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ABSTRACT

This paper considers the multi-vehicle production routeing problem with a maximum-level replen-
ishment policy. This is a well-established problem within vendor managed inventory where produc-
tion, inventory and routeing decisions are made simultaneously. We present a novel method to solve
the problem that outperforms existing methods both in terms of solution gaps and the number of
best-known solutions. The proposed matheuristic is tested on three different sets of benchmark
instances consisting of 1218 instances and finds or improves the best-known solution for 632 of
them. For the remaining instances, the matheuristic is less than 2.5% from the best-known solu-
tions. The method is particularly proficient on large instances and is also efficient for the inventory
routeing problem. The success of the method is largely due to its improvement phase where a novel
path-flow-inspired mathematical model is introduced. Here, a route set obtained from the current
solution is used and retailers can be simultaneously inserted and removed from a route, making the
method flexible even when a small route set is used. In addition, we introduce a new production sub-
problem that approximates the costs of using a vehicle instead of approximating the costs of visiting
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a retailer, making it very fast to solve.

1. Introduction

Effective supply chains are becoming increasingly impor-
tant in a global and competitive world, and integrating
the supply chain management is one of the most impor-
tant measures to reduce supply chain costs and increase
efficiency (Kumar et al. 2020). Traditionally, each stage
of a supply chain, such as production, transportation,
and inventory management, have been treated as sep-
arate problems, often handled sequentially by different
decision-makers (Adulyasak, Cordeau, and Jans 2014a).
However, recently it has become less common to treat
these stages individually (Chen et al. 2021), as research
has shown that there is a significant potential for sav-
ings by combining decisions from several stages into one
planning problem (Archetti and Speranza 2016; Hrabec,
Hvattum, and Hoft 2022). One such supply chain plan-
ning problem, which includes all three stages listed above,
is the production routeing problem (PRP).

The PRP is a well-studied problem that has received
increasing interest in the last two decades (Adulyasak,
Cordeau, and Jans 2015). In its standard version, as it is
presented in the routeing and lot-sizing literature, it con-
sists of a single plant that produces a product which it
distributes to multiple retailers over a finite multi-period

time horizon with a fleet of identical vehicles with limited
capacity. The retailers keep an inventory of the product
and consume a specified number of units in each time
period. Each retailer, as well as the plant, has limited stor-
age capacity and no stock-outs are allowed. The decisions
made for each time period is whether to start production
or not and, if so, how much to produce, how much to
deliver to each retailer, and for each vehicle decide which
retailers it should visit, and in what sequence. The objec-
tive is to find the set of decisions that minimise the total
setup, production, inventory holding, and transportation
costs.

The PRP is a generalisation of the well-known inven-
tory routeing problem (IRP) from the routeing literature
because the IRP is a PRP where the production quan-
tities are assumed to be known or unlimited. Both the
PRP and the IRP fall under the business practice called
vendor managed inventory (VMI). This is a policy where
the supplier monitors the retailers’ inventory and decides
on the replenishment policy for each retailer. As a result,
the supplier can coordinate shipments better and reduce
its routeing costs, while the retailer can save time and
effort on inventory management since they know that
the supplier will ensure that they always have enough

CONTACT Simen T. Vadseth @ simen.t.vadseth@ntnu.no e Department of Industrial Economics and Technology Management, Norwegian University of
Science and Technology, Alfred Getz veg 3, Trondheim 7491, Norway

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2022.2154402&domain=pdf&date_stamp=2023-01-02
http://orcid.org/0000-0003-3964-5810
mailto:simen.t.vadseth@ntnu.no
http://creativecommons.org/licenses/by/4.0/

2 @ S.T.VADSETH ET AL.

products in stock. Different industries are now imple-
menting or exploring VMI systems, and practical exam-
ples include distribution of liquid air products, refill-
ing vending machines, assembly of electronics, distribu-
tion of goods to chain stores, among others (Andersson
et al. 2010; Coelho, Cordeau, and Laporte 2014). Recent
reviews by Ma, Pal, and Gustafsson (2019) and Duong
and Chong (2020) also highlight the importance, and
potential benefits, of VMI and other variants of supply
chain collaboration.

The PRP can be seen as a combination of the capac-
itated lot-sizing problem (Karimi, Fatemi Ghomi, and
Wilson 2003) and the capacitated vehicle routeing prob-
lem (CVRP) (Laporte 2009). Hence, it is challenging to
solve the PRP as it combines two NP-hard problems.
Several methods have been proposed to solve the prob-
lem. Nevertheless, we believe that there is still room for
improvement, especially for larger instances. The pur-
pose of this paper is thus to improve the current state
of the art and develop a better solution method that lets
both industry and academia find better solutions to larger
instances of the PRP.

1.1. Literature review

Most research on the PRP and its variants, including
this work, considers a finite time horizon with discrete
planning periods and the proposed models are typi-
cally formulated as mixed integer linear programs. The
first researchers to address a variant of the PRP was
Chandra (1993) who studied a multi-product production
problem with an uncapacitated order size and an unlim-
ited fleet of capacitated vehicles. This work was extended
by Chandra and Fisher (1994) to include production
setup costs, and the authors gave a formal definition
of the problem. Over the years, numerous researchers
have studied different versions of this problem where
some have added features such as heterogeneous fleets
(Low et al. 2014; Lei et al. 2006), multiple plants (Li
etal. 2020; Juman et al. 2021), multiple products (Brahimi
and Aouam 2016), perishable products (Farghadani-
Chaharsooghi et al. 2022; Ghasemkhani et al. 2022),
and tardiness costs (Long, Pardalos, and Li 2022). How-
ever, the majority of the research considers a single pro-
duction plant with a constrained production capacity
where the plant produces a single product for multi-
ple retailers. Also, there are both inventory costs and
inventory capacities at the retailers and the plant (Bard
and Nananukul 2009; Archetti et al. 2011; Adulyasak,
Cordeau, and Jans 2014a, 2014b; Absi et al. 2015; Solyali
and Siiral 2017; Manousakis et al. 2022). This version
of the problem has become known as the standard
PRP and is the focus of this work. We refer to the

survey by Adulyasak, Cordeau, and Jans (2015) for more
information on the PRP, its applications, and different
versions.

There are two main ways to classify both the standard
PRP and the standard IRP. The first relates to the num-
ber of vehicles available, where we distinguish between
problems with a single vehicle and those with multiple
vehicles. Traditionally, the single-vehicle versions have
mostly been solved by exact methods. However, with the
advancement of computer technology, the multi-vehicle
versions are now the most commonly studied. The sec-
ond classification concerns replenishment policies for
the retailers and two main policies have been consid-
ered in the inventory and production routeing literature
(Archetti et al. 2007). The first is called order-up-to-level
(OU) policy and states that every time a retailer is vis-
ited the delivered quantity is such that the inventory level
reaches its maximum. The second, called maximum-Ilevel
(ML) policy, allows the delivery of any quantity to a
retailer as long as it does not exceed the maximum inven-
tory level. In addition, a third policy exists where there are
no constraints on the shipping quantity. This is referred
to as replenishment policy (RP) by Zhang et al. (2021). The
OU policy has mostly been addressed by exact methods,
while heuristics have almost solely focussed on the less
strict ML policy.

Due to the above-mentioned complexity, there are
only a few exact algorithms for the PRP. The major-
ity has used a branch-and-cut algorithm to solve the
problem. This includes Ruokokoski et al. (2010) who
studied the single-vehicle PRP with RP policy, Archetti
et al. (2011) who compared the ML and OU policy
for the single-vehicle PRP and Adulyasak, Cordeau, and
Jans (2014a) and Schenekemberg et al. (2021) who solved
multi-vehicle versions of the IRP and PRP with both OU
and ML policies. In addition, Zhang et al. (2021) used a
Benders’ decomposition approach for the multi-vehicle
PRP with OU policy. However, exact methods are only
able to solve relatively small instances of the problem to
optimality and struggle with realistically sized instances.
The largest instances that have been solved to optimal-
ity consist of 50 retailers, three time periods and four
vehicles for both ML and OU policies (Schenekemberg
et al. 2021; Zhang et al. 2021).

As a result, the complexity of the problem has moti-
vated the study of heuristic solution methods for the
PRP. Several heuristics have been developed and they
include a memetic algorithm by Boudia and Prins (2009),
tabu search heuristics by Bard and Nananukul (2009)
and Armentano, Shiguemoto, and Lokketangen (2011),
an adaptive large neighbourhood search heuristic by
Adulyasak, Cordeau, and Jans (2014b) and a variable
neighbourhood search heuristic by Qiu et al. (2018).



However, the advancement of CPUs and mixed inte-
ger linear programming (MILP) solvers in the last few
decades have led to the success of heuristics that integrate
mathematical programming techniques into a heuris-
tic framework. These heuristics are often referred to
as matheuristics (Boschetti et al. 2009). The survey of
Archetti and Speranza (2014) highlights the contribu-
tions of matheuristics to routeing problems and their
success in solving problems that combine routeing with
other activities, such as production and/or inventory
control.

Most matheuristics created for the PRP decompose
the problem into a production problem and a routeing
problem. First, the production problem is solved to con-
struct production and distribution schedules before the
routeing problem creates vehicle routes based on these
schedules. This decomposition is, for instance, used by
Archetti et al. (2011) and Absi et al. (2015) who both
iterate between the two problems. In each iteration, the
routes from the previous iteration are used to approx-
imate costs in the production problem, which is then
re-solved before new routes are created based on the latest
production and distribution schedules.

In Avci and Yildiz (2019), a multi-start matheuris-
tic is presented, where the production problem is solved
by randomly constructing a distribution schedule and
an associated production schedule in each restart. New
routes are then constructed based on the latest sched-
ules. Manousakis et al. (2022) presented a two-phase
method where the production problem is solved in the
first phase. The routes are then constructed by a local
search which explores both the feasible and infeasible
solution space in the second phase. The method is cur-
rently the one with the best reported results for the PRP,
and the authors were able to find 594 and 55 new best
solutions out of 1440 and 90 well-established benchmark
instances. Li et al. (2019) proposed a three-level method
where the first level solves the production subproblem
and the second level determines the routeing. The third
level is a fix-and-optimise procedure to improve the
solution.

Chitsaz, Cordeau, and Jans (2019) on the other hand,
introduced a three-phase iterative matheuristic where the
production subproblem is further split into two parts,
one determining the production schedule and the sec-
ond determining the distribution schedule, before the
routeing decisions are made in the third subproblem.
Solyal1 and Siiral (2017) introduced a five-phase method
where the production subproblem is solved in the two
first phases. Then, the routeing subproblem is solved
in the third phase before infeasible solutions obtained
in the third phase are repaired and improved in the
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fourth and fifth phases. The majority of the papers men-
tioned above solve either VRPs or TSPs to determine
the routeing, while the production subproblem is solved
asa MILP.

A method that uses a slightly different decomposition
was introduced by Russell (2017). The paper presents two
heuristics where routes are constructed before the pro-
duction and distribution schedules are created. In the
first, a set of routes are generated and used in an approx-
imate route-based model to fix the production and dis-
tribution decisions before the routes are improved using
tabu search. As a final step, a procedure similar to the one
developed by Absi et al. (2015) is used to improve the
solution further. The second heuristic extends the con-
cept of seed points from Fisher and Jaikumar (1981) to
seed routes. The seed routes are then used in a model
where retailers are added to the seed routes to get deliv-
eries. Similar to the first heuristic, this model fixes the
production and distribution decisions before the routes
are improved using tabu search.

