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Summary

In this thesis, a sim-to-real framework was developed for the task of vision-based
robotic grasping of a cube with a Deep Reinforcement Learning (DRL) agent.
Model-free reinforcement learning with Proximal Policy Optimization (PPO) was
used to learn an end-to-end policy that mapped visual observations to continuous
actions in operational space. RGB images, gripper position, and gripper status
were utilized for observations. All frameworks used in this thesis support the use
of other observations, including 3D data. A Convolutional Neural Network (CNN)
was designed to extract visual features of the RGB images.

A simulation environment for robotic grasping was developed on top of the Ro-
bosuite framework using a MuJoCo physics engine. Sim-to-real transfer with a
trained policy was made possible by imitating the physical environment. In ad-
dition, domain randomization was used during training to limit the sim-to-real
gap.

Because of the Robosuite architecture, we propose a sim-to-real solution where
the simulated environment runs parallel to the physical environment. This was
done to enable a sim-to-real transfer with two different robot controllers. The
Robot Operating System 2 (ROS2) framework is used to enable communication
between different hardware at the physical lab.

Results of the experimental evaluation indicate that our suggested setup for sim-
to-real can be applied to transfer a PPO agent trained for vision-based robotic
grasping on a cube. Agents proposing different sim-to-real methods were tested.
The agents were tested as proof of concept and confirmed the system’s potential.
Our best agent trained with cartesian actions, calibrated camera observations, and
domain randomization reached a success rate of 45% when transferred directly
from simulation. Our results indicate that these three methods help in closing the
reality gap.

During testing were, different factors and obstacles discovered that led to subpar
results. Among these are joint limit-, friction-, and collision- errors on the physical
robot and differences in gripper-cube interaction on the simulator compared to
the physical environment.





Sammendrag

I denne avhandlingen ble det utviklet et sim-til-real rammeverk for å løse visjons-
basert robot plukking ved hjelp av Deep Reinforcement Learning (DRL). Mod-
ellfri DRL med Proximal Policy Optimization (PPO) algorithmen ble benyttet
til å lære en agent å overføre visuelle observasjoner til kontinuerlige bevegelser.
RGB-bilder, griperposisjon og griperstatus ble brukt som observasjoner. Alle ram-
meverk som benyttes i denne avhandlingen støtter bruk av andre observasjoner,
inkludert 3D-data. Et Convolutional Neural Network (CNN) ble designet for å
trekke ut visuelle trekk i RGB-bildene.

Et simuleringsmiljø for robot griping ble utviklet på toppen av Robosuite - ram-
meverket som bruker fysikkmotoren MuJoCo for sine kalkulasjoner. Sim-til-real
overføring av en ferdig trent agent ble gjort mulig ved å etterligne det fysiske
miljøet. I tillegg ble domene randomisering brukt under trening for å begrense
sim-til-real gapet.

På grunn av Robosuite arkitekturen foreslår vi en sim-til-real løsning der det
simulerte miljøet går parallelt med det fysiske miljøet. Dette ble gjort for å mulig-
gjøre en sim-til-real overføring med to forskjellige robotkontrollere. Rammeverket
for Robot Operating System 2 (ROS2) brukes til å muliggjøre kommunikasjon
mellom forskjellig maskinvare på det fysiske laboratoriet.

Resultatene av den eksperimentelle evalueringen indikerer at vårt foreslåtte oppsett
for sim-til-real kan brukes til å overføre en PPO-agent opplært til visjonsbasert
robotgriping på en kube. Agenter som foreslår forskjellige sim-til-real-metoder
ble testet. Agentene ble også testet for bekreftet systemets potensial og robus-
thet. Vår beste agent, opplært med kartesiske handlinger, kalibrerte kameraob-
servasjoner og randomisering av domene nådde en suksessrate på 45% når den
ble overført direkte fra simulering. Våre resultater tyder på at disse tre metodene
bidrar til å lukke sim-til-real gapet.

Under testingen ble det oppdaget forskjellige faktorer og hindringer som førte til
svekkede resultater. Blant disse er robotledd grenser, for store friskjonskrefte, kol-
lisjonsdefekter og forskjeller i griper-kube interaksjon i simulatoren sammenlignet
med det fysiske miljøet.
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Chapter 1.

Introduction

1.1. Background and motivation
The Norwegian University of Science and Technology (NTNU) has a mission to
develop the technological foundation for the future society. One of the initiatives
initiated to encourage research towards this mission is the MANULAB facilities
and its Industry 4.0 Laboratory. With its robotic manipulators, the facilities
can be used for research within warehouse automation and autonomous manu-
facturing. Our thesis is mainly a contribution to the Industry 4.0 Laboratory
competence in the work towards NTNU mission.

Robotic grasping is an important field of research within robotics and an essential
part of the transition to Industry 4.0. By finding reliable grasping solutions that
can be placed in an arbitrary environment, the Norwegian industry can benefit
from manipulators to a higher degree than today.

Deep Reinforcement Learning (DRL) can help control robots by training an agent
through experience. Ideally, the essence of a robotic grasp can be learned and
used for grasping various objects in arbitrary environments without the need to
program the robot motion for every task. The algorithms and tools used for
training differ in complexity, but frameworks are continuously being built to make
grasping research available to more researchers.

One of the powerful tools in DRL is the use of simulation for testing and training.
Training an agent can be time-consuming because of the need for a high number
of training steps to get an agent with satisfactory performance. Simulation can be
used for training, but it is challenging to use the simulation-trained agent directly
in the physical environment because of the visible and dynamic differences. These
differences are often referred to as the sim-to-real gap. This thesis utilizes the
hardware available in MANULAB and the open-source frameworks for simulated
DRL training to build a platform for further sim-to-real research within robotic
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grasping and reinforcement learning.

1.2. Problem description
The main objective of this thesis is to perform a sim-to-real transfer of a DRL
agent trained for solving a vision-based robotic grasping task and compare differ-
ent sim-to-real techniques. Specifically, the task is to train a vision-based DRL
agent in simulation to control a robot arm to grasp and lift a cube in the MAN-
ULAB facilities and further compare agents trained with sim-to-real techniques
against each other. To do this is, the task separated into three parts.

Firstly a viable simulated training must be implemented. It can be time-consuming
and error-prone to build an environment and implement a DRL algorithm from
scratch. Due to this, is the use of modular frameworks that already have reliable
solutions for making environments preferable.

Secondly, a setup for training in the simulated environment must be implemented.
To be able to train a policy, a DRL algorithm must be chosen. By utilizing
high-performance computing platforms, simulation training can be completed at a
faster pace. The simulation framework must be altered to fit the chosen computing
platform.

Finally, a physical test setup must be made to measure the agents’ performance
in a physical environment. To configure a setup to handle the sim-to-real tran-
sition, must an action and observation space that fits with both the framework
and the physical environment be found. The communication structure, hardware
placement, and the experimental design for collecting empirical data must also be
considered.

1.3. Previous work
This thesis is an extension of two separate specialization reports written by the
authors last fall. Deep Reinforcement Learning In Robotic Manipulation was a lit-
erature review of DRL in robotic manipulation. It introduced different algorithms
and theories within robotics. The thesis discussed the challenges and solutions in
the field and evaluated the state-of-the-art research done on the topic. It lastly
looked at different simulators used in research and discussed how they could be
used to close the reality gap.

Development Of A Test Setup For Pick And Place Tasks With Deep Reinforce-
ment Learning discusses different solutions for communication and configuration
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of a physical test setup. Except for a change in the robot manipulator, the hard-
ware proposed was the same are used in this thesis. Parts of the communication
architecture based on ROS2 were also used in this thesis.

1.4. Related work
The field of Deep Reinforcement Learning (DRL) is extensive, and many sources
presents relevant theory. This thesis has used [80], [37], and [19] as the primary
sources of theory. These three present everything from basic theory to state-of-
the-art use cases.

To get a good overview of different challenges and possibilities in the robot learning
field. in the field is [27] used. They present several case studies involving robotic
DRL and discuss common challenges and how other papers have addressed them.

Model-free algorithms are the focus of this task. Papers comparing and showing
a promising result of sim-to-real transfer with domain randomization have been
studied to get inspiration for which algorithms perform well in this field. [27]
discuss the latest research on model-free DRL, among these algorithms are SAC
[22], PPO [72], A3C [51], DDPG [46] and TRPO [71]. Papers like [98], [16] that
discuss PPO used on partial observation are used for inspiration.

For inspiration on the observation and action space are [16] [36] and [5] is used.
The QT-opt algorithm proposed by Kalashnikov et al. [36] shows high-performance
policy in a physical environment through large-scale physical training. In addi-
tion to using the RGB data as an observation, they show how gripper status and
height of the end effector can improve the performance substantially. They also
have a small action space that limits the complexity of the grasp and training
needed. [5] present a suggestion to action space and argue for its benefit. This
action space is further used in this paper.

The paper [99] covers the fundamental background behind sim-to-real transfer
in Deep Reinforcement Learning (DRL) and an overview of the main methods
being utilized at the moment. A categorization of the most recent papers is also
presented, as well as the use of different DRL algorithms. As an inspiration to the
domain randomization employed in this thesis is [87] used. This paper explores
different domain randomization techniques for a good transfer from the simulator
to the real world.

For comparison of different simulator frameworks, have the papers [40] and [15]
been looked at. These two compare different physics simulators on the task of
robotic manipulation, speed, and accuracy.

Simulation training is widely used in robotics both for testing before deploying
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the system in real life and for training a DRL policy. Zhu et al. [100] present
Robosuite, a modular framework for robotic simulation built on Mujoco as a
physics engine. They propose a system based on torque control of the robot with
different robots and environments available. An example of a paper using this
framework is Zhu et al. [16]. They show how the framework can be used for
training a high-performance policy. The network, hyperparameters, and reward
shaping used in this paper are used as a foundation for our training.

1.5. Thesis structure
The thesis is separated into four parts with a total of 11 chapters.

Fundamentals

Chapter 2 explains the fundamental theory related to this thesis. Deep reinforce-
ment learning theory and algorithms are presented as well as tools for improving
the agent performance. The ROS2 framework is also presented.

System design

This part describes the implementations in every segment of the system. It
presents the solutions and argues for why the choices were made.

Chapter 3 describes the choices made when building a simulated environment.
Robosuite is presented as the simulation framework, and measures to imitate the
physical environment are discussed. The observation space, action space, and
reward function related to the training is also presented in this chapter because
they are implemented in Robosuite.

Chapter 4 describes the frameworks network structure and hyperparameters used
for the training of an agent in simulation.

Chapter 5 presents hardware and software used in the project and their configu-
ration. The communication between the separate parts is also described.

Chapter 6 presents the final solution for the sim-to-real transfer of the trained
agent. The communication, actions, and observations are addressed.

Experiments

This part is separated into three chapters. Each chapter presents results from
experiments and discusses the findings individually.

Chapter 7 presents results and discussion of the hand-eye calibration performed
to find the placement of the camera in the physical environment.
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Chapter 8 presents results and discussion from the simulation training of several
agents. The differences between the agents are presented and discussed.

Chapter 9 presents the results from the physical testing related to the sim-to-real
transfer of the trained agents. The agents are compared and common errors are
discussed.

Discussion and Conclusion

As an ending to the thesis, we present our conclusion and suggestions to further
work.

Chapter 10 discusses the segments of the system that was not discussed in chap-
ter 9 part of the thesis.

chapter 11 presents concluding remarks and suggests what can be improved and
further researched.





Part I.

Fundamentals





Chapter 2.

Preliminaries

This chapter presents relevant theory within RL used in this thesis. The spe-
cialization project Deep Reinforcement Learning In Robotic Manipulation influ-
ences some parts. The ROS2 chapter is influenced by the Development Of A Test
Setup For Pick And Place Tasks With Deep Reinforcement Learning specialization
project.

2.1. Reinforcement Learning
Reinforcement Learning (RL) is the task of learning an agent to solve a specific
problem through rewards. An agent can be a computer, a pet, or anything that
can learn through trial and error. The agent gets observation from an environment
and can interact with the environment through actions as shown in fig. 2.1.

The basic idea of reinforcement learning is to capture the most critical aspects of
the problem. This is done by interacting with an environment to achieve a goal.
A learning agent must be able to sense the state of its environment to some extent
and must be able to take actions that affect the state. The agent must have a
goal or goals relating to the state of the environment. Any method well suited to
solving such problems is considered a reinforcement learning method.

2.1.1. Markov Decision Process

This subsection introduces the problem of Markov decision Process (MDP). This
is the standard mathematical formalism of reinforcement learning and refers to
the fact that the system obeys the Markov property, meaning transitions only
depend on the most recent state and action and no previous history.

An MDP is a 5-tuple (S, A, R, P, ρ0)
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Figure 2.1.: The agent-environment interaction loop

• S is the set of all valid states

• A is the set of all valid actions

• R : S × A × S → R is the reward function, with rt = R(st, at, st+1)

• P : S × A → P(S) is the transition probability function, with P (s′|s, a)
being the probability of transitioning into state s′ if you start in state s and
take action a

• ρ0 is the starting state distribution.

At each time step, the process is in some state s, and the agent may choose any
action a that is available in state s. The process responds at the next time step
by moving into a new state s’ given by the state transition probability function
P (s′|s, a). The agent receives a reward of rt depending on how good it is to be in
the new state.

MDPs are a classical formalization of sequential decision making, where actions
influence not just immediate rewards but also subsequent situations or states and
through those future rewards. Thus MDPs involve delayed rewards and the need
to trade off immediate and delayed rewards. In MDPs, we estimate the action-
value q∗(s, a) of each action a in each state s, or we estimate the value v∗(s) of
each state given optimal action selections.

These state-dependent quantities are essential to accurately assigning credit for
long-term consequences to individual action selections.

2.1.2. Key Concepts of reinforcement learning

The agent and the environment are the main elements of RL. The environment
is the world the agent lives in and interacts with. The agent and environment
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interact continuously. At every step, the agent receives a state or partial obser-
vation from the environment and then decides an action to take based on those
observations. The environment responds to the actions and returns a reward sig-
nal to the agent. A reward is a number that tells how good or bad the current
environment state is.

The agent’s goal is to maximize the cumulative reward, also known as the return.

Beyond the agent and the environment, one can identify four main sub-elements
of a reinforcement learning system according to [80]: a policy, a reward signal,
a value function, and, optionally, a model of the environment. These will be
explained in closer detail further down in this section.

2.1.3. Difference from other machine learning paradigm

RL is considered to be a third machine learning paradigm, alongside supervised
learning and unsupervised learning.

In supervised learning, training data with the exact solution is given to the func-
tion approximator. This is not the case with reinforcement learning, where no
exact solution is given. In interactive problems, it is challenging to obtain ex-
amples of desired behavior that are both correct and representative of all the
situations in which the agent must act. Sometimes the different states and ac-
tions an agent can take are so big that it would take way too much time to give
out all this labeled data. Because of this, an agent must be able to learn from its
own experiences when exploring uncharted territory.

Reinforcement learning is also different from unsupervised learning, where the
goal is to find a hidden structure of the unlabeled data given. One might think
these two are pretty similar, but reinforcement learning tries to maximize a reward
signal instead of finding a hidden structure.

2.1.4. States and Observations

A state s is a complete description of the state of the world. When an agent can
observe the complete state of the environment, the environment is fully observed.
An observation o is a partial description of a state, meaning it may neglect some
information from the world. When the agent only receives partial observations,
the environment is partially observed.
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2.1.5. Action Space

The set of valid actions in an environment is called the action space. Actions
spaces can be divided into discrete- and continuous-action spaces. In discrete,
only a finite number of moves are available to the agent per action. In contrast,
actions are real-valued vectors in continuous action spaces, meaning the agent has
many more options when choosing an action for each state.

2.1.6. Policies

A policy defines how the agent acts at a given time. One can think of a policy
as a mapping from observed states of the environment to actions in those states.
The policy determines the agent’s behavior and can vary from a simple function
or a lookup table to a major computation such as a search process.

It can be either deterministic or stochastic. Deterministic policies map observa-
tions directly to actions, while stochastic policies output a probability distribution
over actions. This allows the agent to explore the state space without always tak-
ing the same action and is helpful in the exploration vs exploitation trade-off
described in section 2.4.3.

There are different kinds of stochastic policies. The stochastic policy used in this
thesis is a diagonal Gaussian policy. This is one of the most common kinds of
stochastic policies in DRL when it comes to continuous action spaces.

There are two important computations when training with stochastic polices:

1. Sample actions from the policy

2. Compute log likelihood of particular actions log(πθ(a|s)

For diagonal Gaussian policies, a multivariate Gaussian distribution is described
by a mean vector µ and a covariance matrix, ∑. Diagonal Gaussian refers to a
special case where the covariance matrix only has entries in the diagonal. This
means it can be represented as a vector.

The mean actions µθ(s) are mapped with a neural network from observations.
In PPO the covariance matrix is represented as a single vector of log standard
deviations, log(σ). It is important to note that this is not a function of the state
but standalone parameters. Log standard deviation is used because it can take
on any values in (−∞, ∞) compared to the standard deviation, which must be
non-negative. According to [37] is it easier to train parameters when you do not
have any constraints.

The formula for sampling actions is given by eq. (2.1)
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a = µθ(s) + σθ(s) · z (2.1)

z is a noise vector from spherical Gaussian (z ∼ N(0, I) multiplied element-
wise with the standard deviation. The calculation of the Log-likelihood of a k
-dimensional action a, for a diagonal Gaussian with mean µ = µθ(s) and standard
deviation σ = σθ(s), is given by eq. (2.2)

log πθ(a|s) = −1
2

(
k∑

i=1

(
(ai − µi)2

σ2
i

+ 2 log σi

)
+ k log 2π

)
. (2.2)

2.1.7. Episodes

Episodes, also often called rollouts or trajectories is a sequence of states, actions
and rewards who end in a terminal state.

E = (s0, a0, r1, s1, a1, r2, ...) (2.3)

The initial state is randomly sampled from the start-state distribution. This is
often a distribution set by the environment.

The state transitions, which describe what happens between the state at time t,
and the state at time t + 1 are controlled by the laws of the environment. In the
case of robot grasping, can this be gravitation, collision detection, limits on the
robot, and more. The states can be either deterministic or stochastic.

2.1.8. Reward and Return

A reward signal defines the goal of a reinforcement learning problem. For each
time step, the environment sends the reward, in the form of a number, to the re-
inforcement learning agent. The agent’s objective is to maximize the total reward
it receives in the long run. This means that the reward signal defines what is
good and bad for the agent. The reward affects how the policy changes. If a low
reward follows an action selected by the policy, then the policy may be changed to
select some other action in that state in the future. One can think of the reward
signal as a stochastic function dependent on the state of the environment and the
actions taken.

Return is the total reward over an episode. There are different kinds of returns,
but the two most common are finite-horizon undiscounted return. This is the sum
of rewards obtained in a certain amount of steps eq. (2.4).
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R(τ) =
T∑

t=0
rt. (2.4)

Another common return is the infinite-horizon discounted return eq. (2.5). This
return looks at an infinite time horizon. However, it adds a discount factor γ ∈
(0, 1) which determines the present value of future rewards: a reward received k
time steps in the future is worth only γk−1 times what it would be worth if it were
received immediately.

R(τ) =
∞∑

t=0
γtrt. (2.5)

2.1.9. Value Function

A value function specifies what is good in the long run. The value function returns
a value of each state that is the total amount of reward an agent can expect to
earn in the future when starting from that state. Whereas rewards determine an
agent’s immediate wish to be in a specific state, values determine the long-term
desirability of states after taking into account the states that are likely to follow
and the rewards available in those states. Without rewards, there could be no
values, and the only purpose of estimating values is to achieve more rewards.

We seek actions with the highest value, not the highest reward because these
actions obtain the highest reward in the long run. Unfortunately, it is much
harder to determine values than determine rewards. Rewards are given directly
by the environment, but values must be estimated and re-estimated from the
sequences of observations an agent makes over its entire lifetime. The most critical
component of almost all reinforcement learning algorithms we consider is a method
for efficiently estimating values.

According to [37] are there four main value functions to note. The list below is
from [37]:

1. The On-Policy Value Function, V π(s), which gives the expected return if
you start in state s and always act according to policy π:

V π(s) = E
τ∼π

[R(τ) |s0 = s ] (2.6)

2. The On-Policy Action-Value Function, Qπ(s, a), which gives the expected
return if you start in state s, take an arbitrary action a (which may not have
come from the policy), and then forever after act according to policy π:
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Qπ(s, a) = E
τ∼π

[R(τ) |s0 = s, a0 = a ] (2.7)

There is also an Optimal Value Function, V ∗(s) and Optimal Action-Value Func-
tion, Q∗(s, a) where it is assumed to act after the optimal policy.

These four value functions obey special self-consistency equations called Bellman
equations. The Bellman equation tries to give a value of the state the policy is
in. This is done by adding together the expected reward of the current state and
the value of wherever the policy land next.

The optimal policy in s will select the action that maximizes the expected return
from starting in s. The optimal action a∗(s) from the optimal Action-Value Func-
tion _Action-Value_Function@cref_Action-Value_Function@cref_Action-Value_Function@cref??
will be:

a∗(s) = arg max
a

Q∗(s, a). (2.8)

If there are multiple optimal actions, the optimal policy may randomly select one
of them.

