningar, med
god grunn. Sjølv om desse modellane i atskillege tilfelle gjev meir nøyaktige prediksjonar,
og krev mindre utrekning når modellane fyrst har vorte trena, så kjem dei med betydelege
ulemper når det gjeld pålitelegheit og generaliseringsevner.

Hybrid analyse og modellering siktar på å kombinera idear frå fysikkbaserte og datadrivne
modellar til meir robuste hybride modellar. I denne oppgåva utfører me ei rekkje eksperi-
ment der me modellerer varme og elastisitet, ved å nytta ein av desse hybride metodane,
CoSTA (frå engelsk "corrective source term approach"), for å korrigera for modellerings-
feil som stammar frå ignorerte dimensjonar, linearisering, ukjende kjeldeledd eller berre
frå diskretisering av likningane. Me viser at CoSTA gir mykkje meir nøyaktige resultat enn
tilsvarande fysikkbaserte eller datadrivne modeller, òg når ein generaliserer til situasjonar
som er kvalitativt ulike frå treningsdataene. Sjølv om CoSTA-modellar har vilkårlege vari-
asjonar, argumenterer me for at prediksjonane er meir enn konsistente nok til å utklassa
både dei fysikkbaserte og dei datadrivne modellane.
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Chapter 1
Introduction

Rarely do we have a complete understanding of any phenomena of interest. Moreover, due to
numerous assumptions needed to make solutions computationally tractable, predictions are
erroneous. In such a situation, a model that can address the problems of incomplete models
and drastic assumptions will be highly welcome. This thesis demonstrates how the Corrective
Source Term Approach can address these problems.

1.1 Motivation and Background

Predictive modelling and simulation has for a long time mainly been done using physics based
modelling (PBM). With the rise of machine learning (ML) in the last decades, data driven
modelling (DDM)1 has shown its ability to outperform PBM in many situations [2, 3, 4, 5],
but it comes with its own disadvantages, hurting the overall usefulness of these methods.
In [6] the authors describe the ideal model in the context of digital twins as generalizable,
trustworthy, self-evolving, computationally efficient and accurate. Although the importance
of the various properties of a model depends on its intended use, these properties should
be desirable in any situation. Likewise, unwanted properties are the opposite of these, along
with requirements like large amounts of data.

PBMs, when based on the correct physics, are very accurate and generalizable but are usu-
ally computationally demanding and do not adapt to new information automatically. DDMs,
on the other hand, after training, are very efficient and possibly very accurate but not gener-
alizable. The accuracy of both methods is very dependent on the knowledge used to build the
model. PBMs require accurate knowledge of the physical phenomenons, as well as mathemat-
ical methods for solving the physical equations. We can come quite close to the perfect model
described above with accurate physics and analytical or good numerical solutions. However,
if the physical knowledge is inaccurate, or we lack methods for efficient computation, this
heavily affects the model’s performance. While DDMs do not need any physical knowledge,
they require data, usually in relatively large amounts, and the model’s accuracy is highly de-
pendent on how this data represents the scenarios for which the model is to be used. With
good data, DDM can deliver highly accurate results for only a fraction of the computational
cost of similar results from a PBM, if there even is a PBM available. However, DDM perform
poorly on situations that differ from the training data. Another problem with DDM is the
randomness and unexplainability of the results. Each initialization of a DDM is unique, and
its results will vary slightly from the others for the same problem. Moreover, because of the
black-box nature of the DDMs, there is no guarantee for the models predictions to be accurate
in all scenarios. This last problem with DDM has prevented them from being utilized in many
high-stake applications where a single inaccurate result has a significant impact.

The increasing usage of digital twins, which we observe across the industries, brings with
it a great demand for models capable of accurately modelling processes in real time [7].
But with their apparent deficiencies, PBM and DDM lack the abilities needed to fully reap

1The abbreviation DDM will be used both as the concept of data driven modelling, and a specific data driven
model. It should be clear from the context which one we mean. PBM is also used in this way.
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the benefits of the digital twins. To counter these problems, hybrid analysis and modelling
(HAM) has been and is emerging as a new eclectic paradigm that combines techniques from
both PBM and DDM. The aim is to combine the strengths of both paradigms to create better
models, that obtain the desirable properties described above.

1.1.1 Literature Review

Hybrid Analysis and Modelling

How to best combine physics based and data driven methods in a beneficial manner highly de-
pends on the situation, and several different successful HAM techniques have shown promis-
ing results. Be aware of inconsistent nomenclature when reading articles by different authors.
[8] provides a solid list of contributions to this field of research, and systematically organise
them based on both the methods of integrating physical knowledge in machine learning, and
the type of problem it is used to solve. This section is based on that survey. The objectives
when using HAM can be to improve properties (accuracy, computational efficiency e.g.) of
PBMs, parts of PBMs or reduced order models, or for downscaling. Other objectives are to
generate data for usage in subsequent data-demanding applications, and to use available
(possibly synthetic) data to infer properties of the governing equation or the PBM, like in-
ferring physical parameters, discovering governing equations, or quantifying uncertainty of a
PBM.

[8] also divides the methods into four groups. Physics-guided loss function (PGLF), where
a penalty for nonphysical output is added to the loss function, is a straight-forward way of
enforcing a DDM to produce output mostly consistent with physical knowledge. This method
has been used for all the objectives listed above [9, 10, 11, 12, 13, 14, 15, 16, 17]. In
physics-guided design of architecture (PGDA), the physical knowledge is incorporated into
the architecture of the DDM in some way. This may involve having intermediate nodes in
a DNN take values of parameters known to be important to the system, or enforcing in-
variances like translational or rotational symmetries using custom convolutional kernels in
a convolutional neural network (CNN). PGDA methods are also used for all objectives listed
above [18, 19, 20, 21, 22, 23, 24, 25, 26]. Physics-guided initialisation (PGI) methods use
physical knowledge when generating the initial values of the parameters in a DDM, before
training. Physical data (often synthetic) can be used for pre-training a DDM (or parts of it)
by using transfer learning. PGI has been used for improving physical models [27, 28, 29, 30],
and for uncertainty quantification [31, 32]. Common for all these methods is the concept of
utilising the physical knowledge to augment a DDM. The alternative is to base the method
on either a PBM or the combination of a PBM and a DDM. Such techniques can be, among
other, to use a DDM to predict the error of a PBM [33, 34, 35, 36], using the output of a PBM
as input in a DDM [37], replacing components of PBMs with DDMs [38, 39, 40], or using an
ensemble method consisting of both PBM and DDM [41, 42, 43].

The Corrective Source Term Approach

The corrective source term approach (CoSTA), originally introduced in [44], combines the
strengths of PBM and DDM by using the DDM as a correction for parts of the physical pro-
cesses not covered by the PBM, through applying it as a source term correction before solving
with the PBM. This is similar to the error predicting method mentioned above, but the DDM is
applied before solving the PBM. The method also uses the output of uncorrected the PBM as
input. [45] gives a quick and precise introduction and theoretical justification of the method,
along with impressive results in several one-dimensional heat modelling problems. [44] also
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includes results for two-dimensional problems, and concludes that CoSTA provides a substan-
tial increase in accuracy over both PBM and DDM, and is more generalizable than DNN. They
also argue that by interpreting the corrective source term, automated sanity checks can make
sure the method produces trustworthy results, unlike most DDMs.

1.2 Objectives and Research Questions

The previous works about CoSTA has argued that CoSTA can be applied to any deterministic
PBM. Being a partially black box method without theoretical results describing the quality of
its performance, its trustworthiness relies on empirical results. Yet, with the method still being
in its infancy, the results provided thus far are relatively few, and cover a narrow selection of
problems relative to its claimed area of applicability. The purpose of this thesis is to provide
more results on the performance of CoSTA, and expand the set of problems it has been used to
solve. To this end, we conduct a series of experiments, that differ from previous experiments
by

• including new types of modelling errors to the PBMs, stemming from linearization and
ignoring dimensions of a PDE,

• modelling elasticity as well as heat conduction,

• using the finite element method, as opposed to the of finite difference method, to form
the PBM.

In each experiment we test these properties of CoSTA, along with its corresponding model
parts PBM and DDM:

• Accuracy - How far is the prediction from the correct solution?

• Generalizability - To what extent do the models performance depend on the similarity
between the training data and predictions?

• Consistency - How much do the predictions from unique CoSTA models, trained on the
same data, vary?

Through answering these questions in each experiment, we ultimately aim to answer the
main question: Does the previously published results from CoSTA generalize to these situa-
tions?

1.3 Outline of Report

This thesis includes an introduction to the relevant theory in Chapter 2. A person with a
mathematical background should be able to understand the concepts quite well, although for
using the methods seen in this thesis for one’s own experiments it might be necessary to check
out some of the sources cited in that chapter, especially for someone without experience with
using neural networks.

Chapter 3 presents setup of how the experiments in the thesis were performed, first in gen-
eral, then the details of each experiments are presented. This chapter should make the reader
able to reproduce results similar to the ones presented in this thesis. Chapter 4 presents the
results of the experiments and a discussion of these. Section 4.1 presents dimensional reduc-
tion of the heat equation, followed by linearization of the heat equation in Section 4.2. In
Section 4.3 we model the elasticity equations with and without source term. The same equa-
tion is modelled with reduced dimensionality in Section 4.4 and linearization in Chapter 4.5.
Finally, we summarize and discuss all the collected results in Section 4.6 before presenting
our conclusion and suggestions for future work in Chapter 5.
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Chapter 2
Theory
In this chapter the theory on which this thesis is based on, is presented. Please note that an
earlier version of most of this chapter (not including the sections about elasticity) was already
presented in the specialisation project [1].

2.1 Physics Based Modelling

Physics based modelling involves careful observation of a physical phenomenon of interest
(heat diffusion and elasticity in the current work), development of its partial understanding,
expression of the understanding in the form of mathematical equations (based on e.g. the
law of conservation of energy) and ultimately solution of these equations. Due to the partial
understanding and numerous assumptions along the steps from observation to solution of
the equations, a large portion of the important governing physics gets ignored. Due to high
computational costs, high fidelity simulators with minimal assumptions has so far been lim-
ited to the offline design phase only. Despite this major drawback, what makes these models
attractive are sound foundations from first principles, interpretability, generalizability and
existence of robust theories for the analysis of stability and uncertainty. However, most of
these models are generally computationally expensive, do not adapt to new scenarios auto-
matically and can be susceptible to numerical instabilities. The PBMs used in this thesis are
discretizations of the modelled PDEs using the finite element method (FEM) along the spatial
dimension, and the backward Euler method along the temporal dimension. For an introduc-
tion to FEM, see [46] or [47]. In addition to the inevitable discretization error, we will in most
experiments in this thesis have some intentional modelling error, from PDE linearization, ig-
nored dimensions or ignored source terms. The purpose of this is to test CoSTA on realistic
erroneous models. In real world applications, such modelling errors may be intentional (or
rather a known price for an intentional simplification) in order to speed up calculations. But
may also stem from unknown physics, or lack of information about the system necessary to
take advantage of more complex physical models. In this thesis, we choose the heat equation
and the elasticity equation to demonstrate the effectiveness of the CoSTA method.

