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Abstract

Zero-Shot Learning (ZSL), which aims to recognize unseen classes with no

training data, has made great progress in recent years. However, established

ZSL methods implicitly assumed that there exist sufficient labeled samples

for each seen class, which is quite idealistic in general as collecting sufficient

labeled samples is a labor-intensive task and may even be naturally imprac-

tical for some low-probability events. Accordingly, we investigate how to

perform ZSL with fewer seen samples. Specifically, we propose a Distribu-

tion and Gradient constrained Embedding Model (DGEM), which aims to

predict the visual prototypes (means) for the given semantic vectors of seen

classes. Specifically, we summarize the main challenges brought by limited

seen samples as the representation bias problem and the over-fitting problem.

Correspondingly, two regularizers are proposed to solve them: (1) a proto-
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type refinement loss that uses the relative distribution of class semantics to

constrain that of the predicted visual prototypes; (2) a projection smoothing

constraint that prevents the model from forming sharp decision boundaries.

We validate the effectiveness of DGEM on five ZSL datasets and compare

it with several representative ZSL methods. Experimental results show that

DGEM outperforms the other established methods when each seen class has

only 1/5 sample(s).
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1. Introduction

Given the description of an unseen animal, e.g., a liger, humans can read-

ily imagine its approximate visual appearance by combining the elements

from similar classes, e.g., tiger and lion. Inspired by this cognitive com-

petence, researchers proposed the concept of Zero-Shot Learning (ZSL)

[1, 2], which tries to identify unseen classes without labeled samples in the

training stage. Specifically, to achieve the above goal, ZSL uses the semantic

descriptions of classes, which can be attribute vectors [3], word2vec [4], and

textual descriptions [5], as the bridge to transfer the knowledge learned from

seen domain to unseen domain. To this end, ZSL can be boiled down to a

task of learning the correspondence relationship between visual features and

semantic descriptions.

There are two main paradigms in the current ZSL community: embedding

methods and generative methods. Embedding methods try to solve ZSL by

projecting visual features and semantic vectors into a shared space, followed
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Figure 1: The diagrams of ZSL with sufficient seen samples (left) and fewer seen samples

(right). We visualize the distribution of two seen classes (“lion” and “tiger”) in AwA2

dataset [6] by t-SNE [7]. As can be seen, when each class only has 5 samples: (1) their

visual prototypes (hollow stars) will deviate from the true expectations (solid stars); (2)

the model will over fit to the available samples and thus learn an unsatisfactory boundary

(solid line) which is far from the true one (dotted line).

by the nearest neighbor search algorithm to determine the final predictions.

Generative methods employ generative adversarial network (GAN) or vari-

ational auto-encoder (VAE) to synthesize fake visual features for the input

unseen semantic vectors, which convert ZSL into a supervised learning prob-

lem. Various ZSL methods in these two paradigms are proposed and have

shown promising performance under general ZSL setting [8, 9]. However, we

find that the performance of their models relies on an implicit assumption,

that is, existing sufficient labeled seen samples to train their models. This

assumption is quite idealistic in the practical scenarios because (1) collect-

ing sufficient labeled samples for all seen classes is a pretty costly task; (2)
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some objects or events may be naturally rare or hard to happen, such as

endangered animals, extreme weather scenarios and rare diseases. In this

paper, to go beyond the above limitations, we investigate how to perform

ZSL with much fewer seen samples, which is more challenge than the general

ZSL setting.

Figure 1 illustrates the diagrams of ZSL with sufficient seen samples (left)

and fewer seen samples (right). As can be seen, the reduction of training

(seen) data will bring new challenges and further increase the difficulty of

ZSL. Specifically, fewer data mean less and incomplete information. If we

use the visual prototype (mean of visual features) to represent each seen

class in the visual space, the prototype calculated by limited samples (hollow

start) has a high probability of deviating from the true expectation calcu-

lated by sufficient samples (solid star). As a result, the model will learn a

biased projection between visual features and semantic descriptions, and suf-

fer severe performance deterioration, which we called the representation

bias problem. Besides, fewer data put higher demands on the general-

ization capability of models. With limited training samples, the model can

easily fit them well, causing the learned boundaries to be far from the ideal

boundaries, that is, the over-fitting problem.

To tackle the above problems, we propose a Distribution and Gradient

constrained Embedding Model, referred to as DGEM. Specifically, given the

semantic vectors of seen classes, we use an embedding model to predict their

corresponding visual prototypes, supervised by a mean square error loss to

be close to the visual means of seen classes. In addition, based on the as-

sumption that the class distribution in the semantic space is similar to that
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in the visual space, we specifically design a prototype refinement loss to

alleviate the bias of visual prototypes. Furthermore, to improve the general-

ization ability of the model, we generate some interpolated semantic vectors

by combining the real ones and then constrain their gradients to enforce the

Lipschitz continuity of DGEM, which can prevent it from generating sharp

decision boundaries. After training, we apply DGEM to the semantic vectors

of unseen classes to predict the corresponding visual prototypes, which will

be utilized as anchors to determine the final class labels of test samples. In

brief, our contributions can be summarized as follows:

• For zero-shot learning with fewer seen samples, we summarize the main

challenges caused by limited seen samples as the representation bias

problem and the over-fitting problem, and propose a distribution and

gradient constrained embedding model (DGEM) to solve them.

