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A B S T R A C T

In marine operations, the performance of model-based automatic control design and decision
support systems highly relies on the accuracy of the representative mathematical models. Model
fidelity can be crucial for safe voyages and offshore operations. This paper proposes a data-
driven parametric model identification of a ship with 6 degrees of freedom (6DOF) exposed to
waves using sparse regression according to the vessel motion measurements. The features of the
complex ship dynamics are extracted and expressed as a linear combination of several functions.
Thruster inputs and environmental loads are considered. The hydrodynamic coefficients and
wave-induced loads are simultaneously estimated. Unlike earlier studies using a limited number
of unknown functions, a library of abundant candidate functions is applied to fully consider the
coupling effects among all DOFs. The benefit of the proposed method is that it does not require
the exact construction of the library functions. Based on the estimated model, short-term motion
prediction is achievable. The algorithm is verified through experiments. The method can be
extended to other types of floating structures.

. Introduction

Ship model identification has been an important topic for decades. A mathematical model is established to represent the ship
ynamics based on the measured data. Over the past decades, technical advances in marine operations have gradually increased
he level of autonomy, enhanced operational limitations, reduce operation risks, and helped avoid vital failures and hazards. The
odel fidelity plays an essential role in potential performance. Moreover, more precise models are expected to fulfill the state-

f-the-art requirements of increasingly accurate simulations and various model-based algorithms, such as dynamic analysis [1],
isualization, digitalization [2], short-term response prediction, operation planning [3], and decision support [4]. Therefore, the
hip model identification continues to be of high practical value.

A ship is normally assumed to be a rigid body with a lumped mass. The values of hydrodynamic parameters are affected by
any factors such as the hull geometry, wave conditions, and vessel loading conditions. A ship model is subject to high complexity,
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nonlinearity, and uncertainty. The identification problem is simplified into the concerning degrees of freedom (DOFs), starting
the analysis in terms of the simplest 1DOF scenarios, such as the yaw motion of Nomoto model [5] and the roll dynamics [6,7].
A two-dimensional application is the identification of the steering dynamics for a surface vehicle, including the surge and yaw
motions [8]. In addition, the 3DOF ship maneuvering model in the horizontal plane, including surge, sway, and yaw, is especially
useful for modeling voyages and slow-speed stationkeeping operations [5,6,9–14,14–18]. Increasing attention has been paid to model
the nonlinearities. The involvement of nonlinear damping slightly improves the performance of dynamic positioning systems [19].
In contrast to the operations in the horizontal plane, all 6 DOFs are crucial for the safety of on-site marine operations, e.g., lifting
and pipe laying. To the best of the authors’ knowledge, the 6DOF model identification of a ship remains lacking. The complexities
mainly arise from the coupling effects among 6 DOFs and environmental uncertainties.

Model identification is categorized into parametric and nonparametric approaches depending on the existence of explicit
athematical expressions. A mathematical expression is assumed to be available a priori in the parametric methods. Many theories
ave been developed to convert complex physical ship dynamics into an elegant mathematical equation using few coefficients.
ence, the core problem of ship model identification is to find these coefficients to minimize the error between the estimated
ynamics and the measured data. Potential candidates are adaptive tracking control [5,9] regression-based approaches (e.g., genetic
lgorithm [10,20] and support vector regression [6,14,21]), and Kalman filters [12,16]. In an adaptive control design, the weighting
ector is simultaneously updated when the control law minimizes the tracking error. The ship dynamics are estimated online, and
he control input cancels the unknown term in the error dynamics to ensure the convergence of the tracking error. However, the
pdate of the weighting vector is only related to the present time instant, where the historical data are accumulated in the states.
n accurate identification of the unknown coefficients also requires the persistency of excitation conditions to hold, i.e., one cannot

dentify the parameters of the model that are not excited through the inputs to the model. For a system where there are many
ore parametric functions than DOFs, the model identified from adaptive control or an extended Kalman filter (EKF) gives a locally

ptimal and consequently a poor motion prediction. Regression-based and EKF-based approaches also require an assumed explicit
athematical expression. Regression-based approaches typically apply the minimum least square [22] and maximum likelihood
rinciples [23]. The overfitting problem caused by measurement noise limits the applications of the regression-based approach.

Due to the absence of physical meaning, input–output models are considered nonparametric or black-box models. Using abundant
ata, artificial neural networks are trained to approximate the vessel dynamics [11,24]. The training process can be accomplished
hrough online neural adaptive tracking [13] and offline using the measured data [25]. The major drawbacks of neural networks
re a lack of physical meanings and inferior extrapolation capacity. The performance of the trained model greatly depends on the
dequacy of measurement data. In addition, the modeling of stochastic environmental loads, such as waves and wind, is challenging.
ence, motion prediction based on the identified model can be problematic.

There are three methods to verify the identification algorithms. The most commonly used approach is numerical simulation
enerated by the relevant selected codes in a known form [5,6,10,11,13–15]. However, a critical question is to what degree the
quations in the simulations will precisely represent the ship dynamics. As a mitigating measure, some limited research has been
ased on validating the model equations through experimental model tests [9,17,26] and sea trials [12]. Although the experiments
nd sea trials are time-consuming and expensive, they provide higher credibility of the identification approach. For applications in
he horizontal plane, zigzag tests, turning circle tests, and free runs are widely applied.

An obvious shortcoming of the aforementioned research work is the lack of consideration of wave-induced motions. Although
ave-induced motions have minor effects on maneuvering in the horizontal plane, they are critical to all types of in situ marine
perations using floating vessels, such as lifting operations. Wave load estimation and prediction have attracted increasing research
nterest in relation to high-precision marine operations [27]. Wave-induced motions are the fundamental problem to overcome for
n onboard heave-compensation system. Various methods have been developed to calculate the wave loads on a vessel, such as
he linear and nonlinear strip theories [28], unified slender body theory [29], Green’s function method [30], and Rankine source
ethod [31].

Sparse regression has been applied to the reduced-order modeling of nonlinear dynamic systems, such as discovering the
overning equations of vortex-induced vibration [32] and directional wave spectrum [33,34]. It removes the number of components
n the optimal solution and can reduce the estimation variance and improve the robustness by inducing sparsity in the parameters.

