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Abstract. We provide a detailed analysis of the Gelfand integral on Fréchet

spaces, showing among other things a Vitali threorem, dominated convergence
and a Fubini result. Furthermore, the Gelfand integral commutes with lin-

ear operators. The Skorohod integral is conveniently expressed in terms of a
Gelfand integral on Hida distribution space, which forms our prime motiva-

tion and example. We extend several results of Skorohod integrals to a general

class of pathwise Gelfand integrals. For example, we provide generalizations of
the Hida-Malliavin derivative and extend the integration-by-parts formula in

Malliavin Calculus. A Fubini-result is also shown, based on the commutative

property of Gelfand integrals with linear operators. Finally, our studies give
the motivation for two existing definitions of stochastic Volterra integration in

Hida space.

1. Introduction

We study the Gelfand integral on Fréchet spaces with the aim at providing a
general pathwise approach to stochastic integration. Our theoretical considerations
and analysis significantly generalize the theory of stochastic integration in the White
Noise analysis context. We extend several known results, as well as develop new
results.

The leading example and motivation for our studies is stochastic integration
with respect to Brownian motion cast in White Noise analysis. Following Hida et
al. [13], let (S) be the Hida test function space, which is the subspace of smooth
random variables of L2(P), with P being the white noise probability measure on the
Schwartz distributions S ′(R). On the dual (S)′, the Hida distribution space, one
can define the stochastic integral with respect to Brownian motion B for processes
X in the Hida distribution space as the so-called Skorohod integral,

(1)

∫ t

0

X(s)δB(s) :=

∫ t

0

X(s) �W (s)ds.

Here, W is the white noise given by the time-derivative of Brownian motion W (t) :=

Ḃ(t), � is the Wick product defined on the Hida distribution space and the right-
hand side in (1) is the Pettis integral in (S)′. Thus, we see from the definition
(1) of the Skorohod integral that we can do integration with respect to a function
(here Brownian motion B) in terms of a Pettis integral with respect to a measure
on a measure space (here the Lebesgue measure on the real line). To achieve this,
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we must introduce an operator acting on the integrand (here Wick multiplication)
which depends on the path of the integrator (here the derivative of the Brownian
motion, W ). Moreover, the integral is set in the dual of a Fréchet space (here the
Hida distribution space).

With this in mind, we can approach stochastic integration abstractly as Gelfand
integration of Fréchet-valued integrands over general measure spaces. In this paper
we provide an extensive analysis of Gelfand integration on Fréchet spaces, i.e., on
integrals of the type

(2)

∫
E

ψ(x)µ(dx)

where µ is a measure on a measurable space (M,M) and ψ : M → Z′, the topolog-
ical dual of a Fréchet space Z.

The Gelfand integral (2) lends itself to several nice properties, as stability in
terms of continuity with respect to both the the domain of integration and the in-
tegrands. The stability with respect to the integration domain follows from playing
with the topology on the Fréchet space and the measure space. We show a Vitali
theorem and a dominated convergence result, where the arguments rest on analysis
of the weak topology on Z′. We are also able to prove a rather general Fubini-type
result for multiple Gelfand integrals. A central result for our further analysis is the
linearity of the Gelfand integral, in the sense that linear operators commute with
the integral in (2). In our proceedings, different topologies on the dual space Z′ are
intensively discussed and analysed in relevant contexts.

We apply our general Gelfand integration framework to study pathwise integra-
tion by considering integrators which may be represented as integral operators on
Fréchet spaces. I.e., we are interested in Gelfand integrals like∫

E

γ(x)dξ(x)

where we can associate a map Ξ on Z′ such that∫
E

γ(x)dξ(x) =

∫
E

Ξ(γ)(x)µ(dx)

This setting includes Skorohod integrals like (1) in Hida space. Our abstract theory
for Gelfand integrals enable us to establish several general results for the pathwise
integrals as well as some new proofs for the Hida case. From the topological prop-
erties of Fréchet spaces and their duals, we are able to generalize the notion of the
Hida-Malliavin derivative. Indeed, under some restrictions on Ξ, we can define an
object being the dual operator of Ξ. If this dual is a derivative operator, it is a true
generalization of the Gross derivative in Benth [5]. Moreover, it provides us with a
significant extension of the well-known ”integration-by-parts formula” in Malliavin
Calculus (see Nualart, [17] say), as well as the connection between Stratonovich-
and Ito-type stochastic integrals. Our results in this direction are based on Fréchet
spaces with an algebra structure. Furthermore, general Fubini-type results for mul-
tiple pathwise integrals are provided, as well as stability results of the integral with
respect to both integrands and integrators.

As a final application, we discuss stochastic Volterra integrals in the Hida dis-
tribution space, where we relate different definitions to the choice of map Ξ. Our
study provides a theoretical foundation for defining stochastic Volterra integration.
In Alos et al. [1] they analyse a stochastic Volterra integral without providing any



STOCHASTIC INTEGRALS AND GELFAND INTEGRATION IN FRÉCHET SPACES 3

rationale for their definition. A different definition is reached in Barndorff-Nielsen
et al. [2], based on heuristic arguments from Malliavin Calculus. We present in
this paper a unified approach to the question, showing how different definitions
for stochastic integration in the Volterra case can be made based on the choice of
certain operators leading to Ito or Stratonovich stochastic integration.

There are several other applications of our integration theory going beyond the
existing literature. For example, it provides a mathematical foundation for further
studies of neural networks in Fréchet space and their relationship to controlled ordi-
nary differential equations. Properties of our integral can also be used in connection
with weak solutions of stochastic partial differential equations. In our analysis, we
will return to these examples with more details. Finally, we would also like to men-
tion that we connect stochastic integration with Lebesgue integration (over time,
space or both) combined with suitable operators. As such, we touch upon the rough
path integration theory (see e.g. Friz and Hairer [10] and references therein), where
our theory provides a different angle as we effectively appeal to a generalised notion
of absolute continuity of the integrator process. Rough path integrals are typically
studied in Banach spaces.

Our analysis and derivations are presented as follows: in Section 2 we provide
some background material on Fréchet spaces, including some further discussions on
the particular case of Hida spaces. The analysis of the general Gelfand integral is
presented in Section 3, whereas the pathwise integration theory can be found in
Section 4. In an appendix, we prove some results related to white noise analysis
and generalized Malliavin derivative which is needed in Section 4.

2. A rapid excursion on Fréchet spaces

A formal prerequisite for the reading of this paper is familiarity with the basic
facts of the theory of locally convex spaces. The purpose of this preliminary section
is not to establish these facts, but to clarify terminology and notation, and recall
the results which will be used in the sequel. The reference we are sourcing from is
the monumental book by Schaefer [19].

Let F ∈ {R,C}. For an arbitrary topological vector space (X,T) over F, X∗ will
denote its algebraic dual, while X′ will denote its topological dual, which is clearly
a subspace of X∗.

A topological vector space Z over F will be termed a Fréchet space if it is
metrizable, complete and locally convex. Being it Fréchet, we may assume that
there exists a non decreasing sequence of seminorms (pn)n∈N which generates its
topology (see [19, page 48]).

If Z′ designates its topological dual, then Z′ separates points (see [19, Page 48]).
This fact allows us to deduce that Z and Z′ are in duality (see [19, Page 123]).
Depending on the situation, we will denote the duality either 〈Z,Z′〉 or 〈Z′,Z〉.

We will consider different topologies at once on Z′. Let us list the ones we will
be using. We recall that a locally convex topology T on Z′ is called consistent

with the duality 〈Z′,Z〉 if (Z′,T)′ = Z, where Z is viewed as a subspace of (Z′)∗. All
consistent topologies are Hausdorff.

(1) The weak star topology σ(Z′,Z), which is by definition the coarsest con-
sistent topology on Z′. Z′ endowed with σ(Z′,Z) is called the weak dual of
Z.
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(2) The strong topology β(Z′,Z), which is the topology induced by the fol-
lowing seminorms (see [19, page 81]):

pB(z′) = sup
z∈B
|〈z′, z〉| , z′ ∈ Z′ ,

where B ⊂ Z ranges over all bounded (or, equivalently, weakly bounded, see
Schaefer [19, page 132]) subsets of Z. Z′ endowed with β(Z′,Z) is termed
the strong dual of Z. (It is worth to stress that in general the strong
topology β(Z′,Z) is not consistent with the duality, [19, page 141]). We
recall than an arbitrary net (z′i)i ⊂ Z′ converges to z′ ∈ Z′ with respect to
β(Z′,Z) if and only if pB(z′i − z′)→ 0 for any B ⊂ Z bounded.

(3) The Mackey topology τ(Z′,Z), which is by definition the finest consistent
topology on Z′ (see [19, Corollary 1, page 131]).

The following useful facts will be used repeatedly and tacitly during the proofs
of the subsequent results:

(1) A mapping u from a topological space (Y,T) into (Z′, σ(Z′,Z)) is continuous
if and only if for each z ∈ Z the map 〈u(·), z〉 is continuous on Y into F
(compare with [19, Page 51]).

(2) If (Y, ρ) is a metric space, then the continuity of u : Y→ G, where (G,S)
is an arbitrary topological space, is equivalent to its sequential continuity.

If we are given a linear map u : (Z′, σ(Z′,Z))→ (F′, σ(F′,F)), where F is another
Fréchet space, then in virtue of [19, Proposition 2.1, page 128] we have that u is
continuous if and only if u∗(F) ⊂ Z, where u∗ : (F′)∗ → (Z′)∗ is the algebraic adjoint
of u and

〈uz′, f〉 = 〈z′, u∗f〉, z′ ∈ Z′, f ∈ F ⊂ (F′)∗ .

A barrel in a topological vector space X is a subset which is radial, convex,
circled and closed. A locally convex space X is barelled if each barrel in X is a
neighborhood of 0. In virtue of [19, Corollary on page 60]), every Fréchet space is
barelled.

