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Mediastinal lymph nodes segmentation using 3D convolutional neural network 
ensembles and anatomical priors guiding
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aDepartment of Medical Technology, SINTEF, Trondheim, Norway; bDepartment of Circulation and Medical Imaging, NTNU, Center for Innovative 
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ABSTRACT
As lung cancer evolves, the presence of potentially malignant lymph nodes must be assessed to properly 
estimate disease progression and select the best treatment strategy. A method for accurate and auto
matic segmentation is hence decisive for quantitatively describing lymph nodes. In this study, the use of 
3D convolutional neural networks, either through slab-wise schemes or the leveraging of downsampled 
entire volumes, is investigated. As lymph nodes have similar attenuation values to nearby anatomical 
structures, we use the knowledge of other organs as prior information to guide the segmentation. To 
assess the performances, a 5-fold cross-validation strategy was followed over a dataset of 120 contrast- 
enhanced CT volumes. For the 1178 lymph nodes with a short-axis diameter � 10 mm, our best- 
performing approach reached a patient-wise recall of 92%, a false positive per patient ratio of 5 and 
a segmentation overlap of 80.5%. Fusing a slab-wise and a full volume approach within an ensemble 
scheme generated the best performances. The anatomical priors guiding strategy is promising, yet 
a larger set than four organs appears needed to generate an optimal benefit. A larger dataset is also 
mandatory given the wide range of expressions a lymph node can exhibit (i.e. shape, location and 
attenuation).
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1. Introduction

Lung cancer manifests itself through the development of 
malignant tumours characterised by uncontrolled cell growth 
in tissues of the lung. As cancer evolves, its growth can spread 
beyond the lung and reach nearby anatomical structures such 
as lymph nodes, causing them to grow in size (Falk and 
Williams 2010). Lymph nodes are routinely assessed by clini
cians to monitor disease progression, establish cancer diagno
sis, or simply evaluate the effect of therapeutics given their 
propensity to enlarge under the effect of many pathologies. 
As defined by the Response Evaluation Criteria In Solid 
Tumours (RECIST) guidelines (Eisenhauer et al. 2009), a lymph 
node with a short-axis diameter of at least 10 mm in an axial CT 
slice is likely to be malignant and represents a clinical interest 
(Schwartz et al. 2009). Accurate clinical or pretreatment stage 
classification of lung cancer leads to optimal patient outcomes 
and improved prognostication. Regional lymph node maps are 
mandatory to facilitate consistent and reproducible lymph 
node designations, and are regularly issued by the 
International Association for the Study of Lung Cancer (IASLC) 
(El-Sherief et al. 2014). The regional map defines 14 different 
general anatomic locations, also called stations, precisely 
described by a set of guidelines articulated around neighbour
ing anatomical structures in the mediastinum (e.g. blood ves
sels, airways or ligaments). In practice, a lymph node is assigned 
its station by an expert radiologist, according to its relative 
position with respect to nearby anatomical structures. In lung 
cancer diagnosis, a chest contrast-enhanced Computed 

Tomography (CT) scan is most frequently favoured, and repre
sents the gold-standard modality. In the absence of distant 
metastasis, enlarged lymph nodes identified on chest CT 
demand a verification procedure, either through endobronchial 
ultrasound (EBUS) (Sorger et al. 2017) or mediastinoscopy, to 
ascertain the severity and aggressiveness of the cancer. 
However, the manual segmentation of lymph nodes in the 
mediastinal area is tedious, highly time-consuming and 
requires trained experts. This process is inherently subject to 
intra-/inter-observer variability depending on the time allo
cated to perform the task, level of concentration and quality 
of the CT scan (McErlean et al. 2013). In addition, challenges 
arise from the relatively similar attenuation between lymph 
nodes and surrounding structures (e.g. oesophagus, azygos 
vein or other vessels), especially impactful when poor contrast 
enhancement is exhibited. Last but not least, lymph nodes 
manifest themselves through extensive variations in shape, 
size, texture and location. An automatic method is therefore 
of high importance for facilitating the tasks of lymph node 
segmentation and standardised measurement computation 
(e.g. short-axis diameter and station) in order to assist the 
clinical team in making the best cancer staging.

Advances in machine learning, and more specifically deep 
learning, have boosted the performance in image segmenta
tion, and fully convolutional neural networks (Long et al. 2015) 
have been widely accepted for medical image segmentation 
(Ronneberger et al. 2015; Zhou et al. 2017). While deep 
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learning-based methods thrive on everyday-life data, access to 
sufficiently large and annotated training datasets in the medi
cal field represents a known bottleneck. In recent years, medical 
image segmentation, from CT volumes amongst other modal
ities, has known tremendous progress, driven by subsequent 
challenges where annotated datasets were made publicly avail
able to foster research and challenge medical communities. For 
instance, the segmentation of moderately large organs (e.g. 
liver, pancreas or kidneys) from abdominal CT volumes was 
initially investigated in multiple challenges (Simpson et al. 
2019; Kavur et al. 2020). Such organs present the advantage 
of being easy to delineate, without the required assistance of 
an expert radiologist, to create trustworthy datasets. Initially, 
most current deep learning architectures were designed to 
operate using a 2D input, hence requiring CT volumes to be 
segmented into one sectional image (i.e. slice) at a time (Vesal 
et al. 2019; Wang et al. 2019). Yet in practice, a radiologist 
would scroll through the CT volume and across all views to 
properly identify the full extent of a given anatomical structure. 
Naturally, anatomical borders can be only discernible from 
subtle change in texture or shape, not always visible in con
secutive 2D slices. To overcome such limitations, attempts have 
been made to analyse all three views at the same time in a 2.5D 
fashion (Zhuang and Shen 2016), or by using multiple 2D 
patches around the segmentation target (Setio et al. 2016). 
Fortunately, with the increasing capacity of GPUs, and the 
ability for neural network architectures to seamlessly adapt to 
different dimensions, studies over 3D medical images emerged 
(Çiçek et al. 2016). Attempts to leverage full resolution CT 
volumes are still held back by their huge memory footprint. 
The rising bottlenecks comprise a high model complexity (i.e. 
number of parameters), longer training times, and overfitting 
issues. Nevertheless, access to local 3D context can be gained 
by processing the raw volume in a slab-wise or block-wise 
fashion (Kamnitsas et al. 2016). For the joint tasks of segmenta
tion and instance detection, popular approaches have been 
widely used over 2D images (He et al. 2017; Redmon and 
Farhadi 2018). While such architectures are powerful and 
could translate well to the 3D domain, setting up the region 
proposal layer is too memory-expensive and training time 
would be a challenge.

