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Abstract 
Is there a way to consistently predict motor failure in a flying drone? This thesis will investigate 

whether vibration analysis and monitoring of motor bearings can be utilized to find faults in an 

electric drone motor. This will be done by conducting experiments of different motor setups. 

By looking at the bearing vibration data from a static motor and comparing it to a motor 

subjected to dynamic movement, it can be determined whether a difference in vibration patterns 

can be established. By investigating these differences, it will give insight into whether it is 

possible to pick up on bearing vibrations that indicate the occurrence of failure. Literature and 

theory surrounding vibrations analysis is studied to ensure that the experimental work has a 

solid theoretical basis. An experimental setup is described, which details a way to carry out the 

experiment and what is needed to do so. Finally, the experiment is carried out and the resulting 

data is described. The results are interpreted to determine the answer to whether vibration 

analysis can be used to determine bearing faults in electric drone motors.  

  



iii 

 

Content 
List of figures ............................................................................................................................. v 

Chapter 1 - Introduction ............................................................................................................. 1 

1.1 Research question ............................................................................................................. 1 

1.2 Background ....................................................................................................................... 2 

1.3 Motivation and goals ......................................................................................................... 3 

1.4 Approach ........................................................................................................................... 3 

1.5 Limitations ........................................................................................................................ 3 

Chapter 2 – Theory ..................................................................................................................... 4 

2.1 Electric motor fault types .................................................................................................. 4 

2.1.1 Bearing failure ............................................................................................................ 7 

2.2 Bearing fault frequencies .................................................................................................. 7 

2.3 Vibration ......................................................................................................................... 10 

2.3.1 Reading vibration data .............................................................................................. 10 

2.3.1.1 Fast Fourier Transform (FFT) ............................................................................ 12 

2.3.1.2 Power spectral density (PSD) ............................................................................. 12 

2.3.2 Identifying failures based on vibration readings ...................................................... 12 

2.4 Roller bearing simulation ................................................................................................ 14 

2.4.1 Literature search ....................................................................................................... 14 

2.4.2 Finite element simulation ......................................................................................... 15 

2.4.3 Bearing simulation compared to real world experiments ......................................... 18 

2.5 Future of condition monitoring and predictive maintenance .......................................... 19 

Chapter 3 - Experimental Setup ............................................................................................... 20 

3.1 Experimental design ........................................................................................................ 20 

3.1.1 Experiment process ................................................................................................... 21 

3.2 Experiment hypothesis .................................................................................................... 21 

3.3 Sensor .............................................................................................................................. 22 

3.3.1 Sensor placement and dimensioning ........................................................................ 23 

3.4 Failure modes .................................................................................................................. 25 

3.4.1 Rusting method ......................................................................................................... 25 

Chapter 4 - Results ................................................................................................................... 28 

4.1 Static and dynamic healthy bearing data analysis ........................................................... 28 

4.1.1 Static and dynamic data of the x-axis .......................................................................... 31 

4.2 Alternative data analysis ................................................................................................. 33 

4.2.1 Healthy bearing data H-C-1 ...................................................................................... 34 



iv 

 

4.2.2 Inner fault bearing data I-C-1 ................................................................................... 35 

4.2.3 Comparison between healthy and faulty bearing data .............................................. 36 

4.3 Discussion ....................................................................................................................... 38 

Chapter 5 - Conclusion ............................................................................................................. 40 

5.1 Future work ..................................................................................................................... 40 

References ................................................................................................................................ 41 

Appendix A – Matlab code ...................................................................................................... 43 

FFT, PSD and Spectrogram .................................................................................................. 43 

Appendix B – static and dynamic sensor data (y and z) .......................................................... 45 

Y-axis – static ....................................................................................................................... 45 

Y-axis - dynamic ................................................................................................................... 46 

Z-axis – static ........................................................................................................................ 47 

Z-axis – dynamic ................................................................................................................... 48 

Appendix C – Sensor datasheet (pg2) ...................................................................................... 49 

 



v 

 

List of figures 
Figure 1 CAD drawing of 6 degrees of freedom (DOF) motion rig (Courtesy of Alva) ........... 2 

Figure 2 General classification of electric motors. (G. I. Electric) ............................................ 4 

Figure 3 Motor components (Nicdec) ........................................................................................ 5 

Figure 4 Insulation failure caused by shorted windings(ESEA, 2019) ...................................... 5 

Figure 5 Indentation(brinelling) on bearing raceway. (LANGNAU, 2013) .............................. 6 

Figure 6 2D Bearing diagram. (Homayoun Meshgin-Kelk, 2012) ............................................ 6 

Figure 7 Four bearing misalignment examples. (Bartfield, 1995) ............................................. 7 

Figure 8 Characteristic distribution of frequencies for the different stages of bearing failure. 

("STI Field Application Note," 2012) ........................................................................................ 9 

Figure 9 Vibrations plots of a healthy (a) and corroded bearing (c) in the xy, yz and xz axis 

(Kallaste, 2021) ........................................................................................................................ 13 

Figure 10 Vibration test Experimental setup with 4 bearings (Robbersmyr, 2017) ................ 13 

Figure 11 RMS of vibration signal for an inner-race faulty bearing (Robbersmyr, 2017) ...... 14 

Figure 12 Simulated faults on outer (a) and inner (b) rings as well as rolling element (c) (Gu, 

2010) ......................................................................................................................................... 16 

Figure 13 Time domain frequency of the different simulations a, b, c and d. (Gu, 2010) ....... 16 

Figure 14 6 different simulated faults and resulting time domain vibration graphs (Liu, 2019)

 .................................................................................................................................................. 18 

Figure 15 Comparison of frequency domain vibration (fBPB = Characteristic frequency of rolling 

element) of simulation results (a) and experimental results (b) (Xin Zhang, 2020) ................ 18 

Figure 16 Stripped down motor. Sideways view showing bearings and axle .......................... 23 

Figure 17 3D model of motor illustrating space for sensor placement on the motor ............... 23 

Figure 18 2D illustration of sensor placement. The red figure is the sensor platform ............. 24 

Figure 19 Bearings submerged in vinegar ................................................................................ 26 

Figure 20 Vinergar covered bearings set to dry ....................................................................... 26 

Figure 21 Resulting rusted bearings ......................................................................................... 27 

Figure 22 Test setup. Left shows the motor placed on the end of an arm attached to the dynamic 

movement rig. Right shows the sensor (830M1). .................................................................... 28 

Figure 23 Top-down view of test-setup illustrating which direction each sensor axis represents

 .................................................................................................................................................. 29 

Figure 24 Comparison of static and dynamic time domain vibration data for the z-axis ........ 30 

Figure 25 Comparison of static and dynamic time domain vibration data for the x-axis ........ 31 

Figure 26 Comparison of static and dynamic frequency domain vibration data for the x-axis 32 

Figure 27 Comparison of static and dynamic PSD vibration data from the x-axis .................. 33 

Figure 28 Time domain, frequency domain and PSD(log scale) of healthy bearing vibration 

data ........................................................................................................................................... 34 

Figure 29 Time domain, frequency domain and PSD(log scale) of faulty bearing vibration data

 .................................................................................................................................................. 35 

Figure 30 Comparison of time domain, frequency domain and PSD of healthy and faulty 

vibration data ............................................................................................................................ 36 

  

file:///C:/Users/Sikander/Desktop/Masteroppg.docx%23_Toc111289870
file:///C:/Users/Sikander/Desktop/Masteroppg.docx%23_Toc111289871
file:///C:/Users/Sikander/Desktop/Masteroppg.docx%23_Toc111289875
file:///C:/Users/Sikander/Desktop/Masteroppg.docx%23_Toc111289875
file:///C:/Users/Sikander/Desktop/Masteroppg.docx%23_Toc111289876
file:///C:/Users/Sikander/Desktop/Masteroppg.docx%23_Toc111289876


1 

 

Chapter 1 - Introduction 
In recent times, the prevalence of unmanned aerial vehicles (UAV) or drones have increased 

significantly. Drone technology has improved, and there are many use cases today, including 

but not limited to agriculture, photography, cargo transport, and even military missions. Drones 

can be found in many different sizes with varying speeds and lift, depending on the intended 

use-case. There are many advantages to using a drone, perhaps the biggest is the absence of an 

airborne pilot. This means that drones don’t need to worry about the endurance of the pilot, 

human error will therefore be less prevalent and drone design doesn’t need to be limited by the 

necessity of including a cockpit to contain a person. There are several different viable 

configurations for drones, but the two main types are fixed-wing UAVs and rotary-wing UAVs, 

where a common setup is the quadcopter which utilizes four propellers. With the current 

progress of drone technology with the usage of drones increasing, the safety and reliability of 

drones is as important as ever.  

Reliability is central to the future development of UAVs. When it comes to commercial flight, 

the failure rate is around 10−5while for drones it is around 10−3  (Enrico Petritoli, 2018). 

Though drones do not need to account for the safety of human lives the way that airplanes do, 

it does not mean that drone design cannot prioritize reliability. However, as drones continue to 

become more commonly used, the risk that a malfunctioning drone could pose a threat to 

persons on the ground or nearby objects will increase. By increasing reliability, the average 

lifespan and mean time to failure of a drone will also improve. As such a focus on drone 

reliability can lead to an improved and safer product. 

One of the most important components in an unmanned aerial vehicle (UAV) is the motor. The 

reliability of the motor will therefore also play a big part in the reliability of the drone itself. As 

it is important to prevent failures that could lead to damages and safety concerns, determining 

whether the electric drone motor will fail or not is a matter of great importance. This paper aims 

to tackle this issue by looking at the bearings and analyzing vibrations from slotless electric 

motors. With the bearings being an integral part of the motor, a bearing failure can eventually 

lead to motor failure. By analyzing the bearing vibrations in the motor, could it be possible to 

determine if the bearings are about to fail?  

1.1 Research question 
The following research question should be answered:  

Is it possible to consistently analyze vibration readings from a slotless electric drone motor to 

identify possible mechanical motor issues? 

The purpose of this research question is to help determine whether it is possible utilize vibration 

analysis as a part of drone condition monitoring. By answering this question and possibly 

confirming the viability of vibration analysis, that information may be used to improve drone 

condition monitoring in the future.  

