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Abstract— This work presents the design, hardware realiza-
tion, autonomous exploration and object detection capabilities
of RMF-Owl, a new collision-tolerant aerial robot tailored
for resilient autonomous subterranean exploration. The system
is custom built for underground exploration with focus on
collision tolerance, resilient autonomy with robust localization
and mapping, alongside high-performance exploration path
planning in confined, obstacle-filled and topologically complex
underground environments. Moreover, RMF-Owl offers the
ability to search, detect and locate objects of interest which
can be particularly useful in search and rescue missions. A
series of results from field experiments are presented in order
to demonstrate the system’s ability to autonomously explore
challenging unknown underground environments.

I. INTRODUCTION

Research in aerial robotics has presented exciting progress
towards fast and agile navigation combined with accurate
localization, precise mapping, and collision avoidance. This
has allowed the execution of autonomous complex mis-
sions such as exploration of unknown subterranean envi-
ronments [1, 2], infrastructure inspection [3, 4], search and
rescue [5] and more. However, finding the maneuver to avoid
all possible obstacles in the environment, or identifying the
way to fit and fly through extremely confined settings is
particularly challenging and, sometimes, not always possible.
The problem is further amplified when one considers the
implicit uncertainty of the robot localization and mapping
especially in GNSS-denied sensor-degraded environments, as
well as control inaccuracies. The more we push the limits of
the flight envelope and the scope of autonomous missions,
the harder the problem becomes for the onboard localization,
mapping and collision-free navigation processes. The above
motivated the process for the design and autonomy func-
tionalities of the presented RMF-Owl aerial robot, shown in
Figure 1, which is tailored to subterranean exploration.

Some of the greatest hazards on Earth can be found in
subterranean environments: tunnel collapses, limited access
to food and oxygen, maze-like cave systems, and oppressing
darkness all represent serious dangers to those who work
or operate underground. Utilization of autonomous robotic
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Fig. 1. RMF-Owl: The collision-tolerant flying system designed for
resilient autonomous subterranean exploration.

technologies to undertake significant workload is thus es-
sential. Focusing specifically on the task of autonomous
exploration and mapping of such settings and motivated by
the DARPA Subterranean Challenge [6] activities, the oper-
ational domains can be distinguished in a) Tunnel-like envi-
ronments such as underground mines, b) Urban underground
infrastructure such as the subway network in metropolitan
cities, and c) Cave networks often involving highly irregular
geological features and unpredictable topologies. Aiming to
support the goal of autonomous exploration in diverse subter-
ranean settings, we develop and present RMF-Owl, an aerial
robot tailored to navigate safely within narrow geometries,
quickly within vast spaces, and seamlessly across complex
topologies. The system is capable of resilient onboard local-
ization and mapping, as well as autonomous exploration path
planning. To optimize for its highest prioritized task, that of
exploring through extremely narrow and obstacle-filled sub-
terranean passages, RMF-Owl employs a collision-tolerant
design to maximize its resilience. In this work, we detail
the airframe and mechatronic design, outline the onboard
localization and mapping system as well as the pipeline to
detect and localize objects of interest, summarize the onboard
exploration planner and present selected experimental results
from underground environments.

The remainder of this paper is structured as follows:
Section II outlines relevant work in the domain of collision-
tolerant flying robots. The new robot’s design is presented
in Section III, followed by an overview of the realized
autonomy stack in Section IV. Field experimental results are
detailed in V. Finally, conclusions are drawn in Section VI.



