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Current Mapping from the Wave Spectrum
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In this chapter we review methods by which near–surface ocean currents can be

measured remotely using images of the water surface, as obtained by X-band radar

in particular. The presence of a current changes the dispersive behavior of surface

waves, so our challenge is to solve the inverse problem: to infer the spatially-varying

current from measurements of the wavy surface. Measuring near-surface currents in

the ocean is important for a large variety of applications. Examples include oil spill

tracking, understanding the transport of micro-plastics, predicting loads on marine

structures, fuel optimization for ships, and providing data to inform oceanographic

and climate models, among many others [1–8]. Many in situ methods for measur-

ing currents experience a broad range of challenges such as time-consuming and

expensive deployment and maintenance, and noise in the measurements from wave

or platform motions, fouling, or other factors [6]. Remote sensing of currents is an

attractive alternative to in situ measurements, as currents can be mapped over a fi-

nite areal extent simultaneously, and the deployment and retrieval of sensors is not

needed.

We here examine how remote sensing of currents is achieved in practice by an-

alyzing the wave spectrum, as may be measured by X-band radar, cf. e.g. [9–11].

A set of consecutive backscatter images recorded as a function of time is Fourier-

transformed to produce the spectrum, which gives information concerning the prop-

agation of waves whose dispersion is altered by currents. X-band radar images mea-

sure the wave field over multiple square kilometers, and analyzing various spatial

subsets of the images allows a map of the spatial variation of the currents to be re-

constructed, cf. e.g. [5, 6, 12]. An example map where arrows show surface current

calculated from wave spectra is shown in Figure 1.1, demonstrating the areal cover-

age and spatial resolution that may be achieved. Thus, with a single image sequence

of radar images, the currents can be mapped over a large area simultaneously, where

achieving the same degree of spatial coverage using in situ point sensors would re-

quire a large-scale deployment effort.
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Figure 1.1 An example of a current vector field obtained from X-band radar.

Figure taken from Reference [13].

We describe herein methods for reconstructing currents from a measured wave

spectrum. It is worth mentioning that although the methods presented in this chapter

are described in the context of marine radar, they may be readily applied to wave

spectra measured by other means as well, e.g. [3, 14, 15]. The starting point for

this chapter is thus the directional frequency-wavenumber spectrum, which may in

theory be obtained by a variety of means.

1.1 Wave propagation atop background currents

We briefly introduce the dispersion relation for waves traveling atop background

currents, which governs wave propagation and is the basis for determining currents

from measurements of the wave spectrum. The dispersion relation describes the re-

lationship between the wave frequency and wavenumber, which for quiescent waters

reads:

ω0(k) =
√

gk tanhkh, (1.1)
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where ω0 is the wave angular frequency, k = |k|, g is the acceleration due to gravity,

and h the water depth. Surface tension has been neglected, which is a valid assump-

tion for waves measured by marine radar. In cases where the water depth is greater

than roughly half the relevant wavelength, tanhkh ≈ 1 and the deep water limit may

be used (ω0 =
√

gk). Throughout the chapter we use ω0 to denote the wave fre-

quency in quiescent waters, with the implicit understanding that finite depth must be

taken into account when relevant. We consider a background current moving in the

z

y

x

h
U(z)

Figure 1.2 The basic geometry and coordinate system used in this chapter. A

general form of the current profile U(z) is shown; in part of the chapter

a depth-uniform profile is assumed.

horizontal plane: U(r) = [Ux(r),Uy(r)], where r = [x,y,z]. The geometry and coor-

dinate system is shown in Figure 1.2. It is noted that some qualitative information

concerning currents moving the vertical direction may be obtained by consider the

spatial variation of the horizontal current components together with the continuity

equation (e.g. to identify regions of up-welling or down-welling), but herein we ne-

glect any discussion of vertical currents. The entire spatial domain of a marine radar

image spans multiple km, within which the strength and direction of currents may

vary significantly (see Figure 1.1). To proceed, we consider a small subset spatial

window of the domain, in which it will be assumed that the variation U in the x and y

directions is negligible, such that U = U(z) as sketched in Figure 1.2. This assump-

tion drastically simplifies the analysis of the wave spectrum as refraction effects may

be neglected. The subset spatial window we consider corresponds in Figure 1.1 to

a local spatial extent centered on the location of one of current vectors. By recon-

structing the currents within each individual subset spatial window, a full map of the

horizontal variation of the currents can be achieved at the resolution of the window

size. Smaller window sizes thus give higher resolution in the reconstructed current
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field, but at the cost of lower spectral resolution which may decrease the accuracy of

the sensed currents (discussed below in the next section).

In addition to varying in the horizontal plane, U may also vary with depth, partic-

ularly in the vicinity of the surface. This variation is often neglected as it complicates

the analysis, and the current is therefore often assumed to be depth-uniform, equal

to its surface value at all z. We use this assumption for the first part of the chapter

in section 1.3. However, the depth dependence may also be extracted from the wave

spectrum, and we describe methods to achieve this later in the chapter in section 1.4.

