
Understanding the Cost of Fitness Evaluation for Subset Selection:
Markov Chain Analysis of Stochastic Local Search

Ole Jakob Mengshoel

ole.j.mengshoel@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

Eirik Lund Flogard

eirik.flogard@arbeidstilsynet.no

Norwegian Labour Inspection Authority

Trondheim, Norway

Tong Yu

worktongyu@gmail.com

Carnegie Mellon University

Pittsburgh, Pennsylvania

Jon Riege

Riege.Jon@bcg.com

Boston Consulting Group

Oslo, Norway

ABSTRACT
With a focus on both the fitness and cost of subset selection, we

study stochastic local search (SLS) heuristics in this paper. In par-

ticular, we consider subset selection problems where the cost of

fitness function evaluation needs to be accounted for. Here, cost can

be fitness evaluation’s computation time or energy cost. We pro-

pose and study an SLS method, SLS4CFF, tailored to such problems.

SLS4CFF (“SLS for costly fitness functions”) is an amalgamation

of several existing heuristics. We develop a homogeneous Markov

chain model that explicitly represents both fitness and cost of subset

selection with SLS4CFF. This Markov chain, which can be lumped

or compressed for certain fitness and cost functions, enables us to

better understand and analyze hyperparameter optimization in a

principled manner, via expected hitting times. Studies with syn-

thetic and real-world problems improve the understanding of SLS

and demonstrate the importance of cost-awareness.

CCS CONCEPTS
•Computingmethodologies→Randomized search; Classifica-
tion and regression trees; •Mathematics of computing→Markov
processes.

KEYWORDS
Pseudo-Boolean functions, costly fitness functions, synthetic prob-

lems, optimization, stochastic local search, Markov chain analysis,

expected hitting time, machine learning, classification

ACM Reference Format:
Ole Jakob Mengshoel, Eirik Lund Flogard, Tong Yu, and Jon Riege. 2022.

Understanding the Cost of Fitness Evaluation for Subset Selection: Markov

Chain Analysis of Stochastic Local Search. In Genetic and Evolutionary
Computation Conference (GECCO ’22), July 9–13, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3512290.3528689

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00

https://doi.org/10.1145/3512290.3528689

1 INTRODUCTION
Context. Stochastic local search (SLS) has many applications in

artificial intelligence (AI) and machine learning (ML): model finding

[17, 46, 62], neural architecture search [60], sentence summarization

[47], subset selection [3, 50], compressed sensing [42], and comput-

ingmost probably explanations in Bayesian networks [20, 30, 33, 34].

SLS, similar to evolutionary algorithms (EAs), typically rely on the

evaluation of a fitness function to drive search forward.

The cost of fitness function evaluation continues to receive at-

tention in the literature [25, 29, 52]. Here, “cost” may refer to com-

putational cost, energy cost, or some other cost. Reasons to study

costly fitness functions (CFFs) include the following. First, in certain

important applications, fitness function evaluation has very high

computational cost. Feature selection using wrappers [22] is an

application that may have a CFF. Other potential CFF applications

include black-box topology optimization of mechanical structures

[12, 67] and neural architecture search in ML [60]. As a concrete ex-

ample, the amount of compute used in the largest ML training runs

has recently increased exponentially with a 3.4-month doubling

time.
1
Second, fitness function evaluation may vary dramatically

over the search space, and may have high cost only in certain parts

of the search space [25, 29, 52]. In ML, for example, complex models

using many features may or may not give better accuracy than

a simple model using few features, but the computational cost of

using many features will very likely be higher.

Cost-related studies from the literature fall into different cate-

gories. One can directly minimize fitness evaluation cost by using

approximate or surrogate fitness functions [51] or non-revisiting

methods [27, 66]. Alternatively, one can minimize fitness evalua-

tion cost by optimizing algorithms’ heuristics and hyperparameters

[5, 19, 34, 52]. Our work falls into this latter category, with a focus

on SLS for subset selection and motivated by the problem of feature

selection [13, 22, 31, 32, 35, 63].

Problems. We study a certain class of CFF subset selection

problems, namely pseudo-Boolean functions where fitness function

evaluation is costly and often varying. We study SLS4CFF, a simple

SLS algorithm that nevertheless integrates several heuristics while

being amendable to Markov chain analysis. A potential benefit of

Markov chain analysis is the formulation of expected hitting time

results for SLS; expected hitting times are analytical counterparts to

1
https://openai.com/blog/ai-and-compute/

251

https://doi.org/10.1145/3512290.3528689
https://doi.org/10.1145/3512290.3528689
https://openai.com/blog/ai-and-compute/

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mengshoel et al.

average runtimes in experiments. Unfortunately, due to a previous

lack of focus on the cost of fitness function evaluation, existing

expected hitting time models for SLS [8, 30, 31, 38, 40, 64] do not

reflect CFFswell. Thus, we consider this question: what is the impact

of CFFs on SLS for subset selection, especially when it comes to

tuning and optimizing SLS4CFF’s hyperparameters?

Contributions. To address CFFs in the context of SLS for subset

selection, we consider in SLS4CFF the integration of multiple SLS

heuristics and make contributions in the following areas. First, we
carefully study the behavior of SLS4CFF by means of Markov chains

and synthetic problems. The Markov chain formalizes the SLS4CFF

search process, given a problem instance and hyperparameter set-

tings, capturing both varying fitness and varying computational

cost. Our Markov chain models enable, via expected hitting times,

an integrated study of fitness and cost. Second, we study cost mod-

els both for synthetic problems and real-world ML problems. Our

experiments with real-world datasets and ML classifiers (Decision

Tree, Naive Bayes, and Support Vector Machine) suggest that a

linear cost model approximates the computational cost well for

these ML methods. Third, we observe that a naive Markov chain

representation of SLS4CFF’s behavior, while exponential in size,

can under certain conditions be lumped or compressed. Experimen-

tally, the compressed Markov chain model scales exceptionally well

with problem size, thus enabling improved analysis opportunities

compared to the naive Markov chain.

2 PROBLEM STATEMENT
We here discuss two goals that we seek to achieve when addressing

CFF problems by means of SLS when applied to subset selection.

Maximizing Fitness. We study search spaces consisting of bit-

strings B = {0, 1}𝑛 . In subset selection, fitness 𝑓 is a pseudo-boolean

function (PBF) that maps from B to the non-negative real numbers

R≥0. Our focus is to optimize (without loss of generality, maximize)

the fitness function 𝑓 :

𝒃∗ = argmax

𝒃∈B
𝑓 (𝒃) . (1)

For simplicity, we assume in (1) a single global optimum 𝒃∗ rather
than multiple global optima {𝒃∗

1
, 𝒃∗

2
, . . .}.

Analyzing Cost. While we are interested in cost generally, we

consider computational cost as a concrete example. What is the

time it takes for an SLS algorithm to search for and find 𝒃∗? There
are several factors, let us highlight two. First, it depends on the

time it takes to evaluate a state 𝒃 ∈ B: 𝑔 (𝒃), where 𝑔 is a cost

function that maps from B to R≥0. Second, an SLS algorithm will

in general evaluate 𝑔(𝒃) for many 𝒃 ∈ B when running. Since

SLS is randomized, run time is a random variable 𝑄 . Clearly, 𝑄

depends on the problem instance being optimized, the specific

SLS algorithm, and its hyperparameter and heuristic settings. Of

interest are the distribution of 𝑄 and its expectation 𝐸 (𝑄) which
in the Markov chain setting is denoted the expected hitting time

ℎ. Expected hitting time is crucial since it corresponds to average

run time as measured empirically in experiments [30, 31]; clearly it

provides a desireable nonmyopic measure [25, 29].