Many solution methods have been proposed for the
standard IRP. We briefly highlight the most recent solu-
tion methods and refer to the survey papers of Andersson
et al. (2010) and Coelho, Cordeau, and Laporte (2014)
for more details on the IRP and its solution methods.
The solution methods that have the lowest reported
average gaps on large benchmark instances for the IRP
include the branch-and-cut algorithms of Coelho and
Laporte (2013), Guimaraes et al. (2020) and Manousakis
et al. (2020). Further, the heuristics with the lowest
reported gaps include Archetti et al. (2012) who devel-
oped a matheuristic that combines tabu search with the
solution of MILPs and the above-mentioned three-phase
decomposition matheuristic of Chitsaz, Cordeau, and
Jans (2019). In addition, the matheuristics of Archetti
et al. (2021) and Solyal1 and Siiral (2022) have reported
good results. The former is a kernel search heuristic, and
the latter solves three subsequent MILPs of a restricted
version of the problem. The first two MILPs construct
a feasible solution, before the third tries to improve it.
Finally, the method with the lowest reported average
gap and the highest number of best-known solutions
(BKSs) is the matheuristic of Vadseth, Andersson, and
Stalhane (2021). The method iterates between solving a
path-flow model with a small set of routes and updat-
ing the route set based on the optimal solution from the
previous iteration.

As seen in the literature reviewed above, most
matheuristics for the PRP and several matheuristics
for the IRP decompose the problem into one produc-
tion/distribution subproblem and one routeing subprob-
lem typically consisting of one VRP (or several TSPs)
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for each time period, though some heuristics decom-
pose the problem further. The main advantage of this
approach is that it enables the heuristics to use state-
of-the-art algorithms for the VRP and TSP, respectively,
and that the production/distribution problem is usually
a MILP with few integer variables, that is thus relatively
easy to solve. The disadvantage of this decomposition
approach is that the heuristics cannot correctly evaluate
how decisions made in one problem affects the decisions
in the other, since changes to the route of one vehicle
may affect both the vehicle routes in other time peri-
ods and the production and distribution schedules of the
plant and retailers. Therefore these matheuristics either
use pre-defined rules to adjust the vehicle routes, or try
to approximate the cost of making certain changes to a
route.

1.2. Our contributions

We have chosen to focus on the multi-vehicle PRP with
ML policy, which is by far the most studied version of
the standard PRP. To solve the problem, we have devel-
oped a novel matheuristic that first constructs a feasible
starting solution which is subsequently enhanced by an
improvement phase. A starting solution is constructed
using the traditional decomposition, described above,
where we split the problem into a production and a
routeing subproblem. We formulate the production sub-
problem as a MILP. However, unlike Adulyasak, Cordeau,
and Jans (2014b), Absi et al. (2015) and Manousakis
et al. (2022), who estimate the costs of visiting a retailer
in their production subproblem MILP, we introduce a
new MILP model that estimates the cost of using a vehi-
cle instead. This reduces the number of binary vari-
ables needed drastically and makes the model very fast
to solve.

For the improvement phase, we introduce a com-
pletely new path-flow-inspired model to improve the
solution. The main advantage of this model over what is
done in earlier heuristics is that it includes both the vehi-
cle routeing and the production and distribution deci-
sions in the same problem. Thus, this avoids the short-
comings of the traditional decomposition. The model
allows us to consider multiple changes to all the routes
in the model simultaneously, while at the same time
evaluating the effect of these changes on the produc-
tion and distribution decisions. All these changes are
evaluated exactly using the full objective function of the
problem, rather than an approximate one. This leads to
larger improvements in each iteration, and thus reduces
the number of iterations needed to reach a high qual-
ity solution. In addition, when compared with a standard

path-flow model with a reduced route set, the proposed
method increases the changes we can make to a solu-
tion exponentially and allows us to reduce the size of the
route set significantly. Finally, the process of constructing
asolution and running the improvement phase is fast and
lets us restart the process several times using different
differentiation techniques to explore a larger part of the
solution space.

The proposed method has proved to be very success-
ful. For smaller benchmark instances with known opti-
mal solutions, the matheuristic finds solutions close to
optima. For the larger PRP benchmark instances intro-
duced by Archetti et al. (2007) and Boudia, Louly, and
Prins (2007), the proposed method outperforms the state
of the art and finds or improves the best-known solu-
tion for 516 out of 960 benchmark instances and 75
out of 90 benchmark instances, respectively. In addi-
tion, the matheuristic has proved to be flexible, and
can in contrast to most solution methods on the PRP
successfully solve the IRP as well. For the set of large
benchmark instances for the IRP released by Archetti
et al. (2011), our proposed method finds, or improves,
73 out of 240 instances. This number is larger than
for any other solution method in the literature. Fur-
ther, it does so requiring less than 20% of the comput-
ing time used by all other solution methods. In sum-
mary, this outperforms all solution methods from the
literature and significantly improves the current state
of the art.

The remainder of the paper is organised as follows.
In Section 2, the standard PRP is defined and presented
mathematically. The matheuristic is presented in detail in
Section 3. The computational experiments are reported
in Section 4, and concluding remarks are presented in
Section 5.

2. Problem definition and mathematical model

The standard multi-vehicle production routeing prob-
lem with ML policy handles the repeated production and
distribution of a single product from a plant to a set of
retailers over a finite planning horizon. We formulate
this problem on a graph G(N,.A) where N is a set of
nodes N = {0,1,...,N} consisting of N retailers and a
plant denoted 0. We also introduce N’ = {1,...,N} as
the set of retailers. The set of arcs A C N x N defines
arcs between each pair of nodes. The problem is defined
over a time horizon consisting of 7 = {0, 1,..., T} dis-
crete time periods, where 7/ = {1,...,T} is the set
of planning time periods. The parameter T is defined
as the number of time periods in the planning hori-
zon. We follow the established convention of using



lowercase for variables and indices and uppercase for
parameters.

In each time period t € 77, V vehicles, each with a
capacity Q, can be used to distribute the product. There is
a cost Cjj, associated with each arc (i, j) € A. Retailer i has
a known demand, Dj;, in each time period ¢ and a max-
imum, U;, and minimum, L;, inventory level. The plant
can produce up to P units of the product at the beginning
of each time period, at the expense of a setup cost, C, and
aunit production cost CV. Both the plant and the retailers
have an inventory holding cost C per unit of the product
left in the inventory at the end of each time period. Each
retailer can only be visited once per time period and has
an inventory of I; at the beginning of the planning hori-
zon. The problem consists of minimising the production,
transportation, and inventory holding costs, while mak-
ing sure that the inventory levels, both at the plant and
the retailers, stay within their limits.
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2.1. A path-flow formulation

The proposed path-flow formulation requires some addi-
tional notation. The set R contains all routes. A route is a
Hamiltonian cycle through a subset of the nodes includ-
ing the plant. Introducing Aj;- as 1 if route r traverses arc
(i,j), and 0 otherwise, the cost of route r can be defined
as CI' = Z(i,j)eA CijAjj-. The variable A, is 1 if route r
is used by a vehicle in time period ¢, and 0 otherwise.
The quantity delivered at retailer 7 in time period ¢ is
denoted g;; and the inventory level at node i at the end
of time period ¢ is denoted s;. The variable oy is 1 if the
plant produces in time period ¢, and 0 otherwise, while p;
denotes the quantity produced in time period ¢. Finally,
let /jj; be the load on-board a vehicle driving from node
i to node j in time period t. With this notation, a math-
ematical model of the production routeing problem can
be formulated as follows:

min Y CUp+ Y Clor+ Y Y Clan+)y D Cllsu, (1)

teT’ teT’ reR teT’ ieN teT’

pt < Poy, teT’, (2)
sio = I, ieN, (3)
Sor = So(t—1) —Pr + Z qit = 0, teT’, (4)

ieN’
sit — Si¢t—1) + Dit — qit = 0, ieN, teT, (5)
Li <si < U, ieN,teT, (6)
D i —qi— Y Ly =0, ieN', teT, (7)

jeN jeEN
Lit < QY Ajjrkr, Gj)e A teT, (8)

reR
Z ZAijr)Mrt =<1 ieN,teT, (9)
reR jeN

Y=V, teT, (10)

reR
Art € {0,1}, reR,teT, (11)
o: € {0,1}, teT, (12)
git > 0, ieN,teT, (13)
lijt = 0, Gj)eA teT, (14)
pr =0, teT'. (15)

The objective function (1) minimises the production,
setup, transportation, and inventory holding costs over
the entire planning horizon, while constraints (2) state

that the plant can only produce if production is set up
and the produced quantity must be within the produc-
tion capacity. Constraints (3) set the initial inventory
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level at each node. The inventory balance at the plant,
which states that the inventory at the plant in a time
period is equal to the sum of the inventory of the pre-
vious time period and the produced quantity with deliv-
ered quantity subtracted, is ensured by constraints (4).
Similarly, the inventory balance of the retailers is stated
by constraints (5). Moreover, constraints (6) make sure
that the inventory level at each node stays between its
upper and lower limits. Constraints (7) ensure that the
difference in the load on-board a vehicle when arriv-
ing and leaving a retailer is equal to the quantity deliv-
ered. Constraints (8) force the load on-board a vehi-
cle to not exceed the vehicle capacity, while constraints
(9) state that a retailer cannot be visited more than
once in a time period. With constraints (10) we make
sure that the maximum number of available vehicles is
not exceeded. Finally, constraints (11)-(15) define the
variable domains.

We allow the sum of the inventory level in the pre-
vious time period and the delivered quantity (sj;—1) +
qit) to exceed the maximum inventory capacity U; as
long as the excessive quantity is consumed during time
period t. In this way, the inventory s; at the end of
the period does not exceed the maximum inventory
capacity. This is common practice in the PRP litera-
ture and allows us to compare our solutions with oth-
ers. However, there are academic works that enforce a
stricter policy forcing gi + sig—y < Ui i€ N teT
(Adulyasak, Cordeau, and Jans 2014a, 2015; Qiu et al.
2018).

3. Matheuristic

The formulation given in Section 2.1 is a complete for-
mulation of the problem. However, since the set of routes
‘R grows exponentially with the number of retailers, it is
impossible to generate all routes within reasonable time
for large instances of the problem. The main idea of the
matheuristic proposed in this paper is to replace R with
a smaller route set R, containing only a small set of
‘promising’ routes. However, finding these routes is not
trivial and small changes to them can have a large impact
on the objective value.

The proposed matheuristic is a multi-start route
improving matheuristic, where each restart creates a new
initial solution by first solving a production subprob-
lem and then solving a routeing subproblem, similar to
Archetti et al. (2011) and Absi et al. (2015). In each
restart, the routes from the routeing subproblem are
placed in the route set R, and the solution is improved
for § iterations by solving an improvement MILP that
allows small changes to the routes in R. To ensure that

we get a unique initial solution at each restart, a set of
differentiation techniques, 7, is used to change the pro-
duction subproblem. By diversifying the search, we make
sure that we explore a larger part of the solution space
and hence increase the chance of finding a good solution
to the problem. Each differentiation technique € 7 is
used €; times and is based on the final solution of the
previous iteration. In the last part of the matheuristic,
we intensify the search around the best solution found
during the multi-start phase of the heuristic by itera-
tively solving the improvement MILP with an extended
route set. A pseudocode of the complete matheuristic is
described in detail in Algorithm 1.