To answer the research question, current theory is reviewed that looks at the existing literature 

for bearing failure and vibration analysis. An experiment is planned with an experimental setup 

describing the experimental work that is conducted in order to measure real vibration data and 
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analyze it. Additionally, the results of the experiment are analyzed and discussed to see how 

they relate to the project’s research goals.  

1.2 Background 
Alva Industries AS (Alva) is a Trondheim based company that researches, develops, and 

produces electric motors. This project is carried out in collaboration with Alva. By researching 

vibration analysis, it may be possible to discover new ways for Alva to deliver a better product 

to their customers. If Alva can use vibration data to predict that a bearing is going to fail, that 

information can then be used to prevent motor failure. While vibration analysis is commonly 

used for industrial machinery, it is not typical to see on moving machinery like a drone. If it is 

possible to analyze vibrations to accurately predict motor failure of a drone in flight, then that 

would be highly beneficial for any drone operators.  

Previously a project has been conducted with Alva for the development of a dynamic test rig 

for slotless motor testing . The project for this thesis aims to utilize this previous work using 

the test rig to perform vibration analysis. Since test rig aims to emulate the real dynamic 

movement of a drone in flight, this can lead to realistic vibrations for the motor bearings as 

well. 

 

FIGURE 1 CAD DRAWING OF 6 DEGREES OF FREEDOM (DOF) MOTION RIG (COURTESY OF ALVA) 

As shown in figure 1, there is a metal framework foundation that supports a 6 DOF movement 

platform. The movement platform can emulate real drone movement thanks to 6 actuators that 

can produce similar movements and speeds to that of a real drone. On top of the movement 

platform, bars can be connected to several motors and rotors. When the rig is running, the 

motors will be subjected to realistic movements and forces. This makes the 6DOF test rig an 

ideal environment to use for testing vibrations on the bearings as well.  
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1.3 Motivation and goals 
The primary motivation behind this project is to explore the possibility of using vibration 

monitoring as a tool for condition monitoring of slotless drone motors. It is important to gain 

the knowledge that determines whether it is practical, or even possible to use vibration 

monitoring/analysis for condition monitoring in real-world conditions. This knowledge can 

help determine how to best build and implement a condition monitoring system, as well as 

provide insight into the mechanical behavior of the bearings and motors. If the project shows 

that it is possible, then this will be helpful for Alva as they can use this information for condition 

monitoring for their motors in the future. Additionally, this would make Alva’s motors more 

appealing for customers as they would have better assurance against motor failure. Through the 

use of condition monitoring, Alva can aim to claim that their systems are the most reliable and 

have the highest availability. 

To fulfill these motivations, the goals for this project are defined as:  

• Determine how to get accurate vibration readings from the motor bearings 

• Design an experiment capable of gathering the necessary vibration readings 

• Determine if it is possible to use vibration readings to predict bearing failures 

These goals provide the necessary steps towards answering the research question.  

1.4 Approach 
In this thesis both a theoretical and experimental approach will be utilized. A theoretical basis 

will be set through a review of relevant theory that mainly focuses on exploring the current 

literature regarding vibration analysis and bearing failure. The theory is reviewed using peer-

reviewed sources. This information is to be cross referenced from multiple sources sampled 

from reliable journals, books, and articles. Different search terms and keywords will be utilized 

to examine an array of different sources.  

Experimental work will also be carried out and experimental data be gathered. Utilizing 

previous work with Alva, a 6 degrees of freedom movement rig will be used to emulate drone 

movement. By having motors running in these conditions, a realistic environment for the 

bearings can be created. This allows for a vibration experiment with realistic conditions to be 

performed. As such, an experimental approach can be taken to gather realistic data that provides 

information which will help answer the research question. These theoretical and experimental 

methods will be utilized to progress towards the results that determine whether drone motor 

condition monitoring through vibration analysis is possible.  

1.5 Limitations 
The biggest limitation for the project is lack of access to a motor with faulty bearings due to a 

lack of time and resources. To answer the research question, it is important to be able to compare 

vibration readings from healthy and faulty bearings, and this is taken into account through the 

experimental setup. The proposed method of inducing bearing fault described in the test plan is 

rusting the bearings. Since a faulty motor is unavailable, the complete experiment cannot be 

carried out. To account for this, existing data of healthy and faulty bearing tests are used. This 

data is then compared to the data gathered from Alva with the healthy motor to discuss the 

possible effects of faulty bearings on Alva’s test rig.  
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Chapter 2 – Theory  
In this chapter the theoretical background for electric motor failure and fault detection through 

vibration monitoring will be reviewed. In addition, bearing vibration experiments will be 

studied to determine possible vibration patterns that correlate with failure. Lastly, the use of 

simulation to study bearing behavior is explored.  

2.1 Electric motor fault types 
An electric motor converts electrical energy into mechanical energy. Most electric motors work 

through the interaction between the motors magnetic field and electric current in a wire winding 

that generates force (torque). Commonly used are both AC (alternating current) and DC (direct 

current) electric motors. Regardless of this the electric motor uses an electric current to produce 

magnetic fields that generate rotational mechanical energy. Electric motors can generally be 

classified into the categories seen in Figure 2.  

 

FIGURE 2 GENERAL CLASSIFICATION OF ELECTRIC MOTORS. (G. I. ELECTRIC) 

Electric motor components are often categorized into five portions (Figure 3), with the most 

integral parts being the bearings, rotor, and stator. are also central to investigate when it comes 

to failure. The stator is a stationary part of the motor made of metal laminations. 

Electromagnetic energy is produced by the stator through the windings or permanent magnets. 

The windings are made from insulated metal wire and coils or winds around the rotor or stator. 

When energized, the windings form magnetic poles. Electric motor bearings are usually ball or 

roller bearings and they act as a support for the rotating motor shaft. (D. electric) 
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FIGURE 3 MOTOR COMPONENTS (NICDEC) 

 

Electric motor failures can be categorized into 3 types of failure: electric, mechanical and 

magnetic failures. In the following sections some common faults will be described. 

Electric faults 

Electrical faults in an electric motor are usually related to the windings (Figure 4). The windings 

will usually fail due to the insulation breaking down. It is vulnerable to thermal, electric and 

mechanical stress, especially when the insulation ages as it can become weaker over time. In 

addition, exposure to moisture and dust can also have a degrading effect on the insulation. 

Electric failures often lead to short circuiting. (Kallaste, 2021) 

 

FIGURE 4 INSULATION FAILURE CAUSED BY SHORTED WINDINGS(ESEA, 2019) 
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Mechanical faults 

The primary mechanical faults are bearing failures, which account for ~40% of all electric 

motor faults. This means that bearings the primary cause of failure in electric motors. 

(Robbersmyr, 2017) Bearings can commonly fail due to poor lubrication, wear, corrosion, 

misalignment, and fatigue from stress. Ball bearing failure commonly occurs in the form of 

indentation(brinelling) (Figure 5). Failure can occur in the outer/inner race, rolling elements 

and bearing cage (Figure 6).   

 

FIGURE 5 INDENTATION(BRINELLING) ON BEARING RACEWAY. (LANGNAU, 2013) 

 

FIGURE 6 2D BEARING DIAGRAM. (HOMAYOUN MESHGIN-KELK, 2012) 

Another mechanical fault that can occur is eccentricity. This is when the air-gap between the 

stator and rotor is uneven. This can cause varying magnetic flux which can lead to imbalance 

in the current flow.  
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Magnetic faults 

The most common magnetic fault is demagnetization, which causes the magnet to wholly or 

partially lose its magnetic field. Common causes for this are overheating and short-circuiting 

within the motor. In addition, the magnet could lose some of its effect due to corrosion or simply 

due to ageing. (Krishnamurthy, 2011)  

2.1.1 Bearing failure 
Given normal operating conditions fatigue failure starts with smaller fissures below surfaces of 

the raceway (surfaces of inner and outer ring) and rolling elements. These fissures then 

gradually propagate towards the surface. Continued stress on the bearing can also cause material 

flaking and cracking which can lead to uneven loads and lubrication contamination. If the 

lubrication is contaminated with particles, that can lead to sanding/abrasion when the abrasive 

particles hits the bearing surfaces. (Bartfield, 1995) 

Bearing problems may also surface due to improper installation. These are often caused by the 

bearing being forced into the shaft or housing (Figure 7). This can lead to deformations and 

indentations in the bearing raceway  

 

FIGURE 7 FOUR BEARING MISALIGNMENT EXAMPLES. (BARTFIELD, 1995) 

2.2 Bearing fault frequencies 
As previously mentioned, a bearing consists of an outer and inner race, a cage and rolling 

elements. Defects in each part will have their own characteristic vibration frequencies. The 

bearings will exhibit different frequencies based on the level of degradation. These levels of 

degradation can be split into 4 stages. Initially high frequencies of 5-40 kHz may be observed 

in the components. At the second stage frequencies of 1-5kHz also appear, and at the third stage 

low frequencies of <1kHz will appear. The fourth stage indicates complete bearing failure and 

will lead to a noisy vibration spectrum. (Robbersmyr, 2017) 
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The different characteristic frequencies for each part of the bearing (given an angular contact 

ball bearing in which the inner race rotates and the outer race is stationary) can be described as:  

Train/cage frequency (FTF): 

𝐹𝑇𝐹 =  
𝑆

2
 (1 −

𝐵

𝑃
𝑐𝑜𝑠Φ) [Hz] (1) 

Outer race ball pass frequency(BPFO): 

𝐵𝑃𝐹𝑂 =  
𝑆𝑁

2
 (1 −

𝐵

𝑃
𝑐𝑜𝑠Φ) [Hz] (2) 

Inner race ball pass frequency(BPFI): 

𝐵𝑃𝐹𝐼 =  
𝑆𝑁

2
 (1 +

𝐵

𝑃
𝑐𝑜𝑠Φ) [Hz] (3) 

 Ball spin frequency(BSF): 

𝐵𝑆𝐹 =  
𝑆𝑃

2𝐵
 (1 −

𝐵2

𝑃2
𝑐𝑜𝑠2Φ) [Hz] (4) 

 

Where 𝐵 is the ball diameter [mm], 𝑃 is the pitch diameter, 𝑁 is the number of rolling elements 

and 𝑆 is the shaft rotation rate [Hz]. Disrepancies from these formulas may arise when the 

bearings carry significant thrust loads or if there is slippage. (Dai, 2003)  
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FIGURE 8 CHARACTERISTIC DISTRIBUTION OF FREQUENCIES FOR THE DIFFERENT STAGES OF 

BEARING FAILURE. ("STI FIELD APPLICATION NOTE," 2012) 

Looking at the failure stages (Figure 8), the natural frequencies of the different bearing parts 

start to manifest as the bearing failure progresses. They start to appear at stage 2 and amplify 

during stage 3, with the characteristic frequencies for the bearing parts also appearing for stage 

3, depending on the quantity of defects present on each part.  The prevalence of high frequency 

vibrations continue to increase leading up to stage 3. At stage 4, the bearing is nearing 

catastrophic failure and high frequency vibrations decrease in favor of random frequencies. At 

stage 4 degradation in the bearing can reach a point where the internal clearances increase, 

which allows for the bearing shaft to rotate and move more freely. This can lead to increase in 
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frequencies related to unbalance and misalignment as well. Despite a decrease in high frequency 

values in stage 4, the quantity of high frequency values may actually spike just before complete 

failure. (Reuben Lim Chi Keong, 2014) 

2.3 Vibration 
Vibration analysis is one of the most successful techniques used for condition monitoring of 

rotating machines and it is an efficient and convenient tool for diagnosing mechanical problems 

in electric motors. (Tsypkin, 2017) 

To gather vibration data vibration sensors are used. There are sensors that can monitor velocity, 

displacement, and acceleration. One of the most commonly used sensors for vibration 

measurements are piezoelectric accelerometers. These accelerometers utilize the piezoelectric 

effect of certain materials to measure dynamic mechanical changes such as shocks or vibrations. 