2.1.10. Advantage Function

Advantage functions estimate how much better an action is than others on average.
In other words the advantage function Aπ(s, a) eq. (2.9), corresponding to a policy
π, gives a calculation on how much better it is to take a specific action a in state
s compared to a random action in that state.

Aπ(s, a) = Qπ(s, a) − V π(s). (2.9)

2.1.11. Model

Some reinforcement learning systems need a model. The model tries to mimic
the environment, or in other words, tries to predict how the environment will
behave. For example, given a state and action, the model might predict the
resultant next state and next reward. Models are used for planning; this means
deciding a course of action by looking at different future situations before they are
actually experienced. Methods for solving reinforcement learning problems that
use models and planning are called model-based methods, as opposed to more
straightforward model-free methods that are explicitly trial-and-error learners-
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2.2. Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) combines reinforcement learning and deep
learning. When the number of states in our MDP’s is of high dimensionality, we
can no longer solve the problem with traditional RL algorithms. This is where
deep RL comes into play. The neural network often represents a policy π(a|s)
taking in the high dimensional state space (images from a camera or raw sensor
stream from a robot), sending it through the network, and returning an action
based on the states or observations given.

With DRL, we only need to tune some parameters in our Neural Network to get
a good policy instead of going through every state for each step.

2.2.1. Deep Learning

Deep learning is learning based on neural networks of several layers. An overview
of how this communication might look is shown in fig. 2.2. The layers consist of
nodes that combine input from the input data with a set of weights. The weights
either amplify or dampen the input, assigning how important that input is in
regards to the task the network is trying to solve. The product between the input
and the weights is summed together and sent to an activation function. This
activation function’s purpose is to determine to what extent the signal sent in
should progress further down through the network.

Figure 2.2.: Overview of the information flow through a node

A DRL is defined as having at least one hidden layer, meaning there is a layer of
nodes between the input and output layer.

A forward pass is used to move forward through the network. This takes us from
the input through the network until we reach the output. To measure how good
the output is, a cost function indicates how well the network performs.
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(a)
(b)

Figure 2.3.: From [12]. Left: A regular 3-layer Neural Network. Right: A Con-
vNet arranges its neurons in three dimensions (width, height, depth), as visualized
in one of the layers. Every layer of a ConvNet transforms the 3D input volume to
a 3D output volume of neuron activations. In this example, the red input layer
holds the image, so its width and height would be the dimensions of the image,
and the depth would be 3 (Red, Green, Blue channels)

After the cost function is calculated, we go backwards through our network and
adjust our weights and biases to optimize the cost function. This is called a
backward pass and is how the network improves over time.

2.2.2. Convolutional Neural Networks

Convolutional Neural Network (CNN)s make the assumption that the inputs are
images. This allows the encoding of certain properties into the architecture, mak-
ing the forward function more efficient to implement. Consequently, it reduces
the number of parameters in the network.

Unlike regular Neural Networks, the layers of the CNN have neurons arranged
in 3 dimensions: width, height, depth. The neurons in a layer will only be
connected to a small region of the layer before it. In contrast, a fully-connected
layer has a connection to all the neurons in the layer before.

Layers in CNNs

This subsection describes the individual layers used in our thesis.

Convolutional Layer . The CONV layer’s parameters consist of a set of learn-
able filters. Every filter is small in width and height but extends through
the full depth of the input volume. During the forward pass, each filter is
convoluted across the width and height of the input volume. Furthermore,
the dot product between the entries of the filter and the input at any posi-
tion is computed. The filter produces a 2-dimensional activation map after
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sliding over the width and height of the input volume. This 2d-map gives
the responses of that filter at every spatial position. The sizes of these filters
times the depth of the input volume define the number of weights (plus 1 in
bias) for this specific filter.

The size of the output volume is controlled by the input volume size and
three hyperparameters: depth, stride and zero-padding. The depth cor-
responds to the number of filters used on the input volume. Stride defines
the number of pixels to slide between every calculation. Zero-padding is
wrapping zeros around each depth element in the input volume. This is so
that the size of the output volume can be controlled.

The backward pass for a convolution operation, for both the data and the
weights, is also a convolution but with spatially-flipped filters.

Relu and TanH activation function . The RELU layer applies an element-
wise activation function, such as the max(0,x). This does not change the
size of the volume. The TanH activation function takes any real value as
input and outputs values from -1 to 1. The larger the input (more positive),
the closer the output value will be to 1.0, whereas the smaller the input
(more negative), the closer the output will be to -1.0.

TanH(x) = ex − e−x

ex + e−x
(2.10)

Fully-connected Layer Neurons in a fully connected layer have full connections
to all activations in the previous layer. Their activations can hence be
computed with a matrix multiplication followed by a bias offset

2.3. Taxonomy of Reinforcement algorithms
This section points out some of the differences of RL algorithms and discusses
some trade-offs between the different categories.

Figure 2.4 categorises different RL algorithms into different branches of the Re-
inforcement Learning (RL) field. It is worth mentioning that it is a simplified
overview. It is challenging to draw an accurate taxonomy of RL algorithms be-
cause the modularity of algorithms is not well-represented by a tree structure.

2.3.1. Model based and model free methods

In deep learning, a model means a specific function with initialized parameters
(pre-trained model) or learned parameters (well-trained model), such as a deep
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Figure 2.4.: Taxonomy of algorithms in modern RL from [37]

neural network. However, in model-based reinforcement learning, a "model" is the
ensemble of acquired environmental knowledge.

We can split model-based methods into two categories. Methods that work with
a given model and methods that learn the model. All five elements in the Markov
decision process are known for the methods that work with a given model, meaning
we can use model-based RL algorithms. Consequently, we can use value - and
policy - iteration directly without interacting with the environment. An example
of model-based methods is the AlphaGo algorithm [73] where the rules of the Go
game are specified to the computer. This means that Go’s transition- and reward
functions are all known to the agent to evaluate and improve its policy.

In the second category, the methods cannot directly acquire the model due to the
complexity of the environment. Instead, the agent can learn a model from inter-
actions with the environment and then apply the model in policy improvement.

The critical advantage of model-based methods is that the future states and re-
wards can be anticipated in advance via the environmental model. This helps the
agent to do better planning.

The disadvantage of model-based methods is that they can be hard to represent
explicitly if the environment has complex dynamics. The learned models are usu-
ally inaccurate in practice, which induces estimation bias. The policy estimated
and improved based on a biased model usually fails when applied in the physical
environment.
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Because of the challenges mentioned above, a model-free algorithm was chosen.
We do not know the transition probabilities from state to state or the reward func-
tion in model-free learning. The model-free algorithms either estimate a "value
function" or the "policy" directly from experience. In other words, the agent in-
teracts with the environment directly and improves its performance based on the
explored states.

Model-free methods are simpler to implement than model-based methods because
they do not need a model, which can be hard to learn. However, model-free meth-
ods also have some challenges. The cost of exploring the physical environment
can be high in terms of time consumption, wear and tear on the equipment, and
safety risks. By training in a simulator, we can explore several steps per second
without worrying about wear and tear or safety risks. Therefore, we can bypass
some of the biggest challenges in both model-free - and model-based - learning by
choosing a model-free algorithm.

2.3.2. Model-Free RL Methods

There are two main approaches to representing and training agents with model-
free RL.

Policy Optimization

This family represents a policy explicitly as πθ(a|s). The parameters θ are updated
directly by gradient ascent on the performance objective J(πθ), or indirectly, by
maximizing local approximations of J(πθ). Commonly, this optimization is done
On-Policy. This means that only collected data while acting according to the
most recent policy version is used to update the parameters. Policy optimiza-
tion also usually involves learning an approximator Vϕ(s) for the on-policy value
function V π(s), which gets used in figuring out how to update the policy.

Two common policy optimization methods are Asynchronous advantage actor-
critic (A3C) [51] and Proximal Policy Optimization (PPO) [72]. A3C performs
gradient ascent to maximize performance directly. On the other hand, PPO up-
dates indirectly maximize performance by maximizing a surrogate objective func-
tion, which estimates how much J(πθ) will change as a result of the update.

Challenges in model-free DRL

One of the problems model-free reinforcement learning is suffering from is that the
training data generated is itself dependent on the current policy. This is because
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our agent generates its own training data by interacting with the environment
rather than relying on a static data set which is the case in supervised learning.

This means that the data distribution of our observations and rewards are con-
stantly changing as our agent learns, which is a major cause of instability in the
training process.

Reinforcement learning also suffers from a high sensitivity in hyperparameter
tuning and initialization. One example of this could be a learning rate that is too
large. This would result in a policy update that pushes the policy network into a
region of the parameter space where it will collect the next batch of data under
a poor policy. The data gathered is hard to learn anything from, meaning the
policy will have a hard time recovering. PPO and TRPO limits this problem by
clipping too big updates.

Q-Learning

This family learn an approximator Qθ(s, a) for the optimal action-value function.
An objective function based on the Bellman equation section 2.1.9 is often used.
This optimization is often performed off-policy, meaning that data collected at
any point during training can be used to update the agent. The action taken by the
Q-learning agent are given by eq. (2.8) only with the approximator Qθ(s, a) instead
of the optimal action value function. Some examples of Q-learning methods are
Deep Q-Network (DQN) [52], which revolutionized the field of DRL and 51-atom
agent (C51) [3] a variant that learns a distribution over return whose expectation
is the optimal action value function.

Combining Policy Optimization and Q-Learning

The primary strength of policy optimization is that it directly learns the optimal
policy. Instead of making a function that takes a state as input and outputs Q
values for all actions, the policy instead learns a function that outputs the best
action that can be taken from that state. This tends to make them more stable
and reliable than Q-Learning. A discussion on how Q-Learning methods can fail
is further discussed in sections 4.3.2 and 3 in the following paper [81].

The strength of Q-Learning methods is that they are more sample efficient upon
learning. This is because they can reuse data more effectively than policy opti-
mization methods.

Some algorithms use both policy optimization and Q-Learning. These algorithms
can trade off between the strengths and weaknesses of either side. Deep Deter-
ministic Policy Gradient (DDPG) [46] is an algorithm that learns a deterministic
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policy and a Q-function jointly by using each to improve the other. Soft Actor-
Critic (SAC) [22] is another variant which uses stochastic policies, entropy reg-
ularization, and a few other tricks to stabilize learning. SAC score higher than
DDPG on standard benchmarks.

2.4. Robot Learning
This section discusses some important topics and challenges when training robots
with deep reinforcement learning.

2.4.1. Deep Reinforcement Learning and robotics

A robot is an inherently active agent that interacts with the physical world and
often operates in uncontrolled or detrimental conditions. Robots must perceive,
decide, plan, and execute actions based on incomplete and uncertain knowledge.
Within the robotic manipulation context, DRL offers a framework and a set of
tools for learning dexterous manipulation directly from sensor data or raw pixels.

A robotics problem is characterized by defining a state and action space and
the dynamics that describe how actions influence the system’s state. The state-
space includes the robot’s internal states and the environment’s state. The robot
can be thought of as the agent in a RL interface. Quite often, the state is not
directly observable - instead, the robot is equipped with sensors, which provide
observations that can be used to infer the state, and thus, we have a partial
observable MDP.

The goal may be defined either as a target state to be achieved or as a reward
function to be maximized. We want to find a controller, otherwise known as
policy, from a deep neural network that maps states to actions in a way that
maximizes the reward when executed.

When combined with robotics, reinforcement learning is often represented with
continuous high-dimensional action and state space. For robot manipulation in the
real world, collecting samples is often expensive and time-consuming. Experiences
are also sensitive to a variety of noise and difficult to reproduce. To collect a single
training sample, it might take a few minutes for a robot to move around or perform
the tasks. Because of this, we need sample-efficient algorithms when it comes to
DRL with robotics.
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2.4.2. Sample Inefficiency

Sample inefficiency concerns the algorithms’ abilities to learn from limited data
and is one of the main reasons that seriously limit the applications of RL in robot
manipulation. Even some of the best current RL algorithms can still be imprac-
tical due to sample inefficiency. There are multiple causes for the problem. Many
algorithms try to learn to perform a task from scratch and therefore need a lot
of data to learn. Another thing is that some algorithms are not good enough to
take advantage of current data. On-policy algorithms require new data for every
update step. So when data collection in robotics is already a time-consuming
affair, we are in significant need of algorithms that can exploit current data as
much as possible.

Some classes of RL algorithms are more sample efficient than others. Off-policy
methods are about an order of magnitude more data-efficient than on-policy
methods. Model-based methods could be another order of magnitude more data-
efficient than their model-free counterparts [27].

2.4.3. Exploration vs Exploitation

A central challenge in RL is the exploration-exploitation problem, i.e. to exploit
the solution we know to give the max reward or explore new solutions that might
give even higher rewards. Let’s say that the agent maintains estimates of the
action values. Then at any time step, there is at least one action whose estimated
value is greatest. These actions are referred to as the greedy actions. Exploiting
is when one of these greedy actions is chosen, meaning the agent exploits its
current knowledge. If instead, a nongreedy action is chosen, we say that the agent
is exploring. This enables the agent to improve its estimate of the nongreedy
action’s value.

The downside of exploring is that the maximum amount of reward possible is
not achieved. The benefit is that higher rewards are expected in the long run
because after better actions are discovered, they can be exploited many times
in the future. Because it is impossible to both explore and exploit with any
single action selection, one often refers to the "conflict" between exploration and
exploitation.

2.4.4. Optimization challenges in model-free on-policy algorithms

One of the problems that model-free on-policy RL is suffering from is that the
training data generated is dependent on the current policy. This is because the
agent generates training data by interacting with the environment rather than
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relying on a static data set which is the case in supervised learning. This means
that the data distribution of observations and rewards constantly changes as the
agent learns. This is a major cause of instability in the whole training process.

Model-free on-policy RL also suffers from a high sensitivity in hyper parameter
tuning and initialization. One example of this could be a learning rate that is
too large, meaning the policy update that pushes the policy network into a region
of the parameter space where it will collect the next batch of data under a poor
policy. The data now gathered is hard to learn anything from, meaning the policy
will have a hard time recovering.

2.4.5. Use of simulation

Considering that simulators are becoming more and more accurate over the years,
it is a good tool to use on the step toward training real robots. One solution to
the sample-inefficiency challenge is to collect more data. While collecting enough
data on the physical system is slow and expensive, simulation can run orders
of magnitude faster than in real-time and start many instances simultaneously.
Data can also be collected continuously without human intervention. Experiments
can be reset automatically in simulation, and safety is not a problem. Thus,
prototyping in simulation is faster, cheaper, and safer than experimenting on the
real robot. The rapid pace of experiments allows us to efficiently shape the reward
function, sweep the hyper-parameters, fine-tune the algorithm, and test whether
a given task falls within the robot’s hardware capability.

2.4.6. Sim-to-Real, closing the Reality Gap

Because simulation is an abstraction of real-world conditions, policies learned in
simulation typically perform worse when transferred onto hardware. This is what
we call the reality gap and is one of the most important considerations when
selecting a simulator for reinforcement learning purposes. Different methods have
been employed successfully for sim-to-real or, in other words, closing the reality
gap.

The first solution is to address the partial observation in the real world by not
training on any inaccessible states for the real world in the simulator. This is
done in [82]. You could also apply state estimators to get more information on
your state space. Alternatively, add more sensors on the robot, meaning we have
more data to train on. Lastly, you can utilize your extra information/states in
the simulator by training a privileged agent on the extra states. Then, use this
privileged agent as a teacher that trains a purely vision-based sensorimotor agent.
This is done in [7].
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Figure 2.5.: Shows how domain randomization can help in training a model that
incorporates the physical environment to its repertoire of familiar environments
[99].

Another technique to close the reality gap is domain randomization.

2.4.7. Domain Randomization

Domain randomization is a tool used in DRL to train a policy to handle environ-
mental variations. This is done by changing environmental parameters. Without
domain randomization, the sim-to-real transfer would require a high-precision de-
scription of every part of the physical system. Minor inaccuracies in visual or
dynamical parameters could affect the performance of the policy. The goal of
the randomization is to have a broad variation in parameters so that the physi-
cal parameters are familiar to the policy before it is implemented in the physical
environment, as illustrated in fig. 2.5.

Domain randomization in the simulation training can be separated into visual and
dynamic randomization [99]. Visual randomization can be implemented when a
visual representation of the environment is a part of the observation. Camera
placement, lighting, object colors, and textures are examples of what can be ran-
domized. Dynamic randomization can be implemented for the policy to handle
differences in how the environment responds to an action. Moments of inertia,
masses, and friction for both the actuators and the other objects in the environ-
ment are examples of parameters that can be changed.

Supporting multiple physics engines is another domain randomization technique
that prevents learned policies from overfitting to the simulation environment used
[18].

There is a tradeoff here as more environmental diversity may cause the policy to
perform poorly. Often this can be alleviated with a larger and better network
architecture or by giving the agent more data per update. An example is [36]
where a larger and deeper NN was required for the Q-function to deal with the
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large variety when domain randomization was introduced.

2.4.8. Domain Adaptation

Instead of reducing the reality gap by modifying the simulation, domain adapta-
tion uses data from the source domain to improve the performance of a learned
model on a different target domain. An example of this is [97] where they generate
synthetic images of a robot arm based on real-time readings of the robot’s joint
angle positions similar to the training data used. Another solution is done by [4]
that used a Generative Adversarial Network (GAN) during training to make the
simulated images more closely resemble the real-world domain.

Real-To-Sim

One other technique to close the reality gap is to flip it around. Meaning you go
from real to sim. This approach was done by [33], where they use an adaption
network to convert real-world images to simulation images. This allowed a policy
only trained on simulation data to be applied to the real world with a grasping
success of 70 % with the QT-Opt algorithm right of the bat. It reached a 91 %
success rate after fine-tuning on just 5 000 real-world grasps: which previously
took over 500 000 grasps to achieve.

2.4.9. Exploration in robotic DRL

The state and action space in robotic manipulation is so big that exploring them all
is not an option. Therefore, we must find a good and effective solution to explore
our state-space but not visit all states. The task gets even more complicated when
sparse rewards are introduced. Meaning that many steps need to be taken in the
state space before getting a reward.

For this reason, several prior works have focused on studying exploration for sparse
reward robotic tasks. [2] introduced Hindsight experience replay (HER), which
allowed sample-efficient learning from sparse binary rewards and therefore avoided
the need for complicated reward engineering. The training scenario is that they
send an initial state and a target state/goal to the policy. The idea is that after
experiencing some episode, every transition is stored in the replay buffer. Not
only with the original goal used but also with a subset of other goals. Using an
off-policy algorithm, one can replay this trajectory with an arbitrary goal.

[70] showed that methods that combine RL with prior information, such as classi-
cal controllers or demonstrations, can solve these tasks from a reasonable amount
of real-world interaction.
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Demonstration

Instead of improving exploration, we can try to sidestep this problem by combining
simple manual engineering and demonstration data. There are different ways of
incorporating demonstrations into the learning process. One of these is imitation
learning, where a policy is pre-trained with demonstrations of desired behavior.
It should be mentioned that there are some challenges with imitation learning.
There is no guarantee of performance both in theory and practice. Imitation
learning can suffer from "compounding error," where a small mistake in the pre-
trained policy sends the training policy into an unexpected state where it makes a
more significant mistake. There is also a big chance that the pre-trained network
can be forgotten as it is common to start RL algorithms with a high exploration
factor.

Off-policy model-free RL algorithms are also able to utilize demonstrations. Data
aggregation can be used by sending demonstration data to the training data on
which the algorithm is trained. [90] did exactly this where they both sent in
demonstrations and actual interactions to fill a replay buffer. This was used as
data for a DDPG algorithm to train on. This outperformed the regular DDPG,
and it does not require engineering rewards.

Although there have been some good results with data aggregation, some problems
need to be addressed. Value function estimation used in Q-Learning needs to see
both good and bad examples to learn which actions that are desirable [35]. This
means that the value function might fail to learn which actions must be taken to
reach the demonstrated states.

The solution to this problem is to train the imitation policy together with the
objective policy instead of pre-training the imitation policy. This allows us to add
the loss from the policy gradient objective with the loss from the imitated policy.
This is done in [24]. This method succeeds in making the learner stay close to the
demonstrations. The problem with this joint training is that the algorithm will
have difficulty finding better solutions than those given as demonstrations. So the
learning speed might be accelerated, but if the best demonstrations are not given
to the learner, the algorithm might never learn them.

Scripted Policies

Another method to overcome the exploration challenge is by designing a "scripted"
policy. This can be seen as a reasonably good policy for solving the task at
hand. Scripted policies were used to pre-populate the replay buffer with a higher
proportion of successful episodes. QT-Opt [36] used a scripted policy to collect 200
000 grasp attempts. This scripted policy had a success rate of 15 - 30 % meaning
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that the Q function had some successful data to learn from instead of having to
explore by itself and use a very long time before it even got some valuable data.
We do not use an excellent policy as our "scripted" policy because we want to keep
the ratio of successful and unsuccessful episodes close to 50 %. This is because a
Q-function requires both good and bad attempts to learn a good ranking of what
a good or bad action is. To keep this ratio close to 50 % [27] states that you
should wait to use data from your Q function in the replay buffer until it reaches
a 20 % success rate.