A topological vector space X is a Montel space if it is barelled and if every
closed and bounded subset of X is compact. We remark that, if X is assumed to be
normed, then it must necessarily be finite-dimensional.

Let us examine the consequences of the special case in which Z, in addition to
be a Fréchet space, is assumed to be a Montel space. Theorem 5.9 at page 147 in
[19] guarantees that (Z′, β(Z′,Z)) is itself a Montel space. Furthermore, in view of
the following two general facts [19, page 194]

(1) A separable Fréchet space E is a Montel space if and only if each σ(E′,E)-
convergent sequence in E′ is strongly convergent,

(2) A metrisable Montel space is separable,

we have the equivalence of weak and strong convergence of sequences in Z′, namely
z′n → 0 wrt σ(Z′,Z) if and only if z′n → 0 wrt β(Z′,Z).

Following [19, page 202], by an algebra, we mean an F-vector space A endowed
with a bilinear map A × A → A called multiplication and usually denoted by
(a, b) 7→ a · b. This product is neither assumed associative nor carrying a unit. An
algebra A will be termed a locally convex algebra if the underlying space is a
locally convex space and if the multiplication is separately continuous.
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2.1. The Hida spaces. The Hida spaces serve as the main example of Fréchet
spaces in our exposition. For the convenience of the reader, we make a brief intro-
duction of the basics of these spaces of smooth and generalized random variables.
Our presentation is based on the classical book of Hida et al. [13], where further
details and theory can be found. In the way we naturally encounter the Schwartz
distribution spaces, another example of a Fréchet space.

With n ∈ N, we denote by S(Rn) the Schwartz functions on Rn, with topolog-
ical dual S ′(Rn). For the second order differential (Hamiltonian) operator A :=
−d2/dx2 + (1 + x2) and | · |2,0 := | · |2 being the norm in L2(Rn), introduce
| · |2,p := |(A⊗n)p · |2 for p ∈ N ∪ {0}. With the Hilbert spaces Sp(Rn) being
the completion of S(Rn) in the norm | · |2,p, one has that S(Rn) is the projective
limit of Sp(Rn), while the tempered Schwartz distributions S ′(Rn) is the inductive
limit of the dual spaces, denoted S−p(Rn).

Define a probability space (S ′(R),F ,P) where F is the σ-algebra induced by
the weak topology and the probability measure P is defined by the Bochner-Minlos
theorem as ∫

S′(R)

exp((ω, f))P(dω) = exp(−1

2
|f |22)

where (ω, f) is the dual pairing between S ′(R) and S(R). We see that ω 7→
W (f)(ω) := (ω, f) defines a mean-zero Gaussian random variable with variance
|f |22. In fact, Brownian motion B(t) := (·, 1[0,t]) exists as a limit in (L2) :=

L2(S ′(R),F ,P). Any random variable X ∈ (L2) has a so-called chaos expansion

X =

∞∑
n=0

In(f (n)),

where In are the n-fold Wiener-Itô integrals on Rn and f (n) ∈ L2(Rn) are symmetric
functions. The (L2)-norm of X, being its second moment, is

‖X‖22 =

∞∑
n=0

n!|f (n)|22.

In passing, we introduce the Malliavin derivative (see e.g. Nualart [17]) of elements
in a subspace of (L2). Denote by D1,2 the subspace of (L2) for which

∞∑
n=0

nn!|f (n)|22 <∞.

The Malliavin derivative Dt for t ∈ R of X ∈ D1,2 is defined as the element
DtX ∈ (L2) with chaos expansion

DtX :=

∞∑
n=1

nIn−1(f (n)(·, t)).

The Malliavin derivative is central in the definition of the Skorohod stochastic
integral.

To define the Hida test functions (or, smooth random variables), denote by (S)p
the Hilbert space of random variables φ ∈ (L2) with chaos functions f (n) ∈ Sp(Rn)
for which

‖φ‖22,p :=

∞∑
n=0

n!|f (n)|22,p <∞.
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Letting (S)−p denote the dual, we define (S) as the projective limit of (S)p and
(S)′ the inductive limit of (S)−p. The spaces (S) and (S)′ are known as the Hida
test function and distribution space, resp. Formally, elements Φ ∈ (S)′ has chaos
expansion

Φ =

∞∑
n=0

In(F (n))

with symmetric elements F (n) ∈ S ′(Rn), where the duality pairing between (S)
and (S)′ becomes

〈Φ, φ〉 =

∞∑
n=0

n!(F (n), f (n)).

The canonical example of a Hida distribution is white noise, being the generalized
random variable W (t) := I1(δt). Here, δt ∈ S ′(R) is the Dirac-δ function.

The S-transform SΦ of an element Φ ∈ (S)′ is

S(R) 3 ξ 7→ SΦ(ξ) := 〈Φ, exp(W (ξ)− 1

2
|ξ|22)〉

which is a bijection between (S)′ and the space of so-called U-functionals. The
S-transform provides a convenient characterisation of Hida distributions, as well as
being a powerful computational tool for analysis. The Wick product between two
elements Φ,Ψ ∈ (S)′ , denoted Φ �Ψ, is defined as a ”convolution product” for the
S-transform,

Φ �Ψ := S−1(SΦ · SΨ).

We remark in passing that in the literature, the Hida distribution space is frequently
denoted by (S)∗, however, we reserve that notation for the algebraic dual.

Notice that both S(Rn) and (S), the Schwartz and Hida test function spaces,
are nuclear Frechet spaces. Moreover, they are both also Montel spaces (see Hida
et al. [13, page 483]). In the case of the Hida space (S), recall that the bounded
subsets of Z are precisely the ones which are bounded in every norm |·|p , p ∈ N0

(see Hida et al. [13, page 481]).
We end this section with noticing that there exists many other triplets of spaces

(D) ⊂ (L2) ⊂ (D)′ based on chaos expansions and projective and inductive limits.
For example, Kondratiev, Leukert and Streit et al. [16] (see also Holden et al. [15]
for more on these spaces and applications to stochastic partial differential equations)
introduces the Kondratiev spaces of smooth and generalized random variables. For
0 ≤ ρ ≤ 1, introduce spaces (S)p,ρ in the same fashion as for the Hida test function
spaces (S)p, but using the system of norms

‖φ‖22,p,ρ :=

∞∑
n=0

(n!)1+ρ|f (n)|22,p.

This leads to the triplet (S)ρ ⊂ (L2) ⊂ (S)′ρ of Kondratiev spaces. V̊age [20] allow
the chaos kernel functions to be dependent on a spatial variable and introduces a
product space of the Kondratiev and Sobolev spaces as a convenient framework
for studying stochastic partial differential equations. Another triplet with Frechet
space structure is introduced by Potthoff and Timpel [18]. They are using p = 0
in their definition of test functions, but scale the norms by appropriate exponential
functions in n. In this way, they obtain stochastic distributions where the chaos
expansions have regular kernels in L2(Rn) and not being tempered distributions.
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Using the number operator to achieve polynomial scaling in n, one can also con-
struct triplets appearing in connection with Malliavin Calculus, see Hida et al.
[13, Ch. 3C] and references therein. Our integration theory developed in the next
Sections embrases these spaces.

3. The Fréchet-valued Gelfand integral

In this section we introduce the Fréchet-valued Gelfand integral and study in
detail several properties of it.

To this end, let (M,M, µ) be an arbitrary σ-finite measure space, and let us
consider an F-Fréchet space Z. Let Z′ designate its topological dual. Let us consider
a map

ψ : M → Z′

such that for any z ∈ Z, the function x 7→ 〈ψ(x), z〉 is an element of L1(µ). Here
we reserve the notation 〈·, ·〉 for the dual pairing between elements in Z′ and Z.
Furthermore, we will denote the norm in L1(µ) by ‖ · ‖L1(µ).

The following result is an easy generalization of Hida et al. [13, Prop. 8.1] (where
the authors again refer to Hille and Phillips [14] for the proof in the Banach case):

Proposition 3.1. Let E ∈M. Then the map ΛE : Z→ F given by

ΛE(z) =

∫
E

〈ψ(x), z〉µ(dx) , z ∈ Z

belongs to Z′.

Proof. We adapt the proof of Hida et al. [13, Prop. 8.1]. ΛE is clearly well defined
and linear, thus only continuity needs to be checked. We set

(3) ΨE : Z→ L1(µ) , z 7→ 〈IE(·)ψ(·), z〉 ,

where IE denotes the indicator function on E. We claim that ΨE is closed. Indeed,

given zn
Z→ z and ΨE(zn)

L1(µ)−→ v, as n→∞, we have clearly 〈IE(x)ψ(x), zn−z〉 →
0, for any x ∈M .

On the other hand, by reverse dominated convergence theorem, there exists a
subsequence (nj)j such that ΨE(znj

) → v µ-a.e. x ∈ M , as j → ∞. Therefore,
ΨE(znj

) → ΨE(z) µ-a.e. x ∈ M , implying v = ΨE(z) almost everywhere. Hence
ΨE is closed. By the closed graph theorem (see [19, Thm. 2.3 on page 78]), this is
equivalent to continuity of ΨE from Z into L1(µ). Since

ΛE(z) =

∫
M

〈IE(x)ψ(x), z〉µ(dx) =

∫
M

ΨE(z)µ(dx)

and
∫
M
·µ(dx) is linear and continuous from L1(µ) into F, we conclude that ΛE ∈

Z′. �

In view of Proposition 3.1, we give the following definition:

Definition 3.2. A map ψ : M → Z′ such that for any z ∈ Z the function 〈ψ(·), z〉
belongs to L1(µ) will be termed Z′-Gelfand µ-integrable.
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From now on, for such a ψ we set
∫
E
ψ(x)µ(dx) := ΛE ∈ Z′, for any E ∈ M,

and note that by definition it holds∫
E

〈ψ(x), z〉µ(dx) =

〈∫
E

ψ(x)µ(dx), z

〉
.