Algorithm 1 The multi-start route improving
matheuristic
1: Set the best-known solution x* <« []
2: Set the current solution x < []
3 fort € 7 do
4:  for ¢, iterations do .
5, Generate new initial solution x and route set R
6: for § iterations do
7: Run the improvement MILP with R to find
anewx
8: Update R based on x
9: end for
10: if z(x) < z(x*) then
11: x* <« x
12: end if
132 end for
14: end for

15: Run the improvement MILP with an extended route
set based on x*
16: return x*

3.1. Generating a new initial solution

To obtain an initial solution to the multi-start heuris-
tic, we first solve a production subproblem, which is a
relaxation of the original PRP where the purpose is to
make good production decisions. The model presented
here is similar to the ones found in Adulyasak, Cordeau,
and Jans (2014b), Absi et al. (2015) and Manousakis
et al. (2022) where the routeing cost is approximated.
However, unlike the mentioned papers, the routeing
aspects of the problem are completely relaxed in this
model, and no routeing decisions are considered in the
production subproblem. Instead, we introduce an inte-
ger variable, v, deciding the number of vehicles used per
time period. This is somewhat similar to the Benders’



decomposition in Zhang et al. (2021) where the route-
ing decisions are made in the subproblem and additional
variables determining the routeing costs are included in
the master problem. Here, however, the cost of using a
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vehicle is set a priori and denoted CV. This reduces the
number of variables in the model significantly. In addi-
tion, a modified vehicle capacity, QY, is introduced. All
other notation has the same meaning as in Section 2.1.

min Z Z C;Hsit + Z CVVt + Z CSOt + Z CUpt, (16)

ieN teT’ teT’ teT’
Pt
$i0

Sot — So(t—1) — Pr + Z qit
ieN’

Z Sit = Sit—=1) + Dir — qi

ieN
Z qit

ieN”’
Ui > sit

QV = qit

The objective function (16) minimises the setup, pro-
duction, vehicle, and inventory holding costs over the
entire planning horizon. Constraints (17)-(20) are the
same as constraints (2)-(5) in the original formulation
and handle production and inventory. Constraints (21)
ensure that the total quantity delivered in a time period
is less than the total capacity of the vehicles used. Con-
straints (22)-(26) define the variable domains.

As mentioned, the cost per vehicle, C¥, must be esti-
mated a priori when we solve the production subprob-
lem. In this paper we use the cost of the TSP solution,
CTSP, of the graph G(N,.A) and define the cost per
vehicle as

CcV = aCTsP, (27)

where « is a parameter set a priori. The modified vehi-
cle capacity, QV, is introduced to increase the possibility
of finding a feasible solution in the routeing subprob-
lem. The modified capacity is set lower than the actual
capacity of the vehicles, and is calculated as

Q" = BQ, (28)

where f is a value between 0 and 1.
Given the solution to the production subproblem, the
routeing subproblem consists of one CVRP for each time

te7T’
< Poy, t e T/, (17)
=1, ielN, (18)
=0, teT, (19)
=0, ieN,teT), (20)
< Q" teT’, (21)
> L;, ieN,teT, (22)
> 0, ieN,teT), (23)
> 0, teT, (24)
e{0,1,...,V}, teT, (25)
e {0,1}, teT. (26)

period t € 7', where the quantity to deliver to each
retailer i equals the variable values gj, from the optimal
solution to the production subproblem. If g}, = 0, then
retailer i is not visited in time period t. The VRP-heuristic
used in this paper is the genetic algorithm presented
in Vidal et al. (2012). We have used the open-source
implementation which is described in Vidal (2020). The
stopping criterion of the heuristic is set to 2,000 iterations
without finding an improvement. If a feasible solution
to the routeing subproblem is not found, the produc-
tion subproblem is re-solved with Q¥ <~ BQV. This pro-
cess is repeated until a feasible solution to the routeing
subproblem is found.

3.2. Differentiation techniques

In Algorithm 1 we run a for-loop over the set 7 of differ-
entiation techniques starting on line 3. The idea behind
these techniques is inspired by the combinatorial Ben-
ders’ cuts proposed in Codato and Fischetti (2006). The
set consists of three techniques that make sure that no two
restarts produce the same initial solution.

(I) The first technique is to put no limitations on the
production subproblem.
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(II) The second technique forces a change in the pro-
duction plan. Define 70 = {t € 7|0} = 1} as the
set of time periods during which there is production
in the previous solution. Adding the differentiation
constraint

Z 0t+2(1—0t)21 (29)

teT'\TO teTO

to the production subproblem makes sure that the
production decisions change. All previous differen-
tiation constraints are added to the model in the
initialisation process, preventing a repetition of solu-
tions.

(IIT) The third technique forces the solution of the pro-
duction subproblem to use fewer time periods to
distribute the product. The reasoning for having this
technique is that the production subproblem often
underestimates the costs of visiting different retailers
and produces solutions where multiple time periods
have a single vehicle leaving the plant. This is often
not beneficial for the original problem. We introduce
the variable k; which is 1 if any vehicles are used in
time period t, and 0 otherwise, and add the following
constraints to the initialisation model:

vV < th, te T/, (30)
Yoke=) k-1, (31)
teT’ teT’

k: € {0,1}, teT. (32)

Constraints (30) indicate if any vehicles are used
and constraint (31) limits the number of time peri-
ods vehicles can leave the plant based on the solu-
tion from the previous iteration, k. Constraints (32)
define the variables.

3.3. Improvement model

The improvement model is a modified version of the
original PRP with a small set of routes, where the model
has the possibility of modifying the chosen routes by
inserting or removing retailers. The model shares some
similarities with the IF model presented in Solyali and
Stral (2017), the seed route approximate model shown in
Russell (2017) and also the Reduced Reallocation Model of
Toth and Tramontani (2008). In Solyali and Siiral (2017),
a solution (which can be infeasible) is first created, and

then it is decided whether a retailer should be removed
or added to one of the routes by solving the IF model.
In Russell (2017), several seed routes are created, and the
model decides whether a retailer should be added to a

seed route or not. Both models approximate the costs of
adding a node to a route, and these costs are not affected

by other decisions made by the model. The improvement
model presented in this paper, on the other hand, calcu-
lates the exact costs of altering the original routes and
does so even in cases where multiple changes are made
simultaneously. This is also different from Toth and Tra-
montani (2008) where a set of nodes is extracted before
an integer linear program is solved to put them back into
the solution.

We define some additional notation to present the
improvement model. For each route r, we let NV, denote
the retailers visited on that route, and let A/ F=N\N,,
denote the complement set. The improvement model
allows us to remove, and insert, any number of retailers
into a route. For each route r and time period ¢, we let
xirt be 1 if node i € N, is removed from the route and 0
otherwise, while z; is 1 if node i € N, is inserted into
the route, and 0 otherwise. We further let C!. and CX be
the marginal cost of inserting/removing node i into/from
route r. This marginal cost is calculated as:

R
Cir = Ciy(p,0—1i + Ciiir(p,()+1) = Cir(p, ()= 1 (pr (D)+1)>

reR, ieN, (33)
I .
Gy = e iR H{Cz',(pfl),i + Ciivip) — Cir(p—1ir(p)}
reR, ieN, (34)

where the function i, (p) returns the node placed in posi-
tion p in route r, and the function p,(i) returns the
position of node i in route . Note that we assume that
the plant has both position 0 and |N;| + 1, i.e. the first
and last position on the route. Equation (33) calculates
the change in the cost of route r if node i is removed,
while equation (34) calculates the lowest cost of inserting
node i into route r. We let py (i) denote the p value that
minimises equation (34), i.e. the position of the cheap-
est insertion of node i into route r. Figure 1 illustrates an
example where C! and Cﬁ are calculated.

Further, the quantity delivered by route r to node i in
time period ¢ is denoted g;,+, while all other notation has
the same meaning as in Section 2.1. The improvement
model can be formulated as follows:

min Z Z C{{sit + Z Z CrTyrt

ieN’ teT’

reR teT’
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Cl =Ci 5-1),e + Ceiir5) — Ci(5-1),i,(5)
= Cde + Ce() - Cd()

=Ci.2=1)0 T Ch i, 241) — Ci, (2-1)i.(241)
= Cgp + Cbc -

Cit = Ciror0) =16 F Chi(pr 0)+1) = Cin(pr(6) 1), (o1 (5) 41)

Figure 1. lllustration of calculating the costs of removing node b from route r and inserting node e at position 5 in route r. Route r is
marked with solid lines and the insertion and removal with dotted lines.

Pt

Si0

Sot — So(t—1) — Pr + Z Z qirt

ieN reR

Sit = Si(t—1) + Dir — Z qirt
reR

Li <sit

qirt

qirt

Z qirt

ieN’

Z Yrt — Xire) + Z Zirt

reRiieN, reR:ieN,
Zirt

Xirt
Z Yrt
reR

Vrt
Xirt

Zirt

YY Y e

reR iEN; teT’
2.2 2 Ciin

reR ieN, t€7”

+ Z CSo0; + Z CUPt,

teT’ teT’
5 POt,

=1,

< Uis
< min(Q, U; + Di)(1 — Xirt),
< min(Q, U; + Dit)ziyt,

S ert 5

Sl)

S )’rt,
S )/rt>

<V,

e {0,1},
€ {0,1},
€ {0,1},
€ {0,1},
>0

>0

ieN’,

teT’,
ieN,
teT,

teT,

ieN,teT,

reR,ieN,

A

reR,ieN,,

ieN, reR,

teT,
teT’,
teT’,

teT,

teT’,
teT’,
teT’,

teT,
teT,
teT,
teT,
teT,
teT.

(35)

(36)
(37)

(38)

(39)

(40)
(41)
(42)

(43)

(44)

(45)
(46)

(47)

(48)
(49)
(50)
(51)
(52)
(53)



10 (& S.T.VADSETHETAL.

The objective function (35) minimises the production,
setup, transportation, and inventory holding costs over
the entire planning horizon. Constraints (36)-(40) are
the same as constraints (2)-(6) in the original for-
mulation and handle production and inventory. Con-
straints (41) and (42) state that a retailer cannot receive
any product unless it is visited by a route, while con-
straints (43) ensure that a vehicle cannot deliver more
than its capacity. In addition, constraints (44) make sure
that a retailer can only be visited by at most one route
each time period. The fact that a retailer cannot be added
or removed from an unused route is taken care of by
constraints (45) and (46), while constraints (47) ensure
that we do not use more routes in a time period than

Xiy (pr ()= 1),rt + Xip(pr(iy),rt < 2(1 — Zirt)

Z Zit < 1

ieN p:px(=p

Xirt + Xip(p (D1t T Yrt <2

Constraints (54) state that if a node i that was originally
not in route r is inserted, then we must include the nodes
that are located before and after the position where node i
is inserted into r. Constraints (55) ensure that at most one
node, not originally in route r, can be inserted into each
position in r. Constraints (56) make sure that if route r
is used, then we cannot remove both node i and its suc-
cessor, which are both in A, from the route. Note that
apart from the limitations set by constraints (54)-(56),
any number of insertions and removals are allowed and
evaluated correctly, by the improvement model presented
above.

Figure 2 shows the cost calculations of a route in the
improvement model. The original route 0 - a — b —
¢ — d — 0 is marked with dotted arrows. After solving
the improvement model, route r is included in the solu-
tion, but nodes a and ¢ have been removed, while node
e has been added to the route. The new route is marked
with solid arrows.

To reduce the solution time of the model we do
not generate all insertion possibilities. Defining V=
max{Cfflr € 7%,1' € N}, we only generate x;; if Cy <
)/EN, where y is a parameter set a priori. We also only
generate the route-indexed variables, ie. yn, xi¢ and
qirt> for the time periods route r appears in the orig-
inal solution. For instance, if route p appears in time
period t = 3, then y,;, xi,: and gjp; are only generated
for t = 3. Lastly, after solving the mathematical model,

the number of vehicles. Constraints (48)-(53) define the
variable domains.