In the literature, mediastinal lymph nodes have predomi
nantly been studied for detection purposes and on occasion for 
segmentation, most often leveraging only a contrast-enhanced 
CT volume. In their initial work, Oda et al. employed standard 
machine learning technique to perform lymph node detection 
whereby hand-crafted features were extracted using a Hessian- 
based strategy (Oda et al. 2017b). In a follow-up study, a two-step 
detection algorithm was proposed, based on an intensity tar
geted radial structure tensor and blob-like structure enhance
ment filters (Oda et al. 2017a). Similarly, Paing et al. (Paing et al. 
2019) proposed a pipeline mixing traditional image features 
extraction (i.e. threshold, watershed and hessian eigenvalues) 
fed to a classification 3D neural network separating lymph 
node candidates from false lesions. In mediastinal and abdom
inal contexts, Nogues et al. focused on the segmentation of 
lymph node clusters (Nogues et al. 2016). The cope with reduced 
intensity and texture contrast amongst collocated lymph nodes, 
2D holistically-nested neural networks were proposed as 

a solution to perform embedded edge detection. Structured 
optimisation techniques were then promoted to refine the pro
duced imprecise segmentation, such as conditional random 
fields and graph cuts. Roth et al. (Roth et al. 2014) presented 
a two-stage pipeline to perform detection of all the potentially 
malignant lymph nodes. All voxels were first classified as to either 
belonging to the lymph node class or the background by use of 
blobness and circular transforms. Fed by the results of the first 
stage, a convolutional neural network, trained in a 2.5D fashion, 
produced the final set of lymph node candidates. Overall, the 
proposed methods were partly or fully built upon ad-hoc com
ponents or required strongly hand-crafted features, which repre
sents a clear limitation given the impossibility to assume fixed 
intensity thresholds from input volumes with varying quality. In 
addition, prior assumptions over the shape of a lymph node were 
made (i.e. roundish blob) and are often incorrect. In consecutive 
works, Liu et al. addressed the topic of mediastinal lymph node 
detection and station mapping using the previously described 
two-stage pipeline (Liu et al. 2014, 2016). Eight anatomical struc
tures were additionally segmented to help in the station map
ping task. Each lymph node candidate was assigned a station 
based on its centroid location w.r.t. surrounding structures and 
following the IASLC guidelines. Five stages and more than half 
an hour were necessary to produce the final segmentation and 
instance detection results. The use of hand-crafted features and 
multiple steps also limit the method’s ability to generalise and 
deployment in practice. Fully end-to-end approaches appears 
more adequate to address both limitations at once. To that 
end, (Oda et al. 2018) proposed a method to perform lymph 
node detection and segmentation using a 3D U-Net. To improve 
their performances and reduce data imbalance issues, they also 
proposed to include four anatomical structures (i.e. lungs, air
ways, aortic arch and branches and pulmonary arteries). While 
a high true-positive detection rate was reached, the reported 
false positive per patient rate of 17 appeared quite high. 
Including up to 14 anatomical structures, in addition to the 
lymph nodes, Bouget et al. proposed a pipeline operating in 
2D (Bouget et al. 2019). The suggested approach combined the 
pixel-wise segmentation capability of a U-Net and improved 
instance detection capability from Mask R-CNN. Validated only 
on a dataset of 15 patients, a recall of 75% was reached for 9 false 
positives per patient on average, but the lack of global informa
tion was detrimental to obtain competitive results. Facing the 
issue of limited access to ground truth, Li et al. (Li and Xia 2020) 
devised a weakly supervised method generating bounding 
boxes and pixel-wise pseudo-mask from the RECIST annotations. 
A U-Net architecture was used to produce the initial pixel-wise 
segmentation and a deep reinforcement-based component was 
coupled for optimisation. State-of-the-art performance was 
attained over thoracoabdominal lymph nodes, reaching a Dice 
score of 77%. Many previous studies performed their experi
ments using the only open-source dataset, first introduced by 
Roth et al. (Roth et al. 2014). The dataset contains 90 CT volumes 
featuring mediastinal lymph nodes, together with manual anno
tations provided for most lymph nodes with a short-axis dia
meter larger than 10 mm. However, the annotations are often 
sparse, and every smaller but visible lymph node was left unseg
mented, making it suboptimal to use straight off the shelf for 
fully supervised pixel-wise segmentation purposes.
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In another line of work, a few studies have focused on 
leveraging both contrast-enhanced CT and PET/CT modalities 
concurrently. Only the malignant lymph nodes exhibit uptake 
in the PET volume, leaving the benign ones unnoticeable. For 
simple pixel-wise semantic segmentation, Xu et al. proposed to 
use the DeepLabv3+ architecture to benefit from atrous spatial 
pyramid pooling operating at various grid scales, improving 
boundary segmentation (Xu et al. 2020). Focal loss was further 
studied to allow the network focus on the difficulty-to-segment 
voxels and prevent overfitting on the other category of non- 
challenging voxels. Zhu et al. (Zhu et al. 2020) proposed 
a multi-branch detection-by-segmentation network to perform 
segmentation and detection of malignant lymph nodes. An 
effective distance-based gating approach was developed in 
their proposed framework, replicating protocols conducted by 
oncologists in daily practice. Unfortunately, a PET/CT scan is 
usually acquired at a later stage during the diagnostic process, 
after cancer suspicion is raised from the analysis of the contrast- 
enhanced CT scan. As such, an optimal processing of this initial 
CT volume is mandatory before considering the PET/CT 
modality.

In this study, our contribution are the following: (i) the 
investigation of slab-wise, full volume and ensemble strategies 
for semantic segmentation in 3D to benefit from local and 
global context, (ii) validation studies showing segmentation 
and detection performances with respect to lymph nodes’ 
short-axis diameter and station providing insights on the 
impact of training data variability and (iii) the largest annotated 
mediastinal lymph nodes dataset with 120 patients and close to 
3000 lymph nodes, partially available in open-access.

2. Data

In this work, a dataset of 120 contrast-enhanced CT volumes 
was assembled, featuring lung cancer patients exhibiting 
malignant lymph nodes and coming from two different 
sources. First, the 89 patients with mediastinal lymph nodes 
from the NIH open-source dataset (Roth et al. 2014) were 
gathered, which are publicly available for download.1 The 
remaining 31 volumes were acquired on lung cancer patients 
at the Department of Thoracic Medicine, St. Olavs hospital, 
Trondheim University Hospital, Norway.

Overall, CT volume dimensions are covering ½487; 512� �
½441; 512� � ½56; 854� voxels, and the voxel size ranges 
½0:58; 0:97� � ½0:58; 0:97� � ½0:5; 5:0� mm 3. An average CT 
volume is ½511� 511� 628� pixels with a spacing of ½0:79�
0:79� 0:99� mm 3. For the CT volumes acquired at the 
St. Olavs hospital, lymph nodes’ manual annotations were per
formed by an expert thoracic radiologist. Regarding the CT 
volumes from the NIH dataset, the available annotations were 
used as a starting point and manually refined by a medical 
trainee under the supervision of the expert. Following the 
RECIST criterion, malignancy for a lymph node is considered for 
a short-axis diameter larger than 10 mm. Using the regionprops 
method from the Scikit-Image Python package, the short-axis 
diameter was computed for each annotated lymph node. A total 
of 2912 lymph nodes are featured in our dataset, with 1178 
having a short-axis diameter larger than 10 mm, 767 having 

a short-axis diameter in the range ½7; 10½ mm and 967 with 
a short-axis diameter smaller than 7 mm. A set of annotated 
lymph nodes from our dataset is illustrated in Figure 1.