Let us next show some useful results and properties of this abstract integral.
Recall that we may assume that there exists a non decreasing sequence of semi-

norms (pn)n∈N which generates the topology of Z. Since for any E ∈M the linear
operator ΨE defined in (3) of the proof of Proposition 3.1 is continuous from Z
into L1(µ), we infer (see [19, Prop. 1.1. on page 74]) that there exists a constant
C(E) ≥ 0 and an integer n(E) ∈ N such that

‖ΨE(z)‖L1(µ) ≤ C(E) pn(E)(z) , z ∈ Z .

Observe that if Ẽ ∈ M with Ẽ ⊂ E, then it holds ‖ΨẼ(z)‖
L1(µ)

≤ C(E) pn(E)(z)

for all z ∈ Z, since trivially ‖ΨẼ(z)‖
L1(µ)

≤ ‖ΨE(z)‖L1(µ) for all z. Therefore, we

obtain the following universal bound

‖ΨE(z)‖L1(µ) ≤ C(M) pn(M)(z) ,

valid for all E ∈M and z ∈ Z.
Observe also that, for any E, Ẽ ∈ M, trivially one has |IE(x)− IẼ(x)| =

IE∆Ẽ(x), where ∆ stands for the symmetric difference of two subsets. In view
of this, the following fundamental inequality holds

|ΛE(z)− ΛẼ(z)| =
∣∣∣∣∫
M

〈(IE(x)− IẼ(x))ψ(x), z〉µ(dx)

∣∣∣∣
≤
∫
M

|IE(x)− IẼ(x)| |〈ψ(x), z〉| µ(dx)

=

∫
M

|〈IE∆Ẽ(x)ψ(x), z〉| µ(dx)

= ‖ΨE∆Ẽ(z)‖
L1(µ)

≤ C(M) pn(M)(z)

valid for any z ∈ Z.
We define ΓE,Ẽ := ΛE−ΛẼ ∈ Z′, with E, Ẽ ∈M. Then, from the last inequality

we infer ∣∣∣ΓE,Ẽ(z)
∣∣∣ ≤ ‖ΨE∆Ẽ(z)‖

L1(µ)
≤ C(M) pn(M)(z) ,

for all z ∈ Z and E, Ẽ ∈ M. It hence follows that {ΓE,Ẽ}E,Ẽ is a simply bounded

family of Z′ (see [19, page 82]). Since Z is barelled, by means of [19, Thm. 4.2
on page 83] we get that {ΓE,Ẽ}E,Ẽ is equicontinuous. By the Alaoglu-Bourbaki

theorem (see [19, page 84]), the family is relatively compact with respect to σ(Z′,Z).
In conclusion, we have proved the following result:

Lemma 3.3. Let E, Ẽ ∈M. Then for all z ∈ Z it holds

(4) |ΛE(z)− ΛẼ(z)| ≤
∫
E∆Ẽ

|〈ψ(x), z〉| µ(dx) .

Furthermore, the family {ΓE,Ẽ}E,Ẽ∈M ⊂ Z′, where ΓE,Ẽ := ΛE − ΛẼ, is relatively

compact with respect to σ(Z′,Z).
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To show “continuity” of ΛE as a function of E, we proceed as follows. First,
introduce the Fréchet-Nikodym metric on M/∼, where ∼ denotes the equivalence

relation on M defined as E ∼ Ẽ whenever µ(E∆Ẽ) = 0. The Fréchet-Nikodym
metric dµ is then

dµ : (M/∼)2 → [0,∞] , ([E], [Ẽ]) 7→ dµ([E], [Ẽ]) := µ(E∆Ẽ) .

Observe that the metric is allowed to assume the value ∞, because the measure
space is assumed to be σ-finite only.

Notice also that if E ∼ Ẽ, then clearly for all z ∈ Z we have∫
E

〈ψ(x), z〉µ(dx) =

∫
E\Ẽ
〈ψ(x), z〉µ(dx) +

∫
E∩Ẽ
〈ψ(x), z〉µ(dx)

=

∫
E∩Ẽ
〈ψ(x), z〉µ(dx) +

∫
Ẽ\E
〈ψ(x), z〉µ(dx)

=

∫
Ẽ

〈ψ(x), z〉µ(dx) ,

namely, we can unambiguously define a map from M/∼ into Z′ as

[E] 7→
∫
E

ψ(x)µ(dx)

We are ready to prove

Proposition 3.4. The map [E] 7→
∫
E
ψ(x)µ(dx) is continuous from (M/∼, dµ)

into (Z′, σ(Z′,Z)), i.e. weak star continuous.

Proof. Fix z ∈ Z and ε > 0. By assumption 〈ψ(·), z〉 is in L1(µ). By the absolute
continuity of the Lebesgue integral (see e.g. Billingsley [7]), it follows that there
exists a δ > 0 such that for any F ∈M with µ(F ) < δ, then

∫
F
|〈ψ(x), z〉| µ(dx) <

ε.
Therefore, for any [E], [Ẽ] ∈ M/∼ such that dµ([E], [Ẽ]) < δ, we will have

µ(E∆Ẽ) < δ, and thus inequality (4) in Lemma 3.3 implies∣∣∣∣〈∫
E

ψ(x)µ(dx), z

〉
−
〈∫

Ẽ

ψ(x)µ(dx), z

〉∣∣∣∣ ≤ ∫
E∆Ẽ

|〈ψ(x), z〉| µ(dx) < ε

provides us with the desired result. �

Observe that we are not requiring any improved integrability assumptions on ψ
in the Proposition 3.4 above.

For any y = (y1, . . . , yk) ∈ Rk, let Ey denote the subset ×ki=1(−∞, yi]. As an
easy corollary (but with important consequences) we have

Corollary 3.5. Let (M,M, µ) = (Rk,Bk, Leb), where Leb is the k-dimensional
Lebesgue measure and Bk the Borel σ-algebra on Rk. Then the map

y 7→
∫
Ey

ψ(x) dx

is continuous from Rk into (Z′, σ(Z′,Z)).

Proof. Fix y ∈ Rk and let (yj)j ⊂ Rk be an arbitrary sequence converging to y.
Then, it holds

dLeb([Ey], [Eyj ]) = Leb(Ey∆Eyj )→ 0

as j →∞, and hence the result follows. �
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Finally, let us treat the special case in which Z, in addition to be a Fréchet
space, is assumed to be a Montel space. In view of the facts stated in Section 2,
the previous results may upgraded to

Proposition 3.6. Assume additionally that Z is Montel. Then the map [E] 7→∫
E
ψ(x)µ(dx) is continuous from (M/∼, dµ) into (Z′, β(Z′,Z)).

Proof. Fix [E] ∈M/∼ and let ([En])n ⊂M/∼ be an arbitrary sequence converging
to [E] with respect to dµ. Then, Proposition 3.4 guarantees that∫

En

ψ(x)µ(dx)→
∫
E

ψ(x)µ(dx) , with respect to σ(Z′,Z)

and hence, in view of the discussion in Section 2, with respect to β(Z′,Z)) as
well, namely we have sequential continuity. This is sufficient to conclude, because
(M/∼, dµ) is a metric space. �

Analogously, we have the specific case,

Corollary 3.7. Let (M,M, µ) = (Rk,Bk, Leb), where Leb is the k-dimensional
Lebesgue measure and Bk the Borel σ-algebra on Rk. Assume additionally that Z
is Montel. Then the map

y 7→
∫
Ey

ψ(x) dx

is continuous from Rk into (Z′, β(Z′,Z)).

3.1. Properties of the Gelfand integral. In this subsection we show a collection
of some important results on the Gelfand integral, including a Fubini theorem,
convergence theorems and linear transformations on the integral.

First, let us show a Fubini-Tonelli type theorem for the integral.

Theorem 3.8. Let Z be an F-Fréchet space and (Mi,Mi, µi), i = 1, 2 be two ar-
bitrary σ-finite measure spaces. Set (M,M, µ) := (M1 ×M2,M1 ⊗M2, µ1 ⊗ µ2).
Consider a mapping

ψ : M → Z′

that is Z′-Gelfand µ-integrable.
Then,∫
M1

∫
M2

〈ψ(x1, x2), ·〉µ2(dx2)µ1(dx1) =

∫
M

ψ(x)µ(dx)

=

∫
M2

∫
M1

〈ψ(x1, x2), ·〉µ1(dx1)µ2(dx2)

as elements of Z′.

Proof. Fix once for all z ∈ Z. By the “classical” Fubini-Tonelli Theorem there
exists F1(z) ∈M1 such that µ1(M1 \ F1(z)) = 0, for any x1 ∈ F1(z)

〈ψ(x1, ·), z〉 ∈ L1(µ2),

and the µ1-a.e. defined function

x1 7→
∫
M2

〈ψ(x1, x2), z〉µ2(dx2)

is an element of L1(µ1).
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Thus, again in force of the ”classical” Fubini-Tonelli Theorem, and directly from
the definition of the Gelfand integral,∫

M1

∫
M2

〈ψ(x1, x2), z〉µ2(dx2)µ1(dx1) =

∫
M

〈ψ(x), z〉µ(dx)

=

〈∫
M

ψ(x)µ(dx), z

〉
.

By ”symmetry”, we must also have∫
M2

∫
M1

〈ψ(x1, x2), z〉µ1(dx1)µ2(dx2) =

∫
M

〈ψ(x), z〉µ(dx)

=

〈∫
M

ψ(x)µ(dx), z

〉
.