To keep the transportation cost in the objective func-
tion of the improvement model correct, we have to intro-
duce additional constraints to limit the number and type
of changes that can be made to a route. Since the cost
calculations of an insertion/removal of a node include the
previous and subsequent node on the route, we have to
ensure that these nodes are still present on the route. Oth-
erwise, some combination of changes, e.g. removing two
consecutive nodes, may be evaluated incorrectly in the
objective function. The following constraints are added
to the formulation to ensure that the transportation costs
are correctly calculated:

reR,ieN, teT (54)
reR,pel,..,INy|+1,teT (55)
reR,ieN, teT. (56)

we run a TSP-heuristic on each of the routes that make
up its solution. In our implementation, we use the TSP-
solver released by Helsgaun (2009), which is considered
to be the fastest implementation of the Lin-Kernighan
algorithm (Lin and Kernighan 1973).

3.4. Improvement model with extended route set

In the last part of the matheuristic (line 15 in Algorithm 1),
we intensify the search around the most promising solu-
tion found by the multi-start phase of the heuristic. We do
this by solving the improvement model with an extended
route set R for it iterations. The extended route set
includes the routes from the current solution in addi-
tion to routes found by solving w CVRPs for each time
period. The nodes to visit and the quantities delivered in
each CVRP are given by the current solution; however,
for each of the @ CVRPs the vehicle capacity is increased
or decreased by a given percentage. In each iteration, we
update the route set based on the solution of the previous
iteration, and the total number of CVRPs in each iteration
isbounded by w|7”|. Again, the VRP-heuristic presented
in Vidal et al. (2012) is used.

4. Computational experiments

The proposed matheuristic has been evaluated on known
benchmark instances for the PRP from the literature.
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CF = Coa + Cap + Cye + Cea + Cao
CR = Coo + Cap — Cop
CR = Cye + Ceqg — Cha
Cl. = Cae + Ceo — Cao

0=b—=d—=e—0:CFr-CE -—CE 4 CI
= Cop + Cpa + Cge + Ceo

Figure 2. A route consisting of the depot and nodes a, b, c and d is changed to a route consisting of the depot and nodes b, d and e. The
cost of the route is then changed from Coq + Cap + Coc + Ced + Cao 10 Cop + Cod + Cae + Ceo-

First, we introduce the benchmark instances for the PRP
in Section 4.1 and discuss implementation issues and
parameter testing in Section 4.2, before presenting the
computational results for the PRP in Section 4.3. To
demonstrate the versatility of the proposed matheuris-
tic, we have also tested it on benchmark instances for
the IRP, and these results are presented in Section 4.4.
All computational results have been run on a Xeon Gold
6144 3.5 Ghz computer, and all mathematical models
are solved using Gurobi 9.1. The algorithm is coded
in C++.

4.1. Benchmark instances and solution methods

Three sets of benchmark instances for the PRP are used
in the computational study. The first set was introduced
by Archetti et al. (2011) and consists of smaller instances
compared with the other instance set. The set consists
of three subsets of instances, called Al, A2 and A3,
which have six time periods and 14, 50 and 100 retail-
ers, respectively. The instances in Al have one vehi-
cle available per time period, while the instances in A2
and A3 have an unlimited vehicle fleet. The instances
are also divided into four classes where the first class
is ‘standard’, the second has high transportation costs,
the third has high production costs, and the fourth has
no inventory holding costs at the retailers. To differen-
tiate between the classes, we call the subset of instances
consisting of class 1 instances in A2 for A2-1, the sub-
set consisting of class 2 instances in A2 for A2-2, and
so on. There are in total 1440 instances where 960 of
them have an unlimited vehicle fleet. The Al instances
are trivial to solve with an exact method, and we have not
done any computational experiments on this subset of
instances.

The second set of instances was introduced by Boudia,
Louly, and Prins (2007). The set consists of 30 instances
with 50 retailers, 30 with 100 retailers, and 30 with 200
retailers. We call them B1, B2, and B3, respectively. They

all have 20 time periods and are hence much larger than
the instances from Archetti et al. (2011). Moreover, the
B1 instances have five vehicles available, the B2 instances
have nine vehicles available, while the B3 instances have
13 vehicles available. This set of instances differs from the
one proposed by Archettietal. (2011) in that it has a max-
imum production capacity per period and an inventory
limit at the plant, while the retailers have varying daily
demand, but no inventory holding costs.

Another important difference between the two sets
of instances is that the production in time period t is
not available before time period ¢+ 1 in the instances
proposed by Boudia, Louly, and Prins (2007) and does
not incur inventory holding costs in time period t. This
means that the demand at all nodes in time period t = 1,
given that all retailers have an initial inventory of zero,
must be managed by the initial inventory at the plant. The
instances do not specify what the initial inventories are.
Hence, we have adopted the common literature practice
of setting the initial inventory at the plant equal to the
total retailer demand of time period 1. The initial inven-
tory at the retailers is set to zero. Moreover, the math-
ematical models presented in Sections 2.1, 3.1 and 3.3
make the production available the same time period.
To overcome this fact, have we incorporated the same
workaround as Adulyasak, Cordeau, and Jans (2014b)
and Manousakis et al. (2022), which sets 0; = 0. With
this workaround, we solve the instances as they were
described in Boudia, Louly, and Prins (2007).

The third set of instances was introduced by Adulyasak,
Cordeau, and Jans (2014a) and consists of 168 instances.
They are based on the above-mentioned Archetti
instances and were created since those instances were
too large to be solved by an exact method. The instances
have either three, six or nine time periods, and the vehi-
cle fleet consists of either two, three or four vehicles. We
label this set of instances C to distinguish it from the two
other sets. This set of instances uses a stricter inventory
policy forcing gir + si¢—1) < Ui € N',t € 7" and it is
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Table 1. An overview of all solution methods for the PRP.

Reference Abbreviation Sol CPU #Threads Solver
Schenekemberg et al. (2021) SSPG-BC E Intel(R) Xeon(R) 2.60 GHz 6 Gurobi 8.1
Adulyasak, Cordeau, and Jans (2014a) ACJ-BC E AMD Opteron 2.40 GHz 8 CPLEX 123
Boudia and Prins (2009) BP-MA H 2.30 GHz PC 1 -
Adulyasak, Cordeau, and Jans (2014b) ACJ-ALNS-500 H 2.10 GHz Duo CPU PC Def CPLEX 12.2
ACJ-ALNS-1000 H
Qiuet al. (2018) QWXFP-VNS H Intel Core 2 Duo P8600 2.40 GHz Def CPLEX 12.6
Absi et al. (2015) AADF-VRP M Xeon 2.67 GHz PC Def CPLEX 121
AADF-MTSP M
Solyali and Sural (2017) SS-M M 2.40 GHz PC 12 CPLEX 12.5
Chitsaz, Cordeau, and Jans (2019) ca-m M Xeon X5650 2.67 GHz 1 CPLEX 12.6
Liet al. (2019) LCCF-M M Intel Core i7 2.5 GHz Def CPLEX 12.6
Avci and Yildiz (2019) AY-M M Intel Core i5-760X 4.00 GHz Def CPLEX 12.6
Manousakis et al. (2022) MKKZ-M M Intel Core i7-7700 3.60 GHz 1 Gurobi 9.0.2
This paper VACS-M M Xeon Gold 6144 3.5 GHz 1 Gurobi 9.1

Note: Def = Default, Sol = Solution method, E = Exact method, H = Heuristic, M = Matheuristic.

the set of instances that has been used the least in the
literature.

To evaluate our results, we have compared them with
the results presented in other papers that have solved the
same instances. We have tried to gather the results of all
relevant methods. The matheuristic proposed by Archetti
et al. (2011) has not been included since, according to
Solyal1 and Siiral (2017), it has an error in its implemen-
tation. In addition, the results of Russell (2017) have also
been left out. The authors of Manousakis et al. (2022)
report that they were unable to re-create the reported
objective values in B3 from the solution files which they
received from the author of the above-mentioned paper.
Hence, it is likely that different assumptions or objective
value calculations have been used in Russell (2017). We
have not been successful in our attempts to contact the
author of Russell (2017). If we had included the results in
our evaluation, Russell (2017) would have had the BKS
for four of the Archetti instances, four of the B1 instances
and ten of the B3 instances.

In general, the more recently published papers
have better results than the older ones. Some of
the methods presented have focussed on the smaller
instances from Archetti et al. (2011), while others have
focussed on the larger instances from Boudia, Louly, and
Prins (2007). The instances from Adulyasak, Cordeau,
and Jans (2014a) have mainly been used by exact meth-
ods. However, the methods and results have all used
different CPUs and software, hence making a fair com-
parison of the time consumption is hard. In Table 1,
we summarise essential features of all solution methods.
A complete overview of the instances used to test each
method can be found in Table 2.

When comparing our solution methods throughout
this paper, we have used the one-tailed Wilcoxon signed-
rank test (Wilcoxon 1945), a nonparametric test to com-
pare two independent groups, to ensure that the median
of the difference of the objective values between our pro-
posed method (X) and the method we compare with

(Y) is significantly different from zero. In the test, we
evaluate two hypotheses, the null-hypothesis Hy, and the
alternative hypothesis Hj, defined as follows:

Hy : median(X — Y) =0,
H; : median(X — Y) > 0,

where median(X—Y) is the median of the pairwise differ-
ences in objective value over the test instances. Rejecting
both hypotheses leads to the conclusion that our method
obtains better solutions than the method it is compared
with. We use a significance level « = 0.01.

4.2. Algorithmic implementation and parameters

The used parameter values were obtained by running
preliminary tests where different parameter configurations
were tested and compared. We would like to point at that
the proposed method can be considered to be more of
a framework than an exact recipe of how to solve the
problem. Hence, we did not put considerable effort into
tuning the parameters and better configurations are likely
to exist. Practitioners solving similar problems should
scale the parameters according to their needs and con-
straints. The parameter values used in this computational
study are presented in Table 3. The instances differ in size
and complexity, and different parameter settings are thus
more suitable for specific subsets of instances. However,
to avoid overfitting, we have used the same parameter
settings for all instances, except for w, which is different
for B3.

The parameter o is the factor we multiply the
cost CTSP with. Here, V is the number of vehicles
in the instance. The number of vehicles is set to
max;e7/(2 ) ;cpnr Dit)/ (Q|T’)) for instances where the
vehicle fleet is unlimited. The parameters 8 and y are
the factors that Q and EN are multiplied with, and § is
the number of consecutive times we run the improve-
ment model in each iteration of the multi-start phase of



Table 2. The number of instances solved by each solution method.

SS-M Ca-m LCCF-M AY-M MKKZ-M VACS-M
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333888838

A2-1

A2-2
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A2-4

A3-1

A3-2

A3-3

A3-4
B1

30
30
30
168

30
30
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30
30
30

30

30
30
30

30
30
30

30
30
30

30
30
30

30
30

30
30
30
168

30
30
30

30
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30

5

30
30

B2

168

168

30
168

13
2-4
Note: V = Number of vehicles, E = Exact method, H = Heuristic, M = Matheuristic.
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Table 3. Parameter values.

Name Value
o W
B 0.975
y 0.25
3 4
w 3 (—3%, +3%, +6%)
€1 1
€ 3
€3 3

it 5
Time Limit: Initial solution 0.5|N|
Time Limit: Improvement model 1 IN|

Time Limit: Improvement model 2 10|T'| + 0.5|N|

the heuristic. The parameter @ denotes the number of
CVRPs solved per time period in each iteration when we
solve the improvement model with an extended route set.
Each time we solve a CVRP, the capacity of the vehicles
is altered. First, it is decreased by 3%, then increased by
3%, and finally increased by 6%. However, for B3, we only
solve one VRP per time period in each iteration, increas-
ing the capacity by 3%. This is because the improvement
model becomes too large and difficult to solve if too many
routes are added to R in B3.