Following the IASLC guidelines, each lymph node was assigned 
its station by a medical trainee under the supervision of the expert. 
The exhaustive list of stations’ number and name is as follows: 1) 
Low cervical, supraclavicular and sternal notch nodes, 2) Upper 
paratracheal, 3a) Prevascular, 3p) Retrotracheal, 4) Lower paratra
cheal, 5) Subaortic, 6) Para-aortic, 7) Subcarinal, 8) Paraesophageal 
below carina, 9) Pulmonary ligament, 10) Hilar, 11) Interlobar, 12) 
Lobar, 13) Segmental and 14) Sub-segmental. Most stations can 
also be subdivided between left and right side, but in the rest of 
the paper we will refer to a station by its main number. Given the 
large variability in lymph nodes’ expression (e.g. shape and size), 
overlaps across multiple stations are common and multiple- 
station assignments were required. Occasionally, lymph nodes 
could not be directly mapped to the guidelines or were outside 
the mediastinum scope, and were thus left station-less (e.g. 
around the heart, below the base of the lungs, or at the base of 
the neck). Overall, 74 lymph nodes were left unassigned, 1256 
were overlapping at least two stations and 379 were overlapping 
at least three stations. In terms of volume, lymph nodes are 
ranging ½0:01; 234:72� ml with a mean value of 1:98� 6:81 ml. 
Lymph nodes statistics with respect to volume and primary station 
are illustrated in Figure 2. The primary station distribution is 
represented to the left, with unassigned lymph nodes grouped 
in the NA category. A large imbalance can be noticed, especially 
between stations 2 and 9, and it can be noted that on average 
lymph nodes are more present on the right side. In some cases, 
the decision could not be made regarding lateralisation, repre
sented as unspecified (in blue). Volume-wise, the distribution 
across primary stations is relatively homogeneous, but the plot 
cannot be interpreted unbiasedly as often more than one station 
is overlapped by a lymph node, especially for the larger ones.

3. Methods

First, a description of the neural network architectures and 
designs used in this study is provided in Section 3.1. Then, the 
possibility to leverage anatomical priors to guide the network 
during training is introduced, together with our proposed 
ensemble strategy, in Section 3.2. Finally, the different prepro
cessing steps and selected training strategies are detailed in 
Section 3.3. An overview of our proposed approach is given in 
Figure 3.

3.1. Architectures and designs

For properly segmenting and detecting instances of poten
tially collocated lymph nodes, the most promising alternatives 
described in the literature are multi-task architectures the likes 
of Mask R-CNN (He et al. 2017) or YOLACT (Bolya et al. 2019). 
Even though extremely good performance was documented 
from studies carried out in the 2D domain, fewer studies were 
applied to the 3D domain as the transition presents many 
limitations ranging from memory overload, to complexity to 
generate enough sensible proposals. When dealing with 3D 
medical volumes, too sizeable to fit on GPU memory, two 
main lines of work can be identified: (i) splitting the volume 
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in a slab-wise manner (SW) and (ii) using the full volume at 
a lower resolution (FV). In the slab-wise strategy, the objective 
is to benefit locally from a high-resolution while generating 
contextual features on some extent of global information, 
which is correlated to the slab size. In the full volume strategy, 
overall contextual features can be computed to model all 
spatial relationships between each visible anatomical 

structure. However, due to memory limitations and time con
straints for training, keeping the initial resolution is not feasi
ble yet and degrading the spatial resolution is needed as 
opposed to the slab-wise strategy. Over the previous years, 
ample focus has been dedicated to improving 2D/3D pixel- 
wise segmentation performances over well-established back
bone architectures such as ResNet (He et al. 2016) and U-Net 

Figure 1. Illustrations of the manual annotations over the dataset. For each pair, the left image represents the raw CT clipped to ½� 150; 500� HU, and the right image 
represents the same CT slice with the manually annotated lymph nodes overlaid in colour. From top to bottom, and left to right, each example features lymph nodes in 
different stations.

Figure 2. Dataset statistics regarding the primary station distribution (to the left), and the volume distribution within each primary station (to the right). Each station is 
uniquely represented and the lateralisation distribution is not directly shown. Lymph nodes not mapped to any IASLC station are regrouped under the NA category.
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(Ronneberger et al. 2015), providing near radiologist-level 
performances on some medical image analysis tasks (Liao 
et al. 2019). A common pitfall for such encoder-decoder archi
tectures is some extent of details’ loss provoked by strided 
convolutions and pooling operations along the encoding path 
to progressively enlarge the field-of-view. The constant chal
lenge lies in optimally using global and contextual information 
from high-level features and border information from low- 
level features to resolve small details (Sang et al. 2020). To 
compensate for the loss of details in the encoding path, pre
vious studies have non-exhaustively covered multi-scale inves
tigations employing the input volume at down-sampled scales 
in each encoder block (Abraham and Khan 2019), enlarging 
the receptive fields using atrous convolutions and pyramid 
spatial pooling (Chen et al. 2017), or by crafting multi-scale 
feature maps encoding jointly low-level and high-level seman
tic information in a powerful representation (Sinha and Dolz 
2020). Similarly, instead of computing the loss simply from the 
last decoder step intermediate feature maps generated at 
each level of the architecture can be leveraged. Feature 
maps from hidden layers of a deep network can serve as 
a proxy to improve the overall segmentation quality and 
sensitivity of the model, while alleviating the problem of 
vanishing gradients (Lee et al. 2015). In a different line of 
work, attention mechanisms are able to identify salient 
image regions and amplify their influence while filtering 
away irrelevant information from other regions, making the 
prediction more contextualised (Jetley et al. 2018). Attention is 
optimally coupled to each level during the decoding path and 
can be designed to capture features’ dependencies spatially, 
channel-wise, or across any other dimension (Fu et al. 2019). 
Interestingly, all those suggested concepts can be seamlessly 
integrated into the current CNN architectures considered as 
backbones and enable complete end-to-end training.

In this work, given the inherent 3D nature of the various 
anatomical structures in the mediastinal area, we chose to 
focus on improving the lymph nodes’ pixel-wise segmentation 
using 3D U-Net (Çiçek et al. 2016) as the backbone architecture 

(denoted as UNet). Our UNet design has been set to seven 
levels and ½8; 16; 32; 64; 128; 256; 256� as filter sizes for each 
level, respectively. For studying the impact of concepts like 
deep supervision or attention, we chose the Attention-Gated 
U-Net (AGUNet) and Dual-Attention Guided U-Net (DAGUNet) 
architectures as previously introduced (Bouget et al. 2021). For 
those, the design was set to five levels and 
½32; 64; 128; 256; 512� as filter sizes for each level, respectively.

3.2. Anatomical knowledge priors and model ensembles

In the mediastinal area, many anatomical structures have 
attenuation values in the same range as the lymph nodes 
(e.g. oesophagus and azygos vein) often without clear in- 
between boundaries. To assist the model in better differentiat
ing between lymph nodes and surrounding similar-looking 
structures, anatomical knowledge priors can be injected to 
serve as prior knowledge during training. To that end, each 
training sample can be built as a combination of the raw CT 
positioned in channel 0, and a binary mask containing anato
mical priors placed in channel 1. With this approach, the no-go 
zones defined in the anatomical priors’ mask should be identi
fied to prevent the model generating high probabilities, hence 
decreasing the false-positive ratio.

Multiple models operating on different input shapes or 
focusing on different aspects during training can be ensembled 
to generate a better consensus and hence improve the final 
prediction map (Feng et al. 2020). Global context and local 
refinement can virtually be obtained separately at the cost of 
longer training and inference time, and higher model complex
ity. Regarding the task of lymph nodes’ segmentation, the two 
main strategies considered (i.e. slab-wise and full volume) oper
ate on different domains and present each inherent strength 
and weakness. Since training a model using the whole CT at 
a high resolution is not feasible, performing ensembling 
appears to be a competitive alternative solution. In this study, 
we opted for a straightforward approach whereby a maximum 
operator is applied pixel-wise over the probability maps 

Figure 3. Overall representation of the proposed approach, where a slab-wise and a full volume approach are fused in an ensemble fashion, with the possibility to 
include anatomical priors.
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resulting from a model trained following each of the two main 
strategies. By doing so, the newly created probability map is 
biased towards a better recall at the detriment of the precision 
since more voxels will have a higher probability as belonging to 
the lymph node class.