2.2 Heat Diffusion Modelling

In this section we introduce the heat equation, the equation that has been modelled using
CoSTA in [44] and [45]. We have chosen to continue the work on this problem, as in addition
to enabling easy validation of the implementation by comparing to the results in [44, 45],
heat modelling is highly relevant for many modelling situations, for several reasons. Firstly,
temperature measurements are being increasingly used for health / condition monitoring
on a large variety of applications. [48] demonstrated how body temperature can be used
for remote health monitoring while [49] used temperature for real-time bearing condition
monitoring. Secondly, many quantities that can not be directly measured in a process can be
indirectly inferred from the measured temperature, and thirdly, non-intrusive, cost-effective
methods exist to make temperature measurements in real-time (eg. [50]).



Chapter 2. Theory 5

Governing Equation

The heat equation with constant unit thermal conductivity can be written as

Bu

Bt
“ ∆u ` f, (2.2.1)

where u “ upt, xq is the temperature and f “ fpt, xq is a heat source term, and ∆ “ ∇2 is the
Laplace operator. The equation states that heat will flow from warm to cold areas at a rate
proportional to the heat gradient, while additional heat may be introduced or extracted using
the source term. For a more thorough introduction to the heat equation, see for example [51].
We will consider the equation on a bounded spatial domain x P Ω, for a time interval t P r0, T s.
In order for the equation to yield a unique solution, we need an initial condition and a
boundary condition,

up0, xq “ u0pxq @x P Ω (2.2.2)
LBΩupt, xq “ gpt, xq @x P BΩ, t P r0, T s, (2.2.3)

for some appropriate1 differential operator LBΩ. In this thesis, we will use Dirichlet boundary
conditions, i.e. LBΩ “ I, where I is the identity operator.

2.2.1 Discretization with Finite Elements

We will now derive the discretized heat equation. We start by discretizing the time dimension,
and then the spacial dimension(s).

Let k be some constant time step length, and define the time steps ti “ ik for i P t0, 1, ...u.
Let uip¨q « upti, ¨q be the numeric approximation of the solution at time ti. We approximate
the time derivative by Bu

Bt
ptiq «

ui´ui´1

k
and get the semi-discretized heat equation

ui ´ k∆ui “ ui´1 ` fpti, ¨q. (2.2.4)

We require the functions ui to have integrable first derivatives, and consider the solution
space X “ H1pΩq. Multiplying with a test function v P X0 “ tv P X : v|BΩ “ 0u and
integrating over the spacial domain Ω, we get

ż

Ω

puiv ´ kiv∆uqdx “

ż

Ω

vpui´1 ` fpti, ¨qqdx, (2.2.5)

or equivalently, since v|BΩ “ 0,
ż

Ω

puiv ` ki∇v∇uqdx “

ż

Ω

vpui´1 ` fpti, ¨qqdx. (2.2.6)

We now consider the above equation with the functions in a finite dimensional subspace
Xh Ă X spanned by the basis of functions tϕjuj. This means we have ui “

ř

j ui,jϕj, v “
ř

j vjϕj, and fpti, xq “
ř

j fi,jϕjpxq, for some finite sets of scalars tui,juj, tvjuj, tfi,juj. Let U piq

and V be vectors of the two former sets. We can then rewrite the above equation into

V T
pM ` kAqU piq

“ V TMU pi´1q
` V TF piq, (2.2.7)

where M is the matrix with elements mj,l “
ş

Ω
ϕjϕldx, A the matrix with elements aj,l “

ş

Ω
∇ϕj∇ϕldx and F piq the vector with elements

ş

Ω
ϕjfpti, ¨qdx. We use a lifting function (see

[46]) to handle the boundary conditions, and end up with the discretized equations
1There has to be Dirichlet condition on at least some part of BΩ, or constant terms can be added to the

solution without violating the heat diffusion equation, thus making the solution non-unique.
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pM ` kAqU piq
“ MU pi´1q

` F piq. (2.2.8)

This system of linear equations can be solved by any appropriate solver, preferably one
for sparse matrices if the basis allows it. Starting from U0, the known initial condition u0

projected onto Xh, this enables us to calculate an approximation of upx, tq step by step. The
results in this thesis are found using piecewise linear Lagrange elements [52] on a equidistant
grid. As long as the grid is fine enough, and the equation, the boundary and initial conditions
and the source term is known, this gives a very accurate solution. However, we will see that
when we introduce modelling errors, the solution might be quite far from the correct one.

2.3 Elasticity Modelling

The linear elasticity equations is a set of differential equations describing the continuous de-
formation of solid objects when subject to given forces. It is used extensively in civil and
mechanical engineering. This linearized model is a good approximation when the deforma-
tion is small relative to the object size, and the stress is linearly dependent on the stain,
for forces small enough to not permanently deform the objects. A solid introduction to this
equation and the theory from which it is derived, can be found in [53].

We will consider both the two-dimensional and three-dimensional versions, so we start by
describing a general n-dimensional system. We will in this thesis assume unit mass density
and Young’s modulus in all cases2. We will also assume the material is isotropic, meaning
its properties are independent of orientation (unlike e.g. wood which is stronger along the
grains), and that Poisson’s ratio is ν “ 0.25, a value close to those of many typical solids. Let
u be the displacement vector field. Its elements describe a points position relative to where it
would be without the applied forces. Furthermore, let ϵ be the strain tensor, a n ˆ n matrix.
Its elements describe the relative stretching of an infinitesimal element of the object. Finally,
the Cauchy stress tensor σ is a n ˆ n matrix describing the internal forces.

The linear elasticity equations, assuming unit mass density, are

ϵ “
1

2
p∇u ` p∇uq

T
q (2.3.1)

σ “ Cpϵq (2.3.2)
∇ ¨ σ ´ :u “ ´f , (2.3.3)

where f is the load vector, and C is a tensor product, which will be specified for the
relevant dimensions in the following sections. Equation (2.3.1) is a linearization of the defi-
nition of strain, Equation (2.3.2) is a material dependent relation between strain and stress,
and Equation (2.3.3) is Newton’s second law. In this thesis we will use two versions of the
equations:

Two-Dimensional Elasticity

In the following we will use subscripts as indices describing indices related to the direction
of components, and not as partial derivatives.

2Any other constant values of these could have been removed by scaling time and space dimensions.
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Define the linear operator

ϵ̄pvq “

»

—

–

Bvx
Bx
Bvy
By

Bvx
By

`
Bvy
Bx

fi

ffi

fl

, (2.3.4)

the matrix

C “
1

1 ´ ν2

»

–

1 ν 0
ν 1 0
0 0 1´ν

2

fi

fl (2.3.5)

and the vector

σ̄ “

»

–

σxx

σyy

σxy

fi

fl , (2.3.6)

.
Then linear elasticity equations can be written

σ̄ “ Cϵ̄puq (2.3.7)
∇ ¨ σ ´ :u “ ´f , (2.3.8)

Note that σxy “ σyx, so σ (matrix) and σ̄ (vector) contain the same variables.

Three-Dimensional Elasticity

For the three-dimensional case, we define the linear operator

ϵ̄pvq “

»

—

—

—

—

—

—

—

–

Bvx
Bx
Bvy
By
Bvz
Bz

Bvy
Bz

` Bvz
By

Bvz
Bx

` Bvx
Bz

Bvx
By

`
Bvy
Bx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.3.9)

the matrix

C “
1

p1 ` νqp1 ´ 2νq

»

—

—

—

—

—

—

–

1 ´ ν ν ν 0 0 0
ν 1 ´ ν ν 0 0 0
ν ν 1 ´ ν 0 0 0
0 0 0 1´2ν

2
0 0

0 0 0 0 1´2ν
2

0
0 0 0 0 0 1´2ν

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.3.10)

and the vector

σ̄ “

»

—

—

—

—

—

—

–

σxx

σyy

σzz

σyz

σzx

σxy

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2.3.11)

Equations (2.3.7) and (2.3.8) hold for this case too.
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Wellposedness of Initial Boundary Value Problem

In order to have unique solution, we add initial and boundary conditions to the equations. In
this thesis we use Dirichlet boundary conditions on all of the boundary. The initial boundary
value problem reads

σ̄ “ Cϵ̄puq @x P Ω (2.3.12)
∇ ¨ σ ´ :u “ ´f @x P Ω (2.3.13)

upt, xq “ gpt, xq @x P BΩ (2.3.14)
up0, xq “ u0pxq @x P Ω (2.3.15)
9up0, xq “ w0pxq @x P Ω, (2.3.16)

where g is the boundary conditions and u0 and w0 the initial conditions.
Proof of uniqueness of the solution of this can be found in [54]. [55] proves existence of

solution, and continuous dependence on the data, in the slightly less general situation with
C8-smooth functions. This generalizes to our case using density of C8 in Sobolev spaces[56].

2.3.1 Discretization with Finite Elements

We use implicit euler for the time derivatives of u. Denote by ûpiq
p¨q the approximation of

upik, ¨q. The time derivatives are approximated by

:upikq «
9upikq ´ 9uppi ´ 1qkq

k
«

upiq ´ 2upi´1q ` upi´2q

k2
(2.3.17)

Inserted in Equation (2.3.7), we get

∇ ¨ σpiq
´

upiq ´ 2upi´1q ` upi´2q

k2
“ ´f piq (2.3.18)

We denote by Ω the spacial domain, BΩ the boundary, and λ and λBΩ their respective
Borel measures. As with the heat equation, we require integrable first derivatives, and use
the solution space X “ ˆd

i“1H
1pΩq, where d is the number of dimensions. We multiply with

a test function v P X0 vanishing on the boundary and integrate over the spacial domain.
ż

ˆ

vT∇ ¨ σpiq
´ vT u

piq ´ 2upi´1q ` upi´2q

k2

˙

dλ “ ´

ż

vTf piqdλ (2.3.19)

We may rewrite the first term (using that v “ 0 on BΩ)
ż

Ω

vT∇ ¨ σpiqdλ “

ż

Ω

n
ÿ

k“1

n
ÿ

l“1

vk
Bσ

piq
kl

Bl
dλ (2.3.20)

“

n
ÿ

k“1

n
ÿ

l“1

ˆ
ż

Ω

´
Bvk
Bl

σkldλ `

ż

BΩ

vkσ
piq
kl dλBΩ

˙

(2.3.21)

“

n
ÿ

k“1

n
ÿ

l“1

ż

Ω

´
Bvk
Bl

σ
piq
kl dλ (2.3.22)

“ ´

ż

Ω

ϵ̄pvq
T σ̄piqdλ (2.3.23)

“ ´

ż

Ω

ϵ̄pvq
TCϵ̄pupiq

qdλ (2.3.24)
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Inserting into Equation (2.3.19) above we get, after changing sign on both sides,
ż

ˆ

ϵ̄pvq
TCϵ̄pupiq

qdλ ` vT u
piq ´ 2upi´1q ` upi´2q

k2

˙

dλ “

ż

vTf piqdλ. (2.3.25)

We are now ready to make the jump to finite dimensional space. For upiq P Xh “ spanptϕmuNm“1

for some finite N , and v P Xh
0 “ X0 Y Xh, let V and U piq be the vectors such that v “

řN
m“1ϕmVm and upiq “

řN
m“1ϕmU

piq
m . Lets define the NˆN matrices A “ paklq and M “ pmklq

by akl “
ş

Ω
ϵ̄pϕkqTCϵ̄pϕlqdλ and mkl “ 1

k2

ş

Ω
ϕk

Tϕldλ, and the vectors F piq “ pf
piq
k q by

f
piq
k “

ş

ϕT
k f

piqdλ. We can then write the above equation as

V TAU piq
` V TMU piq

´ 2V TMU pi´1q
` V TMU pi´2q

“ V TF piq. (2.3.26)

We use the lifting function approach to handle the boundary conditions. Rearranging the
terms, we end up with the equations

pA ` MqU piq
“ F piq

` 2MU pi´1q
´ MU pi´2q, (2.3.27)

which is solved iteratively by some appropriate numerical scheme.