3 RELATED RESEARCH
Stochastic Local Search (SLS). Several SLS techniques and re-

sults [3, 8, 17, 30, 32, 34, 48, 49] are studied in or can be adapted

to a subset selection setting. This includes algorithmic techniques

such as noisy search, restart, and initialization. Randomized restart

combined with hillclimbing (or greedy steps) are the key opera-

tors in GSAT, Selman et al.’s seminal local search algorithm for

solving satisfiability problems in propositional logic [49]. GSAT

has two important hyperparameters, optimized empirically, namely

MAX_TRIES (controlling termination) andMAX_FLIPS (controlling

the number of flips before restart). Several extensions to GSAT are

proposed, among them a form of random walk [48]. The random

walk, either in its pure or hybridized form, also plays a role in other

applications [11, 61]. Randomization interleaved with hillclimbing

steps has also proven useful in SLS for sparse signal recovery. Specif-

ically, the SLS algorithm StoCoSaMP [42] substantially improves

the performance of a well-established greedy pursuit algorithm

without randomization, CoSaMP [37].

Pan et al.’s work on automatic image captioning [43] uses ran-

dom walk with restart (RWR). RWR differs from GSAT in several

ways, including RWR’s use of probabilistic restart and a fixed node

(state) for initialization. To compute most probable explanations in

Bayesian networks (BNs), it has also been demonstrated experimen-

tally that SLS can be highly competitive with clique tree clustering

[34] while supporting formal analysis [30, 33, 34].

Another SLS technique is randomized neighborhood selection,

where local search is conducted on a _-sized random sample of

neighbors in a solution space [57]. Randomized neighborhood se-

lection is related to random walk; they are equivalent if _ = 1.

Using randomized neighborhood selection can reduce the size of

the neighborhood in local search and thus improve search efficiency

in both SAT and project scheduling problems [1, 36].

We note two limitations of much previous SLS research. First,

many algorithms integrate multiple heuristics [42, 57] but are too

complex for theoretical analysis with homogeneous Markov chains.

Second, although different heuristics are known, they have not

yet been thoroughly analyzed in terms of computational costs. In

contrast, we attack these two limitations by integrating fitness and

cost considerations into a Markov chain framework for SLS.

Cost of Fitness Evaluation. The computation time for each state

of traditional SLS [15, 30, 48] is fast, often on the order of microsec-

onds or milliseconds. Thus, the computational cost of different SLS

search steps has been abstracted away without much harm in many

previous theoretical studies of SLS [30, 31, 38, 40, 64]. However,

fitness evaluation cost varies from application to application and is

important in the CFF setting. Examples of CFF problems include

black-box topology optimization of mechanical structures [12, 67]

and ML in the form of feature selection or deep learning, some-

times with massive datasets [24, 26, 28, 35, 35]. Further, fitness

function evaluation cost may vary dramatically over the search

space [25, 29, 52]. How can such problems be attacked? Among

several approaches, our focus here is to minimize fitness evaluation

cost via hyperparameter tuning [19, 31, 34], using Markov chain

analysis as discussed in more detail below.

Markov Chain Analysis. Markov chain analysis, in particular

expected hitting time analysis [8, 10, 14, 30, 38, 40, 56, 64], is used

252

Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search GECCO ’22, July 9–13, 2022, Boston, MA, USA

in both EA and SLS settings. To complement experimental results,

parametric Markov chain models of SLS have been formulated,

in which SLS hyperparameters show up as parameters [30, 31].

Using these parametric Markov chains, we can compute expected

hitting times, which turn out to be rational functions (ratios of

polynomials) for individual problem instances as well as for their

mixtures. Expected hitting time functions [30] correspond to noise

response curves often reported in experimental literature. These

functions can aid in SLS performance optimization [30, 31].

Existing expected hitting time results for SLS [8, 10, 30, 38, 40, 64]

have some limitations when applied to the analysis of CFF problems.

In particular, existing Markov chain models and results do not

incorporate cost, which make them limited when it comes to CFF

problems such as feature selection with wrappers [13, 22, 32, 63].

With SLS4CFF we seek to address this problem.

Hyperparameter and Bayesian Optimization (BO). SLS algo-
rithms typically have multiple hyperparameters that determine

their performance. Thus, setting or optimizing such hyperparam-

eters is essential. Karafotias et al. identify two ways of setting

hyperparameters
2
and say that [19]: ”the tuning problem is the

stationary side, while the control problem is the nonstationary

side of the same coin.” Reflecting this distinction, two SLS variants,

SoftSLS and AdaptiveSLS [31], provide different ways of setting hy-

perparameters [19]. In SoftSLS, hyperparameters are tuned (offline),

while in AdaptiveSLS they are controlled (online).

To tune SLS4CFF’s hyperparameters one could adopt general hy-

perparameter optimization methods such as Bayesian optimization

(BO) [9, 52, 55]. BO has recently seen an increased focus on cost-

aware and -constrained computation [25, 29]. However, by directly

applying BO to optimize SLS, SLS is treated as a black box, thus the

algorithm design may not be optimal. Instead, our approach con-

siders the unique characteristics of SLS4CFF, and hyperparameter

tuning is guided by cost-aware Markov chain analysis.

Multi-Objective Optimization (MOO). Multi-objective optimiza-

tion (MOO) algorithms, implemented for example by means of

evolutionary algorithms [4, 6], may seem suitable for computing 𝑓

and 𝑔 as their two objectives 𝑓1 and 𝑓2. An MOO algorithm would

compute a Pareto front that approximates Pareto optimality for

𝑓1 = 𝑓 and 𝑓2 = 𝑔, thus trading off these two objectives.

However, the purpose of SLS4CFF and its associated Markov

chain analysis (see Section 6) is not to use both fitness and compu-

tational cost as objectives 𝑓1 and 𝑓2 for MOO. Our primary goal is

maximization of fitness 𝑓 , but the analysis framework enables us

to also represent and analyze the cost, namely 𝑔, of doing so. Thus

we treat minimization of 𝑔 as a secondary goal, not as an objective

on par with optimization of 𝑓 in the MOO sense.

4 SLS FOR MARKOV CHAINS WITH COST
SLS4CFF builds on existing research on SLS [8, 17, 30–32, 34, 58,

59, 62] and is most closely related to SoftSLS [31] and SLS4FS [32,

35]. Compared to SoftSLS [31], an existing SLS algorithm with

Markov chain analysis, SLS4CFF puts emphasis on integration of

cost into the Markov chain analysis. And in contrast to our Markov

2
They in fact say parameter instead of hyperparameter, however we prefer the latter

term since our work is motivated, in part, from ML where parameter learning is key

and different from hyperparameter learning or optimization.

Algorithm 1: SLS4CFF Algorithm.

input :Probability 𝑃𝑟 of restart step, probability 𝑃𝑛 of

noise step, filter 𝐹 , fitness function 𝑓 for computing

𝑓 (𝒃) for subset 𝒃 , termination threshold 𝜏 , Greedy
flag 𝑋 (strict 𝑋 = 0 or soft 𝑋 = 1).

output :Optimized subset 𝒃+

1 𝒃 ← Restart(𝐹), 𝑐 ← 0, 𝑓 + ← 0, 𝒃+← 𝒃

2 while 𝑓 + < 𝜏 do
3 if Rand(0,1) < 𝑃𝑟 then
4 𝒃 ← Restart(𝐹)

5 else
6 if rand(0,1) < 𝑃𝑛 then
7 𝒃 ← Noise(𝒃)

8 else
9 𝒃 ← Greedy(𝒃, 𝑓 , 𝑋)

10 if 𝑓 (𝒃) > 𝑓 + then
11 { Update the current best subset 𝒃+ }
12 𝑓 + ← 𝑓 (𝒃)
13 𝒃+ ← 𝒃

14 return 𝒃+

chain analysis of SLS4CFF, results for SLS4FS [32, 35] are strictly

experimental and concern feature selection.