This is done by using a piezoelectric crystal, which will produce an electric charge when 

subjected to a mechanical force. The amount of charge produced is proportional to the applied 

force, as such this charge can be converted with electronics to determine the magnitude of the 

force. (Arar, 2022) 

Some of the benefits of using a piezoelectric accelerometer include a wide frequency range, 

large variety of options for different purposes, and the acceleration signal can be integrated to 

provide velocity and displacement. 

2.3.1 Reading vibration data 
After gathering vibration data through a sensor, the data needs to be analyzed. Some of the 

vibration analysis parameters are acceleration, displacement and velocity. Each of these 

parameters emphasize different frequency ranges and be used in conjunction to diagnose issues 

(Table 1). Another important value is the root mean square – RMS. The RMS is directly related 

to the energy content of the vibration profile which gives an insight into the destructive 

capabilities of the vibrations. The RMS is calculated by taking the peak amplitude 𝐴  and 

multiplying it with 0,707, which is the square root of the peak amplitude divided by 2. 

 

𝑅𝑀𝑆 =  √
𝐴2

2
≈ 0.707𝐴 (5)  
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Table 1: Use cases for different vibration measurement parameters (Sensegrow, 2020) 

 

There are several ways to analyze the vibration data. The common ways of presenting data are 

the time-domain and frequency domain of the vibration signals. Time domain shows the 

vibrations as waves on an 𝑥𝑦-graph where 𝑦 denotes the wave amplitude and 𝑥 is the time 

period. The frequency domain shows the frequency spectrum with the amplitudes in the y-axis 

and frequency in the 𝑥-axis. Beyond this there are many analysis techniques that are utilized. 

Some of the most commonly used are “Fast Fourier Transform” – FFT and “Power spectral 

density” - PSD. (Hanly, 2018; Trout) 

Overall 

Measurement 
Application Where to use it? 

 

Displacement 

Peak to Peak 

 

Used for analyzing 

stress-related defects 

occurring in orders of 

rotating frequency. 
 

 

Displacement is a good measure for low-frequency 

vibration and is not suited for high-frequency vibration. It 

can be used for analyzing frequencies of less than 

20Hz.  It can be used on equipment running up to 1200 

rpm. 
 

 

Velocity Peak 

 

Used for analyzing 

fatigue-related defects 

occurring in orders of 

rotating frequency. 
 

 

Velocity is a good measure for medium frequency 

vibration. It can be used in the 10Hz (600 Cycles per 

minute - CPM)  to 1KHz (60,000 CPM) frequency range. 

It can be used on equipment running from 1200 to 

3600rpm. 
 

Acceleration 

True Peak or 

High-Frequency 

Accelerations 

RMS 

Used for analyzing force 

related defects occurring 

in the high-frequency 

band. 

Acceleration is a good measure of high-frequency 

vibration. It can be used for analyzing frequencies of more 

than 1KHz (60,000 CPM). It can be used for identifying 

bearing, cavitation, and lubrication issues. 
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2.3.1.1 Fast Fourier Transform (FFT) 

FFT is an implementation of the discrete Fourier transform - DFT algorithm using that 

calculates vibration amplitude as a function of frequency. DFT can be used to convert a signal 

from the time domain to the frequency domain. FTT does it faster by utilizing computational 

algorithms. Since the vibration measurement parameters of displacement, velocity, and 

acceleration are given in the time domain, FFT is useful to convert the measurements to the 

frequency domain. (Collins, 2019)  

The formula for DFT is as follows: 

𝑥𝑘 = ∑ 𝑥𝑛 ∙

𝑁−1

𝑛=0

 𝑒−
𝑖2𝜋
𝑁

𝑘𝑛 (6) 

Which transforms a sequence of 𝑁 complex numbers 𝑥𝑛  into another sequence of complex 

numbers 𝑥𝑘 (Patrick Corn, 2022) 

In a steady state operation, the frequencies can be assumed to be constants and constant time 

sampling rates may be utilized. This is where FFT is best used, however it is less suitable to be 

used for variable speed/load operations since the frequencies change over time. Another 

technique must be utilized to see how the frequencies change over time: Short Time Fourier 

Transform (STFT). This splits the time sampling into smaller periods (bins) and the Fourier 

transform can be performed separately on these shorter timeframes. The smaller the 

timeframes/bins, the higher the resolution of the data (but higher resolution requires more 

processing). (Jagath Sri Lal Senanayaka & Robbersmyr, 2018) 

2.3.1.2 Power spectral density (PSD) 

Power spectral density (PSD) is also a helpful analysis tool as it can be used to characterize 

random vibration signals. A PSD is a measure of a signal’s power content in relation to the 

frequency [g2/Hz ]. A PSD can be computed by multiplying each frequency bin in an FFT by 

its complex conjugate, which returns the amplitude in g2. This method normalizes the amplitude 

value to the frequency bin width, which allows for the data to be overlaid and compared 

regardless of the data measurement resolution (bin widths). (Hanly, 2018)   

2.3.2 Identifying failures based on vibration readings 
Looking at the data from a bearing vibration experimental setup (Figure 9) where vibrations 

readings were taken from a healthy (a) bearing and a corroded bearing (c) (as well as 

tempered(b), damaged separator(d) and no lubrication(e)) a clear distinction is noticeable form 

the readings. Each bearing is set up with three-axis mounted accelerometers.  
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FIGURE 9 VIBRATIONS PLOTS OF A HEALTHY (A) AND CORRODED BEARING (C) IN THE XY, YZ 

AND XZ AXIS (KALLASTE, 2021) 

Looking at figure 9 it is apparent that the corroded bearing (c) shows higher vibrations readings 

in all axes than in the healthy bearing (a), especially in the x-axis. Though the corroded bearing 

shows the most extreme difference, a similar distinction in vibration values can also be found 

between the other faulty bearings (b, d and e).  

In another test four bearings are connected to a 2000RPM rotating shaft (Figure 10). The shaft 

is subjected to a 2700kg radial force while it rotates. Four accelerometers collect vibrations 

signals at a 20kHz frequency every 10 minutes.  

 

FIGURE 10 VIBRATION TEST EXPERIMENTAL SETUP WITH 4 BEARINGS (ROBBERSMYR, 2017) 

At the end of the test inner, outer and rolling element failures are observed. Figure 11 shows 

the vibration values through the bearing lifespan. 
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FIGURE 11 RMS OF VIBRATION SIGNAL FOR AN INNER-RACE FAULTY BEARING (ROBBERSMYR, 

2017) 

After 12 days the bearing starts to show signs of degradation. This continues before failure 

starts occurring in the final 6 hours.  

2.4 Roller bearing simulation 
Doing real-life experiments to observe bearing behavior might not always be practical. A lot 

can also be gathered from utilizing simulation methods to analyze bearing behavior. By 

examining the relevant literature, methods to achieve vibration simulation of bearings will be 

explored. Some of the commonly used simulation methods are numerical analysis, Finite 

element analysis/method – FEA/FEM and machine learning algorithms.  

2.4.1 Literature search 
When searching for data about bearing simulation a variety of search terms and sources were 

used. To illustrate this process, a table is shown (Table 2). General search terms were utilized 

in the literature search, for example “Bearing vibration simulation”. The purpose of this review 

is to try and determine an overview of engineering simulations for roller bearings. As such it is 

conducive to use general terms within the subject to broaden the possibilities of finding relevant 

sources. There wasn’t an abundance of relevant texts for any one search, so it was important to 

explore multiple combinations of keywords to try and many promising source possibilities.  
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Table 2: Overview of search terms used to gather sources for simulation literature 

Search engine Keyword 1 Keyword 2 Keyword 3 Keyword 4 Number of results 

Google 

Scholar 

Bearing  Vibration  Simulation   387 000 

Scopus Bearing Vibration Simulation   4534 

Oria Bearing Vibration Simulation   144 

Google 

Scholar 

Bearing  Vibration  Simulation  Ansys  21 800 

Scopus Bearing Simulation    25 495 

Oria Bearing Simulation    254 654 

Google 

Scholar 

Bearing   FEA/FEM  Simulation   104 000 / 93 600 

Google 

Scholar 

Bearing   Vibration FEA/FEM Simulation  29 100 / 42 900 

Google Roller  Bearing  Simulation   6 670 000 

 

Google Scholar, Oria and Scopus were used as search engines. The most relevant results were 

found with Scholar. Oria and Scopus tended to have more results that were full books and the 

more relevant sources for finding simulation examples were from articles. Even if the source is 

quite specific into a certain subject, they can still be relevant in regard to providing examples 

and general info about roller bearing simulation.  