2.4 DDM Using Neural Networks

DDM has become very popular in recent years, following the increased availability of large
amounts of data and computational resources as well as free, state of the art machine learn-
ing libraries. Contrary to PBM, DDM learns from data, and assuming the data provided is
of sufficient quantity as well as quality, it will learn the full physics of the system it de-
scribes, independent of our knowledge and understanding of it. Some of the advantages of
this approach is highly computationally efficient predictions, ability to adapt to changes on
the fly, as well as high accuracy even for difficult problems, when sufficient data is available.
Nevertheless, they are not widely used in high stake situations due to weaknesses like poor
generalizability, lack of explainability and theory of error analysis and stability, and the need
for large amounts of data. Although there is a large variety of DDM available we use deep
neural networks (DNN) in this thesis, as they are universal approximators [57, 58, 59] and
hence have the ability to model highly complex nonlinear phenomena.
(The paragraph above was adapted from [45])

A DNN with n layers is a function D : Rd0 Ñ Rdn defined by

Dpxq “ Tn ˝ sn´1 ˝ Tn´1 ˝ sn´2 ¨ ¨ ¨ ˝ s1 ˝ T1pxq (2.4.1)

where Ti : Rdi´1 Ñ Rdi are affine transformations and si : Rdi Ñ Rdi are some preferably
nonlinear activation functions.3 Each transformation Ti is determined by a weight matrix and
a bias vector, a total of di´1 ¨ di ` di values. These values are tuned to minimize the error on
the training data.

DNNs are widely used, due to their simplicity and yet astonishing performance in many
situations. They can be applied to a large variety of problems, and have delivered impressive
achievements across numerous fields of research and applications. Meanwhile, they also have
some inherent weaknesses. They are tuned for performing on the training data. While there
are many ways of preventing the network from being too specialized [60], they will not
be good at extrapolation cases where the prediction task is somehow qualitatively different

3With linear activation functions the method reduces to multivariate linear regression. For the universal
approximation property it should also be nonpolynomial.



Chapter 2. Theory 10

from the training tasks. In addition, they are not easily explainable or predictable, meaning
its hard to explain what kind of patters the network will look for, and unexpected predictions
can occur. Compared to PBMs, DDMs usually make predictions much faster, but may need
long training times for optimal performance.

2.5 Corrective Source Term Approach

In this section we present a brief justification of the use of CoSTA. It is based on the more
thorough argument that can be found in [45].

Consider the differential equation

LΩu “ f, @ x P Ω

LBΩu “ g, @ x P BΩ, (2.5.1)

where LΩ, LBΩ are differential operators, f is a source term and g a function specifying the
boundary condition. Now let ũ be the solution to the perturbed problem

L̃Ωũ “ f̃ , @ x P Ω

L̃BΩũ “ g̃ @ x P BΩ, (2.5.2)

where the perturbations ˜̈ are due to imperfections such as unknown physics, modelling er-
rors, discretization error, or inaccurate data. For example, we will later in this thesis simplify
a nonlinear operator LΩ with a linear (and discretized) L̃Ω. Assume we can calculate the
residuals defined as

rΩ “ L̃Ωpu ´ ũq

rBΩ “ L̃BΩpu ´ ũq, (2.5.3)

and let ̂̃u be the solution of the corrected, perturbed problem

L̃Ω
̂̃u “ f̃ ` rΩ, @ x P Ω

L̃BΩ
̂̃u “ g̃ ` rBΩ @ x P BΩ. (2.5.4)

Using the definition of the residuals, as well as the perturbed Equation (2.5.2), we see that

L̃Ω
̂̃u “ f̃ ` L̃Ωpu ´ ũq “ L̃Ωu, @ x P Ω

L̃BΩ
̂̃u “ g̃ ` L̃BΩpu ´ ũq “ L̃BΩu @ x P BΩ,

which reduces to ̂̃u “ u if the corrected, perturbed problem (2.5.4) yields a unique solution.
From this argument, we see that the source term corrections are able to compensate for
perturbations in the differential operators as well as the source terms.

In real scenarios, we obviously cannot calculate the residual exactly, as that would require
the solution we are trying to estimate. The idea of the CoSTA method is to use a DDM to
estimate the residual. For the input of the DDM we use the uncorrected solution ũ. This
means the PBM is used twice, first to solve Equation (2.5.2) for ũ, then Equation (2.5.4) for̂̃u. Since the DDM output is but a correction, the CoSTA framework exploits the knowledge in
the physical model, unlike a pure DDM approach.

For the discretized version of heat equation derived in section 2.2.1, the corrected equation
is

pM ` kAqpuiq “ Mui´1 ` Fi ` r. (2.5.5)
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Likewise, the corrected equation for elasticity reads

pA ` MqU piq
“ F piq

` 2MU pi´1q
´ MU pi´2q

` r. (2.5.6)

As the boundary values are known, we do not need any correction for these elements. There-
fore the DDM only need to output values for the inner nodes.

In combining a PBM and a DDM, CoSTA aims to combine the strengths of both of these,
but it is clear that it also inherits weaknesses from both. It requires both a physical description
of the system it models, as well as empirical data. It needs to be trained before it can be used,
but it also uses much computational resources to make a prediction, as two steps must be
made with the PBM for every step with the CoSTA, in addition to the DDM prediction. On the
other hand, it is affected less by inaccuracy in the physical description than a PBM, and due
to the minor role of the DDM part compared to a pure DDM method, it should also be less
affected by poor quality or quantity of data. Finally, the extra accuracy it has shown easily
justifies the additional computational cost.

2.6 Method of Manufactured Solutions

We wish to evaluate the performance of the models in a variety of different scenarios. To this
end we use the method of manufactured solutions [61], which involves choosing a solution
u, and calculating the source f from the governing equation, before trying to reproduce the
solution using f , u|t“0 and u|Ω. The alternative is to choose the conditions f , u|t“0 and u|Ω to
use for approximating the solution ũ. But then the correct solution is unknown, so the error
u´ ũ must be approximated by using a more precise method 4, which is very computationally
demanding, and only gives an approximate error. The method of manufactured solutions
enables easy comparison with the known exact solution to accurately quantify the error of
the model.

4usually high fidelity numerical solutions of the equation, with a fine grid
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Chapter 3
Methodology
This project includes several experiments, to test the usefulness of CoSTA in several situations.
An overview of the experiments is shown in Table 3.0.1. In this chapter, we first present the
general setup of the experiments in Section 3.1, then present the details of each experiment in
the next sections. Unless otherwise stated, all the experiments that follow will use the method
and the parameters presented in Section 3.1. What separates the experiments are the PDEs
solved, the existence and nature of any modelling errors, and the choice of manufactured
solutions.

The design of the experiments, along with choice of parameters for the models, is based
on the paper originally introducing CoSTA [45]. For the exact implementation used for the
experiments and figures in this project, see https://github.com/sondsorb/FEM_CoSTA.

3.1 General Setup

3.1.1 Equation and Manufactured Solution

The exact solution follows a PDE
Lpuq “ f, (3.1.1)

where u is the solution, f is a source term, and L is some possibly nonlinear differential
operator. We refer to this equation as the governing equation.

We model this using three approaches, PBM, CoSTA and DDM, and then compare the
results. The PBM and CoSTA will use a finite element discretization of the governing equation,
possibly with some modelling errors, of the form

L̂û “ f, (3.1.2)

where L̂ is some linear, finite dimensional differential operator approximating L, and û is the
approximation of the solution u.

The solution u is chosen, and the source term f derived by inserting u in the governing
equation. The source term, along with appropriate initial and boundary conditions, are used

Table 3.0.1: Description of experiments and modelling errors (in addition to discretization error).

Experiment Modelling error

Heat with reduced dimensionality, 2D-1D A dimension is ignored
Heat with reduced dimensionality, 3D-2D A dimension is ignored

Slightly nonlinear heat PDE is linearized
More nonlinear heat PDE is linearized

Linear elasticity with source term None
Linear elasticity without source term Source term replaced with zero

Linear elasticity with reduced dimensionality A dimension is ignored
Nonlinear elasticity PDE is linearized

https://github.com/sondsorb/FEM_CoSTA


Chapter 3. Methodology 13

Table 3.1.1: Values of the parameter α used for training, validation and testing.

Set usage Notation Values
Testing Atest t´0.5, 0.7, 1.5, 2.5u

Validation Aval t0.8, 1.1u

Training Atrain t0.1, 0.2, ...2.0uzpAtest Y Avalq

´0.5 0 0.5 1 1.5 2 2.5

Figure 3.1.1: Values of α used for training, validation, interpolation testing and extrapola-
tion testing.

as input for the different methods to reproduce an approximate solution û. This process is
repeated for several different choices of solution u as an attempt to avoid misrepresenting
the usability of the method outside the test scenarios. The manufactured solutions include a
variety of polynomial, exponential and harmonic functions as an attempt to test the methods
on a broad class of solutions. The set of manufactured solution used in each experiment are
presented in their respective sections.

3.1.2 Experiment Procedure

In order to use DDM, either alone or in the CoSTA framework, it is necessary to have some
training data that the models can use to learn from. In the real world, this may be measure-
ments from previous situations that are more or less similar to the one being modelled, or
from high fidelity simulations of possible outcomes, if there is sufficient computational re-
sources available in the offline phase of the model. To imitate this, the solutions u, and in
some experiments also the operator L, are designed to depend on the parameter α. We use
one set of values of this parameter for training, one for validation and one for testing, as is
presented in Table 3.1.1 and visualized in Figure 3.1.1. The test set Atest includes the two
values 0.7 and 1.5 which are close on both sides to values in the training set. These situations
should be very similar to the training data, and will therefore be referred to as interpolation
scenarios. The test set also contain -0.5 and 2.5, which should produce solutions less similar
to the training ones. Machine learning models are known to perform good for tasks similar
to the training data, but much worse on less similar ones, and CoSTA and DDM are expected
to perform worse on these values, which will be referred to as extrapolation scenarios. This
choice of values makes it possible to observe both the accuracy and generalizability of the
methods. The negativity of the value ´0.5 might produce solutions qualitatively different
from the ones with positive α, although this depends on the manufactured solutions.

The process of the experiments is presented in Algorithm 1. K denotes the total number of
time steps. Note the difference between qU , Ũ and Û : we denote by qU the vector form of the
exact solution1. The predictions Ũ , used for training, are based on the previous exact step,
while Û , used for testing, are based on the previous predicted step (the first predicted step is
based on the exact initial values). As in Chapter 2, we use the superscript to denote the time
step, e.g. Û piq is at time ti “ ik.