4.1 SLS Algorithm
Local search takes place in the proximity, or in the neighborhood,

of a current state 𝒃 ∈ B.

Definition 4.1 (Neighborhood). Let 𝒃 = (𝑏1 . . . 𝑏𝑖 . . . 𝑏𝑛) ∈ {0, 1}𝑛 ,
𝒃 ′ = (𝑏 ′

1
. . . 𝑏 ′

𝑖
. . . 𝑏 ′𝑛) ∈ {0, 1}𝑛 , and define Hamming distance 𝐻 as

𝐻 (𝒃 ′, 𝒃) =∑𝑛
𝑖=1 (𝑏 ′𝑖 ⊕𝑏𝑖). The neighborhood𝑁 (𝒃) ⊆ {0, 1}

𝑛
of 𝒃 ∈ B

is defined as all bitstrings with a Hamming distance 𝐻 of one to 𝒃 :
𝑁 (𝒃) = {𝒃 ′ ∈ {0, 1}𝑛 | 𝐻 (𝒃 ′, 𝒃) = 1}.

For big or high-dimensional data, using𝑁 (𝒃)may be too compute-

intensive and one can therefore use subsets of it. Tari et al. [57]

call such neighborhoods partial, and find their use beneficial in sev-

eral experiments, as have Mengshoel et al. [32] in feature selection.

However, our focus here is on the complete case, 𝑁 (𝒃).
Input. The SLS4CFF algorithm, see Algorithm 1, takes these inputs:
probability of Restart 𝑃𝑟 , probability of Noise 𝑃𝑛 , filter 𝐹 , fitness
function 𝑓 , termination threshold 𝜏 , and type of Greedy step 𝑋 .

3

Search. Given the current state 𝒃 , SLS4CFF searches for an optimal

state 𝒃∗ via repeated application of a greedy step Greedy, a noise
step Noise, and a restart step Restart.4 Let 𝑃𝑟 = 1 − 𝑃𝑟 and 𝑃𝑛 =

1−𝑃𝑛 . In each iteration, SLS4CFF performsGreedywith probability

𝑃𝑟𝑃𝑛 (line 9); Noise with probability 𝑃𝑟𝑃𝑛 (line 7); or Restart with
probability 𝑃𝑟 (line 4). These search steps are defined as follows.

3
The closely related algorithms MarkovSLS [31] and SLS4FS [32] include adaptation

of 𝑃𝑟 and 𝑃𝑛 , using adaptation rates 𝛼𝑟 and noise 𝛼𝑛 respectively. Using 𝛼𝑟 = 𝛼𝑛
= 0 for MarkovSLS and SLS4FS gives no hyperparameter adaptation, in other words

hyperparameter tuning and not control [19], as is hard-coded in SLS4CFF.

4
The SLS4CFF pseudocode is not optimized for performance. For example, 𝑓 (𝒃) in
line 10 will in fact only require a new evaluation if a Noise or Restart step has been

performed. After Greedy, 𝑓 (𝒃) will already have been evaluated.

253

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mengshoel et al.

A greedy step Greedy(𝒃 , 𝑓 , 𝑋) computes from bitstring 𝒃 a bit-

string 𝒃 ′ ∈ 𝑁 (𝒃) while maximizing the objective function 𝑓 (𝒃 ′). If
there is a tie in 𝑓 (𝒃 ′) among some neighbors in 𝑁 (𝒃), one of these
neighbors is picked uniformly at random. A strict greedy step (𝑋

= 0) stays with 𝒃 if 𝑓 (𝒃) ≥ 𝑓 (𝒃 ′) for all 𝒃 ′ ∈ 𝑁 (𝒃), while a soft
greedy step (𝑋 = 1) always moves to a best-fit neighbor.

There are different ways to randomize noise steps [15, 30, 33]. We

study an easy-to-analyze method of picking a neighbor uniformly at

random. A noise step Noise(𝒃) thus randomly jumps from bitstring

𝒃 to a neighbor 𝒃 ′ ∈ 𝑁 (𝑏); 𝒃 ′ ≠ 𝒃 .
Restart can positively impact SLS performance [33, 34, 46, 49].

An SLS4CFF Restart(𝐹) step computes a bitstring 𝒃 ∈ {0, 1}𝑛 , using
a filter 𝐹 . We use for 𝐹 a uniform at random filter 𝐹U: For each bit

𝑏𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, we flip an unbiased coin. If the coin comes up

heads, 𝑏𝑖 = 1, else 𝑏𝑖 = 0.

SLS4CFF hyperparameters (𝑃𝑟 , 𝑃𝑛 , 𝐹 , and 𝑋) can be controlled

online or tuned offline [19, 31]. We use in SLS4CFF offline tuning;

hyperparameters are fixed while the algorithm is running. This

enables analysis via homogeneous Markov chains [14, 30, 31].

Termination and Output. SLS4CFF terminates and outputs 𝒃+

as an approximation to 𝒃∗ when reaching a threshold 𝜏 . To enable

our analysis in Section 6, we put 𝜏 = 𝑓 (𝒃∗), thus 𝒃+ = 𝒃∗. Other
termination critera can be used, including wall-clock time, a fixed

number of iterations, poor improvement of 𝑓 +, and so on.

4.2 Cost of Fitness Function Evaluation
What is the connection between SLS4CFF (in Algorithm 1) and the

cost of fitness function evaluation? SLS4CFF calls or evaluates the

fitness function 𝑓 in line 9 (insideGreedy) and in line 10. In fact, 𝑓 is
called 𝑛 times in line 9 and as such this is the most computationally

challenging part of SLS4CFF when 𝑛 is high and computing 𝑓 is

costly, as formalized by 𝑔.

When SLS4CFF is applied to feature selection, 𝑓 (𝒃) could repre-

sent the accuracy score of a classifier 𝐿 using a subset 𝒃 of features

from a data set 𝐷 [32]. Feature selection is a problem where cost

𝑔 typically is important, as evaluating a specific feature subset 𝒃
when learning 𝐿 may take minutes or hours. There may also be

differences in computational costs between different search steps,

since 𝐿 using few features is usually evaluated quicker than using

many features.

We exemplify 𝑓 and 𝑔 in Section 5, and integrate them with

SLS4CFF’s operation via a Markov chain analysis in Section 6.

5 ENABLING COST-AWARE MARKOV CHAIN
ANALYSIS: FITNESS AND COST FUNCTIONS

In general, SLS studies may have multiple goals. In this work we

are focused on goals related to fitness 𝑓 and cost 𝑔. To enable

theoretical analysis of SLS4CFF, we introduce a few key distinctions

and assumptions about 𝑓 and 𝑔 in this section.

5.1 Fitness Function 𝑓

The hurdle and cosine trap problems are examples of synthetic

subset selection problems. These problems are interesting multi-

modal optimization problems in that they contain multiple local but

non-global optima. Escaping local optima and finding the global

optimum 𝒃∗ for such problems can be challenging, partly due to

Figure 1: Three cosine trap problems with varying difficulty
𝑧. The graph for the high difficulty 𝑧 = 12 problem partly
hides the 𝑧 = 0 and 𝑧 = 6 graphs to the right in the plot.

the large “valleys” of the local optima [41]. We use the problems in

Section 6 to analyze the performance of SLS4CFF.