II. RELATED WORK

A niche community of researchers has worked in the
domain of collision-tolerant flying robots. An overview of the
literature allows for the derivation of a taxonomy of designs
with respect to the way collision-tolerance is implemented
and how it is exploited. Considering rigid frame designs, a
set of researchers utilize rolling cage frames to support safety
post-collision [7–9]. Focusing on enabling a dual modality
of navigation, the authors in [10] propose a caged robot
with the cage designed to double as a wheel on the ground.
Optimizing for reduced weight and mechanical complexity,
rigid designs not involving a rolling cage are presented
in [11–13] including previous work from the authors. Con-
sidering the potential benefits of a compliant design in best
absorbing the impact effects, a set of relevant designs have
been proposed and follow both biomimetic and more clas-
sical engineered concepts [14–16]. Focusing on particularly
lightweight protective designs, the authors in [17–19] present
novel origami shroud designs. Emphasizing both compliance
and the ability to re-orient in case of a crash and fall on the
ground, the works in [20, 21] present tensegrity-based soft
collision-tolerant flying robots. Departing from multirotor
and broadly rotorcraft designs, the contributions in [22,
23] present collision-tolerant fixed-wing designs including
bioinspired shape-morphing for higher protection when not
flying. Considering flapping-wing designs and miniaturized
systems, a set of relevant collision-tolerant systems are pre-
sented in [24, 25]. Beyond contributions in collision-tolerant
aerial robot designs, a set of works focus on specialized
autonomy functionalities exploiting impact resilience. The
efforts in [26, 27] propose path planning methods that are
aware and exploit the resilience introduced by collision-
tolerant frames. Considering the potential of using collisions
as means of sensing, a set of relevant contributions are
presented in [28–30] targeting to acquire both odometry
and map information. Emphasizing multi-robot autonomy,
the authors in [31] enable robust swarming without explicit
collision avoidance mechanisms. Within the spectrum of the
presented taxonomy of collision resilient aerial robots, this
work presents a rigid non-rotating design with a particularly
lightweight design that focuses on advanced perception and
autonomy features tailored to subterranean exploration.

III. SYSTEM DESIGN

This section overviews the design concept of RMF-Owl.
RMF-Owl is part of the Resilient Micro Flyer (RMF) aerial
robot family with a first more lightweight system presented
in [11] and a version tailored to nuclear radiation character-
ization detailed in [32].

A. Airframe

The frame of RMF-Owl is designed for prolonged en-
durance, agile flight, light weight and collision-tolerance.
The main rigid component is fabricated using carbon-foam
sandwich material (total width: 10mm, with 0.75mm car-
bon on each side. The carbon and foam core densities
are approximately 0.0011g/mm3 and 0.00008758g/mm3

respectively, leading to a total airframe weight of 145g.
The decision of leaving the front and the back open is to
avoid obstruction with respect to the field of view of the
front camera and respect symmetry. The platform integrates
four T-Motor F60PRO IV V2.0 KV1950 DC Brushless
motors controlled through their electronic speed controllers.
Moreover, RMF-Owl integrates a PixRacer R15 as its
main low-level autopilot unit offering attitude and thrust
control. High-level position control and navigation autonomy
is facilitated through a different processing board as detailed
further below. The resulting dimensions of RMF-Owl, are
38× 38× 24cm (L×W×H) and the total weight, including
all the sensing and processing components, cabling and its
battery is 1.45kg. In this configuration the power to weight
ratio is equal to 2 and the resulting flight time is 10 minutes.

B. Electronics

As depicted in Figure 2, RMF-Owl is powered via a single
Spektrum 4s 5000 mAh LiPo battery. When fully charged,
this provides 16.8 V directly to the Power Distribution
Board (PDB), a T-Motor F55A Pro II 4-in-1 ESC. Two
separate lines are derived from the battery circuitry. The
first powers an Ouster OS0 LiDAR sensor, with the usage
of a Tracopower 30W Isolated DC-DC Converter (24V).
The second, with the addition of a 5V/3A DC-DC, provides
power to the onboard computer, described in detail below.
The PDB delivers the proper power to all of the motors of
RMF-Owl and to the autopilot, via a separate 5V built-in line.
To enable visual detection in low-light/dark underground
environments, the battery also powers a Lumenier sUAS
High Lumen Overt LED, triggered via a PWM line directly
from the autopilot to reduce power consumption and thus
increase efficiency.

Fig. 2. Overview of the RMF-Owl electronics.

C. Frame analysis under collision

In order to evaluate the mechanical properties of the
designed carbon-foam frame, two studies are conducted.
Firstly, a CAD simulation is conducted in order to identify
possible breaking points on the structure and offer input for



possible future designs. Guided jointly by intuition and by
the results of this first analysis, we then utilized duplicated
parts of the current design, as well as a previous version of
the frame - albeit thinner and thus a bit weaker - to get an
understanding of what is the order of magnitude of forces
that the frame can sustain and verify where the breaking
points are to be expected.

1) CAD Simulation: In this test we applied different static
forces to the model in simulation in an iterative fashion,
looking for breaking points and possible regions that can
be improved in next design iterations. As can be seen in
Figure 3, the selected applied pressure points are top, bottom,
lateral, frontal straight and frontal 45°. The Figure allows to
derive an understanding as to which locations of the frame
experience the maximum stress for certain directions of
collision forces. The selection of collision points reflects the
types of impact most commonly encountered during flight.