This holds for any z ∈ Z. But
∫
M
ψ(x)µ(dx) is an element of Z′. It follows that

also the other terms belong to Z′, and thus we conclude (equality in Z′)∫
M1

∫
M2

〈ψ(x1, x2), ·〉µ2(dx2)µ1(dx1) =

∫
M

ψ(x)µ(dx)

=

∫
M2

∫
M1

〈ψ(x1, x2), ·〉µ1(dx1)µ2(dx2).

The Theorem is proved. �

In view of this last result, it makes sense to define (z ∈ Z)〈∫
M1

∫
M2

ψ(x1, x2)µ2(dx2)µ1(dx1), z

〉
:=

∫
M1

∫
M2

〈ψ(x1, x2), z〉µ2(dx2)µ1(dx1)

and〈∫
M2

∫
M1

ψ(x1, x2)µ1(dx1)µ2(dx2), z

〉
:=

∫
M2

∫
M1

〈ψ(x1, x2), z〉µ1(dx1)µ2(dx2).

Therefore, the previous result may be re-stated in a more compact and familiar
way as∫

M1

∫
M2

ψ(x1, x2)µ2(dx2)µ1(dx1) =

∫
M

ψ(x)µ(dx)

=

∫
M2

∫
M1

ψ(x1, x2)µ1(dx1)µ2(dx2),

as elements of Z′.

Remark 3.9. In the proof of Thm. 3.8 it is worth noticing the remarkable feature
that the z-dependency subsets F1(z) does not become a matter of concern in the
end. By the interpretation of the double integrals as the Z′-elements

z 7→
∫
M1

∫
M2

〈ψ(x1, x2), z〉µ2(dx2)µ1(dx1)

(and similarly for the commuted integral), we see that we cannot ”move” the z
through the two integrals iteratively, as we might hit outside F1(z).

We next move our attention to convergence theorems for the integral. First we
show a Vitali convergence theorem.
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Theorem 3.10. Let (M,M, µ) be an arbitrary σ-finite measure space, and let Z
be an F-Fréchet space. Consider a sequence of functions {ψk : M → Z′}k∈N and
ψ : M → Z′ such that

(i) for any k ∈ N the function ψk is Z′-Gelfand µ-integrable;
(ii) for any z ∈ Z the function x 7→ 〈ψ(x), z〉 is µ-measurable;

(iii) for µ-a.e. x ∈M , ψk(x)→ ψ(x) in (Z′, σ(Z′,Z)) as k →∞;
(iv) for any z ∈ Z and ε > 0 there exists Eε,z ∈M with µ(Eε,z) <∞ such that

for all G ∈M with G ∩ Eε,z = ∅ it holds

(5) sup
k

∫
G

|〈ψk(x), z〉|µ(dx) < ε ;

(v) for any z ∈ Z and ε > 0 there exists δε,z > 0 such that for all E ∈M with
µ(E) < δε,z it holds

(6) sup
k

∫
E

|〈ψk(x), z〉|µ(dx) < ε .

Then ψ is Z′-Gelfand µ-integrable, and as k →∞

∫
M

ψk(x)µ(dx)→
∫
M

ψ(x)µ(dx) in (Z′, σ(Z′,Z)) .

Proof. Fix z ∈ Z. By Fatou’s Lemma (see Folland [9]),

∫
M

|〈ψ(x), z〉|µ(dx) ≤ lim inf
k

∫
M

|〈ψk(x), z〉|µ(dx) ≤ ∞ .

Let ε = 1. Then, according to (5), there exists E1,z ∈ M with µ(E1,z) < ∞ such
that

(7) sup
k

∫
M\E1,z

|〈ψk(x), z〉|µ(dx) < 1 .

Let δ1,z > 0 be given by (6). Then, by the Severini-Egoroff Theorem (see Folland
[9]) there exists a measurable subset R1,z ⊂ E1,z such that µ(R1,z) < δ1,z and

(8) 〈ψk(x), z〉 → 〈ψ(x), z〉

uniformly on E1,z \R1,z. Furthermore, by (6), we have

sup
k

∫
R1,z

|〈ψk(x), z〉|µ(dx) < 1 .
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This fact joined with (7) and (8) leads us to, for some suitable kz ∈ N and all
k > kz∫

M

|〈ψk(x), z〉|µ(dx) ≤
∫
M\E1,z

|〈ψk(x), z〉|µ(dx) +

∫
E1,z\R1,z

|〈ψk(x), z〉|µ(dx)

+

∫
R1,z

|〈ψk(x), z〉|µ(dx)

< 2 +

∫
E1,z\R1,z

|〈ψk(x), z〉|µ(dx)

< 2 +

∫
E1,z\R1,z

|〈ψk(x)− ψkz (x), z〉|µ(dx)

+

∫
E1,z\R1,z

|〈ψkz (x), z〉|µ(dx)

< 3 +

∫
E1,z\R1,z

|〈ψkz (x), z〉|µ(dx)

< 3 +

∫
M

|〈ψkz (x), z〉|µ(dx)

<∞ .

Therefore, lim infk
∫
M
|〈ψk(x), z〉|µ(dx) < ∞ and hence 〈ψ(·), z〉 is an element of

L1(µ).
In view of this, it is evident that the “enlarged” sequence {〈ψk(·), z〉}k∈N ∪

{〈ψ(·), z〉} still satisfies properties (5) and (6) with possibly different Eε,z and δε,z.
Therefore, for ε > 0 and arguing as we have done above, it holds∫

M

|〈ψk(x), z〉 − 〈ψ(x), z〉|µ(dx) =

∫
M\Eε,z

|〈ψk(x), z〉 − 〈ψ(x), z〉|µ(dx)

+

∫
Eε,z

|〈ψk(x), z〉 − 〈ψ(x), z〉|µ(dx)

< 2ε+

∫
Rε,z

|〈ψk(x)− ψ(x), z〉|µ(dx)

+

∫
Eε,z\Rε,z

|〈ψk(x)− ψ(x), z〉|µ(dx)

< 4ε+

∫
Eε,z\Rε,z

|〈ψk(x)− ψ(x), z〉|µ(dx) .

By uniform convergence, sending first k → ∞ and then ε → 0, we obtain that
limk

∫
M
|〈ψk(x), z〉 − 〈ψ(x), z〉|µ(dx) = 0 for arbitrary z ∈ Z. By Proposition 3.1,

we conclude ∫
M

ψk(x)µ(dx)→
∫
M

ψ(x)µ(dx) in (Z′, σ(Z′,Z)) .

The claim follows. �

Notice that we are not requiring any integrability properties for the limiting
integrand ψ in the above Vitali convergence theorem. The integrability of ψ follows
directly from the proof, as we have seen.
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From the above convergence theorem, it is immediate to obtain the following
dominated convergence theorem:

Theorem 3.11. Let (M,M, µ) be an arbitrary σ-finite measure space, and let Z
be an F-Fréchet space. Consider a sequence of functions {ψk : M → Z′}k∈N and
ψ : M → Z′ such that

(i) for any z ∈ Z and k ∈ N the function x 7→ 〈ψk(x), z〉 is µ-measurable;
(ii) for any z ∈ Z the function x 7→ 〈ψ(x), z〉 is µ-measurable;

(iii) for µ-a.e. x ∈M , ψk(x)→ ψ(x) in (Z′, σ(Z′,Z)) as k →∞;
(iv) for any z ∈ Z there exists 0 ≤ gz ∈ L1(µ) and Nz ∈M with µ(Nz) = 0 and

|〈ψk(x), z〉| ≤ gz(x) , for x /∈ Nz and k ∈ N .

Then ψ is Z′-Gelfand µ-integrable, and as k →∞∫
M

ψk(x)µ(dx)→
∫
M

ψ(x)µ(dx) in (Z′, σ(Z′,Z)) .

Proof. Clearly, for any z ∈ Z the function gz satisfies the properties in (5) and (6),
and as a consequence the whole sequence 〈ψk(·), z〉 must do the same. Theorem
3.10 brings the thesis. �

Finally, we observe the our integral is well-behaved under suitable linear and
continuous transformations. More precisely, we have

Proposition 3.12. Let ψ : M → Z′ be Z′-Gelfand µ-integrable. Let

T : (Z′, σ(Z′,Z))→ (G′, σ(G′,G))

be linear and continuous, where G is another F-Fréchet space. Then Tψ is G′-
Gelfand µ-integrable and, for any E ∈M,

T

∫
E

ψ(x)µ(dx) =

∫
E

Tψ(x)µ(dx)

in G′.

Proof. In virtue of Proposition 3.1 we can define∫
E

ψ(x)µ(dx) ∈ Z′

such that for all z ∈ Z〈∫
E

ψ(x)µ(dx), z

〉
=

∫
E

〈ψ(x), z〉µ(dx) .

Since T is σ(Z′,Z)− σ(G′,G) continuous, from Section 2 we know, upon identi-
fying G with a subspace of (G′)∗, that T ∗(G) ⊂ Z. Moreover,

〈Tz′, g〉 = 〈z′, T ∗g〉, z′ ∈ Z′, g ∈ G.

But then, for any g ∈ G, by duality the function 〈Tψ(·), g〉 = 〈ψ(·), T ∗g〉 is
an element of L1(µ), because T ∗g ∈ Z. In virtue of Proposition 3.1 again we can
therefore define ∫

E

Tψ(x)µ(dx) ∈ G′
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such that for all g ∈ G〈∫
E

Tψ(x)µ(dx), g

〉
=

∫
E

〈Tψ(x), g〉µ(dx) .

Thus, we obtain for any g ∈ G〈
T

∫
E

ψ(x)µ(dx), g

〉
=

〈∫
E

ψ(x)µ(dx), T ∗g

〉
=

∫
E

〈ψ(x), T ∗g〉µ(dx)

=

∫
E

〈Tψ(x), g〉µ(dx)

=

〈∫
E

Tψ(x)µ(dx), g

〉
and hence the claimed result. �

We remark that in some situations later we will have to deal with linear operators
T : Z′ → Z′ which are β(Z′,Z)− β(Z′,Z) continuous, a fact that seems to preclude
us the possibility to apply directly the previous Proposition. The following ad hoc
result will come to our aid.