5.1.1 Cosine Trap Problem. We now introduce the cosine trap

problem as an example of a subset selection problem. As a problem

withmany local optima, one global optimum, and problem instances

of varying hardness, we define a cosine trap problem (see [31, 63]):

Definition 5.1 (Cosine Trap Problem). The cosine trap problem

𝑓𝑐𝑡 maps the distance 𝑑 (𝒃) = 𝐻 (𝒃∗, 𝒃) from optimum 𝒃∗ and a

difficulty setting 𝑧 ∈ [0, 𝑛) to a fitness value 𝑓𝑐𝑡 (𝑑, 𝑧) ∈ [0, 1].

𝑓𝑐𝑡 (𝑑, 𝑧) =
{
1

4
+ 1

2
(1 + 𝑑

𝑧−𝑛) +
1

4
cos𝜋𝑑 if 𝑑 ≤ 𝑛 − 𝑧

1

4
+ 9

20

𝑑−𝑛+𝑧
(𝑛−1)𝑧 +

1

4
cos𝜋𝑑 otherwise.

(2)

Here, 𝑧 specifies the location of the minimal local maximum and

controls the degree of deception. Intuitively, the location of the

minimal local maximum (and the global minimum) of a cosine trap

function is closer to 𝒃∗ for higher values of 𝑧, thus increasing the
problem’s difficulty. In other words, the closer 𝑧 is to 𝑛, the more

difficult the problem is. The problem integrates ideas from deceptive

trap [7] and hurdle [45] functions. These functions are motivated by

search space structures and traps in real-world problems [16, 45].

We study a 14-bit cosine trap problem, see Figure 1 and Figure 3,

where 0 ≤ 𝑧 ≤ 12. In Figure 3 the optimal state has Hamming

weight𝑤 (𝒃∗) = 5. Hamming weight𝑤 is the number of bits set to

1 in a bitstring 𝒃 .

5.1.2 Hurdle Problem. The hurdle problem was introduced by

Prügel-Bennett [45] and recently used, for example, to analyze

memetic algorithms [39].

Definition 5.2 (Hurdle Problem). The hurdle problem 𝑓ℎ maps

the distance 𝑑 (𝒃) = 𝐻 (𝒃∗, 𝒃) from optimum 𝒃∗ and a hurdle width

𝑤 ∈ {2, 3, . . . , 𝑛} to a fitness value 𝑓ℎ (𝑑,𝑤).

𝑓ℎ (𝑑,𝑤) = −
⌈
𝑑

𝑤

⌉
− rem(𝑑,𝑤)

𝑤
, (3)

where the hurdle width 𝑤 = 𝑤 (𝑛) can be a function of 𝑛, 𝑑 is

the number of zero-bits of 𝒃 , and rem(𝑑,𝑤) is the remainder of 𝑑

divided by 𝑤 . By varying the hurdle width 𝑤 , we can adjust the

distance between the local optima.

As an example, we study a 14-bit hurdle problem, where 2 ≤
𝑤 ≤ 4, see Figure 3. The local optima in the hurdle problem occur

254

Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search GECCO ’22, July 9–13, 2022, Boston, MA, USA

Figure 2: A small-scale illustration of search state compression. Optimum is 𝒃∗ = 00111. The compressed search space (right)
contains only 12 super states, down from 32 states in the original search space (left). On the left, encircled by red dashes, are
three states with the same Hamming weight (number of set bits) and Hamming distance from the optimum (3 bits). These
states form a super state, encircled by red dashes to the right. The degree of compression is much greater in our experiments.

whenever rem(𝑑,𝑤) = 0. The number of local optima for a 14-bit

problem decreases as𝑤 increases.

The cosine trap and hurdle problems are similar in that they

contain (i) multiple local but non-global optima and (ii) parameters

to vary their difficulty. However, there are also differences. In the

hurdle problem,𝑤 specifies distance between local optima. In the

cosine trap problem, the width between local optima is fixed. In

cosine trap problems the 𝑧-parameter specifies degree of deception,

while there is no deception parameter in hurdle problems.

5.2 Cost Function 𝑔

For SLS4CFF, given the CFF assumption, substantial cost occurs as

a result of performing search steps. The cost of a Greedy step is

the sum of the costs of evaluating every neighbor while the cost

of a Restart or Noise step is only the cost of evaluating one state

(see Section 4.2). A frequent assumption in earlier work is that cost

𝑔 is constant [30, 31]: 𝑔(𝒃) = 1. In reality, the cost tends to vary

with 𝒃 . In this work we therefore also study linear cost functions:

𝑔 (𝒃) = 𝛼𝑤 (𝒃) + 𝛽 , where 𝛼, 𝛽 ∈ R≥0 and 𝑤 (𝒃) is the Hamming

weight of 𝒃 . This linear model is suitable for simple ML tasks such

as wrapper-based feature selection for classifiers.

Complex ML tasks, such as learning the structure of deep neu-

ral networks or Bayesian networks [24, 26, 28, 60], clearly have

super-linear cost and are examples of CFF problems. Thus, it is of

interest to consider cost functions that go beyond the linear case.

A quadratic cost function of the form 𝑔(𝒃) = 𝑤 (𝒃)2 is also studied,

along with an exponential cost function 𝑔(𝒃) = 2
𝑤 (𝒃)

.

Cost𝑔 is integrated into theMarkov chain model in Section 6. Nu-

merical examples of expected hitting times of the linear, quadratic,

and exponential cost functions are studied in Section 7.

6 MARKOV CHAIN MODEL WITH COST
In this section we consider SLS4CFF (see Section 4) when operating

under certain fitness and cost functions, in particular the fitness

and cost landscapes discussed in Section 5.

When applying SLS4CFF to CFF problems, a key difference from

many other SLS applications are: (i) the varying computational cost

of search steps and (ii) the integration of multiple heuristics. In

this section we are introducing a lumpable Markov chain model to

analyze the performance of SLS4CFF in terms of solving the cosine

trap problem.
5
The lumped Markov model enables us to analyze

significantly larger problems than would otherwise be tractable,

and thus inform the practical application of SLS4CFF.

Markov ChainModels of SLS4CFF. SLS4CFF can be viewed from

the perspective of stochastic processes. In fact, under the reasonable

assumption that 𝐹 is memoryless (as 𝐹U is), SLS4CFF’s application

to a problem can be modelled as a discrete homogeneous Markov

chainM = (𝑻 , 𝝅). The initial vector 𝝅 assigns, for SLS4CFF with

𝐹 = 𝐹U, equal probabilities to every state. For two states 𝒃 , 𝒃 ′ an
entry 𝑇𝒃,𝒃′ in the transition matrix 𝑻 is [31]:

𝑇𝒃,𝒃′ = 𝑃𝑟𝑃𝑛𝑃 (𝒃 ′ |𝒃,Greedy) + 𝑃𝑟𝑃𝑛𝑃 (𝒃 ′ |𝒃,Noise)
+ 𝑃𝑟𝑃 (𝒃 ′ |Restart), (4)

where the three terms in (4) are induced, respectively, by theGreedy,
Noise, and Restart steps in Algorithm 1.

