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studies were carried out during pandemic restrictions and the second stay in France has not

taken place yet. Part of me wants to continue to work on research, have a stay at UTT and

participate on international conferences with physical attendance.

Professor Anne Barros (current affiliation: Department of Industrial Engineering at Cen-

traleSupélec, France) and Professor Jørn Vatn have been the main supervisor and co- super-

visor, respectively, from the Department of Mechanical and Industrial Engineering, NTNU.

Professor Antoine Grall has been the supervisor from the unit of Computer Science and Dig-
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Summary

This thesis focuses on Piecewise deterministic Markov process (PDMP), a general class of

non-diffusion stochastic models, as a framework for modelling condition-based mainte-

nance (CBM) decision problems of critical infrastructures. This model allows to simulate

different maintenance strategies for a stochastic deteriorating system and to assess the as-

sociated effects, the maintenance costs and the operational performance, in order to deter-

mine the best maintenance strategy to implement. From a stochastic models perspective,

PDMP represents a canonical model that includes a wide variety of applications as special

cases, virtually covering all non-diffusion applications, under a process that combines ran-

dom jumps and deterministic motion. For CBM modelling, it presents a framework capable

of handling a very large number of problems, with different modelling assumptions for both

the deterioration and the intervention process, such as non-constant transition rates be-

tween discrete states, maintenance delays, different frequency regimes and quality of moni-

toring and system dependencies.

The application of PDMP as a framework is studied and presented for models of single-

items and for multi-component systems, describing the formalism of the process and its

evolution while developing a numerical approach for the calculation of quantities of interest

such as the probability for the maintained system, to be in a critical or unacceptable state

at any time or the maintenance strategy mean cost over a period of time. A simulation ap-

proach is also developed for comparison and validation of results of the numerical scheme.

The scientific basis of the framework proposed in this thesis is supported by relevant solid

theory published in recognized peer-reviewed journals.

The proposed framework is applied to relevant case studies of critical infrastructures to

illustrate the modelling and quantification approach. The presented modelling assumptions

are based on both literature review and discussions with experts from the critical infrastruc-

tures sectors. One case is related to the transport sector with road bridges modelled as a

single-unit system, and another case is related to the energy sector with gas compressors, ex-

ploring the capabilities for modelling of multi-component systems. Through the case stud-

ies, guidelines on how to account for different assumptions such as inspection frequency

and quality, system dependencies, as well as maintenance policies are discussed.

The thesis could serve as a basis for further research or engineering applications. A

combination of physics-based and data-driven approaches for deterioration modelling and

prognostics can be studied with PDMP as framework. Designing and presenting efficient al-

gorithms for the computation of PDMP could allow the development of more advanced sim-

ulators than those available today for maintenance planning. Another interesting direction

of research could be studying reinforced learning approaches with PDMP as base model, for

estimation of model parameters when dealing with limited data characterized by a mixture

of qualitative and quantitative information, important problems of censoring, incomplete-

ness, and pollution by maintenance actions.
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Chapter 1

Introduction

1.1 Background

Modern societies depend on the availability of certain services, facing risks with serious eco-

nomic consequences or loss of life when such services or products are disrupted or unavail-

able. Such services are provided by Critical Infrastructures [1].

The Council of the European Union defines a critical infrastructure as "an asset, system

or part thereof located in Member States which is essential for the maintenance of vital so-

cietal functions, health, safety, security, economic or social well-being of people, and the

disruption or destruction of which would have a significant impact in a Member State as a

result of the failure to maintain those functions" and establishes a procedure for the identifi-

cation and designation of European critical infrastructures in [2]. The energy and transport

sectors are used for the implementation of the Directive. The sub-sectors are shown in table

1.1.

Table 1.1: List of European Critical Infrastructure sectors [2]

1
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Risks in critical infrastructures may come from different sources, from simple wear of

units that can eventually lead to failures to sabotages and terrorist acts and war [1]. This

PhD project is mainly concerned with the natural wear of such systems rather than on delib-

erately induced faults. The risk associated to the deterioration has traditionally pushed the

decision makers to take large safety margins and to preventively over inspect or maintain the

systems.

In recent decades, the technology and techniques for condition monitoring have expe-

rienced a rapid development. However, there is still a need for reducing unnecessary in-

spections and/or preventive maintenance actions and their associated cost, through optimal

design of condition-based maintenance (CBM) strategies. If we consider critical infrastruc-

tures in civil engineering or in oil & gas industry, CBM strategies are often carried without

any modelling and assessment of their efficiency in the mid or long term. Generally speak-

ing, the problem is about sub-optimal decisions in terms of maintenance cost, availability of

production and even reputation [3, 4].