3.3. Training strategies

To prepare the training samples, all CT volumes were pre
processed identically using the following series of steps: (i) 
resampling to an isotropic spacing of 1 mm 3 using spline 
interpolation order 1 from NiBabel,2 (ii) lung-cropping using 
a pre-trained network (Hofmanninger et al. 2020) in order to 
generate the tightest bounding box around the mediastinal 
area, (iii) resizing to the network’s input resolution using 
spline interpolation order 1, and (iv) intensity clipping to 
the range ½� 250; 500� HU followed by normalising to the 
range ½0; 1�.

For the slab-wise investigations performed in this study, 
we chose to wield slabs of 32 slices and 64 slices along the 
z-axis denoted as SW32 and SW64, respectively, for an axial 
resolution of 256� 192 pixels. In order to generate 
a collection of training samples, a stride parameter of 8 was 
employed whereby two consecutive slabs would share 24 
slices and 56 slices, respectively. The value was empirically 
chosen as a good trade-off by which models can be trained 
in a decent amount of time, generalise well, and circumvent 
overfitting hurdles. Regarding the full volume approach, 
a drastic down-sampling was imperative given the GPU 
memory limitations, therefore a new resolution of 128�
128� 144 voxels was chosen. Investigations performed 
using anatomical priors guiding were performed solely with 
the full volume approach, hence with a final training sample 
dimension of 128� 128� 144� 2 voxels. The four following 
structures were used as part of the anatomical priors: oeso
phagus, azygos vein, subclavian arteries, and brachiocephalic 
veins.

For the data augmentation strategy, the following trans
forms were applied to each input sample with a probability of 
50%: horizontal and vertical flipping, random rotation in the 
range ½� 20�; 20��, translation up to 10% of the axis dimension, 
zoom between ½80; 120�% in the axial plane. Given the large 
variability in lymph nodes’ shape and location and the rela
tively limited total number of patients, the training samples 
were randomly assigned to their fold at a patient-level with
out any other consideration. All models were trained from 
scratch using the Adam optimiser with an initial learning 
rate of 10� 3, and training was stopped after 30 consecutive 
epochs without validation loss improvement. The main loss 
function used was the class-average Dice, excluding the back
ground, and batches of size 8 were used for slab-wise training, 
while batches of size 1 with 32 accumulated gradient steps 
were used for full volume training. The concept of accumu
lated gradient enables training with larger batch sizes, 
whereby N batches are run sequentially using the same 
model weights for calculating the gradients. When the 
N steps are performed, the model weights are properly 
updated using the accumulated sum of gradients.

4. Validation studies

In this work, we aim at assessing the lymph nodes’ pixel-wise 
segmentation and partial instance detection performances, 
leaving aside the task of disambiguation between collocated 
instances. The dataset was split randomly into five folds at the 
patient level, and a 5-fold cross-validation performed whereby 
three folds were used for training, one for validation and one 
for testing. As described in Section 4.1, the initial ground truth 
was slightly refined to adjust for the inability to distinguish 
between collocated lymph nodes. The selected measurements 
and metrics used are then introduced in Section 4.2 while the 
validation studies are detailed in Section 4.3.

4.1. Ground truth preprocessing

In order to assess instance detection performances (e.g. 
recall and precision) over results from a pure pixel-wise 
segmentation neural network, some adjustments must be 
performed. From the resulting probability map, and after 
thresholding using the optimal value, a connected compo
nents approach is operated in order to generate lymph node 
instances. However, collocated lymph nodes would only pro
duce one instance using such an approach. In addition, the 
same behaviour is to be expected for close-by lymph nodes, 
given some noisiness in the final binary mask. To reflect the 
inability of our method to optimally perform instance seg
mentation and reduce the bias in reported performances, we 
applied the same connected components method on the 
original ground truth. Each new lymph node cluster was 
assigned with all primary stations for each individual element 
composing the cluster. An illustration is provided in Figure 4, 
where two clusters of collocated lymph nodes (circled in red) 
are visible.

4.2. Measurements and metrics

To assess the segmentation performance, the Dice score is 
computed between the ground truth and a binary representa
tion of the probability map generated by a trained model. The 
binary representation is computed for 10 different equally 
spaced probability thresholds (PT), in the range ½0; 1�. After 
identification of the best PT for each model, the instance detec
tion performance is assessed in turn. A connected components 
approach, used over the resulting binary map, coupled to 
a pairing strategy is executed to identify matches between 
a ground truth and a detection mask, based on the Dice score 
computation.

The Dice score, reported in %, is used to assess the quality of 
the pixel-wise segmentation at a patient level. To refine and 
highlight the reported segmentation performance at the lymph 
node level, the Dice score over true positive instances is further 
computed (noted Dice-TP). Finally, discrepancies are expected 
between paired lymph node instances from the use of 
a connected components approach over noisy masks. To pre
vent the results from being heavily penalised by such short
comings, we propose to report in complement the total 
percentage of the ground truth to have been correctly segmen
ted at the lymph node level (noted GT-perc).
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To report instance detection performance, the recall as 
a global metric across all patients is supplied, as well as a per- 
patient recall (noted Recall-PW) to take into account the high 
variability in the amount of lymph nodes from patient to 
patient. Regarding precision, the number of false positives per 
patient (FPPP) is mentioned.

Lastly, the pure inference speed and the total elapsed time 
required to generate predictions for a new patient are reported 
(in s), obtained with both CPU or GPU support. The operations 
required to prepare the data to be sent through the network, to 
initialise the environment, to load the trained model, and to 
reconstruct the probability map in the referential space of the 
original volume are accounted for. The experiment has been 
repeated five consecutive times over the same CT volume, 
using a representative high-resolution case of 512� 512�
767 voxels with 0:68� 0:68� 0:5 mm 3 spacing. All measure
ments are reported with mean and standard deviation.

4.3. Studies

Experiments using various combinations of architectures and 
training strategies (as introduced in Section 3) were carried 
out, and the name given to each experiment is a descriptive 
concatenation. Architectures to choose from are: regular U-Net 
(UNet), attention-gated U-Net (AGUNet), and dual attention 
guided U-Net (DAGUNet). Training strategies to choose from 
are: slab-wise with 32 slices (SW32), slab-wise with 64 slices 
(SW64), full volume (FV), and using anatomical priors guiding 
(APG). Experiments using ensembles are specifically mentioned.

Slab-wise performance analysis: On average, 12 days were 
necessary to train one model in a slab-wise fashion. Under such 
circumstances, comparing all slab-wise methods using a 5-fold 
cross-validation approach was realistically unachievable. The 
objective of this first study is to show limited performance 
variability across the five different folds using the UNet-SW32 
approach. All models trained in a slab-wise fashion are then 
compared over the first fold only to identify the best- 
performing approach.