In this paper, a data-driven approach is proposed to identify a 6DOF ship model exposed to irregular waves based on motion
easurements. The coupled hydrodynamic coefficients and wave information are estimated. The main contributions are listed as

ollows.

• To the best of our knowledge, onboard 6DOF white-box ship model identification based on vessel motions is studied for the
first time;

• Complex and high-order fluid–structure interaction effects are considered in the proposed linear model, such as the linear and
nonlinear hydrodynamics, the influence of directional wave spectrum, and thruster inputs;

• Sparse regression is firstly applied to ship model identification. Unlike the typical approaches, the selection of candidate
functions can be more flexible;

• The prediction of short-term wave loads is achievable by using the identified model.

The remainder of the paper is organized as follows. The ship model and identification problem are formulated in Section 2.
n Section 3, the model identification algorithm is proposed. In accordance with the identification results, wave load estimation
nd short-term motion prediction are achievable. The results of an experimental verification using a moored drillship model are
2

resented and discussed in Section 4. The paper is summarized in Section 5.
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Fig. 1. Coordinate systems of a floating ship.

2. Problem formulation

2.1. System modeling

For a ship, two right-hand reference frames are defined as follows: see Fig. 1.

• North-east-down (NED) coordinate system {𝑛}: The origin is placed at the free-water surface with the 𝑥-, 𝑦-, and 𝑧-axes pointing
to the north, east, and downward, respectively.

• Body-fixed reference frame {𝑏}: The origin is located at the ship mass center. The 𝑥𝑏-axis stays in the ship longitudinal axis
and points to the bow, the 𝑦𝑏-axis points to the starboard, and the 𝑧𝑏-axis points downwards. Euler angles are defined as the
rotations about the 𝑥-, 𝑦-, and 𝑧-axes, i.e., roll (𝜙), pitch (𝜃), and yaw (𝜓), respectively. The Euler angle vector is 𝛩 = [𝜙, 𝜃, 𝜓]⊤.

The ship is modeled as a rigid body where the local flexibility is neglected. The wave direction 𝛽𝑤𝑎𝑣𝑒 is defined as the direction
from which the waves are approaching. Similar definitions are assigned to the current and wind directions, i.e., 𝛽𝑐𝑢𝑟 and 𝛽𝑤𝑖𝑛𝑑 . A
widely used 6DOF ship model is given by

𝜂̇ =𝐽 (𝛩)𝜈, (1a)

(𝑀𝑅𝐵 +𝑀𝐴)𝜈̇ + 𝐶(𝜈)𝜈 +𝐷(𝜈)𝜈 + 𝑔(𝜂) =𝜏𝑡ℎ𝑟 + 𝜏𝑚𝑜𝑜𝑟 + 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑐𝑢𝑟 + 𝜏𝑤𝑎𝑣𝑒1 + 𝜏𝑤𝑎𝑣𝑒2, (1b)

where 𝜂 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]⊤ denotes the translational displacement and rotation in coordinate system {𝑛}, 𝜈 = [𝑢, 𝑣,𝑤, 𝑝, 𝑞, 𝑟]⊤ is the
vector of translational and rotational velocity in coordinate system {𝑏}, 𝐽 (𝛩) is the rotation matrix from {𝑏} to {𝑛}, 𝑔(𝜂) ≈ 𝐺𝜂 is
the restoring force, 𝑀𝑅𝐵 , 𝑀𝐴, 𝐶(𝜈), and 𝐷(𝜈) ∈ R6×6 are the matrices of the rigid-body mass, added mass, Coriolis matrix, and
damping coefficients, respectively. The external loads 𝜏𝑚𝑜𝑜𝑟, 𝜏𝑐𝑢𝑟, and 𝜏𝑤𝑖𝑛𝑑 denote vectors of force and torque acting on the ship
caused by the mooring system, current, and wind, respectively. The thruster input 𝜏𝑡ℎ𝑟 is known and used as prior information.
In addition, 𝜏𝑤𝑎𝑣𝑒1 and 𝜏𝑤𝑎𝑣𝑒2 are the first- and second-order wave-induced loads. Eqs. (1a) and (1b) are the kinematic and kinetic
equations, respectively. The complex hydrodynamic loads acting on the ship are simplified as the superposition of several parts. The
hydrodynamic radiation force is modeled by the terms 𝑀𝐴𝜈̇ and 𝐷(𝜈)𝜈, which are assumed to be constant in a specific sea state.
𝜏𝑚𝑜𝑜𝑟 and 𝜏𝑡ℎ𝑟 are optional and depend on the vessel characteristics.

The current- and wind-induced loads (𝜏𝑐𝑢𝑟 and 𝜏𝑤𝑖𝑛𝑑), and the second-order wave drift loads (𝜏𝑤𝑎𝑣𝑒2), are considered constant if
we assume that the speeds and headings of the wind and current, remain steady and constant during a measurement period. If the
rotational motions are small, the exposed area is assumed to remain the same during a measurement period. Thus, the resulting
wind loads are assumed to be constant.

The mooring system introduces additional damping and restoring terms to the system dynamics [35], i.e.,

𝜏𝑚𝑜𝑜𝑟 = −𝐺𝑚𝑜𝑜𝑟(𝜂 − 𝜂̄) −𝐷𝑚𝑜𝑜𝑟𝜈, (2)

where 𝜂̄ denotes the mean position and orientation of the mooring system at rest, and 𝐺𝑚𝑜𝑜𝑟 and 𝐷𝑚𝑜𝑜𝑟 are the generalized restoring
and damping matrices of the mooring system, respectively.