Proposition 3.13. Assume that β(Z′,Z) = τ(Z′,Z), namely that the strong topol-
ogy coincides with the Mackey topology. Let T : (Z′, β(Z′,Z)) → (Z′, β(Z′,Z)) be
linear and continuous. Then T : (Z′, σ(Z′,Z))→ (Z′, σ(Z′,Z)) is continuous.

Proof. We know from Section 2 that T : (Z′, σ(Z′,Z)) → (Z′, σ(Z′,Z)) will be con-
tinuous if and only if for any z ∈ Z fixed, the map φz so defined

Z′ 3 z′ 7→ 〈Tz′, z〉 ∈ F

will be σ(Z′,Z) continuous.
First of all, we notice that the evaluation map ez(z

′) = 〈z′, z〉 is β(Z′,Z) con-
tinuous. Indeed, take an arbitrary net z′i → z′ with respect to β(Z′,Z). This is
equivalent to saying pB(z′i − z′)→ 0 for any B ⊂ Z bounded. The singleton {z} is
trivially bounded, and therefore ez(z

′
i)−ez(z′)→ 0. Since φz = ez ◦T , we conclude

that φz is β(Z′,Z) continuous. Trivially, it is also linear, and thus we have

φz ∈ (Z′, β(Z′,Z))′, z ∈ Z.

But since the Mackey topology is consistent with the duality, and it is assumed in
the present setting to coincide with β(Z′,Z) , we have

(Z′, β(Z′,Z))′ = (Z′, τ(Z′,Z))′ = Z.

Therefore, φz ∈ Z, and thus there must exist a unique ẑ ∈ Z such that

φz(·) = 〈·, ẑ〉.
But by definition of the weak star topology, the map on the right hand side of
this expression is σ(Z′,Z)) continuous, and thus φz is so. We conclude that T :
(Z′, σ(Z′,Z))→ (Z′, σ(Z′,Z)) is continuous. �

Benth, Detering and Galimberti [6] propose feedforward neural networks defined
on Fréchet spaces and show that these are universal approximants of continuous
functions on Fréchet spaces. It is known that classical feedforward neural networks
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on finite-dimensional Euclidean spaces can be defined as a finite-difference approx-
imation of a system of controlled ordinary differential equations (see e.g. Cuchiero,
Larsson and Teichmann [8] for a recent theoretical study of this). Our developed
Gelfand integration theory will provide the basic mathematical toolbox to define
controlled ordinary differential equations in Fréchet spaces, and thereby a starting
point to study neural networks on Fréchet spaces from the same perspective.

We want to finally remark that, even though Proposition 3.1 is a straightforward
adaptation of Hida et al. [13, Prop. 8.1], all the subsequent results and theory
actually require much more effort, and extra care is needed to deal with the interplay
of the several different topologies that one has available on Z′: refer in particular
to Propositions 3.12 and 3.13.

4. Pathwise integration

The aim of this section is to make use of the Gelfand integral in Fréchet spaces
introduced above to make sense out of integrals like∫

E

γ(x)dξ(x)

where ξ : M → Z′ and γ : M → Z′. The overall goal, as well as motivation, is to
include stochastic integration, where ξ is random, for example defined via Brownian
motion. Our integral will not follow the idea of Stieltjes’ integration, but take the
approach of absolute continuity with respect to a measure.

First, let us define what we mean by an integrator:

Definition 4.1. Given a measurable space (M,M), we say that ξ :M→ Z′ is an
integrator if, there exist

(i) a σ-finite measure µ on (M,M),
(ii) a map Ξ : F(M,Z′) → F(M,Z′), where F(M,Z′) is the set of maps from

M to Z′,
(iii) there exists an element u ∈ Z′ such that the map Ξ(u) : M → Z′ is Z′-

Gelfand µ-integrable, and for any E ∈M,

ξ(E) =

∫
E

Ξ(u)(x)µ(dx).

Here, u is considered as the constant map M 3 x 7→ u ∈ Z′ and we refer to
u as the unit element of Ξ.

If we are given ξ, we must produce a measure µ and map Ξ satisfying the above
(i)-(iii). Implicitly, in finding Ξ, we must also find a unit element for it. On the
other hand, if we specify a measure µ and a map Ξ together with an element v ∈ Z′

for which Ξ(v) : M → Z′ is Z′-Gelfand µ-integrable, we can define an integrator ξ
for the measure µ and map Ξ with unit v by

ξ(E) :=

∫
E

Ξ(v)(x)µ(dx).

In stochastic integration, we are typically given ξ.
For an integrator, we introduce the class of integrands and define the integral

with respect to ξ as follows:
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Definition 4.2. Let ξ be an integrator with measure µ and map Ξ. We say that
γ : M → Z′ is integrable with respect to ξ if Ξ(γ) is Z′-Gelfand µ-integrable, and
denote the set of such γ as I(ξ). If γ ∈ I(ξ), then for any E ∈M,∫

E

γ(x)dξ(x) :=

∫
E

Ξ(γ)(x)µ(dx) ∈ Z′,

where the right-hand side is interpreted as the Gelfand integral of Section 3 using
ψ(x) := Ξ(γ)(x).

Choosing γ(x) := u, with u being the unit element of Ξ, we readily get from the
definitions above that γ is integrable with respect to ξ and ξ(E) =

∫
E

Ξ(u)(x)µ(dx),
as expected.

The set F(M,Z′) is a vector space over the field F. The next lemma shows
linearity of the defined integral when Ξ is linear.

Lemma 4.3. Let ξ be an integrator with measure µ and map Ξ. Assume that
Ξ is linear, i.e., that for each a, b ∈ F and γ1, γ2 : M → Z′, Ξ(aγ1 + bγ2) =
aΞ(γ1) + bΞ(γ2). Then aγ1 + bγ2 ∈ I(ξ) for all a, b ∈ F whenever γ1, γ2 ∈ I(ξ).
Furthermore, for all E ∈M∫

E

aγ1(x) + bγ2(x)dξ(x) = a

∫
E

γ1(x)dξ(x) + b

∫
E

γ2(x)dξ(x).

Proof. By the linearity of Ξ, we find for every z ∈ Z that

〈Ξ(aγ1 + bγ2)(·), z〉 = a〈Ξ(γ1)(·), z〉+ b〈Ξ(γ2)(·), z〉 ∈ L1(µ).

The linearity of the integral follows again from the linearity of Ξ and the linearity
of the Gelfand integral. �

Linearity of an integral with respect to the integrand is a desirable property, and
we shall from now on mostly focus on linear maps Ξ of the form discussed below.

We also recall the continuity of the integral with respect to the domain of inte-
gration provided by Proposition 3.4.

4.1. Pathwise integration in algebras. Let us now consider a special case rel-
evant for stochastic integration. Suppose (Z′, σ(Z′,Z)) is a locally convex algebra,
where additionally the multiplication, denoted by �, is assumed to be associative
and with unit 1 ∈ Z′. Note that � is separately σ(Z′,Z) − σ(Z′,Z) continuous by
assumption, and by this we mean that for any net (γi)i in Z′ converging to γ ∈ Z′

with respect to σ(Z′,Z), it holds that the net (〈θ � γi, z〉)i converges to 〈θ � γ, z〉
for any θ ∈ Z′ and any z ∈ Z; and a completely analogous statement holds for
left-continuity.

We can define integrators by the following. We first assume that for a given
ξ : M → Z′ there exists a σ-finite measure µ on (M,M) and a map ξ̇ : M → Z′

such that ξ̇ is Z′-Gelfand µ-integrable, and

ξ(E) =

∫
E

ξ̇(x)µ(dx) ∈ Z′

for any E ∈M. Next, define the map

(9) Ξ(γ)(x) = γ(x) � ξ̇(x)
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This defines a linear map on F(M,Z′) into itself. Moreover, Ξ(1) = ξ̇, and therefore
1 is the unit element of Ξ since

ξ(E) =

∫
E

Ξ(1)(x)µ(dx).

Here, 1 is considered as the constant map M 3 x 7→ 1 ∈ Z′. This shows that
ξ is an integrator with measure µ and linear map Ξ given in (9). We may not
have a commutative product �, and thus we could alternatively define Ξ(γ)(x) =

ξ̇(x) � γ(x). If γ ∈ I(ξ), that is, if γ is such that γ � ξ̇ is Z′-Gelfand µ-integrable,
then ∫

E

γ(x)dξ(x) :=

∫
E

γ(x) � ξ̇(x)µ(dx)

for E ∈M.

Example 4.4. As we recall from the the introduction to Hida spaces in Section 2,
we can select Z to be the space of Hida smooth random variables (S), and Z′

to be the Hida distribution space (S)′. This space is endowed with the inductive
limit topology τind, which coincides both with the strong topology β((S)′, (S)) and
the Mackey topology τ((S)′, (S)) [13, Page 482]. We observe that (S)′ is also a
Montel space, being the strong dual of a Montel space [19, Page 147].

On (S)′ we have the Wick product � which, in view of [13, Corollary 4.22]

‖F �G‖2,−r ≤ C‖F‖2,−p‖G‖2,−q
where r = −p ∨ q − α, α > 1/2, is jointly continuous with respect to τind. It is
commutative, distributive and associative (see [15, Lemma 2.4.5]). A double appli-
cation of Proposition 3.13 enables us then to conclude that actually � is separately
σ((S)′, (S)) − σ((S)′, (S)) continuous too. We can define an integral with respect
to Brownian motion ξ := B as∫

E

γ(s)dB(s) :=

∫
E

γ(s) �W (s)ds

where γ is a mapping from E to (S)′ such that s 7→ γ(s) � W (s) is integrable
on E. Naturally, E is some measurable subset of R and we recall W (s) to be
white noise. Notice that the unit element is the trivial random variable 1 ∈ (L2)
(see Example 2.5.10 in [15]). Usually, the left-hand side above is referred to as
the Skorohod integral, and we denote it by

∫
E
γ(s)δB(s) to distinguish it from the

special case of Ito integral. Notice that by Corollary 3.7 we have strong continuity

of t 7→
∫ t

0
γ(s)δB(s) ∈ (S)′.

