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Abstract—In recent years, federated learning (FL) has emerged
as a powerful paradigm for distributed learning thanks to its
privacy-preserving capabilities. With the use of FL, a network
of edge devices can make intelligent decisions without exposing
their data to others. Despite its success, the traditional FL is
not well suited to many practical applications such as those
that involve the internet-of-things (IoT) or cyber-physical systems
(CPS), where data access can be intermittent, and edge de-
vices are semi-independent with device-specific dynamic behavior
characteristics. Those devices are referred to here as semi-
independent devices since they need to make decisions based on
their own data and device characteristics, often independent of
other devices and the information obtained from other devices in
the network. Additionally, as new information becomes available,
traditional FL must repeat the entire learning process and
may not be able to provide timely and tailored solutions to
participants. Personalized online FL, on the other hand, retains
the collaborative and privacy-preserving aspects while learning
in real time from intermittent data. It further enables devices
to learn models customized to the device and the specific tasks
it performs. In light of these reasons, personalized Online-FL is
ideal for applications where the learning relies on heterogeneous
data streams, and local optimization is beneficial. In this work,
we want to bring attention to this new learning paradigm,
present a few of the applications that could benefit from it, and
highlight the principal challenges the research community faces
in developing successful personalized Online-FL.

Index Terms—Personalized online federated learning, internet-
of-things, cyber-physical systems, distributed multitask learning.

I. INTRODUCTION

Advances in telecommunication and semiconductor chip
design technologies have contributed to the rapid development
of the internet-of-things (IoT) and cyber-physical systems
(CPS). Myriads of dispersed sensors and devices in these
systems constantly gather data for inference and decision-
making. Due to various factors (e.g., resource constraints of
devices, channel capacity and availability, and privacy and data
integrity of end users), it is usually not practical to transfer
the data collected over edge devices to a central processing
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Fig. 1. Traditional federated learning.

server or the cloud through wireless media. Considering these
concerns, it is, therefore, imperative that large-scale networks
establish a trustworthy and reliable distributed learning frame-
work capable of learning from heterogeneous data arising over
a myriad of devices with varying capabilities while complying
with the individual privacy preferences of data holders. A
new distributed learning framework referred to as federated
learning (FL) [1] addresses many of the abovementioned issues
associated with cloud-based centralized data processing.

An illustration of the traditional FL workflow is given in
Fig. 1, in which numerous devices (e.g., IoT devices), referred
to as clients, residing at the network edge perform local
learning on their own fixed amount of data Xk. These clients
transfer their updated models wk,n to an access point or server,
where a global model wn is developed by aggregating the
local models. This aggregation could be a simple or weighted
average of local models, depending on the need to emphasize
specific clients’ data. Afterward, the server communicates the
aggregated global model back to the edge devices to replace
their local model. This local learning-aggregation procedure
continues for a predefined number of iteration rounds or until a
pre-specified convergence criterion is met, allowing a network
of devices to learn from each other. Since clients do not
disclose their data during model training, FL ensures the data
integrity of the clients contributing to the learning process.
Additionally, since FL does not share the raw data, it can
seamlessly handle unbalanced data across large-scale networks
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with varying statistical properties, such as IoT.
An IoT network is one of many applications in which partic-

ipating clients receive data progressively or even a continuous
stream of data. Data streams collected by edge devices in
IoT networks may be used to perform local learning in real-
time and to update global models. Importantly, the underlying
model is more likely to evolve with time. In this regard, more
significant weightage should be given to recent data during
the learning process. Furthermore, in a few other applications,
e.g., wireless communications and networked vehicles, the
real-time responsiveness of the model is paramount. Because
the traditional FL learns from fixed data batches that are not
usually timely enough, it is not appropriate for these scenarios.
Online federated learning (Online-FL) [2] is a viable solution
for applications of this kind. In Online-FL, the clients perform
local learning on heterogeneous data streams, then share their
updated local models with the server to build a more accurate
global model in real time. Thus Online-FL is better suited
to learn from streaming data in a computationally efficient
manner without requiring periodic retraining of the model.

Besides heterogeneous data streams, edge devices act semi-
independently in the aforementioned applications and exhibit
device-specific dynamic behavior. Clearly, this requirement
highlights the importance of learning device-specific models
rather than a single universal model. Therefore, this article
focuses primarily on personalized Online-FL, which best fits
the IoT/CPS featuring heterogeneous data streams. To this
end, we provide an overview of personalized Online-FL and
the applications it can serve. Furthermore, we present some
challenges and potential future directions of personalized
Online-FL in real-world settings to inspire new research that
may bring the personalized federated IoT/CPS into reality. Our
discussions will differ significantly from existing articles that
deal primarily with simple traditional FL [3]–[5].