Overall performance comparison: Averaged over the 5 folds, 
a comparative analysis is performed between the different meth
ods considered and across the whole set of proposed metrics. In 
this study, all lymph nodes featured in our dataset are consid
ered without restrictions over the short-axis diameter or primary 
station. A total of 2122 lymph nodes or lymph node clusters, 
after ground truth preprocessing, are taken into account.

Performance analysis over lymph nodes’ characteristics: For the 
best-performing model identified in the previous validation 
study, an in-depth analysis is carried out with respect to the 
short-axis diameter and primary station. Three divisions are used 
to highlight the performance with regard to the short-axis dia
meter, around the thresholds of 7 mm and 10 mm. Given our 
choice of preprocessing steps to generate the training samples, 
many lymph nodes featured in station 1 (i.e. above or at the top 
of the lungs) were never seen by the network and hence could 
not be segmented. As such, two main groups are considered: (i) 
all stations even for the NA category (noted all stations) and (ii) 
all stations except 1 and NA (noted relevant stations).

Ground truth quality assessment over a benchmark subset: 
Out of the 31 CT volumes acquired at the St. Olavs hospital 
and featured in our dataset, 15 have been part of previous 
studies and are publicly available (Reynisson et al. 2015). To 
assess the quality of the ground truth, a second expert with 
a background as a thorax radiologist was asked to look over the 
segmentation and assigned stations for this subset. To judge 
the inter-rater variability regarding station assignment, and 
given that lymph nodes can overlap multiple stations, we 
defined three grades: (i) perfect if both annotators were in 
agreement regarding the primary station, (ii) good if annotators 
agreed on the multiple stations overlapped but disagreed on 
the primary station and (iii) bad if the second expert assigned 
a different and unrelated primary station.

In addition to the ground truth made publicly available, 
segmentation and instance detection performances obtained 
over the 15 patients are separately reported for benchmark 
purposes.

5. Results

The models were trained using an HP desktop: Intel Xeon 
@3.70 GHz, 62.5 GiB of RAM, NVIDIA Quadro P5000 (16GB), 
and a regular hard drive. Implementation was done in Python 
3.6 using TensorFlow v1.13.1, Cuda 10.0, and the Imgaug 
Python library for data augmentation methods. Trained mod
els, inference code, and ground truth files are available online.3

5.1. Slab-wise performance analysis

For each of the five folds, performances obtained using the 
UNet-SW32 method are summarised in Table 1. The recall and 
Dice score values achieved over the first fold are above the 

Figure 4. Illustration of the preprocessing performed over the ground truth annotation to prepare for instance detection performance assessment. The raw CT slice is 
shown to the left, the original ground truth with 7 lymph nodes is visible in the middle, and the final ground truth with 3 lymph nodes is presented to the right. The two 
transformed lymph node clusters are circled in red.
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average performances by 3%. Performances across each fold 
are relatively stable and contained within 4% of the average 
values. The highest magnitude in difference exists for the 
patient-wise recall with 12% between folds 3 and 4. However, 
it is worth noting that fold 4 exhibits the smallest amount of 
single or collocated lymph nodes, around 25% fewer than in 
any other fold. Comparing the different slab-wise training 
schemes based on the first fold only appears trustworthy 
enough to identify the best-performing approach in 
a reasonable amount of time.

Performances over the first fold for the different models 
trained using a slab-wise strategy are reported in Table 2. The 
best-performing method regarding the Dice score and recall is 
the slab-wise U-Net architecture with 32 slices (experiment (i)), 
reaching up to 58% patient-wise recall for all lymph nodes. 
Doubling the number of slices in the slab worsened all scores 
by about 2%, probably indicating the need for more training 
samples (cf. experiments (i) and (ii)). Using more advanced archi
tectures such as the attention-gated U-Net shows improved 
precision with one less false positive per patient and improved 
GT-Perc, demonstrating improved pixel-wise segmentation 
around detected lymph nodes (cf. experiments (ii) and (iii)). 
However, this increase is accompanied by deteriorated recall 
and patient-wise recall values. By downsampling the input reso
lution, performances are diminished by 2% at most as can be 
seen between experiments (iii) and (iv). Nonetheless, the minimal 
drop in performance for a faster training appears as a good 
trade-off to investigate training schemes or architecture designs 
in a more reasonable amount of time.

5.2. Overall performance comparison

For the overall performance comparison study, results have 
been averaged over the five folds and are reported in 
Table 3. The best slab-wise approach is competitive in 
terms of recall when compared to full volume approaches, 
as can be seen between experiments (i) and (ii). In addition, 
and given the higher spatial resolution, the slab-wise 
approach is able to top pixel-wise segmentation perfor
mances with up to 64% overall Dice score compared to 
60% with the best full volume approach (cf. experiments 
(i) and (iv)). Using more advanced architectures, in combi
nation with the use of anatomical priors guiding, lead to 
a 3% increase in recall and patient-wise recall together with 
a reduction of almost 1 FPPP (cf. experiments (ii) and (iii)). 
When ensembling a slab-wise and a full volume approach, 
recall and patient-wise recall performances are similar (cf. 
experiments (iii) and (vi)). However, only through ensem
bling can all the metrics reach close to their maximum 
simultaneously, and as such experiment (vi) is deemed to 
be our best-performing method. The ensemble of a slab- 
wise U-Net using 32 slices and a full volume attention- 
guided U-Net using anatomical priors reaches a patient- 
wise recall of 58:8%, a Dice score of 64%, an extent of 
segmented ground truth up to 71%, for 5 false positives 
per patient. A 3D illustration for two patients, showing the 
ground truth and detected lymph nodes side-by-side, is 
provided in Figure 5, and where the four organs used for 
the anatomical priors guiding are also featured.

Table 1. Segmentation and instance detection performances collected for the five folds with the UNet-SW32 approach. The # LN corresponds to the number of 
lymph nodes or clusters in each fold.

Fold PT # LN Dice Recall Recall-PW FPPP GT-Perc

1 0.3 459 67:34� 14:49 56.43 58:16� 16:49 4:04� 1:85 65:58� 9:45
2 0.3 410 64:47� 11:25 55.12 57:63� 16:94 5:83� 3:34 71:40� 10:7
3 0.3 451 61:88� 14:83 47.01 48:85� 17:73 5:83� 2:94 66:56� 12:84
4 0.3 330 63:21� 16:40 55.15 60:71� 18:93 9:37� 4:56 70:80� 12:68
5 0.3 472 64:58� 16:27 49.36 50:93� 18:21 4:08� 2:26 63:99� 14:45
Total 0.3 2122 64:27� 14:63 52.40 55:23� 17:98 5:85� 3:65 67:68� 12:32

Table 2. Overall performances obtained with different slab-wise training configurations, for the first fold only. The fourth experiment, indicated by *, used a lower input 
resolution of 192� 128 voxels.

Experiment PT Dice Dice-TP GT-Perc Recall Recall-PW FPPP

(i) UNet-SW32 0.3 67:34� 14:49 53:49� 14:21 65:58� 09:45 56:43 58:16� 16:49 4:04� 1:85
(ii) UNet-SW64 0.4 65:86� 14:18 52:46� 11:01 62:77� 08:23 52:72 56:94� 15:66 4:57� 2:04
(iii)AGUNet-SW64 0.2 64:24� 13:55 53:37� 10:83 77:12� 09:51 53:38 55:49� 15:34 3:00� 1:41
(iv) AGUNet-SW64* 0.2 62:86� 13:24 50:31� 13:00 78:55� 09:72 51:42 53:96� 16:82 3:74� 2:16

Table 3. Overall performance comparison obtained for the different experiments carried out, averaged across the five folds. The abbreviations are: regular U-Net (UNet), 
attention-gated U-Net (AGUNet), dual attention guided U-Net (DAGUNet), anatomical priors guiding (APG), full volume (FV) and slab-wise with 32 slices (SW32).