The parameters €1, €; and €3 give the number of times
we run the three different differentiation techniques, and
it is the maximum number of iterations when we solve the
improvement model with an extended route set. “Time
Limit: Initial solution’ refers to the time limit in seconds
put on solving the mathematical model used to solve
the production subproblem, and ‘Improvement model 1’
refers to the improvement model in the multi-start phase
of the matheuristic. In contrast, Tmprovement model 2’
refers to the improvement model when using an extended
route set. Time limits have been enforced due to the
fact that this is a matheuristic and there is no reason to
spend time on closing the optimality gap when it has little
impact on the final solution.

4.3. Computational results for the production
routeing problem

In this section, the proposed matheuristic is com-
pared with the benchmark solution methods for the
PRP. First, we present the results on the benchmark
instances from Adulyasak, Cordeau, and Jans (2014a).
Most of these instances are solved to proven opti-
mality in the literature. Second, we present the com-
parison on the benchmark instances from Archetti
et al. (2011), and finally on the benchmark instances
from Boudia, Louly, and Prins (2007). The detailed
computational results, and solutions, can be found at
http://axiomresearchproject.com/publications/.
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Table 4. The average results for the Adulyasak instances.

ACJ-BC ACJ-ALNS SSPG-BC VACS-M

Set Size Gap Time #BKS Gap Time #BKS Gap Time #BKS Gap Time #BKS New
C-10 24 0.00 64 24 (24) 1.03 - 2(2) 0.00 13 24 (24) 0.32 5 9(9) 0
C-15 24 0.01 7734 20 (20) 1.41 - 2(2) 0.00 2540 24 (20) 0.59 12 4(4) 0
C-20 24 0.01 4084 23(22) 1.37 - 2(2) 0.00 1030 24 (24) 0.20 8 9(9) 0
C-25 24 0.06 10,535 20 (20) 1.39 - 1(1) 0.00 1984 23(22) 0.29 18 6 (6) 0
C-30 24 0.37 20,621 14 (14) 1.61 - 0(0) 0.00 5787 24 (16) 0.57 73 2(2) 0
C-35 16 0.16 20,563 11(11) 1.97 - 0(0) 0.00 4800 16 (13) 0.39 18 2(2) 0
C-40 16 0.27 29,370 7(7) 1.05 - 0(0) 0.00 9860 12(7) 0.16 17 5(1) 3
C-45 8 0.34 27,798 5(5) 1.15 - 1(1) 0.03 12,652 4(2) 0.59 12 2(1) 1
C-50 8 0.04 21,318 5(5) 1.60 - 0(0) 0.00 6404 7(6) 0.53 11 2(1) 1

Sum/Avg. 0.12 13,243 129 (128) 1.39 - 8(8) 0.00 3926 158 (134) 0.39 21 41 (35 5
Note: #BKS = Number of best-known solutions.
Table 5. The average gaps in percentage for the Archetti instances.

ACJ-ALNS-500 ~ ACJ-ALNS-1000 QWXFP-VNS ~AADF-VRP ~ AADF-MTSP  SS-M  CC-M  LCCF-M  AY-M  MKKZ-M  VACS-M
Set vV  Size H H H M M M M M M M M
A2-1 oo 120 1.36 1.35 0.26 0.38 1.30 0.27 0.16 0.21 0.18 0.02 0.04
A2-2 oo 120 0.22 0.22 0.08 0.10 0.14 0.06 0.06 0.05 0.06 0.00 0.02
A2-3 oo 120 4.63 439 0.87 1.83 3.57 0.92 0.62 0.82 0.78 0.06 0.15
A2-4 oo 120 0.36 0.35 0.13 0.25 0.62 0.21 0.13 0.18 0.17 0.06 —0.01
A3-1 oo 120 1.10 1.05 0.23 0.27 1.91 0.12 0.23 0.08 0.07 0.19 —0.05
A3-2 oo 120 0.17 0.16 0.08 0.06 0.14 0.04 0.04 0.03 0.05 0.00 0.00
A3-3 oo 120 416 397 0.62 1.54 4.13 0.46 1.38 0.47 0.55 037 —0.18
A3-4 oo 120 0.37 0.35 0.10 0.26 0.72 0.07 0.08 0.06 0.11 0.14 —0.08
Average 1.54 1.48 0.30 0.59 1.57 0.27 0.34 0.24 0.24 0.11 —0.01

Note: V = Number of vehicles, H = Heuristic, M = Matheuristic.

4.3.1. Test results on the Adulyasak instances

The results of running the proposed matheuristic
(denoted VACS-M) on each of the 168 instances from
Adulyasak, Cordeau, and Jans (2014a) are compared with
existing results from the literature. All the computational
results are summarised in Table 4. Here, Gap refers to the
average gap in percentage which is calculated for each
instance as the difference between the objective value
obtained by a method and the current best-known objec-
tive value (not including this paper), divided by the best-
known objective value. Further, Time refers to the average
time in seconds over a subset of instances, #BKS refers
to the number of best-known solutions and the number
within the parentheses refers to the number of (known)
optimal solutions found. In addition, the VACS-M col-
umn New shows the number of BKS that are new to the
literature and have a strictly better objective value than
the old BKS.

VACS-M finds 35 optimal solutions out of 168
instances and 41 BKS where five of them have a strictly
improving objective value. In addition, an average gap of
0.39% is noticeably better than ACJ-ALNS which is the
only other heuristic that has solved this set of instances.
For each subset of instances, the one-tailed Wilcoxon
signed-rank test indicates that VACS-M is statistically
significantly better than ACJ-ALNS. Thus, the results
indicate that VACS-M produces close to optimal solu-
tions using less than 0.5% of the computing time used

by exact methods. The solution times of ACJ-ALNS were
unfortunately not reported by the authors.

4.3.2. Testresults on the Archetti instances

The results of running the proposed matheuristic
(denoted VACS-M) on each of the 960 multi-vehicle
instances from Archetti et al. (2011) are compared with
existing results from the literature. All the computational
results are summarised in Tables 5-7. In Table 5, the aver-
age gaps of each solution method is presented. Again, the
solution gap obtained by a method for a given instance
is calculated as the difference between the objective value
obtained with the method and the current best-known
objective value (not including this paper), divided by the
best-known objective value. In Table 6 the number of
BKSs are presented. Finally, Table 7 shows the average
computing times for each solution method.

It is clear from Table 5 that VACS-M has the best aver-
age gap over all Archetti instances. However, we can see
that the differences are rather small between the different
methods. This is primarily because most of the instances
have setup and production costs that are significantly
larger than the transportation costs. Hence, only improv-
ing the routeing decisions does not necessarily lead to
a significantly better solution in terms of gap. With this
in mind, we can conclude that VACS-M finds slightly
better solutions, on average, compared with the other
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Table 6. The number of best-known solutions (BKSs) for the Archetti instances.

ACJ-ALNS-500  ACJ-ALNS-1000 QWXFP-VNS  AADF-VRP  AADF-MTSP  SS-M  CC-M LCCF-M AY-M MKKZ-M  VACS-M
Set vV  Size H H H M M M M M M 1] M
A2-1 oo 120 0 0 0 0 0 2 22 2 9 57 62 (41)
A2-2 oo 120 0 0 0 0 0 0 1 2 0 929 18(18)
A2-3 oo 120 0 0 0 0 0 2 7 0 3 61 58(52)
A2-4 oo 120 0 0 2 0 1 0 4 0 4 69 44 (41)
A3-1 oo 120 0 0 0 0 0 2 4 1 5 6 102 (102)
A3-2 oo 120 0 0 0 3 0 0 3 2 0 57 55 (55)
A3-3 oo 120 0 0 0 0 0 2 0 2 2 19 95 (95)
A3-4 oo 120 0 0 0 1 0 0 6 3 0 29 82 (81)
Total 0 0 2 4 1 8 47 12 23 397 516 (485)
Note: The number within parentheses refers to the number of strictly improving solutions. V = Number of vehicles, H = Heuristicct M = Matheuristic.
Table 7. The average computing time in seconds for the Archetti instances.
ACJ-ALNS-500  ACJ-ALNS-1000 QWXFP-VNS  AADF-VRP  AADF-MTSP  SS-M CCJ-M LCCF-M AY-M MKKZ-Mx  VACS-M
Set vV  Size H H H M M M M M M M M
A2-1 oo 120 29 50 25 23 315 16 400 43 89 1513 130
A2-2 oo 120 28 50 21 23 288 14 344 37 78 1563 103
A2-3 oo 120 24 43 25 26 335 16 309 39 78 1832 156
A2-4 oo 120 26 44 28 26 330 25 434 42 84 1409 142
A3-1 oo 120 136 249 85 86 514 324 2125 169 187 10,174 857
A3-2 oo 120 125 221 73 76 497 51 1947 132 102 11,073 508
A3-3 oo 120 107 191 73 75 509 350 1461 145 290 11,013 978
A3-4 oo 120 108 189 84 87 507 125 2213 160 176 11,760 605
Average 73 130 52 53 412 115 1154 95 135 6292 435

Note: V = Number of vehicles, H = Heuristicc M = Matheuristic, *x = estimated time

methods. This is backed up by the results of the one-
tailed Wilcoxon signed-rank test for all Archetti instances
that states that VACS-M is statistically signficantly bet-
ter than MKKZ (the second best method). However,
MKKZ-M finds, on average, better solutions for the A2
instances. The reason why MKKZ-M performs better on
these instances than VACS-M is probably because fewer
vehicles are used on average in the A2 instances than in
the A3 instances. Generally, VACS-M performs better on
instances that require a higher number of vehicles.

Table 6 presents the number of BKSs found by each
solution method. The VACS-M column includes the
number of solutions that have a strictly improving objec-
tive value and is displayed within parentheses. We can see
that VACS-M finds the BKS in 516 out of 960 instances
which is significantly more than any other method. In
fact, VACS-M finds a strictly improving solution in over
fifty percent of the 960 instances. Interestingly, the two
subsets of instances where VACS-M has the lowest num-
ber of BKSs are A2-2 and A3-2. These are the instances
with high transportation costs. This indicates that our
proposed matheuristic performs worse when the trans-
portation costs are high. A possible explanation for this
is that since the proposed matheuristic does not consider
the location of retailers in the production subproblem, it
may therefore serve retailers that are geographically very
spread in the same time period. This may lead to long
vehicle routes, which is expensive when the transporta-
tion costs are high.

Table 7 displays the average computing time for all
solution methods. Manousakis et al. (2022) only report
the computing time of the individual restart that pro-
duced their best solution and not the total running time
of their entire matheuristic consisting of 100 restarts.
Unfortunately, the authors could not provide their total
running times upon request, so to estimate their running
times, we multiplied their reported times by 100. It is clear
from the table that VACS-M is significantly slower than
the fastest solution methods. However, the reported times
of VACS-M are still reasonable considering the complex-
ity of the problem instances, and the extra time spent is
worth it considering the improvement in solution quality.
Further, the reported time is less than 10% of Manousakis
et al. (2022) which is the second best solution method,
both in terms of average gap and BKSs, and less than 50%
of Chitsaz, Cordeau, and Jans (2019) which has the third
most BKSs.

4.3.3. Testresults on the Boudia instances

The results of running the proposed matheuristic
(denoted VACS-M) on each of the 90 multi-vehicle
instances proposed by Boudia and Prins (2009) are com-
pared with existing results from the literature. All the
computational results are summarised in Tables 8-10. In
Table 8, the average gap of each solution method is pre-
sented. Table 9 shows the number of BKSs. Finally, in
Table 10 the average computing times for each solution
method are presented.
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Table 8. The average gap in percentage for the Boudia instances.