Fig. 3. CAD stress test-based qualitative analysis conducted on the frame of
RMF-Owl˙ The static forces, represented by the pink arrows, are iteratively
applied on the bottom (1), top (2), side (3), front (4) and front with an
angle of 45° (5). The resulting frame displacement (reflecting stress) ranges
from a minimum (blue) to a maximum value (red). Even in cases where such
CAD simulations can present numerical errors in their results, the locations
where maximum stress is applied and thus breaking is to be anticipated are
expected to be qualitatively correct.

2) Hydraulic Press Test: In this second test the goal was
to find the maximum force that the frame can sustain before
breaking. Accordingly, a set of tests were conducted by
placing: a duplicate part of the bottom of the frame (i), a du-
plicate part of the frame lateral protection (ii), and a previous
- thinner - version of the frame in a normal operating position
(iii) and also rolled it by 90° (iv) in between a piston of
an industrial hydraulic press and a scale. An indicative setup
example is depicted in Figure 4. Even though inaccuracies
are introduced by the use of a frame with thinner carbon-
foam arms and surrounding shroud and the utilized scale to
estimate the force can present noise, this test allows to a)
identify the approximate magnitude of forces that the frame
can sustain, and b) verify the locations of maximum stress as
also derived by the simulation studies. The maximum forces
recorded during each of these experiments - as noted right
before the frame broke - are reported in Table I.

D. High-Level Sensing and Processing Payload

The sensing payload of RMF-Owl is tailored to the goal
of resilient autonomy in subterranean environments, while
maintaining a very lightweight configuration. The system
integrates a sensing suite consisting of an Ouster OS0-64

Fig. 4. Hydraulic press test experimental setup for case (iii) and (iv).
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TABLE I
MAXIMUM FORCE RECORDED BEFORE BREAKING IN EACH OF THE

EXPERIMENTS WITH THE HYDRAULIC PRESS.

LiDAR sensor with Field Of View (FOV) FOV = [360, 90]◦

and a Flir Blackfly S color camera with FOV = [85, 64]◦,
interfaced with a Khadas VIM3 Pro Single Board Computer
(SBC) incorporating ×4 2.2Ghz Cortex-A73 cores, paired
with ×2 1.8Ghz Cortex-A53 cores implementing an A311D
big-little architecture, alongside a Neural Processing Unit
(NPU) offering 5.0 TOPS for dedicated neural network
inference. The Khadas SBC interfaces the PixRacer autopilot
to which it provides navigation commands. The SBC is also
responsible for running all the localization and mapping,
3D occupancy mapping, path planning, as well as object
detection and localization algorithms towards autonomous
exploration in GPS-denied and confined environments.

IV. RESILIENT AUTONOMOUS EXPLORATION

RMF-Owl implements a comprehensive autonomy stack
that facilitates autonomous exploration and object search
capabilities in complex subterranean environments.

A. Architecture

RMF-Owl uses a high-level exploration path planner,
described in Section IV-C, to plan feasible paths for the
robot. The path is then tracked by a Proportional Integral
Derivative (PID) controller described in Section IV-D and the
low-level attitude and thrust commands are executed by the
onboard autopilot. The odometry feedback of the robot and
the map of its environment are provided by the localization
and mapping solution presented in Section IV-B.

B. Perception

The operational profile of RMF-Owl requires robust local-
ization and mapping in subterranean environments. To this
end we utilize the LiDAR odometry and mapping component
of CompSLAM [33] which relies on the core ideas in [34].
The method utilizes 10Hz point cloud readings from the



Fig. 5. Schematic overview of the core functional modules of RMF-Owl.
The components inside the red shaded area are executed onboard the robot.
Green color depicts robot-specific functionalities

onboard OS0-64 LiDAR. At full rate, it performs a scan-to-
scan matching step, while at half rate (5Hz) it performs scan-
to-submap matching. Accordingly, the robot estimates its
pose p̂k in the environment and simultaneously reconstructs
a pointcloud model of the map m̂k of the environment. The
map is maintained in a 1010× 1010× 510m cuboid around
the initial position of the robot. If the robot gets too close
to a face of the cuboid map, the entire map is shifted in a
direction normal to the face such that the robot is always
well contained within the map. To deal with computational
limitations, the submap used for the scan-to-submap step has
a maximum size of 110 × 110 × 110m. For the scan-to-
scan alignment step, 768 sharp corners and 1536 flat surface
features are considered for each pointcloud observation. To
handle very large environments, the software has the option
to utilize only 32 of the 64 channels of the OS0-64 sensor
thus reducing the computational cost. The reliable 5Hz pose
update p̂k is then fused with the onboard IMU using an
Extended Kalman Filter based on the Multi-Sensor Fusion
(MSF) framework [35]. The latter allows to acquire a smooth
high frequency (100Hz) estimate p̂′

ℓ which is then employed
by the robot’s position controller described in Section IV-D.