Experiment PT Dice Dice-TP GT-Perc Recall Recall-PW FPPP

(i) UNet-SW32 0.3 64:27� 14:63 53:93� 13:79 67:68� 12:32 52:40 55:23� 17:98 5:85� 3:65
(ii) AGUNet-FV 0.2 59:48� 13:48 45:21� 16:93 72:73� 12:17 52:21 55:86� 19:07 4:48� 2:98
(iii) AGUNet-FV-APG 0.2 57:64� 13:53 42:13� 15:88 75:07� 12:35 55:42 58:04� 19:95 4:48� 2:95
(iv) DAGUNet-FV-APG 0.4 60:01� 15:78 45:89� 16:51 65:81� 14:27 50:80 54:21� 19:17 4:19� 2:87
(v) Ensemble (i) & (ii) 0.4 65:01� 12:75 53:59� 14:97 69:70� 11:44 52:59 56:02� 18:15 5:12� 2:96
(vi) Ensemble (i) & (iii) 0.4 64:00� 13:21 51:89� 15:32 71:01� 11:46 55:23 58:79� 19:72 5:23� 2:80
(vii) Ensemble (i) & (iv) 0.6 64:16� 14:78 50:98� 14:75 62:02� 12:74 50:47 53:66� 19:13 4:05� 2:27
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For five different patients, one being featured per row and 
sampled from each fold, visual comparisons are provided in 
Figure 6 between the four main designs. The probability maps 
are set to the range ½0; 1� where cool colours indicate low 
confidence in the lymph node class and warm colours indicate 
high confidence, and the CT images are shown in the range 
½� 150; 500� HU. In the first and fourth rows, the segmentation 
performance is similar across all methods for the displayed 
lymph nodes. The effect of anatomical prior guiding can be 
witnessed in the third row, over the azygos vein to the left of 
the yellow lymph node. In thefirst two methods without guid
ing the upper part of the vein is by mistake partially segmented 
as being a lymph node. On the opposite, the azygos vein is left 
totally unsegmented when using anatomical prior guiding as 
can be shown with the last two methods. In the last row, the 
contrast is slightly different than from other patients, resulting 

in lymph nodes more challenging to detect. While the top 
lymph node (coloured in yellow) is similarly segmented across 
all methods, two other lymph nodes are featured in the ground 
truth (coloured in blue and magenta) with varying extent of 
segmentation. Given the difficulty to visually identify those 
lymph nodes, judging whether the manual ground truth has 
been under-segmented or the last two methods are over- 
segmenting, is extremely challenging.

To quantify and fully appreciate the effect of anatomical 
priors guiding on the pixel-wise segmentation performance 
rather than just visually, a supplementary analysis has been 
completed. The Dice scores between a model prediction and 
each of the four organs making the anatomical priors are 
reported in Table 4. Reported scores are predominantly lower 
for the two experiments making use of the priors when com
pared with the other two experiments. Without the use of 

Figure 5. Representation in 3D of the results for two patients where the ground truth is shown to the left and the model output to the right. The four anatomical 
structures used for the anatomical priors guiding are also represented: oesophagus (blue), azygos vein (red), subclavian arteries (yellow) and brachiocephalic veins 
(green).

Figure 6. Prediction examples for a patient from each fold, one per line, for the four main designs: UNet-SW32, AGUNet, AGUNet-FV-APG and DAGUNet-FV-APG. Cool 
colours indicate low confidence in the lymph node class and warm colours indicate high confidence.
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priors, the slab-wise approach seems to fair better, with twice 
as low scores, than the full volume approach (cf. experiments (i) 
and (ii)). The higher spatial resolution from the slab-wise 
approach being surely profitable to distinguish between simi
lar-looking voxels belonging to different anatomical structures. 
The benefit is even more apparent for over the oesophagus and 
azygos vein, with a drastic reduction in false-positive segmen
tation (cf. experiments (ii) and (iii)).

Regarding the total processing time required to process 
a new CT volume with a single model, an average of 3:5� 0 
minutes has been calculated, using GPU support. For ensem
bling, models were run sequentially without any specific opti
misation, leading to a total processing time of 7:3� 0:2 
minutes. Interestingly, a similar performance is reached using 
only the CPU. Most of the processing time is dedicated to the 
different resampling and resizing operations, given the large 
resolution of the input CT volume, and performed by default on 
the CPU. Regarding pure inference, including model loading, 
only 8:4� 0:4 seconds are necessary on average.

5.3. Performance analysis over lymph nodes’ 
characteristics

From the best-performing approach, ensemble of UNet-SW32 
and AGUNet-FV-APG, performances based on lymph nodes’ 
primary station and short-axis diameter are reported in 
Table 5. When considering lymph nodes of all sizes, a 6% recall 
increase can be witnessed when discarding the lymph nodes 
located in regions not corresponding to any IASLC station or in 
station 1 (i.e. relevant stations category). Those lymph nodes 
are either heavily under-represented in our dataset, or simply 
not included during sample preprocessing, explaining the 
model’s worst performance. A significant recall improvement 
of 20% can be acknowledged when focusing on lymph nodes 
with a short-axis diameter � 7 mm. Regarding the most clini
cally relevant lymph nodes, with a short-axis diameter � 10 
mm and potentially malignant following the RECIST criterion, 
an overall recall of 90:73% is reached along with a patient-wise 
recall of 92%. The pixel-wise segmentation performances are 
comparatively worse, with an average Dice-TP of 59% at best. 

However, the score is not directly representative of the seg
mentation quality and is heavily impacted by the process 
including the connected components approach and pairing 
strategy. A Dice score computed between a single lymph 
node and a cluster of collocated lymph nodes will be inherently 
low, even if the pixel-segmentation is accurate over the differ
ent lymph nodes in the cluster. If anything, this value is an 
indication of the method’s struggles to perform instance dis
ambiguation. Conversely, the GT-Perc score is a better metric to 
assess the total extent of properly segmented lymph node 
voxels. On average, up to 80% of the voxels belonging to the 
clinically relevant lymph nodes have been successfully segmen
ted. While the noisiness in the results is not factored in here, the 
combination of the different metrics (i.e. Dice-TP, GT-Perc and 
FPPP) should be enough to appreciate the quality of the pixel- 
wise segmentation.

Leaving laterality aside, the recall performances are reported 
with respect to each of the IASLC station in Figure 7. 
Considering only the clinically relevant lymph nodes (i.e. right 
sub-plot), no major recall discrepancy can be identified across 
the different stations. Even though the distribution of lymph 
nodes featured in each station is heavily unbalanced, especially 
between stations 4 and 9, the model’s ability to segment the 
largest lymph nodes has not been hindered. When including 
lymph nodes of all short-axis diameters (i.e. left sub-plot), sta
tions 2, 3 and 8 are standing out with a recall below 60%. 
Station 2 being the most populated station, the lower recall 
percentage cannot be explained by an under-representation or 
data imbalance rationalisation. Having the possibility to train 
our models with a higher input resolution should help segment 
the smallest and challenging lymph nodes.