Searching specifically for the program “ANSYS” was also attempted, which is, among other 

things, a FEA program. The idea was that searching for a specific software that could do FEA 

would provide more relevant results towards FEA simulation. However, searching with a 

specific software (ANSYS) led to significantly more pay-walled results. As such it was better 

to just use the generic terms FEA/FEM instead. Despite meaning basically the same thing, 

FEA/FEM provided different results based on which one was used. Therefore, it was important 

to use both terms to cover all bases. Finally, a standard Google search for “roller bearing 

simulation” was conducted which was successful in finding a multitude of sources on the 

matter. Not all were relevant or trustworthy, but there was a large number of results which lead 

to finding a lot of valuable information after some scrutiny of the results.   

When investigating different sources, the highest emphasis was put on the introduction/abstract, 

simulation chapters and conclusion. These chapters usually have the most relevant information 

for the purposes of reviewing simulation details. What is most important to capture is the 

simulation process the authors conducted. Introduction gives an insight into what the purpose 

is, and the conclusion gives an insight into whether the simulation was successful.  

2.4.2 Finite element simulation  
Finite element analysis/method – FEA/FEM can be utilized to create a simulation of a bearing 

system. FEA allows the user to mesh the different parts of a system and simulate them getting 

exposed to forces or movements. A good example of FEA being used for bearings is the 

following simulation, which analyses the vibration data from a simulation of a defective roller 

bearing (Figure 12) (Gu, 2010) 
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FIGURE 12 SIMULATED FAULTS ON OUTER (A) AND INNER (B) RINGS AS WELL AS ROLLING 

ELEMENT (C) (GU, 2010) 

Local defects are simulated for each part of the bearing using the FEA program “LS-DYNA”. 

 

FIGURE 13 TIME DOMAIN FREQUENCY OF THE DIFFERENT SIMULATIONS A, B, C AND D. (GU, 

2010) 

The simulations are run, and the vibration data (Figure 13) is compared. The vibrations are 

based on the housing structure of the bearing, as such the most noticeable of the faults is the 

outer ring  defect as it is closest to the housing. Regardless, a clear difference in vibrations is 

noticeable for all faults compared to the healthy bearing case.  
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Additionally, FEM simulation can also be used to assist machine learning. An example of this 

is using FEA to provide samples to support vector machines – SVM, which is a machine 

learning method. It may be difficult to provide real-world samples of many different types of 

faults. Therefore, the missing machine learning training samples can be provided through FEM 

simulation by executing the simulation and feeding the resulting time-domain vibration data.  
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FIGURE 14 6 DIFFERENT SIMULATED FAULTS AND RESULTING TIME DOMAIN VIBRATION GRAPHS 

(LIU, 2019) 

As shown in Figure 14 a variety of faults can be tested. FEM allows for specific faults to be 

tested and produces resulting vibration for each fault. This allows for a variety of samples to be 

fed to the machine learning algorithm that might have been impractical to gather through real 

world experiments. 

2.4.3 Bearing simulation compared to real world experiments 
Can the results gathered from a simulation experiment be trusted to be accurate in relation to a 

real-life experiment? This is tested and illustrated in a paper by Xin Zhang et al (Xin Zhang, 

2020) where experimental and simulation results are compared. A roller bearing is subjected to 

the same fault in both a simulation model and a real test rig. The chosen fault is a Ø1.2mm hole 

on the roller element, where the real-life defects are fabricated by a laser etching technique.  

 

FIGURE 15 COMPARISON OF FREQUENCY DOMAIN VIBRATION (FBPB = CHARACTERISTIC 

FREQUENCY OF ROLLING ELEMENT) OF SIMULATION RESULTS (A) AND EXPERIMENTAL RESULTS 

(B) (XIN ZHANG, 2020) 

As shown in Figure 15, the characteristic fault frequencies found in the simulation and 

experimental results are quite similar. This shows that when a suitable simulation model is 

utilized, the results are very similar to real-life experimental results.  

Simulating bearings with a 3D bearing model can be quite precise, however the drawback is 

that simulating the bearing in this manner is quite time and resource intensive. The 3D roller 

bearing model consists of many elements and nodes, so a lot of interactions have to be computed 

when doing a simulation. There are alternatives to the 3D model, namely a global stiffness 

model and a substitution model. The global model looks at the global stiffness for the entire 

bearing. This model is a lot more efficient, but it isn’t as precise as other methods due to the 

simplifications. The substitution model takes elements of the bearing and substitutes them for 
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something equivalent but simpler with fewer elements and nodes. An example of this would be 

changing the rolling elements for spring elements when simulating in-plane forces for the 

bearing. While this method requires less computational power and is quite precise, it also 

requires a high level of knowledge and time to implement correctly. (Feuchter, 2021) 

2.5 Future of condition monitoring and predictive maintenance 
Utilizing condition monitoring (CM) on UAVs may become the norm in the future as the 

maintenance techniques evolve and improve. The global predictive maintenance market is 

expected to grow by 26.5% annually from 2021 to 2027 (Markets, 2022). What does the future 

of maintenance, specifically CM  and by extension – predictive maintenance, look like? 

Implementing condition monitoring can pose a challenge when it comes to time, knowledge 

and resources, however as CM develops and progresses, the barrier to entry decreases as well.  

Predictive maintenance is based on measuring and gathering data to predict possible failure. 

Commonly used is an IoT (Internet of things) network of sensors and AI/ML (Artificial 

intelligence and machine learning) as this allows for a large amount of data to be analyzed 

quickly. The IoT solution gathers the data and the ML algorithm will analyze it to identify 

possible faults. While an efficient method that can significantly reduce maintenance costs, it 

can be challenging to set up (Fant, 2021). It takes significant time to gather the necessary data 

and a lot of data has to be gathered and analyzed by the ML algorithm to train it and provide 

the ability for it to accurately detect faults. The systems that can benefit from CM are complex 

and have many possible failure modes, not to mention that setting up and running these 

processes smoothly will likely require some trial and error.  

On way to make CM easier to adapt is through the use of physics-based models. This can be 

done by utilizing a digital twin, which is a virtual representation of an object or process. The 

physics-based model can be used to simulate the real-world counterpart by using data gathered 

from the real part. Combining this with a data driven approach can make the process of adapting 

CM much faster. This is due to it not only being more efficient, but with physics-based 

modelling, previous work done by others can also be utilized. Since there are already existing 

physics models of different kinds of equipment, these can be utilized to integrate the physics 

model into an existing system more efficiently. (Eklund, 2022) 

Some companies may find it difficult to overcome the initial bottleneck of gathering the 

required knowledge and resources to implement a predictive maintenance program. However, 

there are currently solutions offered by different companies which can make the transition 

easier, or a lot of the work for you. One of the ways to do this is to utilize digital twins, that 

way the customer can send CM data of their machinery to the company, which then inserts the 

data into digital twins and/or other predictive maintenance software to predict failere based on 

real-world data.  

Using predictive maintenance on critical machinery has the potential to significantly optimize 

maintenance procedures and reduce waste, because of this predictive maintenance and CM will 

continue to become more prevalent now and in the future.   
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Chapter 3 - Experimental Setup 
In order to gather data for vibration analysis, practical experiments are conducted. The setup 

includes experiments with both healthy and faulty bearings, however only the experiments with 

healthy bearings can be carried out. Nevertheless, the topic of creating faulty bearings and 

testing with faulty bearings is still described in the setup.  

The experiments are done using an Alva X60 electric motor. The motor contains two ball 

bearings that will be the components of interest. The purpose of the experiments is to observe 

if and how vibration readings change based on the condition of the motor and bearings. Ideally, 

the results will showcase a clear distinction between the different setups, however what is most 

important is to determine how large of a distinction different setups exhibit. This will help 

determine the impact of each variable on the vibration levels.   

There are four primary setups. These are composed by either static or dynamic movement and 

healthy or faulty bearings. Possible setups are: 

1. Static movement + healthy bearing 

2. Static movement + faulty bearing 

3. Dynamic movement + healthy bearing 

4. Dynamic movement + faulty bearing 

(Only experimental setups 1 and 3 will be carried out for this thesis.) 

With a static setup the motor is only subjected to self-inflicted vibrations and forces. With a 

dynamic setup, the motor is additionally subjected to dynamic flight forces. As such, the 

dynamic experiments will be more comprehensive, however it also has more variables to 

consider. The static setup should be carried out first to consider the results with fewer variables. 

With fewer initial variables it will be easier to identify and work out any potential problems or 

surprises.  

3.1 Experimental design 
In order to compare results, different test setups need to be considered. The different setups are 

designed to explore as many variables and factors that affect the vibration as possible. The 

baseline frequency is the motor being run with healthy bearings. Another element is added with 

the dynamic setup, but a baseline dynamic range with healthy bearings can also be determined. 

Moving from this baseline, some level of failure can be applied to explore possible vibration 

changes. Starting with a severe failure case is helpful for determining whether bearing vibration 

changes can be noticeable in the worst-case scenario. If this difference can be clearly 

established, it would then be practical to start looking at less severe failure cases as well.  

When performing the experiments, the motor should be run at high RPM. This serves the 

function of exposing the motor to stress while also accelerating the testing. With a higher RPM, 

potential vibration patterns caused by faulty bearings could become apparent faster or more 

frequently. When combining this with dynamic movement as well, the failure patterns may 

become even more apparent. Combining drastic dynamic movements, faulty bearings, and a 

high RPM all together at the same time provides a good environment for fault induced 

vibrations to appear.  
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3.1.1 Experiment process 
To perform the experiment the following is needed:  

• Electric motor 

• Healthy and faulty bearings 

• Motor rig 

• Vibration sensor 

• Data-gathering system 

The sensor should be placed on the motor, as close as possible to the bearings. The motor needs 

to have the correct bearings installed , either through having 2 motors, one with healthy and one 

with faulty bearings, or by changing the bearings as needed in one motor. With the sensor and 

bearings installed, the motor can be installed onto the rig. The sensor also needs to be connected 

to the data gathering system so that the data can be logged while the motor runs. The experiment 

can then be conducted. The data gathering frequency depends on the length of testing. The data 

is gathered from each setup and the different setups may be compared through data processing.  

3.2 Experiment hypothesis 
A hypothesis regarding how different variables and factors could affect the experiment and the 

results will be established. The hypothesis is based on what is known through literature study 

as well as what can be considered reasonable assumptions.  