• For the representation bias problem, we design a prototype refinement

loss that exploits the relative distribution information of classes in the

semantic space to alleviate the bias of the predicted visual prototypes.

For the over-fitting problem, we introduce a projection smoothing loss

to enforce the Lipschitz continuity of the model by constraining the

gradients with respect to some interpolated semantic vectors.

• We evaluate the performance of DGEM on five commonly used datasets

in which each seen class only has 1/5 sample(s). The experimental

results demonstrate that DGEM outperforms the other methods for

ZSL with fewer seen samples.
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2. Related work

The target of ZSL is to train a model which can generalize to unseen

classes with no training data and only a semantic description [1]. The premise

of achieving this target is that seen classes and unseen classes share a common

semantic space. Thus the projection between visual features and semantic

descriptions learned from the seen domain can be transferred to the unseen

domain. Briefly, according to how to use the learned projection, the existing

ZSL methods can be roughly divided into embedding methods and generative

methods.

Embedding methods use the learned projection to map visual features

and class semantic vectors to a shared feature space, followed by the nearest

neighbor search algorithm to implement classification. For example, Romera-

Paredes et al. [10] used a two linear layers network to learn the projection

from the visual space to the attribute space and regularized the model with

the Frobenius norm. Zhang et al. [5] argued that the above mapping direc-

tion (visual to semantic) would aggravate the hubness problem [11, 12, 13]

and thus chose to learn a projection from the semantic space to the visual

space by a deep network. Similarly, Skorokhodov et al. [14] also chose to

learn a semantic to visual projection, but they focused on the the application

of normalization techniques in ZSL. In addition, some methods try to map

visual features and semantic vectors to another shared space. Representa-

tively, Li et al. [15] and Yang et al. [16] both thought the label information

of classes is helpful for the learning of the projection. Therefore, they chose

the label space as the shared space to learn the relationship between visual

features and semantic vectors. Besides, to exploit the common knowledge
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shared by both visual and semantic features, Wu et al. [17] introduced re-

construction regularization to the projection from the visual and semantic

spaces to a common latent subspace. Furthermore, to balance the infor-

mation of classes in visual and semantic spaces, Liu et al. [18] proposed

Isometric Propagation Network (IPN) to learn the prototypes of classes in

each space and align their distribution.

Generative methods use generative models, e.g., GAN and VAE, to learn

the projection between visual features and semantic vectors, and then syn-

thesize fake visual features for unseen classes. With the synthesized unseen

features, generative methods eliminate the imbalance between seen and un-

seen data, and thus have a promising performance under the Generalized

ZSL (GZSL) setting where the test data contain both seen and unseen sam-

ples. Specifically, Xian et al. [19] first proposed to use a Wasserstein GAN

to synthesize visual features conditioned on class-level semantic information.

Following this idea, Li et al. [20] designed two regularizations to require the

generated features to be close to the “soul” samples of real data. In addition,

to generate discriminative and representative features, Liu et al. [21] defined

a latent space where the features from different classes are orthogonal and

used cascade GANs to generate samples. To fully investigate the bilateral

connections in ZSL, Li et al. [22] chose to concatenate a conditional WGAN

with a bidirectional autoencoder. Different from the above GAN-based meth-

ods, Schonfeld et al. [23] proposed to learn a shared latent space of visual

features and semantic vectors by modality-specific VAEs. Li et al. [24] used

two VAEs to model the latent distribution of samples in visual and semantic

spaces and tried to learn modality-invariant latent representations for classes
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by leveraging their mutual information and entropy. To extract the seman-

tically related information from the visual features of samples, Chen et al.

[25] designed a semantic disentangling module to learn semantic-consistent

and semantic-unrelated representations from visual vectors. Specially, for

ZSL with fewer seen samples, Verma et al. [26] proposed a generative frame-

work that combines a conditional VAE with a GAN to generate high-quality

samples in a meta-learning paradigm.

Various ZSL methods have been proposed and contributed to the ZSL

community. However, most of the existing ZSL methods are trained using

sufficient seen samples and barely consider the situation where only a tiny

number of seen samples are available. Unlike these methods, in this paper,

we focus on how to perform ZSL with much fewer seen samples, which is

more challenging than the general ZSL setting.

3. Method

3.1. Problem definition

In general ZSL setting, the training data Ds = {Xs,Ys} = {xi
s, y

i
s}Ns

i=1

consists of Ns samples from s seen classes, where xi
s and yis represent the

visual feature vector and the class label of the i-th seen sample, respectively.

Based on Ds, ZSL aims to train a model which can recognize the samples

of u unseen classes, that is, Du = {Xu,Yu} = {xi
u, y

i
u}Nu

i=1. The challenge of

ZSL is that seen and unseen classes are non-overlapping, i.e., Ys ∩ Yu = ∅.