An investigation over the pixel-wise segmentation quality 
across the different stations is provided in Figure 8. The average 
GT-Perc scores (right sub-plot) are stable across the different 
stations with values around or above 80%. Only station 7 seems 
to be standing out with a more compact range of scores, far 
from the few outliers. A similar general behaviour can be 
observed for the Dice-TP scores (left sub-plot).

5.4. Ground truth quality assessment over a benchmark 
subset

For assessing the quality of the ground truth, a direct compar
ison between assigned stations for the 15 patients of the 
benchmark subset has been performed. Out of the 363 lymph 
nodes featured, 312 instances were attributed a perfect grade 
as both the expert and medical trainees were in agreement, 
amounting to about 86% of all cases. A good grade was asso
ciated with 33 instances (around 9%), as the expert believed the 

Table 4. Quantification of false-positive segmentation over the four anatomical 
structures used for priors guiding. For each of the four main designs, Dice scores 
averaged across the 120 patients are reported.

Experiment Oesophagus
Azygos 

vein
Subclavian 

arteries
Brachiocephalic 

veins

(i) UNet-SW32 3:54% 3:54% 0:49% 1:27%

(ii) AGUNet-FV 6:87% 7:26% 1:20% 2:57%

(iii) AGUNet-FV-APG 2:03% 1:89% 0:90% 0:60%

(iv) DAGUNet-FV-APG 1:61% 1:64% 0:85% 0:48%

Table 5. Segmentation performances obtained with our best-performing method for the three lymph node categories based on short-axis value. The first four 
measurements (left-most columns) are reported for all lymph nodes while the last four measurements (right-most columns) are reported for the lymph nodes 
belonging to relevant IASLC stations.

All stations Relevant stations

Short-axis Dice-TP GT-Perc Recall Recall-PW Dice-TP GT-Perc Recall Recall-PW

All 51:89� 15:32 71:01� 11:46 55.23 58:79� 19:72 51:68� 15:54 71:59� 11:77 61:50 65:46� 20:14
� 7mm 55:03� 15:31 74:20� 12:05 75.63 79:59� 18:41 54:80� 15:52 74:69� 12:46 80:53 83:33� 18:05
� 10mm 59:02� 16:48 80:04� 12:60 85.73 88:96� 14:75 58:54� 16:99 80:55� 12:54 90:73 92:10� 14:43
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primary and secondary stations assigned by the trainee were to 
be swapped. Given the loose definition from the IASLC guide
lines, capturing exactly the quantity of a lymph node lying in 
each station is impossible solely from a CT volume. As such, 
95% of all lymph nodes were considered to be correctly 
assigned with their main stations (up to three). Lastly, 18 
instances were assigned a wrong station according to the 
expert, representing slightly less than 5% of all cases. The vast 
majority of confused cases revolved around a mistaken assign
ment to station 10 whereby lymph nodes should have been 
assigned to station 4 (in 7 cases), station 5 (in 4 cases), or 
stations 6 and 12 (in 1 case each).

Regarding the quality of the pixel-wise segmentation, the 
task was not asked to be performed by the second expert, as 
being too time-consuming. From a thorough eye-balling, no 
clinically relevant lymph node was mentioned as having been 
overlooked. In three occurrences, the segmentation was sug
gested to be refined as more than one lymph node could be 
identified from the segmented cluster.

For completeness, the performances obtained on the 
benchmark subset, with our best-performing method, are 
reported in Table 6. Not indicated in the table, an FPPP rate of 
4:73� 2:52 was obtained on average over the 15 patients.

6. Discussion

In this study, we have investigated the segmentation of med
iastinal lymph nodes using different 3D neural network archi
tectures and strategies, and performed in-depth validation 
studies on a dataset of close to 3000 lymph nodes from 120 
patients. The main findings to consider are: the positive impact 
of using anatomical priors as a guiding component to increase 
the specificity of the trained models towards lymph nodes and 
avoid segmentation of nearby organs, and the added value of 
ensembling strategies where local and global information are 
fused. The main limitation lies in the nature of the neural net
work architectures performing solely segmentation and hence 
unable to disambiguate collocated lymph nodes. However, 

Figure 7. Lymph nodes recall performance per primary station for our best approach. To the left all lymph nodes are considered, to the right only the lymph nodes with 
a short-axis diameter � 10 mm are considered. The red colour represents the total amount of lymph nodes and the green colour the amount positively detected.

Figure 8. Segmentation performance for lymph nodes with a short-axis diameter � 10 mm and featured in the relevant stations category, obtained with our best- 
performing approach. The Dice-TP scores are reported to the left and the GT-Perc scores to the right.

Table 6. Segmentation performances obtained with our best-performing method for the three lymph node categories based on short-axis values. The first four 
measurements (left-most columns) are reported for all lymph nodes, while the last four measurements (right-most columns) are reported for the lymph nodes 
belonging to relevant IASLC stations. Only for the 15 patients of the benchmark subset.

All stations Relevant stations

Short-axis Dice-TP GT-Perc Recall Recall-PW Dice-TP GT-Perc Recall Recall-PW

All 44:75� 13:52 53:13� 19:44 46:42 46:47� 11:98 44:49� 13:07 52:61� 19:24 56:02 58:39� 16:19
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such disambiguation task is equally difficult for an experienced 
radiologist from CT volumes only, and ultrasound investiga
tions are usually mandatory. Furthermore, while the dataset 
used in this study is the largest existing, a total of 120 patients 
represent a bare minimum given the high variability in lymph 
nodes’ expressions and as such a bigger dataset is required.

Solely from the visual inspection of a CT volume, a perfect 
identification, pixel-wise segmentation, and station mapping of 
all lymph nodes is arguably close to impossible for various 
reasons. The resolution in CT acquisitions is relatively correct, 
but inferior to what ultrasound can achieve during the EBUS 
procedure. The timing and quality of the contrast uptake is 
volatile, resulting in some regions visually exhibiting the same 
characteristics and attenuation as lymph nodes (e.g. mucus, 
fluid or other soft tissues), often without clear boundaries. 
Only a thorough biopsy sample from every lymph node candi
date identified on CT would ascertain the perfection of the 
ground truth, which is unrealistic to achieve in practice. 
Therefore, a conservative annotation approach was adopted 
whereby every suspicious region has been labelled as 
a lymph node, potentially engendering a bias towards hyper- 
detection. Similarly, visible lymph nodes of any short-axis dia
meter were annotated if possible, even smaller than the recom
mended RECIST criterion of 10 mm. The inclusion of smaller 
lymph nodes can be seen as a very efficient data augmentation 
approach especially for location, either bypassing or comple
menting heavier data augmentation transforms during training 
(e.g. zoom, affine or perspective operations). In addition, clin
icians tend to find all PET-positive lymph nodes to be relevant, 
regardless of size, and often the number and pattern of enlar
gement in even smaller lymph nodes is looked at.