The static test should produce more predictable and stable vibration readings as the system is 

running at a constant rpm with no outside forces. As such all the forces are generated by the 

rotational energy from the motor. For the dynamic test, a more chaotic vibration image is to be 

expected due to the motor being in movement constantly. Therefore, it will be harder to identify 

which vibration readings could possibly be linked to bearing failure. By doing the static 

vibration analysis, the expectation is that a clear difference will be observed between the healthy 

and rusty bearings. If a difference in vibration patterns can clearly be established through the 

static test, that will then provide a guide of what to look for in the dynamic test as well. If only 

the dynamic test were to be carried out, then it might be difficult to know what to look for in 

the vibration data.  

One of the failure mode options is rusty bearings. By using this option the bearing surface 

friction should also increase. With the motor also running at a high rpm the motor will on 

average be subjected to larger forces than it would through normal operating conditions. In 

addition, the bearing lubrication will also get tampered with during the rusting process. By 

running the motor in these “extreme” unfavorable circumstances, the likelihood of seeing the 

vibration effects of the faulty bearings should increase. The bearing vibrations may also be 

visible when running the motor at lower RPM, but it might take longer for them to become 

apparent. A severely rusted bearing is perhaps a somewhat exaggerated motor fault, but it 

should also give a more clear or obvious result on the vibration spectrum. This is helpful given 

the extra noise/vibrations that will appear from the dynamic movement testing. Alternatively, 

a scratched bearing could be used, and while that may have less of a vibration impact, it also 

reduces the likelihood of damaging the motor as there isn’t a risk of rust spreading around the 

motor.  
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As the testing begins, the bearing is already subjected to a severe fault which is likely generated 

through means that are faster than naturally occurring failure. The tradeoff with accelerated 

testing is that the fault doesn’t develop naturally over time, as such the initial vibration patterns 

might not match up with the expected pattern from any of the 4 failure stages (Figure 8). It 

might take some time for defects to appear on the bearings, as the bearing needs several 

rotations before the rust starts to chip away at the bearing surfaces. It’s possible that the initial 

vibrations will match the signature stage 1 or 2 vibration patterns, but it is unclear whether this 

will be the case. However, after running the motor for a period, the vibration pattern should 

eventually start to fit into one of the 4 failure stage patterns. Due to the severity of the failure, 

a reasonable assumption is that once the patterns starts to match up with one of the failure 

stages, it will be one of the later ones, that is stage 3 or 4.  However, if the vibrations only match 

up with stage 4 due to severity of the fault, it might be hard to actually match them up due to 

the prevalence of random vibrations in stage 4. Because of this, trying to find a pattern that 

matches the standard fault progression may be futile. If this is the case, then the signs to look 

for in the vibration spectrum could be more focused on finding vibration spikes and outliers 

from the random vibrations that could indicate a fault.  

By utilizing different data processing methods; FFT, RMS and PSD, more data parameters can 

be gathered from the vibration profile. Patterns that don’t appear in a time domain analysis 

could for example show up in the PSD instead. In addition, looking at the frequency domain or 

PSD can give information regarding which frequencies are most prevalent. By utilizing all these 

methods, a clearer picture should emerge to help detect fault induced vibrations.  

3.3 Sensor 
The chosen sensor is the “830M1 TRIAXIAL CONDITION MONITORING 

ACCELEROMETER” (part of the datasheet is in Appendix C). This sensor was chosen because 

it is triaxial and it fits the size constraints in the motor. The sensor being triaxial is an advantage 

since it provides more information for a single test, while with a single axis sensor it might take 

more tests if there are multiple relevant axes to consider. As mentioned in the previous section, 

there are size constraints to consider, and with the sensor size at 15x15x4mm it allows for 

optimal placement during testing. The range of the sensor is up to 15 kHz which should cover 

all relevant vibration frequencies. Lastly it has a measurement range of ±25g and a sensitivity 

of 50 mV/g which should be sufficient for this test since excessive double-digit g forces seem 

unlikely.  

After the sensor data is gathered it also needs to be processed. Only having the time domain or 

frequency domain may not be enough to detect faults. Therefore, the data may also be processed 

with FFT, PSD and RMS. Processing and presenting the data with different parameters allows 

for the data to be interpreted through multiple angles. FFT ensures an insight into both the 

frequency and time domain. RMS and PSD are utilized to present the energy and power content 

of the vibration spectrum (PSD also shows how it changes over time).  
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3.3.1 Sensor placement and dimensioning 

 

FIGURE 16 STRIPPED DOWN MOTOR. SIDEWAYS VIEW SHOWING BEARINGS AND AXLE 

When it comes to sensor placement, the sensor is more likely to pick up on bearing vibrations 

the closer it is located to the bearing. As there are two bearings, the ideal spot would be as close 

as possible to both. A beneficial setup would be to place the sensor right in the middle of the 

two bearings. Between the edges of the two bearings there is 18mm of free space.  

 

FIGURE 17 3D MODEL OF MOTOR ILLUSTRATING SPACE FOR SENSOR PLACEMENT ON THE MOTOR 
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Looking at Figure 17, it can be seen that the bearing can be placed on the shaft that covers the 

bearings. However, there are some size limitations that the sensor must fit within in. The 

strictest of these limitations is the space between the two bearings which is 18mm. This requires 

a relatively small sensor. In addition, the surface connection circular, therefore a flat surface 

must be added instead.  

 

FIGURE 18 2D ILLUSTRATION OF SENSOR PLACEMENT. THE RED FIGURE IS THE SENSOR 

PLATFORM 

In order to create a flat surface for the sensor, a custom piece is created to snugly fit over the 

circular surface (Figure 18). If the bottom of the piece fits on the surface, the top part can be 

flat which allows for the sensor to be placed properly. This piece can be 3d printed and 

customized to the sensor of choice. Accommodating a flat surface can be for the entire base of 

the sensor will allow for the best sensor performance as the vibrations will be evenly distributed 

to the sensor.  

Alternatively, the sensor may be placed on or inside the motor hub. This is worse than placing 

it as close as possible to the bearings as the sensor will be more prone to pick up other vibration 

sources than the bearings. On the other hand, it could be a better placement because it is likely 

more realistic to a real-life scenario. In a real drone CM scenario, it is likely more viable to 

have the sensor in the hub because it is easier to make space there and the sensor won’t 

potentially interfere with the motor performance. While it might be harder to pickup and isolate 

the vibration contributions from the bearings this way, it should still be possible to gather 

valuable data. 
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3.4 Failure modes 
There are several failure modes the bearings can be exposed to. Some of the most practical and 

viable failure mode options for the experiment will be presented in this section. One of these is 

physical damage on the bearings. This could be something like the failure described in chapter 

2.4.3 (Figure 15) which consists of a machined hole on the roller element(s). This fault produces 

a clear effect on the vibration spectrum, as showcased in the aforementioned chapter. It is also 

one of the faults that is likely to occur naturally through use of the motor, which makes it a 

realistic and impactful failure mode to apply. However, physical bearing damage can manifest 

in many different ways, and there might be significant variance in the way each way impacts 

the vibrations. There are also different magnitudes to consider as smaller damages will likely 

have less of an effect than something like large scratches or chips. As such, what type of damage 

to inflict on the bearings should be considered carefully. 

Another option is to use an already worn-out motor. The bearings on the motor could for 

example be damaged from wear caused several hours of motor usage or if the motor has 

undergone accelerated or stress testing. This is a practical option that will likely present a 

realistic fault, however it could be hard to reproduce the resulting faults based on which method 

was used to generate it.  

Exposing the bearings to rust could be another option. Rust is an impactful problem for the 

health and performance of a bearing. By using rusty bearings in the motor, it is put through 

conditions that are perhaps tougher than what is expected in a real-life scenario. This is however 

beneficial to the experiment as it might make it easier to determine whether the bearing 

vibrations can be singled out in a noisy environment. In addition, rust is easier to induce in a 

consistent manner. If each bearing is treated to become rusty in a similar method and timeframe, 

then each bearing should have a similar level of rust and failure potential. This reduces the 

impact of variance for the different bearings used in the experiment. The process of rusting the 

bearings is done by submerging them in vinegar for a set period (acid bath). After sitting in the 

vinegar, the bearings are exposed to air and begin to rust.  

3.4.1 Rusting method 
When testing faulty bearings, the bearing fault needs to be reproducible and consistent to ensure 

quality testing. If the bearings are faulty in a different way every time a new test is conducted, 

the results may not be consistent or reproducible. The method to achieve consistently rusted 

bearings is done by submerging them in vinegar and drying them until the desired level of rust 

is achieved. 
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FIGURE 19 BEARINGS SUBMERGED IN VINEGAR 

The bearings are place in a plastic container with 7% vinegar. The bearings are submerged in 

the vinegar. After they are covered, then can be removed and dried.  

 

FIGURE 20 VINERGAR COVERED BEARINGS SET TO DRY 

It takes about 20 minutes for the bearings to dry. While they dry, the acid in the vinegar along 

with oxygen in the air starts to corrode the bearing surfaces. 
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FIGURE 21 RESULTING RUSTED BEARINGS 

After repeating this process several times the bearings starts to become rusty. The lubrication 

is also affected through this process. (IMS) 
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Chapter 4 - Results 
Experimental work was carried out to measure vibrations from an X60 motor. Following the 

complete setup described in “Chapter 3 – Experimental Setup” was attempted, however due to 

certain time and resource constraints, some compromises had to be made. Instead of doing the 

experiment with faulty and healthy bearings, it was only done with healthy bearings. It was not 

possible to acquire a worn out or faulty motor and it wasn’t possible to switch out the healthy 

bearings for faulty ones either, which made it hard to implement any of the bearing failure 

modes. As the experiment with faulty bearings could not be carried out, alternative vibration 

data was used as well. This alternate data consists of two datasets of a rotating bearing, one 

with a healthy bearing and one with a faulty bearing. 

 

FIGURE 22 TEST SETUP. LEFT SHOWS THE MOTOR PLACED ON THE END OF AN ARM ATTACHED TO 

THE DYNAMIC MOVEMENT RIG. RIGHT SHOWS THE SENSOR (830M1).  

As shown in Figure 22, the motor is placed on the movement rig with a propeller and a hub 

underneath. The sensor is placed on the hub rather than the motor. This was done to make the 

tests more practical to prepare and execute. As previously mentioned, this placement has its 

pros and cons. The advantage with this placement is that it is more realistic with regards to a 

real-world scenario, as it is closer to where the vibration sensor would actually be placed if it 

were to be integrated as a permanent part of Alva’s motor design. The main disadvantage is 

that it is placed farther away from the bearings, which might make it harder to pick up their 

vibrations.  