Instead, the semantic descriptions of classes denoted as A = {As,Au} =

{a1, ...,as,as+1, ...,as+u} are provided to bridge the gap between the seen

and unseen domains. Conventional ZSL evaluates the model only with unseen
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Figure 2: The framework of DGEM, which consists of a basic embedding model and

two regularizers, i.e., the prototype refinement loss and the projection smoothing loss.

Concretely: (1) Given the semantic vectors of seen classes (ai), we use a basic embedding

model to predict their corresponding visual prototypes (p̂i); (2) To alleviate the bias of

visual prototypes, we select r anchor classes to calculate the relative distribution matrix

in two spaces (Ms and Mv) and align them; (3) To learn a smooth and robust embedding

model, some interpolated semantic vectors (ãi) will be generated and we will constrain

their gradient norms (||∇f(ãi)||2) to enforce Lipschitz continuity.

samples, that is, training a classifier which can fzsl : Xu → Yu. A more

realistic and challenging setting is generalized ZSL (GZSL), in which the test

samples are from both seen and unseen classes, i.e., fgzsl : Xs∪Xu → Ys∪Yu.

In this paper, we challenge the implicit assumption of general ZSL that

each seen class has sufficient samples, and investigate how to perform ZSL

with much fewer seen samples. Specifically, in our setting, each seen class

now only has k samples (k = 1/5) and the seen data become Ds = {xi
s, y

i
s}ski=1

where sk � Ns.
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3.2. Overview

To meet the challenges brought by fewer seen samples, we propose a

Distribution and Gradient constrained Embedding Model (DGEM), whose

framework is shown in Figure 2. To be specific, given the semantic vectors of

seen classes (ai), we use a three-layer neural network as our basic embedding

model to predict their corresponding visual prototypes (p̂i). A mean square

error (MSE) loss is applied to make the predicted visual prototypes close

to the visual means of seen classes (pi). To tackle the representation bias

problem and the over-fitting problem, we design a prototype refinement loss

and a projection smoothing loss to solve them. The former uses the relative

distribution of the semantic vectors (Ms) to guide that of the predicted

visual prototypes (Mv). The latter enforces the Lipschitz continuity of the

model by stabilizing the gradients with respect to some interpolated semantic

vectors (ãi). After training, we determine the class label of each test sample

by searching its nearest visual prototype. The details of DGEM will be

introduced in the following subsections.

3.3. Basic embedding model

When there is a small number of training samples, GAN-based methods

will suffer severe performance deterioration as their discriminators will easily

overfit to the seen data and feedback meaningless information to their gen-

erators [27, 28], as shown in Tables 2 and 3. Considering about this, in this

paper, we use a three-layer fully connected network, which is simple but ef-

fective, as our basic embedding model to learn the projection from semantic

vectors to visual features.
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Formally, given the semantic vectors of seen classes, i.e., As = {a1, ...,as},

the basic embedding model f is expected to predict their visual prototypes

{p̂i , f(ai)}si=1 that are close to the visual means of seen classes. In formula,

the target of f is to minimize

Lmse =
1

s

s∑
i=1

dis(p̂i,pi) =
1

s

s∑
i=1

dis(f(ai),pi), (1)

where dis(·, ·) is the Euclidean distance and pi is the ground truth visual

prototype of the i-th seen class calculated by k samples:

pi =
1

k

∑
ysj=i

xs
j . (2)

The above formula indicates that the quality of the ground truth visual

prototypes is quite crucial to the learning of the projection. However, as illus-

trated in Figure 1, when each seen class only has 1/5 samples, the calculated

pi has a high probability of deviating from the true expectation of the poten-

tial distribution. As a consequence, the model will learn a biased projection

between visual features and semantic vectors, and generate untrustworthy

visual prototypes, which we called the representation bias problem. In the

following subsection, we will introduce how to use the distribution informa-

tion of classes in the semantic space to solve this problem.

3.4. Prototype refinement

To reduce the impact of the representation bias problem, we propose to

utilize the distribution information of classes in the semantic space to refine

the predicted visual prototypes. Specifically, given the visual prototypes and

semantic vectors of classes, an intuitive idea is that their relative distribu-

tion should be close to each other. In other words, the classes with high/low
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(a) Visual similarity (b) Semantic similarity (c) Similarity difference

Figure 3: The similarity heatmaps of AwA2 [6] unseen classes in the visual (a) and semantic

spaces (b). We also display the difference between them (c). The brighter the grid, the

higher the cosine similarity between the two classes. Note that the visual similarity is

calculated by using the mean vectors of each class with sufficient samples.

semantic similarity should also have high/low visual similarity. To validate

this intuition, we visualize the similarity matrices of AwA2 [6] unseen classes

and their difference, as shown in Figure 3. Take classes 1 (blue whale), 8

(walrus), and 9 (dolphin) as examples. We can observe that they both have

high visual and semantic similarities. Furthermore, Figure 3(c) intuitively

illustrates that the similarity distributions of classes in two spaces are sim-

ilar. All this evidence proves that our intuition is tenable in ZSL datasets.