In order to calculate the first passage time𝑚(𝒃) of each state,

including the cost of computation, we make two modifications to

an existing model [31]. First, the row in the transition matrix with

transitions from 𝒃 now has a corresponding first passage time for 𝒃
as a linear combination of those of other states. Based on this, the

expected computational cost of a transition E[𝐶𝒃] from 𝒃 can be

expressed as:

E[𝐶𝒃] = 𝑃𝑟𝑃𝑛

∑︁
𝒃𝑛 ∈𝑁 (𝒃)

𝑔(𝒃𝑛) + 𝑃𝑟𝑃𝑛
1

𝑛

∑︁
𝒃𝑛 ∈𝑁 (𝒃)

𝑔(𝒃𝑛)

+ 𝑃𝑟
∑︁
𝑖

𝜋𝑖𝑔(𝒃𝑖). (5)

For Greedy (the 𝑃𝑟𝑃𝑛-term in (5)) this is the cost of evaluating each

state in the neighborhood 𝑁 (𝒃). For Noise (the 𝑃𝑟𝑃𝑛-term) it is the

average evaluation cost in 𝑁 (𝒃). For Restart (the 𝑃𝑟 -term) it is the

average evaluation cost of all states weighted by 𝝅 .

5
The use of both lumped and unlumped Markov chains for representing and analyzing

the search space for optimization problems is well-established for genetic and SLS

algorithms [30, 31, 53, 54, 56, 65]. A novel aspects of our work is the integration of both

fitness and computational cost in a lumpedMarkov chain model, reflecting multiple

SLS4CFF heuristic.

255

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mengshoel et al.

The second modification is the following. We assume a single

optimal state 𝒃∗, set𝑚(𝒃∗) = 0, and express𝑚(𝒃) as:

𝑚(𝒃) =
{
0 if 𝒃 = 𝒃∗

E[𝐶𝒃] +
∑
𝒃′ 𝑇𝒃,𝒃′𝑚(𝒃 ′) otherwise.

(6)

The expected hitting time𝑚(𝒃) of the search is the sum of the first

passage times weighted by 𝝅 . Here, (6) forms a system of linear

equations that can easily be solved numerically, see Section 7.

Markov Chain Compression. The number of states 𝑛𝑆 in the

search space grows exponentially with 𝑛; 𝑻 ’s size is 𝑛2
𝑆
. Unless we

lump or compress the search space, Markov chain analysis of even

medium sized problems would be computationally infeasible. We

accomplish this compression by making two assumptions in the

synthetic problems we study, partly supported by experiments in

Section 7.2. First, cost 𝑔(𝒃) depends only on the Hamming weight

of the state 𝒃 . Second, fitness 𝑓 (𝒃) depends only on𝐻 (𝒃, 𝒃∗). These
assumptions let us lump states with the same Hamming weight and

distance from 𝒃∗ into “super states,” and we have this result:

Proposition 6.1. Let theM be the Markov chain defined above.
Let 𝐴 = {𝐴𝑥,𝑦} be the super state partition of M where a super
state 𝐴𝑥,𝑦 contains all states 𝒃 with Hamming weight𝑤 (𝒃) = 𝑥 and
distance 𝐻 (𝒃∗, 𝒃) = 𝑦 from optimum. Consequently,M is lumpable
with respect to 𝐴.

SinceM is lumpable with respect to the super state partition

𝐴, 𝐴 produces a valid Markov chain that allows a coarser analysis,

including a hitting time analysis, of SLS4CFF’s search process [21].

In brief, we have the following:

Proof sketch. We first observe that it is sufficient that the search

space 𝐺 has lumpable neighborhoods with respect to 𝐴, to prove

thatM is lumpable with respect to 𝐴. Then we can show that 𝐺

always has lumpable neighborhoods with respect to 𝐴.

The goal of lumpability or compression is to make Markov chain

analysis tractable. A small visual example of how our compression

works for a 5-bit problem is in Figure 2.

7 NUMERICAL EXAMPLES AND
EXPERIMENTS

We provide in Section 7.1 and Section 7.3 numerical examples where

we analyze how varying the hyperparameters of SLS4CFF affects

the expected hitting time for various synthetic problems. We also

conduct ML experiments, in Section 7.2, where we test our linear

cost model from Section 6 using real-world datasets. Search space

compression is investigated in Section 7.4.

The numerical examples and experiments are implemented in

Python with libraries including NumPy, SciPy, and Scikit-learn.
6

Experiments in Section 7.2 are executed in NTNU’s IDUN cluster

environment,
7
using one CPU and 24 GB of memory per run.

7.1 Finding CFF Expected Hitting Times
Goal. How are CFF expected hitting times impacted when cost is

integrated into the Markov chain analysis for SLS4CFF?

Method and Data. The expected hitting times for the hurdle and

cosine trap problems are found via Equation 6 by means of Python’s

6
https://scikit-learn.org/stable/

7
https://www.hpc.ntnu.no/idun/

NumPy library,
8
as the optimal state 𝒃∗ is known. Putting 𝐹 = 𝐹U,

a commonly used approach [48, 49, 57], the expected hitting time

curves are shown in Figure 3 for cosine trap problems and in Figure

4 for hurdle problems. The expected hitting time is recorded as the

noise probability 𝑃𝑛 is varied.

A cost model is represented by the function 𝑔 in Equation 5,

used in Equation 6. Figure 3(a) and Figure 4(a) use constant cost

𝑔 (𝒃) = 1 [30, 31]. Linear cost models are used in Figure 3(b)-(d)

and Figure 4(b)-(d). The cost of evaluating a state 𝒃 is its Hamming

weight𝑤 (𝒃), giving 𝑔 (𝒃) = 𝛼𝑤 (𝒃) + 𝛽 , simplified to 𝑔 (𝒃) = 𝑤 (𝒃)
for 𝛼 = 1, 𝛽 = 0. Strict Greedy is used with SLS4CFF in (b), while

soft Greedy is used in (c) and (d). The restart probability is 𝑃𝑟 = 0

for (b) and (c); 𝑃𝑟 = 1/14 for (d).
Results and Discussion. Both Figure 3 and Figure 4 show that the

expected hitting times vary drastically with noise 𝑃𝑛 , although 𝑃𝑛
becomes less important when restart is added in (d). For cosine trap

problems, the expected hitting times also vary much with problem

difficulty 𝑧. The optimal noise 𝑃∗𝑛 for the cosine trap problems in-

creases with 𝑧 and 𝑃∗𝑛 = 1 for the hardest “needle in a haystack”

problem 𝑧 = 12. For the hurdle problems, 0.2 ≤ 𝑃∗𝑛 ≤ 0.4 in Figure

4(a)-(d) where restart is not used. Using soft instead of strict Greedy
lowers the optimal expected hitting time for every hurdle problem.

Doing so has the same effect on the cosine trap problems, except

for 𝑧 = 12.
9
Adding restart 𝑃𝑟 to the cosine trap problems reduces

the optimal expected hitting time for the more difficult problems,

not including 𝑧 = 12. Restart has less effect on the hurdle problems,

but reduces the hitting times significantly when 𝑃𝑛 ≈ 0. For all the

problems, 𝑃𝑟 = 1/14 increases the range of 𝑃𝑛-values that produce
near-optimal expected hitting times and removes the asymptotic

behavior for small 𝑃𝑛 . Using 𝑃𝑟 = 1/14 increases the optimal ex-

pected hitting time of the easiest cosine trap problems somewhat.

Overall, however, these results suggest that there is an advantage

to using 𝑃𝑟 > 0 when problem difficulty is unknown.

It would be interesting to study in more detail the reduced im-

pact of varying noise when restart is introduced, i.e., Figure 3(c)

relative to Figure 3(d). Note, however, that the scale on the 𝑦-axis is

logarithmic in both figures, so there is still a clear impact of varying

noise in Figure 3(d). To further study this phenomenon, one could

reduce restart probability to take place around approximately every

3𝑛 steps, inspired by Schöning’s WalkSAT analysis [46].