As the next result shows, we can pull constants out of the integral:

Lemma 4.5. Assume θ ∈ Z′. Then, for any γ ∈ I(ξ) we have that θ � γ ∈ I(ξ)
and

θ �
∫
E

γ(x)dξ(x) =

∫
E

(θ � γ(x))dξ(x).

Proof. Introduce the linear map

T : Z′ → Z′, Tγ = θ � γ,

which is σ(Z′,Z) − σ(Z′,Z) continuous by the assumption on the product on Z′.
Then, from Prop. 3.12 as well as by the associativity of the product, we find for
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γ ∈ I(ξ) that Tγ ∈ I(ξ) and

θ �
∫
E

γ(x)dξ(x) =

∫
E

T (Ξ(γ)(x))µ(dx)

=

∫
E

θ � γ(x) � ξ̇(x)µ(dx)

=

∫
E

(θ � γ(x))dξ(x).

�

The above result is known for the Skorohod integral in White Noise Analysis,
see Holden et al. [15, Cor. 2.5.12].

From the definition of Ξ(γ)(x) = γ(x) � ξ̇(x), we observe that we can express Ξ
as a linear operator Ξx : Z′ → Z′ for each fixed x ∈M as

(10) Ξ(γ)(x) := Ξx(γ(x))

where

Z′ 3 η 7→ Ξx(η) = η � ξ̇(x)

Hence, M 3 x→ Ξx ∈ L(Z′, σ), where L(Z′, σ) is the space of linear and σ(Z′,Z)−
σ(Z′,Z) continuous operators on Z′. Let us now study operators Ξ which has a
representation given by a Ξx ∈ L(Z′, σ) as in (10) in the general situation.

For maps Ξx being linear, we can readily show a Fubini result on the pathwise
Gelfand integrals:

Proposition 4.6. Assume, for i = 1, 2, that ξi are integrators with measures µi on
the spaces (Mi,Mi) with maps Ξi. For Ξ1 and Ξ2, assume there exist Ξ1,x,Ξ2,y ∈
L(Z′, σ), x ∈M1, y ∈M2, resp., such that (10) hold. Consider a mapping

M1 ×M2 3 (x, y) 7→ γ(x, y) ∈ Z′,

where γ(x, ·) ∈ I(ξ2) for any x ∈ M1, γ(·, y) ∈ I(ξ1) for any y ∈ M2, and∫
E2
γ(·, y)dξ2(y) ∈ I(ξ1) and

∫
E1
γ(x, ·)dξ1(x) ∈ I(ξ2) for any Ei ∈Mi, i = 1, 2.

If Ξ1,x and Ξ2,y commutes, that is,

Ξ1,x(Ξ2,y(γ(x, y))) = Ξ2,y(Ξ1,x(γ(x, y))), (x, y) ∈M1 ×M2

with (x, y) 7→ Ξ1,x(Ξ2,y(γ(x, y))) being Z′-Gelfand µ1 × µ2-integrable, then∫
E1

∫
E2

γ(x, y)dξ2(x)dξ1(y) =

∫
E2

∫
E1

γ(x, y)dξ1(y)dξ2(x)

for any Ei ∈Mi, i = 1, 2.

Proof. By the assumptions, we find∫
E1

∫
E2

γ(x, y)dξ2(y)dξ1(x) =

∫
E1

∫
E2

Ξ2,y(γ(x, y))µ2(dy)dξ1(x)

=

∫
E1

Ξ1,x

(∫
E2

Ξ2,y(γ(x, y))µ2(dy)

)
µ1(dx)

=

∫
E1

∫
E2

Ξ1,x(Ξ2,y(γ(x, y))µ2(dy)µ1(dx)

where we appealed to Prop. 3.12 in the last equality.
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Analogously,∫
E2

∫
E1

γ(x, y)dξ1(x)dξ2(y) =

∫
E2

∫
E1

Ξ2,y(Ξ1,x(γ(x, y))µ1(dx)µ2(dy).

From the commutativity and joint integrability assumption of Ξ1,x and Ξ2,y, the
result follows from the Fubini Theorem 3.8 of Gelfand integrals. �

Apart from natural integrability conditions, the Fubini result above rests on the
assumptions that Ξ1,x and Ξ2,y are linear and continuous operators which commute.
We can use Prop. 4.6 to define iterative stochastic integrals in the Hida space.
Recall the set-up in Example 4.4. As (γ(s, t)�W (s))�W (t) = (γ(s, t)�W (t))�W (s),
we invoke under natural integrability conditions on (s, t) 7→ γ(s, t) that∫

E1

∫
E2

γ(s, t)δB(s)δB(t) =

∫
E2

∫
E1

γ(s, t)δB(t)δB(s)

for E1, E2 being measurable subsets of R. To have a Fubini-result for Ito integration,
we must further invoke measurability conditions like adaptedness.

Rather than a double stochastic integral, one may be interested in the situation
of a joint stochastic integral and an integral with respect to the measure µ. For ex-
ample, when formulating weak solutions of stochastic partial differential equations,
the measure space (M,M, µ) may be a subspace of the Euclidean space Rn, with µ
being the Lebesgue measure (see e.g. Galimberti and Karlsen [11] and [12]). Test
functions for the weak solution may be selected in some Sobolev space, or more
generally, in a Fréchet space. Defining a product space of Hida distributions and
a suitable Sobolev or Fréchet space to handle the spatial dependency (recall the
spaces defined in V̊age [20]), requires a stochastic Fubini theorem in a general set-
ting as we have proven above in order to answer questions related to the interchange
of the Lebesgue integral with the stochastic integral.

4.2. The Gelfand derivative. We have the following duality representation for
the integral:

Lemma 4.7. Suppose ξ is an integrator with map Ξ, and assume that there exists
for every x ∈ M a Ξx ∈ L(Z′, σ) such that for any γ ∈ I(ξ), Ξ(γ)(x) = Ξx(γ(x)).
Then, 〈∫

E

γ(x)dξ(x), z

〉
=

∫
E

〈γ(x),Ξ∗x(z)〉µ(dx)

for any E ∈M and any z ∈ Z, where Ξ∗x : (Z′)∗ → (Z′)∗ is the dual of Ξx.

Proof. Observe that γ ∈ I(ξ) means with the definition of Ξ that x 7→ 〈Ξx(γ(x)), z〉
is integrable with respect to µ on M . Next, since σ(Z′,Z) is consistent with the
duality 〈Z′,Z〉, it holds (Z′, σ(Z′,Z))′ = Z. Moreover, the dual operator Ξ∗x satisfies
Ξ∗x(Z) ⊂ Z, because of the continuity of Ξx, and the result follows. �

Hence, Ξ∗x may be interpreted as a ”gradient” for the integral. If Ξx(η) =

η � ξ̇(x), we may call the dual operator Ξ∗x the Gelfand derivative as we obtain
an operator representation of the integrals in Lemma 4.7 generalizing the Hida-
Malliavin derivative in the Hida space setting. Indeed, if Z′ is the Hida distribution
space (S)′, then for a Skorohod integrable process γ on some interval [0, t] it holds
that

E
[∫ t

0

γ(s)δB(s)z

]
= E

[∫ t

0

γ(s)Dszds

]
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for any Malliavin differentiable z ∈ D1,2 ⊂ (L2). This is the duality relation between
the Skorohod integral and the Malliavin derivative, which is used as the definition
of Skorohod integration in Nualart [17, Def. 1.3.1] as an adjoint operator.

Consider now the case where Z is an algebra for a product ·, i.e., y · z ∈ Z for
y, z ∈ Z. We assume that · is associative and a continuous operator in Z.

Remark 4.8. In the Hida space (S), this is the pointwise product for random
variables, and thus not the same as the Wick product.

We can define an operator T ∈ L(Z′, σ) as follows.

Definition 4.9. We fix a θ ∈ Z, and define Tγ = θ · γ for every γ ∈ Z′ by the
relation

〈θ · γ, z〉 := 〈γ, θ · z〉
for any z ∈ Z.

Let us introduce derivative operators on Z:

Definition 4.10. We say that Γ : Z→ Z is a derivative operator if

Γ(y · z) = y · Γ(z) + Γ(y) · z

for any y, z ∈ Z.

In Benth [5], a derivative operator in the Hida distribution space (S)′ is defined
as follows. For an f ∈ S(R), recall the the random variable W (f)(ω) := (f, ω),
with (·, ·) being the dual pairing between S(R) and S ′(R). Since W (f) ∈ (S), we
can define the operator Df : (S)′ → (S)′ as

(11) DfΦ := Φ ·W (f)− Φ �W (f).

As the Hida test function space (S) is closed under both the pointwise and Wick
product, it holds that Df : (S)→ (S). Moreover, as we show in the appendix, Df
is a derivative operator. If Φ is a Malliavin differentiable random variable, then it
is shown in Benth [5, Thm. 3.3] that Df coincides with the Malliavin derivative in
the sense that

DfΦ =

∫
R

(DtΦ)f(t)dt.