2.4.10. Reward shaping

Reward shaping leads to faster learning by sidestepping the exploration challenge.
In practice, reward shaping uses prior knowledge to give intermediate rewards for
actions that lead to desired outcome [19]. This additional guidance during the
exploration can be beneficial in settings with sparse and delayed rewards and
can help the learning process [44]. As mentioned in [27] reward shaping is very
effective for any task where the agent has to go to a specific location. One example
of this is peg insertion as shown in [45]. Since our task requires the robot gripper
to reach the position of the cube, we decide to use reward shaping to help guide
the exploration.

One challenge about reward shaping is to weigh the shaping terms properly to
avoid any greedy and unintentional sub-optimal behavior. An example given by
[27] describes the situation where you want to open a door with a robot arm.
One might think it is good to give a negative reward to the robot if it is far away
from the door. This could be a good idea since one may want to get close to the
handle. However, if the robot is already very close to the door but cannot open
it, it may require some distance from the handle to take a different approach with
the gripper. The engineered reward would restrict the robot from finding such a
solution.

The object’s location must be known to give a reward based on the object’s
distance. This is often available in simulators but not in real-world scenarios
where only camera information is available. Meaning the object’s location is not
a part of the observations.

2.5. Proximal Policy Optimization Algorithms
This section introduces the theory behind Proximal Policy Optimization, which
is the algorithm used in this thesis.

Proximal Policy Optimization (PPO) [72] introduces a new branch of policy gra-
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Figure 2.6.: Proximal Policy Optimization (PPO) algorithm as described in [72].

dient methods. These methods alternate between sampling data through interac-
tion with the environment and optimizing a "surrogate" objective function with
a stochastic gradient ascent. Instead of only doing one gradient update per data
sample, which is what the standard policy gradient methods do PPO propose an
objective function that enables multiple epochs of mini-batch updates. So this
method has some of the benefits of Trust Region Policy Optimization (TRPO),
but is also much simpler to implement, more general, and has better sample com-
plexity. The algorithm is shown in fig. 2.6.

PPO is designed to fix the challenges introduced in section 2.4.4, and its core
purpose is to strike a balance between ease of implementation, sample efficiency,
and ease of tuning.

PPO is an on-policy algorithm, meaning it does not learn from stored data in an
experience replay buffer. Instead, it learns directly from what its agent encounters
in the environment. Once a batch of experiences has been used to do a gradient
update, the experience is discarded. Consequently, it is less sample efficient than
Q-learning methods because they only use the collected experience once when
performing an update.

2.5.1. Policy Optimization

General policy optimization methods usually start by defining the policy gradient
laws as the expectation over the log of policy actions times an estimate of the
advantage function as shown in eq. (2.11)

LP G(θ) = Êt[logπθ(at|st)Ât] (2.11)

Where πθ is our policy. In other words, a neural network takes the observed states
from the environment as input and suggests actions to take as an output. The
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second term is the advantage function Ât which tries to estimate the relative value
of the selected action in the current state.

In order to compute the advantage function Ât eq. (2.12) we need two terms. The
first is the discounted sum of rewards Gt shown in eq. (2.13) minus the second
term which is the baseline estimate or in other words the value function V (s).

Ât = Gt − V (s) (2.12)

Gt=̇Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑

k=0
γkRt+k+1 (2.13)

The discount factor γ in eq. (2.13), which is usually in the range of 0.9 and 0.99,
is a variable that quantifies the importance of future rewards. If Gamma is closer
to zero, the agent will tend to consider more immediate rewards.

The advantage estimate is calculated after the episode sequence is collected from
the environment as shown in fig. 2.6. This means we know all the rewards when
calculating this value and avoid guessing when calculating the discounted return.

The value function is trying to guess what the final return will be for this episode
starting from the current state. The neural network representing the value func-
tion will be frequently updated using the experience the agent collects in the
environment, close to how supervised learning works. It is worth mentioning that
these estimates are noisy because our value function is a neural network.

To sum up, the advantage estimate answers how much better the taken action
was based on the expectation of what would typically happen in the state it was
in. This tells if the action taken was better or worse than expected.

2.5.2. Trust Region Policy Optimization

When running gradient descent on one batch of the collected experience, one
challenge is that you will update the parameters in the network outside of the
range where this data was collected. This will lead to an already noisy advantage
function which is an estimate of the real advantage to be completely wrong. The
policy will be ruined if you keep running gradient descent on a single batch of
collected experiences.

To solve this issue Trust Region Policy Optimization (TRPO) [71] are introduced.
This method ensures that the updated policy never moves too far away from the
old policy. To do this they divide the old policies πθold

estimate on the new as
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shown in eq. (2.14). An Kullback–Leibler Constraint (KL) is also added to the
optimization objective eq. (2.15). This constraint limits the updated policy from
moving too far away from the old.

maximize
θ

Êt

[
πθ(at|st)

πθold
(at|st)

Ât

]
(2.14)

subject to Êt [KL [πθold
(·|st), πθ(·|st)]] (2.15)

The downside is that the KL constraint adds additional complexity to the opti-
mization process. This might sometimes lead to undesirable training behavior. To
counteract this PPO adds this constraint directly into the optimization objective.

2.5.3. Clipped Surrogate Objecttive

Here we introduce the optimization objective of the PPO algorithm. Their loss
function is:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

]
(2.16)

rt(θ) = πθ(at|st)
πθold

(at|st)
(2.17)

The first thing to mention is that PPO optimizes an expectation operator. This
means that it is computed over batches of trajectories, and an expectation operator
is taken over the minimum of two terms as shown in eq. (2.16). The first term
is equal to the objective in the TRPO objective function eq. (2.14) where the
variable rt(θ) the fraction of the new over old policy which is shown in eq. (2.17).
Epsilon is a hyperparameter usually with a value of ϵ = 0.2. The second term,
modifies the surrogate objective by clipping the probability ratio, which removes
the incentive for moving rt outside of the interval [1 − ϵ, 1 + ϵ]. The minimum of
these two terms are taken, which [72] describes will make the final objective "a
lower bound (i.e., a pessimistic bound) on the unclipped objective".

The advantage estimate At can both be positive and negative and changes the
main operator’s effect as shown in fig. 2.7. Positive estimates are all the cases
where the selected action had a better-than-expected effect on the outcome. Neg-
ative values are all the cases where the action had an estimated negative effect on
the outcome.
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Figure 2.7.: Plots showing one term (i.e., a single timestep) of the surrogate
function LCLIP as a function of the probability ratio r, for positive advantages
(left) and negative advantages (right). The red circle on each plot shows the
starting point for the optimization, i.e., r = 1. Note that LCLIP sums many of
these terms

Still looking at the left graph, if the action was good and tt(θ) yields a higher
value, then one notices that the surrogate function flattens out. This is to limit
the effect of the gradient update. We do this because the advantage function is
noisy, so we do not want to update too far in either direction.

The same goes for the graph on the right side of fig. 2.7. This is where the action
had an estimated negative value. The objective function here flattens when r
goes closer to zero. This part of the graph corresponds to actions that are much
less likely now than in the old policy and we don’t want to overdo an update
because of our lack of trust in the noisy advantage function. Lastly, the right
side of the right graph in fig. 2.7 corresponds to when the last gradient step made
the selected action more probable while also making the policy worse since the
advantage function here is negative. This is an update we would like to undo,
which is what the PPO algorithm allows because the function is negative here,
which makes the gradient update in the other direction.

2.6. ROS2

2.6.1. General

Robot Operating System 2 (ROS2) is a collection of tools for making robot appli-
cations. In this project, communication and driver tools are being used to make
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the communication architecture of the physical system.

2.6.2. Nodes,topics, services and messages

Nodes are one of the core concepts of ROS2. It is the building block for the
communication between the different parts of a robot system. The simplest type
of communication between ROS2 nodes is through topics. A publisher node pushes
a message, .msg, to a topic, and a subscriber node pulls the messages from the
topic. There can be several publishers and subscribers connected to the same
topic. What is essential is that the .msg files that are sent over a topic have the
same format. This architecture makes it easy to set up communications with new
nodes to extend the network.

In addition to topics, ROS2 uses services as a way of communication between
nodes. First, a client node sends a request to a sever node. The server node send
its response back to the client. In contrast to the topics, the request and response
often has different formats.

ROS2 uses packages to structure the code for different nodes and programs. The
packages should work in other systems if appropriately structured, simplifying the
developers’ sharing of code. A package can contain launch files and .msg structure
in addition to all the system nodes.

2.6.3. DDS communication

DDS, Data Distributing Service, is the middleware that ROS2 is built upon. The
wire protocol for the DDS communication is RTPS, Real-Time Publish-Subscribe.
With a distributed discovery, the DDS communication is more rigid than ROS
communication because of the lack of a central point of failure [67].
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System design





Chapter 3.

Simulation

3.1. Simulators
This section gives an introduction to important factors for a good physic simulator
and introduces different physic simulators relevant for robot grasping. Moreover,
it argues why the selected physic simulator was chosen.

3.1.1. Simulation Environment

As presented in section 2.4.5, simulators are often used for RL training in order to
significantly increase the rate at which data can be collected, as well as do it safely.
In order to implement a virtual setup for the training of robotic grasping based
on the task described in section 1.2, a simulation had to be capable of accurately
modeling the physical interactions between a robot and the manipulated objects
as well as featuring a high-quality visual sensor in the form of RGB images. A
simulated model of the hardware in the lab was also needed. Therefore, selecting
a robotics simulator was of great importance because it directly influenced the
robustness of sim-to-real transfer and determined the additional steps that had
to be taken to achieve such transfer. Some of the popular simulators for robotics
RL research are therefore described with the aim to select one that will be used
to implement the environment.

MuJoCo

MuJoCo [88] (Multi-Joint dynamics with Contact) is a simulator very often used
within research and commonly known for RL applications. One of the reasons
it is so popular comes from its contact stability [65]. MuJoco has been used to
train policies both for proof of concept [60] and for later transferring into the real
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world [86] [8] [69]. Its physics engine is focused on robotic and biomechanic simu-
lation, animation, and machine learning applications. MuJoCo models are based
on an XML format that is readable and editable. MuJoCo recently announced
that they, in cooperation with DeepMind, have made the physics engine an open-
source. Another advantage is the different simulation frameworks using MuJoCo
specifically built for robot learning. Some of these are Dm_control [83], Robo-
suite [101] and Robomimic [49]1. They provide tutorials and examples, making it
intuitive to set up an environment.

Pybullet

Pybullet is used in studies from object collision [47] pick and grasp dynamics
[96] and for deformable object manipulation [50]. The latter case was done with
manipulation in the simulator. Pybullet is based on the Bullet physics-based
simulation environment. Pybullets main focus is machine learning applications in
combination with robotic applications. This, combined with a large community
[1] means that it is a simulation environment in continuous development with
good support for beginners. It supports model formats such as SDF, URDF, and
MJFC, giving a good foundation for customizing an environment.

Gazebo

Gazebo [39] is one of the oldest open-source simulators and provides a simula-
tion environment with the necessary actuators and sensors for robotic manip-
ulation. It supports four physic engines: Bullet [11], Dynamic Animation and
Robotics Toolkit (DART) [13], Open Dynamics Engine (ODE) [54] and Simbody
[74]. Gazebo can switch between these physic engines, meaning it has one of the
best physics-based domain randomization, as it would allow randomizing physics
parameters and the entire physics implementation. It also provides support for
ROS which provides packages for forward and inverse kinematics, as well as path
and motion planning. Since the foundation of the Open Source Robotics Foun-
dation (OSRF) [58] in 2012, OSRF has been leading the development and is
supported by a large community [20].

Gazebo provides support for noise models, which can be applied to sensor outputs.
This can be an essential feature in solving the reality gap.

1Robomimic also supports Pybullet
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Ignition Gazebo

Due to the limitations in Gazebo there is a development of the next generation of
Gazebo named Ignition Gazebo. Ignition supports the DART physics engine and
has upcoming support for Bullet. Ignition support the latest updates of OGRE
[55] when it comes to rendering. This enables PBR (physical-based rendering),
which can be of good use to tackle the reality gap. Ignition Gazebo is in a relatively
early stage, meaning there is a limited amount of RL research conducted with it,
although some has been done [57]. It is worth mentioning that Gym-Ignition [17]
is introduced as a framework that simplifies its usage for RL research.

Nvidia Isaac

Nvidia is developing a promising robotics simulator called Isaac Sim [31]. This
simulator utilizes PhysX [61] physics engine and has support for SOTA PBR
rendering. Isaac sim also comes with a software framework designed for RL called
Isaac Gym [30]. One of the significant advantages of Isaac Sim is that physics
computations, rendering, as well as the process of determining rewards can be
offloaded to GPU in order to enable running a large number of environments in
parallel. As of May 2022, Isaac Gym is only available as early access, and its
functionalities are limited. They provide a ROS API, which makes it possible to
set up code similar to real physical code.

CoppeliaSim

CoppeliaSim is a robotics simulator with a range of user-centric features, including
sensor and actuator models, as well as motion planning and forward and inverse
kinematics support. CoppeliaSim recently introduced a python toolkit for robot
learning called PyRep. This has been used for pick and place [32].

Webots

Webots is an open-source and multi-platform desktop application used to simulate
robots. Webots comes with a complete development environment where you can
model, program, and simulate robots [92]. It has an extensive library of sensors
and robot models, which can be used when modeling the environment. It supports
C, C++, Python, Java, MATLAB, or ROS, for programming robots with detailed
API documentation for each option. Webots uses a customized ODE physics
engine at its core. Webots has a node called PBRApperence [93] that can be used
for physical-based visual appearance of an object. This might help when it comes
to domain randomization.
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3.1.2. Simulator used

Of the considered robotic simulators, Mujoco was selected for the following rea-
sons:

Mujoco was chosen over Gazebo, Ignition Gazebo, Nvidia Isaac, and Webots be-
cause of the strong documentation on RL and the software framework Robosuite
[101] that support models of the robot, gripper, and environment present at the
lab. This makes it more reliable to solve unforeseen challenges and problems.
There was some downsides in making this choice. Webots was the physics sim-
ulator that scored best on speed and accuracy in [40] for robot grasping tasks.
Mujoco was not too far of, but the fastest simulator was not chosen. Another
challenge is the lack of ROS in Mujoco. Because the code on the physical setup
was based on ROS, we lost some similarity in code structure between simulator
and physical setup by choosing Mujoco over the other four mentioned simulators,
who all support ROS.

Pybullet was a close contender, but after looking at papers that compare different
physics simulators when tested on robotic grasping and different accuracy and
speed tests, Mujoco scored better than Pybullet on categories important for this
task. The categories that were looked at were the performance of the gripper
on small and precise movements [40], and accuracy and speed when it comes to
robotic applications [15]. It is worth mentioning that Pybullet scored very well
on handling multiple physics collisions simultaneously by looking at a scenario of
falling spheres. Because our environment only consists of one cube, this was not
given too much attention but could be important if multiple objects were to be
interacted with simultaneously.

Coppeliasim fell short because of the lack of studies comparing its performance to
other simulators. This made it safer to choose a simulator with already promising
results.

3.2. Simulation Setup
This section describes the simulation framework used and how the environment
is built in the code. I also presents the choices made along the way.

3.2.1. Robosuite

Robosuite is an open-source framework for robot simulations with Mujoco as its
physics engine. It is a modular framework with different robots, grippers, objects,
controllers, renderers, and tools to adjust the robotic environment. It is easily
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(a) (b)

Figure 3.1.: Shows the visual differences between the simulated and physical
environment.

implemented and can be used with the Stable-Baselines3 implementations of the
PPO algorithm as mentioned later in section 4.1.2.

Models for the KUKA iiwa and the Robotic 2F-85 gripper are conveniently avail-
able, and tools to mimic the MANULAB environment are in place. The camera
perspective, the field of view, and the resolution of Zivid can be imitated. It has
operational space, joint space, and joint velocity controllers to be used on the
simulated robot. With the different controllers, it could be possible to change the
controller if a solution seemed more promising throughout the project.

Robosuite was chosen as the framework because of its adaptability, intelligibility,
the presence of relevant hardware models, and its Mujoco physics engine.

3.2.2. The basearena

At the base of the environment lies an XML file called lab_arena.xml. This file
placed everything in the environment except the robot, gripper, and the objects.
Here, the table was given the exact size and placement as the table in the lab.
Its surface texture was based on an image taken of the table in MANULAB. The
lighting in the room was also set here. A white texture for the walls was chosen
to mimic the white bed sheet in the physical setup.

There were used two light sources in the environment. One was placed at [x y z]
= [3 1 4] to mimic the lighting from the lab’s roof and, consequently, the shadows
on the table. The other was placed at [x y z] = [1.6 0 1.45]. This was to mimic
the reflections from the projector on the Zivid camera. The projector of the zivid
camera is described in section 5.3. A comparison of the lighting and shadows can
be seen in fig. 3.1.
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(a) (b)

Figure 3.2.: Shows the improved KUKA iiwa model. The link meshes are split
to mimic the design of the physical KUKA iiwa.

3.2.3. KUKA iiwa 14 r820 in simulation

The KUKA iiwa 14 r820 was not implemented in Robosuite, but the KUKA iiwa
7 r800 was available. The robot was represented with visual and collision .stl
files, where the visual models were of higher resolution than the collision models.
The .stl files were referred to in an XML file with the appropriate parameters to
represent the robot accurately.

The XML file from the iiwa 7 was used as the foundation for implementing the
iiwa 14. Meshes, for both visual and collision models, were collected from the
Unified Robot Description Format (URDF) provided in the ros-industrial Github
repository [68]. The collision .stl files were directly transferred to the mesh di-
rectory referenced by the XML. As visual meshes .dae files from ros-industrial
were converted to .stl before being placed in Robosuite. We had to remove double
faces in the meshes to prevent shadow artifacts in the vicinity of the joints. These
artifacts were visible because of shadow aliasing [95]. The URDF file was used to
find the appropriate parameters for the XML file.

We were not satisfied with the KUKA iiwa 7 representation in Robosuite. All
joints containing orange details were fully colored 3.2a, which is not satisfactory
when we rely on an accurate visual representation to limit the sim-to-real gap.
By splitting the relevant meshes and saving them in separate files, we could refer
to the part independently in the XML file. The color could then be set for the
parts separately, which ended in the model shown in fig. 3.2b

In the XML file, the joint limits were set to the same values as the physical robot,
as shown in table 5.1.
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3.2.4. OSC controller in simulation

A Operational Space Controller (OSC) was used to control the robot. The con-
troller has a 6D input dimension consisting of the position and orientation of an
end-effector site placed between the finger of the gripper. This site can be seen
in fig. 3.9.

The controller in our environment follows the formalism from [38]. The OSC
framework "computes the necessary joint torques to minimize the error between
the desired and the current pose of the end effector site with the minimal kinematic
energy"[10]. The controller is further explained in [10].

The default control settings from Robosuite were used in this work, except a
position limit in the z-direction and the control frequency. The exceptions are
explained in chapter 6 and section 3.6.2 respectively. With these settings, actions
from the agent were clipped in a ±0.05 m range for translations and a ±0.5 radians
range for rotation, as mentioned in section 3.6.1. The torques were then calculated
by the OSC and sent to the robot. From testing, we saw that the robot moved
with a maximum of 0.0003 m and 0.0045 radians for every time-step. With our
control frequency defining that an agent-step is 50 time-steps, every agent step’s
movement was a maximum of 15 m and 12 degrees.

3.2.5. Robotiq 2f-85 in simulation

The Robotiq 2f-85 was already available in the Robosuite framework. The repre-
sentation of the gripper in Robosuite is analogous to the KUKA iiwa representa-
tion with .stl files and an XML file. It was necessary to add the in-house made
aluminum adapter plate, and the coupling [66] that enables communication and
power supply for the gripper. The .stl files for the two parts were added to the
gripper folder in Robosuite. Furthermore, the parts’ parameters for placement
and color were implemented in the XML for the gripper.

The end effector site used as the end effector position by the robot controller is
shown in fig. 3.9. The site was defined in the Gripper class in Robosuite. This
class read the gripper XML file and served as the core modeling component in
the simulation. I addition to reading the XML file and defining the end-effector
position, this class defined the gripper action, speed, initial position, and more.

It was found that the gripper used in the simulation was an old version of the
2F-85 gripper. There were minor variations in the dimensions, but they had the
same under-actuated structure and had almost an identical way of interacting
with the objects. The main difference was the fingertips, as shown in fig. 3.3. The
fingertips are thinner in the simulated version, as seen in fig. 3.3a.
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(a) 2018/05 revision manual [29] (b) 2018/11 revision manual [66]

Figure 3.3.: Shows the revisions of the Robotiq 2F-85 gripper.

Through measuring, we found a 10 mm difference in height for the simulated
gripper model relative to the drawings in fig. 3.3, and effectively our physical
gripper. We think this difference came from the loose inner joints in the Robosuite
illustrated in fig. 3.4h. It can be seen how the inner knuckle aligned the fingers
and consequently stretched them downwards by comparing fig. 3.4a and fig. 3.4e.
Both the 2f-85 and the 2F-140 Robotiq gripper in Robosuite had loose joints
between the inner knuckle and the inner finger. To make up for this difference,
we made the fingertips 10 mm longer.

Figure 3.4 shows how the interaction with the table was almost identical for the
simulated and physical gripper when the gripper was closed. There were only
small angular and translation differences. In contrast, the open gripper in the
simulation collapsed when interacting with the table. This was because of its
loose joint between the inner knuckle and the inner finger.