SSPG-BC BP-MA  ACJ-ALNS-500 ACJ-ALNS-1000 QWXFP-VNS AADF-VRP AADF-MTSP SS-M  CCJ-M  LCCF-M  MKKZ-M  VACS-M
Set V Size E H H H H M M M M M M M
B1 5 30 3.23 15.73 2.19 2.08 1.75 2.70 246 1.06 1.81 1.32 0.00 0.02
B2 9 30 12.46 13.99 1.62 1.60 1.26 1.50 1.97 0.71 1.86 0.55 0.07 —0.54
B3 13 30 - 17.33 2.70 - 127 1.43 3.02 334 125 0.41 0.20 —0.94
Average 7.84 15.68 217 1.84 1.42 1.87 248 1.70 1.64 0.76 0.09 —0.49
Note: V = Number of vehicles, E = Exact method, H = Heuristic, M = Matheuristic, - = The instances are not solved by the solution method.
Table 9. The number of best-known solutions (BKSs) for the Boudia instances.
SSPG-BC BP-MA  ACJ-ALNS-500 ACJ-ALNS-1000 QWXFP-VNS AADF-VRP AADF-MTSP SS-M  CCJ-M  LCCF-M  MKKZ-M  VACS-M
Set V Size E H H H H M M M M M M M
B1 5 30 0 0 0 0 0 0 0 0 0 0 15 15 (15)
B2 9 30 0 0 0 0 0 0 0 0 0 0 0 30(30)
B3 13 30 - 0 0 - 0 0 0 0 0 0 0 30(30)
Total 0 0 0 0 0 0 0 0 0 0 15 75 (75)
Note: V = Number of vehicles, E = Exact method, H = Heuristic, M = Matheuristic, - = The instances are not solved by the solution method.

Table 10. The average computing time in seconds for the Boudia instances.

ASSPG-BC  BP-MA  ACJ-ALNS-500 ACJ-ALNS-1000 QWXFP-VNS AADF-VRP AADF-MTSP SS-M  CCJ-M  LCCF-M MKKZ-Msx VACS-M

Set V Size E H H H H M M M M M M M

B1 5 30 14,400 117 298 481 488 298 481 2464 3559 277 31,750 1543

B2 9 30 14,400 976 1405 1570 1767 1405 1570 7487 9811 493 82,194 4784

B3 13 30 - 1148 5794 - 5884 4197 19,270 16,365 15,891 614 202,111 8712
Average 14,400 747 2499 1025 2713 1977 7107 8772 9754 461 105,351 5013

Note: V = Number of vehicles, E = Exact method, H = Heuristicc M = Matheuristic, * = estimated time, - = The instances are not solved by the solution
method.

Table 8 shows the average gap of each solution method
for all subsets of the Boudia instances. The average gaps
are calculated the same way as in Table 5. MKKZ-M has
the best average gap on the Bl instances, while VACS-
M has the best average gap on the B2 and B3 instances.
The results of the one-tailed Wilcoxon signed-rank test
state that the results of VACS-M are statistically signif-
icantly better than the results of MKKZ for B2 and B3.
However, for B1 there is no significant difference, and the
Hj hypothesis cannot be rejected. Overall, we can see that
VACS-M has a lower average gap than all other solution
methods and that its performance relative to the other
solution methods gets better as the number of retailers
increases.

Table 9 presents the number of BKSs for all solu-
tion methods. VACS-M finds the BKS for 75 out of 90
instances, where all of them are strictly improving the
previous BKS. In fact, VACS-M improves the BKS for
all the B2 and B3 instances. The only solution method
besides VACS-M that has any BKSs is MKKZ-M.

Table 10 presents the average computing time for
all solution methods for the Boudia instances. VACS-M
spends on average 5013 seconds over all instances. This
is reasonable considering the complexity and size of the
instances. In addition, this is also competitive compared
with the other solution methods, especially since VACS-
M is superior with respect to solution quality. In fact,

MKKZ-M, which is the second-best solution method in
terms of solution quality, spends over 100,000 seconds.
This is, however, as in Table 7, an estimate since the
authors of Manousakis et al. (2022) do not provide their
total solution times.

4.4. Testresults on the inventory routeing problem

We have also tested the matheuristic on the large multi-
vehicle benchmark instances for the IRP released by
Archetti et al. (2012). These instances were originally
designed for the single-vehicle case, but are adapted to
the multi-vehicle version by dividing the vehicle capac-
ity by the number of vehicles and rounding to the
nearest integer. They consist of 240 instances with six
time periods, where one-third of the instances has 50
retailers, another third has 100 retailers, and the last
third has 200 retailers. The number of vehicles differs
between two and five. We have compared our results with
Coelho and Laporte (2013) (CL-BC), Archetti, Boland,
and Speranza (2017) (AR-H2), Chitsaz, Cordeau, and
Jans (2019) (C-M), Guimaries et al. (2020) (G-BC),
Manousakis et al. (2020) (M-BC), Vadseth, Anders-
son, and Stalhane (2021) (V-M), Archetti et al. (2021)
(AR-H3) and Solyali and Siiral (2022). The results
of Achamrah, Riane, and Limbourg (2021) have not
been included since their results are inconsistent with



the literature and super-optimal solutions have been
reported.

To test the proposed matheuristic on the multi-
vehicle IRP we have excluded differentiation technique
2 described in Section 3.2 since there are no production
decisions in the IRP. In addition, the mathematical mod-
els in Section 3.1 and Section 3.3 must be updated. We
do so by setting o; = 1 and p; equal to the constant pro-
duction rate for all t € 7”. In addition, we set CS and CY
equal to zero. The results are presented in Tables 11-13,
and show the average gap, number of BKSs, and average
computing time, respectively.

It is clear from Table 11 that VACS-M has the second-
best average gap of the solution methods tested on
these instances, and that it performs better as the num-
ber of available vehicles increases. For five vehicles,
VACS-M has the best gap for all numbers of retailers
(which is statistically significant according to the one-
tailed Wilcoxon signed-rank test). This indicates that our
proposed method performs best when many vehicles are
available, which is probably due to how the initialisation
process works. Since the production subproblem does
not consider the geographical placement of retailers, it
may serve retailers that are geographically very spread
in the same time period. Having more vehicles available
therefore reduces the chance of having to construct long
routes that cover undesirably large distances in order to
serve the given retailers.

Table 12 shows that VACS-M finds the BKS in 73 out of
240 instances. In addition, 72 of these are strictly improv-
ing. This means that VACS-M finds more BKS than any
other solution method. Again, we can see that it is on
the instances with four and five vehicles that VACS-M
performs best.

Table 13 gives the average computing time for all solu-
tion methods. Even though it is hard to compare the
different methods since different computers and solvers
have been used, we can see that both VACS-M and V-
M use less than 40% of the computing time of any other
method tested on these instances. It is improbable that
this is only due to differences in CPU speed. Further-
more, VACS-M and V-M have been run on the same
computer, where the only difference is that VACS-M uses
Gurobi 9.1 instead of 9.0. We conclude that VACS-M is
about three times faster than V-M, while providing, on
average, almost the same solution quality.

4.5. Analysis of the different components and
recommendations

To assess the importance of the different components of
the matheuristic have we tested different configurations.
We have run the matheuristic without the intensification
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phase, without differentiation technique 1, without dif-
ferentiation technique 2 and with no differentiation tech-
niques and compared the results with the full algorithm.
This has been done for all Boudia instances and ten
instances for each class of Archetti instances for both 50
retailers and 100 retailers. The results are highlighted in
Table 14.

Here, all numbers are percentages and represent the
solution gap between the full matheuristic and the dif-
ferent configurations. The solution gap is calculated as
the solution value of a configuration minus the solu-
tion value of the full matheuristic divided by the solution
value of the full matheuristic. First of all, we can see that
the percentages are quite small. This is again mainly due
to the fact that the setup and production costs are so
high that the routeing costs have little impact on the total
costs. However, our matheuristic is still able to outper-
form other solution methods in most instances without
the intensification phase or differentiation techniques.
Hence, the solution found by the first iteration is often of
very high quality, and the solutions found from applying
the differentiation techniques only have a marginal effect.
Further, we can see that differentiation technique 1 is the
most important one and that differentiation technique 2
is primarily needed when the production costs are high
(which is the case for the third class of Archetti instances).
The intensification phase improves the solution, but its
contribution to the overall solution is marginal and can
hence be dropped if computing time is an issue. In addi-
tion, sometimes a better solution is obtained without
using any differentiation techniques since the intensifica-
tion phase can lead to a better solution even if the starting
solution is worse.

The key takeaway for a practitioner or someone else
who needs to solve a production routeing problem is that
the matheuristic works well without multiple restarts.
However, if one needs to find a solution that is as good
as possible and time is not critical - then the whole
matheuristic should be used. Further, if the problem con-
tains specific structures, this should be incorporated into
a differentiation technique. For instance, differentiation
technique 2 is often not needed, but is very advanta-
geous for specific instances. In conclusion, we can see
from Table 14 that all parts of the matheuristic contribute
to the overall performance and, hence, we recommend
using the matheuristic as described and adding extra
differentiation techniques if relevant.

5. Concluding remarks and future research

In this paper, we propose a novel multi-start route
improving matheuristic for the well-studied production
routeing problem (PRP). A feasible solution to the PRP is
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Table 11. The average gap in percentage for the IRP.

CL-BC AR-H2 M G-BC M-BC V-M AR-H3 S-M VACS-M
Retailers % Size E M M E E M M M M
50 2 20 2.57 1.76 3.59 0.11 0.24 1.06 3.89 0.81 2.35
3 20 19.97 2.34 3.00 2.47 0.80 0.38 3.65 034 0.94
4 20 - 2.67 2.38 3.91 0.79 0.17 331 1.16 —-0.02
5 20 - 4.25 2.84 5.55 0.64 0.05 3.40 1.54 -0.29
Average: 11.27 2.75 2.95 3.01 0.62 0.41 3.56 0.96 0.67
100 2 20 138.22 6.41 2.26 3.49 0.51 0.75 5.76 044 1.19
3 20 216.39 6.30 2.90 12.68 1.07 0.64 4.68 0.14 1.22
4 20 - 9.70 1.71 21.88 1.15 0.18 5.98 0.90 0.24
5 20 - 8.20 2.00 27.57 1.53 0.08 4,99 1.57 -0.19
Average: 177.30 7.65 2.22 16.41 1.07 041 5.35 0.76 0.61
200 2 20 - 5.67 1.52 10.48 - 0.88 6.45 0.01 1.29
3 20 - 9.10 2.26 19.90 - 0.65 9.93 0.07 0.74
4 20 - 9.41 1.31 35.38 - 0.14 8.45 0.84 0.23
5 20 - 9.56 0.94 46.87 - 0.19 7.68 1.20 —-0.24
Average: - 8.43 1.51 28.16 - 0.46 8.05 0.53 0.51
Total Average: 94.29 6.28 2.23 15.86 0.84 043 5.66 0.75 0.62
Note: V = Number of vehicles, E = Exact method, H = Heuristic, M = Matheuristic, - = The instances are not solved by the solution method.

Table 12. The number of best-known solutions (BKSs) for the IRP.