For now, we assume the currents are constant in all spatial dimensions, in which

case the dispersion relation may be written as:

ωDR(k) = ω0 +k ·U. (1.2)

Examples of the dispersion surface ωDR(k) for the case of U = (2m/s,0) and U = 0

are shown in Figure 1.3.

It is noted that ωDR and the velocity U are defined in the reference frame of

the radar system, a distinction relevant when mounted on a moving platform such

as a ship, and U in Eq. 1.2 is often termed the “velocity of encounter.” In such

cases, accurate measurement of the ship speed-over-ground is vital for determining

the currents.

Figure 1.3 The dispersion surface ωDR for the case of a current of 2 m/s in the

x-direction, and in quiescent waters.

1.2 Appearance of the linear dispersion relation in the spectrum

When taking a fast Fourier transform (FFT) of a set of radar backscatter images of the

sea surface, the resulting spectrum includes components spanning frequencies and
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wavenumbers up to the Nyquist frequency in both time and space. The spectrum is

thus a function of three variables: wavenumber components kx and ky, and frequency

ω . From the wave dispersion relation (1.2), we see that only certain combinations of

(kx, ky, ω) or “triplets” are allowed by the physics: for a particular wavevector, the

linear dispersion relation gives a unique frequency component. Thus, in examining

the spectrum obtained by FFT, the greatest signal is expected to lie in frequency-

wavenumber triplets that satisfy the dispersion relation.

The spectrum is typically defined as:

P(kx,ky,ω) = |FFT{I(x,y, t)}|2, (1.3)

where I is the radar backscatter image intensity. Given that I is a real quantity and

P the square magnitude of the Fourier transform, a point symmetry about the origin

P(0,0,0) applies:

P(kx,ky,ω) = P(−kx,−ky,−ω). (1.4)

Due to the symmetry expressed in Eq. 1.4, there are two frequencies ω± in practice

associated with the dispersion relation for a particular wavevector: ω+(k) =ωDR(k),
and ω−(k) = −ωDR(−k). Given appropriate handling of this symmetry in algo-

rithms, in practice only half the spectrum is necessary for analysis which reduces

computational demands.

It is noted that the spectrum P may be normalized by a function N(ω ,k) defining

the background noise, to produce a signal-to-noise (SNR) frequency-wavenumber

spectrum, e.g. [10]. The noise spectrum is typically greater at lower frequencies and

wavenumbers, and the normalization results in a SNR spectrum where the values of

the peaks are more uniform over frequencies and directions. We use the spectrum

P in this chapter with the understanding that it may correspond to the precisely that

defined by (1.3) or the SNR spectrum.

1.2.1 Practical considerations

Though the maximum signals in the measured wave spectrum are expected to lie

on the linear dispersion relation, practical analysis of the spectrum is complicated

by several factors. At root, some of these factors arise from the finite sampling in

space and time of the radar images, as well as their finite temporal and spatial extent.

Other factors are due to imperfections of the radar imaging of waves as well as the

underlying physics of the waves themselves, which result in additional signatures in

the spectrum than simply the linear dispersion relation. We outline several of these

practical issues in this section.

1.2.1.1 Spectral resolution

The finite extent of the recorded radar images of the waves in space and time de-

termines the resolution of the wave spectrum in wavenumber and frequency. For

spatial extent Lx, Ly, and T in the spatial and temporal dimensions respectively, the

extent of one pixel in the spectral domain is 2π
Lx

× 2π
Ly

× 2π
T

. The finite spectral res-

olution directly affects the precision with which the location of the energy peaks

corresponding to the dispersion relation may be determined. It is thus desirable to
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maximize the spectral resolution especially when considering lower wavenumbers

whose frequencies are less sensitive to currents due to the k-proportionality in (1.2).

In the spatial domain, this entails larger spatial windows which then decreases the

spatial resolution of the reconstructed current field. In the temporal domain, T may

be increased by recording more images (provided the currents don’t vary appreciably

during this duration), which then increases the size of the dataset and slows process-

ing. In practice T may be limited in cases where the radar system is mounted on a

moving platform.

1.2.1.2 Harmonics

Harmonics of the linear dispersion relation arise in the spectrum from multiple sources.

First, there is the nonlinearity of the radar imaging system: the mapping between

height and radar signal intensity is not entirely linear. This results in components in

the spectrum at integer multiples of the frequency-wavenumber combinations lying

along the linear dispersion relation

Sp(k) =±(
√

p+ 1)ω0(k)+k ·U, (1.5)

with p a positive integer ≥ 0. Examples of Sp are shown in Figure 1.4a) for p =
0,1,2.

There is in addition non-linearities from the surface waves themselves, which do

not form perfect sinusoidal surface profiles when finite in amplitude. Their harmonic

signatures in the spectrum may also be described by Eq. 1.5, making them in practice

difficult to distinguish from imaging nonlinearities. For most realistic cases, the

wave nonlinearity spectral structure is likely smaller than that due to imaging non-

linearities, except perhaps under extreme sea states.

1.2.1.3 Aliasing

Aliasing is an artifact of under-sampling either in time or space. For spectra obtained

by marine radar, temporal under-sampling is often more relevant given the relatively

slow rotation rate of a radar antenna, as well as the possibility for large velocities of

encounter when mounted on a moving platform. Given a sampling frequency fS, all

frequencies |ω |> π fS will be under-sampled. The frequency π fS ≡ ωN is known as

the Nyquist frequency, representing the largest frequency (in magnitude) that will be

adequately sampled.