There were other dynamical differences between the physical and simulated grip-
per. Figure fig. 3.5 shows that the interaction between the gripper and an object
was non-identical. This applied to the gripper both in the closed and open con-
figuration. When the physical gripper was in contact with the box it "gave in"
because of its under-actuated structure. The gripper did not push down on the
cube with much force. With horizontal gripper translation, the cube only moved
to a small degree because of the low friction coefficient between the gripper and
the cube. These described dynamics were mismatched in the simulation because
the under-actuated abilities were not implemented. If the gripper was in contact
with the cube, it pushed the cube without movement in the gripper joints. In
some cases, it could push the box into the table as fig. 3.5 shows, and even push
the cube through the table.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4.: Gripper-table interaction in physical and simulated environment.

(a) Physical gripper (b) Simulated gripper

Figure 3.5.: Difference in gripper-object interaction.
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3.2.6. The Object

The cube’s density, color, and friction were set to mimic the cube in the lab as
close as possible. After weighing the cube, the density was set to 375 kg

m3 . The
sliding, torsional and rolling friction is shown in table 3.1 is empirically tested
by comparing the behavior of the objects when pushing the cube from different
points in the physical and simulated environment. The sliding friction was set
by comparing pushes on a low point on the cube. The rotational and torsional
friction was set by looking at how the cube tipped over and rolled in the physical
world when being pushed at a high point and then imitating this in simulation.

Table 3.1.: Used friction forces
Type of Friction Friction value

Sliding 0.01
Torsional 0.005
Rotational 0.0001

3.3. Observation Space
The observation space used in this thesis are RGB images

3.3.1. Image observation

The image observations were chosen to be RGB with a resolution of 84x84. This
is the exact resolution they used in Fan et al. [16], and we found this to be an
adequate size. Both the physical and simulated images are shown in fig. 3.6.

The placement of the Zivid camera in the simulation was based on the physical
placement. During testing, both an approximate placement and calibrated place-
ment were used. These placements were described with a transformation matrix
as explained in section 5.3.3. Because the camera in the lab and simulator use
different coordinates to represent the rotation matrix, a conversion between the
two coordinate frames was used. This matrix is shown in fig. 3.7 is used to go
from lab to simulator.

An 84x84 image size was set and, consequently, set the pixel size. The image’s
width is found based on the pixel size and given horizontal resolution, in our case,
84. The middle of the image is defined by the transformation matrix describing
the camera frame position.
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(a) (b)

Figure 3.6.: Shows the visual differences between the simulated and physical
image observation.

1 0 0
0 −1 0
0 0 −1


Figure 3.7.: Matrix to convert rotation matrix from lab to simulation
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3.3.2. Observations in Robosuite

There are proprioceptive observations available to be used in the Robosuite frame-
work. Proprioceptive observations are all the observations that not can be con-
sidered as an image. A set of these observations are shown in table 3.2. The joint
position and end effector observations was used throughout the testing process.
During training, the cube position observation was used in the calculations of the
policy reward.

In addition to the observations, the authors implemented an observation. The
g_obs is a continuous variable that sends the gripper’s current position where -1 is
entirely open, and 1 is completely closed or in contact with an object. The gripper
observation is a continuous variable because we did not manage to implement
discrete variables in Stable Baselines.

Table 3.2.: List of Robosuite observations. The gripper_status observation was
implemented by the authors.

Observation name Variables
image (84x84)

robot_eef_pos (x,y,z)
gripper_status (g_obs)

3.4. Action Space
The action space for the end-to-end robotic grasping consists of continuous actions
in Cartesian space and a gripper command.

OSC was used to control the robot with an action dimension of 6 as mentioned in
section 3.2.3. The reason for this was better learning [6] and the ability to limit
the action space. Furrer et al. [6] argue that an action space in the operational
space makes for better learning than joint space because of the similar relative
poses between objects and gripper. They further mention that velocity and torque
control demands higher accuracy for the physical models compared to position
controller. In addition, it is simple to reduce the action space to three or four
variables and still have a model that can pick an object when using operational
action space. Restrictions can also be set to where the robot can move to avoid
crashing in its environment.

In our environment, we sat a restriction in height for the end-effector. This was
to prevent collisions between the gripper and the table in the lab. The restriction
also prevented contact between the gripper and table in simulation, as illustrated
in fig. 3.4h. By testing, we found that 0.819 was a preferable height. Both the
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simulated and physical robot had a small gap of about 2 mm to the table with
this restriction.

Table 3.3.: List of Robosuite actions.
Action name Variables Comment

robot_eef_pos (x,y,z,c) Delta values
gripper_pos (g_pos) Continous

The full potential action space was of dimension 7 [x, y, z, a, b, c, g] where the
first 6 variables describe the end-effector position of the robot. These commands
describe the difference between the current pose and the desired pose. The first
three variables are described in Cartesian coordinates. [a, b, c] are calculated with
rotation encoding and relates to rotation about the x,y, and z axis’s. Lastly, g
relates to the gripper command.

Our action space is continuous, and each variable’s upper and lower value is set
from [−1, 1] and of type float32. This is the same for the gripper action, where
negative values open the gripper and positive values close the gripper. By default,
the environment clips the gripper action according to eq. (3.1) in Robosuite.

ac =


ac + s ∗ sign(a) if -1 < ac < 1
−1 if ac <= -1
1 if ac >= 1

(3.1)

where ac is the current action, s is the speed telling how big of steps to take each
update, and a is the new action given. sign() checks if a is a positive or negative
value.

The speed used in this work was set to s = 0.01. Different values were tested, but
this was chosen because it allowed the gripper to have smooth and controlled mo-
tion. Setting the speed too high led to the gripper being too aggressive and often
hitting the cube out of the frame. The control frequency sat in the environment
also affects the movement of the gripper, and this parameter is discussed in detail
in section 3.6.2.

Limiting the action space gives the agent fewer parameters to optimize. One
way to limit the number of variables is to neglect a and b, which are horizontal
rotations from our action space. This is done in other state-of-the-art papers like
[36] and [6]. This would limit our action space to 5 dimensions [x,y,z,c,g]. We also
had one test where the action space was set to [x,y,z,g] to reduce our action space
further. An argument for why this reduction is appropriate is that most objects
can be picked without the two last degrees of freedom.
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(a) (b)

Figure 3.8.: Shows how the gripper can make the gripper bounce over the reward
limit.

3.5. Reward Function
Reward shaping was used to speed up the learning and guide the exploration, as
mentioned in section 2.4.10. A reward function that combined the task’s three
phases was made. The agent must first approach the object, then grasp, and
finally lift it to perform a successful lift.

Each episode lasted for 200 timesteps. Each agent-step received a maximum
reward of 1, meaning the maximum possible reward for one episode was 200.

The agent got a reward r = r1+r2+r3 for each step. r1 ∈ [0, 0.444] was 0.444 when
the gripper’s grip site shown in fig. 3.9 was at the cubes position. It decreased
as the grip site was further away. r2 = 0.111 if both insides on the fingers of the
gripper were touching the cube and r2 = 0 otherwise. r3 = 0.444 if the cube’s
center was above 4 cm and the inside of the fingers of the gripper were in contact
with the cube such the robot was lifting the cube. It was zero otherwise.

The KUKA iiwa robot was initially rewarded a full score if it could get the cube 4
cm over the tabletop. This reward threshold was inspired from [16]. One downside
of this was that the robot occasionally could hit the cube and make it reach this
height, as shown in fig. 3.8. To prevent this, we added the criteria that both
insides of the gripper fingers had to be in contact with the cube while it was lifted
4 cm over the table.
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Figure 3.9.: End effector position of the system

3.6. Parameters
An essential part of the Robosuite environment is the parameters that define how
the simulator behaves during training. In this section, two parameters related to
the gripper and robot movement are presented.

3.6.1. Output parameter

The output_min and output_max parameters relate to the clipping of actions of
the robot. They define how far the robot moves between every time-step when an
action is given. A time-step is defined as the frequency at which the simulation is
updated. These parameters are presented in table 3.4 with their respective values.

Table 3.4.: List of the clipping parameters for the actions given to the Robosuite
environment.

Parameter name Values
output_min (-0.05, -0.05, -0.05, -0.5, -0.5, -0.5)
output_max (0.05, 0.05, 0.05, 0.5, 0.5, 0.5)

With the values presented in table 3.4 a positional action from the agent is clipped
to a value between -0.05 and 0.05. The angular agent action is clipped to a value
between -0.5 and 0.5. With a control frequency at 10 Hz, these values give an
approximately maximum movement of 15 mm and 12 degrees. Raw data from
these tests can be found in the digital appendix appendix C.3.3.
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3.6.2. Control frequency

The control frequency defines how many time-steps there are in every agent step.
An agent-step is how often observations and actions are given to the agent in
the simulated environment. By default, the control frequency is set to 20 Hz by
Robosuite. Each time-step in the Robosuite simulation is 0.002 seconds, giving 25
time-steps for each agent step. This parameter can be changed but will interfere
with several parts of the system.

Robot and gripper movement is affected by the control frequency. Both set an
end goal and move towards their goal at a specific speed. If the control frequency
is high, the gripper and robot may not reach their goal position in time for a new
observation and action. A new action from the policy may contradict the previous
action for the robot and gripper and move them in another direction.

With a control frequency of 10 the eq. (3.1) runs 50 times for each action given.
With the given speed, the gripper takes 4 action steps to reach its goal from
open to closed. It frequency limits the robot movement to the values described in
section 3.6.1.

After testing with different control frequency values, we found that the training
speed decreases substantially with a low frequency. This is because the low fre-
quency demands more motion steps before a new observation and action is taken.
The number of action steps for each episode is set to 200. With a control frequency
of 1 every episode has 200 ∗ 500 = 100000 time-steps, while a control frequency of
20 has 200 ∗ 25 = 5000 time-steps. This resulted in training with updates taking
110 minutes and 43 minutes, respectively.

In this work, a control frequency of 10 Hz was used. High-performing agents
have already used this frequency [16]. It was low enough to limit the gripper
movement to 4 steps between each agent-step while at the same time keeping the
robot movement distance low between each agent-step. It also gave an acceptable
training time.

3.7. Domain Randomization
Domain randomization was implemented as a tool to handle the sim-to-real trans-
fer. Why this is the case is discussed in section 2.4.7. Domain randomization was
applied for several properties at each environment reset, i.e. before the beginning
of every episode.
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Figure 3.10.: Examples of domain randomization applied to the implemented
simulation environment for robotic grasping

3.7.1. Visual Randomization

Visual randomization is an important part of the domain randomization. It is
important because of the visual differences in the physical and simulated environ-
ment. Camera placement, lighting, and color were the main parameters that were
randomized. Different examples of domain randomization used in this work are
shown in fig. 3.10

Randomize camera configurations

Because of differences between the camera placement in the simulator and the
physical world, the camera position, orientation, and FOVY were randomized
upon initializing each environment. The position was uniformly randomized with
a range of 1 cm in the positive and negative direction for the [x,y,z] position of
the camera. The FOVY also used a random uniform distribution with the range
of 1 degree in positive and negative value from the initial FOVY which was 36
degrees. For rotation, a random axis with a uniformly random angle was chosen.
The random angle had a lower limit of 0 and an upper limit of 0.01 radians to
rotate around this axis.



54 Chapter 3. Simulation

Random color and texture

The color of the robot and gripper were randomized in each episode. The color
was decided by using the original colors for the robot and gripper as the base and
then using an RGB interpolation of size 0.2 to change the color from here. The
formula for the randomized color ⃗rgbn is shown in eq. (3.2)

⃗rgbn = (1 − in) ∗ ⃗rgb + U(0, 1)3 ∗ in (3.2)

where in = 0.2 is the interpolation value, ⃗rgb is the default color of the object and
U(0, 1)3 is a vector of size 3 with uniformly random numbers in the range from 0
to 1.

The reflectance, shininess and specular describing the texture of the walls, table,
and floor were randomized in each episode. The formula for deciding texture was
the same used for deciding color eq. (3.2). The difference was the vector r⃗ss
describing the base reflectance, shininess, and specular value of the texture, and
the interpolation value used was in = 0.3

Random lighting

The position and direction of the light source were randomized as well as the
specular, ambient and diffuse attributes.

The position of the light source was uniformly randomized with a length of 1 cm
in all directions from its original position. The direction of the light was changed
by rotating a uniformly random angle in the range of 0 to 0.2 radians around a
random axis.

A uniformly random delta value in the range of 0 to 0.1 was added or subtracted
from the default size of the light’s specular, ambient, and diffuse attributes.

3.7.2. Dynamic Randomization

Random Pose and orientation of object

The pose and orientation of the cube were set uniformly randomly at the start of
each episode. The pose was placed within a space of width 30 cm and depth of
10 cm, with the space’s center located at the center of the table. Moreover, the
object was uniformly rotated around the z axis.
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Size on cube

The cube size was randomly sampled between 38mm2 and 42mm2 at the start of
each episode. This forced the agent to adapt to slight deviations in the cube.

Random initial Joint Configuration

At the beginning of each episode, Gaussian noise, with mean 0 and variance
multiplied by a magnitude of 0.02, was added to each joint to give slight deviations
to the robot starting configuration.

3.7.3. Further randomization

Further dynamic randomization was not implemented. This was because of the
architecture we chose for the system. The policy did not interact with the physical
system directly, but all actions went to the Robosuite environment before it was
sent to the physical environment. By doing this, the robot’s dynamics were the
same during testing and training.





Chapter 4.

Training

This chapter describes the frameworks used in training as well as the decisions
made for training.

4.1. Frameworks
An overview of the framework architecture, which uses the Robosuite and Stable
Baselines framework as the foundation for the environment and training process,
is shown in fig. 4.1. The MuJoCo engine instantiates a simulation model referred
to as an environment. The policy then sends a set of actions to the low-level
controller and a rollout buffer. The controller uses these actions to compute a set
of torques. Based on the torques, the MuJoCo engine performs internal calcula-
tions to determine the next state of the simulation. Sensors within the Robosuite
framework retrieve information from a new simulation state and generate cor-
responding visual and proprioceptive observations. These observations are sent
back to the current policy and, together with a reward, dependent on the recent
action, are sent to the rollout buffer for gathering off data. The data stored in the
rollout buffer is trajectories consisting of multiple action, observation, reward, and
termination tuples. The dashed lines represent the data flow during the training
of a PPO agent. The training loop consists of two main parts. First is the desired
amount of data gathered in the rollout buffer by the current policy. Secondly, is
this data used to optimize the parameters in the networks. This is done repeatedly
until the agent’s desired behavior is reached.

4.1.1. Algorithm used

PPO was used as the model-free on-policy algorithm for training during this thesis.
The reason for this is its ability for easy hyperparameter tuning and clipped trust-
region updates, which restricts poor updates as introduced in section 2.5. PPO
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Figure 4.1.: Framework architecture. Actions are sent from the current policy
to the robot’s controller and the rollout buffer. The controller converts actions
into low-level torque commands. The MuJoCo engine uses the torque commands
to calculate a new simulation state. The sensor and renderer interpret the new
simulation state and convert them into observations, which are sent back to the
current policy and the rollout buffer. The rollout buffer is filled until a given
amount before the data of action, observation, reward, and termination tuples are
used to optimize the parameters in the policy network. The dashed lines illustrate
the training loop
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has also shown promising results in other papers relevant to the task at hand, like
[16] that uses Robosuite and PPO to solve a similar grasping task a presented in
this paper. [26] uses PPO to train a policy to reach, grasp and re-grasp different
objects.

Different papers have been evaluated when comparing PPO ’s performance to
other algorithms. [43] compare SAC, PPO and Interpolated Policy Gradients
(IPG) [21] for solving the vision-based robotic grasping problem KukaDiverseOb-
ject by OpenAI/Gym. The environment provides observations in the form of
RGB images and takes continuous action inputs, which makes it relevant for this
thesis. PPO outperform SAC by some margin. IPG scores the best, but due to
lack of algorithm implementation in Stable-Baselines3 and PPOs easily tunable
hyperparameters where PPO chosen above IPG.

[48] compare the performance of TRPO, PPO and DDPG on different robotics
task on real-world robots. Among these tasks where a reacher task with a UR5
robot evaluated. The agent’s objective was to reach arbitrary target positions by
exercising low-level control over a six-joint robotic arm. DDPG performed poorly
on the reaching task while TRPO slightly outperformed PPO. However, [48] also
looked at the different algorithm’s ability to transfer between tasks where the
same hyperparameters for the original task are used on the second task. Here
did PPO outperform TRPO. This result indicates that although hyper-parameter
optimization is likely necessary for the best performance on a new task, a good
configuration based on one task can still provide good baseline performance for
another. Considering we have available hyperparameters from Stable-Baselines3
for PPO was this another strong argument as to why go for PPO as our algorithm.

It is worth mentioning that most of the other algorithms presented in this thesis
have shown promising results on robot grasping and would possibly work for this
task as well.

In this thesis was PPO in an actor-critic fashion used. With the actor consisting
of a policy πθ(st) parameterized by Θ and a critic consisting of estimated value
function Vϕ(st) parameterized by ϕ.

4.1.2. Stable Baselines

It can be very time-consuming and error-prone to implement DRL algorithms
from scratch. Therefore, a framework with pre-existing implementations of the
algorithms described in section 2.3.2 i.e PPO, SAC and DDPG was utilized. PPO
was the main priority as mentioned above, but if it didn’t achieve desirable results,
was there a wish to have the other algorithms available.

After investigating available frameworks for model-free RL was Stable Baselines3
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[63], hereafter referred to as Stable Baselines, chosen. This was due to its reliable
implementation of the wanted algorithms, open-source nature, and extensive doc-
umentation. PyTorch [59] was used as the machine learning backend, which is an
optimized tensor library for deep learning using GPUs and CPUs. This helped
speed up the learning process.

Weights and Biases [94] was used to monitor and plot the training. The policy
used a callback function during training to send relevant data.

4.1.3. Wrapping the environment

To make the environment from Robosuite compatible with Stable Baselines, the
environment needed to be wrapped to follow the OpenAI Gym interface. Robo-
suite already had a gymwrapper, but a new class called GymWrapper_multiinput
was made. The class was made because certain wanted features were missing.
This enabled us to use CNN on the image observations while NN on propriocep-
tive observations (gripper status and end-effector position), limit the action space,
and give information on wanted parameters like successful grasps.

To speed up the training and gathering of data, 64 parallel environments were run
simultaneously. A run-through of the wrapping done for each environment before
training was started is presented here:

1. Each Robosuite environment was wrapped with the gymwrapper_multi-
input class. This makes the environment compatible with Stable Baselines
as mentioned above.

2. The environment was then wrapped with a domain randomization wrapper.
This enabled the visual randomization described in section 3.7.1. This was
only done if training with domain randomization was wanted.

3. A Monitor wrapper was used for logging different data relevant for training.

4. All of the 64 environments were stacked together to a single Vectorized
environment with the SubprocVecEnv wrapper from Stable Baselines. This
is the wrapper that enables multiprocessing of the parallel environments.

5. Lastly, a wrapper called VecTransposeImage was used. This Re-ordered
image channels from HxWxC to CxHxW and is required for PyTorch con-
volution layers.

The proprioceptive observations and reward were normalized. This was to speed
up the convergence of the training process and reduce the estimation error when
training with Neural Networks [77]. This was also recommended by Stable Base-
lines when training with on policy algorithms [85]. The image was normalized to
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lie in the range of 0 to 1 by dividing every pixel by 255.

4.1.4. High Performance Computing

To train the agents, a high-performance computing cluster called Idun was used.
Idun is a cluster of GPUs and CPUs available for research with High Performance
Computing (HPC) at NTNU [28].

The different GPU’s available are:

• P100 (40 available GPUS) with 16GB

• V100 (38 available GPUS) with 16GB and 32GB

• A100 (64 available GPUS) with 40GB and 80GB

Idun’s operating system is CentOS, meaning we could not install software that
was packaged for Ubuntu. Because Mujoco and Robosuite are built for a Linux
operating system a containerized applications using Singularity needed to be used.

The Idun cluster’s communication is based on SSH communication. Upon train-
ing, gathering data for the agent was done with 64 CPUs, while optimizing the
parameters was done with a A100 80GB GPU.

Singularity

Singularity [75] is a container platform. It allows you to create and run containers
that package up pieces of software in a way that is portable and reproducible. It
can be built on a local laptop and then run on large HPC clusters. The container
is a single compressed read-only Singularity Image File (SIF) file containing all
needed software for your desired operating system. It is built from a Singularity
Definition File (DEF).

The DEF file is like a set of blueprints explaining how to build a custom container.
It includes specifics about the base OS to build or the base container to start from.
It also includes software to install, environment variables to set at runtime, files
to add from the host system, and container metadata.

A Singularity Definition File (DEF) is divided into two parts:

1. Header: The Header describes the core operating system to build within
the container. Here you will configure the base operating system features
needed within the container. You can specify the Linux distribution, the
specific version, and the packages that must be part of the core install
(borrowed from the host system).
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Figure 4.2.: The architecture of the Multi Input Policy

2. Sections: The rest of the definition is comprised of sections (sometimes
called scriptlets or blobs of data). Each section is defined by a % character
followed by the name of the particular section. All sections are optional, and
a def file may contain more than one instance of a given section. Sections
that are executed at build time are executed with the /bin/sh interpreter
and can accept /bin/sh options. Similarly, sections that produce scripts to
be executed at runtime can accept options intended for /bin/sh

The DEF file used in this thesis and instructions for connecting and using the
Idun cluster is available on our Github repository [56].