This links D to the Malliavn derivative, yielding a generalization to an operator
on (S)′ which is a derivative on (S). We note in passing that Df in fact is a
derivative operator on (S)′ under the Wick product (see Benth [5, Thm. 4.1]). By
denoting f t(x) := f(x− t), the shift of f ∈ S(R), consider the smoothed white noise

W̃ (t) := (f t, ·) ∈ (S). For the operator Ξt(φ) := Φ � W̃ (t), we define the stochastic
integral

(12)

∫ t

0

Φ(s)δB̃(s) :=

∫ t

0

Ξs(Φ(s))ds =

∫ t

0

Φ(s) � W̃ (s)ds

for integrable Hida distribution processes Φ(s). It holds for any φ ∈ (S) that (see
Appendix for a proof),

(13) 〈
∫ t

0

Φ(s)δB̃(s), φ〉 =

∫ t

0

〈Φ(s),Dfs(φ)〉ds.
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We therefore have an example of a derivative operator Ξ∗t := Dft . As a last remark,
define the integral

(14)

∫ t

0

Φ(s)δ◦B̃(s) :=

∫ t

0

Φ(s) · W̃ (s)ds

Then, by the definition of Dft it holds that

(15)

∫ t

0

Φ(s)δ◦B̃(s) =

∫ t

0

DfsΦ(s)ds+

∫ t

0

Φ(s)δB̃(s)

for all Hida distribution processes Φ for which the above integrals are well-defined.
Recalling that Dft can be interpreted as a Malliavin detivative for Hida distribu-
tions, we have a connection between stochastic integrals defined by pointwise and
Wick multiplication with a smoothed noise resembling the relationship between the
Stratonovich and Skorohod integral, see Thm. 3.1.1 and the following remark on
page 152 in Nualart [17]. This lends itself to the interpretation of the integral in
(14) as a Stratonovich-type of stochastic integral.

Let us return to the general considerations. Under the assumption that Ξ∗x
introduced in Lemma 4.7 is a derivative operator, we find the following integration
by parts formula for integrals:

Proposition 4.11. Let θ ∈ Z. Suppose that ξ is an integrator with map Ξ such
that there exists for every x ∈ M a Ξx ∈ L(Z′, σ) such that for any γ ∈ I(ξ),
Ξ(γ)(x) = Ξx(γ(x)). If the dual Ξ∗x restricted to Z is a derivative operator, then

(16)

∫
E

θ · γ(x)dξ(x) = θ ·
∫
E

γ(x)dξ(x)−
∫
E

Ξ∗x(θ) · γ(x)µ(dx)

Proof. First we observe that by assumptions, θ · Ξ∗x(z) ∈ Z and 〈γ(x), θ · Ξ∗x(z)〉 ∈
L1(µ) for all z ∈ Z. By definition of the multiplication operator and duality, we
compute

〈γ(x), θ · Ξ∗x(z)〉 = 〈θ · γ(x),Ξ∗x(z)〉 = 〈Ξx(θ · γ(x)), z〉.

As this holds for any z ∈ Z, θ · γ ∈ I(ξ).
We refer to Proposition 3.12, Lemma 4.7 and the derivative property of Ξ∗x to

do the following calculation: for any z ∈ Z,

〈
∫
M

θ · γ(x)dξ(x), z〉 =

∫
M

〈Ξx(θ · γ(x)), z〉µ(dx)

=

∫
M

〈γ(x), θ · Ξ∗x(z)〉µ(dx)

=

∫
M

〈γ(x),Ξ∗x(θ · z)− Ξ∗x(θ) · z〉µ(dx)

=

∫
M

〈Ξx(γ(x)), θ · z〉µ(dx)−
∫
M

〈Ξ∗x(θ) · γ(x), z〉µ(dx)

= 〈
∫
M

Ξ(γ)(x)µ(dx), θ · z〉 − 〈
∫
M

Ξ∗x(θ) · γ(x)µ(dx), z〉

= 〈θ ·
∫
M

γ(x)dξ(x)−
∫
M

Ξ∗x(θ) · γ(x)µ(dx), z〉.

The claim follows. �



STOCHASTIC INTEGRALS AND GELFAND INTEGRATION IN FRÉCHET SPACES 23

Thus, we have established an integration-by-parts formula similar to the one in
Malliavin Calculus (where Ξ∗x is interpreted as the Malliavin derivative), see Nualart
[17, Eq. (1.49) on page 40].

4.3. Stability for pathwise integrals. Let us show some stability results for
the integral in the general case. Using dominated convergence we can show the
following stability result with respect to the integrators:

Proposition 4.12. Suppose that (ξk)k∈N is a sequence of integrators with common
measure µ and maps (Ξk)k∈N where

⋂
I(ξk) 6= ∅. Assume there exist a map Ξ :

F(M,Z′) → F(M,Z′) and a unit element u ∈ Z′ such that Ξ(u) is Z′-Gelfand
µ-integrable, and where the following holds for any γ ∈

⋂
I(ξk):

(1) for any z ∈ Z, x 7→ 〈Ξ(γ)(x), z〉 is µ-measurable,
(2) for µ− a.e. x ∈M , Ξk(γ)(x)→ Ξ(γ)(x) in (Z′, σ(Z′,Z)),
(3) for any z ∈ Z there exists a 0 ≤ gz ∈ L1(µ) such that |〈Ξk(γ)(x), z〉| ≤ gz(x)

µ− a.e. x ∈M .

Then ξ :M→ Z′ defined as

ξ(E) :=

∫
E

Ξ(γ)(x)µ(dx)

is an integrator,
⋂
I(ξk) ⊂ I(ξ) and∫

M

γ(x)dξk(x)→
∫
M

γ(x)dξ(x)

in (Z′, σ(Z′,Z)).

Proof. First, we observe that ξ defines an integrator with measure µ and map Ξ
by the assumptions. Next, choose a γ ∈

⋂
I(ξk), and set ψk(x) := Ξk(γ)(x) and

ψ(x) := Ξ(γ)(x). Notice that ψk is Z′-Gelfand µ-integrable, since γ ∈ I(ξk) for
every k ∈ N. Invoking the assumptions, it follows from Thm. 3.11 that ψ is
Z′-Gelfand µ-integrable, and

∫
M
ψk(x)µ(dx) →

∫
M
ψ(x)µ(dx) in (Z′, σ(Z′,Z)). In

other words, Ξ(γ)(·) is Z′-Gelfand µ-integrable, which implies γ ∈ I(ξ), and∫
M

γ(x)dξk(x) =

∫
M

Ξk(γ)(x)µ(dx)→
∫
M

Ξ(γ)(x)µ(dx) =

∫
M

γ(x)dξ(x)

in (Z′, σ(Z′,Z)). This yields the result. �

Recall the smoothed stochastic integral defined in (12) for the Hida distribution
space (S)′. It is well-known that one can choose a sequence of functions (fk) ⊂ S(R)
such that fk → δ0 ∈ S ′(R), where δ0 is the Dirac-δ function and the convergence is

in distributional sense. It follows that W̃k(t) := 〈f tk, ·〉 → W (t), where W (t) is the
white noise process in (S)′. Indeed, from the above Prop. 4.12 we find that∫ t

0

Φ(s)δB̃k(s)→
∫ t

0

Φ(s)δB(s)

for a suitable class of integrands Φ.
We have an analogous result to Prop. 4.12 concerning stability with respect to

the integrands:

Proposition 4.13. Suppose that (γk)k∈N is a sequence in I(ξ) for an integrator ξ
with measure µ and map Ξ. Assume that there exists a γ : M → Z′ such that the
following holds:
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(1) for any z ∈ Z, x 7→ 〈Ξ(γ)(x), z〉 is µ-measurable,
(2) for µ− a.e x ∈M , Ξ(γk)(x)→ Ξ(γ)(x) in (Z′, σ(Z′,Z)),
(3) for any z ∈ Z there exists a 0 ≤ gz ∈ L1(µ) such that |〈Ξ(γk)(x), z〉| ≤ gz(x)

µ− a.e. x ∈M .

Then, γ ∈ I(ξ) and ∫
M

γk(x)dξ(x)→
∫
M

γ(x)dξ(x)

in (Z′, σ(Z′,Z)).

Proof. Set ψk(x) := Ξ(γk)(x) and ψ(x) := Ξ(γ)(x). As γk ∈ I(ξ), we find that
ψk is Z′-Gelfand µ-integrable for every k ∈ N. Invoking the assumptions, it follows
from Thm. 3.11 that ψ is Z′-Gelfand µ-integrable and∫

M

Ξ(γk)(x)µ(dx)→
∫
M

Ξ(γ)(x)µ(dx).

The claims follow. �

Let us go back to a case study, again relevant to stochastic integration. If Z has
a multiplication operator, denoted ·, that enjoys some mild and natural continuity
properties (e.g., being an algebra with this multiplication operator), we can define
for any x ∈ Z a linear operator mapping Z′ into Z′ by

Z′ 3 η 7→ Ξx(η) := η · ξ̇(x)

where in this case ξ̇ : M → Z. Ξx(η) acts linearily on Z by

〈Ξx(η), z〉 ≡ 〈η · ξ̇(x), z〉 := 〈η, z · ξ̇(x)〉

Notice that z · ξ̇(x) ∈ Z. By this we can introduce the integral∫
E

γ(x)dξ(x) =

∫
E

γ(x) · ξ̇(x)µ(dx)

where γ : M → Z′ is such that x→ Ξx(γ(x)) is Z′-Gelfand µ-integrable.
Observe that if Z ⊂ Z′, one could also use the product �, which is not necessarily

equal to the product ·. In Hida distribution spaces, � is the Wick product while ·
is the pointwise (i.e., ω-wise) product of random variables.