Based on the observations, we propose a relatively slack assumption that

“the probability distribution between one class and some anchor classes in

the visual domain should be consistent with that in the semantic domain,”

which motivates us to align the relative distribution of the predicted visual

prototypes to that of the semantic vectors in the training stage.

Specifically, we first apply k-means algorithm [29] to the semantic vectors

of seen classes, i.e., As = {ai}si=1, to select r classes as our anchor classes
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which can be denoted as

Ar = {āi}ri=1 = kmeans(As) = kmeans({ai}si=1). (3)

After that, we calculate the semantic similarities between each seen class

and all anchor classes to construct a relative semantic distribution matrix

Ms = [ms
i,j] ∈ Rs×r by

ms
i,j =

exp(sim(ai, āj))∑
l exp(sim(ai, āl))

, (4)

where sim(·, ·) is the cosine similarity. Similarly, with the predicted visual

prototypes {p̂i}si=1, we can also obtain a relative visual distribution matrix

Mv = [mv
i,j] ∈ Rs×r by

mv
i,j =

exp(sim(p̂i, p̄j))∑
l exp(sim(p̂i, p̄l))

, (5)

where p̂i = f(ai) and p̄j = f(āj). Finally, to make the distribution of

the predicted visual prototypes be close to that of the semantic vectors, we

minimize the Kullback-Leibler divergence between Ms and Mv:

Lpr = DKL(Ms||Mv) =
∑
i

∑
j

ms
i,jlog

ms
i,j

mv
i,j

. (6)

By introducing the distribution information of classes in the semantic

space, the distribution of the predicted visual prototypes is constrained. As

a result, the quality of the predicted visual prototypes is improved, and the

representation bias problem is alleviated.

3.5. Projection smoothing

In addition to the representation bias problem, another challenge in ZSL

with fewer seen samples is the over-fitting of the model to the limited seen
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Figure 4: The diagram of over-fitting (black curve) and reasonable fitting (dashed curve).

Red points are the visual prototypes of seen semantic vectors while yellow points are

that of the interpolated semantic vectors. We constrain the gradients with respect to the

interpolated semantic vectors to smooth the projection.

data. Concretely, as the visual prototypes of seen classes are biased and the

information of unseen classes is unavailable in the training stage, the model

tends to learn a semantic-visual projection that fits seen data well but can

not generalize to unseen data as shown in Figure 4. In this condition, sharp

boundaries exist between seen classes, and the whole projection becomes

“steep”. To tackle this problem, we introduce a projection smoothing loss to

enforce the Lipschitz continuity [30] of the model, which limits how fast the

projection can change and is particularly suitable for the situations where

only a tiny number of training samples are available [31].

Specifically, the embedding model f is said to be T -Lipschitz continuous

if it satisfies

dv(f(ai), f(aj)) ≤ Tds(ai,aj), (7)
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where dv(·, ·) and ds(·, ·) denote the metrics in the visual and semantic spaces,

respectively. When dv(·, ·) and ds(·, ·) are the euclidean distance and ai, aj

are close enough, Eq (7) can be approximately seen as requiring the gradients

with respect to ai to be less than a constant T . To meet this condition, we

choose to generate some interpolated semantic vectors by combining the real

ones:

ãi = α1ai + α2ai,1 + α3ai,2 + α4ai,3,

s.t. αi > 0, α1 + α2 + α3 + α4 = 1,
(8)

where ai is the semantic vector of a random seen class and ai,1, ai,2, ai,3

are its three nearest neighbors. With the interpolated semantic vectors, we

constrain the gradients with respect to them to be less than T :

Lps =
1

Ninter

∑
i

max(0, ||∇ãi
f(ãi)||2 − T ), (9)

where Ninter is the number of the interpolated semantic vectors.

By constraining the gradients with respect to the interpolated semantic

vectors, the generation of sharp boundaries can be avoided, and the projec-

tion will become more stable. As a result, the generalization capability of

the model will be highly improved.

3.6. Objective and inference

In the training stage, we use the training data Ds and the semantic vectors

of seen classes As to learn the projection from the semantic vectors to the

visual prototypes. The objective of the model is formulated by integrating

the introduced three loss functions:

L = Lmse + αLpr + βLps, (10)
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where α and β are weight parameters.

At test time, given the semantic vectors of unseen classes Au = {as+i}ui=1,

we use the trained model to predict their corresponding visual prototypes and

determine the class label of each sample x by searching its nearest visual

prototype:

ŷ = arg min
i

dis(x, f(ai)), (11)

where dis(·, ·) denotes the euclidean distance.

3.7. Comparison with related works

After introducing the details of our method, we would like to clarify the

difference between it and those methods with similar techniques.

Prototype refinement. Many methods have tried to use prototypes as

the visual representations of classes in ZSL [18, 32]. However, to utilize the

substantial information of classes in different spaces, they generally choose

to align the distributions of all classes in visual and semantic modalities.

Different from them, our target is to alleviate the visual bias caused by

limited seen samples. More importantly, we align the relative distribution

between all and r representative classes, which is a weaker constraint.