4.2. Network Structure
The network used in this thesis was separated into two main parts, as shown in
fig. 4.2. One feature extractor and one fully connected network.

The feature extractor : which is shared between the actor and the critic to
save computation, extracts features from high dimensional input. In our
case, an RGB image of size (84,84,3).

Fully Connected Networks that map the features to actions/value.

Our multi-input policy was inspired by [16]. The network took a monocular 84
× 84 × 3 RGB image as input, which was fed into a CNN feature extractor. The
extractor consisted of an 8 × 8 convolution with 16 filters and stride 4, followed
by a 4 × 4 convolution with 32 filters and stride 2, with ReLU activations in-
between. The convolution outputs were flattened and passed into a linear layer
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of size 256, which was concatenated with the normalized end-effector and gripper
status observations.

The concatenated features were sent to a shared linear layer of size 100 before
it was further fed into two separate networks for actor and critic. Both these
networks had hidden layers of sizes 300 and 200 with TanH activations. The actor-
network output an action means and a log-likelihood eq. (2.2) for the taken action.
The critic network output a scalar which was an estimate of the value function in
that state. The actions from the actor were sampled from a Gaussian distribution
with a diagonal covariance matrix before being fed back to the environment.

The critic and actor-network was updated through backpropagation upon every
update.

4.2.1. Hyperparameters

The PPO algorithm described in section 2.5 was used for training. The focus of
this study was not to optimize hyperparameters for the algorithm, so unless stated
otherwise, were the default hyperparameters from Stable Baselinses used [14].
These values were empirically yielded good results for a variety of environments
[64].

PPO is an on-policy algorithm meaning it only learns from its own generated
data per update. When training without domain randomization, each of the
64 environments collects 2048 tuples of data. This results in 131 072 tuples of
observation, action, reward, and terminal info to optimize over for every update.
When training with domain randomization, each environment takes 3072 steps
before each update, which results in 196 608 tuples of data per update. More data
is used when training with domain randomization to limit the trade-off discussed
in section 2.4.7.

Upon every second update are, the agent was evaluated for 20 episodes. The
agent was evaluated on successful grasps and episodic mean reward. An instance
of the agent was saved if it beat either the previous best successful grasp or means
episodic reward.

The batch size was set to 512, compared to the standard 64. This corresponded
to how many experiences/tuples used for each gradient update. With the chosen
batch size, the agent had the opportunity to look at all the data leading up to
a successful lift. Considering that our episodes were 200 tuples long, could a
batch size of 64 clip a successful lift trajectory at an unwanted place. This means
that the agent only would learn from the last 64 steps leading up to the lift. It
would therefore miss out on the opportunity to learn what was good to do on step
65 and further backward. So the agent would not be able to learn the optimal
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action when given the observation in step 65 and further back. By using a batch
size bigger than 200 this was not a problem, and the agent would not lose any
information leading up to the successful lift.

The same random seed was used to train all agents. This was to prevent random
parameter initializing from being a factor when comparing results.

A learning rate scheduler decreased the learning rate for every update. It started
at α = 1x10−4 and linearly decreased to 0 with the remaining training process.

A summary of the hyperparameters used is shown in appendix D.



Chapter 5.

Physical environment

This chapter describes the main components of the experimental setup used in this
thesis and the configuration of these. The ROS2 communication for the system
is also presented. The chapter is highly influenced by the Development Of A Test
Setup For Pick And Place Tasks With Deep Reinforcement Learning specialization
project.

5.1. KUKA LBR iiwa 14 R820

5.1.1. Description

The KUKA LBR iiwa 14 R820, from now on referred to as KUKA iiwa, is a 7-
degree of freedom robot manipulator delivered by the German robot manufacturer
KUKA AG. The manipulator has a maximum payload of 14 kg, a precision of 0.1
mm, and a reach of 820 mm [42]. It is a lightweight robot that is aimed at doing
tasks in collaboration with humans with a high degree of safety.

The KUKA iiwa has integrated torque sensors in its joints. These can be used for
force control of the end effector, moving the end effector manually, monitoring the
force applied on the end effector, and stopping the robot immediately if it crashes
in itself or the environment.

5.1.2. KUKA Sunrise cabinet

The KUKA iiwa robot is connected to a KUKA Sunrise Cabinet. It has a
KUKA.OS operating system that enables communication with third party com-
puters as well as tools to convert commands to motion commands. The Sun-
rise cabinet works as the crossroad for all communication between a KUKA iiwa
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Figure 5.1.: Shows the hardware related to the KUKA robot. 1: Development
computer, 2: KUKA SUnrise Cabinet, 3: KUKA iiwa, 4:KUKA smartPad. The
green cable illustrates the ROS2 communication, and the blue cable illustrates
the cable used for Java communication. Image from: [41]

robot, a development computer, and a KUKA smartPad control panel, as shown
in fig. 5.1.

The third-party computer is used for building robot applications with the KUKA
Sunrise.Workbench software. The Sunrise Cabinet in MANULAB runs on Win-
dows 7 and is programmable with Java 1.06 through robot applications. When
building an application, any interchangeable parameters for the robot can be con-
trolled, e.g. the workspace, robot speed, and joint limits can be restricted to
improve the environment’s safety. In addition to changing parameters, the com-
munication interfaces can be configured.

As shown in fig. 5.1 a KUKA smartPad control panel is also connected to the
Windows 7 part of the Sunrise Cabinet. This can be used to start up applications
uploaded to the Sunrise Cabinet. It can reset any applications, override them,
and be used for repositioning the robot if it moves to the outer limits of the
joints or the workspace, as well as being an interface for surveillance of joint and
end-effector position. Error messages also appear if something is out of place.

5.1.3. Motion control

Actions can be sent to the Sunrise controller as an individual pose or a trajectory.
These actions can be sent in joint space or operational space. There are 7 variables
for a joint space action, one for each joint. For an operation space action, there are
6variables; 3 for the Cartesian position and 3 for the rotation of the end effector.
The actions can be represented as absolute values, where the base frame of the
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robot is used as the reference, or as Tool Center Point (TCP) values where the
current state of the end effector is used as reference.

The Sunrise controller can calculate the actions into motions. The robot can
be controlled with linear motion or Point-to-Point (PTP) motion. With a linear
motion the robot moves in a linear path in the Cartesian coordinate system. With
a PTP, the path is optimized for fast movements with the robot joints. Both the
linear and PTP movements have SmartServo versions. These motion planners
can have vision-based collision avoidance and can continuously correct the path
of the robot.

5.1.4. KUKA iiwa in MANULAB

The KUKA iiwa in MANULAB was placed 30 cm from a wall on a table. Safety
restrictions in the robotic configuration were in place to limit the workspace, pre-
venting the robot from moving close to the wall or outside of the table parameter.
These restrictions prevented the robot from crashing into hardware or people.
There were no restrictions to avoid collisions between the gripper and table, but
the torque sensors could detect a collision and shut down the robot. In addition,
the joint limits were set to the values shown in table 5.1.

The application uploaded to the Sunrise Cabinet from the third-party computer
enabled ROS2 communication with the robot [84]. It was located on the computer
used in MANULAB and synchronized through an Ethernet cable connected to
the Sunrise Cabinet. When the application was launched from the smartPad,
the controller constructed a ROS2 node that enabled DDS 2.6.3 communication
over another Ethernet cable connected between the computer and the Sunrise
Cabinet. The cables are illustrated in fig. 5.1. Both the subscriber and publisher
of the robot node communicated with joint position messages.

The actions were sent to the robot with individual absolute joint space posi-
tions. The robot was moved with the PTP Smartservo controller mentioned in
section 5.1.3. Arguments for why this was chosen are presented in chapter 6.

5.2. Robotiq 2F-85 Gripper

5.2.1. Description

The Robotiq 2F-85 gripper is a two-finger gripper made for repetitive tasks with
robot manipulators. It has an 85 mm stroke, a pinching force between 20 and 235
newton force, and weighs 0,9 kg [78]. The gripper has an under-actuated structure
with one actuator. Consequently, the fingers adapt to the shape of the objects
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Table 5.1.: Shows the joint limits for the KUKA iiwa. These are used both for
the physical and simulated robot.

Link Min (deg) Max (deg)
Link 1 -170 170
Link 2 -120 120
Link 3 -170 170
Link 4 -120 120
Link 5 -170 170
Link 6 -120 120
Link 7 -175 175

Figure 5.2.: Shows the under-actuated abilities of the gripper. ([66], page 12

it is picking, as shown in fig. 5.2. The fingers are replaceable and can perform
internal and external gripping if needed.

5.2.2. Software and communication

The Robotiq gripper has a Robotiq User Interface that can be used to test the
gripper’s connection and functions before connecting to it through custom-made
code. Several communication protocols are available for use, but in this project,
the Modbus RTU communication was used. After sending a startup signal to the
gripper, it can be controlled by transmitting force, position, and speed with values
between 0 and 255. A value of 0 corresponds with a closed gripper, and a value of
255 corresponds with an open gripper. Variables like requested position, current
movement, current position, and fault status can be sent to the user as feedback
throughout a gripping process.
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5.2.3. Gripper in MANULAB

The gripper was connected to the KUKA iiwa end effector flange with an alu-
minum adapter plate. A Robotiq coupling with cable inlet was placed between
the gripper and the adapter plate. The power and communication were delivered
with a custom Robotiq device cable from a Robotiq controller box. The cable was
fastened to the KUKA iiwa robot with a rubber band to prevent it from being in
the way of the robot’s movements. The Robotiq control box had its power supply
from a Siemens SITOP PSU100S and was connected to the third-party computer
for communication through a USB2 cable. Modbus RTU protocol was used to
communicate with the gripper as mentioned in section 5.2.

As mentioned in section 5.4.2, a ROS2 node enabled communication between the
agent and the gripper. In addition to setting up the Modbus RTU communica-
tion, the motion parameters for the gripper can be set. The speed was set to 200,
corresponding to 120 mm/s according to [66]. The force was set to 1, correspond-
ing to the lowest force of the gripper, 25 N. The low force was set to mimic how
the object slips between the simulated fingers.

It was desired that the physical gripper acted identical to the simulated gripper
when given an action from the agent. Therefore, as done in simulation training,
the node clipped the agent action according to eq. (3.1). When a closing signal was
sent from the policy node, the gripper moved towards its goal in four movements
to mimic the simulated gripper. This is further discussed in section 3.6.2. After
moving all four steps towards a closed position, the fingertips still had a 12 mm
space between them. Firstly, this was done to mimic how the gripper looks when
closed in the simulation fig. 3.4. Secondly, it stopped the physical gripper from
getting stuck when in contact with the table. Because it is an under-actuated
gripper, it gave in when pushed if not fully closed, as shown in fig. 3.4. This
would not be possible with a fully closed gripper. The four steps from open to
closed were only approximately identical because the 12 mm offset for a closed
physical gripper is not the same as the simulated gripper. However, the gripper
should be in contact with the cube in the same states.

5.3. Zivid Two Camera

5.3.1. Description

Zivid Two is a high-definition 3D vision camera that can provide point clouds
with RGB information with a resolution of 1944 x 1200 [102]. It uses structured
light to create its point clouds and collects both the point cloud and the RGB
image with the same sensor. This fact makes a precise XYZ and RGB matching.
The camera can send images with a frequency of 10 Hz.



70 Chapter 5. Physical environment

Figure 5.3.: Optimal working distance for Zivid 2 camera [102].

In addition to the XYZ and RGB output, the Zivid camera has an SNR output
for every image pixel. The SNR value is a Signal-to-Noise Ratio that describes the
camera’s confidence in the distance to a specific pixel. A low SNR value means a
low confidence in the distance and subsequently less useful data [76].

The camera’s weight is 945 g with a size of 169 mm x 122 mm x 56 mm. Zivid Two
has an optimal working distance of 500-1100 mm and a recommended working
distance of 300-1500 mm. The fig. 5.3 shows how the point precision changes
with distance. This is important to consider when choosing the placement of the
camera relative to the object being captured.

An important concept used while capturing an image is the camera acquisitions.
An acquisition is a set of parameters that determine the outcome of the capture.
The parameters used by Zivid are aperture, brightness, exposure time, gain, and
color balance. High Dynamic Range (HDR) images referrer to images where
several acquisitions are combined to get higher quality data. In a scene with both
dark and light spots, a HDR image can combine images to get high-quality data
from both of these spots.

The structured light used by the camera to capture 3D data comes from a projec-
tor. It can be seen in the 2D image from fig. 3.1 that the projector cast light on
the environment. This can cause reflections from hardware in the environment,
and be a disturbance when 2D images are used as input to an agent.

5.3.2. Software and Communication

The Zivid SDK has tools that enable communication with the Zivid camera. The
simplest way of communicating with the camera is to use Zivid Studio. This is



5.3. Zivid Two Camera 71

Figure 5.4.: Hand-eye calibration for stationary mounted cameras. [89].

software where the user can capture, analyze and adjust 3D and 2D images from
the camera. It is a useful test tool to find what parameters and acquisitions that
fits the project’s purpose and is used during the hand-eye calibrations in this
project. Official Python [104] and unofficial ROS2 [62] packages are also available
as options for the camera communications.

5.3.3. Hand-eye Calibration

Hand-eye calibration can be used to describe how the robot and camera are placed
in relation to each other. Figure 5.4 illustrates how we have a robot base frame,
an end effector frame, and a camera frame in an environment. By finding the
transformation matrix between the base frame of the robot and the camera frame
HROB

CAM , we have a description of the camera placement, which can be used to place
the camera accurately in a simulation.

HROB
CAM can also be convenient when collecting 3D data of an object. By finding

this transformation matrix, it is possible to present the 3D data from the camera
in the robot base frame. This can be useful when the robot is controlled with
operational control because the end-effector positions correspond with the 3D
data from the camera. The relationship between the transformation matrices can
be seen in equation eq. (5.1).

HROB
OBJ = HROB

CAM HCAM
OBJ (5.1)

Zivid SDK versions after 1.6 include an API for hand-eye calibration in 3D. It
is done by capturing between 10 to 20 images of a checkerboard [23] and further
using the images with the Zivid CLI tool for Hand-Eye calibration. With the help
of a custom Zivid checker board attached to the end effector, Zivid studio, and
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the python package with calibration scrips [104] a calibration can be executed.

5.3.4. Zivid in MANULAB

By using the Zivid camera, 3D information was available to be used as obser-
vations. Despite being used solely as an RGB camera in our experiments, we
wanted to have a viable configuration for depth data because of the high-quality
3D abilities of the Zivid camera. Therefore, this section presents solutions that
can be used for collecting RGB and 3D data.

The camera was placed in front of the objects and the robot on the table in
MANULAB. By placing the camera out of reach of the robot, we could sustain a
higher degree of safety than having it in the robot’s workspace. Another way of
solving this would be to limit the workspace through the robot application. We
also discovered that the robot could interfere with the object’s visibility in some
over-the-shoulder configurations.

The Zivid camera was placed approximately 800 mm from link 6 of the robot and
1100 mm from the objects, just within the recommended range of 500-1100. If
the camera was to be used for 3D images, the distance could be decreased to be
further within the range.

A fixed position was chosen over an on-wrist configuration in our system. An
end-effector view could make the simulation implementation more complex and
demand a higher degree of restriction to the physical robot movement to prevent
the robot from colliding with the camera. It also simplified the configuration of
the Zivid camera parameters because of the fixed distance and light conditions.
The HDR acquisitions did not need to be changed during a task with this fixed
configuration.

The camera’s tilt was chosen so that the objects and large parts of the robots
were visible. The camera was panned to place the scene perpendicular to the
2D camera lens. This means that the camera was panned with three degrees to
compensate for the offset angle mentioned in [102].

The camera also has an angle looking downwards at the objects. Zivid recom-
mends placing the camera at an angle to avoid reflections from the objects, and
background [103]. This could also increase the depth perception from the 2D
images compared to a placement closer to the table. The distance between the
gripper and camera could be harder to interpret with a lower placement. Looking
downwards with an angle, several edges of the cube were visible, which could help
in interpreting the cube’s orientation.

The Zivid camera was placed on an aluminum adapter plate. This plate was
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(a)

(b)

Figure 5.5.: Shows how the Zivid camera is placed in the physical environment.

attached to a modular Montech [53] setup that enabled precise translation and
rotation of the camera. Figure 5.5 shows how the setup had a base with three
aluminum profiles screwed to the table. This prevented any movements of the
camera after a hand-eye calibration.

The capture parameters had to be tuned to fit the captured environment and get
high-quality images. This goes for both 2D and 3D images. The ROS2 driver
enabled modification of the High Dynamic Range (HDR) acquisitions to improve
the quality when the lighting differed within the same image. Single-acquisitions
were available for both 2D and 3D images, but multi-acquisition images were
only available for 3D images [105]. We used 2D images and could only use single
acquisition capture with the following values:

Aperature: 2.83

Brightness: 1

Exposure Time: 25000

Gain: 1

Blue color balance: 1.4

Green color balance: 1

Red color balance: 1
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5.4. Physical Setup

5.4.1. MANULAB environment

Other parts of the physical environment than the robot, camera, and gripper had
to be configured. The lighting of the environment was mainly from the MAN-
ULAB roof lighting. In addition, we supplemented with lights at the neighbour
tables as shown in fig. 5.5. This was to make the objects more visible and to
prevent shadows from disturbing the image. By doing this, the final lighting was
closer to the uniform light in the simulated environment. All test in the physical
environment was done with daylight present to different degrees.

The object to be grasped was chosen to be a 3D printed cube with an approximated
size of 40 mm. This size fits the 85 mm opening of the gripper with a fair margin.
The color of the cube was chosen to be red, a contrasting color to the grey table
surface and black gripper. The 3D printed surface has some degree of reflection
that could interfere with the image quality.

The table initially had a metallic surface. A grey bed sheet was used to limit the
reflection from the surface. The reflections can impact the performance of the
Zivid camera when capturing depth images. The grey bed sheet contrasted the
colorful objects and had a high coefficient of friction. The wall was covered with
a white bed sheet as shown in fig. 5.5 to prevent the noisy wall from being visible
in the image observation.

5.4.2. ROS2 communication

The communication used in the physical test setup was based on ROS2. The
topics and nodes for the communication are illustrated in fig. 5.6. In the heart of
the communication, we have the PolicyNode that subscribes and publishes to all
the other nodes. In this section, we will present all the nodes of the architecture
as well as the topics and services.

As mentioned in section 2.6 the ROS2 communication is based on DDS commu-
nication. The implementation of the CycloneDDS on KUKA Sunrise.OS [84] was
used for enabling ROS2 communication with the robot controller. The
application constructs a ROS2 node with subscribers and publishers with their
associated topics. Both the /command and /state topics have information about
the robot’s seven joints.
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Figure 5.6.: Shows the ROS2 nodes and the topic communication.(should the
ZividNode be placed inside the Zivid-ROS2-Driver? Mention that /capture2d is
a service?)
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/command and /state

f l o a t 3 2 jo int_1
f l o a t 3 2 jo int_2
f l o a t 3 2 jo int_3
f l o a t 3 2 jo int_4
f l o a t 3 2 jo int_5
f l o a t 3 2 jo int_6
f l o a t 3 2 jo int_7

The /gripperNode was run from the MANULAB computer. It received /grip-
per_pos message, a float that contains a requested position for the gripper. This
message was a float between -1 and 1. This number was, in turn, transformed
into gripper commands based on the sign of the number.

/gripper_pos

f l o a t 3 2 pos

The movement variable of /gripper_status message 5.4.2 is the object detection
status variable described in [66]. Its values corresponds to the following:

0: Gripper is in motion

1: Gripper has stopped while opening

2: Gripper has stopped while closing

3: Gripper is at the requested position

In the policy node, a statement checked whether the gripper was in motion. The
node did not proceed in taking a new step before the value was different from 0
and 1. A value of 2 was interpreted as a grasp. Both 2 and 3 was considered
successful movements to the requested action.

/gripper_status

i n t 8 movement

The Zivid node based on the Zivid-ROS2 driver was launched on the third-party
computer. An empty service message, Capture2d, was sent to the Zivid node to
capture an image. This service call initiated a capture, and an image was sent to
the /color/image topic.

/color_image

sensor_msgs .msg . Image
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A Capture service call for capturing 3D data was also available. The Capture
service could initiate a capture, and a point cloud could be sent to the depth/-
pointCloud topics. This can be extended to point clouds with RGB data and
RGBD topics as the ROS1 driver for Zivid has available [105].





Chapter 6.

Sim-to-Real Transfer

This chapter presents how the sim-to-real transfer is executed in our experiments.
Firstly the main solution is presented and argued. Secondly, the communication
architecture is presented in detail.

6.1. Solution
A typical zero-shot transfer is done by switching all the simulated actions and
observations to physical observations and actions. Our solution ran a simulation
in parallel, which was used as a "translator" between the agent and the physical
environment. The simulation was identical to the one used in training. Figure 6.1
shows how the actions from the agent were sent to a simulated environment.
The physical hardware copied the joint angles of the simulated robot after the
execution of an action in the simulation. These joint angles were sent to the
controller in the physical lab. The observations given to the agent were from
the simulation except for the image taken in the physical environment. In this
chapter, we will argue why this architecture is chosen.