CL-BC AR-H2 M G-BC M-BC V-M AR-H3 S-M VACS-M
Retailers % Size E ] M E E M M M M
50 2 20 0 0 0 8 7 2 0 3 1(1)
3 20 0 0 0 0 3 6 0 9 3(3)
4 20 - 0 0 0 2 6 0 0 13(12)
5 20 - 0 0 0 0 8 0 0 12(12)
Sum: 0 0 0 8 12 22 0 12 29 (28)
100 2 20 0 0 0 0 8 5 0 6 1(1)
3 20 0 0 0 0 3 4 0 10 3(3)
4 20 - 0 0 0 2 7 0 3 8(8)
5 20 - 0 0 0 0 10 0 1 9(9)
Sum: 0 0 0 0 13 26 0 20 21(21)
200 2 20 - 0 0 0 - 2 0 17 1(1)
3 20 0 0 0 - 4 0 15 1(1)
4 20 - 0 0 0 - 9 0 4 7(7)
5 20 - 0 0 0 - 5 0 1 14 (14)
Sum: 0 0 0 - 20 0 37 23 (23)
Total Sum: 0 0 0 8 25 68 0 69 73(72)
Note: V = Number of vehicles, E = Exact method, H = Heuristic, M = Matheuristic, - = The instances are not solved by the solution method.
Table 13. The average computing time in seconds for the IRP.
CL-BC AR-H2 c-M G-BC M-BC V-M AR-H3 S-M VACS-M
Retailers 4 Size E M M E E ] M M M
50 2 20 86,400 5640 435 7200 7200 166 131 408 27
3 20 86,400 5729 546 7200 7200 318 2840 3633 53
4 20 - 5867 519 7200 7200 514 3543 3646 146
5 20 - 5924 574 7200 6952 544 4837 3659 334
Average: 86,400 5790 519 7200 7138 385 2835 2836 140
100 2 20 86,400 2357 2406 7200 7200 270 93 426 56
3 20 86,400 3690 2394 7200 7201 588 883 3316 90
4 20 - 2705 2270 7200 7201 794 2980 3662 167
5 20 - 3129 2513 7200 7200 1033 4989 3677 262
Average: 86,400 2970 2396 7200 7200 671 2236 2770 144
200 2 20 - 4201 14,128 7200 - 613 338 2723 216
3 20 - 4201 9688 7200 - 963 534 6829 288
4 20 - 4200 12,606 7200 - 1446 1316 7500 501
5 20 - 4201 13,495 7200 - 1892 2483 7524 677
Average: - 4201 12,480 7200 - 1229 1168 6144 421
Total Average: 86,400 4320 5131 7200 7169 762 2080 3917 235
Note: V = Number of vehicles, E = Exact method, H = Heuristic, M = Matheuristic, - = The instances are not solved by the solution method.
created in each restart by first solving a relaxed subprob- ~ what has previously been used in the literature. There-

lem of the problem. This subproblem relaxes all routeing  after, a capacitated vehicle routeing problem (CVRP) is
decisions and gives a smaller mathematical model than  solved for each time period to construct the full starting
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Table 14. The reduction in solution quality, given in percentage, if different components of the matheuristic are removed.

Set % Size No intensification phase No diff. technique 1 No diff. technique 2 No diff. technique
Al-1 () 10 0.06 0.03 0.00 0.04
A1-2 ) 10 0.00 0.01 0.00 0.01
A1-3 00 10 0.16 0.00 2.45 2.44
A1-4 o0 10 0.04 0.10 0.00 0.45
A2-1 00 10 0.03 0.02 0.00 0.02
A2-2 00 10 0.01 0.00 0.00 0.00
A2-3 00 10 0.14 0.03 1.49 141
A2-4 o0 10 0.07 0.05 0.00 0.05
Average 0.06 0.03 0.49 0.55
B1 5 30 0.36 0.31 0.03 035
B2 9 30 0.06 0.32 0.00 0.42
B3 13 30 0.07 0.38 0.02 0.38
Average 0.16 0.33 0.02 0.38
Total Average 0.07 0.11 0.14 0.26

Note: V = Number of vehicles, diff. = differentiation.

solution. The routes from this solution are then used
in a novel path-flow-inspired improvement model that
allows us to make alterations to the routes. This improve-
ment phase avoids the shortcomings of the traditional
decomposition used in the PRP literature since the model
allows us to consider multiple changes to all the routes
in the model simultaneously, while at the same time
evaluating the effect of these changes on the produc-
tion and distribution decisions. All these changes are
evaluated exactly using the full objective function of the
problem, rather than an approximate one. Finally, the
most promising solution from the different restarts is fur-
ther improved by solving the above-mentioned improve-
ment model with an extended route set for multiple
iterations.

Computational results show that the matheuristic pro-
vides high-quality solutions on benchmark instances for
both the PRP and inventory routeing problem (IRP).
The computational results for the set of smaller bench-
mark instances released by Adulyasak, Cordeau, and
Jans (2014a) indicate that the proposed method produces
close to optimal solutions within a small fraction of the
computing time used by exact methods. For the set of
multi-vehicle benchmark instances released by Archetti
et al. (2011) it finds the best-known solution (BKS) for
516 out of 960 instances, and for the larger and different
instance set released by Boudia, Louly, and Prins (2007)
it finds the BKS for 75 out of 90 instances. Further, for
the set of multi-vehicle IRP instances released by Archetti
et al. (2012) our matheuristic finds the BKS for 73 out of
240 instances. Our method spends considerably shorter
computing times on the IRP instances than all other
comparable methods. Overall, this is significantly bet-
ter in terms of solution quality compared with all other
known solution methods, and the excellent performance
on different sets of instances highlights the versatility of
our proposed method.

An analysis of the different components of the
matheuristic shows that the initial iteration often pro-
vides high-quality solutions and that multiple restarts
sometimes only marginally improve the solutions. A
practitioner, or someone who solves a production route-
ing problem, can therefore choose not to use the entire
matheuristic if computing time is an issue. However, the
best results are obtained by using the entire algorithm. We
have tested the matheuristic on the standard PRP, and an
exciting direction for future research is to test it on sim-
ilar problems and different versions of the PRP. The PRP
is an important problem and an interesting direction for
future research is to also include additional aspects such
as workforce considerations (Farghadani-Chaharsooghi
et al. 2022) and detailed production scheduling (Zou
et al. 2018). In addition, we believe the improvement
part of our matheuristic is very promising, and it is
an exciting direction for further research to develop
it further and make it applicable to other routeing
problems.

Acknowledgments

We would also like to thank the four anonymous referees for
their constructive comments and suggestions, which helped
improve the quality of the paper. In addition, we would also
like to thank our collaborators in the AXIOM project for their
valuable feedback. The contents of this paper reflect the views
of the last author and not necessarily the views of Kinaxis Inc.
or its affiliates.

Data availability statement

The data that support the findings of this study are openly
available at http://axiomresearchproject.com/publications/.

Disclosure statement

No potential conflict of interest was reported by the authors.


http://axiomresearchproject.com/publications/

20 S.T.VADSETH ET AL.

Funding

We would like to thank the Research Council of Norway for
funding the research.

Notes on contributors

Simen T. Vadseth holds an engineering
degree in Industrial Economics and Tech-
nology Management from the Norwe-
gian University of Science and Technol-
ogy (NTNU). He is currently doing a
Ph.D. at the same university where his
thesis focuses on solution methods for
hard combinatorial optimisation prob-
lems. Simen is also employed at St. Olav’s University Hospital in
Trondheim, Norway where he is involved with health logistics
and optimisation.

Henrik Andersson is a Professor of opti-
misation at Norwegian University of Sci-
ence and Technology. He received an
engineering degree in Industrial Engi-
neering and Management from Linkping
University and holds a Ph.D. in Infra
Informatics from the same university. His
primary research interest concerns the
development of relevant discrete optimisation models and
methods within transportation and healthcare logistics.

Magnus Stalhane is a Professor of Opera-
tions Research at the Norwegian Univer-
sity of Science and Technology (NTNU).
He earned his MSc in Industrial Eco-
nomics and Technology Management in
2008, and his PhD on Optimization of
maritime routeing and scheduling prob-
lems with complicating inter-route con-
straints in 2013, both from NTNU. Stlhane has mainly been
working on optimisation problems related to vehicle routeing
and scheduling problems, but has also published several papers
on applications of operations research in the offshore wind
industry. Masoud Chitsaz

Masoud Chitsaz is a Technical Thought
Leader at Kinaxis, a global supply chain
planning software company based in
Canada. Masoud applies analytics to
improve business decisions and opera-
tions. He has over 20 years of experience

&

’ in supply chain and operations planning

)
«

N both in the industry and academia. Prior
to immigrating to Canada, he co-founded a successful consult-
ing company where he worked with a diverse range of public
and private clients in retail, transportation, supply chain, steel
production, auto manufacturing, infrastructure, and real estate.
Masoud is also a council member of the Canadian Operations
Research Society (CORS), and a mentor for supply chain star-
tups at Next AL He has a master’s degree in Transportation, an
MBA from Sharif University of Technology, and a PhD in Oper-
ations Management from HEC Montreal with the school’s best
thesis award. He has published papers in top-tier journals in
operations management and supply chain.

ORCID

Simen T. Vadseth (© http://orcid.org/0000-0003-3964-5810

References

Absi, N., C. Archetti, S. Dauzere-Pérés, and D. Feillet.
2015. “A Two-Phase Iterative Heuristic Approach for the
Production Routing Problem.” Transportation Science 49:
784-795.

Achamrah, E E., E Riane, and S. Limbourg. 2021. “Solv-
ing Inventory Routing with Transshipment and Substitu-
tion under Dynamic and Stochastic Demands Using Genetic
Algorithm and Deep Reinforcement Learning.” Interna-
tional Journal of Production Research 60: 6187-6204.

Adulyasak, Y., ]. E. Cordeau, and R. Jans. 2014a. “Formulations
and Branch-and-Cut Algorithms for Multivehicle Produc-
tion and Inventory Routing Problems.” INFORMS Journal
on Computing 26: 103-120.

Adulyasak, Y., ]. F. Cordeau, and R. Jans. 2014b. “Optimization-
Based Adaptive Large Neighborhood Search for the Produc-
tion Routing Problem.” Transportation Science 48: 20-45.

Adulyasak, Y., ]. F. Cordeau, and R. Jans. 2015. “The Production
Routing Problem: A Review of Formulations and Solution
Algorithms.” Computers & Operations Research 55: 141-
152.

Andersson, H., A. Hoft, M. Christiansen, G. Hasle, and A.
Lokketangen. 2010. “Industrial Aspects and Literature Sur-
vey: Combined Inventory Management and Routing.” Com-
puters & Operations Research37: 1515-1536.

Archetti, C,, L. Bertazzi, A. Hertz, and M. G. Speranza. 2012.
“A Hybrid Heuristic for an Inventory Routing Problem.”
INFORMS Journal on Computing 24: 101-116.

Archetti, C., L. Bertazzi, G. Laporte, and M. G. Speranza.
2007. “A Branch-and-Cut Algorithm for a Vendor-Managed
Inventory-Routing Problem.” Transportation Science 41:
382-391.

Archetti, C., L. Bertazzi, G. Paletta, and M. G. Speranza. 2011.
“Analysis of the Maximum Level Policy in a Production-
Distribution System.” Computers & Operations Research 38:
1731-1746.

Archetti, C., N. Boland, and M. G. Speranza. 2017. “A
Matheuristic for the Multivehicle Inventory Routing Prob-
lem.” INFORMS Journal on Computing 29: 377-387.

Archetti, C., G. Guastaroba, D. L. Huerta-Muiloz, and M. G.
Speranza. 2021. “A Kernel Search Heuristic for the Multi-
vehicle Inventory Routing Problem.” International Transac-
tions in Operational Research 28: 2984-3013.