According to linear wave theory, the wave spectrum is discretized into many sinusoidal wave components, where the correspond-
ing first-order wave-induced loads 𝜏𝑤𝑎𝑣𝑒1 acting on the ship are affected by the wave force response amplitude operator (RAO). The
water surface elevation is modeled as a superposition of 𝑛 wave components. Hence, the wave-excitation force or torque acting in
3
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the 𝑖th DOF is given by

𝜏𝑤𝑎𝑣𝑒1,𝑖 =
𝑛𝑤
∑

𝑗
𝛷𝑖𝑗 (𝜔𝑗 , 𝛽𝑗 )𝐴𝑤,𝑗 sin(𝜔𝑗 𝑡 + 𝑘𝑥𝑗𝑥 + 𝑘𝑦𝑗𝑦 + 𝜑𝑗 + 𝜖𝑗 )

=
𝑛𝑤
∑

𝑗
𝑘𝑐𝑖𝑗 sin(𝜔𝑗 𝑡) +

𝑛𝑤
∑

𝑗
𝑘𝑠𝑖𝑗 cos(𝜔𝑗 𝑡),

(3)

where subscript 𝑗 is the index of the corresponding wave component, 𝑛𝑤 is the number of wave components, 𝛷 is the wave force
RAO, 𝐴𝑤 is the amplitude of the wave component, 𝑘𝑐𝑖𝑗 = 𝛷𝑖𝑗𝐴𝑤,𝑗 cos(𝑘𝑥𝑗𝑥+𝑘𝑦𝑗𝑦+𝜑𝑗 + 𝜖𝑗 ) and 𝑘𝑠𝑖𝑗 = 𝛷𝑖𝑗𝐴𝑤,𝑗 sin(𝑘𝑥𝑗𝑥+𝑘𝑦𝑗𝑦+𝜑𝑗 + 𝜖𝑗 ),
and 𝜔, 𝛽, 𝜑, 𝜖, 𝑘𝑥 and 𝑘𝑦 are the wave frequency, wave heading, RAO phase, random phase, and wave numbers in the 𝑥- and
𝑦-directions, respectively.

2.2. Problem statement

Substituting Eqs. (2) and (3) into the 6DOF kinetic Eq. (1b) yields

𝜈̇ = 𝑀−1[−𝐶(𝜈)𝜈 − (𝐷(𝜈) +𝐷𝑚𝑜𝑜𝑟)𝜈 − (𝐺 + 𝐺𝑚𝑜𝑜𝑟)𝜂] (I)
+𝑀−1𝜏𝑡ℎ𝑟(𝑡) (II)
+𝑀−1(𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑐𝑢𝑟 + 𝜏𝑤𝑎𝑣𝑒2 + 𝐺𝑚𝑜𝑜𝑟𝜂̄) (III)
+𝑀−1𝐾𝑐𝑆𝜔(𝑡) +𝑀−1𝐾𝑠𝐶𝜔(𝑡), (IV)

(4)

where 𝑀 = 𝑀𝑅𝐵 +𝑀𝐴 is the total mass matrix, 𝑆𝜔(𝑡) = [sin(𝜔1𝑡),… , sin(𝜔𝑛𝜔 𝑡)]
⊤ and 𝐶𝜔(𝑡) = [cos(𝜔1𝑡),… , cos(𝜔𝑛𝜔 𝑡)]

⊤ contain the
sine and cosine functions of a number of discretized frequencies,

𝐾𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑐11 𝑘𝑐12 ⋯ 𝑘𝑐1𝑛𝜔
𝑘𝑐21 𝑘𝑐22 ⋯ 𝑘𝑐2𝑛𝜔
⋮ ⋮ ⋱ ⋮
𝑘𝑐61 𝑘𝑐62 ⋯ 𝑘𝑐6𝑛𝜔

⎤

⎥

⎥

⎥

⎥

⎦

, and 𝐾𝑠 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑠11 𝑘𝑠12 ⋯ 𝑘𝑠1𝑛𝜔
𝑘𝑠21 𝑘𝑠22 ⋯ 𝑘𝑠2𝑛𝜔
⋮ ⋮ ⋱ ⋮
𝑘𝑠61 𝑘𝑠62 ⋯ 𝑘𝑠6𝑛𝜔

⎤

⎥

⎥

⎥

⎥

⎦

.

According to the independent variables, Eq. (4) is categorized into four parts as labeled:

(I) The motion-dependent term: the information of Coriolis effects, hydrodynamic effects, damping force, and restoring force;
(II) The time-varying and known term: thruster input 𝜏𝑡ℎ𝑟;

(III) The constant unknown term: wind-, current-, second-order wave-, and mooring-system-induced force and torque;
(IV) The harmonic terms: wave-induced loads that are functions of time.

A stationkeeping scenario is considered. Several assumptions are adopted.

• The directional wave spectrum remains steady during the measurement period, and the ship stays at a constant position (𝑥, 𝑦)
with a constant heading 𝜓 . Hence, 𝑘𝑐𝑖𝑗 and 𝑘𝑠𝑖𝑗 are constant unknown parameters.

• The thruster inputs are assumed to be known.
• 𝜏𝑤𝑎𝑣𝑒2, and 𝐺𝑚𝑜𝑜𝑟𝜂̄ are considered constant and unknown. The effects of wind and current (𝜏𝑤𝑖𝑛𝑑 and 𝜏𝑐𝑢𝑟) are assumed to be a

part of the constant load.
• We assume that the coefficients in (4) are constant for a given sea state.

When 𝜂, 𝜈, and 𝜈̇ are known, it is possible to identify the unknown coefficients based on the aforementioned simplifications
and assumptions. In most former studies, the mass matrix 𝑀 is assumed to be diagonal, which results in decoupled ship dynamics,
i.e., the dynamics of each DOF are only affected by a small portion of relevant terms. However, the expression for the model in
each DOF is more complicated if the mass matrix 𝑀 is not exactly diagonal due to the added mass matrix 𝑀𝐴. The 6DOF coupling
effects are considered. If the wave loads are functions of time and wave frequencies as shown in (3), the wave loads in the short
term can be predicted. With the identified ship model, the short-term motion is also predictable.

The ship motions can be directly measured by sensors or estimated through model-based or model-free observers. Hereafter, we
consider that all translational displacement, rotations, and their corresponding velocities and accelerations are well estimated. This
paper aims to identify the parametric 6DOF ship model and wave load model in (4) based on the measured vessel motion data.