6.1.1. Robot actions

The torque-based controllers in Robosuite made it challenging to make the agent
communicate directly with the physical robot. Robosuite suggests in their paper
[100] to use torque-based control to use the agent in a physical environment.
"Our controllers facilitate sim-to-real transfer ability, as torque-based controllers
are common to most real-world existing robotic platforms". KUKA iiwa can be
controlled with torque commands, but we did not have this control option available
in the ROS2 interface. An effort to implement torque control in the ROS2 interface
was not made because the action space was chosen to be in operational space as
discussed in section 3.4.
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Figure 6.1.: The agent-environment interaction during physical testing

When transferring the agent to a physical environment, it was essential that every
action from the agent had the same reaction as in the simulated environment.
That is, the relationship between the agent’s action and the robot’s movement
had to be the same in the simulated and physical environments. The solution was
to use a simulation to translate the operational space actions from the agent to
joint space positions to the physical robot. Joint positions were used in favor of
end-effector positions because they were unambiguous.

Even though the simulation controller translated the actions to joint commands,
the robot’s movement between each point was somewhat different. The sec-
tion 3.2.4 controller calculated joint torque commands by minimizing the error
between the desired and current pose with the minimal kinematic energy. In con-
trast, the physical robot controller moved the robot with the PTP SmartServo
controller, where the fastest path is calculated and executed.

It was not conducted tests on how different the trajectories from these controllers
were, but it was assumed that the trajectories were nonidentical because of their
computational differences. To reduce the difference a low degree of movement
between every agent step was used. As mentioned in section 3.2.4, the simulated
robot moves between every agent step with a maximum movement of 15 mm and
12.9 degrees.

One way to make the movements of the simulated and physical robot more identi-
cal would be to record the joint position of the simulated robot for every time-step
instead of every agent-step. Every agent-step consists of 50 intermediate time-
steps as discussed in section 3.6.2. These joint positions could be used to make
a detailed trajectory for the physical robot and therefore make the similarity be-
tween simulation and physical robot behavior closer.
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6.1.2. Gripper actions

The gripper action from the agent was sent directly to the physical gripper and
not through the simulation. The same clip function 3.1 used in the simulation
was implemented for the physical gripper to secure the same movement in the two
environments.

6.1.3. Observations

We wanted the observations in the physical implementation to be similar to the
observations in training to get a high-performance sim-to-real transfer. Because
the simulation ran in parallel with the physical environment, observations from
the simulation were available. In our system, the agent got the image from the
physical environment and was supplemented with simulated observations.

The end-effector position and gripper status were sent to the policy from the simu-
lated environment instead of the physical environment. The end-effector position
was taken from the simulated version because a forward kinematics calculation
would be needed to convert the joint position from the physical robot’s end-
effector position. The gripper status was taken from the simulated environment
because it is assumed to be in the same state as the physical gripper after being
given identical actions throughout the episode. The gripper status could also have
come from the physical gripper.

All the observations available in Robosuite could have been used in our training
and physical testing. However, we have prioritized observations that have shown
promising results on previous vision-based robotic grasping tasks [36].

6.2. PolicyNode communication
The PolicyNode was the crossroad for all communication in the physical system.
It published and subscribed to the different parts of the ROS2 system. In addition,
it created the simulated Robosuite environment and collected the commands from
the agent in Stable Baselines.

Figure 6.2 shows how the node sequentially communicated with all parts of the
system for every agent-step. Firstly, PolicyNode continuously checked if the phys-
ical robot and gripper had arrived at their goal state, as shown in fig. 6.2. A loop
was implemented to ensure that the offset between the physical and simulated
robot the same with an absolute tolerance of 0.0001 radians.

When the physical hardware was in the same state as the simulated environment,
a service call was sent to the ZividNode, and an image was sent in response. The
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Figure 6.2.: Shows the communication for the policyNode. The red lines illus-
trates the ROS2 communication.

PolicyNode then sent its observations to the agent in Stable Baselines. The ob-
servation consisted of the physical image, the simulated end-effector position, and
the gripper position. The gripper position was read directly from the agent action
and sent to the GripperNode. When the agent had processed the observations
and found an action, the PolicyNode received the actions consisting of end-effector
and gripper positions. In turn, the simulated robot moved to its position, and
the joint’s position was sent back to the PolicyNode. Lastly, the physical robot
received the simulated robot’s joint position, and the gripper received its action.

6.3. Safety
A height restriction was set in the simulation to prevent the gripper from crashing
into the table, as mentioned in section 3.4. This consequently prevented the
physical gripper from crashing into the table, but we found other ways the gripper
could crash when in contact with the object. Two configurations where the torque
sensors detected a crash during testing are shown in fig. 6.3. In addition, the
friction between the gripper and the object was the reason for several detected
collision during testing. This is discussed in section 9.3.
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(a) (b)

Figure 6.3.: Shows how the gripper can crash into the object despite the hight
limit implemented.





Part III.

Experiments





Chapter 7.

Hand-eye Calibration

To be able to place the camera accurately in simulation a transformation matrix
was needed. As mentioned in section 5.3.3 the transformation matrix for camera
placement can be found through a hand-eye-calibration.

The hand-eye calibration was based on the open-source python code from Zivid
[104]. Zivid recommend capturing 10 to 20 images with their corresponding end
effector positions. Figure 7.1 shows how a set of image and end effector data can
look like. The data is used as input to the Zivid code and a transformation matrix
is returned when the calibration is finalized. In addition to the matrix, the code
returns rotation and translation residuals for every pair of images and end effector
positions. Residuals are the difference between the final transformation matrix
and the suggested transformation matrix from each pair of data.

We did not find the Zivid hand-eye-calibration code satisfactory. The reason
for this was that it was not possible to remove pairs of images and end effector

Figure 7.1.: Example image form the hand-eye calibration. The robot is in the
following pose: x = 602.00 mm, y = -126.24, z = 224.32, a = -77.59, b = 67.03,
c = -137.71
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positions with bad residuals. The code was modified to be able to use 3D images
saved in a folder with the corresponding end effector positions in a .txt file. By
doing this we had full control over what pairs of images and end-effector positions
that were used in the final calibration. Pairs with high residuals could be removed.
This change also made it possible to manually adjust the acquisitions of the images
separately to make sure that high quality point clouds was used in the calibration.

In the final calibration 20 images was taken whereof 2 were removed because of
bad residuals. The end effector position was read from the KUKA smartPad and
written in the .txt file. The same acquisition based of a configuration file from
Zivid [25] was used for all the 20 images. All images, corresponding end-effector
positions, configuration file, results, and calibration code are to be found in the
hand_eye_calibration directory in the digital appendix C.3.3.

7.1. Results

7.1.1. Estimated transformation matrix

The Zivid camera was originally placed based on the arguments discussed in sec-
tion 5.3.4. An estimated transformation matrix was found by measurement in the
physical environment and testing in simulation:

Tcustom =



0.0000 0.5801 −0.8146 1450.0000

1.0000 0.0000 0.0000 0.0000

0.0000 −0.8146 −0.5801 850.0000

0.0000 0.0000 0.0000 1.0000


When multiplying the rotation part of Tcustom with the matrix described in fig. 3.7
the custom transformation matrix used in simulation was:

Tcustom,sim =



0.0000 −0.5801 0.8146 1450.0000

1.0000 0.0000 0.0000 0.0000

0.0000 0.8146 0.5801 850.0000

0.0000 0.0000 0.0000 1.0000



7.1.2. Calibrated transformation matrix

The hand-eye calibration gave us a the following transformation matrix:
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Tcalibrated =



0.0074 0.5884 −0.8085 1422.5784

1.0000 −0.0028 0.0072 −19.3504

0.0019 −0.8086 −0.5884 849.8094

0.0000 0.0000 0.0000 1.0000


Residuals for all the 18 images are to be found in hand_eye_calibration/results.txt
in the digital appendix C.3.3. The Tcalibrated matrix had the following residuals:

Residual for rotation (deg) Max: 0.210, Average: 0.112, SD: 0.039

Residual for translation (mm) Max: 0.672, Average: 0.424, SD: 0.110

When multiplying the rotation part of Tcalibrated with the matrix described in
fig. 3.7 the calibrated transformation matrix used in simulation was:

Tcalibrated,sim =



0.0074 −0.5884 0.8085 1422.5784

1.0000 0.0028 −0.0072 −19.3504

0.0019 0.8086 0.5884 849.8094

0.0000 0.0000 0.0000 1.0000



7.1.3. Comparison

The difference in translation between the Tcustom,sim and Tcalibrated,sim is:

δx = −2.74 mm

δy = −1.94 mm

δz = 0.19 mm

By looking at the angular differences between the rotation matrix for the custom
camera Ra = Rcustom,sim and the calibrated camera Rb = Rcalibrated,sim we can
find the angle of rotation θ about an axis −→n that describe the rotation between the
two. First we find the rotation matrix from the custom orientation to calibrated
orientation Rba.

Rba = RT
b Ra (7.1)

Then we find the angle of rotation θ
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cos(θ) = Tr(Rba) − 1
2 (7.2)

This results in an angular difference between Tcustom,sim and Tcalibrated,sim:

δθ = 0.739 deg

7.2. Discussion
The hand-eye calibration resulted in a transformation matrix Tcalibrated with resid-
uals in translation lower than a millimeter for all of the 18 sets of images and
end-effector positions. When used to place the camera in simulation, it can be
argued that the placement got a close to identical perception compared to the
physical camera.

Small changes in camera orientation may change the placement of objects in the
captured image to a larger degree than translation. The residuals for rotation has
an average of 0.112 degrees. This corresponds to a 2 mm difference in perceived
placement in a 1000 mm distance. We see this as satisfying results considering we
have a low resolution image as agent observation.

By comparing the Tcalibrated and Tcustom we can see how the angular difference
is higher than the average residuals of the hand-eye calibration. The translation
difference of 2.74 mm in the x-direction is also higher than the average residuals.
This shows how the hand-eye calibration can be a tool to get a higher quality
placement than with our manual measuring.



Chapter 8.

Training in simulation

This chapter presents the results and discussion of the agents trained in simulation.
The overall goal of this thesis is to compare the results of trained agents on sim-to-
real transfer. A discussion of results is presented but due to the overall goal is not
an in deep evaluation and comparison of results done. The final agents presented
are the same as the ones tested in the chapter 9. The plots are collected directly
from the Weights and Biases framework [91].

8.1. Results
Under follows, a list of the trained agents and their different configurations are
presented. The goal of training these agents is to compare which configurations
best tackle the sim-to-real transition. This section presents the training results
from the agents used in the sim-to-real testing. The agents success rate are mea-
sured on 20 attempts every second update of the agent.

For plots of loss, hyperparameters and other things relevant for training with PPO
see appendix B and appendix D.
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Figure 8.1.: Showing number of agent steps in each environment per update on
the PPO agent. It also shows the total number of agent steps used to train each
model.

Cus: The camera is placed by manual measurements, trying
to put it close to the camera placement in lab.

Cus-DR: Same camera placement as Cus, but with visual ran-
domization as described in section 2.4.7.

Cus-JoLim: Same camera placement as Cus. A rotational con-
straint added with ±110◦ on joint 7.

Cal: The camera is placed according to the hand-eye cali-
bration described in chapter 7.

Cal-DR: Same camera placement as Cal, but with visual ran-
domization as described in section 2.4.7.

Cal-AcLim: Same camera placement as Cal. The action space is
limited to only include the cartesian coordinates [x,y,z]
and the gripper command [g].

Cal-AcLim-DR: Same camera placement as Cal. Same [x,y,z,g] action
space limit as Cal-AcLim. Visual domain randomiza-
tion added as described in section 2.4.7.
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Figure 8.2.: Shows mean episodic reward for Cal, Cal-AcLim, Cus-JoLim, Cus
during training. This compare the result for agents trained without domain ran-
domization.

Figure 8.3.: Shows the success rate on lifting the cube for Cal, Cal-AcLim,
Cus-JoLim, Cus. This compare the result for agents trained without domain
randomization.
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Figure 8.4.: Shows mean episodic reward for Cal-DR Cal-AcLim-DR Cus-DR.
This compare the result for agents trained with domain randomization.

Figure 8.5.: Shows the success rate on lifting the cube for Cal-DR Cal-AcLim-DR
Cus-DR. This compare the result for agents trained with domain randomization.
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Model Number of Updates

Cus 39

Cus-DR 85

Cus-JoLim 69

Cal 39

Cal-DR Never, Highest 85%,
83. update

Cal-AcLim 23

Cal-AcLim-DR Never, highest 90%,
143. update

Table 8.1.: Number of steps to reach 100% success rate for the first time for all
agents. This is to compare the speed at which they learn

Table 8.2.: Agents tested outside of training on simulated environment for 20
episodes. The lift success and the average agent step until successful grasp is
measured. The video of all agents can be seen in appendix C.3.2 in the simulation
folder

Algorithm Number of lifts/20 Average Lift agent Step
of the successful lifts

Cus 100% 14.8

Cus-DR 100% 28.4

Cus-JoLim 95% 22.2

Cal 95% 15.7

Cal-DR 80% 64.2

Cal-AcLim 100% 17.8

Cal-Aclim-DR 75% 33.6

8.2. Discussion
The task of lifting the object has several phases. During the comparison of the
different policies these phases were discussed.
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Figure 8.6.: Shows the mean and standard deviation of the agent trained with
and without domain randomization.

Reaching: The object must be placed between the fingers of the
gripper.

Grasping: The fingers must be closed while the gripper position
stays unchanged.

Lifting: The gripper must lift the object while staying closed.

8.2.1. Agent steps during training

Figure 8.1 shows the number of agent steps taken by each environment per update
on the agent. All the environments using domain randomization have a higher
number of steps per update, this is due to the increased complexity of the envi-
ronment and therefore a need for more data per update to learn as discussed in
section 2.4.7.

8.2.2. The Baseline, Custom Camera Cus
The agent Cus can be seen as a baseline when measuring performance of the other
agents. Its performance on reward and success rate can be seen in fig. 8.2 and
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fig. 8.3 with a light blue color. The Cus agent shows solid results during training
and reaches a success rate of 100% and a final mean reward of 162.

How the three lifting phases introduced above affect the reward/learning curve
can be seen in fig. 8.2. Looking at the shape for the Cus agent, we see that the
agent has a steep learning curve for about the first 25 updates. Considering that
the agent has few successful grasps during this period, might one argue that the
reaching reward is the main contributor to reward in this early learning phase.
The learning tends to slow down when the agent reaches a mean reward between
80 and 110. Remembering that 88 is the max reward an agent can get from
reaching during an episode, and 111 is the max it can get from reaching and
grasping means that the agent is close to completing the reaching and grasping
phase of the task. Looking at fig. 8.3 we can see that Cus agent has a success rate
of 95% at around update 60, while it still only a reward of around 100. This means
that the only phase left to learn is to hold the cube after lifting. Looking back at
fig. 8.2 we can see that the learning starts to speed up again around update 70.
This is when the agent learns to hold the cube after lifting. The learning curve
starts to flatten out when it reaches a reward of around 150. It slowly grows to a
max mean reward of 162, with a peak at 166.

This presentation of the learning phase is, of course, a simplification. There is a
good chance that there are episodes during the early stages of the learning process
where the agent holds the cube for some time. However, due to the clipping upon
updating of the PPO policy are significant changes, both positive and negative,
when updating clipped because of the noisy advantage function estimate. This is
introduced in section 2.5.

8.2.3. Custom Camera with Joint Limits

The Cus-JoLim agent has all the same hyperparameters and training configura-
tions as Cus except for a joint limit on joint 7 at ±110◦ compared to the original
±175◦ as shown in table 5.1.

The Cus-JoLim agent reaches a success rate of 100% although at a quite slower
update rate then Cus as shown in both fig. 8.3 and table 8.1. It also have a
quite slower learning curve compared to Cus as shown in fig. 8.2. One possible
reason for this is the added complexity of the robot controller when it reaches
the new joint limit. We experienced that when the robot reached its limit in
joint 7 and still wanted to rotate, the other joints in the robot had to move to
continue the rotation. This causes the position of the end effector to move and
makes the environment harder to predict for the agent. A video of this is shown
in appendix C.3.2 for the video called Cus_JoLim_vid_phsical.mp4. In other
words, the environment is less predictable.
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8.2.4. Calibrated Camera

Looking back to chapter 7 and the transformation matrix for the Cus - and Cal
- agent, we see that there is not too much difference between the two matrices.
Because of this, the two agents have very similar observations. Therefore should, a
relatively identical learning and success response be expected. This hypothesis is
confirmed by comparing the two agents in fig. 8.2 and fig. 8.3 where they perform
almost identical. There are, of course, some small differences between the two
agents. It is a slight tendency that Cus learns a bit faster, but the Cal gets a
better final score. At update 130, is there a difference in reward of 10 in favor of
the Cus agent. This is also a difference that could occur when running the same
agent twice. So its hard to argue otherwise than that this is caused by differences
in optimizations upon updates of the PPO algorithm. Nevertheless, it also shows
how sensitive the training process is in general.

To conclude, if there are any essential differences in simulator training between
Cal and Cus should the mean of multiple runs for these two agents have been
compared. Because the goal of this thesis was to compare them on the sim-to-real
transfer, was this not done.

8.2.5. Limiting the action space

By limiting the action space, the agent has a smaller space to optimize and thus an
easier way to find the optimal actions in different states as discussed in section 3.4.
This was the goal when training the Cal-AcLim agent. By looking at fig. 8.2 and
fig. 8.3 we can see that the Cal-AcLim agent had the quickest learning curve by a
good margin and also is the fastest to reach 100% success rate. This shows that
limiting the action space is beneficial for this specific task.

However, it is worth mentioning that taking away a part of the action space might
lead to a sub-optimal behavior for the agent, which means that it might encounter
situations where the optimal solution for grasping would be to rotate the gripper
around the z-axis (in yaw). This could be the case in cluttered environments, but
considering that we only have one cube laying flat on the table, does this not seem
to be the case here.

8.2.6. Training with Domain Randomization

Figure 8.6 shows the difference in mean episodic reward when the agent is trained
with and without domain randomization. Although the domain randomization
gets more data to train on per update, is there still a big difference in the final
reward. This shows how complicating the environment makes it much harder to
train, as discussed in section 2.4.7.
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Looking at fig. 8.4 we can see that the agents trained with visual domain random-
ization also have a steep learning curve in the beginning but seem to struggle more
to learn to hold the cube after a lift. We can see that the agents Cal-AcLim-DR
and Cus-DR have a slight improvement over time while Cal-DR seem to flatten
out after 100 steps and are no longer able to improve. Figure 8.4 shows that there
are some differences in results between the custom and calibrated camera place-
ment. Even the Cal-AcLim-DR performs worse than the custom camera Cus. It
is worth mentioning that Cal-AcLim-DR still showed potential for improvement
when stopped and, if given more training, possibly would have reached a higher
reward. It is hard to tell if the difference in results comes from dissimilarities in
RGB observations, suboptimal optimization steps, or something else. More tests
should have been done to get to the bottom of this.

Not all the domain randomization agents trained reached a final success rate of
100% except for Cus-DR. Cus-DR scored a 100% success rate both during training
and when tested outside of training as shown in table 8.2. Cal-AcLim-DR scored
a top success rate of 95% during testing in training while only scoring 75% when
tested outside. And lastly, Cal-DR scored 85% during training and 80% on testing
outside training. The amount of training time per agent is different here, and it
would have been desirable to have similar for a more accurate comparison.

8.2.7. Notes on results

The agents were not able to reach a max reward of 200, which makes sense.
Remembering that fig. 8.2 and fig. 8.3 are plots of mean reward per collection
of the rollout buffer means that all episodes during the collection have to be a
perfect score of 200. This is not possible due to several reasons.

First of all, does the robot start some distance away from the cube, meaning it
needs to take some agent steps to reach, grasp, and lift the cube. This means
that some of the first steps per episode cannot get a maximum reward. Another
factor is the physics of the interaction between the gripper and the cube. This
leads to the gripper and robot sometimes pushing the cube outside of the image
frame, making it impossible for the agent to locate the cube. An example of this
interaction is shown in fig. 3.8.

For further comparison of results, should multiple runs of the same agent have
been executed, where the mean of the runs would be compared against other
agents.
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Physical experiments

This chapter presents the results and discussion related to the zero-shot transfer
from simulated training to physical testing. The agents used here score the highest
average reward upon evaluation during training. The performed experiments are
mainly used as a proof of concept for the system but also compare different DRL
configurations.

9.1. Experiment design
Each trained agent was tested in the physical environment with 20 episodes. This
was the same amount of episodes used during tests in training. Based on the
performance during initial testing, we also considered the number of episodes
sufficiently high to separate the agents from each other. We did not conduct
further testing because of time limitations. Each episode was set to 200 steps, the
same as the simulated training.

In simulation, the objects were placed with a random placement between 60 and
70 cm from the robot and with a 15 cm offset from the orthogonal line from the
robot. In the physical tests, the box was placed within the same 60 to 70 cm range
with a 10 cm offset from the orthogonal line. Figure A.2 in the appendix show
the 9 placements for the cube. The cube was placed in each of these placements
with a rotated and a nonrotated configuration. It was placed an extra time in
the fig. A.2b and fig. A.2h to get a total of 20 configurations. These fixed initial
positions were used instead of a random placements because of the difference in
performance depending on the location of the box.