The methods map the prediction Û pi´1qto Û piq. This map is used iteratively to calculate
Û pKq at the final time step, from the initial (exact) input qU p0q 2. We should therefore expect

1That is, the piecewise linear function characterised by qU equals the exact solution on the grid points
2Note that there are several other alternative ways to solve such a multistep time series forecasting problem,
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Algorithm 1: Pseudocode showing how the experiments were performed. Details on
how training and evaluations were done are omitted, see Sections 3.1.3 and 3.1.4
for this.

Pick a solution uexactpt, x, y, z, αq;
Use governing equation(s) (the PDE before simplification) to calculate f from uexact;
for α P Atrain and α P Aval do

for i “ 0, 1, 2...K ´ 1 do
Use (simplified) PBM to calculate Ũ

pi`1q

PBM “ PBMp qU piqq;
Calculate the residual r̃pi`1q “ L̂p qU pi`1q ´ Ũ

pi`1q

PBM q;

Train DDM to map qU piq to qU pi`1q, i.e. minimize
ř

αPAtrain

řK´1
i“0

ˇ

ˇ

ˇ

qU pi`1q ´ DDMp qU piqq

ˇ

ˇ

ˇ

2

;

Train CoSTA network to map Ũ
pi`1q

PBM to r̃pi`1q, i.e. minimize
ř

αPAtrain

řK´1
i“0

ˇ

ˇ

ˇ
r̃pi`1q ´ DDMCoSTApPBMp qU piqqq

ˇ

ˇ

ˇ

2

;

Û
p0q

DDM “ qU p0q;
Û

p0q

PBM “ qU p0q;
Û

p0q

CoSTA “ qU p0q;
for α P Atest do

for i “ 0, 1, 2...K ´ 1 do
calculate Û

pi`1q

DDM “ DDMpÛ
piq
DDMq;

calculate Û
pi`1q

PBM “ PBMpÛ
piq
PBMq;

calculate Û
pi`1q

CoSTA “ PBMpÛ
piq
CoSTA,DDMCoSTApPBMpÛ

piq
CoSTAqqq;

Evaluate by comparing to exact solution uexact

that any error in one step propagates into the next. It is not feasible to train DDM or CoSTA
to counteract this by fixing the global error, the most obvious reason for this being that the
global error is not available until the training is finished. Therefore, the exact solution is used
as both the input and output training data in every step.

For testing scenarios, the exact solution at time t “ 0 is used as the input for the first step,
and then each model predict each step based on the previous. Boundary conditions are also
used as input for each step, along with the source function values. The error is measured at
each step, and presented in the result chapters.

For actual usage of this method for prediction, the first two lines and the last line of
Algorithm 1 is skipped. Instead, f must be known (or approximated), along with uexact in
training scenarios, and the initial conditions and boundary conditions in the testing scenarios.

3.1.3 Methods

PBMs

For the PBMs, both standalone PBMs and in CoSTA, a linear FEM model is used, with first
order (piecewise linear) Lagrange elements [52] on an equidistant grid. The time interval
is divided into time steps of constant length k “ pNumber of time stepsq´1. Unless specified
otherwise, the spatial domain used is the unit interval r0, 1s or unit square r0, 1s ˆ r0, 1s , and

that does not necessarily suffer from the disadvantages discussed here, although they most definitely have their
own ones.
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Table 3.1.2: Overview of spacial and temporal resolution.

Experiment Elements Time Steps

Heat with reduced dimensionality, 2D-1D 20 5000
Heat with reduced dimensionality, 3D-2D 20 ˆ 20 2500

Slightly nonlinear heat 20 5000
More nonlinear heat 20 5000

Linear elasticity with source term 15 ˆ 15 1000
Linear elasticity without source term 15 ˆ 15 1000

Linear elasticity with reduced dimensionality 15 ˆ 15 1000
Nonlinear elasticity 10 ˆ 10 500

Input
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Input

Input

... ...
...

...
...

Output

Output

Output

...

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

Input
layer

Output
layer
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nodes

80
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80
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21
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nodes

Figure 3.1.2: Visualization of the DNN architecture for the experiments with 20 elements. The nodes
represent input, output and intermediate values, while the arrows going between them
represent dependencies. Generally there is one input node for each basis function, and
one output node for each basis function not on the edge.

time domain is the unit interval r0, 1s. The amount of time steps vary between 500 and 5000,
and the amount of elements in each spacial dimension vary from 10 to 20. The exact numbers
are shown in Table 3.1.2.

Neural Network Architecture and Parameters

The DDMs, both as a model on its own and as part of CoSTA, are deep neural networks, with
four dense hidden layers of 80 nodes each. The length of the input and output layers depend
on the PDE and discretization. The input vector contain every basis function, while the output
does not contain the functions on the boundary. For the one-dimensional heat equation with
20 elements, this gives 21 input nodes and 19 output nodes, as shown in Figure 3.1.2. Since
the elasticity equation has a vector field solution with twice as many basis functions for two-
dimensional solutions, the length of the input and output layers are multiplied accordingly.
This architecture is used for every neural network - both in DDM and CoSTA.

The neural networks are implemented using TensorFlow [62]. As activation function we
use leaky ReLU [63], with coefficient 0.01 for negative inputs. Training parameters are pre-
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Table 3.1.3: Parameters used for the training procedures for all of the neural networks.

Loss function MSE
Optimizer Adam [64]

Learning rate 1e ´ 5
Patience 20

sented in Table 3.1.3. A patience of 20 means the training stops when the score on the vali-
dation set has not improved for the last 20 optimizer steps. All the data is normalized before
it is inputted in the DNN, and the output is unnormalized, based on the training data.

The architecture and parameters used for the DNNs are not tuned for best performance
on the problems used in this paper, but rather taken from [45], who tuned them briefly for
some different heat modelling problems.

3.1.4 Evaluation and Visualization

To evaluate the performance of the different methods, relative root mean square error (RRMSE)
is measured at each time step. This value is defined

RRMSEpU piq, qU piq
q “

||U piq ´ qU piq||2

|| qU piq||2
(3.1.3)

for a prediction U and correct solution qU . For models with stochastic results (i.e. DDM and
CoSTA, that includes a DNN with random initialisation), 10 models are trained and used.
In a real world application, the objective would determine if we are interested in the least
amount of error at all time steps, or only at the last one. In this thesis we are interested in
both. In the result plots presented in Chapter 4, the mean of the RRMSE of the 10 models
is plotted as a line on a logarithmic scale, as a function of time steps. The uncertainty of
this mean is also calculated3, and visualized in the plots by shading the area between the
mean RRMSE, and the mean RRMSE plus one standard deviation. Mean RRMSE minus one
standard deviation is not plotted since it might be negative, which does not work well on
logarithmic scales. Plots of the mean of the final solution is also plotted, and plus/minus the
uncertainty around this mean is shaded, for one-dimensional solutions. For experiments with
more than one dimension, plots of the final solutions take up a lot of space, without being
very interesting, and is therefore put in the appendix.

3.2 Modelling Heat with Reduced Dimensionality

With each added physical dimension in a model, the computational complexity increases
greatly. For this reason, if the situations allows it, reducing the dimensionality of a problem
can greatly reduce the cost of solving it. In this section we model a one-dimensional line in
a two-dimensional object by ignoring the effects of the second dimension, and compare to
using a two-dimensional PBM of the same object. Likewise, we also model a two-dimensional
plane of a three-dimensional object by ignoring the effects of the third dimension. Of course,
neglecting dimensions, at least using PBMs, will likely cause large errors, depending on the
scenario. We will test if CoSTA can correct for such errors.

3The standard deviation is calculated using one reduced degree of freedom due to the estimation of the
mean.



Chapter 3. Methodology 17

x

y

Figure 3.2.1: The object modelled in the first dimensional reduction setup. We predict the temper-
ature only at the thick red line at y “ 0. Boundary conditions are needed at the end
points of this line.

For the first setup, we want to predict the temperature development of the two-dimensional
square object at r0, 1s ˆ r´0.5, 0.5s, but we only need the temperature at the line at y “ 0, as
seen in Figure 3.2.1. This can be modelled by a two-dimensional PBM, based on the governing
equation, which is the two-dimensional heat equation

Bu

Bt
“

B2u

Bx2
`

B2u

By2
` f. (3.2.1)

The term B2u
By2

requires the PBM to model the two-dimensional area above and below the line
y “ 0, all the way to the known boundary conditions. In this experiment, we instead use the
one-dimensional heat equation

Bu

Bt
“

B2u

Bx2
` f, (3.2.2)

to make the PBM, and train the DMM part of CoSTA to correct for this simplification. This al-
lows us to only include the one-dimensional elements at y “ 0 in the model, which will result
in a much faster prediction. It also requires less boundary conditions (only the end points of
the line, instead of the boundary of the square) and initial conditions (the line instead of the
plane). Note that while the method only uses temperatures at the one-dimensional domain,
the actual solution will depend heavily on what happens in the rest of the two-dimensional
object. Any extra knowledge of the system, like boundary conditions on the edges, or two-
dimensional initial conditions, can thus be used as an indication of similarity between testing
and training data.

For the second setup, we want to predict the temperature development of a 3-dimensional
object, the cube r0, 1s ˆ r0, 1s ˆ r0, 1s, and we are only interested in the temperature at one
of the sides, r0, 1s ˆ r0, 1s ˆ t0u. This setup is illustrated in Figure 3.2.2. We use the two-
dimensional heat equation in a PBM to predict the temperature distribution of this side of
the cube. This setup differs from the first one not only in number of dimensions, but also in
the nature of the problem: Unlike in the first setup, the lower-dimensional domain of interest
is at the boundary of the full object. As we ignore this dimension anyways, this difference
has no effect on our method, but it illustrates a different usage of this method. Here we are
not able to use a three-dimensional PBM to solve the problem, as the boundary conditions
at the lower-dimensional domain are unknown by assumption. The two-dimensional PBM,
on the other hand, only require initial conditions at the plane, and boundary conditions at
the edges of this plane. This kind of initial conditions are much more available than the full
three-dimensional ones, as they can easily be measured by a thermal camera. In situations
where the temperature of the whole object is of interest, this method might be useful for
predicting the boundary conditions, to then use in a full-dimensional model.

The manufactured solutions used in this experiment are presented in Table 3.2.1. The
same solutions are used for both setups, with z “ 0 in the first one. Figure 3.2.3 shows the
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x
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z

Figure 3.2.2: Example of an object to model using the dimensional reduction method. While the full
model is a three-dimensional cube, we only predict the shaded side. Boundary condi-
tions needed are those at the thick red edges at z “ 0.

Table 3.2.1: Manufactured solutions the for reduced dimensionality heat experiments.

Label upt, x, y, z, αq

d1 sinp4αt ` x ` αy ` 2zq

d2 pcospαxq ` sinpα ` zq ` sinpt ` yqqpe´t ` 2et´1q

d3 5tαpx ` y ´ zq2 ` 5
?
t2x´y`z´α

d4 1
1`x`y`z

`
lnp2`α`x`y`zq

?
5t`1

manufactured solutions at y “ z “ 0, for three values of α. We see that solution d1 is more
greatly effected by the value of α than the other solutions, and for high values of α it also has
a stronger dependency on t. For these reasons we expect DDM and CoSTA to struggle more
with this solution.