3. Model identification

3.1. Sparse regression of the ship model

Categorizing Eq. (4) into two parts and rewriting it into affine form yields

𝜈̇ = 𝜁⊤𝜑(𝜂, 𝜈, 𝜏 ) + 𝜁⊤𝜑 (𝑡), (5)
4

𝑡ℎ𝑟 𝑤 𝑤
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where

𝜁⊤𝜑(𝜂, 𝜈, 𝜏𝑡ℎ𝑟) =𝑀−1[−𝐶(𝜈)𝜈 − (𝐷(𝜈) +𝐷𝑚𝑜𝑜𝑟)𝜈 − (𝐺 + 𝐺𝑚𝑜𝑜𝑟)𝜂 + 𝜏𝑡ℎ𝑟(𝑡)],

𝜁⊤𝑤𝜑𝑤(𝑡) =𝑀−1(𝑏 +𝐾𝑐𝑆𝜔(𝑡) +𝑀−1𝐾𝑠𝐶𝜔(𝑡)),

𝑏 = 𝜏𝑤𝑖𝑛𝑑 + 𝜏𝑐𝑢𝑟 + 𝜏𝑤𝑎𝑣𝑒2 + 𝐺𝑚𝑜𝑜𝑟𝜂̄, 𝜑 ∈ R𝑛1 and 𝜑𝑤 ∈ R𝑛2 are two libraries of the pre-designed candidate functions, 𝑛1 and 𝑛2 are the
numbers of functions in the libraries, 𝜁 ∈ R𝑛1×𝑛𝑑𝑜𝑓 and 𝜁𝑤,𝑖𝑗 ∈ R𝑛2×𝑛𝑑𝑜𝑓 are the matrices containing the unknown coefficients to be
identified, and 𝑛𝑑𝑜𝑓 is the number of DOFs to be identified. For each DOF, there is a column in 𝜁 and 𝜁𝑤. Hereafter, 𝑛𝑑𝑜𝑓 = 6.

The first term 𝜁⊤𝜑 is time-invariant and contains the state-dependent terms and known time-varying thruster load. The second
term 𝜁⊤𝑤𝜑𝑤 is sea-state-dependent and time-varying, and it denotes the first-order wave-induced loads and unknown constant loads,
where 𝜑𝑤 contains functions of 𝑡. Specifically, the dimensionless wave-induced loads are defined as

𝜏𝑤𝑎𝑣𝑒(𝑡) =𝑀−1𝜏𝑤𝑎𝑣𝑒2(𝑡). (6)

From Eq. (3), the coefficients in 𝜁𝑤 are affected by the incoming wave direction, wave frequency, wave height, and relative
phase.

In earlier studies where regression methods are applied, the concerned dynamics are assumed to be a linear superposition of
several known candidate functions, and 𝑛1 and 𝑛2 are small. However, the nonlinear dynamics are not accurately expressed for
some conditions. Instead of a small portion of unknowns components, we select many candidate functions considering the coupling
effects. The regression problem becomes sparse regression if the coefficients of only a small fraction of these terms are nonzero. The
benefit of this method is that it does not require the exact construction of the library functions.

For a specific time instant 𝑡𝑘, we have

𝜈̇⊤(𝑡𝑘) = 𝜁⊤𝜑(𝑡𝑘) + 𝜁⊤𝑤𝜑𝑤(𝑡𝑘) =
[

𝜑⊤(𝑡𝑘) 𝜑⊤𝑤(𝑡𝑘)
]

[

𝜁
𝜁𝑤

]

. (7)

Along a measurement period (𝑘 = 1,… , 𝑛𝑡), the matrix form of (7) becomes

𝑉̇ = 𝛷(𝜂, 𝜈, 𝜏𝑡ℎ𝑟)𝜁 +𝛷𝑤(𝑡)𝜁𝑤, (8)

where 𝑉̇ = [𝜈̇(𝑡1),… , 𝜈̇(𝑡𝑛𝑡 )]
⊤ ∈ R𝑛𝑡×𝑛𝑑𝑜𝑓 , 𝛷 = [𝜑(𝑡1),… , 𝜑(𝑡𝑛𝑡 )]

⊤ ∈ R𝑛𝑡×𝑛1 , and 𝛷𝑤 = [𝜑𝑤(𝑡1),… , 𝜑𝑤(𝑡𝑛𝑡 )]
⊤ ∈ R𝑛𝑡×𝑛2 . Each row of 𝛷

and 𝛷𝑤 contains the values of the selected candidate functions at a time instant, and each column denotes the value of a specific
candidate function at all time instants.

The values of regression coefficients 𝜁 and 𝜁𝑤 are the solution of the following LASSO (least absolute shrinkage and selection
operator) problem [36,37]

min
𝜁,𝜁𝑤

{

‖𝑉̇ −𝛷(𝜂, 𝜈, 𝜏𝑡ℎ𝑟)𝜁 −𝛷𝑤(𝑡)𝜁𝑤‖22 + 𝜆1‖𝜁‖1 + 𝜆2‖𝜁𝑤‖1
}

, (9)

where 𝜆1 and 𝜆2 are the hyperparameters to be tuned. ‖𝜁‖1 and ‖𝜁𝑤‖1 are penalties to ensure the sparsity. The least square regression
results in nonzero values of most elements in 𝜁 and 𝜁𝑤. Hence, L1 norms are added to increase the sparsity in the results. The selection
of discretized wave frequencies 𝜔𝑗 (𝑗 = 1,… , 𝑛𝜔) should also be tuned.

A convenient method to increase the amount of training data is to collect motion data in the same sea state with different
headings. The collected data can be fused to improve the estimation accuracy in case some coupling effects are not considerably
excited for specific wave headings, e.g., the sway motion in a head sea. 𝛷𝜁 is assumed to be identical, whereas 𝜁𝑤 varies with ship
headings. Suppose that there are a total number 𝑛𝑒𝑥𝑝 of measurement periods; then, the fusion form of Eq. (9) is given by

min
𝜁,𝜁𝑤,𝑚

{𝑛𝑒𝑥𝑝
∑

𝑚
‖𝑉̇𝑚 −𝛷(𝜂, 𝜈, 𝜏𝑡ℎ𝑟)𝜁 +𝛷𝑤(𝑡)𝜁𝑤,𝑚‖22 + 𝜆1‖𝜁‖1 + 𝜆2

∑

𝑚
‖𝜁𝑤,𝑚‖1

}

, (10)

where subscript 𝑚 denotes the index of the sampling period.
Since the dynamics in Eq. (5) are dimensionless, the coefficients of meaningful terms are expected to be within a similar