Lipschitz continuity. By observing Eq. (9), we can find that its form

is similar to the gradient penalty term of WGAN-based methods. However,

there are two main differences between our method and them: (1) We con-

strain the gradients with respect to the interpolated semantic vectors. In

contrast, the gradient penalty term in WGAN is applied to the intermediate

vectors between real and generated vectors. (2) The gradient penalty term

in WGAN is used to improve the training stability of networks, while our

motivation is to make the learned projection smooth and robust.
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Table 1: Dataset statistics of ZSL datasets with fewer seen samples in terms of dimension

of semantic (attribute) vectors, number of seen (s) and unseen (u) classes, number of

training samples when k = 1/5, number of test seen and test unseen samples.

Dataset Attribute s u
Train Test

1 5 seen unseen

aPY [3] 64 20 12 20 100 1483 7924

AwA1 [33] 85 40 10 40 200 4958 5685

AwA2 [6] 85 40 10 40 200 5882 7913

SUN [34] 102 645 72 645 3225 2580 1440

CUB [35] 312 150 50 150 750 1764 2967

4. Experiments

In this section, we will present our experimental setting and compare

our method with some representative methods. Besides, we will conduct an

ablation study to evaluate the effectiveness of each component and analyze

the hyperparameters of our model.

4.1. Datasets

We conduct experiments on five widely used datasets, which are APascal-

aYahoo (aPY) [3], Animals with Attribute 1 (AwA1) [33], Animals with

Attribute 2 (AwA2) [6], SUN Attribute (SUN) [34] and Caltech-UCSD Birds

200-2011 (CUB) [35]. Based on these five public datasets, we randomly

select 1/5 samples from each seen class to construct the training data for

ZSL with fewer seen samples. Specially, to reduce the influence of random

sampling, we repeat sampling 10 times for both k = 1 and k = 5 by setting

different random seeds. In other words, there exist 10 different training sets
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for each dataset, and the final performance of each method will be measured

by calculating the mean and standard deviation of all the results. Table

1 records the statistics of five datasets when each seen class only has 1/5

samples. As can be seen, in this setting, the training samples of datasets are

quite limited.

4.2. Experimental setting

4.2.1. Evaluation metric

For conventional ZSL task, we use the average per-class top-1 accuracy [6]

of test unseen data to measure the performance of methods, which is defined

as:

accu =
1

u

∑
y∈Yu

#correct predictions in y

#samples in y
, (12)

where u is the number of unseen classes and Yu is the label set of test unseen

samples.

For generalized ZSL, we use the harmonic mean of seen and unseen ac-

curacies [6] to measure the overall performance of methods, which is defined

as:

H =
2× accs × accu
accs + accu

, (13)

where accs and accu represent the accuracy of the model on test seen and

test unseen samples, respectively.

4.2.2. Implementation and compared methods.

For the sake of fair comparison and analysis, we follow the setting of

[6] to use the 2048 dimensional visual vectors extracted by ResNet-101 and

attribute vectors as the visual features (xi) and the semantic vectors (ai)
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of classes, respectively. The embedding model f is implemented via fully-

connected layers and Rectified Linear Unit (ReLU) activation. Specifically,

it contains three fully connected layers with 2048 hidden units, followed by a

Leaky ReLU function and a ReLU function. In each epoch during training,

we input the semantic vectors of all seen classes into the embedding model.

For weight parameters, we tune α and β in {1e − 6, ..., 1e − 3} and {1e −

4, ..., 1e− 3}, respectively.

The compared methods include representative ones published in the past

few years and the recently reported state-of-the-art ones. Specifically, we

compare our method with ESZSL [10], SAE [36], f-CLSWGAN [19], LisGAN

[20], TF-VAEGAN [37], CE-GZSL [38], and SDGZSL [18]. Among these

methods, ESZSL and SAE are embedding methods, while f-CLSWGAN, Lis-

GAN, TF-VAEGAN, CE-GZSL and SDGZSL are generative methods. All

the results of these methods are reproduced by implementing their open

source codes on Github and personal pages.

4.3. Experimental results

4.3.1. Conventional ZSL

Table 2 shows the results of all methods on five datasets under the conven-

tional ZSL setting. As can be seen, DGEM outperforms the other compared

methods on most benchmarks when each class only has a very small number

of samples. To be specific, under the most challenging setting that each seen

class only has one sample (k = 1), DGEM obtains the state-of-the-art per-

formance on all datasets, which is 3.1% higher than the second-best results

on average. When each seen class has more samples (k = 5), the diversity of

samples becomes more affluent, and the representation bias problem is alle-
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Table 2: Conventional ZSL comparison on five datasets when each seen class only has 1/5

samples (k = 1/5). The results are shown in the form of “mean±std”. The best result

is in bold. The results of CE-GZSL when k = 1 are unavailable as its contrastive loss

requires at least two samples per class.