In simulation, the policy was rewarded when reaching toward the object. Fur-
thermore, higher rewards were given when an object was grasped and lifted over
the table. We have tried to find metrics that could be measured to reflect these
rewards:
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Bottom contacts: When one or both bottom surfaces of the gripper fin-
gers were in contact with the object.

Inside contacts: When the inside of a gripper finger was in contact with
the object.

Outside contacts: When one or both of the gripper fingers were in con-
tact with the object, but the interaction can not be
classified as a bottom contact or a inside contact.

Grasp: When the inside of both gripper fingers were in contact
with the object.

Lift: When the box was no longer in contact with the table.

Steps grasped: Number of agent steps the box was in contact with
both fingers during a grasp.

Reach: When the object was in the center of the gripper for
6 agent steps or more. This corresponds with the end
effector position in simulation fig. 3.9. A reach was
given from visual evaluation.

A collection of images to illustrate the different conditions are placed in the Ap-
pendix fig. A.1.

These are binary metrics, meaning that an episode was either given the metric
or not. The amount of contacts or grasps during an episode was not used in the
comparison between the agents. These are recorded in the raw data, but were not
presented as a part of the results in section 9.2. The metrics were chosen to be
binary to make sure that policies that were able to reach towards the box rather
than policies that had one episode with several contacts or grasps, was given a
higher percentage in fig. 9.1.

The contact metrics was chosen because they were quantifiable without mea-
surements. The contacts was separated into outside, bottom and inside contacts
because they indicate different aspects of the problem. They all indicate that the
agent was able to locate the box to some extent, despite not being able to grasp
the object. Moreover, a inside contact indicated that the agent was only a grasp
command away from grasping the object. A bottom contact indicated that the
gripper was approaching the object from above, but an offset in the 2D plane
prevented it from completing the grasp.

The reaching variable was measured in addition to these contact metrics to quan-
tify if a agent was able to locate the object, but no contact was made. This was
also a variable directly related to the reaching reward given in simulation.
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The amount of grasps during episodes were also measured. This is used to quantify
if the agent has learned the second phase of the lifting task, as described in
section 8.2.

The amount of agent steps of a grasp and a lift variable was also counted to see if
the policy was able to keep the grasp consequently have solved the third and last
phase of the lifting task.

In addition to the metrics presented, the number of steps before a termination
was recorded and the reason for the termination was noted.

9.2. Results
The empirical data from the test are summarized in table 9.1 and table 9.2. The
raw data used as basis for the results are to be found in the digital appendix, C.3.3.
Videos are provided as documentation for the experiments in the attachments. For
each agent a video show the general performance during a random episode. These
videos can be found in the digital appendix appendix C.3.2. The agents tested in
the physical experiments are the same as presented and described in section 8.1.

Table 9.1.: Results from the physical tests where the main performance metrics
are highlighted in grey. The numbers are given in percentage of 20 episodes.The
raw data from the test are to be found in the digital appendix C.3.3.

Algorithm Contacts Outside
contacts

Under
contacts

Inside
contacts

Reach Number
of grasps

Number
of lifts

Average
lift time

Cus 60 % 20 % 50 % 30 % 10 % 10 % 10 % 6

Cus-DR 60 % 45 % 5 % 40 % 30 % 25 % 15 % 2

Cus-JoLim 65 % 30 % 65 % 5 % 10 % 20 % 5 % 15

Cal 85 % 65 % 15 % 45 % 35 % 30 % 25 % 14

Cal-DR 75 % 45 % 30 % 15 % 5 % 0 % 0 % 0

Cal-AcLim 100 % 75 % 45 % 50 % 50 % 45 % 15 % 8

Cal-AcLim-DR 100 % 50 % 45 % 95 % 85 % 65 % 45 % 11

9.3. Discussion
This section discuss the results related to the physical experiments. During the
comparison of the different agents the reaching, grasping and lifting phases were
discussed. A description of these phases are presented in section 8.2.

The rating of the performance of the agents were mainly based of the reach, grasp
and lift metrics. This is because they relate to the three phases of the picking task,
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Figure 9.1.: Shows the performance of the trained agents based of the reach,
grasp and lift parameters.

Figure 9.2.: Shows the performance of the trained agents for specific cube place-
ment.

Figure 9.3.: Shows the performance of the trained agents for a specific cube
orientations.
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Table 9.2.: When and why the agents were terminated during the physical tests.
The average termination is the average of the agent step where the system was
terminated.

Algorithm Average termination Reason for termination

Cus 47 Joint lim 7

Cus-DR 20 Joint lim 7

Cus-JoLim 118 Joint lim 2, 4,5, 6

Cal 22 Joint 7

Cal-DR 39 Joint 7

Cal-AcLim 167 Friction collision or object con-
tact while being closed

Cal-AcLim-DR 136 Friction collision

and thereby describe if the agents has solved these phases or not. The contact
metrics are quantified to get a broader picture of how the agent performs.

9.3.1. Joint limits

One of the main challenges when testing the trained agents in a physical environ-
ment was the joint limits for the robot. Even though the joint limit for joint 7
was set to ± 175 degrees 5.1, we had problems moving the joint further than ±
110 degrees. The safety configuration uploaded to the Sunrise Controller threw
the error message "ESM state violated" if the limit was exceeded. The safety
configuration was set ahead of the testing and was not changed due to restrictions
from the supervisor. This problem could be solved if the safety configuration was
changed. However, if the safety configuration was changed, the robot could still
move to the joint limits. Another downside could be the stretching of the gripper
cable because of the gripper rotation.

The simulation had less restrictive limits for joint 7, and when a joint position
above 110 degrees was sent from simulation to the physical robot during sim-
to-real transfer the system came to a halt. The table 9.2 shows how several of
the trained policies had an average termination under 50 steps. Most of these
terminations was because of restrictive joint limit in the physical setup. It was
clear that this prevented the policy from getting better results.

Different solutions were tested to solve this challenge. One of them was to limit
the joint 7 movement in simulation during training. The policy could then learn to
solve the task and move the robot with these restrictions. Table 9.2 show that the
Cus-JoLim agent eliminated the problem of errors in joint 7 and reached a higher
average termination step of 118 compared to Cuss’ 47. However, Cus-JoLim did
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not improve on overall performance compared to Cus, as shown in fig. 9.1, even
though it got more agent steps to solve the task. It scored higher on the number
of grasps, but the number of lifts was lower. The numbers from table 9.1 shows
that the policy was about even in having contacts with the object.

Another problem with the Cus-JoLim was that it introduced several other joint
errors by moving them to their respective limits. Joint 2, 4, 5 and 6 all reached
their limits at some point during testing 9.2, and the system came to a halt. From
observations illustrated in appendix C.3.2 Cus_JoLim_vid did we see that when
the limit of joint 7 was reached, the other joints moved to rotate the gripper. This
made the system less predictable and consequently made it harder for the agent
to maneuver the robot. After reaching joint 7 limit during an episode, it never
come close to the cube.

Cus-JoLim is the only agent with a higher grasp than reach percentage table 9.1.
This implies that the agent is quick in grasping when it gets close to the cube.
We also see that it has the highest average lift time as shown in table 9.1. These
observations can be used to argue that the agent has a high performance in the
grasping and lifting phase of the picking task. It seems like the low performance
is due to poor execution in the reaching phase when it goes from sim-to-real.

Another way of dealing with joint errors was to limit the action space. Using
action space in Cartesian coordinates where only x, y and z position changes are
given to the robot would drastically restrict the movement of joint 7. This is what
is done with Cal-AcLim and Cal-AcLim-DR. These agents eliminated the problem
of joint errors and have the highest average termination as shown in table 9.2.
Further presentation of the results and challenges with limiting the action space
is presented in section 9.3.4.

9.3.2. Calibrated camera

A hypothesis was that a calibrated camera would outperform a camera placed
incorrectly on the sim-to-real transfer. The pixels could correspond more accu-
rately with a better match between the image observation in simulation and the
physical system. This could, in turn, help the policy better recognize patterns in
the observations.

According to our results the Cal agent show a better performance compared to Cus
agent. It scored better on all the three main measuring metrics, reach, grasp, and
lift, by over doubling the success percentage of the Cus agent as shown in fig. 9.1.
These results are quite reliable, considering that these two agents have almost
identical performing results in the simulator, as shown in fig. 8.3 and table 8.2,
and that the Cal agent has half the number of agent steps before termination
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compared to the Cus, agent as shown in table 9.2. This means that the Cal agent
has less time to solve the task than the Cus agent and is still able to outperform
him. Therefore, it seems like camera calibration shows promising results in helping
close the sim-to-real gap.

Despite the promising results of the calibrated camera, does the Cus-DR agent
outperform the Cal-DR agent by a good margin. The Cal-DR agent has 0% in
both grasp and lifting for the phyiscal testing as shown in fig. 9.1. The reason for
this can be a problem with the joint errors and the poor training performance of
the Cal-DR in simulation. By comparing table 8.2 and table 9.2 we see that the
average termination in the physical world for the Cal-DR is lower with a number of
39 agent steps compared to the average agent step for the first successful grasp in
simulation which is about 64. This is a 25 agent-step difference. This implies that
the agent does not have enough time in the physical episode to get a successful
grasp because it receives a joint error before it usually would grasp.

It should be mentioned that the Cus-DR agent suffers from this same problem
but to a lower degree. The difference between the average first successful grasp
and the average physical termination step is 8 agent-steps. The number of 8 agent
steps seems to be small enough such that the Cus-DR do not suffer too much in
terms of performance. However 25 agent steps in difference for Cal-DR, seem to
be too big of a difference and therefore cause a drastic decrease in performance.

It is also worth mentioning that Cal-DR are unable to reach satisfactory results
in simulation. As seen in fig. 8.4, the reward is the lowest recorded from all the
tested agents, and it also only reached a max success rate of 85% as shown in
table 8.1. This suggests that this agent has not sufficiently learned to reach and
lift the cube. The poor results for the Cal-DR agent might be interpreted as a
training problem due to the complexity of domain randomization rather than a
problem caused by the camera placement.

9.3.3. Domain randomization

Domain randomization for camera position was implemented to make sure that
the agent had the physical camera placement within its domain as illustrated in
fig. 2.5. The camera was uniformly placed in a 1 cm offset in every direction
during training. The rotation was offset by 0.01 rad = 0.57 degrees.

From the residuals of the hand-eye calibration shown in section 7.1.2, we see that
the highest translation residual was 0.67, which is within the domain randomiza-
tion of 1 cm. We also see that the highest residual for rotation is 0.21 degrees
which is within the domain randomization of 0.57 degrees. In theory, the agent
has been trained with the exact Zivid placement in its domain.
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We see from the results of the hand-eye calibration that the uncalibrated camera
is offset by (x, y, z) = (2.74, 1.94, 0.19). From the residuals we find that the
minimum offset is (x, y, z) = (−2.07, −1.27, 0.0). This is not within the domain
randomization of 1 cm. From our calculations, the offset for the uncalibrated
transformation matrix related to the calibrated transformation matrix is 0.738
degrees. When subtracting the residual, we get a minimum offset of 0.528 degrees.
This is within the domain randomization of 0.57 degrees. This means that the
uncalibrated versions do not have the exact physical camera placement within
their domain.

The results from implementing domain randomization show an increase in perfor-
mance on all three performance metrics of the task for two out of three agents.
This is true for both Cus-DR compared to Cus and Cal-AcLim-DR compared to
Cal-AcLim as shown in fig. 9.1. The Cal-DR however, scores much worse than
its Cal counterpart. Why this could be is discussed in section 9.3.2. In short, we
think the reason for this may be joint error problems and poor training results
rather than the effect of domain randomization itself.

Both Cus-DR and Cal-AcLim-DR had a lower average termination than their non-
randomized counterparts, as shown in table 9.2. They also show worse results in
simulation, especially Cal-AcLim-DR which only scores a success rate of 75%
compared to Cal-AcLim’s 100% when tested outside of training. This is shown
in table 8.2. Regardless of this, Cus-DR and Cal-AcLim-DR still score better
on the sim-to-real transfer showing that domain randomization is a promising
tool for closing the reality gap. It is worth mentioning that Cal-AcLim-DR still
showed potential for further improvements before it was shut down in simulation,
as shown in fig. 8.5. If it were given more time could likely event better results
be expected.

The agents trained with domain randomization had more data to train on, mean-
ing more data to optimize upon. This is, of course, beneficial, but considering that
the agents trained without domain randomization already scored a 100% success
rate on the smaller amount of data, would more data during training probably
make no difference in the final result.

To summarize, we argue that the results for the Cal-DR were due to other prob-
lems than the specific domain randomization. Furthermore, we argue that there
are indications that the domain randomization used in this thesis helps in closing
the reality gap.



9.3. Discussion 109

9.3.4. Limiting the action space

Based on our results, limiting the action space outperforms the other policies, as
seen in fig. 9.1. The Cal-AcLim agent scores 50% on the reach metric compared
to the 35% of the Cal agent. It also shows a good score on number of grasps with
45% compared to 30% for the Cal agent. It, however, is outperformed by the
Cal agent on the number of lifts by 25% compared to its own 15%. As we can
see from both table 9.1 and fig. 9.1, the Cal-AcLim agent is the agent with the
highest difference percentage of successful grasps compared to successful lifts. A
possible reason for this is discussed further down.

The reason why limiting the action space is beneficial is discussed in section 3.4.
It is worth mentioning that the agents trained with an action limit have the
highest number of steps before termination and, therefore, a longer period to
solve the task, as shown in table 9.2. Because of this, is it hard to tell if the better
performance comes from a more suitable configuration or just more time to solve
the task compared to the Cal agent. The reason for the better performance may
be a combination of both. One might argue that limiting the action space makes
the task simpler and requires fewer decisions during training.

There can be visual arguments for why the limited action space is a better tech-
nique. Firstly, the cube is more visible during the reach phase if the gripper is
over the cube. This is because the fingers of the gripper are on each side of the
cube, regardless of the configuration. The agents trained without action limita-
tion, however, might rotate the gripper in yaw (about the z-axis) and therefore
occlude the visibility of the cube. Secondly, the image of a cube between the two
fingers can also be a more recognizable pattern for the policy, with a red cube
between two black gripper fingers. Finally, an agent with limited action space
also has fewer robot configurations, making it easier to "remember" the states for
the policy during training.

We see from table 9.2 that the agents with a limited action space had a high aver-
age termination. This was because they eliminated the joint 7 error as discussed
in section 9.3.1. They, however, introduced two new collision errors regarding
friction and physical contact between the gripper and the cube. The first of them
is friction collision. This error occurred when the gripper had grasped the cube,
and the agent gave an action to go further down in the z-direction. Because the
friction between the gripper and the cube was higher than the KUKA safety con-
figuration allowed, the robot reported a collision error. The second error came
when the gripper made contact with the cube when it had a closed configuration
or when bottom contacts were made. Examples of these last errors are shown in
fig. 6.3.

The friction collision can be solved by reducing the friction between the gripper
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and the object. The pinching force was set to the minimum force of 20 N, so this
cannot be reduced further. A possible solution could be to change the rubber sur-
face of the gripper fingers, consequently reducing the friction coefficient. However,
this could reduce the probability of successful grasps due to objects slipping out
of the fingers. It was discovered that a possible reason for the friction collision
could be the re-grasp function of the Robotiq gripper [66]. This function allows
the gripper to apply a higher pinching force if it detects movement of the object
that is grasping. This re-grasp increases the force in which the object is grasped,
which again leads to more friction between gripper and cube. By removing this
function, friction collisions may be avoided.

The collision errors presented in fig. 6.3, is a problem caused by the gripper’s
design in regards to the object wanted to grasp. The error shown in fig. 6.3a is
an internal collision error in the gripper, while collision with a closed gripper is
caused by sharp edges on the outside of the gripper fingers, as seen in fig. 6.3b.

The reason for the big difference in the percentage of successful grasps compared to
successful lifts can be somewhat explained by the friction collision error. Because
of this, there were several occasions when the gripper had grasped the cube but
didn’t manage to lift it. Fixing the friction collision error would most likely have
increased the lift percentage.

9.3.5. Placement and orientation of the cube

During testing, the agents performance for different cube placements and orien-
tations was recorded. The placement of the cube and the orientation is described
in section 9.1.

Looking at fig. 9.2 which shows the average performance of all the agents for the
cubes’ left, right, and middle placement, can we see an equal performance for the
left side compared to the right side. This shows that the agent did not have a
preferred side when grasping the objects and that the randomization in the cube
placement during training made the agent equally good on each side. However, the
performance in the middle shows better results on all three performance metrics
compared to the two outer sides. A possible reason for this is that the robot starts
closer to the cube with its initial configuration compared to the cases where the
cube is placed on the outer sides. It, therefore, has a more straightforward and
shorter route to the reaching phase of the task. Consequently, the agent is more
likely to score higher on all three performance metrics.

For results on the agent’s performance on a cube rotation compared to no rotation,
can we look at fig. 9.3. Here we can see that the agent scores about equal in the
two cases. A possible reason for this is that the agent has learned to locate the
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cubes red color and therefore does not give too much attention to the rotation
configuration of the cube. It is also worth mentioning that the RGB images used
as observation have a low resolution of 84x84. It is, therefore, hard to differentiate
the cube’s rotation, even for the human eye.

9.3.6. Sources of error

The difference in the measurements of performance in the physical environment
compared to the simulation can be problematic. The results are not directly
comparable because the reach variable is not measured but is instead a visual
observation. A lift in simulation is precisely defined, but we do not have the exact
position of the cube available during the physical tests.

The agents perform differently during training in simulation. Figure 8.6 shows how
all the agents trained with domain randomization have a lower performance during
training than those trained without. If parameters and network structure were
improved to better the domain randomization performance, could the comparison
of the different agents have been more reliable. However, if an agent performing
worse in the simulator shows better results on the sim-to-real transfer, is it still a
strong indication that the configurations for this agent works.

The initial positioning of the robot sometimes made it harder for the robot to
grasp the cube when placed in the middle fig. A.2e for some episodes over others.
This is because the gripper sometimes started directly above the cube, while other
times, one of the fingers started above. This might lead to some agents having
less ideal initial positions, which could affect the agents’ comparison. Later tests
could have been run with a fixed initial position to eliminate this. This would
prevent some agents from getting an advantageous initial position. The initial
position of the end-effector could also be higher to prevent a grasp from being
only a few agent-steps away in some initial configurations.

It could be beneficial to record other metrics to verify the performance of the
policies. The number of agent-steps every reach lasts could be interesting to
discuss. A long-lasting reach suggests that the policy is great at the first phase
of picking the object. In addition, the number of agent-steps the gripper is closed
and open during an episode can help differentiate what state the policy thinks it
is in. If a policy never has a closed gripper, it may be better at the first phase of
the grasping process. If the policy always has the gripper closed, it may assume
that it has grasped the cube and is collecting a reward for a grasp when in reality,
the cube is still lying on the table.

The test from this experiment requires a higher number of episodes tested to get
more scientifically satisfactory data. We have chosen a few tests of many agents
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rather than multiple tests of a few agents.

The cube slipped from the gripper’s fingers when the agent tried to grasp the cube
on adjacent sides. From testing, we saw that the agent could perform these types
of grapes in simulation. A better simulation imitating this behavior or new physi-
cal gripper fingers to handle these types of grasps could be implemented to better
the dynamic differences between the simulation and the physical environment.



Part IV.

Discussion and Conclusion





Chapter 10.

Discussion

This section discusses some overall topics regarding this thesis and highlights some
choices and obstacles encountered along the way.

10.1. Zivid Two
Only 2D images are used in training and physical testing in this project. The
3D image abilities have not been implemented in the system, and the quality has
not been tested. The Zivid camera was mainly chosen to make a communications
system that can be used in further research. We have tested the communication
and used the data from the camera in our testing. If other researchers decide to
exploit the high-quality point clouds, steps towards an implementation are already
taken.

An argument for the use of a 3D camera is the possibility to perform a high-
quality hand-eye-calibration. We have used this, which has helped us achieve
better results on the sim-to-real transfer. A hand-eye-calibrated camera is also
necessary if it is a need for a pixel to world coordinates conversion. This is the
case if object detection is used during training. The use of object detection was
not used in this thesis, but our hand-eye-calibrated solution allows for training
regimes that take advantage of this. This could be interesting to test to see if it
outperforms our current solution.

The quality of the 2D images from the Zivid camera was not ideal. The projector
used during the structured light capturing process made a light frame in the image
that was hard to find a good solution to mimic in the simulations. In addition,
the projector cast light directly on the robot, which made for a strong specular
reflection on the robot. This reflection resulted in some very bright regions on
the robot, which led to considerable differences in the color of the robot in the
simulator compared to the physical world.
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The Zivid intrinsic parameters were approximated in simulation to mimic the
physical camera. This is a simplification of the Zivid camera. The Zivid camera
has a high degree of complexity with a specific focus distance that is hard to
mimic in simulation. If the 3D images are to be used with the Zivid camera, work
must be done to implement a satisfactory simulated Zivid camera.

10.2. Sim-to-real solution
With our sim-to-real solution introduced in chapter 6 is it possible to transfer a
policy trained with one controller over to the physical world where another con-
troller is used. This is the case if the right inputs to the physical controller are in
place in the simulated environment. The benefit of this solution is that it removes
the need to build a similar controller in either simulation or the physical world
that is identical to the other. This can be a tedious and error-prone procedure.
Another benefit of our sim-to-real solution is that the controller allowing for best
learning performance can be used in simulation, while the controller allowing for
best safety can be used in the physical world. This allows for a better learning
process as well as a safer sim-to-real transfer.