For the first setup, a two-dimensional PBM was used in addition to the one-dimensional
models, in order to see how well the one-dimensional CoSTA corrects for the ignored dimen-
sion. It uses 20 ˆ 20 elements, so the solution space at y “ 0 matches the one-dimensional
methods. It is evaluated only at the this line, like the other methods.

3.3 Modelling Nonlinear Heat

In this section we use CoSTA on a nonlinear heat equation, with a linear PBM, to test how
well the CoSTA term corrects for this modelling error.

The conductivity of a material generally depends on the temperature. The linear PDE ut “

∇u`f is therefore only a good approximation when the temperature is somewhat constant, so
that the conductivity may be described by a constant value. For a more accurate and general
equation, we must use k “ kpuq (where the expression of kpuq is material dependent), and
the PDE

ut “ ∇pk∇uq ` f (3.3.1)
“ ∇k ¨ ∇u ` k∆u ` f, (3.3.2)
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Figure 3.2.3: Manufactured solutions used for modelling heat with reduced dimensionality, at y “

z “ 0, for α P r´0.5, 1, 2.5s.
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Table 3.3.1: Manufactured solutions the for the experiments with temperature dependent conductiv-
ity. The first four are for the setup with low nonlinearity, the next four for the setup with
high nonlinearity.

Label upt, x, αq k “ kpu, αq

c1 sinp5αt ` xq ` sinpαxq{2 1 ` sinp2αuq{2

c2 cospαxqpe´t ` 2et´1q 1 ` αu
10

c3 αx2 ` 2tx ´ 2t ´ 2x ` 1 eu{10

c4 1
1`x

` α`x?
5t`1

e´u{10

xc1 sinp5αt ` xq ` sinpαxq{2 1 ` sinp2αuq

xc2 cospαxqpe´t ` 2et´1q 1 ` αu
2

xc3 αx2 ` 2tx ´ 2t ´ 2x ` 1 eu{4

xc4 1
1`x

` α`x?
5t`1

e´u{4

or for one-dimensional situations, which is what we will be considering in this project,

ut “ kxux ` kuxx ` f. (3.3.3)

This is a nonlinear PDE. This can not be solved by the linear FEM method used in this
project, but need other methods like the Newton-Raphson method [65], which iteratively
solves linearized versions of the PDE. This naturally involves a leap in computational com-
plexity from the linear PDE. In this project we attempt to solve this nonlinear PDE using
CoSTA, in which the PBM is linear FEM. By this, we aim to have the DDM in the CoSTA learn
to correct for the nonlinearity of the PDE. The solution u is chosen, and used in the nonlinear
heat equation to derive the source term f , which is used as input for the linear PBM model.

The (constant) value approximating the conductivity should obviously be chosen close to
the correct conductivity. In real world applications, the exact conductivity as a function of
temperature may not be known, but even if it is, the temperature is by assumption unknown
a priori, so the choice of k has to be a more or less educated guess. In this experiment, as we
choose the correct conductivity anyways, these are chosen so that the conductivity k “ 1 is a
somewhat good approximation, and we use this in the PBM.

Two experiments are conducted with nonlinear heat, with the same set of manufactured
solutions, but with different conductivities. In the first one, the conductivities are relatively
close to 1, while in the second the conductivities are more varying. This way we can compare
and see how the governing PDEs "closeness" to a linear PDE affects the results. The manu-
factured solutions and temperature dependent conductivities are found in Table 3.3.1. The
solutions are visualized in Figure 3.3.1. They are inspired by the solutions in the previous
section, and we again see the first solution c1 vary the most along t and α, so we expect this
to be harder than the other solutions for DDM and CoSTA. 5000 time steps and 20 elements
are used on both setups in this chapter.

3.4 Modelling Linear Elasticity With and Without Known
Source Term

In this section we use the models on a system governed by the two-dimensional transient lin-
ear elasticity equation. Manufactured solutions are presented in Table 3.4.1. First, we solve
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Figure 3.3.1: Manufactured solutions of used for nonlinear heat modelling, with α P r´0.5, 1, 2.5s.
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Table 3.4.1: Manufactured solutions for elastic problems.

Label upt, x, y, αq

e1
„

sinpπpx ` αyqq cospαtq
cospπpx ` αyqq sinpαtq

ȷ

e2

«

expp
p´tx2`y2q

p1`α`t2q
q

expp
p`tx2´y2q

p1`α`t2q
q

ff

e3
„

x3 ` y2pt ` 0.5q1.5 ` xyα
x2 ` y3pt ` 0.5q1.1 ` xyα

ȷ

the problems without adding any modelling error. For the second test, instead of using the
correct source term found from inserting the manufactured solution u in the governing equa-
tion and solving for f , we assume the source is unknown and set it to f “ 04. This will affect
the PBM, and thus CoSTA, although not the DDM since this does not use the source term as
an input. This will show if CoSTA works as intended and learns to correct the source term.
The DDMs do not utilize the source term, so the same results could have been used in both
tests. Despite this, new DDMs were trained in both tests, resulting in slightly varying DDM
results between the tests, although we will see that the difference turned out to be minimal.

3.5 Modelling Linear Elasticity with Reduced Dimensional-
ity

In this section we try using CoSTA for dimensional reduction on the linear elasticity equation.
This is done in the same way as with the second setup with the heat equation, i.e. by making
a PBM based on the two-dimensional linear elasticity equation, even though the system is
governed by the three-dimensional one. However, since the displacement u is a vector field
with as many components as there are dimensions, this method can only predict two of the
components of u, being the ones present in the reduced system.5 Hence the approach is mostly
relevant when displacement in the reduced direction is either small and/or of little interest
compared to the others. Only the two components predicted are used when calculating the
error in this section. Manufactured solutions are presented in Table 3.5.1.

3.6 Modelling Nonlinear Elasticity

In this section we use CoSTA to correct for using a linear FEM solver on solutions of the
two-dimensional elasticity equation with nonlinear dependency between strain and stress.

4In real scenarios one should use the best available estimation of the correct source
5An alternative approach to dimensional reduction for the linear elasticity equation (and other vector field

PDEs), is to base the PBM on the three-dimensional model, but replace the derivatives in the ignored z-direction
with zero (or some other appropriate value). The resulting PBM would produce predictions for all components
of u. Although the PBM prediction of the third component likely would be quite inaccurate, the CoSTA term
could help. Due to the inter-dependencies of the components, this could potentially give a useful prediction of
the third component of the displacement, that in turn could make the other components more accurate. This
idea is not pursued further in this thesis.
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Table 3.5.1: Manufactured solutions for the dimensionally reduced elasticity problems.

Label upt, x, y, αq

ed1

»

–

sinpπpx ` αy `
1`alpha

2
zqq cospαtq

cospπpx ` αy `
1`alpha

2
zqq sinpαtq

´ cospπpx ` αy `
1`alpha

2
zqq sinpαtq

fi

fl

ed2

»

—

—

–

expp
p´tx2`y2`z2q

p1`α`t2q
q

expp
p`tx2´y2`z2q

p1`α`t2q
q

expp
p`tx2`y2´z2q

p1`α`t2q
q

fi

ffi

ffi

fl

ed3

»

–

x3 ` y2pt ` 0.5q1.5 ` xyα ` pt ` 0.5q0.5z2 ` zpx ` yqα
x2 ` y3pt ` 0.5q1.1 ´ xyα ` pt ` 0.5q0.5z2 ` zpx ´ yqα
x2 ` y2pt ` 0.5q1.1 ` xyα ` pt ` 0.5q0.5z3 ` zp´x ` yqα

fi

fl

Table 3.6.1: Manufactured solutions for nonlinear elastic problems.

Label upt, x, y, αq E

n1
„

sinpπpx ` αyqq cospαtq
cospπpx ` αyqq sinpαtq

ȷ

5?
20`||ϵ||F

n2

«

expp
p´tx2`y2q

p1`α`t2q
q

expp
p`tx2´y2q

p1`α`t2q
q

ff

5?
20`||ϵ||F

n3
„

x3 ` y2pt ` 0.5q1.5 ` xyα
x2 ` y3pt ` 0.5q1.1 ` xyα

ȷ

5?
20`||ϵ||F

In chapter 2.3 the linear elasticity equation was written

σ̄ “ Cϵ̄puq (3.6.1)
∇ ¨ σ ´ :u “ ´f , (3.6.2)

where C was a matrix. Equation 3.6.1 describes a linear relation between strain and stress.
This is a good approximation only for some materials, or for very small strains and stresses.
To make a more realistic, nonlinear equation, we replace the assumption that the unit Young’s
modulus E “ 1, with a non-constant E “ Epϵ̄q, and rewrite the Equation 3.6.1 to

σ̄ “ Epϵ̄qCϵ̄puq (3.6.3)

The stiffness of a material usually decreases with applied strain, so we choose a decreasing
function

E “
5

a

20 ` ||ϵ||F
, (3.6.4)

where || ¨ ||F is the Frobenius norm. This choice ensures that the approximation E « 1, that
is assumed in the linear PBM, holds for values of solutions used in the experiments.

The manufactured solutions used in this experiment are the same as in Section 3.4, and
are presented in Table 3.6.1. Due to long computation time, only 500 time steps, 10 ˆ 10
elements and 5 initializations of DDM and CoSTA were used in this experiment. The DNN
learning rate was also increased to 8e ´ 5.
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Chapter 4
Results and Discussion

4.1 Heat with Reduced Dimensionality

4.1.1 1D model for 2D system

In this section we will present results of the error obtained using the 4 methods tested on
the first setup - one-dimensional PBM, DDM and CoSTA, and two-dimensional PBM. We will
denote the PBMs 1DPBM and 2DPBM respectfully. We expect 2DPBM to be considerably
more accurate than the 1DPBM, since the latter is a rather unsophisticated simplification
of the former. Hoping CoSTA can correct for the simplification, the ideal outcome would
be if CoSTA is (at least) as accurate as 2DPBM. That being said, the computational cost of
predicting with the one-dimensional CoSTA is comparable that of the 1DPBM, while 2DPBM
is much more expensive1. Thus, a substantial improvement over the one-dimensional PBM
should still be considered a victory for CoSTA.

Plots of the errors of the interpolation cases can be found in Figure 4.1.1. As expected,
the error from 2DPBM is several orders of magnitude lower than that of 1DPBM, in all cases.
For solution d1, CoSTA does not seem to improve much over 1DPBM. Although the error
of CoSTA is considerably lower than that of 1DPBM for α “ 1.5, especially for t ą 0.5, it
is worse than 1DPBM for α “ 0.7, and such an inconsistency in performance countervail
the slight overall accuracy boost. For the other solutions, however, CoSTA is comparable to
2DPBM, with an error several orders of magnitude lower than 1DPBM. For solution d4 it is
even more accurate than 2DPBM in both cases. DDM accuracy is comparable to 1DPBM, and
outperformed by CoSTA in all cases except intermediate steps in solution d1.