7.2 Linear Cost Models for CFF
Goal. To what extent does the linear cost function 𝑔 correspond

to experimental results for feature selection applied to real-world

datasets? We now study this question, using several datasets.

Method and Data. To validate the linear cost model 𝑔 (𝒃) intro-
duced in Section 5.2, we study three ML classifiers, namely Decision

Tree (DT), Naive Bayes (NB), and Support Vector Machine (SVM).

The datasets used are CIFAR-10 [23], gas-drift [2], and bioresponse

[18]. For each dataset, each method is trained on 100 different fea-

ture subsets and the training time for each feature subset is recorded.

8
Specifically, Numpy.linalg.solve was used here.

9
However, it also increases 𝑃∗𝑛 for the more difficult problems. Soft Greedy performs

significantly worse than strict Greedy at lower values of 𝑃𝑛 for problems where 𝑧 ≥ 6.

We hypothesize that soft Greedy can escape the local maxima of the problem, but for

the most difficult instances this makes SLS4CFF more likely to “climb” in the wrong

direction, away from 𝒃∗ .

256

https://scikit-learn.org/stable/
https://www.hpc.ntnu.no/idun/

Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search GECCO ’22, July 9–13, 2022, Boston, MA, USA

Figure 3: Expected hitting time (𝑦-axis) as a function of noise probability 𝑃𝑛 (𝑥-axis) for four variants (a)–(d) of SLS4CFF on
cosine trap problems of varying difficulty 𝑧. Optimum 𝒃∗ has Hamming weight𝑤 (𝒃∗) = 5. (a) is a baseline, namely the constant
cost model of SoftSLS [31], while (b)–(d) show how the linear cost model interacts with different hyperparameters for SLS4CFF.
The black arrows highlight, as an example, the optimal values for 𝑃𝑛 for the graph where 𝑧 = 6. Comparing (b) to (a) shows the
impact of a constant [31] versus a linear cost model; (c) shows soft greedy’s effect; and (d) shows restart’s effect.

Figure 4: Expected hitting time (𝑦-axis) as a function of noise probability 𝑃𝑛 (𝑥-axis) for four variants (a)–(d) of SLS4CFF for
three hurdle problems with varying width 𝑤 . The black arrows highlight, as an example, the optimal values for 𝑃𝑛 for the
graph where𝑤 = 3. In brief, (a) is a baseline, namely the constant cost model of SoftSLS [31], while (b)–(d) show how the linear
cost model interacts with different hyperparameters for SLS4CFF. Other details are analogous to Figure 3.

DT NB SVMMachine learning model:

0.00

0.01

0.10

1.00

10.00

100.00

Tr
ai

n
in

g
ti

m
e

(s
ec

)

0

1

10

100

1,000

10,000

Tr
ai

n
in

g
ti

m
e

(s
ec

)

0.00

0.01

0.10

1.00

10.00

100.00

Tr
ai

n
in

g
ti

m
e

(s
ec

)

𝑛𝑠𝑢𝑏𝑠𝑒𝑡𝑛𝑠𝑢𝑏𝑠𝑒𝑡𝑛𝑠𝑢𝑏𝑠𝑒𝑡

(a) bioresponse (b) CIFAR-10 (c) gas-drift

𝑅2 = 0.996

𝑅2 = 0.992

𝑅2 = 0.992

𝑅2 = 0.998

𝑅2 = 0.998

𝑅2 = 1.000

𝑅2 = 0.781

𝑅2 = 0.999

𝑅2 = 0.910

0 400 800 1200 1600 0 1000 2000 3000 0 30 60 90 120

Figure 5: Training time (𝑦-axis) as a function of the number of features (𝑥-axis) for three ML models (DT, NB, and SVM) applied
to three datasets. A linear regression model 𝑦 = 𝑎𝑥 (black solid line) has been fitted for each ML model for each dataset.

To select the feature subsets, we choose 100 values for the number

of features 𝑛
subset

, evenly distributed between 1 and the total num-

ber of features 𝑛. For each value, a subset of 𝑛
subset

= 𝑤 (𝒃) features
is chosen uniformly at random, so that in 𝒃 each feature 𝑏𝑖 , where

1 ≤ 𝑖 ≤ 𝑛, is selected with probability 𝑛
subset

/𝑛.
Empirical cost models are created by using linear regression

𝑦 = 𝑎𝑥 + 𝑏 with 𝑏 = 0 to fit each dataset-method combination.
10

We then compare the empirical cost models to the actual training

times of the ML models, which are implemented by scikit-learn

[44] using the default parameter settings.

10
We used 𝑏 = 0 for simplicity and consistency across these experiments; for the

gas-drift dataset 𝑏 > 0 may well improve the fit substantially.

Results and Discussion. Figure 5 shows how training time in-

creases with 𝑛𝑠𝑢𝑏𝑠𝑒𝑡 . The results show that 8 of the 9 dataset-model

combinations (3 models, 3 datasets) have coefficients 𝑅2 ≥ 0.91.

This suggests that the training time is well approximated by a linear

regression model 𝑦 = 𝑎𝑥 + 𝑏 with 𝑎 > 0, 𝑏 = 0 , which corresponds

to our linear model 𝑔 (𝒃) = 𝛼𝑤 (𝒃) + 𝛽 with 𝛼 > 0, 𝛽 = 0. An ex-

ception is for SVM and gas-drift, where 𝑅2 = 0.781, and a decent

approximation of our linear model 𝑦 = 𝑎𝑥 only occurs as the num-

ber of included features increases. Overall, these results suggest

that the linear cost function aligns well with experimental results

for feature selection with real-world datasets.

257

GECCO ’22, July 9–13, 2022, Boston, MA, USA Mengshoel et al.

Figure 6: Expected hitting time (𝑦-axis) as a function of noise
probability 𝑃𝑛 (𝑥-axis) using (a) quadratic and (b) exponen-
tial cost functions 𝑔 for SLS4CFF in cosine trap problems 𝑓
of varying difficulty 𝑧. The black arrows show the optimal
values for 𝑃𝑛 for 𝑧 = 6. SLS4CFF’s hyperparameters and other
settings are the same as in Figure 3(a) and Figure 3(b).

7.3 Varying Cost Models for CFF
Goal. Even though we used a linear cost function in Section 7.2,

other cost functions 𝑔 are of interest. How can expected hitting

time for SLS4CFF be impacted when cost is higher?

Method and Data. The cosine trap problem from Section 5.1 is

used for the analysis. We consider two complex cost functions for

𝑔, namely quadratic and exponential cost models, see Section 5.2.

These cost functions are analyzed using the same parameters as in

Figure 3(b), and in a similar fashion.

Results and Discussion. Figure 6 summarizes the results from

the studies. As expected, expected hitting time increases, and it

seems that optimal noise probability 𝑃∗𝑛 increases sharply with the

exponential cost model. As an example, for 𝑧 = 4 the optimal noise

level is 𝑃∗𝑛 ≈ 0 for the quadratic cost model, while it is 𝑃∗𝑛 ≈ 0.4 for

the exponential cost model. For 𝑧 = 6, which is highlighted in the

figures, 𝑃∗𝑛 ≈ 0.3 for the linear case, 𝑃∗𝑛 ≈ 0.4 for the quadratic case,

and 𝑃∗𝑛 ≈ 0.6 for the exponential case. Clearly, this illustrates how

the optimal value 𝑃∗𝑛 for 𝑃𝑛 depends on the cost function 𝑔, and in

particular how 𝑃∗𝑛 increases to favor Noise over Greedy steps for a

more extreme CFF.