order of magnitude. After programming, the value of a coefficient in 𝜁 or 𝜁𝑤,𝑚 should be set to zero if its absolute value is less
than a small positive constant threshold tolerance 𝜀𝑠ℎ𝑖𝑝 and 𝜀𝑤𝑎𝑣𝑒, respectively. Besides, if the norm of all coefficients related to a
specific frequency 𝜔𝑗 is smaller than a preset small constant threshold tolerance, 𝜀𝑤𝑎𝑣𝑒,𝑡𝑜𝑡𝑎𝑙, all coefficients are neglected. Normally,
𝜀𝑤𝑎𝑣𝑒,𝑡𝑜𝑡𝑎𝑙 ≫ 𝜀𝑤𝑎𝑣𝑒. By controlling the values of 𝜀𝑠ℎ𝑖𝑝, 𝜀𝑤𝑎𝑣𝑒, and 𝜀𝑤𝑎𝑣𝑒,𝑡𝑜𝑡𝑎𝑙, it is possible to control the number of active terms in the
library. The algorithm is summarized in Algorithm 1 below.

The proposed algorithm can only calculate the coupled coefficients. For example, it is impossible to extract the hydrodynamic
parameters of the mass matrix. Another example is that the RAO, wave amplitude, and wave phase cannot be separated, since
they are coupled in parameters 𝑘𝑠𝑖𝑗 and 𝑘𝑐𝑖𝑗 . Furthermore, the mass 𝑀𝑅𝐵 and added mass 𝑀𝐴 are coupled in the dynamics and
consequently impossible to individually identify.

To enhance the computational efficiency, optimization can be separately conducted for each DOF. If so, 𝑉 is a column vector.
5

𝑚
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Algorithm 1: Remove candidate functions with minor effects.
1 Inputs: 𝜁 , 𝜁𝑤,𝑚
2 Parameters: 𝜀𝑠ℎ𝑖𝑝, 𝜀𝑤𝑎𝑣𝑒, 𝜀𝑤𝑎𝑣𝑒,𝑡𝑜𝑡𝑎𝑙
3 for All elements in 𝜁 do
4 if 𝜁 < 𝜀𝑠ℎ𝑖𝑝 then
5 𝜁 = 0
6 end
7 end
8 for 𝑚 = 1 ∶ 𝑛𝜔 do
9 if 𝜁𝑤,𝑚 < 𝜀𝑤𝑎𝑣𝑒,𝑡𝑜𝑡𝑎𝑙 then
10 𝜁𝑤,𝑚 = 0
11 else
12 for All elements in 𝜁 do
13 if 𝜁𝑤,𝑚 < 𝜀𝑤𝑎𝑣𝑒 then
14 𝜁𝑤,𝑚 = 0
15 end
16 end
17 end
18 end

3.2. Motion prediction

According to the identified model, it is possible to predict its short-term motion for a ship without the thruster input. The states
t time 𝑡𝑘 can be obtained by integration based on (5) and (1a) using the current states at time instant 𝑡0, i.e.,

[

𝜂̂
𝜈̂

]

(𝑡𝑘|𝑡0) = ∫

𝑡𝑘

𝑡0

[

𝐽 (𝛩)𝜈(𝑡)
𝜁⊤𝜑(𝑡) + 𝜁⊤𝑤𝜑𝑤(𝑡)

]

𝑑𝑡. (11)

When the control algorithm is explicit, it is possible to predict the motion and thruster input 𝜏𝑡ℎ𝑟 recursively as a closed loop
with time interval 𝛥𝑡; see Algorithm 2.

Algorithm 2: Motion prediction based on identified model
1 Inputs: 𝜂̂(𝑡0) = 𝜂(𝑡0), 𝜈̂(𝑡0) = 𝜈(𝑡0)
2 for 𝑘 do
3 𝜏𝑡ℎ𝑟(𝑡𝑘) = control law(𝜂̂(𝑡𝑘), 𝜈̂(𝑡𝑘))

4

[

𝜂̂
𝜈̂

]

(𝑡𝑘+1) =
[

𝜂̂
𝜈̂

]

(𝑡𝑘) +
[

𝐽 (𝛩̂(𝑡𝑘))𝜈̂(𝑡𝑘)
𝜁⊤𝜑(𝑡𝑘) + 𝜁⊤𝑤𝜑𝑤(𝑡𝑘)

]

(𝑡𝑘+1 − 𝑡𝑘)

5 end

3.3. Construction of candidate functions

The selection of candidate functions in the library is crucial to the identification performance. Different combinations should be
ested in practical applications to determine the most efficient and accurate library. The libraries should be selected according to
hysical reasoning and convergence of fitting. We assume that the library is sufficiently rich and diverse to present the major ship
ynamics. Since the sparse model is a reduced-order system, physical meanings for some candidate functions may not be guaranteed
n a well-defined library.

In the simulations, the candidate functions were selected based on the knowledge of hydrodynamics and oceanography. The
inear, quadratic, absolute, rotation, sine and cosine of wave frequency and time, and all their combinations are suitable candidates
o be the basis functions in the library. Only the translational and rotational velocities 𝜈 contribute to the damping and Coriolis

terms. The nonlinear dynamics 𝐷(𝜈)𝜈 are approximated by a Taylor series to be functions of 𝜈. The wave-induced loads are affected
by the vessel orientations, wave frequency, RAO, and relative direction between heading and incoming wave directions. The amount
of required data increases with the growing complexity of the selected library, and 𝑛𝑡 ≫ 𝑛1 + 𝑛2.

Here, the libraries of candidate functions were selected to be

𝜑 =unique([𝜂⊤, 𝜈⊤, |𝜈|⊤, 𝜈⊤ ⊗ 𝜈⊤, 𝜈⊤ ⊗ |𝜈|⊤, sin(𝛩⊤), cos(𝛩⊤)]) (12)

𝜑𝑤 =
[

1, [1, sin(𝛩⊤), cos(𝛩⊤)]⊗ [sin(𝜔1𝑡), cos(𝜔1𝑡),… , sin(𝜔𝑗 𝑡), cos(𝜔𝑗 𝑡),…]
]

(13)
6
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Fig. 2. Experimental setup in MCLab [38].