In the bridge management system applied in Denmark, Finland, France, South Africa,

United Kingdom, China, South Korea, United States of America, Norway and other coun-

tries, inspections are carried out by following pre-defined procedures and a condition rating

is assigned to the structure in a discrete scale [5]. The decision about when to perform main-

tenance is based on the condition rating assigned at these inspections. In Norway, hand-

books for management and inspections of bridges [6, 7], establish the types of inspections

for the bridges and the period in which they must be performed. For example, the main

inspection of a bridge, with an overview of all the elements of the bridge, must (in general)

be performed every five years. The handbooks also establish how the inspections must be

logged in a database, how the found damages must be reported and when to schedule the

repairs for found damages: given the reported damages, the condition of the whole bridge is

ranked among a very limited number of global deterioration states and the delay before re-

pair is chosen accordingly. However, the period of inspection and the delay before repair are

not optimized according to a time-dependent or a long term safety criteria or maintenance

cost.

In the oil & gas industry, the natural gas transportation infrastructure is dependent on

high capacity compressors to supply the required flow of gas at any time all over the year.

This is especially important during the winter season where a full capacity is needed and one

hundred per cent of the equipment is used. Most of the compression systems involve high

voltage electrical motors which are subject to deterioration which is assessed by the num-

ber of partial discharges in the insulation layers. These electrical motors are periodically

inspected and their global deterioration state is ranked among a limited number of discrete

states (6 levels according to ABB and Karsten Moholts scale for example [8]). A preventive

maintenance can be recommended according to this rank but the production requirements

can lead to postpone the execution of the maintenance tasks. For example, a preventive

maintenance will not be triggered during the consumption peak in the winter season. Con-
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sequently, knowing the electrical motor condition at the inspection date is not enough to

make an optimal decision for the maintenance time and task. It is required to model the

overall CBM strategy including the maintenance delay due to seasonal constraints and the

costs related to maintenance and failures.

In this thesis, we intend to propose a framework for CBM modelling dedicated to critical

infrastructures. The purpose is to have a model to assess the performance of CBM strate-

gies. This could allow to challenge those pre-established CBM strategies that might be not

optimal and to provide time dependent or long term decision criteria to optimize them. The

decision criteria are basically the probability, for the maintained system, to be in a critical

or unacceptable state at any time or the maintenance strategy mean cost over a period of

time. The main assumptions we keep from the application field of critical infrastructures

are: we consider that the deterioration process is stochastic, in the sense that the evolution

cannot be appropriately described by means of physical deterministic laws, and the system

condition is characterized at a high level of abstraction with discrete states (often given by

guidelines in the application field).

1.2 Objectives

The main objective of this thesis is "to study, develop and demonstrate quantitative models

for prognosis and condition-based maintenance assessment of critical infrastructures". For

this purpose the following sub-objectives are defined:

1. Conduct a literature review on condition-based maintenance, degradation modelling,

prognostic approaches and stochastic processes for deterioration modelling.

2. Explore on the capabilities of Piecewise deterministic Markov processes (PDMP) for

the modelling and assessment of CBM policies of single-unit systems under certain

non-common assumptions.

3. Explore on the capabilities of PDMP for the modelling and assessment of CBM policies

of multi-component system subjected to inter-dependencies.

4. Study and develop analytical approaches for the solution of system models.

5. Identify, select and describe relevant case studies for the application of PDMP as a

modelling framework and assessment of CBM policies.

6. Apply developed models, validating results of analytical and numerical approaches

with Monte Carlo simulations.
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1.3 Scientific approach

Research and experimental development (R&D) involves creative and systematic work per-

formed in order to increase the amount of knowledge (including knowledge of humankind,

culture and society) and to devise new applications of available knowledge. It can involve

three types of activity: basic research, applied research and experimental development [9].

Basic research is experimental or theoretical work performed primarily in order to gain

new knowledge of underlying foundations of phenomena and observable facts, without any

particular application or use in view. Applied research refers to original investigation per-

formed to acquire new knowledge but directed primarily towards a specific, practical aim

or objective. Experimental development is systematic work, taking on knowledge acquired

from research and practical experience, which produces additional knowledge directed to

produce new products or processes or to improve the existing products and processes.

From the above described types of R&D, the work included in this thesis falls into the

category of applied research, i.e. an original activity undertaken to gain new knowledge

and insights directed to practical applications in the industry. It involves considering the

available knowledge and its extension in order to solve actual problems. In this thesis, exist-

ing mathematical frameworks and simulation methods are studied in order to solve actual

condition-based maintenance problems, in an original way, contributing to the expansion

of the capabilities for modelling of the commonly applied frameworks.