Regarding station mapping, the guidelines prescribed by 
the IASLC are approximate since construed relatively to the 
surrounding anatomical structures in the mediastinum, leaving 
room for interpretation and speculating. In addition to constant 
evolution of the guidelines through yearly updates, lymph 
nodes, either expressed as singular entities or within a cluster, 
can be featured in multiple stations simultaneously. For all 
these reasons, we do not claim exact segmentation and station 
mapping in our ground truth. However, from the results of the 
fourth validation study, the deviation between the medical 
trainee and expert was minimal. Some trust regarding the 
manual annotations can then be granted for the other patients 
not proofed by the expert. In any case, for this nontrivial task 
a perfect ground-truth cannot be expected, and we believe this 
annotation work to be a step in the right direction, sufficient to 
get insights over the performance in each station. Stemming 
from this work, multi-task architectures simultaneously per
forming pixel-wise segmentation, instance detection, and sta
tion classification could be investigated.

Regarding the architecture designs or training schemes 
investigated, a mild impact could be appreciated from the 
simpler or more complex operations, with a 5–10% variation 
across the different metrics studied. The main limitation to get 
better performances is most likely coming from the dataset 
itself rather than the chosen methods. While a hefty number 
of lymph nodes are featured, a total of 120 patients might not 
represent enough diversity, especially when training full 
volume approaches whereby one patient equates to only one 

training sample. Lymph nodes do exhibit a wide range of 
expressions (i.e. shape, size and location), a clear imbalance in 
the station distributions has been highlighted, and a disparity 
in contrast-enhancing has also been witnessed. Therefore, 
access to a dataset orders of magnitude larger would be 
needed, but it represents a tremendous data collection and 
annotation workload. Performing ad-hoc ensembling as post- 
processing enables to benefit from the higher spatial resolution 
generated by the slab-wise models and global relationships 
from full volume models. As it is, the ensemble approach is 
favouring recall and GT-Perc in essence but at the expanse of 
precision. Smarter and end-to-end consensus designs should 
be investigated in-depth, using more than simply two models, 
which would require more data and induce a longer training 
time.

Using anatomical priors during the training process partly 
had the expected behaviour, whereby less false-positive seg
mentation was predicted over the oesophagus and azygos 
vein. At the same time, side-effects were also witnessed 
from lower predicted probabilities over lymph nodes close 
to those anatomical structures and with similar attenuation 
values. In order to purely favour instance detection recall, 
anatomical priors might be leveraged as well in post- 
processing. The larger number of voxels predicted with 
a high probability to belong to the lymph node class could 
be refined by applying a mask containing the location of 
every other know anatomical structure in the mediastinum. 
The number of false positives per patient would then be 
drastically reduced, the pixel-wise segmentation over the 
lymph nodes refined, and the overall patient-wise recall kept 
high. With such strategies, well-performing models are 
required for at least 15 to 20 anatomical structures. 
Considering a standalone model for each anatomical struc
ture, the total processing time for a new CT patient would be 
forcibly longer yet not detrimental as real-time processing is 
not a requirement for this modality. This post-processing step 
could either be performed as a simple masking, or end-to-end 
through a shallow refinement network. Be it as it may, we 
believe there is strong potential in further investigating ana
tomical priors guiding, which would circumvent the need for 
any refinement or post-processing step. More training sam
ples, and especially the knowledge of more than four other 
anatomical structures, appear mandatory to proceed.

For the performance assessment, with results generated by 
a pixel-wise segmentation architecture deprived of any 
instance detection component, a direct comparison to the 
raw ground truth was deemed unfair. In many cases involving 
collocated lymph nodes, no apparent boundary is clearly 
visible between the different elements of a cluster. The use 
of a connected component approach over a thresholded pre
diction map, and the conceivable existence of noise in the 
pixel-wise segmentation, prevents from a fair one-to-one 
mapping between prediction and ground truth. Besides the 
patient-wise Dice score to assess the quality of the segmenta
tion, reporting instance-wise segmentation performances in 
two different ways gives further insights. With Dice-TP, the 
segmentation quality and correctness in instance pairing can 
be simultaneously assessed. The full extent of segmented 
ground truth, disregarding instantiating consideration and 
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false positives, can be gauged by GT-Perc scores. Given the 
challenges in reporting instance detection performances from 
results of a pure segmentation method, all the metrics con
sidered in the validation studies should be sufficient to cover 
all aspects and properly enable to put our results in 
perspective.

Given the extremely long time required to perform a full 
5-fold cross-validation with slab-wise approaches, nearing 
60 days, only a few experiments could reasonably be carried 
out. Given the low variability in performance across the 
different folds, comparing architectures and designs over 
a single fold is arguably enough to identify the best perform
ing ones. Interestingly, models trained using full volumes as 
input are performing nearly as well as slab-wise approaches, 
with the benefit to train at a much faster pace. Focusing on 
improving full volume approaches might be more relevant in 
the future as experiments can be carried out with less time 
required.

When considering clinically relevant lymph nodes (i.e. with 
a short-axis diameter � 10 mm), and featured in relevant IASLC 
stations, a patient-wise recall of 92%, a segmentation extent of 
81% on average, and an FPPP ratio of 5, was reached. Even 
though the distribution of lymph nodes per station is heavily 
uneven, the segmentation and detection performances are 
smooth and stable across all stations. Considering a potential 
use in a clinical setting, such results are encouraging as a first 
step to generate report and compute automatic measure
ments. The main limitation is the inability to properly detect 
instances and separate collocated lymph nodes. In its current 
status, our model can be used as preprocessing to bring atten
tion to mediastinal areas potentially featuring lymph nodes, 
letting the clinical team decide on the mandatory zones 
where to perform biopsy.

In this work, the knowledge regarding the stations was 
merely used as a tool to drive the interpretation of the results, 
with the intent to fine-tune the training schemes in case of 
need. From the large room given to interpretation, and the 
proportion of lymph nodes to lie in at least two stations simul
taneously, training an end-to-end multi-task architecture for 
segmentation and station classification appears to this day 
too challenging. Collecting more data ranks high in the list of 
future tasks, enabling the possibility to investigate smarter 
balancing or training sampling schemes. As intermediate solu
tion, station classification could be explored as a refinement 
step from the results of the pixel-wise segmentation, either in 
an ad-hoc fashion or by using another shallower architecture. 
Finally, investigating multi-task architecture in 3D (e.g. Mask 
R-CNN and YOLACT) is a possibility but would require more 
powerful GPUs, and a larger dataset.

7. Conclusion

The segmentation of mediastinal lymph nodes in CT volumes has 
been investigated in this study with a focus on 3D neural network 
architectures and ensembles. Simple and more complex architec
tures using U-Net as backbone were explored, leveraging either 
the entire CT volume after heavy downsampling or slab-wise. To 
benefit from the advantages of each strategy, post-training 

ensembles enable to generate the best segmentation and 
instance detection performances. Similarly, anatomical priors 
guiding reduces false-positive predictions over other anatomical 
structures with similar attenuation values. For clinically relevant 
lymph nodes, a patient-wise recall of 92% was reached for a ratio 
of up to 5 false positives per patient, with steady performances 
across the different IASLC stations. In future work, being able to 
dissociate collocated lymph nodes and properly perform instance 
detection using a multi-task architecture appears of interest. In 
addition, better leveraging the station information is of impor
tance to transform the method into a proper and trustworthy 
diagnostic tool. Finally, increasing the dataset size is needed to 
gain more data diversity which would in turn improve overall 
performances.

Notes

1. https://wiki.cancerimagingarchive.net/display/Public/CT+Lymph 
+Nodes

2. https://github.com/nipy/nibabel
3. https://github.com/dbouget/ct_mediast inal_structures_ 

segmentation
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