Table 1
The lengths of data collection periods in the experiments (unit: second).
𝑇𝑝 𝛽𝑤𝑎𝑣𝑒

0 deg 30 deg 60 deg 90 deg 120 deg 150 deg
1.5 s 25 50 50 45 40 40

Table 2
Three groups of threshold tolerances in the simulations.

esp1 esp2 esp3

𝜀𝑠ℎ𝑖𝑝 0.005 0.001 0.0001
𝜀𝑤𝑎𝑣𝑒 0.05 0.01 0.001
𝜀𝑤𝑎𝑣𝑒,𝑡𝑜𝑡𝑎𝑙 0.005 0.001 0.0001

where ⊗ denotes the Kronecker product operator. Since 𝑢𝑣 and 𝑣𝑢 are identical, a unique operator is defined that removes the
repeated combinations and outputs the unique components in a vector.

If 𝜏𝑤𝑖𝑛𝑑 or 𝜏𝑐𝑢𝑟 are assumed to be constant in a given measurement period, they are functions of wind and wave relative heading
direction. Additional candidate functions of the discretized relative heading can be used to estimate the incoming wind and wave
directions, such as sin(𝜓−𝛽𝑐𝑢𝑟,𝑗 ), cos(𝜓−𝛽𝑐𝑢𝑟,𝑗 ), sin(𝜓−𝛽𝑤𝑖𝑛𝑑,𝑗 ), and cos(𝜓−𝛽𝑤𝑖𝑛𝑑,𝑗 ). When the wind and current directions are known,
the additional candidate functions are simplified to be sin(𝜓 − 𝛽𝑐𝑢𝑟), cos(𝜓 − 𝛽𝑐𝑢𝑟), sin(𝜓 − 𝛽𝑤𝑖𝑛𝑑 ), and cos(𝜓 − 𝛽𝑤𝑖𝑛𝑑 ).

4. Experiment

4.1. Experimental setup

Experiments were conducted in the Marine Cybernetics Laboratory (MCLab) at NTNU to verify the proposed algorithm [38]. A
model drillship [39] was employed to verify the algorithm. The ship model has a length of 2.578 m, a breadth of 0.44 m, and a
design draught of 0.133 m (see Fig. 2).

The vessel was stabilized by four wires at one side of a towing tank in the longitudinal direction. Regular waves were generated
by a wave generator placed on the other side. In the towing tank, the incoming waves can only come from the 𝑥-axis. The vessel
heading is changed to simulate different incoming wave directions. Since the wave-induced loads with symmetric incoming wave
directions about the 𝑥𝑏-axis have an identical amplitude, the incoming wave direction was set to be 0, 30, 60, 90, 120, and 150
deg. The wave periods were set to 1.5 s. Each experiment took 100 s. To simulate a stationary sea state, only the motion data after
the initial transition period were recorded. The lengths of the data collection periods are tabulated in Table 1. The last 10 s were
used to verify the prediction.

The motion capture system was used to measure the motions with 1 mm accuracy. The sampling frequency was 100 Hz. The
origin was set to be the mean position and orientation during the measurement. In the simulations, library 𝛷 contained 𝑛1 = 416
candidate functions. The relevant wave frequencies were selected to be 0.25 to 2.5 rad/s with an interval of 0.25 rad/s, which
results in 𝑛2 = 810 candidate functions in 𝛷𝑤. Three groups of threshold tolerances were used to evaluate their affects; see Table 2.

4.2. Results: Model fitting and prediction

After sparse regression and removing the minor components from the estimates, we tabulated the remaining candidate functions
in Table 3. The calculation took about 5 min using a Core i7-4790 CPU 3.6 GHz. The 6DOF dynamics of the ship model are expressed
by the addition of several functions.

One benefit of the proposed algorithm is that the selection of candidate functions is more flexible. We notice that only a few
7

(less than 25 out of 416) of these functions are involved in the estimates. The unnecessary functions (391 out of 416) are removed.
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Table 3
The components with major effects on the ship dynamics. The nonzero elements are marked by bullets.

𝑢̇ {𝜀1} {𝜀2} {𝜀3}

𝑤 cos(𝜓) ∙ ∙ ∙
cos(𝜃) sin(𝜓) ∙ ∙
cos(𝜓) sin(𝜓) ∙ ∙
cos(𝜓)2 ∙ ∙
𝑝 cos(𝜙)2 ∙ ∙ ∙
𝑝 cos(𝜓)2 ∙ ∙ ∙
|𝑝| sin(𝜓)2 ∙ ∙ ∙
|𝑟| cos(𝜙)2 ∙
|𝑞| cos(𝜙) cos(𝜓) ∙ ∙ ∙
|𝑝| cos(𝜓)2 ∙ ∙ ∙

𝑞̇ {𝜀1} {𝜀2} {𝜀3}

sin(𝜙) ∙ ∙ ∙
sin(𝜃) ∙ ∙ ∙
𝑟 sin(𝜓) ∙ ∙ ∙
𝑤 cos(𝜓) ∙ ∙ ∙
sin(𝜓)2 ∙ ∙ ∙
cos(𝜃) sin(𝜓) ∙ ∙ ∙
cos(𝜓) sin(𝜓) ∙ ∙ ∙
cos(𝜓)2 ∙ ∙
𝑝 cos(𝜙)2 ∙
𝑝 cos(𝜓) cos(𝜃) ∙ ∙ ∙
cos(𝜙)2|𝑤| ∙ ∙ ∙
|𝑟| cos(𝜓) cos(𝜃) ∙ ∙ ∙

𝑟̇ {𝜀1} {𝜀2} {𝜀3}

𝑤 ∙ ∙ ∙
𝑟 ∙ ∙ ∙
sin(𝜓)2 ∙ ∙
cos(𝜓) sin(𝜓) ∙ ∙ ∙
𝑝 sin(𝜓)2 ∙ ∙ ∙
𝑞 cos(𝜃) sin(𝜓) ∙ ∙ ∙
𝑝 cos(𝜙) cos(𝜓) ∙ ∙ ∙
𝑞 cos(𝜃)2 ∙ ∙ ∙
|𝑞| cos(𝜙)2 ∙ ∙ ∙
|𝑝| cos(𝜙) cos(𝜓) ∙
|𝑟| cos(𝜓) cos(𝜃) ∙ ∙ ∙