II. PERSONALIZED ONLINE FEDERATED LEARNING:
WHY AND WHAT IS IT?

In numerous applications like IoT networks, IoT edge
devices continually sense and collect data streams. These
data streams may have different statistical properties due to
their geographical dispersion or intrinsic characteristics of
the underlying processes. The more critical aspect of these
edge devices is that they behave semi-independently and col-
laborate among themselves to improve their decision-making
capability. Therefore, learning a single universal model for
device-specific tasks is neither reasonable nor realistic. To
adequately address these problems, it is necessary to allow
each device to learn and use a local, personalized model
[6]. In some other applications, it is convenient for groups
of clients, called clusters, to share a single model, i.e., a
personalized model for a cluster instead of an individual client.
Further, it is also expected that the underlying device-specific
models will change over time in real-life applications. Close
monitoring of these changes is necessary to make appropriate
personalized decisions. Therefore, FL techniques intended
for real-life applications must be capable of adjusting their
underlying models as new data becomes available.
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Fig. 2. Personalized online federated learning.

The exciting aspect of these device-specific tasks is that
they differ but may be related, i.e., some similarities may exist
between the tasks performed by individual clients or clusters.
It is often necessary to take advantage of these similarities
when a limited amount of data is available at a single client
or cluster to build satisfactory personalized models. Promoting
similarities in device-specific tasks during the learning process
enables every client or cluster to build their best-customized
models tailored to their own/local needs.

Personalized Online-FL meets the requirements of all the
abovementioned cases better than traditional FL. Fig. 2 illus-
trates the workflow of personalized Online-FL. In personal-
ized Online-FL, clients perform local learning on their own
streaming data xk,n to build personalized models wk,n and
communicate them to the server. Since the data is only avail-
able at irregular intervals to clients, local learning also hap-
pens irregularly. The server performs cluster analysis on the
received models to group the clients into clusters, wherein the
clients that belong to the same cluster strive to learn the same
model. By using the cluster information, the server produces
improved cluster-specific models by performing intra-cluster
cooperation, i.e., averaging the local models that belong to the
same cluster. The server finally generates enhanced person-
alized models w⋆

k,n by performing inter-cluster cooperation,
i.e., promoting similarities between cluster-specific models. In
the abovementioned personalized Online-FL workflow, intra-
cluster cooperation will not be present if the number of clusters
equals the number of clients. In contrast, if all the clients
are part of the same cluster, there will be no inter-cluster
cooperation, and the personalized Online-FL will be reduced
to the traditional Online-FL.

We examined personalized Online-FL by applying it to a
linear regression problem, using a synthetic dataset for training
and the mean squared error (MSE) as a performance measure.
We considered a scenario in which 100 clients, randomly
grouped into 3 clusters, are connected to a server. Each cluster
of clients aimed to learn a cluster-specific model of length 200.
The server randomly selects 10% of the clients to participate
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in every global iteration. Every client performs local learning
on a heterogeneous data stream using the stochastic gradient
descent rule. Both traditional and personalized Online-FL
learning methods were studied in this simulation example.
Their learning performances are compared as shown in Fig. 3,
in which each curve represents the MSE averaged over all
clients for each method. The results demonstrate the superior-
ity of personalized Online-FL over traditional Online-FL.
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Fig. 3. Performance of personalized Online-FL vs. traditional Online-FL.

III. APPLICATIONS

This section briefly describes six real-life applications that
personalized Online-FL can efficiently serve. Of course, many
other applications could benefit from personalized Online-FL,
but the space constraint limits us to presenting these only.