7.4 The Compressed Markov Chain Model
Goal. The number of states 𝑛𝑆 in the SLS4CFF search space grows

exponentially with the bit-string length 𝑛 so that 𝑛𝑆 = 2
𝑛
. Unless

we lump or compress the search space, Markov chain analysis of

even medium sized problems would be computationally infeasible.

How well does the proposed Markov chain compression method

work for the cosine trap problem? How does it scale to models with

𝑛 ∈ {8, 10, 12, 14, 16, . . .}?
Method and Data. Let 𝜔 be the Hamming weight for the optimal

state 𝒃∗, 𝜔 = 𝑤 (𝒃∗), and 𝑛𝐶 the number of compressed states of

the search space for a bit-string of length 𝑛. By varying 𝑛 and 𝜔 we

seek to construct compressed Markov chains. For each resulting

Markov chain, we seek its size 𝑛𝐶 .

Results and Discussion. The impact of compressing the search

space into super states is illustrated in Figure 7. The table shows

the number of compressed states and the compression (in %) for

different combinations of bitstring lengths 𝑛 and values for 𝜔 . The

Figure 7: How the number of super states 𝑛𝐶 scales with the
number of search space states 𝑛𝑆 (or bitstring length 𝑛) and
the number of set bits 𝜔 =𝑤 (𝒃∗) for optimum 𝒃∗.

results are strong. For example, there are 𝑛𝐶 = 40 compressed states

at 𝑛 = 12 bits (compared to 𝑛𝐵 = 4096 regular states), so the compres-

sion is substantial. The high compression rate for larger problems

enables us to analyze the most difficult cosine trap problems in

Section 7.1 within a reasonable time.

8 DISCUSSION AND FUTUREWORK
Cost-aware and cost-constrained computation is becoming increas-

ingly important [25, 29, 52], which is why we study costly fitness

functions (CFFs) in this paper.

The critical reader may argue that hybrid methods similar to

SLS4CFF are well-known, either in the form of memetic algorithms

[39] or hybrid integrated filter and wrapper methods [32]. However,

existing works do not provide an SLS method that is simultaneously

analyzed by means of a lumped, scalable Markov chain approach

that also considers computational cost. This coupling of an SLS

algorithm with Markov chain analysis with computational cost

integrated has, to our knowledge, not been performed prior to

this paper. The lumped Markov chain model of SLS4CFF reduces

the computation cost (time) for analyzing SLS4CFF’s expected hit-

ting time. In other words, the model makes it possible to analyze

much larger problems in a reasonable amount of time, compared to

directly running SLS4CFF simulations with costs.

These are a few areas for future work: First, it would be useful

to further study the impact of varying a range of SLS4CFF hyperpa-

rameters, and include partial neighborhoods [32, 57]. Second, we

plan to scale to larger problems, both in synthetic and natural set-

tings. This would include investigation of other ML models (beyond

Decision Tree, Naive Bayes, and Support Vector Machines), and

even larger datasets with more features. Comprehensive studies

can also be conducted to analyze the impact of varying SLS4CFF

hyperparameters, when using these different models on real-world

problems. Third, it would be interesting to automatically optimize

hyperparameters of SLS4CFF [8, 31, 63] in a comprehensive way

and for latent problem distributions, considering the varying com-

putational costs of search steps for different computers and datasets.

Ideally, in ML one would want to have a Markov chain hitting time

analysis, developed along the lines suggested here, automatically

and dynamically inform ML experiments in order to minimize cost

while maximizing accuracy.

9 ACKNOWLEDGEMENTS
Wewould like to thank anonymous reviewers for their many helpful

comments.

258

Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] Alkasem, H. H. and Menai, M. E. B. (2021). A stochastic local search algorithm for

the partial max-sat problem based on adaptive tuning and variable depth neighbor-

hood search. IEEE Access, 9:49806–49843.
[2] Bache, K. and Lichman, M. (2013). UCI machine learning repository.

[3] Bian, C., Feng, C., Qian, C., and Yu, Y. (2020). An efficient evolutionary algorithm

for subset selection with general cost constraints. In Proc. AAAI, pages 3267–3274.
[4] Coello, C. A. C., Lamont, G. B., and van Veldhuizen, D. A. (2006). Evolutionary Al-
gorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation).
Springer-Verlag.

[5] DaCosta, L., Fialho, A., Schoenauer, M., and Sebag, M. (2008). Adaptive operator

selection with dynamic multi-armed bandits. In Proc. GECCO, pages 913–920.
[6] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons, Inc.

[7] Deb, K. and Goldberg, D. E. (1993). Analyzing deception in trap functions. In

Foundations of Genetic Algorithms, pages 93 – 108.

[8] Ermon, S., Gomes, C. P., Sabharwal, A., and Selman, B. (2014). Designing fast

absorbing Markov chains. In Proc. AAAI, pages 849–855.
[9] Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperpa-

rameter optimization at scale. In Proc. ICML, pages 1436–1445.
[10] Gadat, S. and Younes, L. (2007). A stochastic algorithm for feature selection in

pattern recognition. JMLR, 8:509–547.
[11] Grady, L. (2006). Random walks for image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(11):1768–1783.

[12] Guirguis, D., Aulig, N., Picelli, R., Zhu, B., Zhou, Y., Vicente, W., Iorio, F., Olhofer,

M., Matusik, W., Coello Coello, C. A., and Saitou, K. (2020). Evolutionary black-box

topology optimization: Challenges and promises. IEEE Transactions on Evolutionary
Computation, 24(4):613–633.

[13] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.

JMLR, 3:1157–1182.
[14] He, J. and Yao, X. (2003). Towards an analytic framework for analysing the

computation time of evolutionary algorithms. Artificial Intelligence, 145(1-2):59–97.
[15] Hoos, H. H. (2002a). An adaptive noise mechanism for WalkSAT. In Proc. AAAI,
pages 655–660.

[16] Hoos, H. H. (2002b). A mixture-model for the behaviour of SLS algorithms for

SAT. In Proc. AAAI, pages 661–667.
[17] Hoos, H. H. and Stützle, T. (2005). Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann, San Francisco.

[18] Ingelheim, B. (2012). Predicting a biological response.

[19] Karafotias, G., Hoogendoorn, M., and Eiben, A. E. (2015). Parameter control in

evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary
Computation, 19(2):167–187.

[20] Kask, K. and Dechter, R. (1999). Stochastic local search for Bayesian networks.

In Proc. AISTATS.
[21] Kemeny, J. G. and Snell, J. L. (1976). Finite Markov chains. Springer-Verlag.
[22] Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324.

[23] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Master’s thesis, Department of Computer Science, University of Toronto.
[24] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Proc. NeurIPS, pages 1097–1105.
[25] Lee, E. H., Eriksson, D., Perrone, V., and Seeger, M. W. (2021). A nonmyopic

approach to cost-constrained Bayesian optimization. CoRR, abs/2106.06079.
[26] Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture

search. In arXiv preprint arXiv:1806.09055.
[27] Lou, Y., Yuen, S. Y., and Chen, G. (2021). Non-revisiting stochastic search revisited:

Results, perspectives, and future directions. Swarm and Evolutionary Computation,
61.

[28] Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf, W.

(2019). NSGA-Net: Neural architecture search using multi-objective genetic algorithm.

Proc. GECCO, pages 419––427.