Figure 4.1.2 shows the error plots for extrapolation cases. As expected, both CoSTA an
DDM have harder times competing with the PBMs in these cases, since only the data depen-
dent methods are affected by the effect of extrapolation. The accuracy of CoSTA compared
to the PBM methods vary much more than for interpolation. For solution d1, CoSTA is now
much worse than 1DPBM in one case, and very similar in the other. For solution d2, CoSTA is
no longer comparable to 2DPBM in the extrapolation. With α “ ´0.5 it ends up with similar
error as 1DPBM only after being less accurate for most of the interval, while for α “ 2.5 it
is much more accurate, yet not very close to 2DPBM. Solution d3 sees a huge difference be-
tween positive and negative α. For α “ ´0.5, the error of the initially accurate CoSTA steadily
grows during the modelled time period, and ends up much larger than the 1DPBM error. For
α “ 2.5, on the other hand, CoSTA is about as accurate as 2DPBM, and several orders of
magnitude more accurate than 1DPBM. This is a good example of the different nature of
the extrapolation cases. While α “ 2.5 only introduces a more extreme scenario compared to
those in the training set, α “ ´0.5 completely reverses the sign of the first term in solution d3,
which the DDM term in CoSTA evidently is not able to compensate for with the training data
used. Only in solution d4 is CoSTA consistently more accurate than 1DPBM for all values of
α. For α “ 2.5 it is even still more accurate than 2DPBM. DDM accuracy in extrapolation
cases varies, with some cases being much worse than 1DPBM, and most cases about equally

1Since the PBM part of a CoSTA is solved twice, in addition to a DDM prediction, the computational cost of
CoSTA is slightly more than twice that of the 1DPBM. This is still much less than that of the 2DPBM, which has
20 times as many elements.
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(c) Solution d3 with α“0.7 (left) and α“1.5 (right)
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Figure 4.1.1: Temporal development of relative l2 error for solutions with the first dimensional re-
duction setup in interpolation scenarios. For solution d1, CoSTA is not in general more
accurate than the one-dimensional PBM, while for the other solutions, CoSTA is close in
accuracy to the two-dimensional PBM. ( 1D PBM, 2D PBM, DDM, CoSTA)

0 1000 2000
10 4

10 3

10 2

10 1

100

0 1000 2000

10 3

10 2

10 1

100

(a) Solution d1 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution d3 with α“´0.5 (left) and α“2.5 (right)
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Figure 4.1.2: Temporal development of relative l2 error for solutions with the first dimensional reduc-
tion setup in extrapolation scenarios. The accuracy of CoSTA varies a lot between the
cases, from worse than the one-dimensional PBM to better than the two-dimensional.
( 1D PBM, 2D PBM, DDM, CoSTA)
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accurate to 1DPBM. Notably, in solutions d2 and d4, the relative accuracy of DDM compared
to 1DPBM is slightly better in extrapolation cases than in interpolation cases. The opposite is
the case for CoSTA.

Figure 4.1.3 shows the final solutions and predictions in interpolation cases. Here we can
see 2DPBM produce good predictions in all cases. For CoSTA, we can see a slight mismatch
with the exact solution for solution d1, while the others are correct. 1DPBM and DDM are
visibly incorrect in all cases, the latter with a very large uncertainty in many cases. Corre-
sponding plots for extrapolation are found in Figure 4.1.4. 2DPBM is still correct in all cases,
while CoSTA is visibly incorrect for solution d1, and solutions d2 and d3 for α “ ´0.5. PBM
gives a good prediction for α “ ´0.5 in solution d3, and quite bad ones in the other cases.
DDM predictions have somewhat correct shape in some cases, but has a large variance in all
cases.

Summarizing the results from this section, we see that CoSTA is able to correct for a
missing dimension in three of four solutions tested in interpolation scenarios. In extrapolation
scenarios the results vary much more, and CoSTA only significantly outperform 1DPBM on
half of the cases, while even being considerably worse than 1DPBM in two of the cases with
negative α. DDM have a few somewhat decent predictions, but the uncertainty is so large
that they cannot be trusted to be correct.

4.1.2 2D model for 3D system

Plots of the errors can be found in Figures 4.1.5 for interpolation cases. We see that the
CoSTA framework generally provides predictions several orders of magnitude more accurate
than PBM in all cases. It is also more accurate than DDM in all cases, although not by much in
solution d3. DDM accuracy varies quite a bit for solution d1, but is generally worse than PBM.
In the other solutions, DDM is much more accurate than PBM. Extrapolation plots are found
in Figure 4.1.6. CoSTA is by far most accurate in every case except solution d2 for α “ ´0.5,
where PBM is slightly more accurate, and solution d3 for α “ ´0.5, where PBM is quite a
bit more accurate. DDM is quite heavily affected by the extrapolation. It has a high accuracy
for solutions d1 and d4 with α “ 2.5, but has otherwise much larger error, and goes from
being more accurate than PBM in most cases, to less accurate than PBM in most cases. CoSTA
as well has generally larger error in extrapolation, but the gap between CoSTA and DDM is
generally larger in extrapolation than in interpolation, showing that CoSTA was less affected
by the extrapolation.

Even when ignoring the 2DPBM in:x the first setup, the results from the second setup are
much more promising for CoSTA. This might simply be due to the choices of solutions, as the
method is in principle the same independent of the amount of dimensions.

4.2 Nonlinear Heat

4.2.1 Setup with Slight Nonlinearity

Figure 4.2.1 shows the error plots for interpolation cases. We observe that CoSTA is much
more accurate than both of the other two methods for all solutions. DNN accuracy varies
around PBM accuracy, but is more often worse than better.

Error plots from the extrapolation are shown in Figure 4.2.2. CoSTA is less accurate than
PBM for solutions c1 and c2 for α “ ´0.5, and about equal to PBM for solution c1 with
α “ 2.5. In the 5 other cases, CoSTA significantly outperforms PBM. DDM is worse than PBM
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(c) Solution d3 with α“0.7 (left) and α“1.5 (right)
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Figure 4.1.3: Plots showing the exact final solution, along with the predictions, for the interpolation
cases of the first dimensional reduction setup. 2DPBM is qualitatively correct in all cases.
We barely see CoSTA predicting a bit wrong on solution d1. 1DPBM is usually a bit off,
and DDM predictions have a very high variance. ( Exact, 1D PBM, 2D PBM,

DDM, CoSTA)
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Figure 4.1.4: Plots showing the exact final solution, along with the predictions, for the extrapolation
cases of the first dimensional reduction setup. CoSTA give quite bad predictions in four
of the plots, but is seemingly spot on in the others. 1DPBM is wrong in most cases, and
DDM is again very uncertain. ( Exact, 1D PBM, 2D PBM, DDM, CoSTA)
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Figure 4.1.5: Temporal development of relative l2 error for solutions with the second dimensional
reduction setup in interpolation scenarios. CoSTA error is more accurate than both PBM
and DDM for all solutions, often by several orders of magnitude. ( PBM, DDM,

CoSTA)
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(b) Solution d2 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution d3 with α“´0.5 (left) and α“2.5 (right)
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(d) Solution d4 with α“´0.5 (left) and α“2.5 (right)

Figure 4.1.6: Temporal development of relative l2 error for solutions with the second dimensional
reduction setup in extrapolation scenarios. For α “ ´0.5 on solutions d2 and d3, PBM is
more accurate than CoSTA. In all other cases, CoSTA is much more accurate than both
of the other methods. ( PBM, DDM, CoSTA)
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in most cases, although for solution c2 with α “ ´0.5, it is more accurate than both the other
methods.

The final solutions are plotted in Figures 4.2.3 and 4.2.4 for interpolation and extrapola-
tion respectively. In these figures we see if the methods have gotten the correct shape and size
of the solution. We observe that DDM often has an uncertainty so large that there is no value
in its prediction. CoSTA predictions are correct in all interpolation tests, whereas PBM are a
bit off on some of them. The two extrapolation cases where CoSTA error is bigger than PBM
error (α “ ´0.5 for solution c1 and c2), we here see that the correction term has influenced
the CoSTA prediction in the wrong direction, as the PBM prediction lies between it and the
correct solution.

4.2.2 Setup with More Nonlinearity

Error plots for the experiments with high nonlinearity are presented in Figure 4.2.5 for in-
terpolation and 4.2.6 for extrapolation. The plots are quite similar to the ones with low
nonlinearity. The biggest difference is the divergence of DNN predictions of solution xc1 with
α “ 0.7 and α “ 2.5. This is discussed in Chapter 4.6.1, since as is argued there, it is not a
phenomenon specific to this experiment. We therefore disregard the divergence for now.

For CoSTA and PBM, the difference from the previous experiments are that the error is
slightly larger in all cases. The difference between these two methods on the logarithmic
scale is very similar in both experiments, indicating that CoSTA works well for linearized
PBMs independent of the degree of nonlinearity of the system. The only expection is solution
xc1 for α “ 2.5, where CoSTA is now worse than PBM, compared to equally accurate with
lower nonlinearity.

For DDM, both experiments have the same input and correct output, so the error develop-
ment should only differ due to the randomness of the method. In most cases the difference
is relatively minor, and in many cases DNN accuracy relative to PBM is better with higher
nonlinearity, as should be expected.

Plots of the final solutions are shown in Figure 4.2.7 for interpolation. As with low non-
linearity, CoSTA is qualitatively correct in all cases, whereas PBM often gets the shape a bit
wring, and DDM is highly unreliable. Figure 4.2.8 shows final solutions for extrapolation.
Again, CoSTA is on the wrong side of PBM in a few of the cases, but more correct in most
cases. For solution xc2 with α “ ´0.5, DDM is the only method that got the prediction right.

4.3 Elasticity Equation With and Without Known Source Term

The temporal development of the relative error is presented in Figure 4.3.1 for interpolation
scenarios and Figure 4.3.2 for extrapolation scenarios. The results from correct and unknown
source terms are shown next to each other for easy comparison. CoSTA gives the most accu-
rate results in all interpolation cases, as well as several extrapolation cases. Only for α “ ´0.5
in solution e1 with correct source term, and e2 with zero source term, CoSTA is clearly worse
than one of the other methods.