4.1 Static and dynamic healthy bearing data analysis 
The testing was done with the setup described in the previous section. Two different setups are 

used for testing. One is the static test, where the motor is running without any movement from 
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the dynamic rig. The other is the dynamic test, where the motor and rig are running 

simultaneously to expose the motor to dynamic  forces. The motor ran at about 3500RPM for 

each test. The sensor data was sampled at 30kHz, and each recording is 1 second, giving 30000 

data points for each recording. The raw sensor data (which is in the form of voltage) for both 

the static and dynamic tests were subtracted by a baseline recording, using the same parameters 

done with the sensor at zero movement or vibration (except any potential background noise). 

The subtracted data was then converted from voltage values to to amplitude (𝑔) values, which 

describe the forces subjected to each sensor axis. The data was then processed through Matlab 

code (Appendix A) to provide time domain, frequency domain and PSD graphs for each axis 

(Figure 23). FFT was used since the recording times are quite low and because PSD is utilized 

as well, which ignores bin width(how wide the analyzed slices of time are) and already shows 

how the frequencies change over time. This would make the used of STFT somewhat redundant.  

 

FIGURE 23 TOP-DOWN VIEW OF TEST-SETUP ILLUSTRATING WHICH DIRECTION EACH SENSOR 

AXIS REPRESENTS 

The 𝑥-axis will primarily be analyzed because it is the axis that showed the largest effect from 

the introduction of dynamic conditions. Because of this, it provides the best example for 

analysis. The complete data for the 𝑦 and 𝑧 axes can be found in Appendix B. The data for all 

the axes show the most relevant frequencies to be at 0-2000Hz, with the 𝑧-axis also having 

some frequency spikes up to and around 10000Hz as well. With the motor running at 3500rpm, 

the rotational frequency of the motor should be about 60Hz and a small spike at 60hz in every 

axis’ frequency domain graph can be observed as well. 
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Looking at the vibration data from the different axes there are some differences to the way they 

react to the dynamic conditions. The 𝑦-axis doesn’t show a big change from static to dynamic 

movement. The dynamic data shows that the time domain gets slightly more chaotic and the 

prevalence of some frequencies change, however the difference is not very large. 

 

Looking at the 𝑧-axis amplitude spikes in the 3 − 5𝑔 range consistently appear in the static 

data, however in the dynamic data spikes of this magnitude are absent. However, the PSD still 

shows the distributed power levels of the frequencies to be similar.  

Table 3: RMS values of the amplitude (𝑔) for each axis 

 X Y Z 

Static experiment 0.075 1.8819 0.8878 

Dynamic experiment 1.345 1.6294 0.6960 

 

Looking at the RMS values for each axis, the 𝑥-axis value shows a drastic increase from static 

to dynamic movement. On the other hand, the 𝑦 and 𝑧 axes show a minor decrease in RMS 

values from static to dynamic movement. Overall, the RMS is higher for the dynamic case, but 

all of this increase is concentrated on the 𝑥-axis.  

FIGURE 24 COMPARISON OF STATIC AND DYNAMIC TIME DOMAIN VIBRATION DATA FOR THE Z-AXIS 
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4.1.1 Static and dynamic data of the x-axis 

Looking at the time domain for the 𝑥-axis (Figure 25), there is a similar distribution pattern 

between the static and dynamic graph. The big difference is that the amplitude is exaggerated 

for the dynamic case, with the highest peaks around 20 times higher than the static peaks.  

FIGURE 25 COMPARISON OF STATIC AND DYNAMIC TIME DOMAIN VIBRATION DATA FOR THE X-AXIS 
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FIGURE 26 COMPARISON OF STATIC AND DYNAMIC FREQUENCY DOMAIN VIBRATION DATA FOR 

THE X-AXIS 

Looking at the frequency domain, four example frequencies (at about 180, 240, 320 and 380 

Hz) are shown in Figure 26 that illustrates the similarities and differences between the two 

graphs. Most of the same frequencies are prevalent in both the static and dynamic graphs, 

however a significant increase in some frequencies are apparent in the dynamic graph, with the 

differences getting up to around 20-fold. 
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FIGURE 27 COMPARISON OF STATIC AND DYNAMIC PSD VIBRATION DATA FROM THE X-AXIS 

Comparing the PSD graphs, the patterns present in the two graphs are very similar, but with the 

power distribution being higher on the dynamic spectrum. This is illustrated on Figure 27 where 

3 data points (at about 10, 190 and 9000Hz) show a similar increase of around 103 𝑔2/𝐻𝑧. 

4.2 Alternative data analysis 
This dataset is from Mendeley Data (Huan Huang & Baddour, 2018) and contains vibration 

data from different bearings at different health conditions undergoing varying rotational speed. 

The data is sampled by an accelerometer at 200kHz and lasts for 10 seconds. There are two 

datasets of choice, the first is H-C-1, which is a healthy bearing which first rotates at 14.7 Hz 

to 25.3 Hz and then decreases to 21.0 Hz. The second is I-C-1 which is a bearing with an inner 

race fault which first rotates from 15.1 Hz to 24.4 Hz and then decreases to 18.7 Hz. 
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4.2.1 Healthy bearing data H-C-1 

 

FIGURE 28 TIME DOMAIN, FREQUENCY DOMAIN AND PSD(LOG SCALE) OF HEALTHY BEARING 

VIBRATION DATA 

The time domain graph shows that the vibrations consistently fluctuate between ±0.05𝑔, with 

peaks at 0.1𝑔. Differences in rotational speed through the 10 seconds are not very visible by 

looking at the time domain. The frequency domain shows the dominant frequencies to be 

between about 10-5500Hz with spikes at around 1000, 5000 and 10000 Hz. In the PSD, spikes 

at around 1000 and 5000Hz are also visible and it illustrates the strongest energy content in the 

20-4500Hz range.  
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4.2.2 Inner fault bearing data I-C-1 

The time domain graph for the faulty bearing shows a constant fluctuation between ±0.5, 

however the rotational speed differences can be seen with the fluctuations at their lowest in the 

first 3 seconds and at their highest between 4-8 seconds. This matches the experimental setup 

which describes bearings starting at 15.1 Hz, then speeding up to 24.4 Hz, and then decreases 

to 18.7 Hz. The FFT illustrates a dominant frequency around 5000Hz as well. The PSD shows 

similar tops around 4000-6000Hz.  

 

 

 

 

 

 

 

 

FIGURE 29 TIME DOMAIN, FREQUENCY DOMAIN AND PSD(LOG SCALE) OF FAULTY BEARING VIBRATION DATA 
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4.2.3 Comparison between healthy and faulty bearing data 

FIGURE 30 COMPARISON OF TIME DOMAIN, FREQUENCY DOMAIN AND PSD OF HEALTHY AND FAULTY VIBRATION DATA 
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Comparing the healthy data with the faulty data, a clear distinction can be seen. Though both 

the healthy and faulty graphs follow a similar pattern in the frequency domain and PSD, the 

amplitudes are higher in the faulty case. Comparing both the time domain and frequency 

domain graphs shows that the faulty bearing vibrations exhibit higher amplitude levels 

throughout the 10 second period and across several frequencies. Some of the amplitude spikes 

are around 10 times as high as the ones from the healthy vibration graph. The prevalence of 

frequencies around 5000Hz increased about 7-fold. The PSD graph illustrates a similar power 

distribution pattern in both graphs; however, the faulty PSD shows a general higher level of 

energy content throughout the different frequencies. Increased energy levels from the faulty 

bearing vibrations as also visible in the RMS values (Table 4). 

Table 4: RMS values of the amplitude (𝑔) for each dataset 

Healthy bearing 0.0083 

Faulty bearing 0.0509 
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4.3 Discussion 
Some factors could contribute towards questioning the validity or certainty of the experimental 

data. For example, the sensor placement. Would having the sensor closer to the bearings create 

more accurate vibration data with regards to the bearing vibrations? Is 1 second of data 

sufficient to have a comprehensive overview? Was there too much background noise? Did the 

sensor function properly during testing? Determining the magnitude of such factors on the data 

could be beneficial to any future experiments with a similar setup to the one conducted at Alva.  

Another important point to consider is how well the dynamic rig manages to emulate drone 

movement and forces. Though it is clear that the dynamic movement from the rig makes an 

impact on the vibration levels, does it match the vibrations that would be produced by a real 

drone in flight? An example of a difference between the two is that unlike a drone, the 

movement rig is limited to how long and far it can move the motor in one direction as the range 

of movement is a lot more limited. Additionally, when looking at the distribution of  the 

vibration energy content through the RMS values(Table 3) it seems that most of the vibration 

energy is transferred towards the 𝑥-axis, as it has a large increase in RMS value from static to 

dynamic movement, while 𝑦  and 𝑧  lose some energy from static to dynamic movement.  

Because of this, it might be prudent to, in the future, do experimental work with a real drone in 

flight to see how the data from the dynamic rig measures in relation to a real drone.  

Looking at the alternative data, a clear distinction is visible between the healthy and faulty 

bearing data. All metrics of amplitude, energy content and frequencies show an increase for the 

faulty bearing, and this is most apparent with the amplitude where the faulty data could spike 

at peaks more than about 10 times the healthy data. The frequency pattern of the faulty 

frequency domain graph is similar to the healthy graph, but with a significant increase of the 

prevalent frequencies. A possible explanation for this observation is the possibility that the 

increase in vibrations occurring from the faulty bearings is causing resonance that amplifies the 

system’s natural frequencies.  

Similarly to the comparison between the healthy and faulty bearing data, the comparison 

between the static and dynamic data for the 𝑥-axis showed similar patterns. The dynamic time 

domain showed an increase in amplitude many times that of the static data. Looking at the 

frequency domain, there is also a large increase in the prevalence of the same frequencies from 

static to dynamic, which again could be attributed to resonance. The PSD also has a similar 

trend between the static and dynamic data, with some of the data points having been directly 

compared showing a consistent increase in power levels from static to dynamic readings.  

