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Abstract

The construction of a complete Mueller matrix scatterometer is presented in this thesis. A supercon-
tinuum laser source was utilized in combination with acusto-optical filters as a source of illumination.
Several aspects of the source have been explored, including its spectral range, stability, and spectral
power density. Two methods for measuring the transmittance of a sample are presented, tested and
discussed. A dual rotating retarder Mueller matrix ellipsometer was constructed based on the find-
ings in these tests. Two calibration for the ellipsometer methods were tested to ensure an optimal
result. The ellipsometer displayed good results for a wavelength range of 440 to 660 nm and 670 to
1060 nmwith a deviation from the expected values in the Mueller matrix elements of less than 1%.
The gap in the spectrum was due to the design of the wavelength selection mechanism of the source.
Finally, the ellipsometer was then attached to the scatterometer and tested by measuring a beam
splitting polarizer.
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Sammendrag

Konstruksjonen av et komplett Mueller matrise scatterometer er presentert i denne avhandlingen. Til
dette form̊alet har en supercontinuum laserkilde i kombinasjon med akusto-optiske filetere blitt brukt
som en str̊alingskilde. Ulike aspekter ved denne kilden har blitt utforsket, inkludert den spektrale
rekkevidden, stabiliteten s̊a vel som den spektrale effekttettheten. To metoder for å måle transmisjon
gjennom en prøve er testet og diskutert. Basert p̊a funnene under disse testene ble et Mueller-matrise
ellipsometer konstruert. For å forsikre gunstige resultater ble to kalibreringsmetoder utforsket for
ellipsometeret. Ellipsometeret viste gode resultater for bølgelengder i spennet 440 til 660 nm og 670
til 1060 nm med avvik fra forventede verdier i Mueller matrise elementene p̊a mindre enn 1%. Hullet i
spekteret var en uunng̊aelig konsekvens av til bølgelengdeselleksjonsmekanismen. Scatterometeret var
s̊a bygd for s̊a å bli testet ved å m̊ale en str̊alesplittende polarisator.
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Section 1:

Introduction

The phenomenon of light has been the subject of much discussion and pondering since the dawn of
civilisation, and likely before that. The earliest known theories of light were concurrently described
in ancient Greece and India[1, 2]. Even though several of these theories came surprisingly close to
the modern understanding of electromagnetic (EM) radiation, it was not until 1669 when Erasmus
Bartholinus by accident observed double refraction in calcite crystals that one of the most central
aspects of light was discovered, polarization[3]. Polarization has since been identified to be present in
many phenomena, e.g. in rainbows[4], in the reflections of shells of certain beetles[5], and in the blue
light in the sky[6]. This knowledge has also been used for practical purposes and everyday applications,
e.g. in polaroid sunglasses which are used to reduce glare from water puddles when driving.

The revelation that light is an electromagnetic wave did, however, not occur until the 19th century,
when Michal Faraday discovered in 1845 that linearly polarized light may be rotated when propagating
through a transparent dielectric with an external magnetic field[7]. This later inspired James Clerk
Maxwell, who went on to create his, now well known, framework for EM-waves[8].

With the stage now set with a fundamental theory for EM-waves, the field of optics exploded. In
the late 1880s to early 1890s Paul Drude took special interest in the polarization changes occurring
due to reflection from plane surfaces[9]. These investigations lead to the first description of what is
now called an ellipsometer. These devices turned out to be quite useful, not only for determining the
change of polarization, but also for an easy and relatively cheap way to characterize materials made
from deposits of thin films, which have become more and more popular in recent years[10].

The connection between light and electromagnetism has also in recent times opened the door for
exploration of more complex interactions between EM-waves and materials beyond the more traditional
optical materials like lenses, retarders, and diattenuators. This has paved the way for metamaterials,
a new generation of optical components. Metamaterials have a broad array of meanings, depending
upon who is asked. One useful definition provided by Shivola is that a metamaterial is a structure
with more than one constituent, whose electric and optical properties are not found in nature or in the
individual constituents[11]. Reducing the thickness of these materials to that of the wavelength of an
incoming EM-wave results in a metasurface. These are capable of inducing changes of the incoming
wavefront despite being several orders of magnitude smaller than traditional optical components[12].

In recent years, optical metasurfaces have become more and more interesting, as designs keep evolving
and improving. Due to the metasurfaces potential for customization as well as their small size, it
has become more and more clear that they may be capable of competing with traditional optical
components[13].

Many metasurfaces work on the basis of scattering at specific angles[12]. As is pointed out by Boren
and Huffman, the scattering of light implies changes in polarization[14]. To measure these changes in
polarization, an ellipsometer that works for several angles is necessary. Such an instrument is called
a Mueller matrix scatterometer and the construction of such a device has been the goal of this thesis.

In section 2 the necessary theory to understand the physics and the mathematics of the Mueller matrix
scatterometer is presented. This includes a rudimentary theory of polarization, and how to express
this with both the Stokes and Jones formalism. Furthermore, other general theory and mathematics
that has been utilized as a part of the thesis has also been provided. The function of several common
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optical components have also been explained.

Part II and subsequently section 3 describes the components, hardware and software used in the thesis.
An overlook of the practical work done in the thesis is provided in section 4.

Part III contains the results in addition to a discussion of these. This part is split into three sections,
each one describing and discussing the results from various tests done in the run-up to, and construction
of, the ellipsometer. Section 5 describes the various tests of the source of the scatterometer, while
section 6 describes the testing of different measurement techniques and how these tests worked with
the pulsed source that was used. For the final results concerning the instrument as a whole, section
7 explores the various strengths and weaknesses of the final product. Finally, Part IV contains the
conclusion and the final statements of the thesis

3



Section 2:

Theory

2.1 Polarized Light

The nature of electromagnetic waves is described classically by Maxwell’s equations in differential form
as[15]

∇ · ~E =
1

ε0
ρ, ∇ · ~B = 0,

∇× ~E = − ∂

∂ ~Bt
, ∇× ~B = µ0

~J + µ0ε0
∂ ~E

∂t
.

(2.1)

Solving these equations with respect to ~E is possible by eliminating the ~B-field by substitution.
Assuming a plane wave propagating in the ẑ-direction, the total field is found to be on the form

~E = Re
{
E0Xei(ωt−kz+δx)x̂+ E0Y ei(ωt−kz+δy)ŷ

}
, (2.2)

as ~Ez = 0[16]. Here, ω, k and δ are the angular velocity, the wave vector and the phase of the EM-wave
respectively, while E0X and E0Y are the complex amplitudes of the fields. From Eq. (2.2), it is clear
that the real fields can be expressed as

Ex = E0X cos (ωt− kz + δx),

Ey = E0Y cos (ωt− kz + δy).
(2.3)

Using the the geometric identity,

cosα± β = cosα cosβ ∓ sinβ sinα,

Eqs. (2.3) may be combined to find

E2
x

E2
0X

+
E2
y

E2
0Y

− 2
Ex
E0X

Ey
E0Y

cos δ = sin2 δ, (2.4)

with δ = δy − δx. One may recognize this formula to be that of an ellipse[17]. This means that, in the
general case, the electrical field traces an ellipse while propagating, commonly called the Polarization
Ellipse.

As seen in Figure 1, the angles θ, ψ = arctan
(
E0X
E0Y

)
and ε naturally arise, and are a useful alternative

way to the E-fields to completely describe the polarization ellipse.

4



Figure 1: A trace of a general polarization ellipse with magnitudes EoX and E0Y tilted at an angle θ,
and with an ellipticity angle ε and the absolute angle between E0X and E0Y , ψ.

For the special cases of δ = π
2 + nπ, where n = 0, 1, 2, ..., we find that Eq. (2.4) reduces to

E2
x

E2
0X

+
E2
y

E2
0Y

= 1, (2.5)

or that of an non rotated ellipse with semi major and minor axis corresponding to E0X and E0Y

respectively. In the special case of E0X = E0Y , Eq. (2.5) is reduced to a circle, producing circularly
polarized light. If sin δ > 0, the state is referred to as right circularly polarized, and conversely sin δ < 0
is referred to as left circularly polarized [18].

In the case where δ is any multiple of π, Eq. (2.4) is reduced to

E2
x

E2
0X

+
E2
y

E2
0Y

± 2
Ex
E0X

Ey
E0Y

= 0, (2.6)

which may be further reduced to

(
Ex
E0X

± Ey
E0Y

)2

= 0, (2.7)

that may written as

Ex = ±E0X

E0Y
Ey. (2.8)

It is clear that Eq. (2.8) represents a line with slope ±E0X
E0Y

, which is why this state is called linear
polarization. If E0Y = 0, the state is referred to as horizontal linear polarization while E0X = 0 is
referred to as vertical linear polarization. In the case of E0Y = ±E0X , the state is called linear +45◦

or linear −45◦ respectively.
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2.1.1 Jones Formalism

An efficient way to describe the polarization state of a fully polarized electromagnetic wave is to
consider the electric field components and their relative phase. Such a formalism based on linear
algebra was devised by R. Clark Jones[19]. He had the idea to let Eq. (2.2) can be written on the
form

~E =

[
E0Xe

iδx

E0Y e
iδy

]
. (2.9)

To represent a non-depolarizing optical component one may use a 2 × 2 matrix J, called the Jones
matrix. This matrix links the incoming polarization state ~E with the outgoing polarization state ~E′

of an electromagnetic wave as

~E′ = J ~E. (2.10)

Here J is a 2× 2 matrix on the form

E =

[
j11 j12

j21 j22

]
. (2.11)

In the case of multiple optical components in order J1,J2, ...JN, the total system may be represented
with

~E′ = JNJN−1 · · ·J2J1
~E, (2.12)

due to the fact that Eq. (2.11) is a square matrix. It is important that the optical components
work on the Jones vector in the same order as the beam interacts with the optical components they
represent, due to the non-commutative natures of both these operations. From Eq. (2.12) it is natural
to combine the N Jones matrices into a total system matrix

Jsys = JNJN−1 · · ·J2J1. (2.13)

Any Jones matrix may be rotated by an angle α using the standard 2D-rotation matrix

R(α) =

[
cosα sinα
− sinα cosα

]
, (2.14)

so that

J(α) = R(−α)JR(α) (2.15)

6



2.1.2 Stokes Formalism

Despite Jones matrices being intuitive, compact and simple to work with, it is not complete in the
sense that it can not be used to described partially polarized or depolarized electromagnetic waves.
What is more, in practice the electric field amplitudes and the phases between them are difficult to
measure directly. It is therefore useful to construct a formalism that can describe electromagnetic
waves that are partially polarized with real, easily measurable quantities. Such a formalism was first
defined by George Gabrielle Stokes[20]. Following his work, it is possible to time average Eq. (2.4),
indicated by 〈...〉,

〈E2
x〉

E2
0X

+
〈E2

y〉
E2

0Y

− 2
〈ExEy〉
E0XE0Y

cos δ = sin2 δ. (2.16)

The time averaged quantities in Eq. (2.16) may be found using the expressions in Eqs. (2.3) to be

〈E2
x〉 =

1

2
E2

0X ,

〈E2
y〉 =

1

2
E2

0Y ,

〈ExEy〉 =
1

2
E0XE0Y cos δ.

(2.17)

Inserting Eqs. (2.17) into Eq. (2.16), while multiplying with 4E0XE0Y before adding and subtracting
E2

0X + E2
0Y results in

(E2
0X + E2

0Y )2 − (E2
0X − E2

0Y )− (2E0XE0Y cos δ)2 = (2E0XE0Y sin δ)2, (2.18)

which may be rewritten as

(Ix + Iy)
2 − (Ix − Iy)− (I45◦ − I−45◦)

2 = (IR − IL)2, (2.19)

naturally giving rise to the four Stokes parameters

S0 = Ix + Iy, (2.20)

S1 = Ix − Iy, (2.21)

S2 = I45◦ − I−45◦ , (2.22)

S3 = IR − IL. (2.23)

S0 is the total irradiance, S1 is the difference in irradiance between the x- and y- polarizations, S2 the
difference between +45◦ and −45◦ directions, and S3 the difference in irradiance between right and
left circularly polarized light. Inserting these four parameters into a vector, one obtains the stokes
vector

7



~S =


S0

S1

S2

S3

 =


Ix + Iy
Ix − Iy

I45◦ − I−45◦

IR − IL

 =


E2

0X + E2
0Y

E2
0X − E2

0Y

2E0XE0Y cos δ
2E0XE0Y sin δ

 = A2


1

cos 2ε cos 2θ
sin 2ε cos 2θ

sin 2ε

 . (2.24)

It is common to normalize Eq. (2.24) with respect to the total intensity, as this is easier to work with,
and does not detract any information from the formalism.

Using the previously defined Stokes parameters, Eq. (2.18) can be written as

1 =

√
S2

1 + S2
2 + S2

3

S0
, (2.25)

in the assumed case of a completely polarized wave. In the more general case of a partially polarized
wave, Eq. (2.25) naturally gives rise to the degree of polarization

P =

√
S2

1 + S2
2 + S2

3

S0
=
Ipol
Itot

, (2.26)

providing a measure for how polarized a given electromagnetic wave is. The stokes formalism is
therefore, unlike the Jones formalism, compatible with unpolarized and partially polarized light. This
generalization makes the Stokes formalism more difficult to work with than the Jones formalism,
as there are more elements to take into consideration when making calculations. It also has the
disadvantage of not being able to properly describe coherence and interference phenomenon, which
the Jones formalism is capable of. The advent of computers coupled with the limitations of the Jones
formalism has however lead the Stokes formalism to be the preferred one in many situations, despite
these shortcomings.

Looking closer at Eq. (2.24), it is clear that S1, S2 and S3 represents the transformation from spherical
coordinates to a three dimensional Cartesian system when normalized. Plotting all possible values
for completely polarized light reveals a sphere of unit length. This construct was first introduced
by Henri Poincaré, thereby giving it its name the Poincaré sphere. Any points within the sphere
represents a partially polarized state, while outside represents unphysical states. One may readily
observe from Figure 2 that the north and south poles corresponds to left- and right-circular polarized
light respectively, the equator represents various linearly polarized states while everything else is some
form of elliptically polarized state.

2.1.3 Mueller Marices

It has been shown that a 4× 4 matrix is sufficient to relate the incoming and outgoing Stokes vectors,
~S and ~S′. Such a matrix was first formulated by H. Mueller in the 1940s, and was being promoted
in his lectures during the same time. The findings were not well documented beyond this until they
were published in a now declassified report[22, 23].

A general Mueller matrix is on the form

8



Figure 2: Illustration of the Pointcaré sphere with coordinates, and a selection of states of polarization
on the Pointcaré sphere. Adapted from[21].

M =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

 , (2.27)

and connect the two Stokes Vectors

~S′ = M~S. (2.28)

If the Mueller matrix is normalized with respect to M00, each element mij =
Mij

M00
in Eq. (2.27) may

take a value between −1 and 1, and may also describe any depolarization that may occur due to the
system. If a system contains more than one optical component, it is possible to stack the Mueller
Matrices in the same way as was done for Jones Matrices in (2.13). Mueller matrices may also be
rotated similar to how Jones matrices are in Eq. (2.15) with

R(α) =


1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

 . (2.29)

Systems with no depolarization may be described with both Jones and Mueller matrices. To transform
between the two, one needs only use the relation

M = A(J⊗ J∗)A−1, (2.30)

where ⊗ is the Kronecker product and A is the conversion matrix

9



A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (2.31)

2.1.4 Diattenuators

A diattenuator is an optical element that attenuates EM waves differently along the x and y axis while
not affecting their relative phase[5, 16]. If the object completely attenuates the electric field along one
direction while not affecting the orthogonal field, the diattenuator is called an ideal linear polarizer.
Such a diattenuator along the x-direction may be described as

M =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 or J =

[
1 0
0 0

]
. (2.32)

When the linear polarizer is rotated with with an azimuthal angle of α, Eq. (2.32) transforms to

M =
1

2


1 cos 2α sin 2α 0

cos 2α cos2 2α sin 2α cos 2α 0
sin 2α sin 2α cos 2α sin2 2α 0

0 0 0 0

 or J =

[
cos2 α sinα cosα

sinα cosα sin2 α

]
(2.33)

There are several types of linear polarizers, utilizing distinct phenomena. Perhaps the simplest is the
wire grid polarizer, where thin parallel metal wires reflect back one polarization and transmit the
orthogonal polarization. In sheet polarizers, the polarization is absorbed rather than reflected back.
Lastly, many prism polarizers work not by attenuating one polarization, but splitting the orthogonal
polarizations, making them travel in different directions. There are many types of prism polarizers,
but Glan-Thomson and Rochon polarizers are common ones.

2.1.5 Retarders

Retarders are the complement to diattenuators as they influence the phase difference of the fields of the
EM waves propagating through them, while not attenuating their field amplitude. An accumulation of
phase shift is induced due to the crystal which the EM-wave propagates through being an electrically
anisotropic, or birefringent material.

There are two main categories of birefringent crystals, biaxial and uniaxial. In the case where all the
perpendicular axes have unique electrical properties, the crystal is said to be biaxial, while if only one
of the axed differs from the other two, it is said to be uniaxial. It is common to refer to the unique axis
in a uniaxial crysal as the optical axis or the extraordinary axis. The other axes is the appropriately
called the ordinary axes. These axes correspond to the extraordinary and ordinary refractive indices
ne and no respectively. The axis which permits EM waves to propagate the fastest is also often referred
to as the fast axis, while the slow axis corresponds to the axis along which the propagation is slower.
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Allowing EM waves of wavelength λ propagate through a uniaxial material with the optical axis in
the x-direcion and the ordinary axis in the y-direction leads to a Jones matrix on the form

J =

[
e
i2πdne
λ 0

0 e
i2πdno
λ

]
= e

i2πdne
λ

[
1 0
0 ei∆

]
, (2.34)

where ∆ = 2π
λ d(no − ne). Here, ∆ is the retardation of the retarder. In the case where ∆ = ±90◦

or ∆ = ±180◦, one obtains what is usually referred to as a quarter-, and half-wave plate. These are
given unique names as they are convenient for manipulating the polarization states of an EM-wave.

If one considers this phenomenon carefully it is possible to see that retardance may be represented by
a rotation on the Poincaré sphere, leading to a general Mueller matrix on the form

M =

[
1 ~0T

~0 mR

]
, (2.35)

where mR is a 3× 3 rotation matrix and ~0 is the three element zero-vector[24].

2.1.6 Analyzing the Mueller Matrix

As the Mueller Matrix may represent a variety of systems, it is useful to develop methods to analytically
describe its properties. There are several ways of doing this, however one of the most common is to
decompose the matrix. There are several viable decomposition methods, each with its own advantages
and disadvantages. One of the most common methods is polar decomposition, as described by Lu and
Chipman[24]. Splitting the matrix into three matrix factors on the form

M = M∆MRMD, (2.36)

where the factors M∆, MR, MD are the dipolarizer, retarder and diattenuator components respect-
ively, it is possible to gain insight into the physical characteristics of both polarized and depolarized
systems. It is furthermore convenient to write Eq. (2.27) on the form

M =


1 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 =

[
1 ~DT

~P m

]
, (2.37)

introducing the polarizance vector and diattenuation vector ~P and ~D, where

~P =

m10

m20

m30

 and ~D =

m01

m02

m03

 . (2.38)

MD is the first factor to be found. It may be shown that an ideal diattenuator is on the form
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MD = Tu

[
1 ~DT

~D mD

]
, (2.39)

where Tu is the transmittance for unpolarized light and

mD =
√

1−D2I + (1−
√

1−D2)D̂D̂T , (2.40)

where I is the 3 × 3 identity matrix, D =
∣∣∣ ~D∣∣∣ and D̂ =

~D

| ~D| . From here, one proceeds by calculating

the inverse of the diattenuation matrix, to find the remaining matrix

M′ = MM−1
D . (2.41)

It has also been shown that the depolarization matrix may be written as

M∆ =

[
1 ~0T

~P∆ m∆

]
. (2.42)

Here ~P∆ is the polerizance vector of the depolarizer and m∆ is a 3× 3 matrix. Using Eqs. (2.42) and
(2.35) leads to Eq. (2.41) being written as

M′ = M∆MR =

[
1 ~0T

~P∆ m∆

] [
1 ~0T

~0 mR

]
=

[
1 ~0T

~P∆ m∆mD

]
. (2.43)

If the Mueller matrix is non-depolorizing the decomposition is finished, as the depolarization matrix is
equal to the identity matrix. In the case where the Mueller matrix is depolarizing, the depolerization
matrix is found by utilizing that

~P∆ =
~P −m ~D

1−D2
, (2.44)

and

m∆ =
[
±m′

(
m′
)T

+
(√

λ1λ2 +
√
λ2λ3 +

√
λ3λ1

)
I
]−1
×[(√

λ1 +
√
λ2 +

√
λ3

)
m′(m′)T +

√
λ1λ2λ3I

]
,

(2.45)

where
√
λi the i-th eigenvalue of m∆, and m′ = m∆mD. The sign in Eq. (2.45) is determined by the

sign of the determinant of m′. Inserting Eqs. (2.44) and (2.45) into Eq. (2.42) the retarder matrix is
found to be

MR = M−1
∆ M′. (2.46)
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2.2 Reflectance and Transmittance

Reflection and transmittance of light at the interface of two media was first described by the Fresnel
equations of reflectance and transmittance by their namesake Augustin-Jean Fresnel in a series of
articles in the early 1800s[25]. Here, electromagnetic theory is used to derive the coefficients that
relate the incoming, reflected and transmitted field strengths1. By defining a plane of incidence, along
which the incident EM waves propagate as showcased in Figure 3, it is possible to decompose said
EM-wave into two orthogonal polarizations, one where the electric field is perpendicular to the plane
of incidence, and one where it is parallel to the plane of incidence.

Figure 3: Illustration of the plane of incidence where EM-wave ~ki propagates in a material of refractive
index ni until it reaches a material nt. The wave is partially reflected and transmitted along ~kr and
kt respectively. The p-polarization is parallel to the plane of incidence, while the s-polarization is
perpendicular to the plane. Adapted from[16]

.

Observing the perpendicular polarisation with relevant boundary conditions for Maxwell’s equations,
one finds, if the media are isotropic

~Ei + ~Er = ~Et, (2.47)

1The original derivation of the Fresnel equations did not utilize electromagnetic theory explicitly, as the discovery
that light was an EM-wave was yet to be made at the time. Rather, general principles of wave physics were used to
derive the formulas.
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and
−Bi cos θi +Br cos θr = Bt cos θt. (2.48)

Here ~Ei, ~Er, ~Et are the incoming, reflected and transmitted electric fields respectively and θi, θr andθt
are likewise the angles of incoming, reflected and transmitted beam. The magnetic field components
used in Eq. (2.48) are the tangential components with respect to the interface. Furthermore, the
magnetic permeability is assumed to be equal in the two media.

Using that θi = θr along with the relation B = E
v , where v = c

n is the propagation speed of the
EM-wave, Eq. (2.48) may be written

ni (Ei − Er) cos θi = ntEt cos θt. (2.49)

Combining Eqs. (2.49) and (2.47) leads to the sets of equations

rpp =

(
Er
Ei

)
=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

,

tpp =

(
Et
Ei

)
=

2ni cos θi
ni cos θi + nt cos θt

.

(2.50)

The same procedure may be followed for the parallel polarisation leading to the equivalent equations

rss =

(
Er
Ei

)
=
nt cos θt − ni cos θi
ni cos θi + nt cos θt

,

tss =

(
Et
Ei

)
=

2ni cos θi
ni cos θi + nt cos θt

.

(2.51)

Based on Eq. (2.51), it is possible to define the complex ratio

ρpp =
rpp
rss

=
tpp
tss

= tan Ψppe
i∆pp , (2.52)

describing the change in polarization due to reflection or transmittance. The relative change in
amplitude is denoted by Ψ and ∆ is the relative phase change. These quantities are central in
ellipsometry, as they are the quantities directly measured by a complete ellipsometer[5].

For non-isotropic samples, some cross-polarization does occur. To adequately describe the change in
polarization, two additional quantities need to be measured

ρps =
rps
rss

=
tps
tss

= tan Ψpse
i∆ps and ρsp =

rsp
rss

=
tsp
tss

= tan Ψspe
i∆sp . (2.53)

Here rsp/tsp is the transfer of polarization from p- to s-polarized EM waves. The opposit is true for
rps/tps. The general Jones matrix for a transmitting material is then

Jt =

[
tpp tps
tsp tss

]
. (2.54)
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Transforming Eq.(2.54) into a Mueller matrix using Eq.(2.30) results in

MT
anisotropic =


1
2(|tpp|2 + |tsp|2 + |tps|2 + |tss|2) 1

2(|tpp|2|tsp|2 − |tps|2 − |tss|2)
1
2(|tpp|2 + |tsp|2 + |tps|2 + |tss|2) 1

2(|tpp|2 + |tsp|2 + |tps|2 + |tss|2)
Re(tppt

∗
sp + tpst

∗
ss) Re(tppt

∗
sp − tpst∗ss)

−Im(tppt∗sp + tpst
∗
ss) Re(tppt

∗
sp − tpst∗ss)

Re(tppt
∗
ps + tspt

∗
ss) Im(tppt

∗
ps + tspt

∗
ss)

Re(tppt
∗
ps + tspt

∗
ss) Im(tppt

∗
ps + tspt

∗
ss)

Re(tppt
∗
ss + tpst

∗
sp) Im(tppt

∗
ss + tpst

∗
sp)

−Im(tppt∗ss + tpst
∗
sp) Re(tppt

∗
ss + tpst

∗
sp)

 . (2.55)

If the transmission sample is isotropic, tps = tsp = 0. This transforms Eq.(2.55) into

MT
isotropic = τ


1 −N 0 0
−N 1 0 0

0 0 C S
0 0 −S C

 , (2.56)

where

N = cos 2Ψ,

C = sin 2Ψ cos ∆,

S = sin 2Ψ sin ∆,

and the transmission coefficient

τ =
‖tpp‖2 + ‖tss‖2

2
.

2.3 Supercontinuum Laser Sources

Supercontinuum sources are categorized as lasers sources with a broad wavelength spectra and a flat
power density distribution. This makes supercontinuum sources useful in a broad range of applications,
such as IR microscopy[26], particle trapping and manipulation[27, 28], as well as a tool for non invasive
diagnostics of tissue[29].

The broad spectrum of the supercontinuum source starts with a pump laser which undergoes several
processes that lead to spectral broadening[30].

In a low intensity regime, the dielectric polarization response describing the electric dipole moment
per unit volume may be written as

~P = ε0χ~E, (2.57)

where χ is here the electric susceptibility of the media in question. This corresponds to a model of the
electron as a harmonically oscillating particle with respect to its host nucleus, inducing an electrical
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dipole moment. When certain materials are exposed to EM-radiation with high intensity this model
will start to break down and the polarization response diverges from the linear model as presented in
Eq.(2.57). To account for this, it is necessary to consider the contributions from higher powers of ~E
to the polarization. This can be done by simply expanding Eq. (2.57) to

~P = ε0

(
χ(1) ~E + χ(2) ~E2 + χ(3) ~E3 + ...

)
. (2.58)

Phenomena resulting from these higher order terms are called non-linear effects. If one assumes the
pump laser propagates through a non-linear material with an inversion center2, as commonly is the
case, the cubic term will be the dominant non-linear term, implying

P = ε0

(
χ(1)E + χ(3)E3

)
. (2.59)

Eq. (2.59) implies the polarisation to be proportional on the intensity I = cε0n0/2|E|2. This in turn
creates a perturbation of the refractive index

n = n0 + n2I, (2.60)

here n0 is the usual
√
χ(1) while n2 is linked to the cubic susceptibility as

n2 =
3χ(3)

4ε0cn2
0

.

This perturbation of the refractive index causes a self focusing phenomena where the beam is, given
high enough intensity, focusing in on itself until an equilibrium is reached due to diffraction and other
beam expanding phenomena. When this equilibrium is reached, one is said to have a soliton wave.
Since the beam does not have a uniform intensity distribution, the perturbed refractive index leads to
self phase modulation according to

φnl(t) =
ω0

c

∫ L

0
I(t, z)dz, (2.61)

This phase modulation in turn leads to a frequency change

δω =
dφnl(t)

dt
(2.62)

along the intensity distribution.

Another important effect for Supercontinuum generation is Four-wave mixing. Here two photons
(ω1 and ω2) interact according to energy and momentum conservation to create two new photons
(ω3 and ω4) called the signal and idler, causing a broadening of the spectrum according to ω3 =
2ω1−ω2 and ω4 = 2ω2−ω1[31]. This effect, like self phase modulation, occur due to third order non-
linearity in the material. There are also other effects that play into the broadening of the wavelength
spectrum like plasmon excitations that modulates the phase of the beam in a similar manner to that
of the self modulation. Another prominent effect is Raman scattering, where photons interacts with

2A material is said to have an inversion center if there is a point where the vectors describing the positions of the
atoms in the unit cell ~ui may go to −~ui without changing the structure of the unit cell.
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phonons in the non-linear media to further broaden the spectrum. The contribution of each type
of frequency modulation is highly dependent on the original pulse length from the laser source[32].
For sub femtosecond pulses, soliton related effects (e.g. self phase modulation) are dominant, while
Four-wave mixing increase in prominence as pulse widths expand.

A supercontinuum source may be made using any strongly non-linear optical medium, like that of
calcite. In practice however, many supercontinuum lasers utilize non-linear optical fibers. This is due
to their high non-linearity and relative low cost and power loss. Recently, Photonic Crystal Fibers have
been shown to be of great interest for supercontinuum generation, as well as other applications like
telecommunications[33, 34]. These types of optical fibers differ from the more typical arrangement of a
solid, high refractive index core surrounded by a cladding of lower refractive index, by the introduction
of centro-symmetric structures running along the length of the fiber. Often, these structures are simply
air filled holes, as can be seen in Figure 4. The arrangements and sizes of these holes may be precise
engineered for the application at hand, e.g. increasing the non-linear effects of the fiber. To achieve
this, a large air-fill ratio is desirable.

Figure 4: a) displays a basic classical fiber design with a core surrounded by cladding. b) shows
a typical design for a PCF. The air holes surrounding the central core forms a hexagonal pattern.
Adapted from[34].

2.4 Acusto-optic Tunable Filter

The acousto-optic tunable filter (AOTF) uses the acousto-optic (AO) effect to effectively select the
desired frequency from an incident beam of EM-radiation[35]. These devices uses high-frequency
vibrational stress to periodically perturb the density and refractive index. The resulting waves in the
medium can be considered to be a beam of phonons, analogous to the way a beam of light may be
considered to be a beam of photons.

The AOTF can be divided into two categories, collinear and non-collinear. In the collinear AOTF the
incident light goes parallel to the acoustic wave and causes a shift in polarization of the diffracted light.
The non-collinear AOTF is shown in Figure 5 and operates with the incident beam at an angle of
the acoustic wave[36]. As a result, a difference in angle between the incident beam and the diffracted
beam is also observed. This case can again be split into two scenarios, based on if the crystal in
question is isotropic or anisotropic. The first case diffracts light according to Bragg’s law, while the
second requires some modification of this law.
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Figure 5: Schematic representation of a non-collinear AOTF. Pink incident light enters the AOTF
and is refracted. Photons forming the acoustic beam traveling from the transductor to the absorber
interacts with the the photons in the light beam and red light is diffracted out, while the rest of the
beam continious along the same path.

The basis of the AO-effect is the interaction between the incoming photons and the phonons in the
media. Considering energy and momentum conservation

~ki = ~kd + ~ka, (2.63)

and

νi = νd ± f0, (2.64)

it is possible to derive the angle of the diffracted beam. Here, ~ki, ~kd, and ~ka are the momentum vectors
of the incoming, diffracted and acoustic beam, while νi, νd, and f0 are the frequencies of the incoming,
diffracted and acoustic beam.

Following[37], the wave vectors can be expressed as

ki =
2πni
λ0

, kd =
2πnd
λ0

, and ka =
2πfa
va

(2.65)

where λ0 is the wavelength of the diffracted beam in vacuum, ni and nd are the refractive indices of
the incoming and diffracted light in the diffracted medium, and fa and va are the acoustic frequency
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and velocity. Inserting Eq.(2.65) in Eq.(2.63) results in

nd
λ0

=
ni
λ0

+
fa
va
. (2.66)

Solving Eq.(2.66), assuming extraordinary polarization of the incident beam and extraordinary polar-
ization of the diffracted beam, results in the zero angle output wavelength from the collinear AOTF
being

λ0 =
∆n

fa
, (2.67)

where ∆n = nd − ni is the birefringence of the AOTF material.

The treatment of an isotropic non-collinear AOTF differs slightly from that of a collinear AOTF. To
simplify the calculations the condition Eq.(2.63) may be treated with respect to normal and parallel
components of the acoustic wave seperatly.

Evaluating the normal component first, using the fact that ni = nd = n in an isotropic medium, leads
to

θi = θd, (2.68)

where θi and θd are the incident and diffracted angles with respect to the acoustic wave. Using this
result when assessing Eq. (2.63) in the direction of the acoustic beam leads to

kd sin θd = −ki sin θi + ka. (2.69)

Inserting the relevant expressions for the respective wave numbers into Eq. (2.69) results in

n

λ0
sin θd = − n

λ0
sin θi +

fa
va
. (2.70)

Finally, using Eq.(2.68) leads to

sin θi =
faλ0

2van
. (2.71)

Eq.(2.71) implies that the incident and diffracted beam are no longer parallel in a non-collinear AOTF.
Furthermore, the angle of which the incident beam is diffracted dependent on both the wavelength of
the incoming EM-wave and the frequency of the acoustic wave.

In the case of a non isotropic medium, the treatment of the condition (2.63) changes once again. Using
the law of cosines, the condition transforms to

k2
a = k2

i + k2
d − 2kikd cos (θi + θd). (2.72)

Eq. (2.72) may be solved for θi and θd. One again inserting the relevant expressions, transforms Eq.
(2.72) to
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f2
a

v2
a

=
1

λ2
0

[
n2
d + n2

i − 2ndni cos (θi + θd)
]
.

Rearranging this expression and defining Λ = fa
va

results in

λ2
0

Λ2
= n2

d + n2
i − 2ndni[cos (θi) cos (θd)− sin (θi) sin (θd)], (2.73)

and finally

cos (θi) cos (θd)− sin (θi) sin (θd) =
n2
d + n2

i

2ndni
− λ2

0

2ndniΛ2
. (2.74)

From here, it is possible to substitute a = kd sin θd, b = ki sin θi, c = ki cos θi and ka = a + b[38] and
using that

kd
ki

=
nd
ni

and
ka
ki

=
faλ0

vni

to rearrange Eq. (2.74) to the form

sin (θd) =
λ0

2ndΛ

[
1− Λ2

λ2
0

(n2
i − n2

d)

]
,

sin (θi) =
λ0

2ndΛ

[
1 +

Λ2

λ2
0

(n2
i − n2

d)

]
.

(2.75)

To choose the appropriate acoustic frequency one needs to know the incident angle, and set a desired
diffracted angle for which one wants the desired output frequency of the EM-wave and solve for Λ in
Eq. (2.75).

2.5 Detectors

Detection of photons is an important part of any measurements in optics and ellipsometry. To achieve
this, photo detectors are needed. There are several different types of detectors that are used for such
purposes, utilizing various physical phenomena to measure the incident light intensity. Among these
are detectors that depend on the photoconductive effect. Here, the incident light interacts with a
detector material, often a semiconductor such as silicon (Si) or germanium (Ge). If the energy for a
given photon is higher than the band gap of the semiconductor, electron-hole pairs are created, thus
reducing the resistance over the semiconducting material. Two metal plates with a voltage differential
between them are put at either side of the semiconductor connected by circuitry, functioning as an
anode and a cathode[39]. This produces a current proportional to the incident irradiance. A downside
of this is the existence of a dark current when no light is incident, which must be taken into account
when measurements are made. Figure 6 illustrates the basic design of such a photodetector. The
effectiveness of the detector may also be enhanced by the photo-gating effect. Here, defects and
impurities lead to trapped states in the semiconductor, further increasing the conductivity, resulting
in a a greater photo current.

A photodetector has several important figures of merit. Firstly, the responsivity of the detector R
is the ratio between the photocurrent and the incident optical power. Secondly, the time response
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Figure 6: Basic schematic of a photoconductor between two metal contacts (M). CB illustrates the
conduction band of the semiconductor while VB is the valence band. The left most image displays
the conductor with no EM-radiation with a small dark current Idark. The illustration to the right is
the conductor where the incident photons have higher energy than that of the excitation energy of the
semiconductor producing electron-hole pairs driving the photo-current. Adapted from[39].

of the detector is the time the generated signal spends between 10% and 90% of the maximum out-
put during modulated input. Related to this is the bandwidth, which is the frequency at which a
modulated signal produces a detector response 3 dB lower than that provided by continuous illumin-
ation. Lastly, the wavelength range indicating which part of the electromagnetic spectrum may be
detected. The bandgap of the semiconductor is often the limiting factor of the wavelength range. All
of these are dependent on the material used in the detector as well as the finer design details of the
photodetector[40].

Ideally, any given photodiode will produce a current directly proportional to the incident EM-radiation.
In reality, howvere, many detectors do not have a perfectly linear response. Rather, the current can
be represented by

i(t) = P (t)R(a), (2.76)

where P (t) is the optical power incident on the diode, R(a) is the nonlinear transfer function while
a = γP (t), where γ is a constant[41].

2.6 Integrating Spheres

An integrating sphere is a device for measuring optical intensity. As the name implies, the integrating
sphere is a hollow sphere with an internal surface of area As covered with a diffuse reflective coating
of reflectance ρ. It also have small entrance and exit ports for incoming and outgoing EM waves
with area Ai and Ae respectively[42]. It is also common that integrating spheres utilize a small
wall, called a baffle, to prevent any detector attached to the sphere from acquiring a signal from a
directly illuminated spot on the internal surface, as this will provide an incorrect result. A schematic
illustration of a general integrating sphere is found depicted in Figure 7.

The main function of an integrating sphere is to spatially integrate light incident on the entrance port.
This is done by repeated reflections on the diffuse surface inside of the sphere. The flux Φtot on the
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Figure 7: Schematic illustration of an integrating sphere. Ai and Ae are the entrance and exit port
areas respectively. Incident EM-radiation enters through the entrance port and is scattered uniformly
along the sphere. A baffle is present to ensure appropriate integration taking place through the process
of repeated reflections internally in the sphere. The baffle size is exaggerated for illustrative purposes.

entire integrating sphere from the first reflection is related to the incident flux Φi as

Φtot = Φiρ(1− f), (2.77)

where

f =
Ai +Ae
As

. (2.78)

For the n-th concurrent reflection on the sphere, the total sphere will be illuminated as

Φtot = Φiρ
n(1− f)n. (2.79)

Assuming a steady illumination over a long enough period, so that the total optical flux in the sphere
has reached equilibrium, one finds that the total flux of on the sphere may be expressed as a geometric
series. The total sphere surface radiance may then be expressed as

LS =
Φi

πAs

ρ

1− ρ(1− f)
. (2.80)
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This result assumes that the reflectance is uniform at every point of the surface and that the surface
contribution of the baffle is negligible. A coating may also be applied to the entrance port to minimize
the flux lost through this, though this does also necessarily reflects away some of the incident EM-
radiation.

If the incident flux is either pulsed or modulated, the output signal may be stretched in time [43].
This is due to the multiple diffuse reflections in the sphere. The resulting signal may be represented
as

Pout(t) = h(t) ∗ Pinn(t), (2.81)

where Pinn(t) and Pout(t) are the incoming and outgoing optical power, and ∗ signifies a convolution
integral as described in [44]. Furthermore, h(t) is the response function of the integrating sphere, and
may be estimated as

h(t) = e
− t
τ0 , (2.82)

where

τ0 = −2

3

Ds

c

1

ln ρ̄
. (2.83)

Here Ds is the diameter if the integrating sphere, c is the velocity in vacuum of light and ln ρ̄ is the
average wall reflectance. τ0 is, for typical integrating spheres, of the order of nanoseconds to tens of
nanoseconds.

2.7 Generalised- and Pseudo-inverse

Before exploring the physical principles and the theoretical basis for the methods used to calibrate
the ellipsometer, an introduction to the pseudo inverse is necessary. From standard linear algebra it
is known that the matrix A is said to be invertible if there exists a matrix A−1 so that

AA−1 = A−1A = I, (2.84)

where I is the identity matrix[17]. This is only the case if the matrix in question is a square matrix
and is non-singular, meaning that every row or column is in the matrix is linearly independent. These
conditions severely restricts which matrices may be inverted. A problem then arises if one wishes to
solve an equation on the form

A~x = ~y, (2.85)

where ~x ∈ Rm, ~y ∈ Rn and A ∈ Rm×n, as it is not possible to invert A. A more general inverse is
therefore in order. It has been shown that there exists at least one matrix X so that

AXA = A (2.86)

for any matrix A [45]. Finding any X is not sufficient for solving the problem in Eq. (2.85), as there
is no telling what solution is the best from this general, but simple criteria. It is therefore necessary to
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introduce conditions that minimize calculation errors. One such set of four conditions was developed
by E. H. Moore and later introduced by Roger Penrose. Denoted by † the Moore-Rose pseudo-inverse,
meets the criteria

AA†A = A,

A†AA† = A†,

(AA†)∗ = AA†,

(A†A)∗ = A†A.

(2.87)

The Moore-Rose pseudo inverse may be approximated by using the formula

A† = (ATA)−1AT . (2.88)

To determine A† accurately it is however necessary to use a numerical method like Single Value
Decomposition (SVD).

If m > n in Eq. (2.85), the system is said to be overdetermined. In this case, the matrix A† that
minimizes the euclidean norm

‖A†~x−A~y‖ (2.89)

is the Moore-Rose pseudo-inverse. Doing this is equivalent to finding the least square solution of Eq.
(2.85). It is also possible to quantify the degree of invertability by introducing the condition number,
defined as

κA = ‖A‖‖A−1‖, (2.90)

where

‖A‖ ≡ max
‖~x‖=1

‖A~x‖, A ∈ Rm×n, ~x ∈ Rn. (2.91)

The condition number may range from 1 to infinity, where 1 implies that the matrix is invertible,
while infinity implies that it is singular, meaning it is completely non-invertible.

2.8 Ellipsometry

Ellipsometry is an optical technique that measures the change in polarization of EM waves either
reflecting off or transmitted through an object[5]. The main measured quantities are Ψ and ∆ as
defined in section 2.2. Using these, it is possible to determine the Mueller matrix of any given sample.

A general Mueller matrix ellipsometer is made using five parts, an EM-wave source, a polarisation
state generator (PSG), a sample, a polarisation state analyser (PSA) and a detector. The PSG is used
to set the incoming polarization state, while the PSA analyzes the resulting polarisation state after
being reflected off, or transmitted through the sample. To determine a complete Mueller matrix, 16
intensity measurements per wavelength are necessary, composed of four separate PSG and PSA states.
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There are several ways to build a PSG and a PSA. One is to let both be composed of a stationary
linear polarizer and a rotating retarder. In the PSG, the polarizer is placed before the retarder, while
the opposite is true for the PSA. This setup has been aptly named a dual-rotating-retarder (DRR)
polarimeter, and a basic outline can be seen in Figure 8.

Figure 8: A simplified overview of the optical components of the DRR setup. Here the first polar-
izer (Pol1) and the subsequent retarder (Retarder 1) constitute the PSG of the system. The same
components in reverse order constitute the PSA.

Within this framework of DRR polarimeters, there are still two broad approaches. One is the meas-
urement matrix method, focusing on using linear algebra to isolate the Mueller matrix of the sample.
The other is the Fourier method that uses Fourier expansion to determine the Mueller matrix [46].
This thesis will focus on the former.

Taking into consideration that both the PSG and PSA as well as the sample Mueller matrix affects
the total intensity, one finds that any given intensity measurement may be expressed as

I =
[
a00 a01 a02 a03

]
Msample


w00

w10

w20

w30

 . (2.92)

Here, a0i and wj0 are elements of the first row and column of the Mueller matrices for the PSA and
PSG respectively. It is convenient to define the vectors

~an =
[
a00 a01 a02 a03

]
and ~wm =


w00

w10

w20

w30

 , (2.93)

where ~an and ~wm corresponds to the n-th and m-th state of the PSA and PSG respectively. Assuming
a total of N PSA and M PSG states, constructing the two system matrices A and W from the vectors
in Eq. (2.93) is possible. These are of shape N × 4 and 4×M respectively and are constructed as
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A =


~a0

~a1
...
~aN

 and W =
[
~w0 ~w1 . . . ~wM

]
. (2.94)

Replacing ~an and ~wm in Eq. (2.92) with A and W from Eq. (2.94) leads to

B = AMsampleW, (2.95)

where B is a matrix of size N ×M that contains all the intensity measurements Inm as measured in
the state n, m. The sample Mueller matrix may from here be found by inverting A and W

Msample = A−1BW−1, (2.96)

The error of Msample is determined by

‖∆Msample‖
‖Msample‖

≤ κA
‖∆A‖
‖A‖

+ κW
‖∆W‖
‖W‖

+ κAκW
‖∆B‖
‖B‖

(2.97)

where κA and κW are the condition numbers of A and W as defined by Eq.(2.90)[47]. It is therefore
imperative that the condition numbers are as low as possible to minimize the error in Msample.It has
been shown that the lowest physically possible value of the condition numbers of both A and W is√

3[48].

To minimize the condition numbers of A and W it is necessary to determine the optimal rotational
positions and retardence of Retarder 1 and Retarder 2. This is done by first finding a suitable model
for the analysing and generating matrices and then calculating the condition number and finding the
global minimum. In the case where only the 16 minimally required measurements are taken, it has
been found that retarders with retardence 132◦ at the angles of ±51.7◦ and ±15.1◦ are optimal[49] for
a DRR setup. This leads to the greatest amount of linear independence of the rows and columns of
A and W, which is illustrated in Figure 9.

2.9 Calibration Methods

To acquire satisfactory results for the MME, it is important that A and W are known to a great degree
of certainty and that their condition numbers are low. It is therefore important to properly calibrate
the instrument. In this thesis, two calibration methods will be explored. The first approach utilized
intensity measurements and fit a model of the intensities to this directly. The second one utilizes
linear algebra to mathematically find the optimal system matrices, called the eigenvalue calibration
method (ECM).

2.9.1 Intensity Fit Method

The first calibration method discussed will be the intensity fit method. This is the mathematically
simplest method as well as being the one most directly linked to the physics of the system between
the two calibration methods presented in this thesis.
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Figure 9: Points reached by a linear polarizer and a rotatable 132◦ retarder on the Point-Caré sphere
as indicated by the blue line. The red dots on the line indicate the ±51.7◦ and ±15.1◦ rotations of
the retarder, ideal for use in ellipsometry. Inspired by[49]

The method is based on modeling the optical components of the complete ellipsometer with free
variables, e.g. rotation of the retarders in a DRR-setup. This model is then used to calculate ~a
and ~w and by extension, using Eq.(2.92), the measured intensity. Comparing the model to recorded
data makes it possible to find the values of the free variables that optimizes the model. The main
benefit of this method is its simple mathematics and therefore ease of implementation. Increasing the
complexity of the setup does however necessitate a more complex model. This means that this method
is most beneficial if the setup is composed of few optical components, like that of a DRR-setup. If
the system is too complex, it will get increasingly harder to model it sufficiently. Another drawback
of this method of calibration is that it needs a high degree of precision in the alignment process as
even small offsets may lead to appreciable deviations in a given model. Despite these shortcomings,
the technique has been utilized to satisfactory results before[50, 51, 52].

2.9.2 The Eigenvalue Calibration Method

The Eigenvalue calibration method (ECM) was developed by Compain et al.[53]. This method has
several advantages compared to other methods. Firstly, no assumptions are made about the system
except that it is complete, that is to say it can generate and analyze any of the polarizations defined
in the Stokes formalism. This automatically lessens the required precision in the alignment of the
components of the MME, since these errors will be accounted for by the method. Secondly, the char-
acteristics of the reference samples are determined completely during the calibration itself, meaning
external measurements of the reference samples are in principle not necessary. Lastly, the accuracy of
the calibration may be determined by the ECM itself.
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The ECM is, however, subject to some constraints. First of all, the form of the Mueller matrix of the
calibration samples must be known near perfectly in the wavelength-range desired. Secondly, more
than one reference sample needs to be used, as the use of only one sample leads to four distinct possible
solutions for the system matrices. There are also constraints in what combination of samples may
be used, as they need to be sufficiently different from each other to produce an accurate calibration.
These samples do not, however, depend on the MME-setup, and work equally well for all viable
configurations.

As previously mentioned, the calibration requires several samples, each producing a different intensity
matrix Bi. It is convenient to let sample M0 be air so that B0 = AM0W = AW and the rest
Bi = AMiW were Mi refers to the i-th calibration sample matrix. These two equations may be used
to construct the matrices

CW
i = B†0Bi = (AW)†AMiW = W†MW,

CA
i = BiB

†
0 = AMiW(AW)† = AMA†.

(2.98)

CWi and CAi are, as implied by Eqs. (2.98), independent of A and W respectively. In the case where
N = M = 4, the two sets of matrices share the same eigenvalues as Mi, measurement noise not
accounted for. The eigenvalues of a general non-depolarizing Mueller matrix from Eq.(2.56) is on the
form

λr1 = 2τ cos2 Ψ, λr2 = 2τ sin2 Ψ,

λc1 = 2τ sin2 Ψe−i∆, λc2 = 2τ sin2 Ψei∆,
(2.99)

where two of the eigenvalues are real and two are complex. Assuming that a total of 4 polarization
states are used, it is possible to associate the eigenvalues of CW

i and CAi with those of Mi.

Manipulating Eqs. (2.99) makes it is possible to determine several characteristics of the calibration
samples used. Since the determinant does not depend on the order of matrix multiplication, the choice
of which equation in Eqs. (2.98) is used is for the purpose of determining the characteristics of the
reference samples, assuming no noise is present. Moving forward, the quantities defined in Eqs. (2.99)
will be referred to by Ci as a shorthand[17].

It is easily obtained that the transmission coefficient of the retarder is

τret =
1

2
(λret r1 + λret r2) , (2.100)

where λret r1 and λret r2 are the real eigenvalues as calculated for Cret. Likewise, the same quantity
may be found for the polarizers using

τpol = Tr{Cpol}. (2.101)

The ellipsometric angle is determined by the relation

Ψ = arctan

√
λr2
λr1

, (2.102)
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and the retardence is found to be

∆ =
1

2
arg

(
λc2
λc1

)
. (2.103)

To determine the system matrices, it is necessary to first write Eq.(2.98) as

MiW −WCW
i = 0,

AMi −CA
i A = 0.

(2.104)

From here, by transforming A and W to the vectors ~a4N and ~w4N , it is possible to rewrite Eqs.
(2.104) to

HW
i ~w4N = 0,

HA
i ~a

4N = 0.
(2.105)

To find HA
i and HW

i , it is necessary to define the set of 4× 4 matrices {U} where

U1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , U2 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , . . . U4N =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (2.106)

Using these, it is possible to define

GW1
i = MiU1 −U1C

W
i , . . . GW4N

i = MiU4N −U4NCW
i ,

GA1
i = MiU1 −U1C

A
i , . . . GA4N

i = MiU4N −U4NCA
i .

(2.107)

Constructing ~gWi and ~gAi as the vector forms of GW
i and GA

i from Eqs. (2.107), it is possible to define
HW
i and HA

i seen in Eqs. (2.105) as

HW
i =

[
~gW1
i ~gW2

i . . . ~gW4N
i

]
,

HA
i =

[
~gA1
i ~gA2

i . . . ~gA4N
i

]
,

(2.108)

resulting in HW
i and HA

i being 4N × 4N matrices. Using Eqs. (2.108), it is possible to construct a
total measurement matrix that represents all the calibration samples

KW =

N∑
i=1

(
HW
i

)T
HW
i ,

KA =

N∑
i=1

(
HA
i

)T
HA
i .

(2.109)
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Having defined KW and KA, it is possible to find W and A by solving the over-determined matrix
equations

KW ~w4N = 0,

KA~a4N = 0.
(2.110)

Solving Eqs. (2.110) would not be sufficient to accurately complete the calibration. The reason for this
is because it is necessary to consider the azimuthal angle of the components used in the calibration.
In contrast to many of the other sample properties, it is not possible to derive these directly from the
measured intensity matrices or their eigenvalues. What is possible, however, is to use the fact that
the sixteen eigenvalues of KW and KA should all be positive with a single zero-valued eigenvalue.
In a real system with noise, the smallest eigenvalue will in general be non-zero, and their respective
eigenvalues may be sorted as

λW1 > λW2 > . . . > λW4n & 0,

λA1 > λA2 > . . . > λA4n & 0.
(2.111)

From here, introducing an angle dependency to the calibration samples Mi using Eq. (2.29) leads
to angle dependence in KW = KW (α1, α2, . . . , αj) and KA = KA(α1, α2, . . . , αj). From here it is
possible to estimate the angles θi by minimizing the ratios between λ4n and the sum of the larger
eigenvalues

εW =
λW4n∑4n−1
i=1 λWi

,

εA =
λA4n∑4n−1
i=1 λAi

,

(2.112)

which will ensure the solution of Eqs. (2.110) are optimal.
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Part II:

Method
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Section 3:

Material and Software

Integral to the project was the components and software. In this section, all components and computer
programs used in the project are presented.

3.1 Components and Parts

A sizeable part of the project utilized components from previous students and PhD candidates. Some
were, however, custom made or ordered for this project.

3.1.1 Laser Source

One of the most important parts of any optical device is the illumination source. In this project, the
source consisted of a supercontinuum laser3 and a custom made wavelength selector.

Super continuum lasers, as discussed in section 2.3, emit a broad spectrum of EM-radiation. The
laser used in this thesis emit a spectra between approxiamtly 400 to 2500 nm, as seen in Figure 10[54].
The total power of the source is 8 W, with a pulse width of 6 ps. Beyond this, the supercontinuum
source also has a fundamental pulse repetition rate of 80 MHz and supports a range of repetition rates
between 100 kHz to 80 MHz.

Figure 10: Power spectrum of Fianium WL-SC-400-8 supercontinuum source. The high spike at
1064 nm is due to the pump laser of the source. Credit: Fianium UK Ltd.

3WL-SC-400-8 WhiteLase Super Continuum laser, produced by Fianium UK Ltd.
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For spectroscopic applications, it is also critical to control the wavelength of the output. To this end,
a wavelength selection scheme designed and built by Per Magnus Walmsness was used. This setup,
utilizing AOTFs4, beamsplitters and a polarizer may be seen in Figure 11.

Figure 11: Schematic overview of the source. A supercontinuum laser is split using a dichroic beam
splitter to differentiate between NIR radiation and visible light. The NIR portion of the spectrum is
further split in two using a beam splitter polarizer. Each portion of the spectrum is then lead through
an AOTF to select the desired wavelength and reunited before being sent off. A λ/2 plate is used
to ensure the same polarization for all the beams when recombined. From left to right, the AOTFs
have an effective wavelength range of 1100 to 2400 nm (NIR2), 670 to 1100 nm (NIR1) and 400 to
670 nm.(VIS)

The three AOTFs can span the entire spectra of the supercontinuum source and should retain the
incoming laser’s high spatial and temporal coherence with up to 90% diffraction efficiency, according
to the producer. When the AOTFs are in an upright configuration, the outgoing light is horizontally
polarized. Corresponding to their respective output wavelengths, the AOTFs will be referred to as
NIR2, NIR1 and VIS following from left to right as they appear in Figure 11.

The beam splitters used in the source are dichroic ones, splitting the laser by wavelength5. Their
transmission spectra are displayed in Figure 12. This ensures that VIS is provided with visible light
while NIR1 and NIR2 are supplied with infrared radiation. Dichroic beam splitter 1 has a cutoff at
around 662 nm, while beam splitter 2 has a cutoff at approximately 1064 nm.

3.1.2 Detectors

Apart from having a source to produce EM-radiation, it is also essential to have detectors to conduct
measurements. Several types of detectors have been utilized in this thesis.

4Two sets of AOTFs were used in the design. First of which was a AOTF-N1-D-FDS-MM Acousto-Optic Tunable
Filter system, similarly supplied by Fianium UK Ltd., as can be seen as the box with two AOTFs in Figure 11. The
third and separate AOTF is a AOMO 3080-120 provided by Gooch & Housego. To communicate with the three AOTFs,
three AODS Synth DDS 8 CH drivers from Gooch & Housego were used.

5Two models of beams splitters were used. Dichroic beam splitter 1 was a FF662-FDi02-t3 provided by Semrock.
Dichroic beam slitter 2 was a DiO2-R1064, also provided by Semrock
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(a) (b)

Figure 12: (a) and (b) are the transmission spectra of dicroic beam splitter 1 and 2 respectively as
reported from the producer.

Perhaps the most interesting detector to be used was a custom made pulse detector6. This detector
was constructed to measure the total energy for a given light pulse of lengths up to 3 ns. The pulse
signal is integrated twice, first in the silicon photodiode and then in the internal circuitry of the
detector. A pulse shaper then forms an electric output pulse with a pulse height proportional to the
number of photons detected and a length of about 11 ns. The output signal is limited to a maximum
of 2 V with 4 mV of noise for a BNC-cablle with 50 Ω output impedance. The detector output was
further customizable by selecting between different values of τ ranging from 1 to 7, influencing the
shape of the emitted pulse.

To supplement the custom detector, a commercial pulse detector was also used7. This detector has
a 2 GHz bandwidth with an effective wavelength range of 400 to 1100 nm with a maximum output
voltage of 2 V.To accurately read out the detector signals, a 100 GHz oscilloscope8 was utilized for this
and the custom detector.

When fast detectors for pulse measurements were not needed, two slower detectors mounted to integ-
rating spheres were used9. The response of this detector is displayed in Figure 13.

Finally, two spectrometers were used for calibrating and testing the bandwidth of the source10. The
two spectrometers had a combined wavelength range of 250 to 1700 nm.

3.1.3 Ellipsometer Components

The ellipsometer setup was to be that of a DRR ellipsometer, as shown in Figure 8. To this end,
two custom CaF2 Fresnel prisms were used as retarders, as they were sufficiently achromatic with a

6Made by EMM
7DET025A-detector from Thorlabs Inc.
8Infiniium DCA-X 86100D Wide-Bandwidth Oscilloscope produced by Agilent Technologies borrowed from Erik Wahl-

stom, head of staff at the institute of physics at NTNU
9The detectors used were UDT Model 221 Radiometric Sensor coupled to UDT Model 2500 Integrating Spheres, both

provided by Gamma Scientific Inc. The detectors produced a current output so a PDA200C Photodiode Amplifier provided
by Thorlabs Inc. was necessary. To record the data from these detectors, a NI SCB-68 shielded I/O connector terminal
block connected to a NI PCI 6259 Multifunction I/O Device used as a digital to analogue converter (DAQ).

10The spectrometers used were a NIRQuest and Ocean Optics USB4000-UV-VIS Spectrometer, both provided by
Ocean Insight.
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Figure 13: Reported response of the UDT Model 221 Radiometric Sensor. Credit: Gamma Scientific

retardance of approximately 132◦ in the desired spectral range of 400 to 1100 nm11. The prisms were
mounted on a custom made holder attached to a step motor12. Furthermore, the polarizers13 were
mounted on manually rotatable holders.

3.1.4 Calibration Samples

Two sets of calibration samples were used. Common amongst both of them was the use of air. The
first set was previously used in the thesis[56], consisting of two plate polarizers placed at horizontal
and vertical positions, and a waveplate with appropriate retardence in the wavelength range of 800−
1000 nm, aligned at 49◦. These were all placed in an automatic filter wheel14.

The second set of samples consisted of a prism retarder similar to the ones used in the ellipsometer
setup and a Glan-Thomson polarizer, both mounted on a rotatable holder. Due to space concerns,
these two samples were not mounted on a filter wheel. To ensure that the samples were placed correctly
for repeat calibrations a rail system was constructed.

3.2 Software

All instrumentation, including controlling the PR50-motors, the AOTFs in the source, and data
recording, was done using National Instruments LabVIEW 2021. The calculations associated with
the eigenvalue were made using a Matlab program, written by Franz Stabo-Eeg[56], updated to fix
compatibility issues with Matlab R2021b. Further calculations, as well as all plots, were made using
Python 3.8.8. Several python libraries were used for this, including numpy, pickle, sympy, matplotlib,
scipy and lmfit.

11Detailed explanation of the design of these prisms are found in [55]
12PR50motor provided by Newport Cor., which were controlled using a ESP301-3N motion controller, also supplied

by Newport.
13Glan Thomson polarizing prisms supplied by B.Halle Nachfl. GmbH, suitable for applications between 250 to

2700 nm
14Provided by Thorlabs Inc.
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The program controlling the calibration for the Eigenvalue method is representative of the GUIs used
for most of the programs made for the purpose of this thesis. The GUI of the program is seen in Figure
14. The angle of the prisms in the PSG and the PSA are defined in a). b) describes the data path
for the B-measurements, the resultant Mueller matrix location and the graph of this data. c) defines
the address for communicating with the step motors, while d) defines the specifics of the wavelength
range of a scan. e) shows the error status of the program and is used for debugging when issues arise.
f) is the part unique to the calibration program, indicating which sample has been measured and
specifying how the calibration calculation should be performed.

Figure 14: The GUI of the LabVIEW program used to do the calibration measurements.

For designing custom components and parts for the final scatterometer, Solidworks 2020 was used.
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Section 4:

Experimental

A Mueller matrix scatterometer consists of many parts which need to be understood to produce a
satisfactory response. In this section, the experiments to determine the best design; and procedure
for constructing this device is detailed.

4.1 Calibrating and Testing the Source

The AOTFs were calibrated. This was done by tuning each of the AOTFs to known acoustic frequen-
cies and recording the resulting output spectrum using spectrometers. The wavelength of the output
was set to be the wavelength with the highest photon count. Forth order polynomial regressions were
then performed based on the results. The results from the calibration were then tested to verify the
veracity of the calibrations.

After completing the calibration the relative intensity of the source was investigated for the wavelength
range of 400 to 1100 nm. The test was performed, using the integrating spheres as detectors, with
a 5 nm step length. The total intensity and the signal to noise ratio as a function of wavelength
was found. This was done by performing 2500 measurements at a sampling rate of 250 kHz at every
wavelength. The average value of these was set to be the reported measured intensity, while the
standard deviation was set to be the uncertainty of the measurement.

The switching speed of the AOTFs was then tested by scanning of a portion of the spectrum as rapidly
as possible. The results also served a dual purpose of giving insight into the time needed before the
signal became stable after a frequency shift had occurred. This information was used to determine the
time delay necessary between the switching of the AOTF taking place and the intensity data being
recorded.

Lastly, the source’s temporal stability was tested by taking measurements every minute for 9 minutes.
There were a total of 4 measurement series, each with different conditions. First and foremost, the
stability was tested with and without the laboratory being illuminated. The effect of warm-up of the
supercontinuum source was also assessed by performing measurements immediately after being turned
on and after 20 minutes of warm-up. Every measurement lasted 5 ms with a sampling rate of 250 kHz.

4.2 Characterization of the Laser Pulses

The use of pulsed sources in a spectroscopic Mueller matrix scatterometer is unconventional as pulsed
lasers are associated with noise and non-linear effects in detectors due to the high instantaneous
intensities[57, 58]. To evaluate the usage of such a source, the characterisation of the laser pulses was
necessary. These tests were all done with a wavelength output of 633 nm from the source.

Pulse measurements were conducted using the two fast detectors. For the custom detector, repetition
rates of 5, 10, 20, 40 and 80 MHz with pulse shaper settings of τ = 1, 2, 4 and 7 were explored. Due to
limitations in the resolution of the oscilloscope, only repetition rates of 20, 40 and 80 MHz have been
considered for the ThorLabs detector.

One proposed way of conducting measurements for the scatterometer was to use the individual laser
pulses. Using the custom detector to do this was no problem, as it was designed to measure the total

37



intensity of an incident laser pulse.

The Thorlabs detector was not constructed with intensity measurements in mind, so two ways of
measuring the intensity using this detector were explored. The first exploited the fact that the Thorlabs
detector was too slow to resolve the pulses from the source.

The Thorlabs detector was not constructed with intensity measurements in mind, so two ways of
measuring the intensity using this detector were explored. The first exploited the fact that the Thorlabs
detector was too slow to resolve the pulses from the source. It is known that the response x(t) to a
signal y(t) of a measurement system is

x(t) = h(t) ∗ y(t), (4.1)

where h(t) is the response function of the system[59]. When y(t) = aδ(t), one finds that the response
should be

x(t) = ah(t), (4.2)

i.e. proportional to the number of photons in the incident pulse. The second proposed way was
to integrate the incident laser pulses. To do this, it was necessary to broaden the laser pulses, for
which the integrating spheres were used. To measure the broadened pulses, the Thorlabs detector was
mounted to a cage system fixed to the exit port of the integrating sphere. The outgoing irradiance
from the integrating sphere was focused on the detector seen in Figure 15. To compensate for the
cage system not being completely centred with respect to the detector, a makeshift two-axis stage was
made internally in the cage system. The same setup was used with the custom detector for the sake
of thoroughness.

Figure 15: Picture of the custom detector mounted to an integrating sphere using a rail system. Two
lenses are also mounted on the sphere as to focus down the beam on the detector.

38



4.2.1 Non-linearity Measurements

The detectors were now tested for non-linear responses. This was necessary due to the supercontinuum
source used being a pulsed laser. The tests were made by using two linear polarizes. The first was
set to a stationary azimuthal angle while the second one was rotated at increments of 5◦. Using Eq.
(2.33), the expected results from such a setup is

I ∝ cos2 (2θ − φ0) , (4.3)

commonly known as Malu’s law[60]. φ0 is here a constant phase shift. If the detector response is linear,
the relation in Eq.(4.3) will hold, as implied by Eq. (2.76). To determine how closely the measured
intensities followed Malu’s law, a curve fit was performed, and the coefficient of determination was
found.

4.2.2 Transmission Measurements

Finally, to evaluate the viability of using the pulse detectors and the integrating sphere detectors
for use in ellipsometry, it was necessary to determine to which degree each of these detectors sets
was capable of measuring transmission accurately. In these tests, the transmittance of three neutral
density filters (NDF) was measured using direct pulse measurements and the integrating spheres.

For the transmission measurements based on pulse measurements, the standard ThorLabs detector
was used as a reference, while the custom detector was used as the main detector. To account for the
two detectors being different, it was first necessary to determine the ratio of the output between the
two detectors. This lead to the transmission being determined as

T =
I

I0

R0

R
= α

I

R
, (4.4)

where I and I0 are the measured intensity with and without the sample for the main detector, while
R and R0 are the corresponding values for the reference detector and T being the transmittance. α is
then the relative intensity values between the detectors.

Each measurement of T was performed by measuring 32 separate pulses. The average amplitudes
of these laser pulses were used to measure the transmitted intensity. Each sample was measured
four times to determine the variation of the results. The measurements were later repeated using
the integrating spheres as detectors with an equivalent setup to the pulse detectors, calculating the
transmission utilizing Eq. (4.4).

4.3 Mueller Matrix Ellipsometer

Based on the results of the previous test, the ellipsometer setup to be used in the scatterometer was
assembled and tested. First, the components of the ellipsometer were assembled along a predefined
laser line. Then an NDF was placed before the first polarizer, serving a dual purpose; lowering the
intensity to not damage the detectors, in addition to diverting some of the laser beam to a reference
detector. Due to the results of the preliminary tests, the integrating spheres were chosen to be the
detectors used for the final setup. The integrating spheres were placed at an angle to prevent back
reflections into the ellipsometer system.

After the ellipsometer was properly lined up, the intensity fit method outlined in section 3.2 was
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attempted 2.9.1.

To achieve the best possible result, it was determined that it was beneficial to survey as many po-
larization states as possible. To achieve this, the retarders in the PSA and the PSG were rotated
at a fixed ratio PSA:PSG. Vap et al. discovered that a PSA:PSG rotation ratio of 37.5:7.5[46] was
beneficial for ellipsometry using quarter wave plates, so this ratio was also used for this calibration
method. The model to be used was determined using the measurements from a single wavelength
(633 nm). When the model seemed satisfactory for this wavelength, a small selection of the total
spectrum (400 − 650 nm) was evaluated in the same way. For each wavelength, a total of 50 states
were evaluated. The best model for describing the system is showcased in section 7.1 in the results
part of the thesis. The sample rate and number of samples, and wavelength step were the same here
as for the tests of the spectrum in section 4.1.

After this, the eigenvalue calibration technique was performed. First, the pre-made samples installed
in the filter wheel were characterized using a separate ellipsometer15. The test calibration was then
made for a wavelength regime of 800 to 1000 nm, as this was the wavelength range where the samples
were expected to give good results. Following the results from this calibration, smaller improvements
detailed in the results section were made.

Comparing the results between the two calibration methods led to the conclusion that the eigenvalue
calibration was the preferred method. Because of this, the calibration was extended into the visible
part of the spectrum using two new calibration samples, detailed in section 3.1.4 with the eigenvalue
calibration method.

4.4 Scatterometer Design

The design process of the scatterometer went parallel to that of the rest of the thesis. The basic
outline of the design was originally proposed by Per Magnus Walmsness. This design was subsequently
improved upon and the results are displayed in Figure 16.

A central dowel constitutes the spine of the scatterometer. Fastened at the base, it allows for simple
adjustments in height of the central structure. Mounted to the base is the step motor controlling the
arm designed to host the plate holding the PSA optics. This plate is not displayed in Figure 16 , as a
preexisting plate was used. Further up, attached to the dowel for adjustable height and independent
rotation with respect to the arm is the mounting piece for the sample holder. This sample holder is
not shown in Figure 16 either due to the manufacturer not providing a CAD file of the sample holder.
The design of the scatterometer is also modular so that adjustments may easily be made should it
become necessary in the future.

4.5 Testing the Scatterometer

The scatterometer outlined in the previous section was then assembled. To test it, both beams from
a beam splitting polarizer were measured. A square metasurface with sides 650 µm detailed in the
thesis of fellow master’s student Niklas Schwartz was tested. This surface is intended to split an
incident beam into circularly left and right polarized EM-waves at an angel of approximately ±6◦ at
950 nm. The metasurface was highly wavelength dependent, so the scatterometer was calibrated for a
wavelength range of 800 to 1050 nm.

As the parts of the scatterometer were delivered close to the deadline of the thesis, the measurements
were taken manually, as developing software to automatize these would take too long to complete

15RC-2 provided by J.A. Woolam
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Figure 16: Basic design of the scatterometer. a) is a rotatable arm to which the PSA is planned to
be attached. The arm consists of three components, a vertical and horizontal arm as well as bracers
to help with stability. b) is the mounting piece for the sample holder, c) is the a adjustable dowel
fastened in e). Lastly the scatterometer uses two RVS80CC step motor indicated by d).

before the deadline for the thesis.
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Part III:

Results and Discussion
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Section 5:

Testing the Source

When designing and building a complex system such as a Mueller matrix scatterometer, a fundamental
understanding of each component and procedure beforehand is tantamount. This section is committed
to showcasing the results from the investigation of the source intended for use in the scatterometer.

5.1 Calibration of AOTFs

The results from the AOTF calibrations are displayed in Figure 17. Here the AOTF frequency and
the output wavelength seem to be following an inverse proportional relationship, which is the result
predicted in Eqs. (2.75). Encouragingly, one can see that the curve fit for all three AOTFs closely
follows the measured values, indicating a good model.

An excerpt of the post-calibration spectroscopic measurements may be seen in Figure 18. The band-
width of the output from the source ranges from 2 to 5 nm, where the bandwidth of the spectrum is
defined to be half or more of the peak intensity. It was found that the peak intensities match well
the desired wavelength, all being within the bandwidth of the source. As can be seen, the peaks are
not perfectly smooth for the VIS AOTF. Especially for the pulse set at 633 nm. diverge significantly
from the expected form. This may indicate some form of defect in this particular AOTF. Further
supporting this is the fact that the harmonics are asymmetrical. The harmonics do, however, not
expand the bandwidth of the source, indicating this should not be a problem in future measurements.

A sweep of the spectrum from 400 to 1100 nm was conducted, and the results are displayed in Figure
19. The measured intensities in the visible part of the spectrum are higher than in the NIR part of
the spectrum. This result was unexpected as the NIR part of the spectrum is reportedly where the
intensities were to be highest. A reasonable explanation may be that the beams coming from the
NIR1 AOTF and the VIS AOTF are not perfectly aligned. It may also be the case that a difference in
beam diameter between the two AOTFs may contribute to an unequal amount of irradiance passing
through the system. A final potential reason for this unexplained phenomenon might also be that the
half-wave plate used to convert the vertically polarized light from the NIR1 AOTF to horizontally
polarized light to match the other two AOTFs’ polarizations is not correctly aligned. This explanation
seems unlikely, as the orientation of the half-wave plate has been checked and verified several times.

The results in Figure 19 also gave insight into the spectral range of the source. The VIS AOTF was
found to effectively be able to produce an output from 430 to 660 nm. NIR1 turned out to have an
effective range of 670 to 1060 nm. NIR2 was not tested for two reasons; firstly, the available detectors
were not capable of measuring beyond 1100 nm and secondly, problems with the AOTF itself occurred
during testing. The results then indicate a final effective output range of the source to be between
430 and 1060 nm with a small unaccounted for gap in the spectral range between 660 nm and 670 nm.
This was not unexpected, as one of the dichroic beam splitters used in the source had a cutoff around
this wavelength area. It was therefore necessary to extend VIS to accommodate this wavelength range
to not have any holes in the spectrum. Measurements in this range are then expected to be inaccurate
due to low intensities, making the system more susceptible to random noise. This is corroborated
by the findings in section 7. A potential solution to remedy the problems caused by this gap in the
spectrum is presented in section 7.2.

The inverted signal to noise ratio of the source is shown in Figure 20. The signal to noise ratio is
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(a) VIS AOTF.

(b) NIR1 AOTF
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(c) NIR2 AOTF.

Figure 17: Measured wavelength output from the three AOTFs plotted against the acoustic frequency
plotted using yellow crosses. The curve fitted model derived from these measurements are indicated
by the blue lines.
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Figure 18: Measured spectrum of select wavelength output from the AOTFs.

Figure 19: The measured intensity of the source.
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(a) (b)

Figure 20: The inverted signal to noise ratio for (a) the visible portion of the spectrum, and (b) the
NIR part of the spectrum.

an order of magnitude greater in the visible region compared to the NIR region. Considering the
relative difference between the two regions makes these results expected, as a higher intensity reduces
the impact of thermal noise, which is assumed to be dominant. It is, however, clear that neither of
these regimes has an unacceptable level of noise associated with them. This difference is, however,
not irrelevant as can be seen by results from section 7.

The AOTF switching speed was determined to be approximately 80 ms as seen in Figure 21. This
meant that scanning through the entire spectra would take tens of seconds, which was an unacceptable
amount of time, as this would make the scatterometer excruciatingly slow to the point of non-usability
due to the necessity of scanning through the spectra several times. An appreciable amount of time
and effort was put into improving the switching speed with little luck without producing any results.
The attempt to make the scanning was therefore abandoned for a long time to focus on other parts
of the project. It was not until near the end of the project before an inefficiency in the code was
found and fixed, which sped up the switching speed by an order of magnitude to around 4 ms. When
switching between different AOTFs, a delay of 20 ms was found between the first AOTF being turned
off and the second AOTF activating.

The stabilization speed of the AOTFs was determined to be less than 1 ms. Despite this, however,
it was found that a delay of 10 ms between the switching signal being sent from the computer to the
AOTF driver and intensity data being recorded was ideal. This is most likely due to communication
between the computer and the driver controlling the AOTFs taking some additional time.

5.2 Source Stability and Warm-Up Time

Table 1: Intensity stability of supercontinuum source at 633 nm.

Dark room Illuminated room

No warm-up 3.320± 0.014(0.428%) 3.277± 0.034(1.30%)
20 min warm-up 3.427± 0.005(0.153%) 3.372± 0.011(0.323%)

Table 1, displays the results from the temporal stability tests. It is clear from these that the source
needs to be warmed up before it reaches maximum stability. This finding is corroborated in Figure

47



Figure 21: Intensity signal plotted against time during switching between frequencies of the AOTFs
for various frequencies

22, showing the graph of one of the measurements made without warm-up. Here, one can observe that
the output intensity increases steadily over time. Having the room illuminated during measurements
more than doubles the relative variance in intensity. The warm-up of the source decreases the relative
instability of the measurements in two ways; increasing the incident intensity and minimizing the
insecurity in said intensity. The most surprising finding from these tests is that the measured intensity
went down when the room the experiments were conducted in was illuminated. This finding would
ordinarily suggest a measurement error, but repeat measurements confirm these findings.

Comparing the results from Table 1 to Figure 20 illustrates that the drift of the source power over
time is a greater source of error than that of the random noise on a moment to moment basis. There
may be several explanations for this. Firstly, having a powerful laser source directed at the AOTFs
could lead to warming, changing the phonon momenta and energies, potentially causing changes in the
diffraction efficiency or the wavelength diffracted forward. General changes in temperature in the room
may also affect both the supercontinuum source and the detectors used. Implementing temperature
corrections in the AOTFs might be beneficial for these reasons, and would be worth investigating for
a potential lowering of the noise level. A statistical factor might also be to blame. It is known that
the variance of the expectation value of a stochastic signal decrease as a function of 1/

√
N , where

N is the number of samples taken[61]. Taking this into account there is still an order of magnitude
discrepancy between the measured variance of the separate tests, implying that the intensity of the
source varies with time. To compensate for this variation, a reference detector is necessitated in the
design of the scatterometer.
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Figure 22: Intensity measurements of source without warm-up time at 633 nm over 9 minutes.
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Section 6:

Laser Pulses

The pulse properties of the source were also an object of great interest for the thesis. Not only
do they represent a challenge to be overcome with regard to measurement accuracy and non-linear
effects, but also a potentially novel way of performing ellipsometry and time-resolved measurements.
In this section, the results from three distinct ways of measuring the intensity of a pulsed source are
showcased.

6.1 Pulse Measurements

The detector signal produced by the Thorlabs detector is shown in Figure 23. As predicted in section
4.2, the resultant output from the detector is not the resolved pulse of the laser source, but rather the
pulse response of the detector itself.

Figure 23: Pulse response of Thorlabs detector.

The pulse shapes of the custom detector can be seen in Figure 24. One can observe that for τ = 1, 2, 4,
the pulses have a base at approximately the same value, a little under 0 V. For τ = 7 the base is
at 0 V, but a dip after the initial wave that goes below that of the base level of the other settings
is present. The total voltage difference between the peak and minimum voltage is lower for τ = 7
compared to other values of τ , making it more sensitive to the noise created in the coupling between
the detector and the oscilloscope. Furthermore, the pulse width of the custom detectors does not seem
to be substantially affected by which τ is chosen, being a constant width of approximately 11 ns.

As seen in Figure 25, the custom detector is unable to resolve each laser pulse individually when the
pulse repetition rate becomes too high. This effect was observed with repetition rates of 20 MHz or
above. The repetition rate of the source is then evidently crucial for the quality of the results and
should be set to 10 MHz or less to resolve the output pulses from the custom detector.
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Figure 24: Output of the custom detector for source output at 633 nm with a repetition rate of 10 MHz.

The amplitudes and variation in amplitudes of the pulses measured are displayed in Table 2. The
lowest observed relative variation was the custom detector for τ = 1 with a pulse repetition rate
of 10 MHz, outperforming τ = 7 by an order of magnitude for all repetition rates. There was no
significant difference in relative variation between τ = 1 and the other integration times tested. The
Thorlabs detector also performed well in these tests but did not outperform the custom detector with
respect to stability for any repetition rate. This low variation in pulse amplitudes are consistent with
the findings for other supercontinuum sources [62]

Table 2: Pulse amplitude and stability measured with custom and Thorlabs detector for a selection
of repetition rates at 633 nm.

Detector ThorLabs
settings τ = 1 τ = 7 Detector

5 MHz 0.2053± 0.0010(0.48%) 0.0423± 0.0009(2.12%) N/A
10 MHz 0.2114± 0.0003(0.14%) 0.03826± 0.0021(5.49%) N/A
20 MHz 0.2094± 0.0007(0.34%) 0.0409± 0.0021(5.13%) 0.0181± 0.0004118(2.28%)
40 MHz 0.2054± 0.0030(1.46%) 0.0466± 0.0027(5, 79%) 0.0184± 0.0006760(3.67%)
80 MHz 0.1518± 0.0194(12.87%) 0.03631± 0.0020(5, 51%) 0.0175± 0.0026412(15.09%)
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Figure 25: Output of the custom detector for source output at 633 nm with a repetition rate of 80 MHz.

6.2 Pulse Measurements using Integrating Spheres

The attempts to stretch the laser pulses using the integrating spheres did not succeed, as neither of
the pulse detectors was sensitive enough to register a signal. In hindsight, the attempt at stretching
the laser pulses would not produce the desired result. As stated in section 2.6, the response time of a
typical integrating sphere is, similar to the Thorlabs detector, much longer than the width of the laser
pulse.This means that the signal recorded would be the response function of the integrating sphere
and not the original pulse. This does, of course, not preclude integrating the measured pulse as a way
of measuring the total intensity of the pulse, but will give no insight into the shape of the original
pulses.

6.3 Linearity Measurements

The detectors were then tested for non-linear effects, and the results are displayed in Figure 26. Both
the integrating spheres and the Thorlabs detector performed well with a coefficient of determination
R2 > 0.99. The custom detector did not performer as well with R2 = 0.6939.
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(a) Custom-detector (b) Thorlabs-detector

(c) Integrating sphere

Figure 26: Non-linearity measurements of (a) the custom detector, (b) the Thorlabs detector, and (c)
the integrating spheres.

There is reason to believe that the results for the custom detector are not accurate. A screen dump of
this from the oscilloscope may be seen in Figure 27. indicating that the recorded pulse was distorted.
The reason for this was first thought to be reflections in the internal circuitry of the detector. To
confirm this, the detector was sent back to the manufacturer, who could not find any issues. This
meant that the fault had to lie in the coupling between the oscilloscope and the detector since the
oscilloscope was operating normally. This issue was not resolved.

Figure 27: Screen dump from the oscilloscope showcasing the disfigured pulse in purple.
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6.4 Transmission Measurements

The results from the transmission tests are displayed in Table 3. These indicate that the integrating
spheres and the pulse detectors provide results close to the manufacturer’s reported transmittance
values of the measured NDFs. The standard deviation of the results obtained differs significantly
between the two. Despite the measurements taken with the pulse detectors generally being closer
to the reported values of the NDFs, the integrating spheres provided results with significantly lower
uncertainty. The NDFs used were worn, and a deviation in the actual transmittance compared to
the reported ones from the manufacturer is to be expected. From these results, combined with the
previous results of this section, it is clear that the detector best suited for use in the final scatterometer
is the integrating sphere. In addition to not being as sensitive to beam wobble, it has proved to be
the most consistent and simplest to implement detector among the two alternatives presented in this
thesis.

Table 3: Transmission measurements of neutral density filters direct pulse measurements and integ-
rating spheres

NDF Pulse detectors Integrating spheres
T% T% T%

5.7 5.575± 0.47(8.43%) 5.72± 0.075(1.31%)
20.9 20.725± 2.11(10.18%) 21.4± 0.071(0.33%)
62.7 62.3± 1.50(2.41%) 63.63± 0.083(0.13%)

What is also interesting is that the standard deviation of the transmittance values found with the
integrating spheres appears to be independent of the transmittance of the NDF measured, compared
to the measurements using the pulse detectors, whose standard deviation varies significantly with
which NDF is measured. The significance of this is not known but may suggest an error in the way
the transmittance was measured with the pulse detectors.

Several measures may be taken to improve the results of the pulse measurements. The simplest
would be to replace the Thorlabs detector with another custom detector to reduce the measurement
inaccuracies. Secondly, when measuring the transmittance of the NDF, the same pulse was intended
to be measured in the reference detector and the main detector. If this is not the case, errors in the
measured transmittance should be expected. Therefore, verifying that the correct pulses are compared
might lead to a significant reduction in measurement uncertainty. Lastly, addressing the problem
contributing to the warped shape of the output pulse from the custom detector is likely to improve
the result. The results do therefore not discredit the usage of individual pulse to do measurements in
general. Improvements do need to be made before it becomes a viable alternative, however.
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Section 7:

Realisation of Complete Mueller Matrix Scatterometer

In this section, the results from the assembly and calibration of the ellipsometer for use in the final
scatterometer are showcased, as well as results from tests of the said scatterometer.

7.1 Intensity Fit Calibration

The model for the intensity fit method that provided the best results modeled the Muller matrix for
the polarizer as

Mpol =


1 a 0 0
a 1 0 0
0 0 0 0
0 0 0 0

 , (7.1)

where a is a real constant. The prism retarders were modelled using Eq. (2.56).. All four components
were additionally given an azimuthal angle dependency.To improve the model further, an attempt
at introducing optical rotation into the model was made. This attempt was, however, unsuccessful.
Despite this, however, it is clear from Figure 28 that the model found from this method seems to align
quite well with the recorded intensities, though with some minor discrepancies. It was found that the
fit had a coefficient of determination of R2 = 0.9962.

Using the results from the calibration to reproduce the Muller matrix of air for 633 nm resulted in

M =


1.000 0.0033 −0.0087 −0.0011
0.0078 1.0075 0.0305 0.03353
0.0011 −0.0421 1.0235 −0.0253
−0.0090 −0.0192 −0.0010 0.9544

 . (7.2)

As can be seen in Eq. (7.2), the results from this calibration were not encouraging. Several elements,
like m33, showed deviation from the expected values of up to 5%. This is not an acceptable amount of
difference for a Mueller matrix but does not necessarily imply that the approach should be abandoned.
If a more accurate model is found, a more precise result ought to be obtained. Furthermore, it has also
been shown that it is possible to filter Mueller matrices to reduce their error[63, 64]. Implementing
such filtering may be sufficient to reduce the deviation from the expected values to an acceptable level.

Despite the calibration for 633 nm proving limitedly successful, attempts to extend the calibration to
the rest of the spectrum proved to be difficult. The

√
3 for physical condition numbers were found to

be broken for several of the wavelengths, and the optimized values used in the model were found to
be nonphysical. For instance, the polarizer used in the PSG was found to be

Mpol =


1 −1.3 0 0
−1.3 1 0 0

0 0 0 0
0 0 0 0

 . (7.3)
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Figure 28: Measured and calculated intensities for the ellipsometer for a PSA:PSG rotation ration of
37.5 to 7.5 for 633 nm.

Several attempts were made to improve the results of the spectroscopic calibration, including adjusting
the optical components of the system. No solution was found that improved the results, however. It
was concluded that the problem lay in a minute mathematical error in the program performing the
calibration. This fault was not discovered and further attempts at using this method were subsequently
abandoned in favour of proceeding to the next calibration method.

7.2 Eigenvalue calibration

The next step was to test the efficacy of the eigenvalue calibration method. The preliminary test results
using the filter wheel with appropriate samples did not immediately turn out well, with deviations
in the order of 1%. This problem was corrected by eliminating the use of a reference detector and
correcting errors in the data-gathering program. After this, the results in the 800 to 1000 nm range
showed promising results with deviations from the expected values < 0.01%.

Knowing that the instrumentation and calculation parts of the setup were now functioning properly,
the spectral width of the calibration was widened. As can be seen in Figure 29,, the resultant condition
numbers from the eigenvalue calibration method are promising, being consistently close to the ideal√

3 mark for both A and W. This excludes 665 nm, where a clear spike in the condition numbers may
be observed for the system matrices for both the PSA and the PSG. This was not unexpected due to
the particularly low intensity for this wavelength, as discussed in section 5.1. It is also encouraging
that the otherwise consistently good results across the spectrum exceed the performance of other
ellipsometers made with the same supercontinuum laser by previous master’s students[65].
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Figure 29: Inverse condition numbers of A and W obtained using the eigenvalue calibration method.

The Mueller matrices in Figure 30 are constructed from the calibration measurements. The elements
of the Mueller matrix for air deviate from the expected values by less than 1% across the recorded
spectral range of the ellipsometer. This is a good result even compared to traditional, and modern,
professionally made, ellipsometers using continuous-wave illumination[66, 67]. Beyond this, it is also
observable that the Mueller matrix elements exceed unity, which is most likely due to calculation
errors in the system matrices. These errors may be mitigated by multiplying any measured MM with
the inverse of the MM for air[68].

The Mueller matrices of the polarizer display deviation from expected values approaching and exceed-
ing 1%, or several matrix elements, even outside of 665 nm. They are, however, in the correct form
for a linear polarizer with elements m00, m01, m10 and m11 approaching positive or negative unity,
while other elements are close to zero (see Eq. (2.33)). The measured deviation increases for longer
wavelengths, as is expected from the low intensities. Another feature of the results is what appears
to be wavelength-dependent oscillation in the NIR regime. This may be random noise inducing an
increased deviation due to the relatively low intensity of the incident. It is also possible that Fabry
Pero interference from the retarder prisms plays a part in this, as the source is both highly temporally
and spatially coherent. Another contributing factor might be that the calibration polarizer used not
function properly, as it was selected without prior testing.

The final sample produces a Mueller matrix consistent with an azimuthally rotated retarder with
a slight wavelength-dependent retardance. Like the results from the air and the linear polarizer,
deviations from the expected value increase with wavelength. The drop in intensity for 665 nm is
pronounced for this sample, leading to dominant value spikes for this wavelength.

The observed sensitivity of the system to low intensities presents a potential challenge for the imple-
mentation of the ellipsometer in the planned scatterometer when measuring weakly scattered beams.
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This may be mitigated slightly by removing the NDF that sends a portion of the laser beam to the
reference. The best solution would, however, be to increase the intensity output in the NIR spectrum
of the source to be at the level of the visible light portion of the spectrum.

(a) Air
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(b) Polarizer, vertical transmission axis

(c) Polarizer, horizontal transmission axis
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(d) Rotated prism retarder

Figure 30: Normalized Mueller matrices of the calibration samples

A measurement of the Mueller matrix of air independent of the calibration measurements is displayed
in Figure 31. It is possible to observe a greater deviation in the matrix elements compared to the
results from the calibration. The reason for this is probably the drift of the source intensity over
time, as found during the preliminary tests. A potential solution to this problem is to reintroduce
a reference detector to the setup, as to correct for the drift in the intensity from the source. This
would necessitate finding a way to implement the reference that does not introduce the level of noise
seen previously. One simple way of doing this would be to use a superior photodiode amplifier for the
reference, though it is not clear if this would reduce the noise signal sufficiently. Another alternative is
naturally to overcome the issues with using pulse detectors and using these instead of the integrating
spheres, as this would provide real-time corrections for variations in the source as the measurements
are taken.

As pointed out repeatedly, a reoccurring problem with all the Mueller matrices recorded is the re-
duction of measurement accuracy at 665 nm. This error is caused by the low-intensity output of the
source at this wavelength, due to the dichroic beam splitter used. This issue is, however, not fixable
by simple modifications to the wavelength selection scheme, as any other dichroic beam splitter would
induce the same problem at another wavelength. A more realistic solution would be to utilize the fact
that the elements of the Mueller matrix should be smooth when plotted as a function of wavelength.
It should therefore be possible to use interpolation to extract an estimate for this value with greater
certainty than direct measurements may provide with the current setup.
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Figure 31: Normalized Mueller matrices of air measured separately from the calibration.

7.3 Building and Testing of the Scatterometer

When designing the scatterometer, doubts regarding the motors selected for the design were sufficient
and whether the design was stable enough were raised. Assembling the scatterometer did suggest that
neither of these concerns was warranted, as the design was sufficiently stable and the motors seemed
to be able to handle the necessary load and torque.

The test of the beam splitting polarizer indicated that the scatterometer was working as intended,
and the resulting Mueller matrices may be seen in Figure 32. The polarizer used does not resemble
any conventional polarizer, however, if one applies the measured matrices on a depolarized beam
and utilizes Eq. (2.26) to evaluate the resultant Stokes vector, one finds that the beam splitter is a
polarizer with a polarizance of > 99% for both angles at all wavelengths. At some wavelengths, the
polarizance exceed 1, which should not physically not be possible. This was not surprising, however,
as the calibration was made in haste, as to be able to meet the deadline of the thesis, in addition to
the fact that the ellipsometer has been shown to be prone to measurement errors in the NIR portion
of the spectrum in prior experiments.

The measurements of the metasurface did however not yield any results, as the detectors did not
detect any scattered light. A simple explanation for this is that the metasurface was defective due to
damage or other reasons. Another compounding factor for this is that the beam was much wider than
the metasurface, and an insufficient amount of the incident flux was scattered. This can potentially be
remedied by shrinking the beam diameter using lenses. Another explanation may be that the sample
was not placed in the rotation centre of the scatterometer, resulting in the scattered beams not being
incident on the integrating sphere. Finally, it is possible that the integrating spheres were not sensitive
enough to acquire a signal.
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(a)

(b)

Figure 32: The measured normalized Mueller matrices of a beam splitting polarizer with horizontal
transmission axis measured with the constructed scatterometer. a) displays the Mueller matrix of
the beam propagating through the polarizer without refraction, while b) is the Mueller matrix of the
beam refracted at a 5◦ angle.
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7.4 Comments on the Code

The final code seems to be working well for the purposes of ellipsometry. Both the calibration and
the Mueller matrix measurement programs ran quickly and produce satisfactory results. To perform
a spectroscopic Mueller matrix measurement took a little over a minute. Most of the run time was
due to the rotation of the prisms, taking about 3 to 5 s, depending on the distance. The remaining
runtime was used to scan through the spectrum for each polarization state. Considering the calibration
samples had to be manually put into the correct position, the calibration time was acceptable, only
lasting approximately 8 minutes.

There were, however, some problems with the code. Most notably, it tended to crash after a certain
amount of intensity measurements. It was determined that the problem was due to the RAM used for
the programs saturating, as evidenced by the fact that other computer programs could not be used
simultaneously, lest the said program crash. This issue was alleviated slightly by actively deleting
arrays when no longer needed in the program. This was not sufficient to fix the problem entirely,
however. A temporary solution was to close and open the software every few measurements. This is
of course not an ideal solution if this software is to be adopted into the final scatterometer, as many
Mueller matrices need to be measured for each sample. Increasing the RAM of the computer and
implementing clearing of buffers may therefore provide a more permanent solution to the problems
faced.

Further improvements to the code may be made by increasing the functionality and user friendli-
ness. Functionality may be improved by implementing analysis of the measured Mueller matrices,
as detailed in section 2.1.6. As for unfriendliness, further automating the the calibration process by
implementing a filter wheel for the calibration samples and automating the process of switching these
is recommended. This would also increase the repeatability of the calibrations.
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Part IV:

Conclusions
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A spectroscopic Mueller matrix ellipsometer in the wavelength range 450 to 1100 nm for use in a scat-
terometer, was designed, built, and calibrated. The system used rotating prism retarders to generate
the desired polarization states of the PSG and the PSA. To illuminate the samples, a supercontinuum
source with AOTFs for the selection of wavelengths was utilized. It was found that the source output
intensity was stable from moment to moment, but fluctuated over time. Furthermore, it was also
found that the intensity output was not equal between the AOTFs, where the intensities recorded for
the NIR part of the spectrum were significantly lower than that of the visible part.

The challenges of using a pulsed laser source for use in ellipsometry have been assessed through
the exploration of different measurement methods, including direct measurements of the pulses and
through the use of integrating spheres. It was determined that integrating spheres was the detectors
to be used in the ellipsometer constructed in the thesis. The usage of pulse measurements was however
found to have some promise as a measurement technique, given the appropriate setup. Of particular
interest is the prospect of using these to do time-resolved measurements for rapid processes.

Two calibration methods were attempted and assessed. It was determined that the eigenvalue cal-
ibration method was superior among the two calibration methods in terms of accuracy. The system
matrices A and W, found using the eigenvalue calibration method, had low condition numbers, ap-
proaching the ideal

√
3 limits for most of the desired wavelength range. The Mueller matrices measured

support these results with deviations below 1%. rom the expected values. Repeat measurements of
samples display an increase in inaccuracies. The largest deviations were found in the vicinity of 633 nm
and in the NIR region.

Software for controlling the measurements was also made. This ensured swift measurements despite
mechanically moving parts used in the ellipsometer. Problems with crashing did occur despite the
underlying cause being identified.

A basic design for a scatterometer has also been improved upon and constructed in the thesis. This was
used to measure a simple beam splitting polarizer and a beam splitting meta-surface. The polarizer
provided results that were slightly nonphysical for some wavelengths, while the beam splitting meta-
surface did not produce a strong enough signal to be measured by the scatterometer.

Further developments for the project, should focus on improving the software controlling the ellipso-
metry functions of the scatterometer as well as improving intensity output from the source in the NIR
part of the spectrum. Furthermore, automation of the calibration process should also be prioritized
to save time. Alternatively, a more sensitive detector could be used. Software for controlling the
scatterometer will also need to be developed. Finally, implementing filtering for improvements to the
measured Mueller matrices should be considered and a routine to compensate for errors at 665 nm
should be developed.
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Appendix A:

Code used for Intensity fit method

1 import numpy as np

2 import pickle

3 from sympy.matrices import Matrix, eye, zeros, ones, diag, GramSchmidt

4 from sympy import *

5 import matplotlib.pyplot as plt

6 from scipy.optimize import curve_fit

7 import lmfit

8

9

10 theta,theta_2, theta_3, theta_4 = symbols('theta theta_2 theta_3 theta_4')

11 delta, delta_2=symbols('delta delta_2')

12 a,b,c,d,e,f,g=symbols('a b c d e f g')

13 e_1,e_2=symbols('e_1 e_2')

14

15

16 Rot=Matrix([[1,0,0,0],[0, cos(2*theta_3),

sin(2*theta_3),0],[0,-sin(2*theta_3),cos(2*theta_3),0], [0,0,0,1]])↪→

17

18 Neg_Rot=Matrix([[1,0,0,0],[0, cos(2*theta_3),

sin(-2*theta_3),0],[0,-sin(-2*theta_3),cos(2*theta_3),0], [0,0,0,1]])↪→

19

20 Rot2=Matrix([[1,0,0,0],[0, cos(2*theta),

sin(2*theta),0],[0,-sin(2*theta),cos(2*theta),0], [0,0,0,1]])↪→

21

22 Neg_Rot2=Matrix([[1,0,0,0],[0, cos(2*theta),

sin(-2*theta),0],[0,-sin(-2*theta),cos(2*theta),0], [0,0,0,1]])↪→

23

24 Rot3=Matrix([[1,0,0,0],[0, cos(2*theta_2),

sin(2*theta_2),0],[0,-sin(2*theta_2),cos(2*theta_2),0], [0,0,0,1]])↪→

25

26 Neg_Rot3=Matrix([[1,0,0,0],[0, cos(2*theta_2),

sin(-2*theta_2),0],[0,-sin(-2*theta_2),cos(2*theta_2),0], [0,0,0,1]])↪→

27

28 Rot4=Matrix([[1,0,0,0],[0, cos(2*theta_4),

sin(2*theta_4),0],[0,-sin(2*theta_4),cos(2*theta_4),0], [0,0,0,1]])↪→

29

30 Neg_Rot4=Matrix([[1,0,0,0],[0, cos(2*theta_4),

sin(-2*theta_4),0],[0,-sin(-2*theta_4),cos(2*theta_4),0], [0,0,0,1]])↪→

31

32 Ret= Matrix([[1,0,0,0],

33 [0, (cos(2*theta))**2+(sin(2*theta))**2*cos(delta),

cos(2*theta)*sin(2*theta)*(1-cos(delta)), sin(2*theta)*sin(delta)],↪→

34

[0,cos(2*theta)*sin(2*theta)*(1-cos(delta)),(sin(2*theta))**2+(cos(2*theta))**2*cos(delta),-cos(2*theta)*sin(delta)],↪→
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35 [0,-sin(2*theta)*sin(delta),cos(2*theta)*sin(delta),cos(delta)]])

36

37 Ret_2= Matrix([[1,0,0,0],

38 [0, (cos(2*theta_2))**2+(sin(2*theta_2))**2*cos(delta_2),

cos(2*theta_2)*sin(2*theta_2)*(1-cos(delta_2)),

sin(2*theta_2)*sin(delta_2)],

↪→

↪→

39

[0,cos(2*theta_2)*sin(2*theta_2)*(1-cos(delta_2)),(sin(2*theta_2))**2+(cos(2*theta_2))**2*cos(delta_2),-cos(2*theta_2)*sin(delta_2)],↪→

40

[0,-sin(2*theta_2)*sin(delta_2),cos(2*theta_2)*sin(delta_2),cos(delta_2)]])↪→

41 LP= Matrix([[1,-1,0,0],[c, 1, 0, 0],[0,0,b,0], [0,0,0,d]])

42

43 LP_2= Matrix([[1,e,0,0],[-1, 1, 0, 0],[0,0,f,0], [0,0,0,g]])

44

45 S=Matrix([[1],[0],[0],[0]])

46

47 I=Matrix([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])

48

49 Out=Matrix([[1],[0],[0],[0]])

50

51 def writematixtofile(Location,matrix):

52 Location='C:/Users/Bruker/Desktop/Masterting/Matrices/' + str(Location)

53 with open(Location, 'wb') as outf:

54 outf.write(pickle.dumps(matrix))

55

56 def readmatixfromfile(Location):

57 Location='C:/Users/Bruker/Desktop/Masterting/Matrices/' + str(Location)

58 with open(Location, 'rb') as inf:

59 test = pickle.loads(inf.read())

60 return test

61

62

63

64 def makeAW():

65 #Makes A and W matrix for the different wavelengths and save them in the correct

pickle file↪→

66 Ret=np.loadtxt('C:/Users/Bruker/Desktop/Masterting/Opsett MM/CaF2.txt',

usecols=(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16))↪→

67 Ret_2=np.loadtxt('C:/Users/Bruker/Desktop/Masterting/Opsett

MM/CaF2_2.txt',usecols=(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16))↪→

68 LP=np.loadtxt('C:/Users/Bruker/Desktop/Masterting/Opsett MM/Polariser_B1.txt',

usecols=(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16))↪→

69 LP_2=np.loadtxt('C:/Users/Bruker/Desktop/Masterting/Opsett MM/Polariser_B2.txt',

usecols=(3,4,5,6,7,8,9,10,11,12,13,14,15,16,17))↪→

70 Deg=np.loadtxt('C:/Users/Bruker/Desktop/Masterting/Opsett MM/Polariser_B2.txt',

usecols=(2))↪→

71 Meas_Deg=np.loadtxt('C:/Users/Bruker/Desktop/Masterting/All

wavelengths/testing2.txt',max_rows=1)↪→

72

73 Ret=np.delete(Ret, [0,1,2,3,4,5,6,7,8,9,10,11,-1,-2,-3],0)

74 Ret_2=np.delete(Ret_2, [0,1,2,3,4,5,6,7,8,9,10,11,-1,-2,-3],0)
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75 LP=np.delete(LP, [0,1,2,3,4,5,6,7,8,9,10,11,-1,-2,-3],0)

76

77 Rot=Matrix([[1,0,0,0],[0, cos(2*theta_3),

sin(2*theta_3),0],[0,-sin(2*theta_3),cos(2*theta_3),0], [0,0,0,1]])↪→

78

79 Neg_Rot=Matrix([[1,0,0,0],[0, cos(2*theta_3),

sin(-2*theta_3),0],[0,-sin(-2*theta_3),cos(2*theta_3),0], [0,0,0,1]])↪→

80

81 Rot=lambdify(theta_3,Rot, "numpy")

82 Neg_Rot=lambdify(theta_3,Neg_Rot, "numpy")

83

84 Rot=Matrix(Rot(0.11301712))

85 Neg_Rot=Matrix(Neg_Rot(0.11301712))

86

87 ang=np.array([-51.7,-15.1,15.1,51.7])/180*np.pi-0.00537283

88 ang2=np.array([-51.7,-15.1,15.1,51.7])/180*np.pi+0.00255963

89 for degree in Meas_Deg:

90 i, = np.where(np.isclose(Deg, degree))

91 i=int(i)

92 OE1=Matrix(np.reshape(np.concatenate(([1.0], LP[i,:])),(4,4)))

93 OE2=Matrix(np.reshape(np.concatenate(([1.0], Ret[i,:])),(4,4)))

94 OE3=Matrix(np.reshape(np.concatenate(([1.0], Ret_2[i,:])),(4,4)))

95 OE4=Matrix(np.reshape(np.concatenate(([1.0], LP_2[i,:])),(4,4)))

96

97 W=Neg_Rot2*OE2*Rot2*OE1*S

98 W=lambdify(theta,W[:], "numpy")

99 W=Matrix(W(ang2))

100 print(W)

101

102

103 A=transpose(S)*Neg_Rot*OE4*Rot*Neg_Rot3*OE3*Rot3

104

105 A=lambdify(theta_2,A[:], "numpy")

106 A=transpose(Matrix(A(ang)))

107

108 writematixtofile('A/'+str(degree)+'.pickle', A)

109 writematixtofile('W/'+str(degree)+'.pickle', W)

110

111 def loadandarrangeB(i, path):

112 #Load text file with the intensity matrix and arrange it correctly

113 B=np.loadtxt(path, usecols=i)

114 B=B[1:]

115 A=np.zeros((4,4))

116 PSG=[1,1,2,2,3,3,3,2,1,0,0,0,0,1,2,3]

117 PSA=[1,2,2,1,1,2,3,3,3,3,2,1,0,0,0,0]

118 for j in range(len(B)):

119 A[PSA[j],PSG[j]]=B[j]

120 return Matrix(A)

121

122 def findMMandsave(load_path, save_path):

123 #Finner Muellermatrisa tilsvarende målingene tatt
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124 Meas_Deg=np.loadtxt(load_path,max_rows=1)

125 i=0

126 for degree in Meas_Deg:

127 A=readmatixfromfile('A/'+str(degree)+'.pickle')

128 G=readmatixfromfile('W/'+str(degree)+'.pickle')

129 B=loadandarrangeB(i, load_path)

130 A_inv=Matrix(np.linalg.pinv(np.array(A).astype(np.float64)))

131 G_inv=Matrix(np.linalg.pinv(np.array(G).astype(np.float64)))

132 M=np.array(A_inv*B*G_inv).astype(np.float64)

133 M=np.reshape(M,16)

134 np.savetxt(str(save_path) + str(degree)+'.txt', [M])

135 i+=1

136

137 def plottM(load_path, load_path_MM, save_path):

138 #Plotter matrisene

139

M_11,M_12,M_13,M_14,M_21,M_22,M_23,M_24,M_31,M_32,M_33,M_34,M_41,M_42,M_43,M_44=[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]↪→

140 Meas_Deg=np.loadtxt(load_path,max_rows=1)

141 for degree in Meas_Deg:

142 MM=np.loadtxt(str(load_path_MM) + str(degree)+'.txt')

143

M_11.append(MM[0]),M_12.append(MM[1]),M_13.append(MM[2]),M_14.append(MM[3]),M_21.append(MM[4]),M_22.append(MM[5]),M_23.append(MM[6]),M_24.append(MM[7]),M_31.append(MM[8]),M_32.append(MM[9]),M_33.append(MM[10]),M_34.append(MM[11]),M_41.append(MM[12]),M_42.append(MM[13]),M_43.append(MM[14]),M_44.append(MM[15])↪→

144

M_11,M_12,M_13,M_14,M_21,M_22,M_23,M_24,M_31,M_32,M_33,M_34,M_41,M_42,M_43,M_44=np.array(M_11),np.array(M_12),np.array(M_13),np.array(M_14),np.array(M_21),np.array(M_22),np.array(M_23),np.array(M_24),np.array(M_31),np.array(M_32),np.array(M_33),np.array(M_34),np.array(M_41),np.array(M_42),np.array(M_43),np.array(M_44)↪→

145

M_11,M_12,M_13,M_14,M_21,M_22,M_23,M_24,M_31,M_32,M_33,M_34,M_41,M_42,M_43,M_44=M_11/M_11,M_12/M_11,M_13/M_11,M_14/M_11,M_21/M_11,M_22/M_11,M_23/M_11,M_24/M_11,M_31/M_11,M_32/M_11,M_33/M_11,M_34/M_11,M_41/M_11,M_42/M_11,M_43/M_11,M_44/M_11↪→

146 fig, ((ax1, ax2, ax3, ax4), (ax5, ax6, ax7, ax8),(ax9, ax10, ax11, ax12),(ax13,

ax14, ax15, ax16)) = plt.subplots(4, 4, figsize=(12,10))↪→

147

148 ax1.plot(Meas_Deg,M_11, label='M_11')

149 ax1.legend()

150

151 ax2.plot(Meas_Deg,M_12, label='M_12')

152 ax2.legend()

153

154 ax3.plot(Meas_Deg,M_13, label='M_13')

155 ax3.legend()

156

157 ax4.plot(Meas_Deg,M_14, label='M_14')

158 ax4.legend()

159

160 ax5.plot(Meas_Deg,M_21, label='M_21')

161 ax5.legend()

162

163 ax6.plot(Meas_Deg,M_22, label='M_22')

164 ax6.legend()

165

166 ax7.plot(Meas_Deg,M_23, label='M_23')

167 ax7.legend()

168

169 ax8.plot(Meas_Deg,M_24, label='M_24')
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170 ax8.legend()

171

172 ax9.plot(Meas_Deg,M_31, label='M_31')

173 ax9.legend()

174

175 ax10.plot(Meas_Deg,M_32, label='M_32')

176 ax10.legend()

177

178 ax11.plot(Meas_Deg,M_33, label='M_33')

179 ax11.legend()

180

181 ax12.plot(Meas_Deg,M_34, label='M_34')

182 ax12.legend()

183

184 ax13.plot(Meas_Deg,M_41, label='M_41')

185 ax13.set_xlabel('Wavelength [nm]')

186 ax13.legend()

187

188 ax14.plot(Meas_Deg,M_42, label='M_42')

189 ax14.set_xlabel('Wavelength [nm]')

190 ax14.legend()

191

192 ax15.plot(Meas_Deg,M_43, label='M_43')

193 ax15.set_xlabel('Wavelength [nm]')

194 ax15.legend()

195

196 ax16.plot(Meas_Deg,M_44, label='M_44')

197 ax16.set_xlabel('Wavelength [nm]')

198 ax16.legend()

199 fig.savefig(r'C:\Users\Bruker\Desktop\MM.png',bbox_inches='tight', dpi=250)

200

201 def MakebaseAW():

202

203 A=transpose(Out)*Neg_Rot*LP_2*Rot*Ret_2

204 G=Ret*Neg_Rot4*LP*Rot4*S

205 W=A*G

206 writematixtofile('A/A.pickle', A)

207 writematixtofile('W/W.pickle', G)

208 writematixtofile('I/I.pickle', W)

209

210 def Calibration():

211 #Callibrates the the sample

212 Int=readmatixfromfile('I/I.pickle')

213 Int=Int[0,0]

214 Int=Int.subs(theta, theta-e_1)

215 Int=Int.subs(theta_2, theta_2-e_2)

216 Int=a*Int

217 I=lambdify(list(Int.free_symbols), Int)

218 List=[]

219

220
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221

222 t,t_2=np.loadtxt(r'C:\Users\Bruker\Desktop\Masterting\All

wavelengths\calib_degrees7.txt', unpack=True)↪→

223 Meas_Deg=np.loadtxt(r'C:\Users\Bruker\Desktop\Masterting\All

wavelengths\calib7.txt', max_rows=1)↪→

224 t=t/180*np.pi

225 t_2=t_2/180*np.pi

226

227

228 param_values = dict(e_2=0, theta_4=0, delta=128/180*np.pi, e=1, a=0.81,

theta_3=0, c=-1, e_1=0, theta=t, theta_2=t_2, delta_2=128/180*np.pi)↪→

229

230 for i in range(len(Meas_Deg)):

231 D=np.loadtxt(r'C:\Users\Bruker\Desktop\Masterting\All

wavelengths\calib7.txt', skiprows=1, usecols=i)↪→

232 mod=lmfit.Model(I,independent_vars=['theta', 'theta_2'])

233 mod=mod.fit(data=-D, **param_values)

234 o=[]

235 for name, param in mod.params.items():

236 f=param.value

237 o.append(f)

238 List.append(o)

239

np.savetxt(r'C:\Users\Bruker\Desktop\Masterting\Matrices\Coefficients\Coeff.txt',

List)

↪→

↪→

240

241 def makeAWnew():

242 A=readmatixfromfile('A/A.pickle')

243 W=readmatixfromfile('W/W.pickle')

244 One=np.ones(4)

245 A=lambdify((e,delta_2,theta_2,theta_3), A[:], 'numpy')

246 W=lambdify((c,delta,theta,theta_4), W[:], 'numpy')

247 Meas_Deg=np.loadtxt(r'C:\Users\Bruker\Desktop\Masterting\All

wavelengths\calib7.txt', max_rows=1)↪→

248 for i in range(len(Meas_Deg)):

249

L=np.loadtxt(r'C:\Users\Bruker\Desktop\Masterting\Matrices\Coefficients\Coeff.txt',skiprows=i,max_rows=1)↪→

250 #må dele opp L manuelt etter rekkefølgen definert i calibration

251 ang=np.array([-51.7,-15.1,15.1,51.7])/180*np.pi-L[7]

252 ang2=np.array([-51.7,-15.1,15.1,51.7])/180*np.pi-L[0]

253 N=A(L[3],L[8], ang, L[5])

254 N[0]=One

255 N=np.transpose(np.array(N))

256

257 P=W(L[6],L[2], ang2, L[1])

258 P[0]=One

259 P=np.array(P)

260 writematixtofile('A/'+str(Meas_Deg[i])+'.pickle', N)

261 writematixtofile('W/'+str(Meas_Deg[i])+'.pickle', P)

262

263
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264 def main(data_path, matrix_location,figure_location):

265 findMMandsave(data_path,matrix_location)

266 plottM(data_path, matrix_location,figure_location)

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298
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Appendix B:

Results from Unsuccessful Calibration using the Intensity

Fit Method

Figure 33: Inverse condition numbers of A and W obtained using the intensity fit method.
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Figure 34: Measured Mueller matrix of air using the intensity fit calibration.
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