k Method AwA1 AwA2 aPY SUN CUB

1

ESZSL [10] 50.8±4.0 52.7±3.7 24.8±3.3 48.9±1.3 33.7±1.9

SAE [36] 13.0±1.1 14.9±2.2 11.0±1.8 36.4±0.7 11.2±1.8

f-CLSWGAN [19] 34.7±1.6 39.1±2.6 22.6±1.2 49.4±0.4 30.4±1.1

LisGAN [20] 42.3±3.2 38.9±1.9 28.9±2.4 51.6±0.6 16.0±0.6

TF-VAEGAN [37] 43.2±2.9 44.8±2.0 26.3±2.7 49.4±0.6 31.9±0.1

CE-GZSL [38] - - - - -

SDGZSL [25] 41.2±2.8 43.8±2.9 27.3±2.8 50.3±0.9 35.8±1.3

DGEM(ours) 53.3±4.0 58.3±5.0 30.1±2.4 54.9±0.5 36.8±1.5

5

ESZSL [10] 57.3±2.6 57.2±1.9 34.9±3.2 53.2±1.1 42.1±0.7

SAE [36] 19.8±3.3 19.7±3.9 14.0±2.2 42.4±0.8 19.8±1.8

f-CLSWGAN [19] 52.1±2.4 55.8±1.4 33.6±2.2 56.1±0.5 47.2±0.8

LisGAN [20] 49.9±1.2 48.8±2.4 35.0±1.7 56.9±0.5 42.3±0.9

TF-VAEGAN [37] 47.7±2.5 46.7±1.0 32.4±1.0 60.5±0.8 45.2±2.8

CE-GZSL [38] 55.3±2.8 59.3±1.8 34.7±2.2 58.2±2.5 32.2±1.9

SDGZSL [25] 52.1±2.9 54.3±2.0 36.3±2.4 57.4±0.9 51.4±0.7

DGEM(ours) 63.9±2.1 67.3±2.0 37.4±2.0 59.2±1.0 45.9±1.1

viated. However, we can find that DGEM still achieves the best performance

on AwA1, AwA2 and aPY datasets, which proves its robustness. On SUN

and CUB datasets, DGEM achieves comparable results with the generative

methods (f-CLSWGAN, LisGAN, TF-VAEGAN, CE-GZSL, and SDGZSL).

The reason is that SUN and CUB datasets have much more classes, and thus

their training samples are relatively sufficient, as shown in Table 1. As a

result, the influence of limited seen samples becomes small, and the effect of

designed Lpr and Lps is reduced.
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Table 3: Generalized ZSL comparison on five datasets when each seen class only has 1

or 5 samples (k = 1/5). “S” and “U” represent the accuracy of the model on seen and

unseen data respectively. “H” is the harmonic mean of “S” and “U”. The best result is in

bold. Due to the limited space, we only show the mean of results in this table. Similar,

the results of CE-GZSL when k = 1 are unavailable as its contrastive loss requires at least

two samples per class.

k Method
AwA1 AwA2 aPY SUN CUB

S U H S U H S U H S U H S U H

1

ESZSL [10] 56.4 5.0 9.1 61.8 6.4 11.4 54.0 2.2 4.1 23.7 10.2 14.2 28.9 9.1 13.8

SAE [36] 0.5 10.9 1.0 0.8 10.7 1.5 0.5 8.9 0.8 19.8 8.5 11.8 4.9 10.1 6.6

f-CLSWGAN [19] 0.1 10.7 0.1 0.1 6.4 0.1 2.1 9.5 3.4 5.4 44.3 9.6 2.1 17.4 3.6

LisGAN [20] 6.4 8.4 7.2 2.7 19.6 4.7 5.1 17.3 7.7 6.8 42.8 11.8 4.3 14.5 6.5

TF-VAEGAN [37] 7.7 12.1 9.4 11.1 12.9 11.7 8.8 10.3 9.3 6.7 23.1 10.3 6.6 8.0 7.0

CE-GZSL [38] - - - - - - - - - - - - - - -

SDGZSL [25] 10.1 1.7 2.5 10.2 2.3 3.5 9.0 0.9 1.2 35.3 8.7 14.0 17.3 5.4 4.0

DGEM(ours) 28.9 36.6 32.0 34.8 41.4 37.7 27.8 23.6 25.5 13.8 34.1 19.7 12.8 23.4 16.5

5

ESZSL [10] 74.9 6.1 11.3 77.5 7.1 12.9 66.5 1.9 3.3 33.8 11.4 17.0 45.3 13.0 20.2

SAE [36] 18.1 17.5 17.5 18.0 16.2 16.4 9.8 12.6 10.6 36.6 10.5 16.3 25.1 14.7 18.5

f-CLSWGAN [19] 9.4 10.2 9.6 13.2 8.4 10.2 26.2 22.4 24.1 36.1 45.9 40.4 16.4 45.1 13.8

LisGAN [20] 43.8 32.6 37.3 43.0 33.9 37.6 36.6 28.4 31.0 32.0 54.0 40.1 26.5 32.6 29.0

TF-VAEGAN [37] 41.5 34.4 37.5 46.1 37.8 41.4 38.5 26.0 30.8 34.8 49.3 40.8 25.2 34.1 28.2

CE-GZSL [38] 19.0 30.7 22.7 25.4 33.2 27.9 28.0 26.8 26.5 33.7 37.1 35.1 11.1 22.8 14.6

SDGZSL [25] 6.5 20.4 9.8 7.1 21.8 10.7 30.6 7.4 11.7 45.4 39.0 41.9 45.1 28.1 34.6

DGEM(ours) 63.3 46.8 53.7 69.8 43.4 53.4 59.5 29.9 39.8 42.4 35.4 38.5 36.0 30.2 32.8

In summary, the reduction of training samples will significantly affect

the performance of general ZSL methods. In contrast, DGEM is less depen-

dent on the number of training samples and has a stronger generalization

capability.