To understand the signatures in the wave spectrum from aliasing, we consider

two spectra P1 and P2, consisting only of monochromatic waves at a frequency ω1 in

the case of P1 and ω2 = ω1 + 2nωN for P2, where n is an integer. Due to the finite

sampling frequency, it can be shown that P1 = P2, thus wave components with fre-

quencies differing by 2nωN are indistinguishable in the spectrum. An under-sampled

wave frequency ωaliased will appear in the spectrum at a frequency

ω = ωaliased + 2nωN, (1.6)

with n such that ω lies within the interval [−ωN ,ωN ].
When examining the wave spectrum, aliasing manifests itself as extra artifacts

of energy located away from the linear dispersion relation. An illustrative example is
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shown in Figure 1.4b). Frequencies ωpm+ 2nωN are plotted for the case of a strong

current aligned with the waves (k in this case is the component of k along the direc-

tion of the current). Considering ω+, the wave frequency is greater than the Nyquist

frequency for wavenumbers above ∼ 0.2 rad/m resulting in aliased components ap-

pearing at negative frequencies corresponding to the n = −1 branch in (1.6). The

ω− curve displays an analogous characteristic. Equation 1.6 and the symmetry re-

lation (1.4) may be used to perform de-aliasing to determine the true under-sampled

wave frequency ωaliased to which the spectral signal corresponds. It is noted that the

harmonics in (1.5) also will be aliased resulting in a more complicated spectrum to

interpret, especially in the presence of an unknown current velocity.
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Figure 1.4 a) Equation 1.5 for the fundamental harmonic (p = 0) and first two

harmonics. b) Frequencies ω±+ 2nωN are plotted for the case of a

strong current as a function wavenumber component k aligned with the

current. The 2ωN-periodicity has been included to illustrate the effects

of aliasing in the spectrum.

1.3 Extracting currents from the spectrum

We have seen thus far how the wave dispersion relation, indicative of wave propaga-

tion, manifests itself as peaks in the measured wave spectrum. Location of the peaks

thus allows a measurement of the dispersion relation. Assuming a depth uniform

flow, the wave dispersion relation is described by (1.2), and the goal is determine the

unknown current velocity U. We now examine algorithms to extract the current by

analyzing the peaks in the spectrum.
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1.3.1 Least squares method

A least squares (LS) method was proposed for extracting currents from the wave

spectrum by Young & Rosenthal [9]. Wavenumber-frequency triplets (kx,i,ky,i,ωi)
corresponding to the linear dispersion relation are identified where values of the

spectrum above a certain threshold C1 of the maximum value satisfying:

P(kx,i,ky,i,ωi)≥C1max{P(kx,ky,ω)}. (1.7)

An example of a set of triplets is shown in Figure 1.5 as the black circles. Then, an

error parameter is defined as:

Q(U) =
N1

∑
i=1

(ωi −ω0(ki)−ki ·U)2, (1.8)

where the summation is over all N1 triplets selected by the threshold criteria (1.7). Q

is then minimized with respect to U to obtain the unknown current components.

Figure 1.5 Illustration of wavenumber-frequency triplets (black circles) extracted

from peaks in the spectrum corresponding to the linear dispersion

relation (blue surface), using mock data.

The choice of the threshold value is a tradeoff between two factors. On the one

hand, the precision of the least squares fit generally improves with an increasing

number of selected triplets N1, achieved with a lower threshold value. On the other

hand, as the threshold decreases, other signatures in the spectrum such as harmon-

ics, aliasing, and noise will begin to be selected which corrupts the fit. Ideally, the

optimal threshold value would thus be as small as possible while avoiding artifacts

and noise. In practice a value of 0.2 is common [16]. Several related least squares

algorithms have been proposed, such as in Reference [17].

Referring to section 1.2.1, the signatures in the spectrum from harmonics and

aliasing also contain information about the currents which may be used in the fit
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if we modify the least squares fitting algorithm to include them. The advantage

is a greater number of triplets and increased precision. Senet et al. [18] proposed

such an algorithm that is iterative in nature, and termed the iterative least squares

(ILS) method. First, the conventional LS method (1.8) is used to obtain a coarse

guess of the current. Second, the value of the current is used to select triplets in the

spectrum corresponding to both the fundamental and higher harmonics using a much

smaller threshold parameter C2, performing de-aliasing as outlined in section 1.2.1.3

using (1.6), (1.5), and (1.4). Further practical details concerning an approach to de-

aliasing are given in Reference [18]. De-aliasing approaches arrive at a function

Sp(k) expressing the de-aliased frequencies at harmonic p using the current velocity

of iteration j. A corresponding error parameter is then defined analogous to (1.8):

Q(U) =
N1

∑
i=1

(ωi − Sp(ki)−ki ·U)2, (1.9)

which is then minimized to find an updated current velocity. The process is then

repeated, with the de-aliasing being performed with the updated current velocity.

The algorithm may be set to run for a fixed number of iterations, or until satisfactory

convergence is reached.

1.3.2 Normalized scalar product method

A conceptually related algorithm to the least squares involves the maximization of

the normalized scalar product (NSP) between the spectrum and a characteristic func-

tion G defining the dispersion relation shell [16, 19, 20]

G(k,ω ,U) =

{

1, if |ω0(k)+k ·U−ω | ≤ ∆ω/2

0, otherwise
, (1.10)

where ∆ω is the frequency resolution of the spectrum (see section 1.2.1.1). The char-

acteristic function defines the dispersion shell having a full width of ∆ω in frequency

for each wavevector. In theory, with the correct current velocity U, the characteristic

function should overlap with the peaks in the measured spectrum. The normalized

scalar product expresses this overlap and is typically defined as:

V (U) =
〈|FI(k,ω)|,G(k,ω ,U)〉√

PF PG

, (1.11)

where FI =
√

P and PF and PG are the power of FI and G respectively. The NSP

method maximizes V by searching over appropriate ranges of current velocities U.

Compared with the LS and ILS methods, the NSP method does not involve the choice

of a threshold parameter, reducing the user-input parameters that may affect the re-

sults. A potential disadvantage with the NSP method is that the maximized metric V

tends to weights by lower wavenumbers which typically have the largest energy in

the spectrum and are less sensitive to currents than higher wavenumbers.

However, one potential drawback of the NSP method is the computational cost,

as (1.11) must be evaluated for many values of the current velocity in the search

process. To reduce computational demands, a variable search range has been used
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[16]. Typically, an initial wide search range with coarse velocity resolution is used to

produce a rough estimate of the current velocity. Then, a narrower range with finer

resolution is used centered on the initial estimate to find a higher precision current

velocity. The latter step may be repeated to give successively higher precision if

desired.

1.3.3 Polar current shell method

An algorithm which transforms the wavenumber plane into polar coordinates to then

determine the current is known as the polar current shell (PCS) method [20,21]. The

first step is analogous to the LS algorithm: wavenumber triplets in corresponding

to the linear dispersion relation are identified in the spectrum by locating peaks in

the frequency for a given wavevector. The wavenumber coordinates of the triplets

are then converted into polar coordinates (k,θ ), where kx = k cosθ and ky = k sinθ

with θ being the angle in the x,y plane from the positive x axis. It is noted that (1.2)

expressed in polar coordinates may take the form:

ωDR(k,θ ) = ω0(k)+ kU cos(θ −θU), (1.12)

where U = |U| and θU is the angle reflecting the direction of the current. We see

from inspection of (1.12) that when ωDR is evaluated at a particular wavenumber

as a function of θ , i.e. along the azimuthal direction, the frequency is a sum of a

θ -independent component ω0 and an oscillating component kU cos(θ − θU). Con-

sidering the latter, the oscillation amplitude is proportional to the strength of the

current, while the phase of the oscillation determines the current direction.

The PCS algorithm analyzes the θ -dependence of the frequency at a particular

wavenumber to find the current from the set of triplets. A least squares fit is per-

formed to extract the current magnitude and direction from a subset of triplets where

the wavenumber is constant. The result is a set of current velocities over a range

of wavenumbers which are then averaged to give a single vector. Further practical

details on the implementation of the PCS are given in...

A related algorithm which is essentially a modified implementation of the PCS

was developed by Smeltzer et al. [22]. Instead of extracting triplets from the spec-

trum, a NSP was defined using a characteristic function expressing the azimuthal

dependence of (1.12) for constant wavenumber. The characteristic function may be

expressed (slightly modified from Reference [22])

Gi(ω ,θ ,Ui,θU,i) = exp

[

(ω −ωDR(ki,θ ))
2

4a

]

, (1.13)

where a is a frequency width parameter (typically set to a value on the order of

the frequency resolution), and the subscript i denotes a discrete wavenumber in the

spectrum at which the NSP is evaluated. The dependence of the right hand side on

Ui and θU,i is implicitly included in ωDR. Using (1.13) the NSP was maximized

analogous to (1.11) for each separate wavenumber.



picture(0,0)(-42,0)(1,0)30 (0,42)(0,-1)30 picture picture(0,0)(42,0)(-1,0)30 (0,42)(0,-1)30 picture

picture(0,0)(-42,0)(1,0)30 (0,-42)(0,1)30 picture picture(0,0)(42,0)(-1,0)30 (0,-42)(0,1)30 picture

Current Mapping from the Wave Spectrum 11

1.3.4 Algorithm comparison

References [16, 20] have compared the performance of some of the algorithms de-

scribed above and largely found similar accuracy. The ILS and NSP methods show

comparable accuracy, with ILS being an improvement over the LS. Comparison to

the PCS algorithm also showed comparable accuracy in another study [20]. The

authors however note that the comparison was performed for low velocities of en-

counter with minimal aliasing. One motivation for developing the NSP [19] was to

overcome the problem of increasing errors of the LS and ILS methods for large ve-

locities of encounter, so it is possible the NSP is a better choice is such situations.

Referring to the similar performance of the various algorithms the authors in Refer-

ence [20] conclude that: “This implies that the technology of current measurement

using X-band marine radar has become sufficiently mature and the emphasis perhaps

may be legitimately shifted from research methodology toward applications.”

1.4 Reconstructing depth-dependent flows

So far in this chapter we have made the assumption that the currents extracted from

the wave spectrum are uniform in depth. This assumption drastically simplifies the

analysis of the wave spectrum. However, in some realistic situations currents have

significant variation with depth, such as created by wind forcing or a river plume for

example. The wave dispersion may be approximated by a different relation:

ωDR(k) = ω0(k)+k · c̃(k), (1.14)

where k = |k| and c̃ is a wavenumber-dependent Doppler shift velocity from the

background current. The wavenumber-dependence is the key difference to (1.2).

The Doppler shift velocity is a weighted average of the current as a function of

depth, approximated as [23]:

c̃(k) = 2k

∫ 0

−∞
U(z)e2kzdz (1.15)

in deep water, and in finite water depth as [24, 25]

c̃(k) =
2k

sinh(2kh)

∫ 0

−h
U(z)cosh[2k(h+ z)]dz. (1.16)

As may be noticed from inspecting both expressions, shorter wavelengths are thus

influenced by currents in close vicinity to the surface, while longer wavelengths are

influenced by currents at greater depths.

Equations (1.15) and (1.16) reveal the nature of the error one makes by making

the common assumption of a depth–uniform current as in section 1.3 when in fact

U(z) has a significant variation with depth. What is measured is then not the surface

current as commonly reported, but rather a weighted average of the current in the

topmost part of the water column. The weighting factor exp(2kz) means the influence

nearest the surface is strongest, and rapidly decreases at a rate which, importantly,

depends strongly on the wavelength. The current at depths down to a quarter of the

wavelength or so is significant. In effect the current is thus measured at some depth
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beneath the surface, where U(z) equals the measured velocity (since U(z) is assumed

to be a smooth function such a depth exists). It is not straightforward to surmise the

exact depth, however, since the surface current as found in section 1.3 is determined

from a spectrum of different wavelengths, and the form of U(z) is a priori unknown.

This point becomes particularly important when comparing radar–derived currents to

in situ measurements which are typically point measurements at a given depth. When

U(z) is approximately constant the two may be directly compared, but in general the

comparison is more complicated.

Starting again from the measured wave spectrum, reconstructing depth-dependent

currents involves two general steps. First, Doppler shift velocities are extracted from

the spectrum at a range of wavenumber values. Second, the set of Doppler shifts

are used to estimate the unknown profile U(z). The first step is similar to the meth-

ods described in section 1.3. The difference is that while a single current velocity

was derived from the spectrum spanning all wavenumbers in section 1.3, multiple

velocities representing the second term in (1.14) are found, each corresponding to a

unique wavenumber. In practice, this is accomplished by only considering a narrow

range of wavenumbers at a time (a bin), and then using one of the methods described

in section 1.3 to find a velocity that is assigned to the center-wavenumber value of

the particular bin. The result is a set of velocities each corresponding to a discrete

wavenumber value. Example results are shown in Figure 6 of Reference [10] and

Figure 9-10 of Reference [26]. Small wavenumbers to a larger extent represent the

current at greater depths compared to high wavenumbers, which can be seen by in-

specting the integrand in (1.15).

The second step uses an inversion method to find the depth profile from the

Doppler shift velocities. As described above, the Doppler shift velocities reflect a

weighted average of the current profile over different depth ranges depending on

the wavenumber. Thus, the best performance is obtained when there are Doppler

shifts for a wide range of wavenumbers. In addition, the depth range over which

the currents can be reconstructed is also dependent on the wavenumber range: the

smallest wavenumbers influence the greatest depth at which the waves “see” the flow.

In addition, the process of determining the unknown current profile from the Doppler

shift velocities is an ill-posed problem mathematically. The resulting current profile

is not necessarily mathematically unique, and furthermore, errors in the Doppler

shifts tend to be amplified in the inversion process. Because of these challenges,

many inversion methods use a priori assumptions and constraints on the functional

form of the current profile to produce realistic estimates. In this section we describe

several inversion methods that have been used to reconstruct a depth profile estimate

from a set of Doppler shift velocities measured at discrete wavenumbers.
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1.4.1 Effective depth method

Assuming a profile where that current strength varies linearly with depth U(z) =
U′z+U0, with U′ the shear-strength (vorticity) and U0 the surface current. Assuming

deep water and using (1.15), the Doppler shifts can be expressed as [23]

c̃(k) =−U′

2k
+U0 = U(z =−(2k)−1). (1.17)

We see from inspecting (1.17) that the Doppler shifts are equal to the current profile

at a depth Zeff =−(2k)−1. This effective depth is roughly 8% of the wavelength.

Similarly for a logarithmic profile, U(z) = U0 − u∗
κ

log z
z0

, where u∗ is the fric-

tion velocity, κ the von Kármán constant, and z0 the roughness length. The above

parameters characterize a turbulent boundary layer which has been hypothesized to

be a reasonable model of a wind-driven shear flow near the water surface [27]. Again

using (1.15), the Doppler shifts are evaluated as [28]:

c̃(k)≈ U0 −
u∗

κ
log

(

1

2kr

1

z0

)

= U(z =−(3.56k)−1), (1.18)

with r = 1.78. We see, as with (1.17), that the Doppler shifts are equal to the current

profile at a particular depth Zeff =−(3.56k)−1, or 4.5 % of the wavelength. The only

difference from a linear profile is the proportionality of the inverse wavenumber-

dependence, where Doppler shifts are mapped to shallower depths relative to a linear

current profile.

This process of mapping Doppler shift velocities to depth we term the effective

depth method (EDM). The EDM has been used extensively in the past with both the

linear and logarithmic profile assumptions to produce estimates of the depth profile

[3, 4, 10, 23, 29, 30]. The main advantage is the simplicity of implementation: once

the Doppler shift velocities have been extracted from the spectrum, all that remains

is the mapping step using Zeff(k) to produce current velocities at various depths. If a

smooth functional profile is desired, the set of velocity-depth pairs may be fit to some

function to result in a continuous depth profile. The fitting process may introduce

additional parameters associated with the fit. The main drawback of the EDM is

the necessary a priori assumption as to the functional form of the depth profile. In

cases where the true profile does not resemble a linear or logarithmic function, the

mapping results in errors in the velocities at the mapped depths.

The EDM is illustrated in Figure 1.6 using mock data with a small degree

of noise artificially added, considering the horizontal velocity component of the

Doppler shifts aligned with the current. Figure 1.6a) shows the Doppler shift veloci-

ties as a function of wavenumber (vertical axis) for the case of an exponential profile

Uexp(z) =U0ez/d with U0 = 1 m/s and d = 5 m, and a linear profile U lin(z) =U0+Sz,

with S = 0.04 s−1. The assumption of a linear profile, Zeff(k) =−(2k)−1, is used to

map the wavenumbers to depths, shown in Figure 1.6b). For comparison, the true

current profiles are also shown. For the linear profile, the EDM maps the velocities to

the correct depths as expected given a correct assumption concerning the functional

form of the profile. In the case of the exponential profile, there is some deviation be-

tween the mapped currents and the true profile, since the mapping function is invalid

in this case. Figure 1.6b highlights the main drawback of the EDM: the method leads
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Figure 1.6 a) Doppler shift velocities in the direction of the current as a function

of wavenumber for an exponential profile and linear profile

(superscripts ‘exp’ and ‘lin’ respectively). b) Mapped velocities

assuming a linear current profile, with the true current profiles shown

as the solid (exponential) and dashed-dotted (linear) curves for

comparison. See text for the parameters defining the current profiles.

to errors when the true profile differs from the assumed functional form used in the

mapping.

1.4.2 Ha-Campana method

To avoid a priori assumptions of the functional form of the the current profile, Ha [31]

proposed a method which directly inverts the integral of (1.15) to find the unknown

current profile in the integrand by approximating the integral using Gaussian quadra-

ture. The method was later further developed and extended to finite depth using the

integral of (1.16) by Campana et al. [32]. We here outline the method for the case of

infinite depth (the finite depth version is described in Reference [32]).

An integral of a function f (x) (assumed to be smooth) can be approximated as:

∫ 1

−1
f (x)dx ≈

n

∑
j=1

f (x j)w j, (1.19)
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where x j are quadrature points, w j are weights, and n is the order of the Legendre

polynomial. To match the integral limits of (1.15) to (1.19), the coordinate trans-

formation x = 2e−2k0z − 1 is made, where k0 is a reference wavenumber chosen to

minimize quadrature error [11, 31].

For a set of Doppler shifts measured at discrete wavenumbers, (1.15) may be

approximated using a matrix equation:

f = A ·u, (1.20)

where column vector f contains the measured Doppler shifts, A is a matrix of co-

efficients derived from (1.19), and u is a column vector with the unknown current

velocities at discrete depths defined by the coordinate transformation (details given

in References [31] and [11]. The form of (1.20) is an over-determined linear system

of equations, and may be solved in the least squares sense for the unknown values of

the current u given a set of Doppler shift-wavenumber pairs.

Up to this point, no assumptions concerning the functional form of the cur-

rent profile have been made, a clear advantage relative to the EDM. However, the

biggest challenge and drawback of the method concerns how errors in the Doppler

shift velocities propagate through the inversion process to corresponding errors in

the current depth-profile solution. Ideally, the resulting errors in the depth profile

would be similar in magnitude to those of the input Doppler shifts. However, the

direct inversion of the integrals (1.15) and (1.16) result in a severe amplification of

the error: small errors in the Doppler shift velocities result in large errors in the re-

sulting depth-profile. The error amplification means that (1.20) is impractical to be

used in reality without some additional constraints on the velocity solutions. The

constraints typically imposed limit the second derivative of the velocity profile with

respect to depth, and limit the distance from an initial guess. A cost function is

typically defined and minimized, with increasing cost as the curvature or distance

from the initial guess increases. Introduction of the constraints results in smoother

profiles that suppress the amplification of the errors, yet the current profile solutions

may depend on the values of the parameters weighting the constraints. The chal-

lenge then is how to choose optimal values of the constraint parameters. Campana et

al [11] offer an empirical method for choosing the curvature constraint, though the

universality of the method remains unclear. The Ha-Campana method demonstrates

comparable accuracy relative to the EDM when compared to acoustic Doppler cur-

rent profiler (ADCP) truth measurements, while reconstructing the current profile at

a deeper range of depths.

1.4.3 Polynomial effective depth method

Another method for reconstructing the depth-profile without assumptions as to the

functional form was proposed by Smeltzer et al. [22]. The method starts from the

conventional EDM, fits the profile to a polynomial form, and then scales the coeffi-

cients based on a simple-derived relation to produce an improved estimate of the true

current profile. We outline the method below, considering one horizontal component

of the Doppler shift velocity vector and current profile, expressed here as c̃ and U(z)
respectively. The method is in practice applied to both components separately.
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If we assume a polynomial form to the current profile, i.e. U(z) = ∑
∞
n=0 unzn,

evaluation of the resulting Doppler shifts using (1.15) yields

c̃(k) =
∞

∑
n=0

n!un

(

− 1

2k

)n

. (1.21)

By inspecting (1.21) we notice that the (−2k)−1-term is equal to the mapping func-

tion Zeff(k) of the EDM for a linear profile, (1.17). If we substitute the EDM mapping

function, we then obtain the current profile

UEDM(z) =
∞

∑
n=0

n!unzn. (1.22)

We see that UEDM(z) differs from the true profile U(z) only by a factor n! for the

n-th order term. The n! characterizes the error of the EDM profile in cases where

the linear assumption is invalid. For term n < 2, (1.22) matches the true profile as

expected, while differing for higher order terms which represent a profile with non-

linear functional form. The similarity of (1.22) to the form of the true profile mo-

tivates the method described here, the polynomial effective depth method (PEDM),

which attempts to correct for the discrepancy in terms n ≥ 2 by simply scaling the

higher order polynomial coefficients by a factor n!. Quoted from Reference [22], the

PEDM procedure consists of three steps:

1. For each of the measured values c̃i, assign effective depths zi = −(2ki)
−1 ac-

cording to the EDM procedure of (1.17) using Zeff(k).
2. Obtain UEDM(z) by fitting the set of points {zi, c̃i} to a polynomial of degree

nmax:

UEDM(z)≈
nmax

∑
n=0

uEDM,nzn, (1.23)

where uEDM,n are the coefficients obtained in the polynomial fit.

3. Then the improved PEDM estimate is

UPEDM(z) =
nmax

∑
n=0

1

n!
uEDM,nzn. (1.24)

Equation (1.24) follows immediately from comparing (1.22) and (1.23), where uEDM,n =
n!un. Additional practical details concerning the implementation of the method are

given in Reference [22].

The PEDM has been tested on Doppler shifts measured in a laboratory with cur-

rents of variable depth dependence, with in situ particle image velocimetry serving

as “truth” measurements. The laboratory setup may be considered a scale model of

the oceanographic currents, including wind-drift profiles. The wave spectrum was

measured by optical means, yet representative of what may be obtained by X-band

radar for scaled-down length dimensions. Example results are shown in Figure 1.7

for four different current profiles. Using the PEDM resulted in a >3 times accuracy

improvement relative to the EDM for current profiles with significant near surface

curvature (profiles a-c). For one profile that varied approximately linearly with depth
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Figure 1.7 Data from Reference [33] (presented in Reference [22]). A comparison

of the PEDM and EDM methods applied to experimentally-measured

Doppler shifts along the direction of the flow for four different current

profiles in panels a-d). In situ truth measurements are denoted as U(z).

(profile d), the PEDM and EDM resulted in essentially indistinguishable profiles as

expected since in that case the assumptions inherent to the EDM were fulfilled.

1.5 Challenges and further work

So far in this chapter we have examined different methods for extracting currents

from the wave spectrum, both assuming a depth-uniform as well as depth-varying

profile. We now outline some challenges associated with evaluating and interpreting

the results, which may be the focus of future efforts within the field.

1.5.1 Validation

A key area of work within X-band current mapping concerns the validation of the

methods described previously in this chapter, and evaluation of their accuracy. Of

particular interest is the absolute accuracy, as well as identifying what factors affect

the accuracy and reliability of reconstructed current maps. Comparison is typically
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performed relative to in situ measurements such as ADCP or drifters. Field studies,

such as Reference 1.8 with selected data in Figure 1.8 have demonstrated agreement

down to nearly cm/s-scale between radar-derived and in situ measurements assuming

a depth-uniform flow.

Drifter
Radar

Figure 1.8 Reproduced from [13], a comparison of radar and drifter currents.

One challenge when comparing to in situ measurements is due to different sam-

pling of the current field between the two approaches: the currents obtained from

radar are representative of the current over a finite areal extent in the horizontal

plane whereas in situ measurements are point measurements. In areas with strong

horizontal current shear or local variations within the radar spatial window, in situ

results may give different results simply because they sample only a single discrete

point in the horizontal plane whereas radar-derived currents are representative of a

spatial average of the currents of the window extent. Point measurements at many

different locations may be achieved conveniently using drifters, though they have

the disadvantage of tending to congregate at convergent zones [5] and thus poten-

tially not evenly sampling the horizontal area. An illustrative example is shown in

Figure 1.8 where the drifters (marked as the yellow arrows with green dots), clearly

congregate near a convergent zone of the currents.

Another challenge when comparing to some in situ measurements concerns the

fact that radar derived currents may include Lagrangian components (following the

movement of a particular fluid parcel) such as waves Stokes drift whereas some in

situ techniques such as ADCP measure the currents in an Eulerian framework (the

velocity at a fixed point in space). We elaborate on Stokes drift in the next subsection.

It is noted that drifters also include Lagrangian components and may offer a more

direct comparison in cases where such Lagrangian current components are relevant.
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In addition, ADCP may provide measurements of the depth profile, but many in

situ techniques measure the current at a single depth. When using a depth-uniform

assumption, the comparison is thus more complicated since the radar-derived cur-

rents represent a weighted average over a depth range determined by the wavenum-

bers as discussed in section 1.4. Discrepancies between radar and in situ measure-

ments may in many cases be due to the different depths to which the currents cor-

respond. A few field studies have reconstructed the depth profile using one of the

methods described in section 1.4 and compared to in situ measurements. In gen-

eral, more validation is required for testing the accuracy of the methods in section

1.4. A particular challenge concerns reliable truth measurements of the depth profile

in the upper meters of the water column, a relative “blind spot” of current sens-

ing technology. Currents reconstructed from waves are an attractive method in the

near-surface regime which introduces a paradox of sorts: radar-derived currents are

attractive since they can provide measurements in this blind spot where few other

reliable methods exist, yet this in turn makes validation a challenge because truth

measurements are difficult to obtain.

1.5.2 Interpretation of the currents: Stokes drift

As mentioned above, radar-derived currents may include Lagrangian components,

namely the waves-induced Stokes drift. A fluid parcel considered in a Lagrangian

framework perturbed by waves follows an oscillatory trajectory. In addition to the

oscillation, there is a net translation of the parcel in the direction of the wave (expect

in the limit of infinitesimal wave amplitude) which is known as Stokes drift. It has

been proposed that the currents measured by radar systems are a sum of a background

Eulerian currents (such as a wind drift of tidal current) and a Stokes drift component

[10]:

UR = UE +USS, (1.25)

where UE and USS are the Eulerian and surface Stokes drift components respectively

and UR is the total current measured from the wave spectrum. The surface Stokes

drift component is a function of the wave energy spectrum reflecting the heights of

the waves, and has been suggested to be expressed as [34]

USS = 4π

∫ fB

0

∫ 2π

0
f k( f )E( f ,θ )d f dθ , (1.26)

where frequency f = ω/2π , E( f ,θ ) is the wave energy density spectrum as a func-

tion of frequency and direction θ , k( f ) is an alternate form of the dispersion relation,

and fB is the frequency of the Bragg-resonant wave determined by the radar wave-

length. The Stokes drift component decays rapidly with depth, complicating the in-

terpretation of UR at greater depths. Given measurements of E( f ,θ ), the Stokes drift

component may be estimated and subtracted using (1.26), allowing separate analysis

of the Eulerian current components [10]). It has been found that the Stokes drift

under relevant conditions may be on the order of 5-10 cm/s, non-negligible relative

to the current strengths typically derived from radar measurements.
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However, there remains ongoing debate about the magnitude of the surface

Stokes drift for a spectrum of waves (i.e. the validity of (1.26)), and the extent to

which Stokes drift is a component of radar-derived currents [35, 36]. Different theo-

retical formulations have been proposed, as summarized in Reference [36]. Further

research is required on the matter, which is clearly important to an increased under-

standing of the physical interpretation of the currents measured from radar images.

1.6 Summary

In this chapter we have examined how spatially-varying ocean currents can be ex-

tracted from remote measurements of the wave spectrum. For marine radar images,

the spatial variation of currents may be mapped within the full radar field of regard,

an attractive means of current remote sensing that has multiple advantages to in situ

point sensors. Currents are extracted by analyzing their effect on wave propagation,

appearing as frequency dependent shifts in the linear dispersion relation curve along

which the wave spectrum is strongly peaked. Several algorithms were described for

obtaining empirical dispersion relations from the measured spectrum and extracting

the currents: the least squares and iterative least squares method, the normalized

scalar product method, and the polar current shell method.

We go on to describe how the same methods and algorithms can be extended

to also allowing the depth-dependence of the current to be determined. Multiple

velocities must now be extracted over different wavenumber bins, whereupon the set

of velocities at varying wavenumber is further analyzed using an inversion method

to find the depth dependence.

Reasonable agreement between radar-derived currents and in situ measurements

has been demonstrated in multiple field measurements. However, more validation is

necessary especially in the context of depth-varying flows where comparison is more

difficult and in situ data is scarce. Understanding the extent to which the Lagrangian

current from the waves, Stokes drift, is measured as part of the radar-derived current

is not well-understood, yet important for interpretation of the mapped currents and

comparison with in situ measurements.
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