Beyond the requirement for robust localization and map-
ping, RMF-Owl also builds a volumetric map that is used to
facilitate autonomous path planning, as well as object local-
ization. By associating the incoming point cloud observations
ok with the related pose estimates p̂k, the system incremen-
tally builds an occupancy map µ̂k using Voxblox [36], a
computationally efficient incremental mapping framework.
For most missions, a voxel edge size of 0.2m is utilized.

C. Exploration Path Planning

To achieve autonomous exploration, RMF-Owl utilizes
a graph-based path planner called GBPlanner2 [37]. The
method builds upon our previous work [1] and uses a bifur-
cated local/global planning architecture. The local planner
is responsible for identifying efficient exploration paths that
respect the robot motion and perception constraints. On the
other hand, the global planner provides functionality for
a) re-positioning the robot towards a previously perceived
frontier of the exploration space when the local planner
reports inability to find a path of significant exploration
gain, and b) ensuring that the robot returns home within
its endurance limits. Figure 6 provides an overview of the
functionalities of GBPlanner2.
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Fig. 6. Overview of GBPlanner2 functionalities.

In further detail, the local exploration planner of GBPlan-
ner2 utilizes the Voxblox map µ̂k to first sample vertices in
free space within a local bounding box that is adaptively cal-
culated using the aggregated point cloud around the current
robot location. These vertices are connected by collision-free
edges to build an undirected graph. Subsequently, the Dijk-
stra’s algorithm is used to calculate the shortest paths starting
from the current robot location. For each vertex νi in the
graph, an information gain, called VolumetricGain(νi) =
ϵGµ̂

νi
k,unk is calculated, where µ̂νik,unk ⊂ µ̂k is the unknown

part of the occupancy map that would lie in the robot’s
modeled sensor frustum if the robot was at the vertex νi and
ϵG > 0 is a tunable weight. This gain is then accumulated
over a path to derive the total gain, called ExplorationGain,
of that path. Since this is among the most computationally
demanding processes - as it involves extensive raycasting -
the planner provides the functionality to calculate the gain
only at the leaf vertices of the shortest paths. Furthermore,
the leaf vertices can be clustered using a radius ρ > 0,
allowing to approximate the gain of some vertices based on
the calculated gain of a nearby vertex. These approximations
are necessary for computationally constrained Micro Aerial
Vehicles like RMF-Owl to operate in large environments.
Finally, the path having the highest ExplorationGain is
selected, improved for safety as described in [1], and com-
manded as a reference to the position controller.

GBPlanner2 models the robot as a cuboid. A vertex is
said to lie in free space if considering the robot’s cuboid on
it then all its voxels are free. However, this leads to sub-
optimal behavior in narrow environments due to the map
resolution. When the cuboid size is not a multiple of the
map resolution along any axis, the actual volume checked
for collision is larger than the size of the cuboid. Due to
computational constraints, the map resolution used for RMF-
Owl is relatively low (0.2 − 0.25m in most missions) and
comparable to the size of the robot, as detailed in Section III.
Hence, the above issue is prominent. To reliably traverse very
narrow passages we exploit the system’s collision tolerance
to optimistically set the size of the modelled cuboid without
any additional safety margins.



The global layer of GBPlanner2 maintains a sparse global
graph built by incrementally appending only the high ex-
ploration gain paths from each local planning step, as well
as the robot’s state. The vertices in this graph that have a
volumetric gain higher than a set threshold are characterized
as “frontier vertices”. When the local layer is unable to find
a path with an ExplorationGain higher than a threshold for
k consecutive iterations, the global planner is triggered to re-
position the robot to one of the frontier vertices. The frontier
vertex to re-position to is selected based on the frontier’s
volumetric gain and the exploration time remaining after
reaching that frontier [1]. Furthermore, in each local planning
iteration, the global planner finds the shortest path to the
home location and commands it to the robot if the remaining
endurance is only sufficient for it to return home.