4.3.2. Generalized ZSL

To further evaluate the effectiveness and robustness of DGEM, we conduct

generalized ZSL experiments on five datasets, and the results are shown in
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Table 3.

Compared with ZSL, GZSL is more realistic and challenging, as its test

samples come from both seen and unseen classes. In this challenging setting,

we can observe that DGEM achieves the best performance on all datasets

when k = 1 and 3 of 5 datasets when k = 5, which further proves that DGEM

can effectively meet the challenges brought by limited seen samples. In con-

trast, the performance of the generative methods (f-CLSWGAN, LisGAN,

TF-VAEGAN, CE-GZSL, and SDGZSL) has a severe deterioration, which is

mainly caused by the following reasons: (1) Limited seen samples can not

provide sufficient information to their discriminators, causing that the feed-

back from the discriminators to the generators becomes meaningless and the

training starts to diverge [27]. (2) The imbalance between real seen samples

and synthesized unseen samples affects the performance of the finally trained

softmax classifier.

In general, DGEM is superior to the other methods in the GZSL setting.

It could be a promising method to address GZSL with fewer seen samples.

4.4. Ablation study

To dive deeper into the role of each component in DGEM, we conduct

ablation experiments on AwA2, aPY, and CUB datasets. The results are

shown in Table 4.

The results show that both the prototype refinement loss (Lpr) and the

projection smoothing loss (Lps) contribute to the final performance of DGEM.

Concretely, the introduction of Lpr improves the performance of the basic

embedding model (Lmse) by 1.7% and 0.7% on average for ZSL and GZSL,

respectively. These results prove that the semantic distribution information
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Table 4: Ablation experiments on AwA2, aPY and CUB datasets under ZSL and GZSL

settings when each seen class only has one sample (k = 1).

Lmse Lpr Lgs

AwA2 aPY CUB

ZSL GZSL ZSL GZSL ZSL GZSL

X 53.2 35.7 22.6 19.5 34.5 15.1

X X 54.9 36.1 24.4 20.8 35.6 15.5

X X 57.3 37.2 28.2 24.3 36.4 16.0

X X X 58.3 37.7 30.1 25.5 36.9 16.5

can play a positive role in alleviating the bias of the visual prototypes. An-

other point worth noting is the effect of Lps. After applying Lps, we can

observe that the accuracy of the basic embedding model is greatly improved

by 3.9% and 2.4% on ZSL and GZSL tasks, respectively. On the whole, Lps

plays a more prominent role than Lpr. The reason is that the degree of the

representation bias is related to the quality of available samples, while the

over-fitting problem always exists and is especially serious when each class

only has one sample. In conclusion, the proposed Lpr and Lps can effectively

mitigate the impact of limited seen samples and help the embedding model

gain better performance under ZSL and GZSL settings.

In Table 5, we further display the detailed ZSL results of four variants

on the AwA2 dataset with different training sets. We can observe that the

results of the model with different training sets have a large variance which

means that the quality of the one sample greatly affects the performance of

the learned projection. For those tasks whose training samples have poor

quality (e.g., tasks 2, 4, 5, and 7), our Lpr and Lps can effectively reduce the

negative impact of biased samples and help the embedding model achieve
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Table 5: Detailed ablation results on AwA2 dataset under ZSL setting. As mentioned in

Section 4.1, we generate 10 different training sets for each dataset. Here is the results of

the model with each training set. Note that each seen class only has one sample (k = 1).

Lmse Lpr Lgs 1 2 3 4 5 6 7 8 9 10 Avg±Std

X 64.1 48.3 58.8 43.6 47.2 59.9 48.6 53.0 53.8 54.9 53.2±6.1

X X 64.9 51.8 61.1 45.7 48.3 60.8 52.2 54.9 54.1 55.5 54.9±6.0

X X 65.7 54.6 62.3 48.9 53.1 61.8 56.7 58.0 53.8 58.0 57.3±4.7

X X X 65.8 56.2 63.9 48.9 53.4 63.9 58.4 58.4 54.6 59.0 58.3±5.0

(a) Weight of Lpr (b) Weight of Lgs

Figure 5: ZSL performance of DGEM on AwA1, AwA2, aPY and CUB datasets with

respect to α and β.

better performance.