A. Personalized Healthcare

IoT allows the healthcare system to expand its reach beyond
the traditional clinical setting. Various wearable biomedical
IoT devices, such as fitness trackers, blood glucose and
diabetes monitors, blood pressure meters, cardiac rhythm
monitors, and many more, are used to monitor patients’ health
status in real-time. These IoT devices generate a stream of time
series measurements, possibly at irregular intervals [7]. It is
well known that health status and disease progression differ
significantly from patient to patient and are highly affected
by the weather, wealth, pollution, and other socioeconomic
factors. Personalized models can capture these patient-specific
dynamics more precisely. Unfortunately, the amount of data
obtained from just one of these IoT edge devices is often
insufficient to build reliable models to adequately describe
patient-specific behavior. Furthermore, acquiring healthcare
data from biomedical devices owned by other users or hos-
pitals can be challenging because laws restrict access and
disclosure to protect patient privacy. Personalized Online-FL
offers greater flexibility over traditional FL in this scenario,
i.e., it enables edge devices to learn intelligent, personalized
healthcare models from heterogeneous streams of healthcare
data collected by biomedical IoT edge devices. Hence, each
participating edge device could benefit from data collected by

other devices beyond its own but without disclosing private
information. A significant benefit of personalized Online-FL
is that it learns personalized healthcare models to identify
and diagnose each patient’s disease accurately (and more
effectively) by exploiting the similarities between the patient’s
health behaviors, regardless of whether they belong to the
same or different geographical regions. These benefits of
personalized Online-FL will tremendously impact healthcare
in the future.

B. Networked Vehicles

In the automotive industry, autonomous driving technology
is growing in popularity; its sound performance is crucial to
the safety of the public as well as the economic prosperity of
the industry. Autonomous vehicles need to be always aware of
their surroundings. They need to learn a real-time personalized
model evolving in accordance with their highly dynamic
environment [8], thereby making personalized decisions on
multiple tasks, such as steering prediction, lane detection, vehi-
cle detection, and pedestrian detection. However, the decision-
making ability of autonomous vehicles is limited when these
models are learned just on their own data collected continu-
ally from a set of cameras and sensors. Those vehicles can
make better decisions when they exchange information about
their surroundings with neighboring cars, smart city devices
equipped with cameras, and hand-held devices of pedestrians
(e.g., smartphones and watches). Through this information
exchange, each autonomous vehicle can obtain a full 3D
model of its surroundings even in crowded environments,
significantly improving effectiveness of decision-making. This
data exchange may, however, raise privacy concerns. Per-
sonalized Online-FL is a solution tailored for this type of
problems. It enables vehicles to learn vehicle-specific time-
varying environment models from heterogeneous data streams
and leverage the overlap between vehicles’ local environment
models while preserving users’ privacy.

C. Smart Homes

IoT-enabled smart home environments are gaining popu-
larity as they improve comfort and ease of use in everyday
life. Household IoT devices, including smart TVs, cameras,
speakers and microphones, air conditioners, lights, doors, win-
dows, and many others, share environments and communicate
via Wi-Fi. These smart devices are designed to monitor their
local environment continually and perform only a specific task
in response to any local change or local demand. However,
these devices are vulnerable to cyberattacks which might cause
physical harm. Context-aware control policies that allow or
block a particular IoT access are recommended to prevent
privacy leakage and physical hazards [10]. User-specific con-
textual policies, however, cannot be covered by manually
generated policies. Instead, we may develop a user-specific
contextual access control model using machine learning (ML)
algorithms. Some smart homes may have limited data, which
may hamper the accuracy of contextual access control models.
Given each device’s limited power and privacy reasons, it
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is preferable only to store and update the contextual ac-
cess control models locally. Enhanced user-specific contextual
access control models can be learned through personalized
Online-FL without compromising the privacy of smart homes
participating in the learning. Personalized Online-FL can also
be used to learn user-specific speaker recognition models that
provide access to control smart home appliances.

D. Precision Agriculture
Unlike autonomous vehicles, where legal restrictions limit

innovation potential, autonomous mobile devices are flourish-
ing in other fields. For instance, autonomous mobile devices
for precision agriculture are receiving growing interest as
they provide an alternative to polluting herbicides. Laser-
equipped small, autonomous, rover-like devices are being used
to dispose of weeds in fields. However, such devices have
limited autonomy because of their size and battery capacity;
therefore, they must be used in groups to handle large fields. In
such cases, these devices need to recognize undesirable weeds
and collaboratively learn the field’s shape and device-specific
path in real-time without impacting the performance of other
devices. To this end, a lab-made base model of undesirable
weeds can be uploaded to each device. Then, the autonomous
mobile devices launched in a field would learn the personalized
models that describe the shape of the field, their path, and
the encountered weeds in real-time through observations and
interactions among them. These personalized models would
allow each device to know the position of all devices and the
portion of the field already covered and collaboratively plan
the best route by exchanging directions. A solution tailored
for this type of applications is personalized Online-FL.

E. Personalized Digital Immersion
The ability to keep users immersed for a more extended

period is critical to the success of any digital game. A digital
game can become a popular favorite among a wider audience
if its core elements are tailored to individual users’ interests
[9]. Therefore, personalization is an essential aspect of gaming.
Personalization can take different forms. Some users are very
particular about character aesthetics in games, such as vintage
clothing, hairstyles, etc. Others may prefer playing against
formidable opponents who challenge their abilities, enhancing
their overall gaming experience and adding more enjoyment
and excitement. Moreover, a given user’s preferences may
change with time. Those aforementioned characteristics of
video games thus impose a need for gaming industries to
continually monitor their users’ behavior, abilities, and gaming
styles to adapt to their preferences. Personalized Online-FL
will serve the gaming industry’s needs better than traditional
FL, allowing it to learn time-varying user-specific gaming pref-
erences from heterogeneous streams of users’ gaming activities
without revealing personal information. In addition to gaming,
personalized Online-FL can also enhance the personalized
experience in storytelling.

F. Wireless Systems
The use of reconfigurable intelligent surfaces (RISs) (also

called intelligent reflecting surfaces) is increasingly becoming

popular as they enhance the performance of wireless systems.
RISs reflect signals from a base station (BS) toward users by
controlling the coefficients of the RIS elements. In this way,
RISs boost the received signal energy for remote users and
extend the coverage area of the BS [11]. The RIS-assisted
wireless systems utilize channel estimates to design the phase
shifts of the reflecting beamformer elements. By doing so, the
learning mechanism can select the best possible channels for
the end user to communicate with the base station at any time.
The performance of RIS-assisted wireless systems strongly
relies on the accuracy of the instantaneous channel state
information. However, RIS-assisted wireless systems involve
signal reception through multiple channels that vary over time,
which makes the channel estimation task more challenging.
Although the edge devices communicating with a BS estimate
their channels, sharing the similarity among channels will
improve the estimation accuracy. With personalized Online-
FL, it is possible to fuse the network information securely and
intelligently while providing each user with a specific time-
varying channel model corresponding to its location and the
number of required channels.

IV. CHALLENGES AND FUTURE DIRECTIONS

This section discusses six key challenges that need to
be addressed to implement successfully personalized Online-
FL in the aforementioned real-life applications. Additionally,
we present potential future directions for addressing these
challenges.

A. Multi-Server Architectures

Although FL offers flexibility over centralized learning,
traditional and personalized Online- FL frameworks involve
many clients learning from their data and communicating
their updated local models to a server. The server aggregates
the local models to produce a global shared model that
will be transferred back to clients. However, reliance on a
single server is a significant limitation. If a given system is
poorly scaled or unexpectedly stimulated, the large number of
clients and the high dimension of the models to be shared
would strain the communication channels and can lead to
blockages. Furthermore, the complex and refined aggregation
mechanisms handling many local models at the server might
create computational bottlenecks, thus limiting the learning
speed. In some specific applications, the geographical scarcity
of clients does not allow a single server to possess enough
data to aggregate models adequately. This device dispersion
is especially likely in personalized learning, where several
models must be learned. A natural solution studied in relatively
few works is client-edge-cloud hierarchical FL. Client-edge-
cloud hierarchical FL maintains multiple edge servers linked to
their respective clients. After performing partial model aggre-
gation, these edge servers communicate with a cloud server for
final aggregation, which may suffer from the aforementioned
problems and can become a single point of failure.

Recently proposed graph federated learning (GFL) com-
prises several interconnected servers, each associated with
its own set of clients [12]. In GFL, learning is done in
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two stages. Firstly, each server performs personalized online
learning with its respective clients, referred to as intra-server
learning. Thereafter, the servers, amongst themselves, perform
distributed personalized learning, referred to as intra-server
learning. Unlike client-edge-cloud hierarchical FL, the servers
in GFL perform learning in a distributed fashion. Hence GFL
is suitable for practical applications. Because of these reasons,
a GFL architecture is preferred over single-server architecture
for an efficient, personalized Online-FL implementation. Fig.
4 illustrates the personalized Online-FL using graph federated
architecture. During intra- and inter-server learning, the servers
exploit the similarities among device-specific models via ap-
propriate regularizers.

A graph federated architecture requires the selection of
multiple computing servers or powerful clients (fog clients)
as aggregation centers. Furthermore, each server receiving
information from its clients and neighboring servers calls for
a two-step or composed aggregation mechanism that accounts
for the significance of the other server models. In unreliable
systems, server-to-server communication links might need
additional care or rely on clients to reach one another. Finally,
careful clustering of the clients is necessary to ensure that
a single client’s model is not considered in many servers.
These challenges must be studied when multi-server-based FL
architectures are adopted for personalized Online-FL.

B. Communication-Efficiency

Communicating high-dimensional models back and forth
to the server in FL requires more energy and bandwidth.
IoT devices and sensors are typically resource-constrained,
and have limited battery capacity. Consequently, communi-
cating high-dimensional models in a short period might be
challenging for them. In dense environments, competition
among many devices for bandwidth can lead to communication
bottlenecks, and strained communication channels may lead
to malfunctions, such as blockages. Since the data arrive
progressively in Online-FL, the models need to be updated
and communicated whenever new data becomes available to
the clients; this exacerbates the above limitations. Additionally,
personalized Online-FL based on multiple servers involves two
stages of model communication. In light of these issues, there
is a great need for communication-efficient FL schemes.

There has been an increasing interest in communication-
efficient FL, and efforts have been made to reduce the com-
munication requirements associated with traditional FL. The
two most prevalent approaches to reducing communication
overhead are scheduling and compression. In scheduling, only
a subset of the clients will be selected to participate in the
learning at each global iteration, ensuring reduced strain on
the communication channels at the cost of data variety. In
compressed update methods, the local models are sparsified
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Fig. 5. Personalized Online-FL using partial-sharing-based communication.

and projected into a lower dimension to reduce the length of
the messages. This compression reduces the communication
overhead without sacrificing data variety; however, there is an
innate accuracy cost associated with the sparsification process,
and the simultaneous unpacking of the data at the server might
lead to computation bottlenecks. Another method explored
recently in FL is partial-sharing-based communication [13],
in which clients exchange only a tiny portion of their local
model parameters at each global iteration as shown in Fig.
5. Time-evolving diagonal selection matrices Sk,n, containing
only ones and zeros on the principal diagonal, specify the
model parameters that will be shared. These selection matrices
keep track of shared model indices. As opposed to compressed
communication, partial sharing-based communication does not
incur any computational overhead. Compared to traditional FL
methods, this method provides clients with greater control over
local learning. Moreover, it is, to a certain extent, inherently
resilient to so-called byzantine attacks, wherein trusted devices
try to disrupt learning.

Communication-efficient mechanisms must be examined in
relation to personalized Online-FL, where further optimization
can be done in addition to the techniques listed above. Recall-
ing that the client- or cluster-specific models are different but
related, every client must identify the portions of the model
that are client- or cluster-specific. It is, therefore, possible
to reduce the number of communication resources dedicated
to learning the common portion in personalized models over
time while increasing the number of resources dedicated to
learning the client-specific portion in personalized models.
Furthermore, event-triggered mechanisms minimize excessive
processing and communication overhead. By verifying the
innovation of the newly available data, these mechanisms
allow clients to selectively update local models and commu-
nicate those to the respective server only when it is beneficial.
These event-triggered mechanisms provide significant benefits
to clients with low computational resources.

C. Straggler Clients

It is common to come across straggling devices in most
real-world applications relying on a network of distributed
devices. For example, in networked vehicles, a vehicle may
intentionally disconnect for various reasons or accidentally
disconnect due to weak signaling while in a certain location.
Stragglers represent devices that incorporate many limitations
a device might have, such as low power availability, modest
computational capability, imperfect communication channels,
and susceptibility to failure. Due to these limitations, straggler
devices impair learning, even more so in personalized Online-
FL. As a result, different challenges will emerge in the context
of personalized Online-FL. For instance, when a device work-
ing toward a personalized model becomes unresponsive for
a particular period, one can not easily determine whether its
model has strayed from the average or is outdated. Further-
more, given the limited size of client clusters, any misbehavior
or lack thereof of a client can significantly impact the models
of the other clients. For these reasons, practical straggler-
related issues and model freshness should be addressed in
personalized Online-FL. Various strategies have been devel-
oped to handle straggler devices in traditional FL, e.g., reactive
and adaptive aggregation mechanisms, but very few have
been extended to personalized FL. Hierarchical learning is
a promising solution to improve the learning conditions in
systems with stragglers. For instance, more robust clients
with access to higher volumes of quality data participate in a
partial model aggregation. They then share a reasonable server
model with straggler clients to allow them to participate spo-
radically. This procedure can handle the poor computational
capacity of stragglers. However, sometimes stragglers also
have access to large volumes of quality data. Therefore, novel
methods need to be developed to address this critical situation,
e.g., by allowing straggler clients to sift through the data
resource-efficiently while not losing important information
whenever they contribute to global learning. Additionally,
event-triggered learning mechanisms may benefit stragglers by
reducing their computational burden.

D. Model-Poisoning Attacks

In many distributed learning applications, adversaries may
try to disrupt the learning process by sharing random or
purposefully harmful data with the participating devices, re-
ferred to as a model-poisoning attack [14]. In traditional FL
and Online-FL, these attacks are often detected; consequently,
those updates will be ignored by looking for outliers among
the participating devices. Model-poisoning attacks may have
additional harmful effects on personalized Online-FL. In per-
sonalized Online-FL, the devices are allowed to learn device-
specific models, so outliers are an integral part of the process
and cannot be removed when detected under the suspicion of
being an adversary. A simple possible solution is allowing an
adversary client to operate with a personalized model in the
network, only concentrating on negating its impact on learning
other client models. To this end, only a selected group of
clients would be used to aggregate the base server model;
the others would only benefit from this model and update
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their personalized models. Recently proposed sign stochastic
gradient sharing- and partial-sharing-based communication are
proven to be resilient against model-poising attacks. These
techniques can be incorporated into the personalized Online-
FL to address model-poising attacks. However, their ability to
learn personalized models is yet to be studied. Furthermore,
the resilience of these communication techniques has to be
studied under stealth attacks.

E. Algorithm and Architecture Co-Design

Both in traditional FL and personalized Online-FL, we move
computations to the network edge, i.e., the data processing
takes place close to the point of its origin. The computation
on the network edge brings opportunities for customization
of algorithms and the device hardware to reduce latency and
power demands. Models based on contemporary ML algo-
rithms are typically large. Thus, FL’s training phase involves
many iterations before finalizing the model. Therefore, the
local learning on the edge device demands higher energy
and throughput. However, IoT edge devices are equipped
with limited battery and computational power. These issues
can be addressed with novel online ML architectures that
handle heterogeneous data streams and have fewer neural
network layers. However, ML algorithms for heterogeneous
data streams are still in their infancy. A few recent works
[15] have attempted this; nevertheless, much research needs
to be done in this direction. When implementing these algo-
rithms in hardware, an application-specific integrated circuit
(ASIC) or field-programmable gate array (FPGA) needs to
be considered to take advantage of recent developments in
low-power, very large-scale integration (VLSI) architecture
designs. These dedicated VLSI architectures can meet the
higher throughput and lower latency requirements of real-time
processing. Furthermore, the best trade-off between learning
performance and implementation flexibility can be achieved
by jointly customizing the algorithm and architecture rather
than designing each separately.

F. Standardization

Finally, standardization must be addressed to make per-
sonalized Online-FL a reality. Many existing works assume
precise settings regarding client distribution and predetermined
clusters that often differ from one work to another. For
instance, in some existing works, the cluster distribution of
clients remains constant during the learning process. This
assumption indeed results in mathematically tractable and
computationally efficient solutions. However, it also closes
the door to personalized Online-FL with adaptable clusters
that could take advantage of the advancements in the field.
Therefore, it is necessary to study and incorporate generic
or adaptable cluster identification methods and intelligent
aggregation methods into a standard framework to allow the
smooth implementation of future works on solid foundations.
Moreover, other features that deal with communication effi-
ciency, privacy protection, asynchronous behavior of clients
and communication channels, and adversary detection should
not restrict the framework’s compatibility. A combination of

many of these improvements in a single framework is neces-
sary as real-life applications often have several requirements
of this type.

V. CONCLUDING REMARKS

Personalized Online-FL allows geographically dispersed
edge devices to learn device-specific models from the event-
triggered heterogeneous stream of measurements; it is, there-
fore, more suitable for IoT/CPS-based applications. Combin-
ing continuous learning and personalized models ensures that
each device can access an up-to-date solution for its specific
task. Thus, personalized Online-FL is an efficient alternative
to traditional FL while retaining its collaborative and privacy-
preserving nature. This article highlighted some of the many
applications that could benefit from personalized Online-FL.
Furthermore, we elaborated on the challenges that need to be
overcome for personalized Online-FL to be widely utilized
in practice. We also presented some potential solutions to
address those challenges, intending the further research and
development of personalized Online-FL.
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