[29] Luong, P., Nguyen, D., Gupta, S., Rana, S., and Venkatesh, S. (2021). Adaptive

cost-aware Bayesian optimization. Knowledge-Based Systems, 232:107481.
[30] Mengshoel, O. J. (2008). Understanding the role of noise in stochastic local search:

Analysis and experiments. Artificial Intelligence, 172(8-9):955–990.
[31] Mengshoel, O. J., Ahres, Y., and Yu, T. (2016). Markov chain analysis of noise and

restart in stochastic local search. In Proc. IJCAI, pages 639–646.
[32] Mengshoel, O. J., Flogard, E., Riege, J., and Yu, T. (2021a). Stochastic local search

heuristics for efficient feature selection: An experimental study. In Proc. NIKT, pages
58–71.

[33] Mengshoel, O. J., Roth, D., and Wilkins, D. C. (2011a). Portfolios in stochastic

local search: Efficiently computing most probable explanations in Bayesian networks.

Journal of Automated Reasoning, 46(2):103–160.
[34] Mengshoel, O. J., Wilkins, D. C., and Roth, D. (2011b). Initialization and restart in

stochastic local search: Computing a most probable explanation in Bayesian networks.

IEEE Transactions on Knowledge and Data Engineering, 23(2):235–247.

[35] Mengshoel, O. J., Yu, T., Riege, J., and Flogard, E. (2021b). Stochastic local search

for efficient hybrid feature selection. In Proc. GECCO, pages 133––134.
[36] Nagata, Y. (2018). Random partial neighborhood search for the post-enrollment

course timetabling problem. Computers & Operations Research, 90:84–96.
[37] Needell, D. and Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from

incomplete and inaccurate samples. Applied and Computational Harmonic Analysis,
26(3):301–321.

[38] Neumann, F. and Wegener, I. (2007). Randomized local search, evolutionary

algorithms, and the minimum spanning tree problem. Theoretical Computer Science,
378(1):32 – 40.

[39] Nguyen, P. T. H. and Sudholt, D. (2020). Memetic algorithms outperform evolu-

tionary algorithms in multimodal optimisation. Artificial Intelligence, 287:103345.
[40] Nikolaev, A. G. and Jacobson, S. H. (2011). Using Markov chains to analyze the

effectiveness of local search algorithms. Discrete Optimization, 8(2):160 – 173.

[41] Ochoa, G. and Veerapen, N. (2016). Deconstructing the big valley search space

hypothesis. In Evolutionary Computation in Combinatorial Optimization, pages 58–73.
[42] Pal, D. K. and Mengshoel, O. J. (2016). Stochastic CoSaMP: Randomizing greedy

pursuit for sparse signal recovery. In Proc. ECML-PKDD, pages 761–776.
[43] Pan, J.-Y., Yang, H.-J., Faloutsos, C., and Duygulu, P. (2004). Automatic multimedia

cross-modal correlation discovery. In Proc. KDD, pages 653––658.
[44] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-

napeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. JMLR, 12:2825–2830.
[45] Prügel-Bennett, A. (2004). When a genetic algorithm outperforms hill-climbing.

Theoretical Computer Science, 320(1):135 – 153.

[46] Schoning, U. (1999). A probabilistic algorithm for k-sat and constraint satisfaction

problems. In 40th Annual Symposium on Foundations of Computer Science.
[47] Schumann, R., Mou, L., Lu, Y., Vechtomova, O., and Markert, K. (2020). Discrete

optimization for unsupervised sentence summarization with word-level extraction.

In Proc. ACL, pages 5032–5042.
[48] Selman, B., Kautz, H., et al. (1993). Domain-independent extensions to gsat:

Solving large structured satisfiability problems. In Proc. IJCAI, pages 290–295.
[49] Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for solving hard

satisfiability problems. In Proc. AAAI, pages 440–446.
[50] Shang, K., Ishibuchi, H., and Chen, W. (2021). Greedy approximated hypervolume

subset selection for many-objective optimization. In Proc. GECCO, pages 448–456.
[51] Shi, L. and Rasheed, K. (2010). A survey of fitness approximation methods applied

in evolutionary algorithms. In Tenne, Y. and Goh, C.-K., editors, Computational
Intelligence in Expensive Optimization Problems, pages 3–28. Springer Verlag.

[52] Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization

of machine learning algorithms. In Proc. NeurIPS, pages 2951–2959.
[53] Spears, W. M. (1999). Aggregating models of evolutionary algorithms. In Proc.
CEC, volume 1, pages 631–638.

[54] Spears, W. M. and De Jong, K. A. (1996). Analyzing GAs using Markov models

with semantically ordered and lumped states. In Proc. FOGA, pages 85–100.
[55] Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010). Gaussian process

optimization in the bandit setting: No regret and experimental design. In Proc. ICML,
pages 1015––1022.

[56] Suzuki, J. (1995). A Markov chain analysis on simple genetic algorithms. IEEE
Trans. Systems, Man, and Cybernetics, 25(4):655–659.

[57] Tari, S., Basseur, M., and Goëffon, A. (2021). Partial neighborhood local searches.

International Transactions in Operational Research, pages 2761–2788.
[58] Wang, S., Ding, Z., and Fu, Y. (2017). Feature selection guided auto-encoder. In

Proc. AAAI, pages 2725–2731.
[59] Weise, T., Wu, Z., and Wagner, M. (2019). An improved generic bet-and-run

strategy for speeding up stochastic local search. In Proc. AAAI, pages 2395–2402.
[60] White, C., Nolen, S., and Savani, Y. (2021). Exploring the loss landscape in neural

architecture search. In Proc. UAI, pages 654–664.
[61] Xia, F., Liu, J., Nie, H., Fu, Y., Wan, L., and Kong, X. (2020). Random walks: A

review of algorithms and applications. IEEE Transactions on Emerging Topics in
Computational Intelligence, 4(2):95–107.

[62] Yolcu, E. and Póczos, B. (2019). Learning local search heuristics for boolean

satisfiability. In Proc. NeurIPS, pages 7990–8001.
[63] Yu, T., Kveton, B., and Mengshoel, O. J. (2017). Thompson sampling for optimizing

stochastic local search. In Proc. ECML-PKDD, pages 493–510.
[64] Yu, Y. and Zhou, Z.-H. (2008). A new approach to estimating the expected first

hitting time of evolutionary algorithms. Artificial Intelligence, 172(15):1809 – 1832.

[65] Yuen, S. and Cheung, B. (2006). Bounds for probability of success of classical

genetic algorithm based on Hamming distance. IEEE Transactions on Evolutionary
Computation, 10:1–18.

[66] Yuen, S. Y. and Chow, C. K. (2007). A non-revisiting genetic algorithm. In Proc.
CEC, pages 4583–4590.

[67] Zavala, G. R., Nebro, A. J., Luna, F., and Coello, C. A. C. (2014). A survey of

multi-objective metaheuristics applied to structural optimization. Structural and
Multidisciplinary Optimization, 49(4):537–558.

259

	Abstract
	1 Introduction
	2 Problem Statement
	3 Related Research
	4 SLS for Markov Chains with Cost
	4.1 SLS Algorithm
	4.2 Cost of Fitness Function Evaluation

	5 Enabling Cost-Aware Markov Chain Analysis: Fitness and Cost Functions
	5.1 Fitness Function f
	5.2 Cost Function g

	6 Markov Chain Model with Cost
	7 Numerical Examples and Experiments
	7.1 Finding CFF Expected Hitting Times
	7.2 Linear Cost Models for CFF
	7.3 Varying Cost Models for CFF
	7.4 The Compressed Markov Chain Model

	8 Discussion and Future Work
	9 Acknowledgements
	References