D. Control

The position controller of RMF-Owl is a fixed-gain PID
scheme, while the yaw controller utilizes a proportional
scheme. This controller interfaces the low-level autopilot of
the system which provides roll and pitch reference tracking,
yaw rate reference tracking and thrust control. Let I be the
inertial frame, and V the yaw-rotated inertial frame. The
outputs of the position and yaw controllers are the com-
manded acceleration vectors expressed in I , [Iaxr ,

Iayr ,
Iazr ],

and yaw rate ψ̇r which are then converted to the attitude-
thrust command, as per [38], and forwarded to the low-level
controller inside the autopilot running the PX4 stack:

I
a
x
r = K

x
P (xr − x) +K

x
I

∫
(xr − x)dt

∣∣Ixmax
Ix
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I
a
z
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z
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∫
(zr − z)dt

∣∣Izmax
Iz
min

+K
z
D(żr − ż)

ψ̇r = K
ψ
P (ψr − ψ)

where [xr, yr, zr, ψr], [x, y, z, ψ] are the reference and es-
timated position and yaw angle of the robot, respectively
expressed in I , Ijmin, I

j
max, j → x, y, z are the saturation

minimum and maximum values of the control integrals, and
Kj
P ,K

j
I ,K

j
D, j → x, y, z, ψ are the control gains.

E. Object Detection and Localization

RMF-Owl delivers functionality not only to volumetrically
explore and map unknown subterranean environments but
also to search, detect and localize objects of interest within
them. The key elements of this procedure are outlined below.

1) Visual Detection: Object detection is achieved primar-
ily on visual data using a YOLOv3 [39] model trained on a
curated dataset of the objects of interest (called “artifacts”),
collected using sensors from aerial and ground platforms
using different cameras. Datasets were collected in buildings,
abandoned tunnels, mines, natural caves with diverse light
conditions and in the presence of obscurants. The object
detector was trained using a combined dataset of 40, 007
labels ranging across 8 classes of objects, namely i) a human
survivor, ii) a fire extinguisher, iii) a drill, iv) a backpack, v)
a vent, vi) a helmet, vii) a rope, and viii) a cellphone. The

trained model is computationally too expensive to be run on
the CPU of the Khadas VIM3, however, its integrated 5.0
TOPS NPU provides dedicated compute for neural network
inference. The trained weights file is converted to an NPU
compatible format using the provided SDK. The weights of
the fully trained neural network were converted from 32-
bit floating point numbers to 8-bit integers to run on the
NPU, which could then process camera images at 3Hz. A
ROS interface was created to transfer the images from the
camera to the NPU, and get detected artifact classes and
corresponding bounding boxes as a result. This detection was
then used by a multi-view consensus filter to estimate the
location of the object.
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Fig. 7. Overview of the image detection and localization framework. The
artifact is detected onboard (1), the bounding box is divided into pixels (2)
and rays are cast into the map (3) to estimate the location of the object.
Multiple detections are used over time to robustify the object detection,
classification and localization (4).

2) Localization: Bounding boxes detected around the
artifact are divided into a grid of pixels as shown in Figure
7. For each of these pixels, rays are cast into the robot’s
volumetric map µ̂k using the camera intrinsic model and
the camera-to-LiDAR extrinsic calibration. This results in
a set of points that include the object and an area around
it. The median point is selected as the estimated position
aj of the object, and a sphere with radius Ra is spawn
around it. As the robot moves through the environment,
subsequent detections are used to update aj as an average
of all detections projected into the sphere. For each class of
object, separate binary Bayesian filters are used to estimate
the probability of an object of a certain class being present
in the sphere as detailed in [40]. Once the probability of a
class exceeds a predefined threshold (specific to each class),
the process is frozen for the corresponding sphere and the
object is reported to the ground station.

3) Detection of Bluetooth Devices: A further capability
of RMF-Owl is to detect devices that have their bluetooth
modules on scan mode. Either for devices of known names
or in discoverable mode, RMF-Owl allows to detect devices
such as a cell phone or a computer, while for the location
of the device the average robot’s location during periods of
detecting a certain device is considered.