4.5. Parameter analysis

In this section, we discuss the effect of each hyperparameter in our method

and analyze their influence on the performance of DGEM.
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(a) The number of anchor classes (b) The number of interpolated samples

(c) Lipschitz constant

Figure 6: Parameter sensitivity of the proposed DGEM on AwA1, AwA2, aPY and CUB

datasets. When changing the value of one parameter, the other parameters are fixed.

4.5.1. Weight parameters

In our method, we use α and β to control the weights of Lpr and Lps,

respectively. To analyze the sensitivity of the model concerning α and β,

we choose AwA1, AwA2, aPY, and CUB as example datasets to conduct

experiments. The results are shown in Figure 5. In general, the performance

of DGEM is not sensitive to α, and setting it to 1e− 4 is the best choice for

most datasets. As for β, its influence on the final accuracy is relatively large,
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but we can empirically set it to 1e − 3, which can help the model achieve

peak performance in most scenarios.

4.5.2. The number of anchor classes

Figure 6(a) shows the accuracy of DGEM with different numbers of an-

chor classes. Note that r = 0 means Lpr has no effect, and the maximum

value of r in five datasets is equal to the number of their training classes.

As can be seen, when r = 3, DGEM can achieve the best performance on

most benchmarks. In addition, we can find that using the global distribution

information (r = s) is not as good as using the relative distribution informa-

tion (r = 3). The reason is that setting r to the number of training classes

will push the distribution of the predicted visual prototypes to be identical

to that of the semantic vectors, which is too strict.

4.5.3. The number of interpolated samples

The purpose of Lgs is to eliminate the sharp boundaries between seen

classes. Only using the real seen classes is not enough to achieve this goal.

Thus we choose to generate some interpolated semantic vectors by combining

the real ones, as detailed in Section 3.5. Figure 6(b) shows the results of

DGEM with different Ninter. As can be seen, generating 30 interpolated

semantic vectors is the best choice for aPY datasets, and setting Ninter to

100 is recommended for the other three datasets.

4.5.4. Lipschitz constant

In Eq. (9), Lipschitz constant T is used as an upper boundary to limit

the gradients concerning the interpolated semantic vectors. When T is large,

sharp boundaries will exist between seen classes. When T is small, the
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Table 6: Training and inference time of different methods on AwA2 dataset when each

seen class only has k samples (k = 1/5). “epoch” is the number of iterations required for

different models to converge. The unit is seconds.

Method
k = 1 k = 5

Inference
epoch time epoch time

ESZSL [10] - 5.8 - 6.2 0.3

SAE [36] - 0.7 - 0.8 0.01

f-CLSWGAN [19] 500 98.4 500 300.3 1.2

LisGAN [20] 500 166.8 500 255.9 4.7

TF-VAEGAN [37] 500 308.8 500 1850.6 5.5

CE-GZSL [38] - - 200 604.4 8.3

SDGZSL [25] 700 58.5 700 264.5 2.2

DGEM (ours) 300 10.6 300 17.7 0.01

learned projection will become steady. To investigate its influence, we con-

duct experiments to evaluate the performance of DGEM with different T , and

the results are shown in Figure 6(c). We can observe that DGEM can achieve

the best performance on AwA1, AwA2, aPY, and CUB datasets when T is

set to 5, 10, 5, and 1, respectively. For different datasets, we conjecture that

the optimal value of T is related to the distribution and spatial relationship

of samples.

4.6. Computation cost

Table 6 shows the computation costs of different methods on AwA2

dataset. Note that SAE is based on MATLAB and all the other methods

are implemented by python and PyTorch. Not surprisingly, there is a huge

computation cost gap between embedding and generative methods. Even
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there are few training samples, generative methods still need much time to

train their generative adversarial models. Unlike these methods, the main

component of DGEM is a multi-layer perceptron. Thus it can achieve better

performance with a much smaller computation cost. As for the inference

stage, generative methods need to synthesize sufficient visual features and

then train a softmax classifier, which will cost much time. Compared with

them, our methods can quickly obtain the predictions as our classification

method is a nearest neighbor search algorithm.

5. Conclusion

In this paper, we investigate how to perform zero-shot learning (ZSL)

with fewer seen samples. We summarize the main challenges brought by

limited seen samples as the representation bias problem and the over-fitting

problem, and we propose a distribution and gradient constrained embedding

model (DGEM) to solve them. Specifically, DGEM learns a projection from

the semantic vectors of classes to the corresponding visual prototypes. To

alleviate the bias of the visual prototypes calculated by a few samples, we

design a prototype refinement loss to align the relative distribution of class

prototypes in the semantic and visual spaces. For the over-fitting problem,

we introduce a projection smoothing loss to enforce the Lipschitz continuity

of the model by constraining the gradients with respect to some interpolated

semantic vectors. To evaluate the performance of DGEM, we choose five com-

monly used datasets as our benchmarks, and the results show that DGEM

outperforms the other methods when each seen class only has 1/5 samples.

As DGEM now mainly focuses on the problems caused by limited seen sam-
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ples, its performance on fine-grained datasets may be not competitive. To

this end, we would like to introduce self-supervised learning techniques to

enhance its capability of learning discriminative features in the future.
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