CoSTA consistently outperforms PBM in all of the interpolation scenarios in both tests,
showing that even with the correct source term, there is a considerable modelling error in
the PBM that the CoSTA is able to correct for. For extrapolation with correct source term,
the overall accuracy of these two methods across all solutions are quite similar - sometimes
CoSTA is a bit more accurate, sometimes a bit less accurate. Without source term, CoSTA is
approximately equally accurate to PBM for solution e1, and more accurate than PBM for the
other two solutions. DDM is better at interpolation than PBM for solution e3 using correct
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(a) Solution c1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution c2 with α“0.7 (left) and α“1.5 (right)
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(c) Solution c3 with α“0.7 (left) and α“1.5 (right)
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(d) Solution c4 with α“0.7 (left) and α“1.5 (right)

Figure 4.2.1: Temporal development of relative l2 error for solutions with less temperature depen-
dent conductivity in interpolation scenarios. CoSTA significantly outperforms the other
methods in all scenarios. ( PBM, DDM, CoSTA)
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(a) Solution c1 with α“´0.5 (left) and α“2.5 (right)
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(b) Solution c2 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution c3 with α“´0.5 (left) and α“2.5 (right)
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(d) Solution c4 with α“´0.5 (left) and α“2.5 (right)

Figure 4.2.2: Temporal development of relative l2 error for solutions with less temperature dependent
conductivity in extrapolation scenarios. CoSTA is more often the most accurate method
than not. ( PBM, DDM, CoSTA)
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(a) Solution c1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution c2 with α“0.7 (left) and α“1.5 (right)
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(c) Solution c3 with α“0.7 (left) and α“1.5 (right)
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(d) Solution c4 with α“0.7 (left) and α“1.5 (right)

Figure 4.2.3: Final solutions with less temperature dependent conductivity in interpolation scenarios.
CoSTA gives precise predictions in all cases, while PBM often is a bit off, and DDM has
a very high variance. ( Exact, PBM, DDM, CoSTA)
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(a) Solution c1 with α“´0.5 (left) and α“2.5 (right)

0.0 0.5 1.0

2.10

2.15

2.20

2.25

2.30

2.35

0.0 0.5 1.0
2

1

0

1

2

(b) Solution c2 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution c3 with α“´0.5 (left) and α“2.5 (right)
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Figure 4.2.4: Final solution with less temperature dependent conductivity in extrapolation scenarios.
For solutions c1 and c2 with α “ ´0.5, the CoSTA correction influence the prediction in
the wrong direction. ( Exact, PBM, DDM, CoSTA)
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(a) Solution xc1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution xc2 with α“0.7 (left) and α“1.5 (right)
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(c) Solution xc3 with α“0.7 (left) and α“1.5 (right)
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(d) Solution xc4 with α“0.7 (left) and α“1.5 (right)

Figure 4.2.5: Temporal development of relative l2 error for solutions with more temperature depen-
dent conductivity in interpolation scenarios. The results are quite similar to the ones
with low nonlinearity. ( PBM, DDM, CoSTA)
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(a) Solution xc1 with α“´0.5 (left) and α“2.5 (right)
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(b) Solution xc2 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution xc3 with α“´0.5 (left) and α“2.5 (right)
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(d) Solution xc4 with α“´0.5 (left) and α“2.5 (right)

Figure 4.2.6: Temporal development of relative l2 error for solutions with more temperature depen-
dent conductivity in extrapolation scenarios. The results are quite similar to the ones
with low nonlinearity. ( PBM, DDM, CoSTA)
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(a) Solution xc1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution xc2 with α“0.7 (left) and α“1.5 (right)
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(c) Solution xc3 with α“0.7 (left) and α“1.5 (right)
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(d) Solution xc4 with α“0.7 (left) and α“1.5 (right)

Figure 4.2.7: Final solutions with more temperature dependent conductivity in interpolation scenar-
ios. CoSTA predicts qualitatively correct, while PBM often misses slightly. DDM for solu-
tion xc1 with α “ 0.7 has diverged. ( Exact, PBM, DDM, CoSTA)
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(a) Solution xc1 with α“´0.5 (left) and α“2.5 (right)
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(b) Solution xc2 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution xc3 with α“´0.5 (left) and α“2.5 (right)
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Figure 4.2.8: Final solution with more temperature dependent conductivity in extrapolation scenar-
ios. Results vary from solution to solution. DDM for solution xc1 with α “ 2.5 has
diverged. ( Exact, PBM, DDM, CoSTA)
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(a) Solution e1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution e1 with α“0.7 (left) and α“1.5 (right)
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(d) Solution e2 with α“0.7 (left) and α“1.5 (right)
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(e) Solution e3 with α“0.7 (left) and α“1.5 (right)
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(f) Solution e3 with α“0.7 (left) and α“1.5 (right)

Figure 4.3.1: Temporal development of relative l2 error for solutions with correct source term (left)
and zero source term (right) in interpolation scenarios. CoSTA is the most accurate
method in all the cases. ( PBM, DDM, CoSTA)

source term, and worse in the two other. With unknown source term, PBM is much less
accurate than DDM for all solution in the interpolation cases. In the extrapolation cases DDM
is much worse than PBM for all solutions with correct source term. With unknown source
term, PBM is as accurate as DDM for solution e1, and much worse than DDM for the other
solutions.

By comparing the results the test with zero source term to the results with correct source
term, we can evaluate how well the (additional) modelling error in the zero source model
is corrected by the source term. We do not expect CoSTA to provide a perfect correction,
and therefore it should perform worse in the zero source term tests than in the correct source
terms. This holds in all the cases. In the interpolation cases, CoSTA without correct solution is
not that much less accurate than with correct solution, whereas in extrapolation scenarios the
difference tends to be larger. It is better to use PBM with knowledge of the source term, than
CoSTA without this knowledge, in all cases except interpolation on solution e3. But when the
modelling error is present, DDM and CoSTA both greatly outperform PBM on most cases.

We also observe by the results in this chapter that the error of CoSTA often fluctuates less
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(a) Solution e1 with α“´0.5 (left) and α“2.5 (right)
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(b) Solution e1 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution e2 with α“´0.5 (left) and α“2.5 (right)
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(d) Solution e2 with α“´0.5 (left) and α“2.5 (right)
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(e) Solution e3 with α“´0.5 (left) and α“2.5 (right)
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(f) Solution e3 with α“´0.5 (left) and α“2.5 (right)

Figure 4.3.2: Temporal development of relative l2 error for solutions with correct source term (left)
and zero source term (right) in extrapolation scenarios. CoSTA is the best method, or
among the best methods, in most cases, only being beaten once by each of the other
methods. ( PBM, DDM, CoSTA)

than that of DDM. This might indicate more stable predictions.
To summarize the results in this chapter, CoSTA is most accurate in all interpolation cases,

and most extrapolation cases, independent of whether or not the correct source term is used.

4.4 Linear Elasticity with Reduced Dimensionality

The error development from this experiment is presented in Figure 4.4.1. For interpolation
cases, CoSTA is consistently more accurate than both the other two methods. DDM is in turn
much better than PBM in these cases. For extrapolation, the DDM and PBM are alternately
more accurate than each other, while CoSTA is most accurate except for solution ed2, where
DDM is most accurate in the last time steps for α “ ´0.5, and about equally accurate to
CoSTA for α “ 2.5
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(a) Solution ed1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution ed1 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution ed2 with α“0.7 (left) and α“1.5 (right)
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(d) Solution ed2 with α“´0.5 (left) and α“2.5 (right)
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(e) Solution ed3 with α“0.7 (left) and α“1.5 (right)
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(f) Solution ed3 with α“´0.5 (left) and α“2.5 (right)

Figure 4.4.1: Temporal development of relative l2 error for dimensional reduced linear elasticity in
interpolation scenarios (left) and extrapolation scenarios (right). We observe that CoSTA
is more accurate than PBM in all cases, and better than DDM in all except α “ ´0.5 for
solution ed2. ( PBM, DDM, CoSTA)

4.5 Nonlinear Elasticity

Plots of the error are presented in Figure 4.5.1. For the interpolation, we see that CoSTA much
more accurate than PBM and DDM in all the cases. DDM is more accurate than PBM for all
interpolation cases except solution n1, where PBM is more accurate. In the extrapolation
scenarios, PBM and CoSTA are equally accurate in solution n1 and for α “ ´0.5 in solution
n2, while CoSTA is more accurate in the other cases. DDM accuracy vary greatly, from being
worse than PBM and CoSTA in solution n1 and solution n3 with α “ ´0.5, similar to PBM
in solution n3 for α “ 2.5, between CoSTA and PBM for α “ 2.5 in solution n2, to greatly
outperform both the other methods in solution n2 with α “ ´0.5. This last example is the
only case in this experiment where CoSTA is not either significantly better than both the other
methods, or tied with the best one of them.
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(a) Solution n1 with α“0.7 (left) and α“1.5 (right)
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(b) Solution n1 with α“´0.5 (left) and α“2.5 (right)
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(c) Solution n2 with α“0.7 (left) and α“1.5 (right)
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(d) Solution n2 with α“´0.5 (left) and α“2.5 (right)
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(e) Solution n3 with α“0.7 (left) and α“1.5 (right)
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(f) Solution n3 with α“´0.5 (left) and α“2.5 (right)

Figure 4.5.1: Temporal development of relative l2 error for nonlinear elasticity in interpolation sce-
narios (left) and extrapolation scenarios (right). While CoSTA is most accurate in all
interpolation cases, the extrapolation results vary more. ( PBM, DDM, CoSTA)

4.6 Result Comparison and Further Discussion

In this section, we present a summary of the results. With four heat experiments (two with
dimensional reduction, two with linearization), each with 4 manufactured solutions, and
four elasticity experiments (no modelling errors, zero source term, dimensional reduction
and linearization) with 3 manufactured solutions, we have conducted 28 tests for each value
of α, a total of 112 tested scenarios. The results have varied a lot both in terms of which
methods performed well, and in terms of how large the errors were - some tasks were more
difficult than other. In order to summarize the results, we have counted the number of times
each of the methods used was the most accurate method, measured by the (mean) RRMSE
at the final time step. Table 4.6.1 shows this result, for each value of α and in total. We
see that CoSTA is by far the most accurate method. Only for α “ ´0.5 has CoSTA been not
best more than sporadically, but even here it has double the amount of wins as each of the
other methods. Since PBM is not trained and effected by extrapolation, it is expected that this
method performs better in these situations than interpolation, when comparing to the other
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Table 4.6.1: Overview of number times each method was the most accurate at final time step, for each
value of α and in total.

α PBM DDM CoSTA
-0.5 7 7 14
0.7 1 0 27
1.5 0 0 28
2.5 1 2 25

Total 9 9 94

methods. But DDM is known to be heavily effected by this. Since CoSTA is a combination of
PBM and DDM, where data dependent prediction is only a part of the solution, one might
assume that its generalizability should be better than that of DDM. It is therefore a bit odd that
CoSTA looses to DDM in several extrapolation cases, but no interpolation cases. A possible
explanation might be that CoSTA for some reason simply is not as generalizable as DDM.
Another may be that these problems with α “ ´0.5 are so different from the training data,
that both methods struggle, and it is more arbitrary than in the interpolation cases which one
struggles more. In any case, CoSTA is still by far most accurate in these situations as well.

The method of simply counting number of wins is of course prone to misrepresenting the
results, since the magnitude of the difference in error is not considered, only the sign. Also,
it does not separate second or third place. Figure 4.6.1 shows how many times each method
won with a factor of at least x separating it from the next best method. Similarly, Figure 4.6.2
shows the amount of times each model was the worst, and by what factors. We see that CoSTA
clearly outclasses the other methods both by number of losses and wins, by any required level
of significance.

The variance of both DDM and CoSTA predictions have varied quite a bit throughout the
experiments. Consistency is important for predictability, and for only requiring one or a few
models to make a reliable prediction. One way of penalizing the variance when summarizing
the results is to compare final mean error plus a standard deviation. The dotted lines in Fig-
ures 4.6.1 and 4.6.2 show the results of such a penalizing. We see that CoSTA and DDM both
perform a bit worse, and PBM a bit better, with this method of evaluation. But the difference
between the dotted and solid lines is quite insignificant. In other words, the difference in
accuracy between the methods, are generally much larger than the difference in accuracy be-
tween the initialization of one method. 2 We conclude that CoSTA is the indisputable winner
of the methods even when considering its worst probable predictions.