10.3. Errors during physical testing
During physical testing did, several joint- , friction-, and collision- errors occur.
This occluded the comparison of the performance of the different agents. Ideally
should, all agents compared against each other have equally many agent-steps.
This excludes the possibility that a better performing agent is caused by more
agent-steps rather than its configuration. This might be the reason for some of
our results, especially when comparing a limited action space against other agents.

10.4. Robotiq 2F-85
The interaction between the gripper and the objects is an essential part of grasp-
ing. With mismatches in the interaction between both table and objects, it is
hard for an agent to learn how to act in a physical environment after training in
simulation. We see this as one of the most significant drawbacks of our system.
As mentioned earlier, the fingertips of the gripper were made longer to make up
for a difference in the total height of the gripper, but it was not made an effort to
improve the models from Robosuite further.

A new and updated model should be implemented with an underactuated struc-
ture to improve the gripper. It must also be done an effort to improve the sim-
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ilarity of the friction in simulation and the physical environment. The re-grasp
function of the physical gripper should be disabled to prevent friction collision
error between the object and the table during a grasp. Another solution is to
change the gripper used to one that does not cause this error.

10.5. General discussion
This thesis argues for the performance of different sim-to-real transfer techniques.
However, due to errors upon physical testing is it likely that some of the results
fall short. Nevertheless, can the thesis be considered as a proof of concept to see if
the frameworks and implementations made can make a viable setup for sim-to-real
transfer.

Considering that our best agent reaches a success rate of 45% on the same object
trained upon during training, does it show that it still is a long step before a
zero-shot transferred agent can be used in everyday grasping tasks. In [34] that
uses sim-to-real via sim-to-sim technique score a 70% zero-shot grasp success on
unseen objects. This is a solid result but shows that even the state-of-the-art
techniques out there have some more improvement to make to get to a full 100%
success rate. It should be mentioned that by finetuning in the real world with
only 5000 real-world grasps, did their method achieved a 91% success rate. So
the field shows some very promising results.

One of the downsides of using the A100 80 GB GPU to train agents together with
Stable Baselines is the allocation of memory on the MANULAB computer when
loading the trained agent. The loading function required an allocation of 80 GB
to be able to load the agent. This was not possible on the MANULAB computer
due to missing computer space. The solution was to instantiates an array full of
zeros when allocating the 80 GB memory. The NumPy array of zeros did not use
the whole memory needed for the array, only the non-zero elements. Since we
only used one agent when running on the physical setup instead of the 64 agents
in simulator, we never actually use the 80 GB allocated and therefore did not
encounter any problems with this solution.

Upon early stages of the development of the training phase, MuJoCo returned
errors if the configuration of the environment was physically impossible to cal-
culate. This resulted in the training being shut down and was an obstacle on
trying to optimize the agent further. To solve this was a try and exception code
snipped made in Robosuite in the base.py file in the environment folder. The code
is shown in appendix F. If MuJoCo gave the same error, an exception would be
made, which allowed for further training. The downside of this is that a copy of
the previous tuple would be gathered in the rollout buffer instead of the tuple
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leading to the error. This means that the same tuple was gathered twice in a
row in the rollout buffer. The error occurred very rarely, at most once or twice
between each update. This means that only 2 or 4 out of the over 130 000 tuples
gathered before an update section 4.2.1 were duplicated. We argue that this is
sufficiently small amount to make any difference during training.

All agents used in the sim-to-real transfer were tested through 20 episodes. This
low number of repetitions limits the possibility of comparing the agents with high
confidence. We also found that more data collected through the experiments
would be helpful in the comparison of agents. The number of agent-steps with
open/closed gripper would be easy to record and could help us in comparing which
agents that were restrictive in closing their gripper and not. The trajectory of the
agents throughout the episodes would also be interesting to compare because of
the different approaches the agents had. These different approaches is not possible
to understand from the data we collected.

During testing, some agents moved within a small range of robotic configuration.
It seemed like the robot had learned what range to be in. A test was conducted
to see how the robot would react if it had a black image as the observation. We
saw from several tests that the robot started drifting to the left when given a
black image, and no contacts were made. This implies that the images was used
to make choices in what actions to take.
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Conclusion and Further Work

11.1. Conclusion
The main objective of this thesis has been to test the sim-to-real transfer of a
trained Deep Reinforcement Learning (DRL) agent, with the goal of controlling
a robot arm to grasp an object. To do this, we divided our task into three parts.
Firstly, build a realistic simulator environment for the desired task. Secondly, train
the agent to a satisfactory behavior and finally implement the physical setup to
be ready for the sim-to-real transfer.

Upon building a realistic simulated environment, a model of KUKA LBR iiwa
14 R820 has been implemented. The light conditions, the texture of materials,
dimensions, and physical parameters of objects in the physical lab have been
imitated in an attempt to narrow the reality gap. The ability to place the camera
according to a transformation matrix has been implemented.

In the training implementation, a Singularity Image File (SIF) file has been made
to make it possible to train on the Idun HPC cluster. A wrapper that enables
training with RGB and proprioceptive observations and the ability to limit the
action space has been implemented. Domain randomization has been used in
an effort to narrow the reality gap. Reward shaping has been used to speed up
learning. The observation space was chosen based on state-of-the-art papers on
the DRL field.

To implement the physical setup Robot Operating System 2 (ROS2) communi-
cation has been developed to make the hardware communicate with each other.
A solution where the simulation runs parallel to the physical environment is used
to enable the sim-to-real transfer. This solution allowed for a sim-to-real transfer
with two different robot controllers.

Experiments were conducted as a proof of concept for the training structure and
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communication and in an effort to distinguish between different sim-to-real trans-
fer solutions. Different agents have been trained and tested where all except for
one (Cal-DR) had successful lifts on the physical environment. The most success-
ful agent was trained with domain randomization, a limited action space and a
calibrated camera. The agent was tested 20 times in a physical environment and
got a 45% lift success rate. The experiments conducted in this suggest that cal-
ibrating the camera, limiting the action space, and using domain randomization
help in closing the reality gap. However, due to termination errors upon physical
testing and a small number of physical runs per agent, does our results suffer from
a different number of agent-steps to solve the task per agent and too little data
to give a strong conclusion of our results. These two last arguments weaken our
conclusion regarding configurations that help solve the reality gap.

Regardless, our results imply that the sim-to-real techniques used in this thesis is
successful in a sim-to-real transfer and can be used for further research in limiting
the sim-to-real gap.

11.2. Further work
In this section, suggestions for improving the simulation, training and sim-to-real
transfer are presented.

11.2.1. Further work in simulation

One of the main drawbacks of the simulated environment used in this thesis was
the gripper model in Robosuite. The simulated gripper had loose joints and dy-
namic differences compared to the physical gripper. These differences may have
interfered with the agent performance in the sim-to-real transfer. An updated
model of the gripper parts and the under-actuated structure should be imple-
mented to improve the similarity between the simulated and physical environment
as discussed in section 10.4.

Further work should be done to make the interaction between the gripper and
cube more similar in simulation and the physical world. Some tests where done,
but tests comparing grasping of the cube on two adjacent sides in simulator and
the physical world should be made. While the robot could grasp the cube in
the adjacent configuration in the simulator, did the cube slip from the fingers in
the physical world. Combining the improved physical parameters with dynamic
domain randomization on the cube friction and mass could further reduce this
problem.
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11.2.2. Further work in training

There are many different tools to limit the reality gap, as discussed in section 2.4.
Domain adaptation and data augmentation could be tested to limit the gap fur-
ther. [99] introduce interesting solutions on the topic.

The physical robot could crash in the table, which resulted in a collision error when
testing the sim-to-real transfer on trained agents. A limit in the z-direction was
put on the robot during the simulation to prevent this collision error. Another
solution to prevent this collision error could have been to further develop the
reward shaping by giving a negative reward for contact with the table. This
would have enabled the robot to move in the entire operation space. It is not
certain that this would have given a better performance considering that our z
limit is almost as close to the table as possible without crashing, meaning there
is not much more space for the robot to operate in when removing this.

An environment consisting of multiple objects was made during this thesis as
an effort to tackle cluttered environments [9]. Because we only wanted proof of
concept of our solution and a single object was sufficient enough for our wanted
experiments was this but on ice. A natural the next step in this thesis, together
with closing the reality gap, is to look at grasping of several objects. Robosuite
has support for this, and there are multiple different object-libraries out there
with objects that can be placed in the simulation simultaneously.

The agents trained with domain randomization performed worse than the agents
trained without. This is expected considering that the environment is less familiar
for the agent. The agents trained with domain randomization were given more
data to counteract this problem. Some of the agents perform worse than their
non-randomized counterparts when tested in simulator. Further work should be
done to make the final results of the agents more identical in the simulator. A
solution suggested by [27] is to make the network deeper.

The observation space used in this thesis is chosen due to strong results in other
relevant papers. However, no in-depth tests were done to measure which obser-
vations in our observation space led to the best performance. Further testing
on which observations best contribute to better performance would have been
interesting.

Further testing for training parameters, network structure, and domain random-
ization parameters should be tested to improve the agent’s performance.
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11.2.3. Further work in physical environment

The physical communication, hardware and camera placement support 3D images
through either point clouds or depth images. In addition, both Robosuite and
Stable Baselines support the use of 3D data as observations. In later iterations
of the proposed system, the 3D data can be used as observations for the agent.
A challenge could be to mimic the Zivid intrinsic parameters in Robosuite to get
similar data from the simulated and physical environment.

Termination due to joint limits was problematic during the testing of the agents.
The safety configuration should be updated to make a more robust test setup
in the physical environment. To further improve the physical testing, measures
should be implemented in the simulated training to prevent the robot from reach-
ing the joint limits. A possibility would be to limit the delta value that tells the
agent which angle the simulated end-effector could rotate for every agent step.
The size of the delta steps taken now are in section 3.6.1.

A zero-shot transfer to a physical environment can be challenging. By using
physical training as a way of updating the agent on real-world data, the transfer
can reach a higher performance [34]. To do this, a viable closed-loop training
setup must be constructed. It would be beneficial to improve the system’s speed
so that more agent steps can be done in a shorter time. In addition, measures
could be taken to let the environment reset itself and train over several episodes.

Even though parts of the physical system were mimicked in the simulation, it
can be further improved. The lighting condition could be improved to mimic
the uniform lighting in simulation. The cable from the Robotiq gripper can be
removed by making use of the power and communication available through the
media flange. The gripper fingers can be changed to mimic the simulated gripper’s
friction to prevent the friction collision error while grasping the object. A part
of the solution could be to disable the re-grasp function of the gripper, as further
discussed in section 10.4 and section 9.3.4.
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Appendix A.

Test setup

A.1. Contacts and box placement

(a) Bottom contact (b) Inside contact (c) Outside contact

(d) Grasp (e) Lift (f) Reach

Figure A.1.: Shows the different contacts quantified during the experiments.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2.: Shows nine of the cube positions during experiments.
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Appendix C.

Digital appendix

C.1. Github code
The links below gives acces to the code used for training of agents and communi-
cation of hardware on the pjysical setup.

C.1.1. Training code

https://github.com/ojrise/Robot_Learning_master

C.2. ROS2

C.2.1. ROS2 package

Package for communication with gripper and robot. https://github.com/pettras/
policy-communication-ros2

C.3. Attached .zip file

digital_appendix

hand_eye_calibration

videos

raw_data

https://github.com/ojrise/Robot_Learning_master
https://github.com/pettras/policy-communication-ros2
https://github.com/pettras/policy-communication-ros2
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C.3.1. hand_eye_calibration

digital_appendix

hand_eye_calibration

hand_eye_calibration.py

results.txt

settings.yml

data

eef_pos.txt

img01.zdf

.

img20.zdf

The hand_eye_calibration folder contains the code for hand-eye calibration based
of the Zivid code, the data used in the calibration and the result from the per-
formed hand-eye calibration. In addition, the configuration file used for getting
high performing acquisitions in Zivid studio is added. The configuration file comes
from the Zivid Knowledge Base [25].
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C.3.2. Videos
digital_appendix

videos

physical

Cal_AcLim_DR_vid_physical.mp4

Cal_AcLim_vid_physical.mp4

Cal_DR_vid_physical.mp4

Cal_vid_physical.mp4

Cus_DR_vid_physical.mp4

Cus_JoLim_vid_physical.mp4

Cus_vid_physical.mp4

simulation

Cal_AcLim_DR_vid.mp4

Cal_AcLim_vid.mp4

Cal_DR_vid.mp4

Cal_vid.mp4

Cus_DR_vid.mp4

Cus_JoLim_vid.mp4

Cus_vid.mp4

The video folder in the digital appendix contain Videos from both simulation and
the physical environment for all agents mentioned in this thesis. These are videos
of a random episode and is not seen as a result, but rather a visualization of the
agents actions in the physical environment. Table C.1 shows the corresponding
temination step for the physical videos.
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Table C.1.: List of the algorithms added as video attachment and the termination
step.

Algorithm Termination step

Cus 52

Cus-DR 9

Cus-JoLim 50

Cal 12

Cal-DR 179

Cal-AcLim 106

Cal-Aclim-DR 76

C.3.3. Raw data
digital_appendix

raw_data

robot_movement_simulation.xlsx

sim_to_real_transfer.xlsx

The raw data from the sim-to-real transfer testing and raw data used to find the
simulated robot movement for every time-step of the simulation.



Appendix D.

Hyperparameters

Hyperparameter Cus Cus-DR Cus-JoLim Cal

Learning Rate Schedule Linear, 1.0 · 10−4 → 0

Batch size 512

Number of agent steps 2048 3072 2048 2048

Number of Actors 64

Number of epochs 10

Discount Factor γ 0.99

GAE parameter λ 0.95

Clip range ϵ 0.2

Clip range vf No Clipping

Normalize advantage True

Entropy coeff. c2 0.0

VF coeff. c1 0.5

Max Gradient Clipping 0.5

Action noise exploration True

Target KL No Limit
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Hyperparameter Cal-DR Cal-AcLim Cal-AcLim-DR

Learning Rate Schedule Linear, 1.0 · 10−4 → 0

Batch size 512

Number of agent steps 3072 2048 3072

Number of Actors 64

Number of epochs 10

Discount Factor γ 0.99

GAE parameter λ 0.95

Clip range ϵ 0.2

Clip range vf No Clipping

Normalize advantage True

Entropy coeff. c2 0.0

VF coeff. c1 0.5

Max Gradient Clipping 0.5

Action noise exploration True

Target KL No Limit



Appendix E.

Hardware communication

This part of the appendix is added as documentation for the communication in
MANULAB.

E.1. Communication with the KUKA iiwa 14

E.1.1. General info

Robot IP: 172.32.1

Connection: Ethernet

Python version needed: Python 3.8

ROS2 application: https://github.com/tingelst/sunrisedds

E.1.2. Procedure for turning it on

1. Connect to power (The fuses in MANULAB can only handle one robot per
circuit)

2. Turn on the green switch, wait.

E.1.3. Network configuration with Linux

Robot

IPv4 Method = manual

Address = 172.32.1.67

Netmask = 255.255.255.0
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ROS

IPv4 Method = manual

Address = 172.32.1.34

Netmask = 255.255.255.0

E.2. Communication with the Zivid camera

E.2.1. General info

Connection: USB3

E.2.2. How to connect a Zivid Two with Linux or Windows

1. Download the lates SDK

2. Run Zivid studio

ROS2 driver for Zivid

System distributions: ROS2 Galactic and Ubuntu 20.04

Link: https://github.com/ra-mtp-ntnu/zivid-ros2

E.2.3. Network configuration with Linux

IPv4 Method = manual

Adress = 172.28.60.1

Netmask = 255.255.255.0
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Figure E.1.: Wire configuration for Robotiq controller.

E.3. Communication with the Robotiq 2F-85 gripper

E.3.1. General info

Connection: USB2

Python version: 3.8

E.3.2. Procedure for setting it up

Connect controller to power supply by connecting to Siemens SITOP PSU100S
Power supply.

Connect gripper to Robotiq controller with the configuration of the cables illus-
trated in E.1.
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E.3.3. How to connect with python package
# Download the package and dependenc ies
g i t c l one https : // github . com/ t i n g e l s t /robotiq_modbus

_con t r o l l e r
cd robotiq_modbus_control ler
python −m pip i n s t a l l −e .
pip i n s t a l l pymodbus
Pip i n s t a l l s e r i a l −−upgrade

Linux

#To f i nd the USB connect ion
l s /dev
#Give permis ion to communicate over the port
sudo chmod 777 /dev/ttyUSB1

Change the code in the modbus_rtu to the communication (Eg: device = “ttyUSB1”)

E.3.4. Use the python package
python −i . \modbus_rtu . py
d r i v e r . s t a tu s ( )
d r i v e r . move( pos=100 , speed = 10 , f o r c e = 10)
d r i v e r . s t a tu s ( ) . p o s i t i o n . po #current pose
d r i v e r . s t a tu s ( ) . p o s i t i o n . pr #reques ted pose
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E.4. Run the ROS2 system
In .bashrc

#Source the ros2 d i s t r o
source /opt/ ros / g a l a c t i c / setup . bash
#Enable robot communication
export CYCLONEDDS
#To source the l a t e s t ROS2 bu i ld
source dev_ws/ i n s t a l l / setup . bash

How to start the system

Check that the Ethernet and cable configuration, the .bashrc commands and the
internet configuration

co l con bu i ld −−symlink−i n s t a l l

On smartPad

Turn the key, check that you are in T1 mode and turn the key back

Run Applications > Ros2RobotApplication to stat the robotNode on the Sun-
rise.Cabinet

In a terminal to check if the /state and /command topics are up:

ros2 t op i c l i s t

Launch the Zivid camera node

Terminal1:

ros2 launch zivid_camera zivid_camera_standalone . launch . py

Terminal2:

ros2 run rv i z 2 r v i z 2 −d /home/kukauser /dev_ws/ s r c /
z iv id−ros2 / zivid_camera/ r v i z /camera_view . r v i z

Launch the policyNode node

ros2 run master pol icyNode

Launch the gripperNode node
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sudo chmod 777 /dev/ttyUSB1
ros2 run master gripperNode

Test the gripper communication

ros2 t op i c pub −−once / gripper_pos maste r_ inte r f ace s /
msg/GripperPos " pos : 1"



Appendix F.

Edited Robosuite code

This code presented below is changed in the Robosuite repository. The function
changed is the def step(self, action) located on line 377 in the file base.py in the
folder robosuite/environments [79].

def s tep ( s e l f , a c t i on ) :
" " "
Takes a s t ep in s imu la t i on wi th c o n t r o l command

@action .
Args :

ac t i on (np . array ) : Action to execu te w i th in
the environment

Returns :
4−t u p l e :

− ( OrderedDict ) o b s e r v a t i o n s from the
environment

− ( f l o a t ) reward from the environment
− ( boo l ) whether the curren t ep i sode i s

completed or not
− ( d i c t ) misc in format ion

Raises :
ValueError : [ S teps pas t ep i sode terminat ion ]

" " "
i f s e l f . done :

raise ValueError ( " execut ing ␣ ac t i on ␣ in ␣
terminated ␣ ep i sode " )

s e l f . t imestep += 1

# Since the env . s t ep f requency i s s lower than the
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mjsim t imes t ep frequency , the i n t e r n a l
c o n t r o l l e r w i l l output

# m u l t i p l e torque commands in between new high
l e v e l ac t i on commands . Therefore , we need to
denote v ia

# ’ po l i c y_s t ep ’ whether the current s t ep we ’ re
t a k ing i s s imply an i n t e r n a l update o f the
c o n t r o l l e r ,

# or an a c t u a l p o l i c y update
po l i cy_step = True

# Loop through the s imu la t i on at the model
t imes t ep ra t e u n t i l we ’ re ready to take the
next p o l i c y s t ep

# ( as de f ined by the c o n t r o l f requency s p e c i f i e d
at the environment l e v e l )

mujoco_calc_error = False
for i in range ( int ( s e l f . contro l_t imestep / s e l f .

model_timestep ) ) :
s e l f . sim . forward ( )
s e l f . _pre_action ( act ion , po l i cy_step )
try :

s e l f . sim . s tep ( )
except :

print ( " mujoco_calc_error " )
mujoco_calc_error = True
break

s e l f . _update_observables ( )
po l i cy_step = False

i f not mujoco_calc_error :
# Note : t h i s i s done a l l a t once to avoid

f l o a t i n g po in t i naccurac i e s
s e l f . cur_time += s e l f . contro l_t imestep

reward , done , i n f o = s e l f . _post_action ( ac t i on )

i f s e l f . v iewer i s not None and s e l f . r ende re r
!= ’mujoco ’ :
s e l f . v iewer . update ( )

ob s e rva t i on s = s e l f . v iewer . _get_observations ( )
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i f s e l f . viewer_get_obs else s e l f .
_get_observations ( )

else :
s e l f . cur_time += s e l f . contro l_t imestep

reward , done , i n f o = s e l f . _post_action ( ac t i on )

i f s e l f . v iewer i s not None and s e l f . r ende re r
!= ’mujoco ’ :
s e l f . v iewer . update ( )

ob s e rva t i on s = s e l f . v iewer . _get_observations ( )
i f s e l f . viewer_get_obs else s e l f .

_get_observations ( )
done = True

return obse rvat ions , reward , done , i n f o
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