Fig. 8. Instances of an autonomous exploration mission inside the Løkken Mine. (1)-(5) instances from the onboard camera. Central image: RMF-Owl in
flight. Bottom row: generated map, final executed path and corresponding location of the upper images. Starting from the main entrance, the robot is able to
autonomously takeoff and smoothly plan collision-free paths inside the narrow corridor (1) and reach the first intersection (2). After a quick inspection of
a room on the side of the main tunnel, RMF-Owl proceeds its course avoiding other crowded and wet sections (3), (4). Finally, the robot is commanded
to safely land in a dry area instead of risking to land inside the drainage channel that is present in the next section of the tunnel (5).

4) Reporting: The ground station receives a report con-
taining the class and location of a detected artifact, along
with a summarized report of the class probabilities of the
artifact. A downsampled image of the detected object is also
sent to the ground station.

F. Communications and Networking

During mission deployments, RMF-Owl can communicate
to send data and receive commands through 5GHz WiFi.
Naturally, in the framework of subterranean exploration
communications networking is very hard and the connection
to the ground station is expected to be mostly not available.
This is also one of the reasons for the emphasis of this work
on resilient autonomy. However, when RMF-Owl operates
in combination with other systems - as for example in
the framework of deployments of Team CERBERUS in the
DARPA Subterranean Challenge - it is possible to connect
to a mesh of WiFi nodes if those are installed, deployed
or ferried by other robots as detailed in [40]. When such
a connection is available, the system shares mapping data,
odometry status, battery level, object detection and localiza-
tion reports, as well as other information.

V. FIELD EXPERIMENTS

This section focuses on selected results from the deploy-
ment of RMF-Owl in different and challenging environments.

A. Løkken Mine

The first field test took place in the Løkken Mine, located
in the municipality of Orkland in Trøndelag, Norway. This
environment was chosen specifically to test the resilience of
RMF-Owl in narrow settings. As can be seen in Figure 8,
the first section is less than 2.5m wide. The robot has no
prior knowledge of the environment and it is commanded to
explore as much as possible. From the mine entrance, the
robot is able to autonomously takeoff (1), smoothly plan
collision-free paths inside the narrow corridor (2) and reach
the first intersection (3). After a quick inspection of a room
on the side of the main tunnel, RMF-Owl proceeds its course
avoiding other wet and crowded sections (4), (5). Finally, the
robot is commanded to safely land in a dry area instead of
risking landing inside the drainage channel present in the
next section of the tunnel. The total travelled distance is
more than 200m and the total flight time is 6.6min. Due



Fig. 9. Instances of an autonomous exploration mission inside the Hagerbach Mine. (1)-(5) instances from the onboard camera. Central image: RMF-
Owl in flight. Bottom row: generated map, final executed path and corresponding location of the upper images. Starting from a section of the environment
chosen as control station of operation, the robot is able to autonomously takeoff (1), turn right into the largest branch (2), enter the main room (3) and
extensively explore a complete dark section of the mine (4) until the homing path is triggered. Finally RMF-Owl safely lands at the takeoff position (5).

to the narrow nature of the environment and to permit better
tracking performance, the maximum speed was set to 1.0m/s.

B. Versuchsstollen Hagerbach

The second field test was conducted in the Versuchsstollen
Hagerbach Test Gallery, located in Flums, Switzerland. In
contrast with the previous field test environment, in this case
the overall dimensions are considerably bigger, especially
if compared to the size of RMF-Owl. As can be seen in
Figure 9, the biggest section reaches 14m in width. In this
second case, the robot also has no prior knowledge of the
environment and it is commanded to explore and come back
to the takeoff location before the end of its endurance.
Starting from the section chosen as main control station,
the robot is able to autonomously takeoff (1), turn right
into the largest branch (2), enter the main room (3) and
extensively explore a complete dark section of the mine

(4) until the homing path is triggered (5). Finally RMF-
Owl safely lands at the takeoff position (6). Also in this case
the total travelled distance is more than 200m and the total
flight time is 8.1min, with maximum speed set to 1.2m/s.

VI. CONCLUSIONS AND FUTURE WORK
This paper presented the design and overall autonomy

functionalities of the RMF-Owl. Tailored to subterranean
exploration, the system emphasizes collision-tolerance and
resilient autonomy with robust localization and mapping
and high-performance exploration path planning in confined,
obstacle-filled, and topologically-complex underground envi-
ronments. Simultaneously, RMF-Owl offers the capacity to
search, detect and localize objects of interest which can be
proven particularly useful in the framework of search and
rescue missions. A set of results from field experiments are
presented and allow to demonstrate the capabilities of the
system to explore unknown subterranean settings.
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