A similar effect has been illustrated from introducing a faulty bearing to a motor and from 

introducing dynamic conditions (at least in one axis). Considering this, can one conclude 

whether the vibrations from the faulty bearing are visible through the vibration noise introduced 

by dynamic movement? That is difficult to definitively conclude as there are two different 

experimental setups to consider with different parameters. It might for example not be very 

helpful to compare amplitude levels between the two experiments as they run with different 

setups with different RPM, motors, bearings etc. However, both the alternate healthy/faulty 

data and the static/dynamic 𝑥-axis data showed signs of resonance and it can be speculated as 

to whether the increase in resonance coming from the faulty and dynamic conditions would 

overlap to create even more chaotic/random or exaggerated amplitude values. If this is the case, 

then it suggests that a difference could be discerned between a healthy motor in dynamic 
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conditions and a faulty motor in dynamic conditions (at least in the time domain), even through 

the noise of the dynamic conditions. Additionally, it is worth considering that each axis 𝑥, 𝑦, 

and 𝑧 reacted somewhat differently to the dynamic conditions. While this difference might be 

nothing more than the magnitude of the dynamic forces being lower/higher in different axes, it 

is worth keeping in mind that there is additional information to be gained in analyzing multiple 

axes. For example, if there happened to be certain vibration spikes indicating a bearing fault, 

those could be visible in the 𝑧-axis and not in the 𝑥-axis. Whether different axes would respond 

differently to faulty bearing vibrations the same way they did dynamic movement vibrations, is 

something that can be discovered through future experimental work.  

To gain a more definitive answer to the research question and accompanying 

questions/unknowns, an experiment should be conducted that combines the different factors all 

at once, comparing motors with healthy and faulty bearings in static and dynamic conditions. 

Nevertheless, the information gained from the experimental work and analysis provides insight 

into the effects of bearing vibration and it indicates that there is validity to the idea of using 

vibration analysis as a condition monitoring tool for drone motors.  
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Chapter 5 - Conclusion 
The purpose of this thesis was to investigate whether vibration monitoring could be utilized to 

detect electric motor issues in drones. The motor bearings were chosen as the component of 

interest, as they are the primary source of motor faults in electric motors. To help answer the 

research question, a review of relevant theory was conducted. In addition, an experiment was 

designed to gather data that would provide information towards answering the research 

question. 

The experiment was carried out using a triaxial accelerometer attached to an electric motor with 

healthy bearings set up on a dynamic motion rig that mimics drone movement. Data from this 

experiment was analyzed by looking at and comparing the vibration from the motor running 

with no movement (static) as well as with the dynamic rig in movement (dynamic). 

Additionally, alternate vibration data gathered from another experiment utilizing healthy and 

damaged bearings was processed and analyzed by comparing the vibrations levels of the healthy 

and damaged bearings.  

By analyzing the vibration data from both the experiment and the alternate data, it was found 

that the introduction of bearing fault and dynamic conditions both had a significant effect on 

the vibration readings. This effect came in the form of higher amplitudes, increased prevalence 

of several frequencies and increased power density. However, the experiment with dynamic 

conditions did not demonstrate the same trend in all axes, as some axes were more affected by 

the conditions than others. Though it is difficult to determine whether the effects of the faulty 

bearing could be visible through the vibration noise created by dynamic movement, it can be 

theorized that some factors would make it possible. Some of these factors are the magnitude of 

potential resonance, the prevalence of vibration spikes/outliers, and if any of the axes show 

significant changes in vibration, frequency or power density. 

Based on the results, there is merit to the idea that vibration analysis is viable for determining 

bearing faults in drone motors. Analyzing the vibration data provided several useful data points 

that give an impression regarding the state of the system. Based on the results there is an 

indication that there is value in continuing the work to decisively determine whether it is 

possible and practical to use vibration readings from drone motor structures to identify bearing 

issues.  

5.1 Future work 
An important continuation of the experimental work for the future lies in testing with faulty 

bearings. Utilizing and comparing motors with both healthy and faulty bearings for vibration 

testing, will clarify a lot of the uncertainties regarding the current hypothesis/theory. These 

experiments would help determine whether it is practically possible to determine whether the 

bearings are faulty through vibrations analysis alone.  

Another point of interest is to test with real drones to account for possible shortcomings of the 

dynamic movement rig. There is theory backing up the idea that the movement rig can mimic 

real drone movement, but the best way to confirm whether it does a good job of recreating these 

movements, is to test it directly. If similar experiments with healthy and faulty bearings can be 

reproduced on an actual drone in motion, then that would confirm the viability of the 

experiments done on the movement rig. 



41 

 

References 
Arar, S. (2022). Understanding Piezoelectric Accelerometer Basics. 

https://www.allaboutcircuits.com/technical-articles/introduction-to-piezoelectric-
accelerometers-piezoelectric-sensor-basics/  

Bartfield, R. R. S. T. G. H. F. K. R. G. (1995). Motor bearing damage detection using stator current 
monitoring. IEEE. https://ieeexplore.ieee.org/document/475697  

Collins, D. (2019). How are fast Fourier transforms used in vibration analysis? 
https://www.motioncontroltips.com/how-are-fast-fourier-transforms-used-in-vibration-
analysis/  

Dai, S. A. M. Y. (2003). Basic vibration signal processing for bearing fault detection. 
https://ieeexplore.ieee.org/abstract/document/1183679  

Eklund, N. (2022). Predictive Maintenance is the Future – But Not Quite in the Way You Think. 
https://oilmanmagazine.com/article/predictive-maintenance-is-the-future-but-not-quite-in-
the-way-you-think/  

electric, D. Electric Motor Failure. https://www.dukeelectric.com/electric-motor-failure/  
Electric, G. I. AC and DC Motors: Differences and Advantages | Types of Electric Motors. Gainesville 

Industrial. https://www.gainesvilleindustrial.com/blog/ac-dc-motors/  
Enrico Petritoli, F. L., Lorenzo Ciani. (2018). Reliability and Maintenance Analysis of Unmanned Aerial 

Vehicles. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165073/#:~:text=The%20commercial%20a
viation%20failure%20rate,overall%20failure%20rate%20of%2025%25.  

ESEA. (2019). Failures in Three-Phase Stator Windings. https://easa.com/resources/failures-in-three-
phase-stator-windings  

Fant, S. (2021). Predictive maintenance is a key to saving future resources. 
https://www.greenbiz.com/article/predictive-maintenance-key-saving-future-resources  

Feuchter, M. (2021). EFFICIENT SIMULATION OF LARGE ROLLING BEARINGS. cadfem. 
https://www.cadfem.net/en/cadfem-informs/cadfem-newsroom/video-
library/video/efficient-simulation-of-large-rolling-bearings.html  

Gu, Y. S. W. T. F. (2010). A simulation study of defects in a rolling element bearing using FEA. 
https://ieeexplore.ieee.org/document/5669813  

Hanly, S. (2018). Vibration Measurements: Vibration Analysis Basics. Endaq. 
https://blog.endaq.com/vibration-measurements-vibration-analysis-basics  

Homayoun Meshgin-Kelk, S. N., Seungdeog Choi, Hamid A. Toliyat. (2012). Electric Machines: 
Modeling, Condition Monitoring, and Fault Diagnosis.  

Huan Huang, & Baddour, N. (2018). Bearing Vibration Data under Time-varying Rotational Speed 
Conditions. https://data.mendeley.com/datasets/v43hmbwxpm/1  

IMS. How to Rust Metal. Industrial metal supply company. 
https://www.industrialmetalsupply.com/blog/how-to-rust-metal  

Jagath Sri Lal Senanayaka, V. K. H., Kjell G., & Robbersmyr, J. S. L. S. S. T. K. H. V. K. K. G. (2018). Fault 
Detection and Classification of Permanent Magnet Synchronous Motors 

in Variable Load and Speed Conditions using Order Tracking and Machine Learning. 
https://www.researchgate.net/publication/325838773_Fault_detection_and_classification_
of_permanent_magnet_synchronous_motor_in_variable_load_and_speed_conditions_using
_order_tracking_and_machine_learning  

Kallaste, K. K. T. V. A. R. A. (2021). Impact of Bearing Faults on Vibration Level of BLDC Motor. IEEE. 
https://ieeexplore.ieee.org/abstract/document/9589268/authors#authors  

Krishnamurthy, Y. D. X. S. M. (2011). Health monitoring, fault diagnosis and failure prognosis 
techniques for Brushless Permanent Magnet Machines. 
https://ieeexplore.ieee.org/document/6043248  

https://www.allaboutcircuits.com/technical-articles/introduction-to-piezoelectric-accelerometers-piezoelectric-sensor-basics/
https://www.allaboutcircuits.com/technical-articles/introduction-to-piezoelectric-accelerometers-piezoelectric-sensor-basics/
https://ieeexplore.ieee.org/document/475697
https://www.motioncontroltips.com/how-are-fast-fourier-transforms-used-in-vibration-analysis/
https://www.motioncontroltips.com/how-are-fast-fourier-transforms-used-in-vibration-analysis/
https://ieeexplore.ieee.org/abstract/document/1183679
https://oilmanmagazine.com/article/predictive-maintenance-is-the-future-but-not-quite-in-the-way-you-think/
https://oilmanmagazine.com/article/predictive-maintenance-is-the-future-but-not-quite-in-the-way-you-think/
https://www.dukeelectric.com/electric-motor-failure/
https://www.gainesvilleindustrial.com/blog/ac-dc-motors/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165073/#:~:text=The%20commercial%20aviation%20failure%20rate,overall%20failure%20rate%20of%2025%25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165073/#:~:text=The%20commercial%20aviation%20failure%20rate,overall%20failure%20rate%20of%2025%25
https://easa.com/resources/failures-in-three-phase-stator-windings
https://easa.com/resources/failures-in-three-phase-stator-windings
https://www.greenbiz.com/article/predictive-maintenance-key-saving-future-resources
https://www.cadfem.net/en/cadfem-informs/cadfem-newsroom/video-library/video/efficient-simulation-of-large-rolling-bearings.html
https://www.cadfem.net/en/cadfem-informs/cadfem-newsroom/video-library/video/efficient-simulation-of-large-rolling-bearings.html
https://ieeexplore.ieee.org/document/5669813
https://blog.endaq.com/vibration-measurements-vibration-analysis-basics
https://data.mendeley.com/datasets/v43hmbwxpm/1
https://www.industrialmetalsupply.com/blog/how-to-rust-metal
https://www.researchgate.net/publication/325838773_Fault_detection_and_classification_of_permanent_magnet_synchronous_motor_in_variable_load_and_speed_conditions_using_order_tracking_and_machine_learning
https://www.researchgate.net/publication/325838773_Fault_detection_and_classification_of_permanent_magnet_synchronous_motor_in_variable_load_and_speed_conditions_using_order_tracking_and_machine_learning
https://www.researchgate.net/publication/325838773_Fault_detection_and_classification_of_permanent_magnet_synchronous_motor_in_variable_load_and_speed_conditions_using_order_tracking_and_machine_learning
https://ieeexplore.ieee.org/abstract/document/9589268/authors#authors
https://ieeexplore.ieee.org/document/6043248


42 

 

LANGNAU, L. (2013). Brinelling and why bearings fail — How bearings fail Part 6 of 6. 
https://www.linearmotiontips.com/how-bearings-fail-a-closer-look-at-brinelling/  

Liu, X. (2019). A Personalized Diagnosis Method to Detect Faults in a Bearing Based on Acceleration 
Sensors and an FEM Simulation Driving Support Vector Machine. 
https://www.mdpi.com/1424-8220/20/2/420/htm  

Markets, R. a. (2022). The Worldwide Predictive Maintenance Industry is Expected to Reach $18.6 
Billion by 2027. https://www.globenewswire.com/en/news-
release/2022/04/01/2414717/28124/en/The-Worldwide-Predictive-Maintenance-Industry-
is-Expected-to-Reach-18-6-Billion-by-
2027.html#:~:text=The%20global%20predictive%20maintenance%20market,26.5%25%20fro
m%202021%20to%202027. 