𝑣̇ {𝜀1} {𝜀2} {𝜀3}

𝑤 ∙ ∙ ∙
𝑝|𝑝| ∙ ∙ ∙
sin(𝜙) ∙ ∙ ∙
𝑤 sin(𝜓) ∙ ∙ ∙
𝑞 cos(𝜓) ∙ ∙ ∙
|𝑝| cos(𝜓) ∙ ∙ ∙
|𝑞| cos(𝜓) ∙ ∙
sin(𝜓)2 ∙ ∙ ∙
cos(𝜓) sin(𝜓) ∙ ∙ ∙
cos(𝜙) cos(𝜓) ∙ ∙
cos(𝜓)2 ∙ ∙ ∙
𝑣 cos(𝜙)2 ∙ ∙ ∙
|𝑤| sin(𝜓)2 ∙ ∙ ∙
|𝑟| sin(𝜓)2 ∙ ∙ ∙
|𝑞| cos(𝜙)2 ∙ ∙ ∙
|𝑝| cos(𝜃)2 ∙ ∙ ∙
|𝑞| cos(𝜓)2 ∙ ∙ ∙
|𝑟| cos(𝜓)2 ∙ ∙ ∙

𝑤̇ {𝜀1} {𝜀2} {𝜀3}

sin(𝜙) ∙ ∙ ∙
𝑢 cos(𝜓) ∙ ∙ ∙
𝑞 cos(𝜓) ∙
|𝑞| sin(𝜓) ∙ ∙ ∙
|𝑞| cos(𝜃) ∙ ∙ ∙
sin(𝜓)2 ∙ ∙
cos(𝜓) sin(𝜓) ∙ ∙ ∙
cos(𝜓) cos(𝜃) ∙ ∙
cos(𝜓)2 ∙ ∙ ∙
𝑝 sin(𝜓)2 ∙ ∙ ∙
𝑣 cos(𝜙) sin(𝜓) ∙ ∙ ∙
𝑝 cos(𝜓) sin(𝜓) ∙ ∙ ∙
𝑣 cos(𝜙)2 ∙ ∙ ∙
𝑟 cos(𝜙) cos(𝜓) ∙ ∙ ∙
𝑝 cos(𝜓) cos(𝜃) ∙ ∙ ∙
𝑞 cos(𝜓) cos(𝜃) ∙ ∙ ∙
|𝑝| sin(𝜓)2 ∙ ∙ ∙
|𝑟| cos(𝜃)2 ∙ ∙ ∙
|𝑝| cos(𝜓)2 ∙ ∙ ∙

𝑝̇ {𝜀1} {𝜀2} {𝜀3}

𝑢 ∙ ∙ ∙
𝑞 ∙ ∙ ∙
𝑝2 ∙ ∙ ∙
𝑤|𝑝| ∙ ∙ ∙
𝑝|𝑝| ∙ ∙ ∙
sin(𝜙) ∙ ∙ ∙
𝑞 cos(𝜓) ∙ ∙ ∙
|𝑤| sin(𝜓) ∙ ∙ ∙
|𝑟| cos(𝜃) ∙ ∙ ∙
cos(𝜓) sin(𝜙) ∙ ∙ ∙
cos(𝜙) sin(𝜃) ∙ ∙ ∙
cos(𝜓) sin(𝜃) ∙ ∙ ∙
cos(𝜙) sin(𝜓) ∙ ∙ ∙
cos(𝜓) sin(𝜓) ∙ ∙ ∙
𝑝 sin(𝜓)2 ∙ ∙ ∙
𝑣 cos(𝜙) sin(𝜓) ∙ ∙ ∙
𝑝 cos(𝜙)2 ∙ ∙ ∙
𝑤 cos(𝜃)2 ∙ ∙ ∙
𝑟 cos(𝜓) cos(𝜃) ∙ ∙ ∙
|𝑤| sin(𝜓)2 ∙ ∙ ∙
|𝑝| sin(𝜓)2 ∙ ∙ ∙
cos(𝜙)2|𝑣| ∙ ∙ ∙
cos(𝜙) cos(𝜓)|𝑣| ∙ ∙ ∙
|𝑞| cos(𝜙) cos(𝜓) ∙
|𝑝| cos(𝜓)2 ∙ ∙ ∙

The number of candidate functions increases with the reduction of the threshold. However, decreasing the thresholds by a factor of
5 and 50 in {esp2} and {esp3} only induces at most four additional candidate functions.

For each heading, the fitting of acceleration and 10-second velocity prediction are presented in Figs. 3–8. The origin 𝑡 = 0 is at
he end of the fitting and at the beginning of the prediction. The prediction was based on the estimated coefficients after removing
he minor components.

The fitting was not significantly affected by removing the minor components, which shows that the major components well
epresented the system dynamics. Although the fitting was improved by reducing thresholds, the differences are mainly related to
he motions with low amplitudes, e.g., the sway motion 𝑣̇ in Fig. 3 when the ship is subjected to head seas and the surge motion
̇ in Fig. 6 in beam seas. The best fitting performance was noticed in Figs. 4, 5, 7, and 8, since the motion in every DOF is better
xcited. The reflected waves from the tank wall affect the model as disturbances.

The predicted future motions in 10 s were satisfactory. The prediction had an identical tendency to the fitting. For motions with
mall amplitudes, some subtle high-frequency parts were neglected. In addition, the accumulated bias drifted the prediction away
rom the real value, which resulted in a growing prediction error over time. Employing a small threshold effectively reduced the
rror; however, this strategy included more minor candidate functions, which resulted in a risk of overfitting.

An applicable approach to increase the number of training data is to increase the measurement time in each measurement period.
owever, the computation time grows exponentially with the number of samples. The proposed algorithm can identify a proper
odel, but efforts are required to apply the proposed technique for real-time model estimation and motion prediction. According
8

o the estimated hydrodynamic coefficients and wave model, the prediction of wave loads is also possible.



Mechanical Systems and Signal Processing 184 (2023) 109422Z. Ren et al.

c

Fig. 3. Fitting of acceleration (left parts) and prediction of velocity (right parts) for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 0 deg.

Fig. 4. Fitting of acceleration (left parts) and prediction of velocity (right parts) for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 30 deg.