Table 4.6.2 shows the number of wins each method had for each PDE, dimensionality and
type of modelling error. By model dimensionality we mean of the domain modelled. Keep
in mind that the different classifications by no means are independent - for example, all
elasticity problems are two-dimensional. The manufactured solutions also play an important
role for which experiments yield which results. We notice that PBM perform better on the
heat equation than the elasticity equation. For the experiments with no extra modelling error,
and zero source (which are elasticity), we see a clear difference in DDM wins. Since the DDM
in these experiments are practically the same, these differences are due to better PBM, and
thus better CoSTA, when the source term is known.

One of the take-away from most experiments is that results highly depend on the solution.

2This is easy to see in the error plots - while the blue shaded area showing the standard deviation of CoSTA
error at times is relatively thick, the distance to the other lines is usually considerably larger. Remember also that
the thickness of the shaded area is also logarithmicaly scaled, so when the mean prediction is very accurate,
a thick line does not indicate a big variance. For example, in Figure 4.5.1e, despite the variance, CoSTA is
consistently much more accurate than the other methods.
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Figure 4.6.1: Overview of number of times each method was the most accurate at the final time step,
at various degrees of significance. For a value x1 on the x-axis, the height of a curve
is the number of times the method was better (had lower error) than both the other
methods by a factor of at least x1. E.g. by observing the blue line at 102, we see that
in close to 20 of the 112 tests, CoSTA won by a factor of at least 102 (meaning both
PBM and DDM had an error of more than 102 times that of CoSTA). The solid line is
the results of evaluating the means (of the CoSTA and DDM initializations), while the
dotted line is from evaluating the mean + one standard deviation, as a way of penalizing
inconsistency.

Elasticity solutions are the same (only extended to 3D in the dimensional reduction chapter),
and can be compared across the chapters. In all elasticity chapters, the worst results for
CoSTA has been extrapolation of the first solution (e1, ed1 and n1). Interestingly, the heat
diffusion experiments also often has the worst CoSTA performance in the first two solutions in
each experiment. Common to all these solutions is the harmonic functions involved in them.
When studying the plots of the final solutions, shown in the either the relevant sections or
the Appendix A, these functions tend to vary more along the axes.

Many of manufactured solutions used in the different chapters are similar to each other.
Same or similar solutions open for easier comparison across experiments, while differences
lets us test a wider range of solutions. The fact that the manufactured solutions vary between
the different experiments, may also be a reason for some of the varied performance in the
classifications in Table 4.6.2. More importantly, it is also possible that the choice of solutions
has contributed to better (or worse) results for CoSTA than it would have in most real world
applications. So even though CoSTA has shown remarkable results in this project, we empha-
size that it will not necessarily be as good in future use cases. But it should be clear from this
thesis that it is worth testing, as it might very well be.

4.6.1 Diverging Predictions

In this section, we discuss the divergence of the DDM prediction in Chapter 4.2.2. Error
plots of solution xc1 with α “ 0.7 (in Figure 4.2.5) and α “ 2.5 (in Figure 4.2.6) shows the
DDM error exploding at the start of the period. Although not shown in these plots, the mean
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Figure 4.6.2: Overview of number of times each method was the least accurate at the final time step,
at various degrees of significance. For a value x1 on the x-axis, the height of a curve
is the number of times a method was worse than both the other methods by a factor
of at least x1. The solid line is the results of evaluating the means (of the CoSTA and
DDM initializations), while the dotted line is from evaluating the mean + one standard
deviation, as a way of penalizing inconsistency. We see that CoSTA only lost two to
three times, and never had an error bigger than about twice the error of the second
worst method.

Table 4.6.2: Overview of number times each method was the most accurate at final time step, by
various classifications.

PBM DDM CoSTA Total
Equation modelled

Heat eqn 8 4 52 64
Elastic eqn 1 5 42 48

Model dimensionality
1D 6 4 38 48
2D 3 5 56 64

Extra modelling error
None 1 0 11 12

Zero source term 0 3 9 12
Dimensional reduction 5 2 37 44

Linearization 3 4 37 44

RRMSE ends up at around 1020 in both the cases, after growing exponentially (linearly on
the plots with logarithmically scaled axis) for the whole period. This is due a single model
misbehaving, out of the 10 initializations. This is the only example of this included in the
thesis, but in the many experiments excluded from the thesis3, this has happened several

3Excluded experiments includes test runs with fewer elements and time steps, not well though through
solutions with the modelling error independent of α, or runs with various bugs. The experiments included in
the thesis are by no means chosen based on their results.
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times, and for a variety of scenarios (often, but not always, with less time steps, and thus less
training data). For this reason, this should not be interpreted as result to this one experiment,
but as an inherent problem with using DNN in the way it has been used in this thesis. Even
though it usually predicts well, it may suddenly diverge without warning. Notice that this only
happens for two out of four values of α - for the others, there is seemingly nothing unusual
about the results, despite that it is the same instance of the model making the predictions.
This unpredictability is a good example of why machine learning have had such a hard time
gaining trust in high-stake applications.

When such a divergence first have started, it keeps growing for the entire period. Since the
models train exclusively on exact input, the input from previous steps with extreme values
are very different from the training input, and hence the network does not work well on these
values. Ideally, the networks should have noticed that their predictions no longer correspond
to the boundary conditions, for which the input is exact. But again, since the methods have
only trained with exact solutions as input, there they have no reason to trust the boundary
values more than any other.4 Because of the sudden but extreme nature of this phenomenon,
it is luckily very easy to detect it, and replace the network by training another. Nevertheless,
these results should serve as a healthy reminder that black box models may be treacherous,
and that proportional safety measures should be taken before applying such models for risky
applications.

Sudden divergence similar to this has also happened with CoSTA, although far less fre-
quent. This may be due to the nature of the DNN in CoSTA. These are only trained to adjust
the FEM method, which in most cases is relatively close to the exact solution, meaning the
output from the DNN in the CoSTA usually lead to relatively small corrections in the solution.
The pure DDM on the other hand, has much more influence on the prediction, making it
more prone to divergence like this. For the CoSTA method, an alternative and more robust
approach for detecting errors than simply checking for extreme values, is to calculate phys-
ical properties of the solution that have known or expected ranges of values. This idea is
discussed in [44].

4There might be ways to prevent this, for example by training the network to focus extra on boundary nodes.
Adding noise to the inner nodes of the training input was attempted during this project, but it did not show any
significant success, and the idea was abandoned.
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Chapter 5
Conclusion and Future Work

5.1 Conclusions

Through numerous experiments, we have in this thesis tested the ability of the corrective
source term approach (CoSTA) to outperform its data driven model (DDM) and more or
less erroneous physics based model (PBM) counterparts by adding a data driven correction
term to the PBM. We have used simplified PBMs to model two- and three-dimensional heat
diffusion using reduced dimensionality, and one-dimensional nonlinear heat diffusion using
linearization. We have modelled linear elasticity using a PBM without extra modelling errors,
with unknown source term, and using dimensional reduction. Finally we have modelled non-
linear elasticity using a linear PBM. Throughout the tests, CoSTA has shown an impressive
accuracy in the interpolation tests, for which it has been by far the most accurate method
in almost all cases. For extrapolation, although the results have been slightly less one-sided,
CoSTA is still by far the overall most persistent method in these cases too.
The major conclusions can be summarized as:

• CoSTA has shown a remarkable accuracy for scenarios similar to training data, across
all the different experiments

• CoSTA also generalizes well enough to unseen data that it outclasses the other two
methods also in these cases.

• Despite some variance in the predictions, CoSTA is consistent enough that its relatively
bad predictions generally still by far outperform the other methods.

We can also conclude that the remarkable results that CoSTA has has shown in previous
publications generalizes to the type of problems seen in this thesis.

5.2 Future Work

CoSTA has shown promising results, both in this thesis and the previous works [44, 45], but
is still not widely tested. As the DDM part of CoSTA is a black box model, the method for
verifying its usefulness is through thorough testing. Tests can be done for yet other PDEs, or
other modelling applications, with yet other modelling errors, but perhaps more interesting
is to test other building blocks of the CoSTA, namely the PBM and DDM. As for now, only
the finite difference method and the finite element method has been used as PBM, both of
first order (for which they are very similar), and DNN has been used as DDM, with the same
architecture each time. If CoSTA is to be used instead of state of the art PBM or DDM models,
it should be tested with these as its building blocks. This might involve higher order elements,
or other DDMs, depending on the application.

We have seen that the performance of the correction of CoSTA vary a lot from solution
to solution. In both this thesis, and the other works written about CoSTA, quite arbitrarily
chosen manufactured solutions has been used. Before seeing CoSTA used in the industry, we
should have it tested on real world problems, with real world data.
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Appendix A
Final Solution Results for
Two-Dimensional Experiments
In this chapter we present plots of final solutions and predictions of the two-dimensional
tests. Only the mean prediction is plotted of DDM and CoSTA.

A.1 Dimensional Reduction on Heat Equation

Plots of the final solutions of the second setup with dimensional reduction on the heat equa-
tion are shown in Figures A.1.1 to A.1.8.

A.2 Linear Elasticity Equation

Plots of the final solutions of the elasticity equation with exact source term are shown in
Figures A.2.1 to A.2.6, and with zero source term are shown in Figures A.2.7 to A.2.12.

A.3 Dimensional Reduction on Linear Elasticity Equation

Plots of the final solutions with dimensional reduction on the elasticity equation are shown
in Figures A.3.1 to A.3.6.

A.4 Nonlinear Elasticity Equation

Plots of the final solutions of the nonlinear elasticity equation are shown in Figures A.4.1 to
A.4.6.
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Figure A.1.1: Solution d1, interpolation
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Figure A.1.3: Solution d3, interpolation
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Figure A.1.4: Solution d4, interpolation
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Figure A.1.5: Solution d1, extrapolation
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Figure A.1.6: Solution d2, extrapolation
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Figure A.1.7: Solution d3, extrapolation
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Figure A.1.8: Solution d4, extrapolation
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Figure A.2.1: Solution e1 with correct source term, interpolation
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Figure A.2.2: Solution e2 with correct source term, interpolation
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Figure A.2.3: Solution e3 with correct source term, interpolation
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Figure A.2.4: Solution e1 with correct source term, extrapolation
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Figure A.2.5: Solution e2 with correct source term, extrapolation
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Figure A.2.6: Solution e3 with correct source term, extrapolation
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Figure A.2.7: Solution e1 with zero source term, interpolation
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Figure A.2.8: Solution e2 with zero source term, interpolation
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Figure A.2.9: Solution e3 with zero source term, interpolation
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Figure A.2.10: Solution e1 with zero source term, extrapolation
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Figure A.2.11: Solution e2 with zero source term, extrapolation
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Figure A.2.12: Solution e3 with zero source term, extrapolation
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Figure A.3.1: Solution ed1, interpolation
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Figure A.3.2: Solution ed2, interpolation
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Figure A.3.3: Solution ed3, interpolation
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Figure A.3.4: Solution ed1, extrapolation
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Figure A.3.5: Solution ed2, extrapolation
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Figure A.3.6: Solution ed3, extrapolation
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Figure A.4.1: Solution n1, interpolation
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Figure A.4.2: Solution n2, interpolation
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Figure A.4.3: Solution n3, interpolation
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Figure A.4.4: Solution n1, extrapolation
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Figure A.4.5: Solution n2, extrapolation
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Figure A.4.6: Solution n3, extrapolation
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