Nicdec. https://www.nidec.com/en/technology/motor/basic/00002/  
Patrick Corn, E. R., Jimin Khim. (2022). Discrete Fourier Transform. https://brilliant.org/wiki/discrete-

fourier-
transform/#:~:text=The%20DFT%20formula%20for%20X,%2C%20x%20N%20%E2%88%92%2
01%20)%20.  

Reuben Lim Chi Keong, D. M. (2014). Bearing Time-to-Failure Estimation using Spectral Analysis 
Features. Cranfield University. https://core.ac.uk/download/pdf/20338922.pdf  

Robbersmyr, J. S. L. S. S. T. K. H. V. K. K. G. (2017). Early detection and classification of bearing faults 
using support vector machine algorithm 

 IEEE. https://ieeexplore.ieee.org/document/7947755  
Sensegrow. (2020). What is Vibration Analysis? https://www.sensegrow.com/blog/vibration-analysis# 
STI Field Application Note. (2012). STI Vibration monitoring. 

https://www.stiweb.com/v/vspfiles/downloadables/appnotes/reb.pdf  
Trout, J. Vibration Analysis Explained. Noria Corporation. https://www.reliableplant.com/vibration-

analysis-31569  
Tsypkin, M. (2017). Induction Motor Condition Monitoring: Vibration 

Analysis Technique  Diagnosis of Electromagnetic Anomalies IEEE. 
https://ieeexplore.ieee.org/document/8080483  

Xin Zhang, C. Y., Yaofeng Liu, Pengfei Yan, Yubo Wang, Lixiao Wu1. (2020). Dynamic Modeling and 
Analysis of Rolling Bearing with Compound Fault on Raceway and Rolling Element. Hindawi. 
https://www.hindawi.com/journals/sv/2020/8861899/  

 

  

https://www.linearmotiontips.com/how-bearings-fail-a-closer-look-at-brinelling/
https://www.mdpi.com/1424-8220/20/2/420/htm
https://www.globenewswire.com/en/news-release/2022/04/01/2414717/28124/en/The-Worldwide-Predictive-Maintenance-Industry-is-Expected-to-Reach-18-6-Billion-by-2027.html#:~:text=The%20global%20predictive%20maintenance%20market,26.5%25%20from%202021%20to%202027
https://www.globenewswire.com/en/news-release/2022/04/01/2414717/28124/en/The-Worldwide-Predictive-Maintenance-Industry-is-Expected-to-Reach-18-6-Billion-by-2027.html#:~:text=The%20global%20predictive%20maintenance%20market,26.5%25%20from%202021%20to%202027
https://www.globenewswire.com/en/news-release/2022/04/01/2414717/28124/en/The-Worldwide-Predictive-Maintenance-Industry-is-Expected-to-Reach-18-6-Billion-by-2027.html#:~:text=The%20global%20predictive%20maintenance%20market,26.5%25%20from%202021%20to%202027
https://www.globenewswire.com/en/news-release/2022/04/01/2414717/28124/en/The-Worldwide-Predictive-Maintenance-Industry-is-Expected-to-Reach-18-6-Billion-by-2027.html#:~:text=The%20global%20predictive%20maintenance%20market,26.5%25%20from%202021%20to%202027
https://www.globenewswire.com/en/news-release/2022/04/01/2414717/28124/en/The-Worldwide-Predictive-Maintenance-Industry-is-Expected-to-Reach-18-6-Billion-by-2027.html#:~:text=The%20global%20predictive%20maintenance%20market,26.5%25%20from%202021%20to%202027
https://www.nidec.com/en/technology/motor/basic/00002/
https://brilliant.org/wiki/discrete-fourier-transform/#:~:text=The%20DFT%20formula%20for%20X,%2C%20x%20N%20%E2%88%92%201%20)%20
https://brilliant.org/wiki/discrete-fourier-transform/#:~:text=The%20DFT%20formula%20for%20X,%2C%20x%20N%20%E2%88%92%201%20)%20
https://brilliant.org/wiki/discrete-fourier-transform/#:~:text=The%20DFT%20formula%20for%20X,%2C%20x%20N%20%E2%88%92%201%20)%20
https://brilliant.org/wiki/discrete-fourier-transform/#:~:text=The%20DFT%20formula%20for%20X,%2C%20x%20N%20%E2%88%92%201%20)%20
https://core.ac.uk/download/pdf/20338922.pdf
https://ieeexplore.ieee.org/document/7947755
https://www.sensegrow.com/blog/vibration-analysis
https://www.stiweb.com/v/vspfiles/downloadables/appnotes/reb.pdf
https://www.reliableplant.com/vibration-analysis-31569
https://www.reliableplant.com/vibration-analysis-31569
https://ieeexplore.ieee.org/document/8080483
https://www.hindawi.com/journals/sv/2020/8861899/


43 

 

Appendix A – Matlab code 

FFT, PSD and Spectrogram 
function [x_3D, y_3D, z_3D] = Mide_Spectrogram(datalist,fActual,nSlicesPerSecond) 

%[x_3D, y_3D, z_3D] = FFT_PSD_Spectrogram(datalist,fActual,nSlicesPerSecond) 

% Given a dataset this will calculate the spectrogram 

% 

% Inputs: 

%   datalist = two column array with time in first column, data to analyze 

%       in second 

%   fActual = sample rate of the data in Hertz, time between each sample 

%   nSlicesPerSecond = number of slices per second to break up spectrogram 

%   - resolution 

% 

% Outputs: 

%   x_3D = time for spectrogram 

%   y_3D = frequency for spectrogram 

%   z_3D = amplitude for spectrogram 

 

 

%Compute Spectrogram 

    nPts=length(datalist(:,1)); 

    yfft=datalist(:,2); 

    nPointsPerSlice=floor(fActual / nSlicesPerSecond); 

    % for very short recordings or extreme of nSlicesPerSecond, 

    % nPointsPerSlice may end up being ouside a legal range for the actual 

    % data series.  

        if(nPointsPerSlice == 0 || nPointsPerSlice > nPts) 

            disp('nPointsPerSlice cannot be achieved; slicing adjusted.'); 

            nPointsPerSlice = nPts/4; 

        end 

    % Now try to slice/reshape the column vector to (x columns of nPointsPerSlice points each) 

    % in such a way that it reshapes cleanly. We'll throw away up to 1 slice of data, but we 

    % avoid reshape errors. 

        yfft=reshape(yfft([1:floor(length(yfft)/nPointsPerSlice)*nPointsPerSlice]),nPointsPerSlice,[]); 

        [fftrows,fftcols]=size(yfft); 

 

    % create the lone X vector to scale these all against... 

        x=[0:fftrows-1]; 

        recordSliceTime=datalist(fftrows,1) - datalist(1,1); % again, accurately get the elapsed time of each slice 

        recordSliceTime=recordSliceTime+(recordSliceTime/fftrows);  

        x = x .* (1/recordSliceTime);  % normalize frequency according to sample rate and nPts 

 

    % Apply hamming window: w(n) = 0.53836 - .46164*cos(2*pi*n/N-1) 

        window=[1:fftrows]; 

        windowy = (0.53836 - .46164*cos((2*pi*window(:)) ./ (length(window)-1))); 

 

    yabs=yfft;  % pre-allocate yabs with same size as yfft 

 

    for j=[1:fftcols] 
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        %yfft(:,j)=fft(yfft(:,j) );                     % not windowed 

        yfft(:,j)=fft(yfft(:,j) .* windowy(:));         % windowed 

        %yabs(:,j)=yfft(:,j).*conj(yfft(:,j)) / length(yfft(:,j)); 

        yabs(:,j)=abs(yfft(:,j)) / (0.5*length(yfft(:,j))); 

        yabs(1,j)=0; % Get rid of DC component 

        %yabs(2,j)=0; % Get rid of DC component 

        %yabs(3,j)=0; % Get rid of DC component 

    end 

 

 

    % Create reasonable default values for 'points of interest'. This is 

    % the section of the plot we will actually show. 

        nPointsOfInterest=nPointsPerSlice /2; 

        startPointOfInterest=1; 

        endPointOfInterest=nPointsOfInterest; 

 

    % if user entered invalid frequency values, constrain them to a range the plot actually contains 

        if(startPointOfInterest < 0) 

            startPointOfInterest = 0; 

        end 

        if(endPointOfInterest > length(x)/2) 

            endPointOfInterest = length(x)/2; % do not show user aliased data 

        end 

 

    % finally, actually make the plot 

        x_3D = [1:fftcols] / nSlicesPerSecond; 

        y_3D = x([startPointOfInterest+1:endPointOfInterest+1]); 

        z_3D = yabs([startPointOfInterest+1:endPointOfInterest+1],:); 
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Appendix B – static and dynamic sensor data (y and z) 

Y-axis – static 
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Y-axis - dynamic 
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Z-axis – static 
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Z-axis – dynamic 
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Appendix C – Sensor datasheet (pg2) 
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