Archetti, C., and M. G. Speranza. 2014. “A Survey on
Matheuristics for Routing Problems.” EURO Journal on
Computational Optimization 2: 223-246.

Archetti, C., and M. G. Speranza. 2016. “The Inventory Routing
Problem: The Value of Integration.” International Transac-
tions in Operational Research 23: 393-407.

Armentano, V. A, A. L. Shiguemoto, and A. Lgkketangen. 2011.
“Tabu Search with Path Relinking for an Integrated Pro-
duction-Distribution Problem.” Computers ¢ Operations
Research 38: 1199-1209.

Avci, M., and S. T. Yildiz. 2019. “A Matheuristic Solution
Approach for the Production Routing Problem with Visit
Spacing Policy.” European Journal of Operational Research
279:572-588.


http://orcid.org/0000-0003-3964-5810

Bard, J. E, and N. Nananukul. 2009. “The Integrated Produc-
tion-Inventory-Distribution-Routing Problem.” Journal of
Scheduling 12: 257-280.

Boschetti, M. A., V. Maniezzo, M. Roffilli, and A. B. Rohler.
2009. “Matheuristics: Optimization, Simulation and Con-
trol.” International Workshop on Hybrid Metaheuristics 1:
171-177.

Boudia, M., M. A. O. Louly, and C. Prins. 2007. “A Reac-
tive Grasp and Path Relinking for a Combined Pro-
duction-Distribution Problem.” Computers ¢ Operations
Research 34: 3402-3419.

Boudia, M., and C. Prins. 2009. “A Memetic Algorithm
with Dynamic Population Management for an Integrated
Production-Distribution Problem.” European Journal of
Operational Research 195: 703-715.

Brahimi, N., and T. Aouam. 2016. “Multi-Item Production
Routing Problem with Backordering: A Milp Approach.”
International Journal of Production Research 54: 1076-
1093.

Chandra, P. 1993. “A Dynamic Distribution Model with Ware-
house and Customer Replenishment Requirements.” Journal
of the Operational Research Society 44: 681-692.

Chandra, P, and M. L. Fisher. 1994. “Coordination of Pro-
duction and Distribution Planning.” European Journal of
Operational Research 72: 503-517.

Chen, K., T. Xiao, S. Wang, and D. Lei. 2021. “Inventory Strate-
gies for Perishable Products with Two-Period Shelf-Life and
Lost Sales.” International Journal of Production Research 59:
5301-5320.

Chitsaz, M., J. E Cordeau, and R. Jans. 2019. “A Unified
Decomposition Matheuristic for Assembly, Production, and
Inventory Routing.” INFORMS Journal on Computing 31:
134-152.

Codato, G., and M. Fischetti. 2006. “Combinatorial Benders’
Cuts for Mixed-Integer Linear Programming.” Operations
Research 54: 756-766.

Coelho, L. C., ]. E. Cordeau, and G. Laporte. 2014. “Thirty Years
of Inventory Routing.” Transportation Science 48: 1-19.

Coelho, L. C., and G. Laporte. 2013. “The Exact Solution of Sev-
eral Classes of Inventory-Routing Problems.” Computers ¢
Operations Research 40: 558-565.

Duong, L. N. K., and J. Chong. 2020. “Supply Chain Collabo-
ration in the Presence of Disruptions: A Literature Review.”
International Journal of Production Research 58: 3488-3507.

Farghadani-Chaharsooghi, P., P. Kamranfar, M. S. Mirzapour
Al-e Hashem, and Y. Rekik. 2022. “A Joint Production-
Workforce-Delivery Stochastic Planning Problem for Per-
ishable Items.” International Journal of Production Research
60 (20): 1-25.

Fisher, M. L., and R. Jaikumar. 1981. “A Generalized Assign-
ment Heuristic for Vehicle Routing.” Networks 11: 109-124.

Ghasemkhani, A., R. Tavakkoli-Moghaddam, Y. Rahimi, S.
Shahnejat-Bushehri, and H. Tavakkoli-Moghaddam. 2022.
“Integrated Production-Inventory-Routing Problem for
Multi-Perishable Products under Uncertainty by Meta-
Heuristic Algorithms.” International Journal of Production
Research 60: 2766-2786.

Guimaraes, T. A., C. M. Schenekemberg, L. C. Coelho, C. T.
Scarpin, and J. E. Pécora Jr. 2020. “Mechanisms for Feasi-
bility and Improvement for Inventory-Routing Problems.”
Technical Report number CIRRELT-2020-12. Université de
Montréal, Canada.

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH . 21

Helsgaun, K. 2009. “General k-opt Submoves for the Lin-
Kernighan TSP Heuristic.” Mathematical Programming
Computation 1: 119-163.

Hrabec, D., L. M. Hvattum, and A. Hoff. 2022. “The Value of
Integrated Planning for Production, Inventory, and Routing
Decisions: A Systematic Review and Meta-analysis.” Interna-
tional Journal of Production Economics 248: 108468.

Juman, Z. A. M. S., R. M’Hallah, R. Lokuhetti, and O. Battaia.
2021. “A Multi-Vendor Multi-Buyer Integrated Production-
Inventory Model with Synchronised Unequal-Sized Batch
Delivery.” International Journal of Production Research:
1-23. d0i:10.1080/00207543.2021.2009586

Karimi, B., S. Fatemi Ghomi, and J. Wilson. 2003. “The
Capacitated Lot Sizing Problem: A Review of Models and
Algorithms.” Omega 31: 365-378.

Kumar, R., L. Ganapathy, R. Gokhale, and M. K. Tiwari. 2020.
“Quantitative Approaches for the Integration of Production
and Distribution Planning in the Supply Chain: A System-
atic Literature Review.” International Journal of Production
Research 58: 3527-3553.

Laporte, G. 2009. “Fifty Years of Vehicle Routing.” Transporta-
tion Science 43: 408-416.

Lei, L., S. Liu, A. Ruszczynski, and S. Park. 2006. “On the
Integrated Production, Inventory, and Distribution Routing
Problem.” IIE Transactions 38: 955-970.

Li, Y., E Chu, C. Chuy, and Z. Zhu. 2019. “An Efficient Three-
Level Heuristic for the Large-Scaled Multi-Product Produc-
tion Routing Problem with Outsourcing.” European Journal
of Operational Research 272: 914-927.

Li, Y., FE Chu, J. F. Coté, L. C. Coelho, and C. Chu. 2020. “The
Multi-Plant Perishable Food Production Routing with Pack-
aging Consideration.” International Journal of Production
Economics221: 107472.

Lin, S., and B. W. Kernighan. 1973. “An Effective Heuristic
Algorithm for the Traveling-Salesman Problem.” Operations
Research 21: 498-516.

Long, J., P. M. Pardalos, and C. Li. 2022. “Level-Based Multi-
Objective Particle Swarm Optimizer for Integrated Produc-
tion Scheduling and Vehicle Routing Decision with Inven-
tory Holding, Delivery, and Tardiness Costs.” International
Journal of Production Research 60: 3319-3338.

Low, C., C. M. Chang, R. K. Li, and C. L. Huang. 2014. “Coor-
dination of Production Scheduling and Delivery Problems
with Heterogeneous Fleet.” International Journal of Produc-
tion Economics 153: 139-148.

Ma, K., R. Pal, and E. Gustafsson. 2019. “What Modelling
Research on Supply Chain Collaboration Informs us? Iden-
tifying Key Themes and Future Directions Through a Liter-
ature Review.” International Journal of Production Research
57:2203-2225.

Manousakis, E. G., G. A. Kasapidis, C. T. Kiranoudis, and
E. E. Zachariadis. 2022. “An Infeasible Space Exploring
Matheuristic for the Production Routing Problem.” Euro-
pean  Journal  of  Operational  Research  298:
478-495.

Manousakis, E., P. Repoussis, E. E. Zachariadis, and C. Taran-
tilis. 2020. “Improved Branch-and-Cut for the Inventory
Routing Problem Based on a Two-Commodity Flow For-
mulation.” European Journal of Operational Research 290:
870-885.

Qiu, Y., L. Wang, X. Xu, X. Fang, and P. M. Pardalos. 2018.
“A Variable Neighborhood Search Heuristic Algorithm for


https://doi.org/10.1080/00207543.2021.2009586

22 (&) S.T.VADSETHETAL.

Production Routing Problems.” Applied Soft Computing 66:
311-318.

Ruokokoski, M., O. Solyali, J. E Cordeau, R. Jans, and H.
Siral. 2010. “Efficient Formulations and a Branch-and-
Cut Algorithm for a Production-Routing Problem.” Tech-
nical Report Number G-2010-66. GERAD, HEC Montréal,
Canada.

Russell, R. A.2017. “Mathematical Programming Heuristics for
the Production Routing Problem.” International Journal of
Production Economics 193: 40-49.

Schenekemberg, C. M., C. T. Scarpin, J. E. Pecora Jr, T. A.
Guimardes, and L. C. Coelho. 2021. “The Two-Echelon
Production-Routing Problem.” European Journal of Opera-
tional Research 288: 436-449.

Solyali, O., and H. Siiral. 2017. “A Multi-Phase Heuristic for
the Production Routing Problem.” Computers & Operations
Research 87: 114-124.

Solyals, O., and H. Siiral. 2022. “An Effective Matheuristic for
the Multivehicle Inventory Routing Problem.” Transporta-
tion Science 56: 1044-1057.

Toth, P, and A. Tramontani. 2008. “An Integer Linear Pro-
gramming Local Search for Capacitated Vehicle Routing

Problems.” In The Vehicle Routing Problem: Latest Advances
and New Challenges, 275-295. Boston, MA: Springer.

Vadseth, S. T., H. Andersson, and M. Stalhane. 2021. “An
Iterative Matheuristic for the Inventory Routing Problem.”
Computers & Operations Research 131: 105262.

Vidal, T. 2020. “Hybrid Genetic Search for the CVRP: Open-
Source Implementation and SWAPx Neighborhood.” arXiv
preprint arXiv:2012.10384.

Vidal, T,, T. G. Crainic, M. Gendreau, N. Lahrichi, and W.
Rei. 2012. “A Hybrid Genetic Algorithm for Multidepot and
Periodic Vehicle Routing Problems.” Operations Research 60:
611-624.

Wilcoxon, E. 1945. “Individual Comparisons by Ranking Meth-
ods.” Biometrics Bulletin 1: 80-83.

Zhang, Z., Z. Luo, R. Baldacci, and A. Lim. 2021. “A Ben-
ders Decomposition Approach for the Multivehicle Pro-
duction Routing Problem with Order-up-to-Level Policy.”
Transportation Science 55: 160-178.

Zou, X., L. Liu, K. Li, and W. Li. 2018. “A Coordinated
Algorithm for Integrated Production Scheduling and Vehi-
cle Routing Problem.” International Journal of Production
Research 56: 5005-5024.


http://arXiv:2012.10384

	1. Introduction
	1.1. Literature review
	1.2. Our contributions

	2. Problem definition and mathematical model
	2.1. A path-flow formulation

	3. Matheuristic
	3.1. Generating a new initial solution
	3.2. Differentiation techniques
	3.3. Improvement model
	3.4. Improvement model with extended route set

	4. Computational experiments
	4.1. Benchmark instances and solution methods
	4.2. Algorithmic implementation and parameters
	4.3. Computational results for the production routeing problem
	4.3.1. Test results on the Adulyasak instances
	4.3.2. Test results on the Archetti instances
	4.3.3. Test results on the Boudia instances

	4.4. Test results on the inventory routeing problem
	4.5. Analysis of the different components and recommendations

	5. Concluding remarks and future research
	Acknowledgments
	Data availability statement
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice


