
Maritime Transport Research 3 (2022) 100061

A
2
(

P
u
U
a

3
b

A

K
M
L
S

1

4
o
c
n
a
o
c

n
p

h
R

Contents lists available at ScienceDirect

Maritime Transport Research

journal homepage: www.elsevier.com/locate/martra

lanning a maritime supply chain for liquefied natural gas under
ncertainty
lrik Eriksen a, Johan Kristiansen a, Kjetil Fagerholt a,∗, Giovanni Pantuso b

Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getzvej
, Trondheim, 7491, Norway
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark

R T I C L E I N F O

eywords:
aritime supply chain

iquefied natural gas
tochastic programming

A B S T R A C T

This paper studies the design of a mid-scale maritime supply chain for distribution of liquefied
natural gas (LNG) from overseas sourcing locations, via a storage located at the coast, before
transporting the LNG on land to industrial customers. The case company has signed contracts
with a number of initial customers and expect that there will be more customers and increased
demand in the years to come. However, it is currently uncertain whether and when new
contracts will be signed. To capture this uncertainty with regard to which and how many future
customers there will be, which directly affects the demand, we propose a multi-stage stochastic
programming model, which maximizes the expected profits of the supply chain. The model
aims at aiding decisions concerning the import of LNG, investments in floating storage units
and customer distribution systems, and it has been applied on a real case study for distributing
LNG to customers in a Brazilian state. It is shown that explicitly considering uncertainty in the
modeling of this problem is very important, with a Value of Stochastic Solution of 13.2%, and
that there are significant economies of scale in this supply chain. Most importantly, the multi-
stage stochastic programming model and the analysis presented in this paper provided valuable
decision support and managerial insights for the case company in its process of setting up the
LNG supply chain.

. Introduction

In the challenge of meeting the world’s rising energy demand, the consumption of natural gas is predicted to increase by almost
5% by 2040 compared to the level in 2017 (IEA, 2018). Natural gas is traditionally transported through pipelines, but as a share
f the expected increase in demand is projected to originate from developing countries, new markets without extensive pipeline
onnections are likely to emerge. Therefore, there is a need for other ways of transporting, storing, and handling the gas. By cooling
atural gas down to about −162 ◦C, the gas condensates and takes the form of Liquefied Natural Gas (LNG). LNG takes up only
bout 1/600th of the volume compared to its gaseous form (Mokhatab et al., 2013). This significant volume reduction enables
ther means of transportation (e.g., specialized LNG vessels) and storage, thus reducing the need for high investments in pipeline
onnections.

A typical LNG supply chain is illustrated in Fig. 1. It consists of five main elements and starts with (1) the extraction of the
atural gas, which is then cleaned and purified before (2) being liquefied. Due to its cryogenic nature, LNG is kept in insulated
ressure tanks designed to maintain its low temperature. However, as the tanks are not perfectly insulated, a slightly higher surface
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Fig. 1. A typical LNG supply chain.

temperature makes for a constant boiling and evaporation of LNG. This process is called boil-off and is an essential attribute when
storing and transporting LNG. The boil-off rate is constant and typically in the range of 0.10–0.15% of the tank’s total capacity per
day (Mokhatab et al., 2013). After being liquefied and stored at the liquefaction plant, the LNG is (3) transported to its destination
terminal(s). The great volume reduction gained from liquefying the gas makes several means of transport economically viable. While
LNG can be transported through pipelines over shorter distances, the most common transportation method over longer distances
is maritime transportation using specialized LNG vessels. Land-based transportation is also an alternative for shorter distances and
smaller volumes and is done by filling smaller insulated pressure containers transported by trucks. At the destination terminal, the
LNG is again (4) temporary stored before being (5) transported to the customers.

In this paper, we consider the planning of a new mid-scale maritime supply chain for distribution of LNG consisting of elements
(3)–(5) of the supply chain illustrated in Fig. 1. This planning problem comes from a real case for a company which is in the
planning process of setting up a maritime supply chain for the distribution of LNG to a Brazilian coastal state. Due to reasons of
confidentiality, we refer to the company only as the Company. The actual supply chain is restricted to a specific structure, where
LNG will be imported to a single destination terminal in Brazil from overseas locations with LNG vessels. The destination terminal
will consist of one or more Floating Storage Units (FSUs) where the LNG is temporary stored, and from which it will be distributed to
inland regasification stations near the customers. Due to lack of available pipeline connections in the market’s state, the LNG must
be distributed in containers by trucks to regasification stations serving the customers.

Setting up this supply chain is a strategic planning problem and the Company has to make the following inter-connected decisions:
(1) with how many and which industrial customers to form contractual delivery contracts; (2) the size and number of FSUs to employ
(i.e., the total storage capacity at the destination terminal); (3) plan the shipments from the overseas destinations (i.e., determine
the size and number of shipments from overseas locations). The customers, which are the end users of the LNG, are typically
major production facilities in need of energy. The Company has already established delivery contracts or letters of intent with some
customers with known demand, while there is a set of other potential customers, with given demand, with whom the Company
might sign contracts in the future. However, the decisions above must be made now, which means they have to be made under
uncertainty with regard to which future customers, and hence demand, that will appear. Due to the supply chain’s complexity and
high capital intensity, as well as the uncertainty faced, the Company seeks to use optimization-based decision support in the process
of designing it.

There exist several studies on optimizing the distribution of LNG at different planning levels. At the operational planning
level, there are for example several studies on the LNG maritime inventory routing problem, e.g., Grønhaug and Christiansen
(2009), Fodstad et al. (2010) and Andersson et al. (2010). The planning of an Annual Delivery Program (ADP) is an important
planning problem at the tactical level and consists of scheduling the LNG deliveries to a set of customers for the next year, e.g., Rakke
et al. (2011), Stålhane et al. (2012), Al-Haidous et al. (2016), Mutlu et al. (2016) and Andersson et al. (2017). However, in what
follows we focus on studies for the strategic design of an LNG supply chain, which is most relevant for the planning problem we
consider in this paper.

Several studies for the strategic planning of small-scale LNG supply chains use mixed-integer programming (MIP) to model and
solve their decision problem. Jokinen et al. (2015) consider the strategic planning of a small-scale LNG supply chain. Its components
consist of a large distribution terminal, smaller satellite terminals, and a customer network. LNG is distributed directly by trucks
to customers in close proximity to the main terminal. If customers are located farther away, LNG vessels transport LNG to the
satellite terminals from which further distribution is done by trucks. Bittante et al. (2017, 2018) also present MIP models for the
optimal design of small-scale supply chains where LNG is delivered from supply-side terminals to demand-side terminals by ship
transportation and, subsequently, by land-based truck transportation to the customers. The models are used on case studies from the
region around the Gulf of Bothnia and the Caribbean, respectively. In a following-up work, Bittante and Saxén (2020) extend the
single-period MIP models from the previous studies into a multi-period model. The use of the model is demonstrated on two case
studies for a set of islands in Indonesia and in the north region of the Baltic Sea, respectively. Koza et al. (2017) consider a planning
problem for a future scenario in which a liner shipping company may use LNG fueled container vessels on some of their services.
Decisions are made with regard to the capacities of the onshore storages and the fleet of LNG vessels to supply the container vessels,
with the objective of minimizing the sum of investment costs and operational costs. A similar problem as considered in the above
studies, though for a liquid helium supply chain, is studied by Malinowski et al. (2018).

There are also a few studies that explicitly consider uncertainty in future demand, which is an important aspect of our problem,
though using rather different modeling and solution approaches than we do in this paper. Zhang et al. (2017) develop a multi-
scenario MIP model, which is solved by a heuristic combining a MIP-solver with ant colony optimization. The methodology is
tested on a case study concerning an LNG supply chain along the Yangtze River in China. In contrast to our stochastic programming
approach, they perform sensitivity analyses to see the effect of different LNG prices instead of optimizing across the different
scenarios. Cardin et al. (2015) look at the importance of flexibility in large-scale and capital intensive projects, with flexibility
2

defined as the ability to adapt to changes in the market due to realizations of uncertainties. A case of an onshore LNG production
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Fig. 2. Overview of the LNG supply chain. LNG is shipped from overseas sourcing locations to a destination terminal where the LNG is stored in one or more
Floating Storage Units (FSUs), before being further distributed by trucks to customers.

project is presented. In contrast to what we do in this paper, they analyze the different scenarios one at a time. Through both
statistical and economical analysis of different scenarios, they show that the economical performance can be considerably improved
by designing a supply chain with sufficient flexibility to adapt to market changes. Finally, we can mention the study by Sangaiah
et al. (2020) where the authors propose a robust optimization approach to handle the demand uncertainty in an LNG supply chain.

In this paper, we propose a MIP model to support the Company in setting up its mid-scale maritime LNG supply chain for LNG
distribution. We explicitly consider uncertainty with regard to future customers in a way that differs from the previous studies.
Particularly, in our case the uncertain element to consider is whether individual customers will sign a contract with the Company
or not. The demand associated with each customer is however known and stated in the contract. Our contributions are as follows:
(1) We propose a novel and efficient node-based multi-stage stochastic programming model for the planning of a mid-scale LNG
maritime supply chain with uncertain customers, and (2) we test the model on a real case for the Company. Our tests show that
explicitly considering uncertainty in the modeling of this problem leads to higher expected profits and that the supply chain is
characterized by significant economies of scale. The paper also serves as an example of how using Operations Research can provide
valuable decision support and managerial insights for solving a real planning problem.

The remainder of this paper is organized as follows: Section 2 provides some background information for the real case study
considered in this paper, while Section 3 gives a problem definition. The multi-stage stochastic programming model is provided
in Section 4.3. Section 5 presents the input data for the case study, before the computational analyses and results are shown in
Section 6. Finally, we provide a summary and draw concluding remarks in Section 7.

2. Background for the case study

The Company plans to set up a mid-scale supply chain for the distribution of LNG to a Brazilian coastal state. The state is
currently served with LNG through the GASBOL pipeline, connecting the Bolivian gas resources to the Brazilian market. GASBOL’s
capacity is limited to about two million m3 of natural gas per year. However, the Company estimates the total demand in the state
to be around 15 million m3 per year, thus currently yielding a substantial deficit. By importing LNG from overseas locations, the
Company aims to fill some of this current deficit. The scope of the planned supply chain operations is illustrated in Fig. 2. This
includes the parts (3)–(5) of the whole LNG supply chain illustrated in Fig. 1, i.e., the maritime transportation from the liquefaction
plants (overseas import of the LNG), temporary storage in FSUs at the coast of the state, and further distribution and regasification
of the LNG to their customers.

The considered LNG production plants to source from are all located in the Atlantic basin. The Company plans to purchase LNG
from one or several of these sources and then pay to have it shipped by specialized LNG vessels to their destination terminal in
Brazil. The purchasing price of LNG is given by the market price of natural gas with an added surcharge covering the cost of the
liquefaction process. The Company intends to order shipments on a voyage charter basis, where they pay a freight rate for a specified
volume of LNG to be delivered in Brazil. To secure steady freight rates and due to the logistics of their suppliers, they plan to set
their shipment schedule on a yearly basis and order their shipments a year in advance of arrival (similar to the ADP).

The Company wants to apply for a permanent license to dock one or more Floating Storage Units (FSU) in a given port along
the coastline of the Brazilian state, and use these as temporary storage of the LNG before distributing it to the customers. Due to the
lack of accessible pipeline connections combined with a goal of having operations up and running in the near future, FSUs represent
3



Maritime Transport Research 3 (2022) 100061U. Eriksen et al.

a
c
a

c
t
a
a

d

3

c
E
c

a
t
t
o

the only viable storage option. This can also be a flexible solution in the case of changing (i.e., increased) demand. The potential
customers are mostly production plants in need of energy which are located at different places in the Brazilian state. To serve the
customers, the Company plans to build and operate regasification stations in close proximity to them and distribute the LNG from
the FSU to the regasification stations in insulated pressure containers using trucks. To reduce the consequences of downtime and
delays in the distribution system, some LNG can be temporarily stored in containers at the regasification stations.

Prior to the start of operations, the Company has received interest from several potential customers, and some of these have
lready signed contracts binding them as customers when operation begins. Others have signed letters of intent for when the supply
hain is up and running. Even though the future customers are uncertain, the Company predicts more potential customers to appear
long the planning horizon, and estimates doubled demand within a few years. The use of take-or-pay contracts is common in the

energy supply industry. A take-or-pay contract is a contract where the customer is bound to pay for the contractually predetermined
amount of LNG, whether they can receive the entire amount or not. Furthermore, the Company’s selling price is simply an add-on to
the current market and purchase price, meant to cover their supply chain costs and potential profits. In this way, price uncertainty
is born by the customers and the Company ensures stable and predictable revenues from each customer once a contract is signed.
However, exactly which customers that will become available in the future is still uncertain.

3. Problem definition

This section formally defines the problem in which a mid-scale maritime LNG supply chain is to be designed with the objective
of maximizing expected profits, while accounting for the uncertainty regarding which customers become available in the future. As
explained in Section 2 and illustrated in Fig. 2, LNG is imported from overseas locations to a given destination terminal in Brazil
with LNG carriers. The destination terminal consists of one or more FSUs, from which the LNG is distributed to inland regasification
stations near the customers. The decisions to be made concern the following:

• Customers
There is a pool of potential customers to supply. Customers may manifest their interest in signing a supply contract at any
point in time. We call an available customer a customer that has manifested their interest in signing a contract. The Company
is to decide with which available customers to form contractual agreements. Once a contract is formed, it is binding for the
remaining planning horizon.

• FSUs
There are several FSU types, varying in storage capacities and costs. The Company must decide which FSU(s) to acquire and
at what point in time to do so. At least one FSU must be acquired at the start of operations to temporarily store the LNG for
the initial and known customers, but more FSUs can be added later in the planning horizon if needed to serve new customers.
Once an FSU is acquired, it must be kept for the remaining planning horizon.

• Shipments
Shipments must be planned from sourcing locations with LNG vessels varying in size. It is assumed that shipments are ordered
periodically, and that choices of sourcing location and vessels can vary between the different periods.

The decisions to be made in this strategic planning problem are all interconnected. As there is uncertainty regarding which
ustomers become available, the future rise in demand is uncertain. The resulting decisions in a solution to this problem should
herefore account for the possibility of an increase in the number of customers and answer the question: If a customer becomes
vailable, should it be signed? The answer lies in the trade-off between the potential revenues generated from the customer and the
dditional costs it inflicts on the supply chain.

In the following, we provide more details about each of the three relevant parts of the supply chain and the corresponding
ecisions that must be made.

.1. Customers

Based on the information provided by the Company, a set of customers is defined. This set includes the customers with which
ontracts have already been signed, as well as numerous other potential customers that might appear along the planning horizon.
ach customer has a known periodic (yearly) demand and a given startup period (year). Customers that already have signed
ontract are bound as customers for the remainder of the planning horizon, during which they are referred to as active customers.

An assumption is made that a customer can only be signed from its first period of demand, that is, its startup period, and if signed,
take-or-pay contracts are used. If a contract is not formed in this period, the customer is assumed to have its demand met by other
energy suppliers. The mentioned customers who have signed contractual agreements prior to the start of the operations are active
for the entire planning horizon. These are referred to as initial customers.

Each active customer requires an individual distribution and regasification system consisting of specialized containers, trucks
nd regasification stations. As illustrated in Fig. 3, the size of this system depends on the customer’s given demand. Consequently,
he costs of acquiring, operating, and maintaining the system for the land distribution of LNG from the FSU(s) vary from customer
o customer, but can be pre-calculated. Capital expenses of acquiring the systems’ components are depreciated over the remainder
f the planning horizon. These costs are directly connected to the specific customers and referred to as the direct costs. In contrast,

as the FSU and overseas shipping costs are not directly connected to specific customers, these are shared among all active customers
4

and are referred to as indirect costs.
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Fig. 3. To serve customers with different levels of demand, different numbers of containers, trucks, drivers and regasification stations are needed.

Fig. 4. Illustration of the terminal infrastructure.

As stated in Section 2, the Company does not take any risk concerning fluctuations in the LNG market prices. Its purchasing price
of LNG is fully recovered in the selling price to their customers, and therefore, the purchasing price has no impact on the supply
chain profits. By separating the selling price into two parts, where the first covers the purchasing price and the second covers
the remaining supply chain costs and profits, one can determine the contribution a customer makes towards the profits without
considering the current market price of LNG. The selling price’s second part is referred to as an add-on price, and for the reasons
mentioned, only the add-on price is considered further. Therefore, by multiplying the add-on price with a customer’s demand, the
revenues generated from the customer are found. Furthermore, by subtracting the customer’s direct costs from the revenues, we find
the customer’s gross margin. The gross margin is the part of the revenues meant to cover the indirect costs and profits. It is assumed
that the add-on price is the same for all customers.

3.2. Storage

Another important decision to be made is which FSU(s) to acquire. We assume there is a given set of FSUs to choose from,
differentiated by their storage capacity and cost. More than one FSU can be acquired, but once acquired, they are kept for the
remainder of the planning horizon. Due to already signed contracts with the initial customers, there is demand from the start of
the planning horizon, and at least one FSU must be acquired to handle this demand. There is a periodic cost of operating an FSU,
which includes both operating and charter costs. It is assumed that the boil-off gas originating from the FSU is used to operate the
FSU, and thus, the value loss of boil-off is covered by the operating cost. There is also a cost for setting up a new FSU. This cost will
only be imposed the first time a new FSU is being used. Since the Company argue that they will never enter into an FSU contract
for very short time periods due to the cost for setting it up, we assume that once an FSU is acquired, the Company will have it until
the end of the planning horizon. This assumption is also justified by the expected increase in demand over time in this case study.
However, we assume that we can add more FSUs at later decision stages (time periods) to facilitate for this increased demand.

Fig. 4 illustrates the terminal infrastructure, where the FSU(s) will receive LNG from incoming LNG vessels. Specialized LNG
containers are then filled up from the FSU(s) and brought to the customers’ tanks or regasification stations by trucks.
5
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Fig. 5. Illustration of the inventory level as a function of time.

Each FSU has a limited storage capacity. The Company might want to have some storage capacity designated for a safety stock
and a capacity buffer to introduce more robustness in the solutions. The safety stock is retained LNG in the FSU(s) to account for
potential delays in shipments. The capacity buffer is vacant storage space to account for potential delays in distribution, e.g., in
the case where some customers are not able to receive the LNG over a short period of time. Fig. 5 shows how the safety stock and
capacity buffer affect the usable storage capacity and the size of the incoming shipments. It should be noted that the size of the
capacity buffer is the difference between the storage capacity and the capacity buffer, as shown in the figure.

3.3. Sourcing and shipping

Regarding the import of LNG, decisions on sourcing locations, LNG vessels to use, and the number of deliveries must be made.
A set of possible sourcing locations is given, where each location has a known annual availability of LNG and a distance to the
destination terminal in Brazil. The periodic availability of LNG at each sourcing location is assumed to be constant throughout the
planning horizon. This assumption can be justified that the status of sourcing locations, which are major LNG liquefaction plants,
is not expected to change much.

We assume there is a set of given LNG vessels differing in capacities, sailing speeds and costs and that these can be chartered
on voyage charters, where a price is paid for using the vessel to transport LNG from the chosen sourcing location to the given
destination terminal. The price or freight rate includes the costs of fuel, vessel crew and port fees, and varies with the LNG carrier’s
size and sailing time. Due to the economies of scale in the shipping industry, freight rates per volume of LNG decrease with increasing
vessel capacities. It is assumed that the LNG vessels are loaded to their maximum capacity prior to leaving the sourcing location,
meaning that shipment sizes are decided by the chartered LNG vessel’s capacity. However, due to boil-off during sailing and the
LNG heel needed for the return voyage, the volume loaded differs from the volume delivered. It is assumed that shipment schedules
are determined on a yearly basis, which is common in the LNG business.

3.4. Uncertainty

Which customers will become available to sign a contract in the future is currently uncertain. As stated in Section 3.1, each
of the potential customers has a defined startup period, and prior to this period, it is uncertain whether the customer will appear
or not. The only customers that are certain to have a demand are the initial customers, which are already bound as customers
through signed contractual agreements. In other words, there is a given initial demand, but the future increase in demand due to
new customers is uncertain. Strategic decisions must account for the uncertainty to design a supply chain flexible enough to handle
potential increases in demand. Each customer has a given probability of appearing, and all initial customers are guaranteed to
remain active customers for the entire planning horizon. The probability of a customer signing a contract is assumed to be known
and independent of the decisions made by other customers.
6
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Fig. 6. Illustration of a qualitative three-stage scenario tree. The numbers inscribed in the nodes are arbitrary node indices. The numbers inscribed in squares
t the bottom of the scenario tree are arbitrary scenario indices.

. Multi-stage stochastic programming model

In this section we propose a multi-stage stochastic programming model for the planning problem presented in Section 3. We adopt
so-called node formulation, which is general with respect to the scenario tree describing the uncertainty as well as the number of

decision stages included. Vitali et al. (2020) compare the node formulation with the more common scenario formulation and show
that the former is more efficient, though perhaps not as intuitive. We also refer to Kall et al. (1994) and Birge and Louveaux (2011)
for a general introduction to stochastic programming, to Pantuso et al. (2016) and Skålnes et al. (2020) for stochastic programming
models of maritime transportation problems and, particularly, and finally to Ormevik et al. (2020) and Bakkehaug et al. (2014) for
two examples where node formulations have been used. In the remainder of this section we start by briefly introducing the concept
of a scenario tree in Section 4.1. Subsequently, in Section 4.2 we present the notation and in the mathematical model.

4.1. Scenario trees

This section provides a short introduction about scenario trees. We do this using Fig. 6, which describes a small example of a
three-stage scenario tree. A scenario tree is a utility that allows us to describe and encode a discrete stochastic process. It is made of
a set of nodes. Each node represents a ‘‘state of the world’’, i.e., a collection of the uncertain information realized until the decision
stage where the node belongs. Looking at Fig. 6 we see that the scenario tree has seven nodes. At the first decision stage which
corresponds to the first time period, i.e., 𝑡 = 1, we have only one node (node 1). This is to say that the information we have today
s not uncertain. At the second decision stage, either node 2 or node 3 will materialize, each representing different realizations of
he uncertain parameters related to 𝑡 = 2. In the focal problem, nodes 2 and 3 will represent two different sets of customers signing
contract with the company in that particular period. Further on, at decision stage 3, four nodes may materialize, representing as
any (possibly conditional) realizations of the uncertainty. That is, if node 2 materialized in stage 2, one might end up either in
ode 4 or in node 5. Likewise, after node 3, one might end up either in node 6 or 7. Each node has a probability of materializing,
nd the sum of the probabilities of the nodes at the same stage sums to 1. Each node, except for the root node, has a parent node. As
n example, node 2 is the parent of nodes 4 and 5. We call the nodes at the last decision stage as leaf nodes. Finally, a scenario tree
ontains a finite set of scenarios, representing complete realizations of the entire stochastic process. In Fig. 6 we find four scenarios,
dentified by squares beneath the scenario tree. As an example, scenario 1 represents the realization of the uncertainty made of the
odes 1 (in time period 1), 2 (in time period 2) and 4 (in time period 3). Also scenarios have probabilities, and their probabilities
um to one. In this simple example, the number of time periods and stages are the same, i.e., they are both three. It should be noted
hat it is possible to have more than one time period in each stage. In the scenario for our case study, described in Section 5.2, we
ave for example two time periods in each stage.

.2. Notation

Given a scenario tree, a node formulation can be derived by connecting parameters and decisions to nodes in the scenario tree.
s an example, in Fig. 6 one will make decisions at node 1, then at nodes 2 and 3, and so on. Likewise, uncertain parameters will

ake values which depend on the specific node. Before we provide a formulation, we introduce some notation which creates the
7

ecessary structure (e.g., set of nodes and all auxiliary elements).
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Sets

 Set of nodes in the scenario tree
𝐿 ⊆  Subset of leaf-nodes, i.e., the nodes at the last decision stage
 𝑃

𝑛 ⊆  Sequence of nodes from the root node to node 𝑛
 Set of available sourcing locations
 Set of potential customers
 𝐼 ⊆  Sub-set of initial customers
 Set of available LNG vessels
 Set of available FSU types

It should be noted that the scenario tree, represented by the nodes in the sets  , 𝐿 and  𝑃
𝑛 , also includes the information

about the periods (e.g., years) in the considered planning horizon.

Parameters

𝑝𝑛 Probability of node 𝑛 in the scenario tree occurring
𝑎(𝑛) Parent node of node 𝑛
𝐴𝑖 Availability of LNG at sourcing location 𝑖 given in m3

𝑄𝑉
𝑣 Carrying capacity of vessel 𝑣

𝑄𝐼
𝑖𝑣 Received volume when shipping from location 𝑖 using vessel 𝑣 (after boil-off)

𝐶𝑆
𝑖𝑣 Shipment costs for sourcing from location 𝑖 with vessel 𝑣

𝑄𝐹
𝑓 Storage capacity of an FSU of type 𝑓

𝐶𝐹𝑂
𝑓 Cost of chartering and operating an FSU of type 𝑓

𝐶𝐹𝑆
𝑓 Cost of setting up an FSU of type 𝑓

𝐵𝑆 Boil-off rate
𝐵𝐶𝐵 Capacity buffer as percentage of contractual demand at the given time
𝐵𝑆𝑆 Safety stock as percentage of contractual demand at the given
𝐷𝑗𝑛 Contractual demand from customer 𝑗 in scenario tree node 𝑛
𝑃𝑗𝑛 Gross margin from customer 𝑗 in scenario tree node 𝑛
𝐾𝑗𝑛 1 if customer 𝑗 becomes available to sign a contract in node 𝑛, 0 otherwise, i.e., it is

1 for all nodes in the scenario tree corresponding to the customer’s first time period

Variables

𝑑𝑛 Total contractual demand from active customers in scenario tree node 𝑛
𝑠𝑛 Inventory level in FSU after the decision made in node 𝑛
𝑥𝑖𝑣𝑛 Number of shipments ordered from sourcing location 𝑖 with vessel 𝑣 in node 𝑛
𝑞𝑖𝑣𝑛 Binary variable which is equal to 1 if LNG is shipped from location 𝑖 with vessel 𝑣

in node 𝑛, 0 otherwise
𝑦𝑓 Binary variable which is equal to 1 if an FSU of type 𝑓 is chartered, 0 otherwise
𝑧𝑗𝑛 Binary variable which is equal to 1 if contract with customer 𝑗 is active in node 𝑛,

0 otherwise
𝑦𝑅𝑓𝑛 Number of extra FSUs of type 𝑓 chartered in scenario tree node 𝑛

4.3. Mathematical model

Objective function

max
∑

𝑛∈
𝑝𝑛

(

∑

𝑗∈
𝑃𝑗𝑛𝑧𝑗𝑛 −

∑

𝑣∈

∑

𝑖∈
𝐶𝑆
𝑖𝑣𝑥𝑖𝑣𝑛 (1)

−
∑

𝑓∈
𝐶𝐹𝑂
𝑓

(

𝑦𝑓 + 𝑦𝑅𝑓𝑛

)

)

(2)

−
∑

𝐶𝐹𝑆
𝑓

(

𝑦𝑓 +
∑

𝑝𝑛𝑦
𝑅
𝑓𝑛

)

(3)
8
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The first part of the objective function calculates the expected value of the gross margins from active customers minus shipping
osts. The second term considers the costs of chartering and operating the FSU(s). The last term calculates the expected FSU setup
osts.

onstraints

∑

𝑣∈
𝑄𝑉

𝑣 𝑥𝑖𝑣𝑛 ≤ 𝐴𝑖, 𝑖 ∈ , 𝑛 ∈  (4)

𝑄𝐼
𝑖𝑣𝑞𝑖𝑣𝑛 ≤

∑

𝑓∈
𝑄𝐹

𝑓 (𝑦𝑓 + 𝑦𝑅𝑓𝑛) − (𝐵𝐶𝐵 + 𝐵𝑆𝑆 )𝑑𝑛, 𝑖 ∈ , 𝑣 ∈  , 𝑛 ∈  (5)

Constraints (4) ensure that the total volume shipped from sourcing location 𝑖 for each scenario tree node 𝑛 does not exceed the
availability of LNG at the given sourcing location. Constraints (5) restrict the incoming shipment sizes to be lower than the storage
capacity minus the safety stock and capacity buffer.

∑

𝑓∈
𝑦𝑓 ≥ 1, (6)

𝑦𝑅𝑓𝑎(𝑛) ≤ 𝑦𝑅𝑓𝑛, 𝑓 ∈  , 𝑛 ∈ ∖{0} (7)
∑

𝑣∈

∑

𝑖∈
𝑄𝐼

𝑖𝑣𝑥𝑖𝑣𝑛 + 𝑠𝑎(𝑛) = 𝑑𝑛 +
∑

𝑓∈
𝐵𝑆𝑄𝐹

𝑓 (𝑦𝑓 + 𝑦𝑅𝑓 ) + 𝑠𝑛, 𝑛 ∈ ∖{0} (8)

𝑠𝑛 ≤
∑

𝑓∈
𝑄𝐹

𝑓 (𝑦𝑓 + 𝑦𝑅𝑓𝑛) − 𝐵𝐶𝐵𝑑𝑛, 𝑛 ∈  (9)

𝑠𝑛 ≥ 𝐵𝑆𝑆𝑑𝑛, 𝑛 ∈ (10)

Constraints (6) and (7) ensure that at least one FSU must be acquired at the beginning of the planning horizon, and if an FSU is
acquired, it must be kept for the entire planning horizon. That is, if an FSU is available at a given scenario node it is also available at
the nodes emanating from it. It should be noted that these constraints can easily handle the decision of whether to acquire multiple
FSUs of the same type. In that case, it is sufficient to add to the set multiple copies of the same FSU. Constraints (8) make sure
that the inventory is managed correctly between all consecutive nodes in the scenario tree. Constraints (9) ensure that the capacity
buffer remains unfilled. The constraint is necessary as the capacity buffer is meant to be vacant storage space, only used in the case
of uncertainty on the operational level. Constraints (10) ensure that the inventory level is always greater than the desired safety
stock.

∑

𝑛′∈ 𝑃
𝑎(𝑛)

𝐾𝑗𝑛′𝑧𝑗𝑛′ ≥ 𝑧𝑗𝑛 −𝐾𝑗𝑛, 𝑗 ∈  , 𝑛 ∈ ∖{0} (11)

𝑧𝑗𝑎(𝑛) ≤ 𝑧𝑗𝑛, 𝑗 ∈  , 𝑛 ∈ ∖{0} (12)

𝑧𝑗𝑛 = 1, 𝑗 ∈  𝐼 , 𝑛 ∈  (13)

Constraints (11) state that, if some customer 𝑗 is available at some decision node 𝑛 and it is not the first year the customer has
been available, i.e., 𝑧𝑗𝑛 and 𝐾𝑗𝑛 = 0, then the contract must have been signed up in the first year of appearance of the customer,
that is, there must be some predecessor 𝑛′ of node 𝑛, for which 𝐾𝑗𝑛 = 1 (indicating the customer’s first year) and 𝑧𝑗𝑛 = 1 (indicating
that the customer was made active in that year. Constraints (12) force customers that are signed and become active customers, to
stay active for all succeeding nodes, i.e., in the remaining of the planning horizon. All initial customers must be accepted, which is
enforced through Constraints (13).

𝑑𝑛 =
∑

𝑗∈
𝐷𝑗𝑛𝑧𝑗𝑛, 𝑛 ∈  (14)

𝑠𝑛 ≥ 0, 𝑛 ∈  (15)

𝑥𝑖𝑣𝑛 ≥ 0, 𝑖 ∈ , 𝑣 ∈  , 𝑛 ∈  (16)

𝑦𝑓 ∈ {0, 1}, 𝑓 ∈  (17)

𝑦𝑅𝑓𝑛 ∈ N+, 𝑓 ∈  , 𝑛 ∈  (18)

𝑧𝑗𝑛 ∈ {0, 1}, 𝑗 ∈  , 𝑛 ∈  (19)

𝑞𝑖𝑣𝑛 ∈ {0, 1}, 𝑖 ∈ , 𝑣 ∈  , 𝑛 ∈  (20)

Constraints (14) define the 𝑑𝑛 variables as the sum of the demands of the active customers, while the remaining constraints
9

define the domain of the decision variables.
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Table 1
Considered LNG vessels and their respective characteristics.

Capacity (m3) Charter rate (USD/day) Average speed (knots)

Vessel 1 75 000 87 714 19.0
Vessel 2 100 000 96 875 19.0
Vessel 3 125 000 104 756 19.0
Vessel 4 145 000 109 998 19.0
Vessel 5 160 000 113 475 19.0
Vessel 6 170 000 115 616 19.0

Table 2
FSUs considered and their respective characteristics. All costs are rounded to nearest 1000.

Capacity (m3) Annual charter cost (USD) Setup cost (USD)

FSU 1 125 000 18 624 000 10 000 000
FSU 2 140 000 21 900 000 10 000 000
FSU 3 170 000 25 676 000 10 000 000

Table 3
The considered customers’ yearly demand of LNG in each period of the planning horizon, given in m3, and their probability of
appearing. A probability of one indicates the customer is a initial customer.

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Probability

Customer 1 91 000 91 000 182 000 182 000 273 000 273 000 1.00
Customer 2 109 000 109 000 218 000 218 000 334 000 334 000 1.00
Customer 3 121 000 121 000 182 000 182 000 243 000 243 000 1.00
Customer 4 243 000 243 000 364 000 364 000 485 000 485 000 1.00
Customer 5 – – 243 000 243 000 364 000 364 000 0.75
Customer 6 – – 243 000 243 000 516 000 516 000 0.90
Customer 7 – – – 197 000 212 000 229 000 0.70
Customer 8 – – 237 000 249 000 263 000 277 000 0.95
Customer 9 – – – – 70 000 77 000 0.83
Customer 10 – – – – 146 000 148 000 0.60
Customer 11 – – – – – 59 000 0.50
Customer 12 – – – – – 237 000 0.45
Customer 13 – – – 254 000 262 000 270 000 0.66
Customer 14 – – 209 000 211 000 214 000 216 000 0.55

5. Input data and scenario tree generation

This section presents the input data gathered and used in our real-life case study (Section 5.1) and the generation of the scenario
ree for modeling the uncertainty about which customers that become available in the future (Section 5.2).

.1. Case study data

The Company is considering a total of 11 LNG sourcing locations in the Atlantic Basin. Each of these has a given annual supply
apacity of LNG and sailing distance to the destination terminal in Brazil. The set of available vessels to choose among for the
verseas sourcing of LNG has been selected in collaboration with the Company. This set gives a representation of the relevant vessel
ypes available in the market. The candidate vessels and their respective capacities, time charter rates and average sailing speeds are
iven in Table 1. Time charter rates are either based the Company’s own estimates, or estimated through logarithmic regression in
uch a way to ensure diminishing rates per unit for increasing vessel capacities, similarly to the method used by Koza et al. (2017).
s the Company intends to have their LNG shipped on voyage charter, the time charter rates given in Table 1 are converted into a
oyage charter cost for every combination of vessel and sourcing location. This is done by finding the total time charter cost given
he vessel’s average sailing speed and the location’s distance from the destination terminal, and adding estimates of extra costs for
uel, crew, operations and other fees.

The candidate FSUs and their characteristics are given in Table 2. These are considered to give a representation of the available
elevant FSUs in the market, and all figures are based on the Company’s own estimates.

We consider a planning horizon of six years. The customers and their respective demands and probabilities of appearing are given
n Table 3. The initial customers with which the Company has already signed contracts are numbered from 1 to 4, and these have
given demand already from the first year. In addition, customers 5 and 6 have both announced their interest of being supplied

y the Company. Based on the Company’s estimates the remaining customers have been generated with starting demands ranging
rom 30,000 to 275,000 m3 of LNG per year. The probabilities of the customers are also estimate by the Company.

A regasification and distribution system, as described in Section 3.1, gives both long- and short-term costs. All costs related to
setting up, operating and maintaining the system, in addition to the capacities of the different components, are given in Table 4.
Furthermore, assumptions are made regarding the number of each component needed to cover each customer’s demand. Enough
10
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Table 4
Costs and capacities of the elements in a distribution and regasification
system.

CAPEX

Truck 50 000 USD/Unit
Container 85 000 USD/Unit
Regasification station 1 000 000 USD/Unit

OPEX

Truck driver 20 000 USD/Year
Maintenance trucks 5 000 USD/Year/Unit
Insurance trucks 2 000 USD/Year/Unit
Insurance containers 2 000 USD/Year/Unit
Regasification station 150 000 USD/Year/Unit
Maintenance reg. station 150 000 USD/Year/Unit

Capacities

Container 45 m3 of LNG
Regasification station 667 m3 of LNG/day

containers to cover four days of demand are needed, these include one day for transporting the daily demand, plus three days of
safety stock stored at the customer’s location. Due to differences in the customers’ locations, an assumption is made stating that a
driver can make only one roundtrip delivery to one customer per day. Two shifts of drivers are assumed to work each day so that
there is only one truck for every two drivers needed. Lastly, the number of regasification stations needed per customer location is
chosen so that the total daily regasification capacity exceeds the customer’s daily demand.

With regard to the customer demands given in Table 3 and the described cost elements of the regasification and distribution
ystems shown in Table 4, the direct periodical cost for each customer is calculated. These costs represent the cost of acquiring,
perating and maintaining a regasification and distribution system with sufficient capacity to handle the customer’s demand. It
hould be emphasized that due each customer’s demand is relatively large compared to the capacity of the containers and trucks
sed for the land-side distribution, very little can be gained by pooling, i.e., using containers and trucks to serve different customers.
e can therefore pre-calculate this distribution cost separately for each customer.
The gross margin of each customer is as mentioned calculated by multiplying the demand with the add-on price. As the add-on

rice is based on the Company’s estimates and considered as confidential, this data is not shown here.
In Section 3.2, and as illustrated in Fig. 5, we discussed the safety stock and the capacity buffer as means to handle delays in

ncoming shipments and short-term fluctuations in customer demands, respectively. The size of the safety stock is, in collaboration
ith the Company, set to be three days of total customer demands. Since the Company expects only minor short-term fluctuations

n customer demands and if this still happens, they assume these fluctuations can be handled through interaction with the spot
arket, the capacity buffer is set to zero.

.2. Scenario tree generation

The model presented in Section 4.3 is formulated as a general multi-stage stochastic program, which can adapt to problems
ith any (finite) number of decision stages. In our case study we consider a six-year planning horizon and assume decisions are

ormalized every second year. This yields a three-stage stochastic program with decisions (subsequent nodes in the scenario tree)
eparated by a two-year period.

The uncertainty affecting the problem (i.e., which customers become available at a given decision stage) is of a binary type
i.e., a customer may become available or not) thus can be described by a finite, but combinatorial, number of scenarios. Particularly,
onsidering that, in our case study, there are six potential customers that could appear between year three and four (second decision
tage) and four that could appear between year five and six, we have a total of 26 × 24 = 1024 scenarios. Fig. 7 shows a qualitative
escription of this scenario tree, where a scenario is any path from the node in decision stage 1 to any node at decision stage 3.
his number of scenarios is too large to obtain a solvable stochastic program. Therefore, we solve approximations of the problem
btained by means of a scenario tree with a smaller number of scenarios. The approximating scenario tree is obtained by means of
onte Carlo sampling techniques (Shapiro, 2003). In Section 6.1 we discuss how we choose the sample size.

. Computational results

The problem presented in Section 4.3 was solved using the Python libraries of the commercial MIP-solver Gurobi (version 9.0.1)
n a PC with a 3.60 GHz Intel i7 processor and 32 GB RAM. In what follows, Section 6.1 presents the analysis performed to determine
sufficient number of scenarios for providing a good trade-off between accuracy in the modeling of uncertainty and tractability of

he stochastic program, as well as an evaluation of the benefit from explicitly considering uncertainty, i.e., the Value of the Stochastic
11

olution (VSS). Section 6.2 presents and discusses detailed results and provides managerial insights for the real case study.



Maritime Transport Research 3 (2022) 100061U. Eriksen et al.

6

t
s
v
a
H

d
c
t
v

Fig. 7. Qualitative description of the scenario tree describing the uncertainty for the Company.

Table 5
Results from the in-sample analysis show that a sample size of 100 scenarios is considered
to yield sufficiently stable solutions, while also maintaining solvability.

Nr. of scenarios Nr. of runs Average runtime (s) Relative SD Avg. gap

100 10 3973 1.61% 0.15%

SD = Standard Deviation.

.1. Stability analysis, solution times and value of stochastic solution

As discussed in Section 5.2, solving the multi-stage stochastic programming model presented in Section 4.3 for the complete
hree-stage scenario tree (1024 scenarios) is computationally demanding. In our experiments, we obtain an optimality gap not
maller than 133% after 14,400 s. Therefore, we sample a smaller scenario tree. In general, the deviation between the objective
alue of a solution obtained using the complete scenario tree and that of a solution obtained from a sampled scenario tree decreases
s the sample size increases. This decrease is a result of having a larger number of the whole scenarios population represented.
owever, this increase of accuracy comes at the expense of increased computational complexity of the resulting stochastic program.

In addition, it must be noted that the objective value of a sampling-based approximation is itself a random variable. That is,
ifferent sampled scenario trees having the same number of scenarios (sample size) lead, in general, to a different objective value. We
onduct an in-sample stability analysis to determine a sample size that yields sufficiently stable solutions, while still maintaining
ractability (Kaut and Wallace, 2007; King and Wallace, 2012). That is, we settle to a sample size that gives a sufficiently low
ariability of the objective value of the resulting problem. Our in-sample stability illustrates that a sample of 100 scenarios is

sufficient for our purpose. The results of the analysis are reported in Table 5. The analysis is performed by solving the problem
ten times, each time with a different scenario tree consisting of 100 scenarios that are randomly sampled from the total of 1024
scenarios. For each run, we limit the computational runtime to 7200 s or an optimality gap of 0.1%, whichever comes first. We
then measure the relative standard deviation of the objective values obtained. The standard deviation is as low as 1.61%, with an
average optimality gap of 0.15%. We deem these values sufficient for the purpose of our study and therefore settle on approximations
obtained by means of 100 sample scenarios.

As stated by Birge (1982), the Value of Stochastic Solution (VSS) is a measurement of the potential benefit from solving
a stochastic program over solving the deterministic Expected Value Problem (EVP), in which expected values replace random
parameters. As many stochastic programs, and multi-stage models in particular, become significantly harder to model and solve
than their corresponding EVPs, we want to calculate the VSS to check whether it is worth explicitly considering the uncertainty.
Escudero et al. (2007) present a method for finding the expected value of a multi-stage stochastic model. Based on this, the VSS in
our case study is found to be 13.2%, which is significantly higher than the standard deviation of the in-sample stability analysis.
Considering this is a capital intensive industry, we conclude that there seems to be significant gains from explicitly considering the
uncertainty through a stochastic programming model.

6.2. Detailed results and economies of scale

In this section, we look more closely into the optimal solution. It can be noted that the smallest FSU type is chosen as an initial
investment in the first stage. Thus, shipments sizes are restricted by the FSU’s capacity, and we see that only the two smallest
LNG vessels, with capacities of 75,000 and 100,000 m3, are used. With regard to which customers are accepted in the different
scenarios, an interesting observation is that all customers that become available in the second stage are accepted. Only in the third
and last stage, there are differences in customer acceptance among the scenarios. Here, the two customers with the least demand
(i.e., customers 9 and 11 in Table 3) are accepted in most but not all the scenarios. This is most likely due to two reasons. Firstly,
12

initial investments have to be made to set up the distribution and regasification system for each customer. The earlier a customer is
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Fig. 8. The cost per unit decreases and the profit per unit increases as the total demand increases, indicating that the supply chain enjoys economies of scale.
The costs and profits per unit are given relative to the those of the base case, which is set to 100%.

signed, the more periods these costs can be depreciated over. Secondly, the restrictions in shipment sizes due to the limited available
storage capacity forces the use of smaller shipments with a greater shipping cost per unit. To be able to select all customers in the
third stage, the Company must in some scenarios investment in additional storage capacity at the terminal (i.e., to charter an
additional FSU) and the extra cost for this is higher than the extra revenue for these customers.

Economies of scale correspond to the economic benefits of having higher demand, as costs can then be distributed over a larger
number of units (Pindyck and Rubinfeld, 2015). To estimate the economies of scale in this problem, we run the model with adjusted
demand of each customer varying from 50 to 150% of the original demands. Fig. 8 shows how the profit per unit increases and cost
per unit decreases with increased demand. In other words, a larger share of the add-on price, discussed in Section 3, contributes
towards profits when demand increases. To a large extent, the unit cost reduction is due to the FSU cost making up a large share of
the total costs. As mentioned in Section 3, this is an indirect cost, meaning it is not directly affected by the total demand. However,
with increased demand, the cost per unit of LNG sold decreases. This all indicates the LNG supply chain studied in this paper has
significant economies of scale, which further encourages the acceptance of new customers.

Even though it is shown that the mid-scale LNG supply chain enjoys economies of scale, the solutions to some of the adjusted
demand instances indicate that not all customers should always be accepted. As previously explained, customers appearing in the
last of the three stages, that is one of the last two years, might not be profitable to accept. While these customers are accepted
for the majority of the scenarios they appear in, it is clear that they should not automatically be accepted. However, it should be
mentioned that the solutions presented here are affected by the finite planning horizon of the long-term model. Even if a customer
is defined to only have demand in one or two of the last years, in real-life a long-term contract might be signed, exceeding the
planning horizon considered here. However, these results still indicate that short-term contracts might not be preferred.

While the Company has secured an initial demand by forming contractual agreements with certain customers prior to the start
of their operations, i.e., the initial customers, this might not be the case when planning similar LNG supply chains elsewhere. It
is therefore of interest to analyze how the solution changes when the number of initial customers, and thus the initial demand,
decreases. Due to the industry’s capital intensity, it is highly unlikely that investments in an LNG supply chain are made without
the guarantee of a certain volume of demand. We therefore test varying the number of starting customers from one to three among
the four first customers shown in Table 3. The decisions with regard to the shipping and FSU made in the solutions to the cases
with fewer initial customers are similar to those of the base case with four initial customers. This is expected as a solution to the
base case includes the smallest FSU, which again limits the shipment sizes. Therefore, lowering the initial demand cannot result
in a smaller FSU being chosen as long as there is at least on initial customer which needs to be serviced. However, with regard to
the customers chosen in later stages/periods, there are certain differences. As previously shown, the supply chain enjoys economies
of scale and therefore seeks to increase the total demand to further utilize the diminishing costs per unit. Even so, we saw that
certain customers appearing only in the third and last decision stage are not selected in the base case. However, for solutions to
both the cases with one and two starting customers, all customers are accepted in all scenarios no matter what stage they appear
in. In other words, the lowered initial demand encourages further acceptance of customers in the subsequent periods due to the
observed economies of scale.
13
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7. Concluding remarks

In this paper, we studied the design of a mid-scale maritime supply chain for distribution of liquefied natural gas (LNG). The
lanning problem includes decision about the sourcing and shipping of LNG, temporary storage in one or more FSUs at the given
estination terminal, and subsequent road-based distribution to industrial customers. Even though the case company has signed
ontracts with some initial customers, they still expect there will be more customers and increased demand in the years to come.
o capture this uncertainty with regard to which and how many future customers there will be, which directly affects the demand,
e proposed a multi-stage stochastic programming model, which maximizes the expected profits of the supply chain. The model is
node formulation which is formulated through the use of nodes rather than the standard scenario formulation. This reduces the

umber of variables and constraints in the model and removes the need for explicit non-anticipativity constraints.
The multi-stage stochastic programming model was used on a real planning problem for a case company of designing a supply

hain for the distribution of LNG from overseas sourcing locations to industrial customers in a Brazilian state. It was shown that
xplicitly considering uncertainty in the modeling of this problem is very important, as the Value of Stochastic Solution (VSS) was as
igh as 13.2%. The analysis also showed how the profit per unit increased and the cost per unit decreased with increased demand,
mphasizing the importance of economies of scale in this supply chain. Finally and most importantly, the multi-stage stochastic
rogramming model and the analysis presented in this paper provided valuable decision support and managerial insights for the
ase company in its process of setting up the LNG supply chain.
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