A large number of candidate functions and sufficiently long measurement period ensure the model accuracy. However, the
9

omputation time increases in return. When the vessel is exposed to irregular waves, a growing amount of measurements are
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Fig. 5. Fitting of acceleration (left parts) and prediction of velocity (right parts) for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 60 deg.

Fig. 6. Fitting of acceleration (left parts) and prediction of velocity (right parts) for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 90 deg.

equired, which results in a longer calculation time. This is a weakness of the proposed algorithm. Moreover, the encounter frequency
hould be considered when the speed of advance changes. Since the added mass 𝑀𝐴 is frequency-dependent, the added mass also

changes with the speed of advance. Consequently, the number of unknown surges from 𝑛 + 𝑛 to 𝑛 × (𝑛 + 𝑛 ), where 𝑛 is
10

1 2 𝜔𝑒 1 2 𝜔𝑒
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Fig. 7. Fitting of acceleration (left parts) and prediction of velocity (right parts) for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 120 deg.

Fig. 8. Fitting of acceleration (left parts) and prediction of velocity (right parts) for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 150 deg.

the number of considered encounter frequencies. Such large amount of unknowns can cause problem to the calculation process.
11

Therefore, a reasonable model complexity is the tradeoff of model accuracy and computational speed.
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Fig. 9. Dimensionless wave-induced motion in 6 DOFs for 𝑇𝑝 = 1.5 s and esp1.

.3. Results: Wave load estimation

The fitting and prediction rely on the system dynamics and the identification of wave loads. The estimated dimensionless wave-
nduced loads with respect to headings are presented in Figs. 9–11. The legend is the vessel heading and period of the generated
aves. Each line presents an individual test. Hence, there is no correlation among different lines in a same subplot.

It is impossible to directly verify the results since wave loads are not measurable. The RAOs and added mass are coupled.
owever, the results correlate to the wave generator, i.e., comparing the results for different incoming wave directions gives
onvincing proof.

The wave loads are harmonic which agrees with expectation. Moreover, the periods of the fitted wave loads in different DOFs
re about 1.5 s, which is the same as the value of 𝑇𝑝 set to the wave generator.

When 𝛽𝑤𝑎𝑣𝑒 = 0, the wave-induced force in the sway direction 𝜏𝑤𝑎𝑣𝑒2 is almost zero. The same phenomenon was noticed for
𝑤𝑎𝑣𝑒 = 90 deg, i.e., the wave-induced force in the surge direction 𝜏𝑤𝑎𝑣𝑒1 was close to zero.

Although the ship was not symmetric about the 𝑦𝑏-axis, the wave-induced loads with symmetric incoming wave directions about
he 𝑦𝑏-axis could have a similar amplitude. This relationship is shown in the curves of 𝛽𝑤𝑎𝑣𝑒 = 60 deg and 𝛽𝑤𝑎𝑣𝑒 = 120 deg, and the
urves of 𝛽𝑤𝑎𝑣𝑒 = 30 deg and 𝛽𝑤𝑎𝑣𝑒 = 150 deg.

Using the identified wave model, the vessel motion prediction is accurate. Therefore, we believe that the wave load estimation
s reasonable. By comparing the three figures, it is noticed that the estimated wave loads are almost the same. Hence, the difference
mong the identified wave models with different thresholds is negligible.

.4. Comparison with online estimation

To the best of our knowledge, this paper is the first work of white-box 6DOF vessel explicit model identification. It is difficult to
elect a counterpart since most research on 6DOF ship model identification is based on black-boxed learning methods. Therefore,
e compared the results with a typical online estimation of the constant parameters of the linear regression [9,40], given by

[ ̇̂𝜁
̇̂𝜁𝑤

]

= 𝛤
[

𝜑(𝜂, 𝜈, 𝜏𝑡ℎ𝑟)
𝜑𝑤

]

(𝜈̇ − 𝜁⊤𝜑(𝜂, 𝜈, 𝜏𝑡ℎ𝑟) − 𝜁⊤𝑤𝜑𝑤) (14)

here 𝛤 ∈ R(𝑛1+𝑛2)×(𝑛1+𝑛2) is the positive definite adaptation gain.
The same library of candidate functions was applied to achieve real-time estimation. The performance is shown in Fig. 12.

hough the data fitting (in the left side) is acceptable, the motion prediction (in the left side) based on the identified model drift
way, which indicates that the identified model cannot accurately present the system dynamics and environmental loads. Since the
nline estimation cannot fully utilize the historical data, the parameters oscillate with time; see Fig. 13 as an example.
12



Mechanical Systems and Signal Processing 184 (2023) 109422Z. Ren et al.
Fig. 10. Dimensionless wave-induced motion in 6 DOFs for 𝑇𝑝 = 1.5 s and esp2.

Fig. 11. Dimensionless wave-induced motion in 6 DOFs for 𝑇𝑝 = 1.5 s and esp3.
13
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Fig. 12. Fitting of acceleration (left parts) and prediction of velocity (right parts) using online estimation for 𝑇𝑝 = 1.5 s and 𝛽𝑤 = 30 deg.

Fig. 13. The values of the third element in 𝜁 for different DOFs.
14
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5. Conclusions and future research

In this paper, a framework for data-driven 6DOF ship model identification based on ship motion measurements and the
orresponding wave load estimation is proposed. The hydrodynamic coefficients, thruster input, mooring system, wind and wave
xcitation loads are considered in the model. Sparse regression is applied to fit the measurements. The algorithm was analyzed
nd verified through experiments. The reduced-order system extracts the main features of the system dynamics and guarantees
he physical meaning of the candidate functions. It provides an opportunity to balance the model accuracy and complexity. A
omparative study is undertaken to verify the proposed method. The proposed algorithm can be extended to other floating structures.
ased on the identified model, short-term motion prediction can be achieved through direct integration. However, the computational
peed should be improved remarkably before real-time applications.

Satisfactory identification comes from accurate real-time measurements. Future studies should attempt to improve the estimation
ccuracy and reduce the computation time. The model identification in more complicated scenarios, such as with time-varying speed
nd heading, is another future research target. In addition, we will further improve the robustness against noisy measurements when
here are sensor noise and multi-source information.
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