4.4. A discussion of integration with respect to Volterra processes in
Hida distribution space. Consider a Volterra process

(17) Y (t) =

∫ t

0

g(t, s)dB(s)

where B is a Brownian motion and g is a measurable deterministic function mapping
from R2 into R. For each t > 0, we suppose that s 7→ g(t, s) is square-integrable.
Our concern here is the definition a stochastic Volterra integral

(18)

∫ t

0

Φ(s)dY (s)

for a suitable class of stochastic processes Φ.
Alos, Mazet, Nualart [1] propose to define the stochastic Volterra integral as

(19)

∫ t

0

Φ(s)dY (s) =

∫ t

0

Kg(Φ)(t, s)δB(s)
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where the operator Kg is given by

(20) Kg(Φ)(t, s) = Φ(s)g(t, s) +

∫ t

s

(Φ(u)− Φ(s))g(du, s)

This operator is well-defined for functions g which is of finite variation in the first
variable, and functions f where paths are sufficiently regular to allow for integration
with respect to g(du, s). Thus, the space of integrands Φ are those processes for
which Kg(Φ)(t, s) is well-defined and Skorohod integrable (see Alos et al. [1] for
more details).

From this definition, we can extend the stochastic Volterra integral to the Hida
distribution space as follows: Interpret the operator Kg as a Gelfand integral on
(R,BR), equipped with the measure induced by g(du, s). Then, define the operator
Ξt,s(Φ) as

Ξt,s(Φ) = Kg(Φ)(t, s) �W (s).

Not surprisingly, the operator Ξ will depend on the integration domain. Addition-
ally, from the operator Kg, we need the path of Φ from s to t, and not only a point
evaluation in current time s. This also shows the need for using an anticipative
integral definition yielded by the Skorohod integral.

Let us apply the White Noise framework to provide a motivation for the definition
of Alos et al. [1]. Using the representation∫ t

0

g(t, s)dB(s) =

∫ t

0

g(t, s)W (s)ds

we find by a formal calculation,

Y ′(t) =
d

dt

∫ t

0

g(t, s)W (s)ds = g(t, t)W (t) +

∫ t

0

∂tg(t, u)W (u)du

This derivation requires that g is differentiable in the first variable, with sufficient
integrability of the derivative, and that the diagonal g(t, t) is finite. These con-
ditions may not hold, for example, for the Liouville-representation of fractional
Brownian motion, or certain BSS-processes with gamma kernels in ambit stochas-
tics (see Barndorff-Nielsen, Benth and Veraart [3]). We introduce the stochastic
Volterra integral by resorting to the Wick product and the formal derivative of Y :

(21)

∫ t

0

Φ(s)dY (s) :=

∫ t

0

Φ(s) � Y ′(s)ds.

This definition is analogous to the representation of Skorohod integration with
respect to Brownian motion B in the Hida space setting. Let us investigate how
the representation (21) may lead us to back to (19).

Inserting for Y ′(s) and doing a Fubini-argument, lead to∫ t

0

Φ(s)dY (s) =

∫ t

0

Kg(Φ)(t, s) �W (s)ds =

∫ t

0

Kg(Φ)(t, s)δB(s)

where

Kg(f)(t, s) = f(s)g(s, s) +

∫ t

s

f(u)∂tg(u, s)du.

If g is not finite on the diagonal, and/or not differentiable in the first variable, we
can do an integration-by-parts trick as in the paper by Alos et al. [1], which brings
us back to the definition of Kg as in (20). In conclusion, the stochastic Volterra
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integral by Alos et al. [1] comes from a pathwise Lebesgue integration of the
integrand and the Wick product with the noise process, being the time-derivative
of the Volterra integrator.

An alternative heuristic definition based on Malliavin Calculus is done in Barndorff-
Nielsen et al. [2]: using the classical and Malliavin integration-by-parts formulas
along with the stochastic Fubini theorem, they are led to the following definition
of the stochastic Volterra integral:

(22)

∫ t

0

Φ(s)d◦Y (s) =

∫ t

0

Kg(Φ)(t, s)δB(s) +

∫ t

0

DsKg(Φ)(t, s)ds

Here, Ds is the Malliavin derivative. This provides another definition of the sto-
chastic integral, which can be cast in the Gelfand setting we have developed by
introducing the operator

Ξt,s(Φ) = Kg(Φ)(t, s) �W (s) +DsKg(Φ)(t, s)

on the Hida distribution space. Care must be taken with the last term, possibly
resorting to the extended Malliavin derivative. For more details on the stochastic
Volterra integral in the White Noise context, we refer to Barndorff-Nielsen et al.
[4]. Recalling the relationship between a Stratonovich-type of integral and Skorohod
integration, as provided in (15), we may coin the integral in (22) a Stratonovich-type
of Volterra integral, while (19) is of Ito-type.

The rough path theory to stochastic integration is based on the pathwise reg-
ularity (p-variation) of the integrator Y . Fractional Brownian motion is somehow
the prime example. The approach of rough paths, extending Young integrals, is
to look at Riemann-like sums of increments and iterated integrals with respect to
the integrator process, and appeal to a so-called Sewing Lemma ensuring the con-
vergence of the sums to an integral definition (see Friz and Hairer [10] for details).
The interpretation of the iterated integrals determines whether one is considering
an Ito or Stratonovich stochastic integral, say. In our approach, we introduce an
operator K instead, which one might interpret as a generalized derivative of the
process Y . We are then back to Lebesgue integration, however, with respect to
integrands taking values in abstract spaces of generalized random variables.
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Appendix A. The generalized Malliavin derivative

We show here that the generalized Malliavin operator defined in (11) is a deriv-
ative operator on (S):

Proof: Df is a derivative operator: First, we notice that

d

dx
exp�(W (xf))

∣∣
x=0

=
d

dx
exp

(
xW (f)− 1

2
x2|f |22

) ∣∣
x=0

= exp�(W (xf)) · (W (f)− x|f |22)
∣∣
x=0

= W (f).

Here we have used | · |2 to denote the L2-norm on R equipped with the Lebesgue
measure. Hence, by linearity of the Wick product,

(φ · ψ) �W (f) = (φ · ψ) � d

dx
exp�(W (xf))

∣∣
x=0

=
d

dx
((φ · ψ) � exp�(W (xf)))

∣∣
x=0

=
d

dx
(T−xf (φ · ψ) · exp�(W (xf)))

∣∣
x=0

=
d

dx
(T−xfφ · T−xfψ · exp�(W (xf)))

∣∣
x=0

=

(
d

dx
T−xfφ

) ∣∣
x=0
· ψ +

(
d

dx
T−xfφ

) ∣∣
x=0
· φ

+ φ · ψ ·
(
d

dx
exp�(W (xf))

) ∣∣
x=0

=

(
d

dx
T−xfφ

) ∣∣
x=0
· ψ +

(
d

dx
T−xfφ

) ∣∣
x=0
· φ+ φ · ψ ·W (f)
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We appealed to Holden et al. [15, Thm. 2.10.6] in the third equality above, denoting
Tg the translation operator along g ∈ S(R). This yields that

Df (φ · ψ) = φ · ψ ·W (f)− (φ · ψ) �W (f)

= −
(
d

dx
T−xfφ

) ∣∣
x=0
· ψ −

(
d

dx
T−xfφ

) ∣∣
x=0
· φ.

But appealing to the adjoint translation operator T ∗g and Holden et al. [15, Thm.
2.10.3], it follows by linearity of the S-transform,

S
(
d

dx
T−xfφ

∣∣
x=0

)
(ξ) =

d

dx
〈T−xfφ, exp�W (ξ)〉

∣∣
x=0

=
d

dx
〈φ, T ∗−xf exp�(W (ξ))〉

∣∣
x=0

=
d

dx
〈φ, exp�(W (ξ)) � exp�(W (−xf))〉

∣∣
x=0

= −〈φ,W (f) � exp�(W (ξ))〉

On the other hand, again by Thm. 2.10.6 in Holden et al. [15],

S(φ ·W (f))(ξ) = 〈φ ·W (f), exp�(W (ξ))〉
= 〈φ,W (f) · exp�(W (ξ))〉
= 〈φ, (W (f)− (f, ξ)) · exp�(W (ξ))〉+ (f, ξ)〈φ, exp�(W (ξ))〉
= 〈φ, (T−ξW (f)) · exp�(W (ξ))〉+ S(W (f) � φ)(ξ)

= 〈φ,W (f) � exp�(W (ξ))〉+ S(W (f) � φ)(ξ)

= −S
(
d

dx
T−xfφ

∣∣
x=0

)
(ξ) + S(W (f) � φ)(ξ)

Therefore,

Dfφ = − d

dx
T−xfφ

∣∣
x=0

Inserting this into the expression of Df (φ · ψ) above, we find

Df (φ · ψ) = (Dfφ) · ψ + (Dfψ) · φ

and the claimed derivative property holds. �

Next follows the proof of the adjoint operator for the smoothed stochastic integral
in (12):

Proof of Eq. (12): For the operator Ξt(Φ) := Φ � W̃ (t) we find by appealing to the
adjoint translation operator and Holden et al. [15, Thm. 2.10.3],

Ξt(Φ) = Φ � W̃ (t)

= Φ � d

dx
exp�(W (xft))

∣∣
x=0

=
d

dx
(Φ � exp�(W (xf)))

∣∣
x=0

=
d

dx
(TxftΦ)

∣∣
x=0

.
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Then we calculate for φ ∈ (S),

〈
∫ t

0

Φ(s)δB̃(s), φ〉 =

∫ t

0

〈 d
dx

(
T ∗xfsΦ(s)

) ∣∣
x=0

, φ〉ds

=
d

dx

∫ t

0

〈T ∗xfsΦ(s), φ〉ds
∣∣
x=0

=
d

dx

∫ t

0

〈Φ(s), Txfsφ〉ds
∣∣
x=0

=

∫ t

0

〈Φ(s),
d

dx
(Txfsφ)

∣∣
x=0
〉ds

From proof above, we have that

d

dx
(Txfsφ)

∣∣
x=0

= Dfsφ

and the claim follows. �


