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Abstract

Storage and rendering of large-scale volumetric data can be a challenge. In this
thesis, we will expand on the features of a data structure called brickmap from
2015. The brickmap data structure is a solution that delivers a practical method for
storing large quantities of voxel data. It is suitable for manipulation and ray tracing
in real-time. This thesis will explore how the structure can be implemented in
Khronos’s Vulkan compute API and extend to include physical-based material data
while remaining practical in real-time applications for higher fidelity ray tracing
and path tracing.

A benchmark system was created to test the performance of the brickmap
implementation in a controlled environment across different hardware. The res-
ults generated from the benchmark system show that the previous generation’s
graphical processing units can ray trace in real-time when using the brickmap
data structure if the correct optimizations are applied. The weakest card tested,
the GTX 1650M, showed promise but failed to scale with the current solution,
while other cards like the GTX 1080ti were able to perform in all our tests. Newer
cards like the RX 6800 XT were not stressed in the benchmark and were bottle-
necked by CPU overhead. The thesis also includes several ideas for future work.
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Sammendrag

Lagring og tegning av storskala volumetrisk data kan være en utfordring. I denne
avhandlingen kommer vi til å videreutvikle en datastruktur kalt brickmap i fra
2015. Brickmapdatastrukturen leverer en praktisk metode for å lagre store meng-
der med voxel data på. Datastrukturen har også god støtte for å strålespores og
manipuleres i sanntid. Vi skal se på hvordan denne strukturen kan bli implemen-
tert i Khronos sin grafikk API, og videreutvikle strukturen til å støtte fysisk basert
materialdata. Den videreutviklede brickmapstrukturen skal også forbli praktisk
for manipulering og strålesporing i sanntid.

Det ble bygd et system for å teste implementasjonen av brickmapstrukturen.
Dette systemet gjorde det mulig å teste ytelse på tvers av maskinvare i et isolert
miljø. Våre funn viser at GPUer I fra tidligere generasjoner er i stand til å tegne
med strålesporing i sanntid gitt at de rette optimaliseringene er brukt. Det svakeste
kortet vi testet var GTX 1650M. GTX 1650M viste lovende resultat, men den var
ikke i stand til å skalere. GTX 1080 Ti ble også testet og viste gode resultat selv
med mer stressende arbeidskrav. Mer moderne kort slik som RX 6800 XT ble ikke
utfordret i testene som ble utført og var begrenset av CPU. Flere ideer for fremtidig
arbeid vil også være inkludert.
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Chapter 1

Introduction1

The work presented in this paper requires some fundamental background know-
ledge about the rendering field. This chapter introduces some fundamental ren-
dering concepts. The concept of rasterization, polygons, ray tracing, voxels, and
data structures for voxels will be covered. This chapter will also present our con-
tribution and an outline of the thesis.

Rendering is a broad field with many different techniques. The traditional
rendering pipeline utilizes rasterization to project 3d data onto the screen convin-
cingly. This method has the advantage of being relatively fast compared to other
methods. A common disadvantage of rasterization is that it is harder to achieve
visual effects that depend on non-local attributes relative to the screen. Specific
examples of such challenges are global/indirect illumination and reflection. For
most modern rendering, we use polygon-based models. Polygon models are usu-
ally triangle-based. The triangles connect in order to create a mesh. It is relatively
fast to render polygons using rasterization, but it can be challenging if the mesh’s
topology has to be dynamic.

Ray tracing is an alternative to rasterization where a scene is drawn by tracing
rays that travel through it and testing what each ray hits to give an accurate color
representation. This method makes it easier to simulate real-life concepts like re-
flection and shadows by fundamentally being closer to how natural light behaves.
The downside of ray tracing is that the render speed is usually magnitudes slower
than traditional rasterization. Ray tracing tend to be slower because it requires
simulating a large number of rays in order to get a clear image. Hardware and
software for rasterization have also been more developed than ray tracing, es-
pecially for real-time rendering. Usually, memory access and intersection testing
are the biggest culprits of render time for ray tracing. Rendering a single frame
usually requires millions or billions of ray intersection tests using ray tracing. In
order to reduce intersection testing to a minimum, the scene has to exist in an
accelerated data structure to avoid wasteful hit tests.

Polygon-based meshes only describe surfaces. Voxels are an alternative to poly-

1This thesis includes content from the specialization project IT3915 & TDT24 for Aksel Hjerp-
bakk, both submitted in autumn 2021.
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gons and can describe volumes. Volumes are beneficial in the medical field, fluid
simulations, and more. Minecraft is a famous voxel-based video game that allows
players to manipulate the voxel world in real-time. Voxels are 3D pixels. Much like
each pixel in a 2d image represents color, a voxel can represent color (or lack of)
in 3D. Many voxel data structures are beneficial for ray tracing. These data struc-
tures enable accelerated ray tracing traversal. A regular 3D grid can represent a
set of voxels, but this has the downside of using large amounts of memory as vast
empty spaces still take as much memory as occupied entries. Even with fast grid
traversal algorithms like Digital Differential Analyzer (DDA) the number of look-
ups for a ray might cause issues in wast empty areas when using a uniform voxel
grid.

Sparse Voxel Octree (SVO) is a tree data structure that can represent voxel
grids. A 3D SVO consists of a root node with either 0 or 8 children, and each
child node has either 0 or 8 children. The max depth of the tree is predetermined
and dictates the granularity of each leaf node/voxel. This data structure enables
rays to travel through significant gaps in space and reduces the amount of wasteful
memory access compared to simple 2D arrays. There is some downside to SVOs. It
takes more time to manipulate the leaf nodes of a SVO than a simple 3D grid. They
can also be problematic when rays travel parallel to a defined voxel surface over
large distances as they have to perform a significant amount of granular lookups.
This scenario is more computationally expensive than a simple 3D grid. Granular
traversal is mitigated by adding "pointers" to each neighboring node which has
the downside of increasing memory usage.

The original brickmap thesis describes an alternative data structure that at-
tempts to accelerate ray tracing traversal while supporting efficient large-scale
editing of the grid data[1]. Brickmaps have the added benefit of enabling data
streaming between CPU and GPU. The storage scheme of the brickmap algorithm
also reduces the data size of individual voxels. Each voxel is an entry in a brickmap.
On top of the brickmaps is the brickgrid, which stores brickmaps. A brickmap con-
tains a bitmask. The bitmask is 512bit wide, and each bit of the value describes if
a voxel exists at a given location. One voxel in the brickmap is approximately 1 bit
in size. Brickmaps are assigned a start index and can point to color data in a global
color array. The brickmap start index is added with the bit offset of the voxel to
find the color of a given voxel. The brickmap thesis uses DTX1 compression for
color storage to reduce the added memory footprint of color storage.

Material information is usually used for ray tracing as it enables surfaces to
have properties that lead to more realistic ray-to-surface interaction. It is also
used in traditional rasterization renderers that utilize Physical Based Rendering
(PBR) methods for more realistic light simulation. This information may include
surface attributes such as type (metal, diffuse, dielectric) and surface roughness.
Suppose voxels are to include unique material information. A lossy compression
scheme cannot be utilized like the original brickmap paper since attributes such
as material type must be truthful. When a voxel is assigned a glass material type,
it would be jarring to observe lossy compression, causing the material type to
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change to metal or something other than the glass type. The original brickmap
paper presents a reliable and effective method for storing voxel geometry but
leaves much potential for improved color and material storage work. We present
a new method for storing color and material information while maintaining its
usefulness in real-time applications.

1.1 Contribution

This paper describes the implementation of a real-time ray tracing application util-
izing software-based General-Purpose Graphics Processing Units (GPGPUs) tech-
niques. By not using ray tracing hardware acceleration, the application can run on
older generation GPUs. We also present a material and color storage scheme that
extends the capabilities of the original brickmap data structure described by Thijs
van Wingerden[1]. Finally, the thesis presents a proof of concept implementation.
The implementation uses the Vulkan Application Programming Interface (API)
and currently runs on Windows and most Linux distributions. This thesis also doc-
uments relevant implementation challenges and solutions. The practical aspects
of developing the application are covered to help developers and researchers that
share the goals of GPGPU ray tracing.

1.2 Report outline

In Chapter 2.1 we cover some background information and discuss related work
relevant to ray tracing. The thesis also includes background and related work
for graphic APIs and design of ray tracing rendering in Chapter 2.2. Chapter 3
presents a new material and color storage scheme that extends the brickmap data
structure. The chapter will also present our brickmap implementation with the
mentioned storage scheme. Chapter 4 discuss the implications of different ray
settings. 4 also presents our application benchmarking result and discusses the
findings. The last section is the conclusion and future work Section 5.





Chapter 2

Background & Related Work

This chapter discusses the background and related work on which this thesis is
built. First, we describe ray tracing, the main application of our work, and the
data structures associated with ray tracing, followed by fast voxel-ray intersections
and the original brickmap algorithm. Section 2.2 describes the render system,
including an overview of CPU and GPU hardware and benchmarks for ray tracing
on GPU APIs, Vulkan benchmarks, and particle simulations.

Some of the content in this chapter were part of the author’s hand-in in TDT24

2.1 Ray Tracing

Ray tracing is a simple concept. On a fundamental level, backward ray tracing fire
rays from the camera or eye perspective and test what the rays hit. The rays can
bounce at their hit points for more realistic image output. However, this concept
can be very complicated, especially when real-time performance is required. Some
of the issues related to ray tracing are not obvious when initially learning about it.
This chapter will give some background knowledge about accelerated data struc-
tures, an essential concept for accelerated ray tracing. The chapter also looks into
research for a fast ray-to-slab intersection method. This slab intersection method
can accelerate the ray tracing of voxels.

2.1.1 Accelerate ray traversal with data structures

One of the challenges with ray tracing is scene traversal and performing intersec-
tion hit tests that are not wasteful. For example, the method used by the research
discussed in Section 2.2.2 is to increment a ray position by a small amount and
test if the point is inside an object. There are two problems with this method:

• How far the ray should travel is unknown; therefore, small steps have to
be taken for each increment, causing many increments for considerable dis-
tances. Repeated increments will cause substantial rendering overhead.

5
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• Each ray increment has to perform intersection testing on all global or local
objects. What objects might intersect with the ray is unknown, so it has to
test against all objects in the scene unless a hit is detected.

An optimal solution should be able to describe a ray as a function and test if
the combination of direction and origin correlates with an intersection instead.
Using this principle, we no longer need to perform increments of a point along a
ray or reduce the number of increments. It should also be able to perform culling
on as many objects as possible before intersection testing. Some sort of culling is
vital to be able to populate a scene with more than a few objects.

Sparse Voxel Octree (SVO) is a data structure that utilizes octrees to calculate
ray increment size. An SVO also has information about what objects are possibly
intersecting with a given ray, much like a traditional scene graph can be used
for culling rasterization. Ray tracing is a parallelizable problem. To achieve real-
time ray tracing using a SVO it should utilize the GPU. Tree structures can be
challenging to use on a GPU because they usually rely on pointers or references. A
GPU friendly SVO is presented in the book "GPU Gems 2” called a N3 t ree[2]. The
suggested use case was texture mapping combined with volumetric simulations.
A demo application showcase these use cases. N3 t ree also includes an optimized
lookup algorithm and effective data storage using sequential memory, which is a
requirement on the GPU.

The demo application for the N3 t ree allows users to paint on a 3D mesh us-
ing different colors. The applied color will then be simulated as a surface liquid
and flow downwards along the mesh in real-time. The application was written
between 2003 and 2004 and shows that real-time changes to the octree are pos-
sible.

Although SVO has proven to be a viable data structure, there is an overhead
to traversing and manipulating the tree in real-time. The brickmap data structure
is an alternative to the SVO data structure with good ray tracing acceleration
performance while remaining viable for grid manipulation in real-time. We discuss
the brickmap data structure in Section 2.1.3.

2.1.2 Fast Voxel-Ray Intersection

Voxels are highly relevant when discussing ray tracing as it is a volumetric format
that often fits with ray tracing algorithms. By assigning local triangles to a voxel,
voxel data structures can accelerate ray traversal when rendering traditional polygon-
based models. Voxels also have many benefits over traditional polygons because
of their volumetric nature and can be used for scientific and recreational applica-
tions.

Voxel ray tracing applications exist, either as vaporware or released products.
Most of them are proprietary without open-source code. An example of a propriet-
ary application is Teardown, which is a physics-based voxel game that utilizes ray
tracing and does not require dedicated hardware[3]. The closed nature of these
projects means that even though it displays the possibilities of voxel ray tracing,
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it does not add to the knowledge pool.
Majercik et al. proposed an efficient voxel ray tracing technique in 2018.

The new technique does not utilize specialized hardware, even though Nvidia
researchers made the paper. It presents a new slab intersection method for fast in-
tersection testing that calculates the intersection normal vector and distance. The
slabs are also not required to be axis-aligned. It also presents two implementations
of voxel renderers that utilize the mentioned intersection test. Finally, they present
actual benchmarks of the applications to prove the intersection’s performance.

The slab intersection method was slower than one previous method, but the
slab intersection was always faster when including normal vector and distance
calculations. Normal vector and distance data are essential when performing more
advanced shading like volumetric rendering of fog and smoke. Normals are also
required when performing ray tracing bounces. It was implemented in Unreal
to display the possible applications in games. The authors also implemented a
OpenGL solution to show the viability in non-game applications. The OpenGL
solution utilizes a specialized rendering pipeline.

The implementation can be reminiscent of the True Impostor algorithm presen-
ted in the book GPU Gems 3[4]. GL_POINT is used to represent individual voxels.
The vertex stage calculates a bounding quad like in the Impostor algorithm, and
the fragment stage utilizes this quad to calculate the 3D cube represented by the
point using ray tracing. The implementation is unique in how it solves voxel ren-
dering. The rendering implementation also proves to be faster than the reference
rasterization renderer. There are limitations to the implementation. The render
does not trace rays. The screen emits rays that test if they hit any voxel. Any further
ray bounce simulation could present technical issues since voxel quads generate
relative to the camera. The lighting techniques they use are traditional rasteriza-
tion methods with shadow maps. However, the intersection method presented is
versatile and can be used to implement a pure ray tracing renderer.

2.1.3 The original brickmap algorithm

The brickmap voxel data representation is a hierarchy of uniform grids. The grids
contain raw voxel data at the lowest layer, called brickmaps. Brickmaps encode
solid data in a bitmask and store color separately[1].

It is important to emphasize that the voxel’s memory footprint must be as
small as possible. We want to store as many voxels as we can in memory. Less
memory usage means potentially more voxels and reduces the probability of cache
evictions as more entries can exist in local memory. Figure 2.1a shows how the
mentioned bitmask is tightly packed with a color start index and a Level Of Detail
(LOD) index if unique voxel color information is not needed. The brickmap start
index plus the bit offset of the voxel results in the voxel’s color index.

Brickgrids store brickmaps. The brickgrid is illustrated in figure 2.1b. The
brickgrid does not store the brickmaps but indices to brickmaps. The index storage
requires less memory than actual brickmap storage while traversing. The original
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(a) Brickmap memory layout
(b) 2D brickgrid data structure. Cells that have a
blue fill color illustrate defined brickmaps while
empty cells are not yet assigned any values

paper uses DDA to traverse the grid. DDA is an algorithm to interpolate over an
interval defined by a start and end point but can be modified to work with a start
point and a direction which is helpful for ray tracing.

A higher-level grid accelerates ray traversal over a sizeable empty distance. If
one or more of the brickmaps in the cell is not empty, then the cell is set. Data
streaming between the CPU and GPU and vice versa in the structure is an expected
use case. This is useful for LOD, culling, chunk streaming, and so on.

2.2 Render System

Achieving optimal performance depends on a multitude of different factors. One
of these factors is utilizing hardware accordingly. Efficiently utilizing hardware
requires background knowledge. This chapter will describe the core components
of a modern computer, cache utilization, execution models, and more. We will also
discuss research related to graphics APIs and how different APIs and API features
might have performance implications.

2.2.1 GPU, CPU & other hardware

A modern computer consist of many components, but the main ones are: Graphics
Processing Unit (GPU), Central Processing Unit (CPU), motherboard and Random-
Access Memory (RAM). The GPUs role is to draw to the screen, but modern
ones have functionality for generalized computing. General-Purpose Graphics Pro-
cessing Unit (GPGPU) is suitable for problems that consist of many smaller prob-
lems that are similar and therefore parallelizable. The CPU is the main processing
unit for a modern computer. The CPU solves problems that are not as paralleliz-
able and therefore only need one or a few threads compared to the thousands of
threads on a modern GPU. A CPU can also do sequential work magnitudes of time
faster than a GPU. For example, an AMD Ryzen 9 5950x CPUs has a max frequency
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of 4.9GHz while an AMD Radeon RX 6900 XT has a boost speed of 2.3GHz.
Another major difference between a CPU and GPU is their execution model.

When talking about execution models we use Flynn’s taxonomy to describe these
models. Flynn’s taxonomy has been extended, but the the initial definition in-
cluded 4 classifications[5]:

• Single Instruction Single Data (SISD)
• Single Instruction Multiple Data (SIMD)
• Multiple Instruction Single Data (MISD)
• Multiple Instruction Multiple Data (MIMD)

A modern CPU uses the MIMD and SIMD execution model. GPUs uses the
Single Instruction Multiple Thread (SIMT) execution model which is part of an
extended taxonomy. Using Nvidia’s terminology, the GPU consist of grids of blocks.
The blocks has warps and the warps has threads. This is true for most GPUs includ-
ing non Nvidia models although the terminology differs.

Warp divergence can emerge on the GPU because it uses the SIMT model.
Warp divergence occurs when threads branch into different parts of the code.
The divergence forces the warp to execute both code branches in sequence and
effectively adds both execution times to the total run time.

The CPU and the GPU tend to have cache memory. This memory is close to the
processing unit of the component and is cheap to read. Random-Access Memory
(RAM) can also store memory. The RAM is usually much larger than any com-
ponent cache. However, modern GPUs usually has similar amounts of memory,
called Video Random-Access Memory (VRAM). Because of this, RAM and VRAM
are usually the primary storage of runtime memory depending on the component
and is subsequently cached on the components when needed. Data is transferred
through the bus on the motherboard when a program access RAM data. This trans-
fer is a slow operation and usually will take many clock cycles to complete. AMD
describe this phenomenon on the GPU in one of their articles:

A GPU like Radeon™ Fury X (...) has 512 GB/s of [local] bandwidth (...)
but the PCIe (3.0) bus supports at most (...) a sum of 32 GB/s in both
directions[6]

From this quote, we can conclude that 1 to 10 clock cycle instructions are
generally significantly cheaper than any memory retrieval that can be thousands
of clock cycles. It is essential that the memory usage is kept at a minimum and
has a sequential access pattern to increase the chance that memory usage results
in a cache hit instead of evictions and subsequent retrieval.

2.2.2 Benchmarks for Ray Tracing on GPU APIs

A modern GPU is very flexible in performing algorithms and visualizing the res-
ults. What API and concepts the programmers should choose to utilize is not ne-
cessarily obvious. When considering graphics APIs like OpenGL or DirectX, there
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are multiple entry points for ray tracing since the fragment stage, and compute
pipeline/stage are both viable.

Benchmarking data on the fastest APIs and methods in the context of ray cast-
ing volumetric scenes is presented by F. Sans et al. [7]. The method used is a simple
ray casting with different APIs and concepts to find the most performant options.
The paper present a implementation for each target to benchmark, these targets
include: OpenGL fragment shader, OpenGL compute shader, Cuda and OpenCL.
They used three volumetric data sets to test the APIs. Since the research focuses
on benchmarking ray casting in the context of APIs and methods, their imple-
mentation is a ”brute force” based ray traversal where each ray traverses with
a small predefined increment distance. This implementation has problems with
more complex scenes. The benchmark result shows that bigger scenes scale poorly,
and performance degrades quickly with scene size in all cases.

Their findings show that OpenGL compute shaders is the most performant op-
tion compared with Cuda, OpenCL and OpenGL fragment shader[7]. Since our
research is focusing on making real-time ray tracing with Vulkan, this can indic-
ate Vulkan compute pipelines might be a viable option compared to utilizing the
graphics pipeline fragment stage. A compute pipeline is also more flexible than
a fragment stage. Compute pipelines can solve various problems using arbitrary
inputs and outputs. A fragment stage in a graphics pipeline is bound to produce
a fragment and has stricter requirements on input data.

2.2.3 Vulkan API Benchmarks

PolyBench is an open-source benchmarking suite to test against compilers, APIs
and environments. It enables objective performance comparison between them.
The benchmark focuses on problems related to linear algebra and more. Linear
algebra happens to be one of the main components when programming ray tracing
software.

PolyBench/GPU is a PolyBench implementation using GPGPU APIs where ver-
sion 1.0 includes Cuda and OpenCL. There is also a Vulkan implementation that
is called vkpolybench presented by N. Capodieci et al[8].

vkpolybench offers a compute abstraction that enables others to extend the
benchmarks if needed with new algorithms without having to deal with some of
the Vulkan’s repetitive and verbose aspects. The same authors created the compute
abstraction in a previous work[9]. The abstraction aims to create an easy-to-use
CPU-to-GPU dispatch API that in many ways mimics Cuda while still preserving
the control that Vulkan offers. It is worth noting that most abstraction will come at
the cost of control and, in many cases, performance, but the findings included in
their research show the framework beating Cuda in all benchmarks. The authors
have the following statement about the results:

Our findings show that no matter which submission model is selected
for Cuda, Vulkan bare metal approach manages to minimize and better
distribute the CPU overhead[9]
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vkpolybench makes it easier to compare the API layer overhead with Cuda,
OpenGL and even performance of CPU APIs like OpenMP. Much like the CPU-to-
GPU dispatch research, the results presented by vkpolybench are promising for
Vulkan’s performance. According to vkpolybench, Vulkan-compute performs on
average better than alternative APIs. We can conclude that implementation of ray
tracing using compute can utilize Vulkan for optimal performance in the API layer
based on the results presented in the code repository readme[8].

2.2.4 Particle simulations using asynchronous compute

K. Enarsson presents potential gains from using asynchronous compute for particle
simulations[10]. Asynchronous execution is one of the fundamental features that
Vulkan presents in its execution model[11]. Because of this, looking at how asyn-
chronous execution affects performance in other APIs can help give an idea of the
potential gains of asynchronous execution in Vulkan and if taking advantage of
such a feature is worth the added complexity. The paper focuses on benchmark-
ing asynchronous DirectX 12, but changes in performance between asynchronous
and synchronous DirectX 12 calls should be representative for Vulkan as well. They
utilize a GPU compute N-body physics kernel and benchmark how executing the
kernel synchronously compared with asynchronously affects performance. In or-
der to avoid overfitting, the author uses 3 GPUs, AMD RX560, Nvidia GTX 1060,
and one GPU that does not officially support asynchronous compute execution:
Nvidia GTX 960.

The scheduling of asynchronous workload works by populating idle blocks
that would otherwise remain unused between work dispatches. Problem sets with
uneven workloads for each block would probably gain performance with asyn-
chronous dispatch. The potential gains diminish when the workload increases
since the GPU compute blocks will have diminishing idle time for a given dispatch.
The paper finds that both the 560 and 1060 have considerable performance gain
when the problem set is minor, with over a 30% increase in performance on the
smaller problem set. Interestingly the 960, which does not officially support asyn-
chronous work, does see performance improvements at around 11% on the most
trivial workloads. There is also the aspect of memory retrieval to consider. Bigger
workloads tend to work with more significant memory requirements, and there-
fore, memory retrieval might cause slower computation as warps start fighting for
memory.

The value of asynchronous compute for ray tracing

In our opinion, there are two main aspects to the research findings[10] to consider
in the context of GPGPU based ray tracing:

1. Ray tracing is very expensive. Performance gains will be diminishing accord-
ingly[10]. However, the findings indicate small gains even on big workloads.
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2. With multiple bounces, ray tracing starts to become bottlenecked by memory
access and computations. The bounces are random, making each warp de-
pendent on a broader range of buffer memory as rays start dispersing and
require different parts of the scene state.

The next generation of hardware is faster than the previous generations, as ob-
served in their result when comparing the GTX 1060 with the 960. These improve-
ments might suggest that newer cards will improve performance with asynchron-
ous execution. Not only does GPU tend to improve, but also the drivers that power
the cards.

Based on these findings, we will also investigate how using asynchronous com-
puting could be used for ray tracing. However, as described in Section 4.3.1, we
show that one can lose performance using asynchronous compute. The follow-
ing chapters thus focus on the other techniques we developed for real-time ray
tracing, including improved memory utilization in Vulkan and the new material
storage scheme for the brickmap data structure.



Chapter 3

Real-Time Rendering through
Ray Tracing

This thesis aims to achieve real-time performance for ray tracing without hard-
ware acceleration but by taking advantage of modern GPUs generalized compute
capabilities. This goal is not trivial since ray tracing is computationally expensive.
The original brickmap paper presents a storage scheme that achieves this goal to
some extent, as discussed in Section 2.1.3. This chapter will summarize our ma-
terial storage scheme, extending the brickmap data structure to support material
data. Afterward, we discuss how we implemented this new scheme and other key
features of our application.

3.1 Technical & user requirements

This project’s primary requirements and scope are real-time voxel ray tracing per-
formance for a broad range of hardware and supporting multiple Operating Sys-
tems (OSs). Achieving real-time ray tracing fidelity to hardware that would other-
wise be limited to traditional rasterization is not trivial. This goal has implications
for the technical requirements. The product should be cross-platform and should
support at least windows and some Linux distributions with the ability to extend
support to macOS in the future. We also want to emphasize that the final product
is not an end-user product. The project scope is a rendering API and demo, and
the end-user is other programmers.

3.2 Material data and its implication on ray traversal

The Ray Tracing in One Weekend book series[12] defines a model for materials on
which we base our application materials. There are currently three possible values
for a material type: lambertian, metal, and dielectric. Each material corresponds
to a Bidirectional Scattering Distribution Function (BSDF). Lambertian is a matte
or diffuse material, the most common surface type. Metal defines a shiny surface

13
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that can reflect based on a roughness parameter (fuzz). Dielectric can reflect and
refract based on different factors. As an example, the dielectric can model water
and glass.

The ray tracing algorithm will traverse the brickmap grid, and if a hit is detec-
ted, it will perform a lookup. A ray will scatter depending on what material type
the hit voxel has.

• Lambertian has the simplest behavior. The ray will simply get a direction
which is a random vector in the hemisphere relative to its surface normal
• Metal will reflect a ray depending on the metal materials fuzz value. A metal

surface with a fuzz value of 0 will act as a mirror
• dielectric can either reflect like metal or refract the ray. Suppose the angle

between the ray direction and the surface normal is low. In that case, the
ray travels through the material and refracts according to snell’s law and
the material internal reflection. If the ray does not refract, then it will be
reflected.

3.3 Storing material information

Storing material information is done by defining virtual buckets. Each bucket has
a dedicated slice of a global material index array visible to the GPU. The buck-
ets only have to be used by the CPU. We can check the current bucket of the
brick to see if the current bucket size is sufficient when a brick is changed. If
the currently assigned bucket of a brick is insufficient, then the next bucket-size
free array will contain a bucket with sufficient capacity. We define bucket sizes by
the power of 2 and are configurable under application initialization. The biggest
buckets are always the max voxel count for a given brick. The biggest buckets
are therefore 29 = 512. Depending on the configured number of bucket storage
instances, the smallest bucket size will be N = 9− BucketCount + 1, 2N = Size.
So if the application defines a BucketCount of 4, then the smallest bucket size will
be 2(9−4+1) = 26 = 64. The application will have buckets of the following sizes:
64,128, 256,512. Figure 3.1 illustrate this layout visually. We also store buckets
in two individual arrays depending on whether they are used by any brick or free.
By using two arrays, we get 0(1) performance when we want to allocate a new
start index. To free a bucket, we do the following: swap remove the bucket from
the occupied bucket array, followed by appending the removed bucket to the free
array. A simple pop operation on the free array and append on the occupied array
is assigning a bucket to a brick. We also discuss further improvements in Section
5.2.8

As discussed in Section 3.2, there are currently three possible values for a
material type: lambertian, metal, and dielectric. All material entries are 16-bit
integers. The 2 least significant bits define the type of the material where 0 =
lamber t ian, 1= metal, 2= dielec t r ic. The next 6 bits define the index into the
material type buffer. For example, if the type of the material is metal, and the value
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Figure 3.1: Material bucket layout

of the next 6 bits is 32, then the system will look up entry 32 in the metal buffer
to find the right properties for the voxel. The final 8 bits index into a color buffer
which is the color (RGB) of the material surface. On the GPU, we can extract our
16 bits by doing the following in the GLSL shader:

1 // We store the material data in 16 bit unsigned integers
2 // but glsl only support 32 bit values so we need
3 // to extract the relevant 16 bits from a entry pair
4 const uint material_index = hit.index / 2;
5 const uint material_bit_offset = 16 * (hit.index % 2);
6 const uint material_bits = (materials[material_index] >> material_bit_offset);
7 const Material material = Material(
8 material_bits & 3, // type
9 bitfieldExtract(material_bits, 2, 6), // material index

10 bitfieldExtract(material_bits, 8, 8) // albedo color
11 );

Code listing 3.1: Extracting material data from bits

3.4 Further memory reduction

Our application use Vulkan which has SPIRV as its target shader language. This
project use GLSL to program shaders. The project build execution compiles GLSL
to SPIRV and Vulkan loads the compiled SPIRV. GLSL does not support integer
widths other than 32bits without extensions which again does not include any
guarantees that the target platform support said extension. In our case, the lack of
control over integer bit width means that the implemented version of Figure 2.1a
takes 32 bits for the LOD index. We can reduce memory usage by using a single
index for both the LOD and the color index. GLSL has a built-in bitfieldExtract

function and support bitwise operations. Both methods can extract information
from bits. We can use this to reserve the first bit of an index entry to specify if the
index is a start index for voxel color or if the index is a LOD index. By doing so,
we reduce the brick memory footprint from 576 to 544
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In an application with requirements for a high range of unique colors or unique
material properties, an implementation can choose to extend the 16-bit material
entries mentioned in Section 3.3 to hold 32 bits per entry. Doubling the size of ma-
terial entries could introduce issues with memory usage. We can reduce memory
usage in an application by limiting unique material data to 255. Two buffers are
used—a brickmap start-index index into a material index buffer. The material in-
dex buffer is a collection of 8-bit unsigned integers. These 8-bit integers are then
indices to the material buffer where the 16/32 bit material data is stored. An inter-
mediate index buffer means that each voxel material index is, in practice, almost
halved from 16 or 32 bits per voxel to 8 bits. The storage solution is illustrated in
Figure 3.2

Figure 3.2: Material data storage scheme

3.4.1 Parallelization and contingency avoidance

The codebase uses an abstraction called a grid to handle any changes to the
brickmap data. The grid holds all grid-related data on the host side but uses an-
other abstraction called workers to work on the grid efficiently. The workers are
the entities that perform any change on the grid, and a grid worker corresponds
to one thread on the system.

In order to avoid contingency between threads, each worker thread has a
unique range of global material indices. Each worker initializes their bucket pool
to request index data without any lock mechanism. The workers have the respons-
ibility to perform any work on the grid. Any thread can request an insert or remove
on the voxel grid. The worker will receive a job description scheduled by being
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inserted into a job queue. By segmenting material index data based on workers,
we can perform lockless grid manipulation and avoid any potential contingency.
The mentioned index segmentation is illustrated in Figure 3.3

The index segmentation does have some downsides, one of which we discuss
more in Section 5.2.8. Another is that neighboring bricks near the border of two
worker areas in the grid will most likely not have sequential material data. Non-
sequential data can cause a noticeable reduction in render speed when rays have
to fetch more memory than usual. The result is that the solution delivers faster
grid editing at the cost of reducing the final frame rate when viewing certain parts
of the grid.

The scheduling of a job is done with the following lines of zig code:

1 /// Asynchrounsly (thread safe) insert a brick at coordinate x y z
2 fn insert(self: *BrickGrid, x: usize, y: usize, z: usize, material_index: u8)void{
3 // find the worker that should be assigned insert
4 const worker_index = blk: {
5 const grid_x = x / 8;
6 // work_segment_size = brick_count_x / workers_count,
7 break :blk grid_x / self.state.work_segment_size;
8 };
9

10 self.workers[worker_index].registerJob(Worker.Job{ .insert = .{
11 .x = x,
12 .y = y,
13 .z = z,
14 .material_index = material_index,
15 } });
16 }

Code listing 3.2: Schedule insert to a worker thread

Figure 3.3: Bucket segmentation to avoid thread contingency
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3.4.2 Stable transfers

Streaming of data between GPU and CPU is important for the original brickmap’s
systems like the LOD system. Also, any game system that includes manipulating
the voxel grid requires transfers to be seamless and fast. To enable a stable fram-
erate while the grid receives continuous updates, we introduce two systems that
alleviate transfer overhead: DeviceDataDelta and StagingRamp.

Recording data delta for transfer

DeviceDataDelta is a simple abstraction that defines a sub slice of a given data set
that has changed since the last transfer. We can use this data to avoid sending
existing data repeatedly and reduce the bandwidth. The following listing shows
the delta struct state:

1 pub const DeviceDataDelta = struct {
2 const DeltaState = enum {
3 invalid,
4 inactive,
5 active,
6 };
7
8 mutex: Mutex,
9 state: DeltaState,

10 from: usize,
11 to: usize,
12 }

Code listing 3.3: DeviceDataDelta structure

Then there are two function to summaries the delta’s API:

1 // called while mutex is locked externally
2 pub fn resetDelta(self: *DeviceDataDelta) void {
3 self.state = .inactive;
4 self.from = std.math.maxInt(usize);
5 self.to = std.math.minInt(usize);
6 }
7
8 pub fn registerDelta(self: *DeviceDataDelta, delta_index: usize) void {
9 self.mutex.lock();

10 // defer calls expressions at the end of current scope
11 defer self.mutex.unlock();
12
13 self.state = .active;
14 self.from = std.math.min(self.from, delta_index);
15 self.to = std.math.max(self.to, delta_index + 1);
16 }

Code listing 3.4: DeviceDataDelta core API

The delta system has to be cheap both computationally and on memory usage.
The behavior used is rudimentary in how it records changes. The recorded delta
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range is sufficient as changes are usually performed sequentially on the data to
utilize the cache. We also further improve the delta by giving each worker thread
unique instances of DeviceDataDelta when applicable. An example of such data is
the bucket segmented material indices as discussed in Section 3.4.1. We give each
thread unique material indices DeviceDataDelta for this reason.

Before we perform a draw call, we can read each DeviceDataDelta and request
a transfer to the GPU based on the registered ranges, which are relative to specific
buffers. The StagingRamp transfers data from the host to the device, which is the
next step.

Efficient vulkan buffer transfers

Like everything else in Vulkan, the logic of transferring data is explicit. The applic-
ation controls most transfer logic manually, so we need to consider how to effect-
ively transfer data without causing noticeable stuttering in the rendering loop. Sta-
gingRamp abstraction helps eliminate transfer overhead. The StagingRamp struc-
ture consist of N , N ≥ 1 StagingBuffers which are visible to both the CPU and the
GPU. The system schedules transfer jobs using these buffers. However, the actual
flushing of data from the host (CPU) to the device (GPU) is performed only once
per frame and not for each transfer request. Then a command buffer is executed
to perform a copy from the StagingBuffers to the destination buffer specified when
the transfer was requested.

The StagingRamp abstraction will usually try to fill one buffer at a time, but
will have to perform fallback for different scenarios when a given buffer is not
available as seen in the Listing 3.5

We can see from the listing that we will get the first buffer that is sufficient in
size and idle (not currently performing a flush or executing a command buffer).
The function will return a error.StagingBuffersFull if all buffers are full. Errors
are a first-class citizen in Zig. Zig is the chosen programming language for this
project, as discussed in Section 3.8.1. When we call the function listed above,
we can pattern match the returned value and check if the value is the mentioned
error.StagingBuffersFull. If we get this error, we can cache the transfer request and
defer it to the next frame transfer operation.
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1 inline fn getIdleRampIndex(self: *StagingRamp, ctx: Context, size: vk.DeviceSize) !
usize {

2 var full_ramps: usize = 0;
3 // get a idle buffer
4 var index: usize = blk: {
5 for (self.staging_ramps) |ramp, i| {
6 // if ramp is out of memory
7 if (ramp.buffer_cursor + size >= buffer_size) {
8 full_ramps += 1;
9 continue;

10 }
11 // if ramp is idle
12 if ((try ctx.vkd.getFenceStatus(ramp.fence)) == .success) {
13 // get the index
14 break :blk i;
15 }
16 }
17 break :blk (self.last_buffer_used + 1) % self.staging_ramps.len;
18 };
19 // if none of the ramps has sufficient storage for the requested transfer
20 if (full_ramps >= self.staging_ramps.len) {
21 return error.StagingBuffersFull;
22 }
23 defer self.last_buffer_used = index;
24
25 // wait for previous transfer (in case all ramps were busy)
26 _ = try ctx.vkd.waitForFences(...buffers[index].fence); // some arguments

emitted
27
28 return index;
29 }

Code listing 3.5: Requesting index of an idle staging buffer

3.5 Sun and shadows in the application

Optimized light sampling is not a trivial topic. There have been great strides in
light sampling in recent years. ReSTIR and its successors are one example of effect-
ive multiple light source sampling[13]. Utilizing such techniques takes substantial
development time and was therefore not included in the project. Given the time
restrictions, this project does not implement arbitrary light sources in the grid and
optimized sampling of such lights.

We do include a single sun light source. The sun is an arbitrary disc not re-
stricted to the voxel grid. It has a light color, position, and radius. When enabled
in the scene, each ray hit will fire a subsequent shadow ray that will attempt to
hit the defined sun disc. If the shadow ray hits the sun, the color at that point
will be a combination of the sun’s emitted light color and the surface color atten-
uation. Extending shadow rays so that a hit will sample nearby light sources to
make more complex light interactions is possible. However, making it performant
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for real-time rendering would require significant consideration.
The sun object can also be animated using the developer GUI. By enabling

animation on the sun, it will rotate as expected around the voxel grid much as the
earth rotates around the actual sun. The animation procedure is simple. The sun
is initially placed at an arbitrary distance from the grid center. Three or more ori-
entations are defined using quaternion math. After these initial steps, a spherical
linear interpolation is performed between the three or more previously mentioned
quaternions to get a smooth rotation around the grid over time. The sun’s color
can change similarly to the quaternion orientations throughout a solar cycle. Col-
ors converge using lerp during the same procedure as the quaternion slerp. For
example, in the benchmark scene discussed in Section 4.4 color changes to red
during dusk and dawn and a yellow color when the sun is at its highest point.

3.6 Terrain generation for procedural scenes

In order to perform any inspection on ray accuracy and performance, we need
scenes to ray trace. We procedurally generate some simple scenes since voxel data
is not necessarily standardized as polygon-based mesh data. We generate primitive
terrain by utilizing Perlin noise which is a gradient noise. We generate a height
value using the Perlin noise for each x , y point in the grid. The result of this
procedure is a height map. As long as the random generator is given the same seed,
we get the same height map. When the system has calculated the height for a given
x , y value, it will dispatch a list of insert jobs to the grid thread/workers. Height
will affect the voxel type, so a voxel at a lower height will likely be assigned dirt
or grass material, while higher voxels become stone or dirt. This job is performed
on multiple cores on the CPU (multithreaded).

So far, all mentioned materials are categorized as lambertian/diffuse mater-
ials. After the initial terrain generation step, the terrain generation will spawn
”water” voxels. Water voxels add complexity to the scene since the dielectric ma-
terial enables rays to reflect and refract. The water voxels are all under a runtime
specified water height value and are unassigned after the initial terrain generation.
Water is a dielectric material type with a blue color.

3.7 Benchmark module

We made a benchmark module in our code base. The purpose of the benchmark
is not to compare our method with other methods but to compare the applic-
ation performance with different hardware and application configurations. The
performance of the application is highly dependent on where the camera is in the
scene because different materials and geometry will affect how many times the
ray bounces and how expensive the scatter computation will be, as discussed in
Section 3.2.

The role of the benchmarking module is simple:
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1. Define a predefined camera path where both orientation and position are
affected

2. Apply the camera path over a given time. The time it takes to complete the
path must be frame time-independent.

3. Generate a report on the application performance throughout benchmark
run time. It also includes information about hardware and current scene
configuration.

Initializing the benchmark ensures that the sunlight is in the same start po-
sition as previous benchmarking sessions since frame times are affected by sun
position when enabled.

We also integrate this benchmarking tool with the GUI which we describe in
Section 3.8.4. We can trigger a benchmark to test different scene configurations
without restarting the application. The generated reports are used in Section 4.4
to gather data.

3.8 Tools

Tool is a broad term that covers many different topics in a development cycle.
Some tools are essential for the project’s success others are used to speed up devel-
opment. An example of an essential tool is the chosen programming language(s).
In the context of our application, the performance overhead of some languages
is too significant to be practical. Interpreted languages like Python would cause
issues to the performance even with the correct use of algorithms and careful
consideration of the whole program’s semantics performance.

We cover the tools used to make it easier to reproduce our results, whether it
is final performance or a simple collection of performance analytics.

3.8.1 Zig

The chosen programming language for the project ended up being Zig. Zig is a new
Work In Progress (WIP) programming language and toolchain. Zig is a toolchain
because it can build traditional C or C++ projects, much like building tools such as
CMake or ninja. Zig supports this feature because Zig has a solid Foreign Function
Interface (FFI) with C and can manage mixed projects with Zig and C/C++ code.
Zig is general purpose and aims to be low level with manual memory management
and high performance out of the box.

The mentioned FFI capabilities are essential for a rendering application since
we will need to interface with specific libraries. Vulkan is one such library that
is written in C and has to be dynamically linked. Zig also has a limited number
of libraries written in pure Zig. Some libraries require years of testing and de-
velopment before they are ready for external usage, for example, cross-platform
window management with support for graphics API interfacing. Luckily, this is not
a problem because the FFI allows us to interface with classic C APIs without much
hassle.
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Unit tests

Tests are first-class citizens in Zig, and Zig can run tests manually file by file.
Usually, a Zig project links all tests to a single zig build test command by utilizing
a Zig build script. Tests can be defined anywhere in a zig project, but a given test
is preferably close to the tested code (same file or folder). Tests are defined by
writing test followed by a compile-time string which will be the name displayed
by the output.

We used test-driven development throughout the early phase of the project.
We got issues with doing test-driven for certain aspects of the rendering code.
Sections of the rendering system are intertwined, and testing Vulkan calls were
deemed excessive. Currently, some modules in the codebase are unit tested.

We did our best to test code that was not directly related to interfacing with
Vulkan. An example of a unit test is included in the listing below, and the code is
from the vox model loader we discuss in Section 3.8.6.

1 // here we see the name of the test which will be printed in the test report
2 test "validateHeader: invalid version detected" {
3 // currently 150 is the only valid version in vox,
4 // here it is 123 and should fail on parsing.
5 // "++" means compile time concatenation of arrays.
6 const invalid_test_buffer: []const u8 = "VOX " ++ [_]u8{ 123, 0, 0, 0 } ++ "

MAIN";
7
8 try std.testing.expectError(
9 ParseError.UnexpectedVersion,

10 validateHeader(invalid_test_buffer[0..]),
11 );
12 }

Code listing 3.6: Unit test in vox loader module

3.8.2 Vulkan

Vulkan is a graphics API much like OpenGL, Metal and DirectX. Graphics APIs
serve as an intermediate layer between hardware drivers and the application in
order to unify the interface to the system GPU(s). Vulkan is a cross-platform open-
source API that aims to be high performance and conform more to modern hard-
ware compared to its predecessor OpenGL. We chose to use Vulkan for this project
to control the rendering behavior better and enable better performance. The cost
of this performance is verbosity and increased development friction. The project
uses Vulkan to perform GPGPU compute for ray tracing generation and traversal
and to draw the resulting image to a window context.

Vulkan also introduces the concept of validation layers that can intercept Vulkan
API calls and validate if the use of the API is specification compliant. These val-
idation layers can be conducive to avoiding common pitfalls and detecting bugs.
A third-party developer and hardware vendors can implement custom layers to
catch bad practices or problematic usage.
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3.8.3 GLFW

GLFW is an Open Source, multi-platform library for OpenGL, OpenGL ES, and Vulkan
development on the desktop. It provides a simple API for creating windows, contexts,
and surfaces, receiving input and events.[14]. There are also Zig bindings made for
the library, which makes it easier to integrate the library functions with some of
Zig’s new features like error handling. The project uses GLFW to receive input
events from the OS and to open and deal with application windows in a platform-
agnostic way.

3.8.4 Imgui

Imgui is a immediate mode Graphical User Interface (GUI) library that is agnostic
to most graphical APIs. It accelerates the development of GUI for developers or
end-users. GUI is helpful to enhance the control of the application parameters
without needing to restart the application or recompile. Figure 3.4 illustrate ex-
ample application parameters.

Figure 3.4: Imgui based developer menus

3.8.5 Profiling & debugging

Profiling is quintessential when developing performance-critical software. Mak-
ing software effective is an iterative process, and being able to locate hotspots in
the software empirically is needed. Debugging is also a challenge, especially for
GPU based software, as the GPU execution is generally more difficult to observe
compared to CPU execution.

Tracy

Tracy is a profiling tool described by the author as a real-time, nanosecond res-
olution, remote telemetry, hybrid frame and sampling profiler for games and other
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applications[15]. Figure 3.5 display a profile session. Tracy includes two mod-
ules, a server and a Application Programming Interface (API). The API can mark
functions, threads, and more. It mainly supports profiling C/C++ and Lua, but
subsequently, all languages with FFI with C, which includes Zig as discussed in
Section 3.8.1. The explicit marking of code through the API allows for high preci-
sion measurements and detailed information about a given frame or thread. The
tool also supports GPU profiling for applications using the Vulkan API.

The server module is the main method for intercepting marked zones. It also
includes a user GUI that visualizes the application game loop and all marked
frames, function frames, and threads. The GUI is illustrated in Figure 3.5. Tracy
also supports a Command Line Interface (CLI) that allows you to gather profile
data as files. The Tracy server GUI can inspect the Tracy files.

Figure 3.5: Tracy profile session example

Renderdoc

RenderDoc is a free MIT licensed stand-alone graphics debugger that allows quick
and easy single-frame capture and detailed introspection of any application using
Vulkan ...[16]. It is a beneficial tool that gives insight about GPU buffer memory
annotated by the variable names from shader source files, textures used by the
rendering and compute-pipelines, debugging of compute threads (although an
experimental feature), and much more. Renderdoc can also be used in conjunction
with Vulkans ability to print from the GPU to inspect messages from a given shader
with the ability to search and filter on thread ids and message content.

Radeon™ Developer Tool Suite.

For AMD hardware profiling, the Radeon GPU Profiler (RGP) and Radeon GPU
Analyzer (RGA) tool kit was used on Linux. AMD also offers a tool to analyze
memory layout and usage (Radeon Memory Analyzer (RMA)), but it only sup-
ports Windows and has not been used during development. RGP is a low-level
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optimization tool that provides detailed information on Radeon™ GPU[17]. It offers
insight into GPU behaviour according to API usage. Synchronization primitives
can be inspected to verify that they are used in a manner that does not introduce
redundant overhead. GPU queues can be inspected to see the execution of indi-
vidual command buffers. There are many more features like inspection of wave-
front occupancy and cache misses.

RGA is an offline compiler and performance analysis tool for DirectX®, Vulkan®,
SPIR-V™, OpenGL®, and OpenCL™[17]. It offers insight into the executed GPU in-
structions and provides profiles on the instructions in order to identify shader
hotspots. There is no shader to instruction correlation feature for Vulkan yet, so
the user has to familiarize oneself with AMD’s RDNA 2 Instruction Set Architec-
ture (ISA), or the relevant ISA for currently used Graphics Processing Unit (GPU).
Documentation for the RDNA ISA is easily accessible so that the correlation can
be performed manually with some practice[18].

Nsight toolkit

We utilized Nsight Graphics and Nsight Systems for Nvidia hardware profiling.
The feature set of these two applications is similar to features offered by the AMD
toolkit, as discussed in Section 3.8.5. Nsight Systems is a performance analysis
tool that allows insight into most hardware usage, including memory, CPU and
GPU workload. Nsight Systems is helpful for more comprehensive profiling and
detecting slow areas in the application. Nsight Graphics gives insight into the GPU
workload. Using this tool, we can analyze GPU memory usage, operations, and
shader profiling to identify performance issue hotspots in the GPU.

Profiling session example with RGA

Figure 3.6 illustrates an initial shader profile. We can see that some instructions
take up to 2000 clocks. The green section of these hotspots indicates the latency of
instruction being hidden by the VALU (Vector Arithmetic-Logic Unit (ALU)), and a
combined green-yellow means hidden by both VALU and SALU (Scalar ALU). Red
means clocks that are stalling by being idle. Clock latency is marked as hidden
by either VALU or SALU, which means that latency is not detrimental as long as
the bar is mostly not red. In the profile mentioned in Figure 3.6, we can see the
bar is mostly red. All the hotspots in the current profile is called s_waitcmt_vmcnt
which means: Wait for the counts of outstanding vector memory events[18]. We can
conclude that the buffers used are not suitable for the applications.

Luckily two articles have the relevant information to improve memory read
efficiency. Nvidia engineers wrote the first article titled: Vulkan Memory Manage-
ment[19]. They describe how an application should strive towards significant al-
locations and split Vulkan buffers and memory ”virtually” in the application into
sub-allocations when needed, called pooling. Pooling means that more memory
can be sequential and is friendlier to the cache. Pooling was not used in the applic-
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Figure 3.6: Initial Radeon GPU Analyzer profile (red means idle, green indicates
that the GPU is busy)

ation when capturing the profile illustrated by Figure 3.6, so this was an obvious
optimization path.

The second article is written by an AMD engineer and has the title: Using
Vulkan® Device Memory[6]. This article describes how different memory config-
urations can be categorized into heap types from heap 0 to 2. The fastest memory
category for GPU operations is heap 0, which can only be manipulated and read
by the GPU itself. Heap 1 is the second fastest and has the potential to be modified
by the CPU. Heap 2 is an even slower category visible to the CPU, and the graphics
driver is responsible for memory consistency between the host and the device. In
our application, all the memory was under the heap 2 category.

With the new knowledge about our shader hotspots and optimal Vulkan memory
usage, we can apply two significant changes to how our compute pipeline use GPU
memory. Previously we used unique buffers and memory for each shader buffer.
We change this only to allocate one Vulkan buffer, and memory location shared
between uniform and storage data. We split this data virtually and bind different
buffer sections to our declared shader buffers. We also change the buffer type to
be GPU local and make the required changes to categorize this memory from heap
2 to heap 0. As a heap 0 buffer, the host cannot upload data to this buffer directly,
but we can introduce a new staging buffer that is categorized as heap 1, which
is accessible from the host. We can then upload our main memory to the staging
buffer and perform a copy operation on the GPU, so relevant segments of staging
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buffer memory are copied to the correct location in our main memory.
After applying these changes, a new profile can be collected, illustrated in

Figure 3.7. We can see a considerable improvement in clock usage. The worst
instruction on line 2039 in Figure 3.6 went from 1946 to 347 clocks, and we
see that the ratio of the red section on the bar is reduced. The s_waitcmt_vmcnt
instruction also has a reduction in overall clock usage of around 70% after we
have applied the changes to our Vulkan buffer(s).

Figure 3.7: Optimized buffer profile result

3.8.6 MagicaVoxel and the vox file format

MagicaVoxel is an application for voxel modeling, much like blender is for tra-
ditional meshes. The application allows the user to make voxel models that can
be exported to different formats. One of the formats is the vox format that the
authors of MagicaVoxel designed. This format is made for voxel data, making it
more suited for voxel storage since traditional model formats are not volumetric
but surface-based. The application also has a path tracer that can inspect models
and is a good reference for comparing our application output images with Ma-
gicaVoxel’s offline path tracer.

We made a custom vox file loader in the Zig programming language that can
be used in conjunction with our ray tracer. We can use the loader to test the ren-
dering system and compare its output with MagicaVoxel’s path tracer output. It
can also enable more visually exciting scenes in the project renderer. The vox
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file format specification is open to the public and can therefore be implemented
without reverse engineering[20].

3.8.7 IDE: Visual Studio Code + CodeLLDB

We chose Visual Studio Code (Code) as our Integrated Development Environment
(IDE). Code is a highly modular IDE with user-generated modules that can be
downloaded through an extension marketplace. CodeLLDB was used for debug
sessions since it enables breakpoint debugging even in Zig. CodeLLDB integrates
features of LLDB to Code. LLDB allows memory inspection in debug binaries which
can help during debugging sessions. Zig also has a language server called ZLS (Zig
Language Server). There is an extension that integrates ZLS with Code so that
the IDE can give syntax highlighting and report bad coding practices relative to
idiomatic Zig.





Chapter 4

Discussions and Results

Development is not usually a linear process. Some attempts at progressing de-
velopment might be unsuitable and might not lead to progress in the project; if
an attempt to progress leads to nothing, reflecting on why the attempt was not
productive can be constructive. This chapter discusses features that did not im-
prove the application in any meaningful way and, therefore, should have been
omitted from the project. In this chapter we also describe benchmarks the proto-
type application with the new material storage scheme and discuss some of the
findings from these benchmarks. Configuration of the ray tracing system will also
be discussed and how it might affect performance.

4.1 Performance impact of application configurations

The application can configure the ray tracing step in different ways to achieve
desired frame rate at the cost of frame fidelity. We have made sure that the user
can try different configurations using the developer GUI in Section 3.8.4 which
is illustrated in Figure 3.4. During the runtime, the user can change parameters
like:

• Max ray bounces - how many times the ray can bounce before terminating.
A higher bounce count leads to more interaction between the lighting and
the scene’s surfaces.
• Samples per pixel - The application fires 1 to N rays for each pixel. More

samples lead to less noise and aliasing in the output image

The application also uses two resolutions which are called Internal resolution
and External resolutions. The internal resolution describes the resolution of the
ray tracing image, while the external describes the resolution of the final output
image. The internal has bigger implications on the performance of the application
since it is likely that any bottlenecks of the application will occur in the ray tracing
stage. Each pixel of the internal resolution adds computation to the ray tracing
step because of the following rule: InternalPixelCount ∗ SamplesPerPixel =
Primar yRa yCount.

31
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A large cave will be more computationally expensive to render than a flat open
field because the max ray bounce is more likely to occur. There is also a varying
degree of performance depending on the camera’s position in the scene. The ap-
plication and scene configuration must be identical to perform valid hardware and
code benchmarking.

4.2 Poor bucket layout

Figure 4.1: Naive bucket layout which has greater probability of cache miss

The initial implementation of the bucket storage presented in Section 3.3 was
different from the layout in Figure 3.1. Each bucket had its dedicated segment
in the material index array, illustrated in Figure 4.1. The old layout caused major
cache coherence issues, which manifested in poor performance as rays invalidated
the current cache when they attempted to access material information of a brick.
When a brick is assigned bucket size N , and the neighbor brick bucket size N + X
(or N−X ), the cache is evicted because the average byte distance between a given
N bucket and N+1 bucket is much greater than the byte distance of N bucket and
N + 1 in the current implementation. A ray tends to bounce and access different
brick material data in each frame, so the closer each start index is, the greater the
chance that memory is cached.

It also caused issues with our delta range system, which we discussed in Sec-
tion 3.4.2. In Figure 4.2 we can see the before and after we applied the changes
to bucket layout in the context of transfer overhead for frame times. Note that the
performance shown in this figure was before we applied buffer changes discussed
in Section 3.4.2 which has further improved frame times while transferring large
chunks of data.

4.3 Suboptimal optimizations

Some attempts at optimizing the application failed. These optimizations are in-
cluded so that others can avoid spending time implementing these features. These
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(a) Poor bucket layout causing transfers to
take +100ms of frame time

(b) Good bucket layout allowing delta trans-
fers system to optimize transfers

Figure 4.2: Tracy profile before and after improved bucket layout

optimizations might be valid for other applications. However, ray tracing the brickmap
data structure does not yield performance gains with these techniques that are
worth the added code complexity of these features.

4.3.1 Ray tracing with Asynchronous Compute

Asynchronous computing has improved execution times for compute workloads
bound by instructions as discussed in Section 2.2.4. The project codebase support
asynchronous compute and it can be enabled through some simple inline config-
urations. Some preliminary testing showed performance degradation when using
asynchronous compute. Some cards were affected more than others. The RX 6800
XT suffered minor degradation, while the RTX Titan had double frame times.

The frame times also had large oscillations. We believe memory issues cause
the oscillations and the performance degradation. The ray tracing step is already
bottlenecked by memory retrieve with synchronous compute. Section 2.2.4 men-
tioned how workloads bottlenecked by memory access might not have a good
performance increase with asynchronous compute. In our case, cache coherence
might suffer since the GPU will be multitasking more than one workload, which
will increase the required amount of local caches.

4.3.2 Shared memory for grid

Nvidia cards were profiled because of their performance difference compared to
the AMD 6800 XT. The performance difference is discussed in Section 4.4.1. Profile
data was gathered using nsight. The nsight toolkit is discussed in Section 3.8.5.
The biggest hotspot on the RTX Titan was identified as the code section that per-
forms the grid buffer’s read. Grid access is when the raytracer checks if the brick
is empty or not to identify if further lookups are required.

GLSL shared memory was used in order to attempt to optimize the reading of
this buffer by loading the buffer into the work group (thread block) local cache.
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Shared memory works by explicitly localizing the memory closer to each thread
by loading it into the block’s cache. The storage buffer data must be moved into
the shared memory region, and then the shared memory can be used instead
of the storage buffer. Further benchmarks of shared memory showed minimal
improvements on smaller grids and reduced performance on larger grids. The
added code complexity and less flexibility of this functionality made it not worth
using for this project.

It is possible that the initial loading of shared memory will introduce some
initial overhead. Also, a barrier is required to ensure that all the data have been
moved by the GPU threads.

4.4 Benchmarks

A simple procedural scene is used to benchmark the ray tracer. The scene grid
has the size of 64x32x64bricks = 512x256x512voxels. The benchmark scene
consists of terrain generated with the methods discussed in Section 3.6. The scene
also consists of a ”doom guy” model. The voxel model is loaded through the ap-
plication’s custom vox format loader, which is discussed in Section 3.8.6. All voxels
of the ”doom guy” model are assigned the metal material type to increase scene
material complexity since the terrain includes lambertian/diffuse and dielectric
materials. Figure 4.4 illustrates the scene that we benchmark.

We collect benchmark data using the module discussed in Section 3.7. Three
key data points are included in the produced benchmark report: the minimum,
maximum, and average frame time. This data can tell a lot about system perform-
ance while remaining simple. The minimum and maximum frame times will show
outliers in the benchmark performance. The maximum frame time is compelling
because it can have a noticeable effect on the end-user. If the average frame time
is optimal but the maximum frame time is too high, we know there was a visual
lag on the screen at some point.

The code for our benchmarking and the application is available to the public
and can be accessed on GitHub. We also include a branch in the repository named
”benchmark” that keeps the mentioned scene configuration[21].

4.4.1 Results

Table 4.2 show the results of our benchmarking. The benchmark was performed
on five different GPUs. Each GPU had a unique machine with CPU and other hard-
ware. There was no extra effort in performing the benchmark on the same ma-
chine with different GPUs because, in every profiling session performed on all
machines, the GPU was the bottleneck for performance, except for the RX 6800
XT. The hardware is listed in Table 4.1. The internal resolution of the application
was set to wid th= 1024, height = 576 and then up-sampled bilinearly to native
resolution in all our tests.
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Figure 4.3: The loaded doom guy model viewed through dielectric water voxel
in benchmark scene

Figure 4.4: Wider image of benchmark scene

The data shows acceptable performance on all hardware given that application
settings are adjusted according to GPU performance. In order to be able to claim



36 A. Hjerpbakk@NTNU: Extended Brickmap for Real-time Ray Tracing

Table 4.1: Hardware used for each machine

GPU CPU RAM PCIe OS
GTX 1650 M Intel i7 9750H 16GB 2666MHz 3.0 Ubuntu 20
GTX 1080 Ti Intel i7 6700k 16GB 2133MHz 3.0 Windows 10
RTX Titan AMD R7 5800X 32GB 3200MHz 4.0 Ubuntu 20
RTX 3090 AMD R7 5800X 32GB 2666MHz 3.0 Ubuntu 20
RX 6800 XT Intel i7 6700k 16GB 2133MHz 3.0 Ubuntu 20

Table 4.2: Benchmark result table. All results are measured in milliseconds (lower
is better)

Complexity 1: Max bounce 1, Sample count 1, Sun disabled
GPU Min frame time Max frame time Avg frame time
GTX 1650 M 1 40 13.573
GTX 1080 Ti 3 9 5.317
RTX Titan 0 16 2.190
RTX 3090 0 9 1.724
RX 6800 XT 1 5 1.983

Complexity 2: Max bounce 1, Sample count 1, Sun enabled
GPU Min frame time Max frame time Avg frame time
GTX 1650 M 1 46 18.087
GTX 1080 Ti 4 14 7.086
RTX Titan 1 12 2.754
RTX 3090 0 9 2.142
RX 6800 XT 1 6 2.107

Complexity 3: Max bounce 3, Sample count 2, Sun enabled
GPU Min frame time Max frame time Avg frame time
GTX 1650 M 57 237 108.166
GTX 1080 Ti 22 99 43
RTX Titan 7 30 13.753
RTX 3090 5 25 10.459
RX 6800 XT 2 11 5.789

real-time performance, the frame times should be less than 33ms, which would
mean a Frames Per Second (FPS) greater than 30. The benchmark is performed
with three different presets Complexity 1 which is a max ray bounce of 1 with only
one ray per pixel. The sun is also disabled in this preset. Complexity 2 is the same
as complexity 1 except the sun is enabled. At complexity 3 max ray bounce is set to
3, and 2 primary rays are sampled per pixel. The sun is also enabled in this mode.

The first samples are from a laptop with a GTX 1650 M. The 1650 machine
performs worse than all the tested units, which are directly related to the GPU
being the weakest in the test set. A high max frame time can be observed already at
the simplest setting. High frame times might be related to thermal throttling since
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laptops have worse cooling than desktops. The average frame times is acceptable
at 13.573ms = 73 f ps. The GTX 1650 M fails to achieve real-time performance
When the ray tracing requirements increase.

The second GPU tested is the GTX 1080 Ti. 1080 performs substantially bet-
ter than the 1650 M. The average frame is < 8ms =< 125 f ps both with and
without the sun enabled. We get an average of 43ms = 23 f ps on the most ex-
pensive settings tested, which is below a playable frame rate. A middle ground
between complexity 2 and complexity 3 would probably result in more acceptable
performance while maintaining acceptable visual fidelity.

The RTX Titan and RTX 3090 achieve acceptable frame rates on all levels. We
see at the lowest complexities that the minimum frame time goes as low as 0ms.
Zero frame time means the measurement was less precise than the timer could re-
cord. The average frame time of the RTX Titan at complexity 3 is at 13.753ms = 72 f ps,
and with a max frame time of 30ms, we see the card performing at its limits.

Finally, the most recent card in the test bed is the AMD RX 6800 XT. On all
complexity levels, we see good performance. Even at the highest complexity, the
worst frame time observed is 11ms = 91 f ps. The source of the large discrepancy
in performance between AMD and Nvidia in the benchmark is unknown. As in
Section 3.8.5, memory read is a major bottleneck for the ray tracing step. AMD
advertise a feature of their hardware called infinity cache. AMD state:

With up to 128MB of ground-breaking AMD Infinity Cache acting as a
massive bandwidth amplifier, get up to 3.25x the effective bandwidth of
256-bit 16 Gbps GDDR6 memory[22]

There might be some truth to this statement. The RX 6800 XT uses GDDR6
memory, while the RTX 3090 uses GDDR6X. GDDR6X has a memory bandwidth of
21Gbs while the GDDR6 has a bandwidth of 14Gbs. RX 6800 XT’s almost double
performance might be the improved caching through the infinity cache on the
AMD hardware since in the VRAM of the RX should be slower. The boost clock
of the two cards is also substantially different and might affect the performance
difference. The RX 6800 XT has a boost clock of 2155MHz while the RTX 3900
has a boost clock of 1725MHz.

4.5 Why benchmark these GPUs?

Overfitting is when optimization is applied for one class of hardware, and perform-
ance suffers on untested hardware. Tests are performed on different GPUs based
on vendor and generation to make sure that our results are not based on overfit-
ting. GPUs have considerable variation in features that might affect performance.
Hotspots typical for all hardware should be identified and prioritized.





Chapter 5

Conclusion & Future Work

In this chapter we summarize the findings of this thesis. This includes our research
goals, methodology, and our main results. A longer discussion of aspects of the
project that can be improved is also covered as there are many interesting ways
to extend this work.

5.1 Conclusion

This research had two goals: to deliver real-time voxel ray tracing on non ray tra-
cing hardware and to extend the brickmap data structure to support material data.
This paper presented a method for storing color and material information that can
be used both for offline path tracing and real-time ray tracing. A Vulkan applic-
ation was also made to utilize this method. The process of building the Vulkan
application is documented and presented in this thesis to some degree. Tools we
used throughout development have been included and described to help others
who wish to develop similar applications. Design of stable data streaming from
CPU to GPU with the Vulkan API have also been covered.

The presented material buckets is a system that delivers fast allocation and
freeing of brick material data while remaining trivial to implement and use. The
result of the bucket allocations are agnostic to both CPU and GPU, so the memory it
controls can be on either or both. We also describe using this system in conjunction
with multiple threads in a lock-less manner.

Combining the material buckets with the previous brickmap enables path trace
or high fidelity ray tracing. A reference implementation of the brickmap data struc-
ture with the new material data was also presented. The project goals were very
high, so there are more tasks to do before we can claim real-time ray tracing on
GPUs without dedicated ray tracing hardware.

The slowest card tested was the GTX 1650M, which showed an average frame
rate of 74 f ps while testing the basic settings. However, the card failed to scale to
the most complex benchmark, which had an average frame time of 108ms or a
frame rate of 9.26 f ps. As discussed in Section sec: profiling, significant perform-

39



40 A. Hjerpbakk@NTNU: Extended Brickmap for Real-time Ray Tracing

ance gains have been observed from optimizing memory read when profiling. Fur-
ther memory and miscellaneous optimizations should increase the performance
to the degree that even the GTX 1650M can do more complex ray tracing. More
powerful cards like the GTX 1080Ti show promising performance on all complexit-
ies tested, but optimizations are still required. AMD RX 6800 XT shows exceptional
frame rates on all tested complexities and is well within the real-time performance
range. Future work is required to achieve stable real-time performance for the old-
est and weakest hardware tested, but the data shown in the benchmarks indicate
that it is a viable goal. The newest generation of GPUs shows good performance
even though ray tracing hardware is not utilized. These GPUs have higher boost
clock, faster memory, and more compute units than their predecessors.

5.2 Future work

The priority of future work should be optimizing the Vulkan code. Profiling has
made it clear that optimal data layout and reducing data usage are two critical
features to achieving good ray tracing performance. The presented method of
storing material and color information does not utilize compression. Alternative
modifications of the material storage could achieve even better cache coherency to
improve the final frame time while offering the same material features. The code
for the project is open-source, and anyone can contribute to the codebase[23]

5.2.1 Denoising and upscaling

Many production-ready ray tracing applications offer denoising and upscaling fea-
tures to reduce the overhead of any ray tracing step. Nvidia has a proprietary
Software Development Kit (SDK) called DLSS. Some have praised DLSS for being
competent in denoising and upscaling system. However, there are some signific-
ant downsides to DLSS. It utilizes Nvidia’s tensor cores, which only work on the
Turing and later Nvidia architectures. Integrating DLSS in an open-source project
is challenging since it is a proprietary SDK.

AMD offers two open-source alternatives called FSR 1.0 and FSR 2.0. Both
FSR versions are designed to work on more than just AMD hardware, meaning
it works on all modern GPUs and many older ones. FSR 2.0 has been compared
favorably with recent versions of DLSS in terms of visual quality[24]. FSR 2.0 is
not released to the public yet, but integrating FSR 1.0 and 2.0 when it is released
could help improve the quality of the final image.

5.2.2 Ray buffers to improve work balance

Ray tracing in the application is performed in one single ray tracing step. Each GPU
thread is assigned the same pixel to perform ray tracing on each frame. Render
time is compounded between render frames by repeatedly assigning the same
ray tracing job to the same GPU thread. A ray buffer system can remove some of
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the compounded time overhead. For each frame, a compute shader will dispatch
primary rays that are put in a buffer. At the same time as the primary ray buffer is
filled, another compute shader will grab incoming rays from the buffer and calcu-
late ray color. The ray buffer eliminates the relation between a pixel and a given
thread. A ray buffer can also be further developed to split the mentioned scatter
behaviors covered in Section 3.2. Three unique scatter/ray trace shaders (1 per
material type) can then be dispatched in parallel to perform unique scatters. Since
one scatter function exists per compute shader, unique scatter dispatches will re-
move any warp divergence introduced by the scatter functions. Warp divergence
is discussed in Section 2.2.1.

5.2.3 Improved noise functions for ray tracing

The current ray tracing implementation utilize white noise. The system utilizes
noise for two functions. The first function is ray direction modifiers for multiple
ray samples per pixel. When the application is sampling more than one ray per
pixel, subsequent rays must use a modified ray direction to get a better image
result. The scatter functions are the second part of the ray tracing system that
uses noise. All material scatter functions mentioned in Section 3.2 utilize white
noise currently to scatter the ray. When comparing white noise sampling with blue
noise sampling, the white noise is more apparent in the final output[25]. It is also
harder for denoisers to denoise images produced with white noise because of the
more apparent noise.

Replacing the current noise functions with blue noise sampling would reduce
the need for multiple samples, thereby improving the visual fidelity and the per-
formance of the raytracing shader.

5.2.4 High Dynamic Range Rendering

Traditionally in rasterization rendering, the output uses a color range of [0, 1]
so that each color channel is limited to this range. The normalized color range
is usually sufficient when the color is easy to control. In some rendering applic-
ations, this can cause images to become over/underexposed, and detail is lost.
High Dynamic Range (HDR) solves this problem by increasing the color range for
framebuffers. By increasing the color range for the target image, more detail can
remain visible. A new exposure variable is introduced to decide how much color
values should contribute. This process is called tone mapping[26].

Introducing HDR to the project’s codebase would increase the visual fidelity.
It would also be required if support for multiple lights were added since color
blending of multiple emitting lights is likely to cause over-exposure.

5.2.5 ReSTIR GI: Path Resampling for Real-Time Path Tracing

ReSTIR GI: Path Resampling for Real-Time Path Tracing is a recent publication that
presents an effective path sampling algorithm[27]. Integrating the resampling
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presented in this paper would increase the application’s performance and visual
fidelity.

5.2.6 Improve Normal Calculation

Currently normals are calculated using a somewhat wasteful procedure:

1 // calculate the voxel position
2 voxel_position = (position * scale);
3 // calculate the center coordinate for the voxel
4 const vec3 center = voxel_position + vec3(scale * 0.5);
5 vec3 normal = hit.point - center;
6 const vec3 abs_normal = abs(normal);
7 // find the axis with the highest value and use only this axis as the normal.
8 // this is valid since the voxels are axis aligned
9 normal.x = sign(normal.x) * float(abs_normal.x >= abs_normal.y && abs_normal.x >=

abs_normal.z);
10 normal.y = sign(normal.y) * float(abs_normal.y >= abs_normal.x && abs_normal.y >=

abs_normal.z);
11 normal.z = sign(normal.z) * float(abs_normal.z >= abs_normal.x && abs_normal.z >=

abs_normal.y);
12 hit.normal = normalize(normal);

Code listing 5.1: Wasteful normal caluculation

Normal values are implicitly known if a step has been performed in the voxel
grid traversal. If the previous step for getting to a voxel was prev_step = (−1,0, 0),
then we know that the current hit normal is normal = −prev_step = (1, 0,0).
The voxel step is not currently used because it does not account for any initial hits
before any steps are made. Combining the intersection test algorithm discussed in
Section 2.1.2, we can compute the normal while checking if the initial ray hits the
voxel grid. We can then start by initializing a normal and then use the previous
step if any step has been performed.

5.2.7 Continuous Integration using Github

Unit tests exist in the codebase as discussed in Section 3.8.1. These tests help check
for regression in the codebase, but running tests is not enforced when committing.
Continuous Integration (CI) helps with this issue by running tests on incoming
commits and pull requests. github.com which is the current host of the project
source code, offers easy support for CI using their workflow system[28]. The pro-
ject should utilize Github’s workflow functionality to avoid accepting changes that
break current unit tests.

5.2.8 Hashing of buckets and deduplication

The execution time of the ray tracing shader is heavily dependent on memory
retrieve, as we discuss in Section 3.8.5. Buckets can be hashed by inspecting the
material slice that the bucket has ownership over. If two or more buckets have

github.com
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an identical hash, we can consider the two buckets as one and make both bricks
use the same bucket. By reusing buckets, we reduce the material data used and
subsequently increase the render performance by avoiding cache misses. A down-
side of the mentioned segmentation of global memory in Section 3.4.1 is that this
deduplication can not be trivially done between worker threads.
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