The general basis for this thesis and the topics it contains have been established through

literature studies and meetings and discussions with professional experts on the critical in-

frastructures sector in Norway. The developed models throughout this thesis, based on the

framework of PDMP, could in principle be verified empirically of by the collection of field

data. However, as with a great deal of applied research works in the field of reliability, avail-

ability, maintenance and safety (RAMS), such verification is highly challenging. The reason

is that these models deal with undesired events such failures or deterioration phenomena

which represents serious risks, especially when the application is within the critical infras-

tructure sectors. Preventive maintenance tasks are carried out on regular basis in order to

avoid those rare failures and to stop or slow down the progression of deterioration phenom-

ena. Hence, the data needed to verify the models in this way is not readily available and

it is not practical to carry out experiments in order to collect data. Model evaluation and

verification must be done by other methods than empirical or experimental.

Model evaluation and verification

The model evaluation protocol, issued by the European Union in 1994 [10], consist of three

main elements:

• Scientific assessment

• Verification
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• Validation

The scientific assessment should involve a comprehensive description of the model, as-

sessment of the scientific content, definition of the scope, and advantages and limitations of

the model. Verification is the process of showing that a model has scientific basis, that the

assumptions are reasonable, the equations are correctly solved. From a general perspective,

that the proposed model does what it claims to do. Finally, validation is the process of as-

sessing a model so that its accuracy and usefulness can be determined, often by comparison

with other models [11, 12].

In this thesis, the developed framework is based on rational understanding of Markov

processes and condition-based maintenance models assumptions and limitations. For ver-

ification and validation, the scientific basis of the main framework proposed in this thesis

is supported by relevant solid theory published in recognized peer-reviewed journals, as we

are dealing with applied research. The proposed assumptions are based on both literature

review and discussions with experts from the critical infrastructures sectors. Both analyti-

cal and simulation approaches are studied for comparison and validation of results. Case

studies have been developed in close collaborations with experts in the energy and trans-

port sectors of critical infrastructures, showing the usefulness of the modelling framework in

practical applications.

Scientific quality

The research council of Norway [13] states that quality in science is related to three aspects:

originality, solidness and relevance. There can be a trade-off between these aspects, for ex-

ample strong solidness with thorough theoretical support of the statements and conclusions

could be counter productive to the originality and innovation. Similarly, a work with limited

originality can still be very practical, useful and hence relevant.

This thesis tries to balance the three aspects. The work aims to explore in solid developed

theory in the field of mathematics but with limited applications, with the aim of modelling

CBM problems. This is considered an original and novel work, as there are very limited appli-

cations in this field today. Relevance of the framework is shown through case studies related

to critical infrastructures. Moreover, the scientific quality of the work is also controlled by

dissemination in scientific peer-reviewed journals and international conferences. Review-

ers are experts in the subject and their comments and feedback have had a very valuable

contribution to the quality of the research and work presented here.

1.4 Academic publications

The list of research works that have been submitted, published in international journals or

presented in international conferences as part of the work during this PhD project, are:
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• Conference 1:

Renny Arismendi, Anne Barros, Jørn Vatn, Antoine Grall

Piecewise Deterministic Markov Process for Condition-based Maintenance with Delay

(Abstract-only with presentation in special session)

11th International Conference on Mathematical Methods in Reliability (MMR 2019),

Hong Kong, 3-7 June 2019

• Conference 2:

Renny Arismendi, Anne Barros, Jørn Vatn, Antoine Grall

Prognostics and Maintenance Optimization in Bridge Management

29th European Safety and Reliability Conference (ESREL 2019), Hannover, Germany, 22-

26 September 2019

• Conference 3:

Renny Arismendi, Anne Barros, Antoine Grall

Preventive Maintenance of a Compressor Station: a Modelling Framework for the As-

sessment of Performance

30th European Safety and Reliability Conference (ESREL 2020) - 15th Probabilistic Safety

Assessment and Management Conference (PSAM15), Venice, Italy, 1-5 November 2020

• Journal 1:

Renny Arismendi, Anne Barros, Antoine Grall

Piecewise deterministic Markov process for condition-based maintenance models -

Application to critical infrastructures with discrete-state deterioration

Reliability Engineering & System Safety, Volume 212, August 2021, 107540

• Journal 2:

Renny Arismendi, Anne Barros, Antoine Grall

A modelling framework for Condition-based Maintenance of systems with multi-state

components - Application to a gas compression system

Under review by: Reliability Engineering & System Safety

1.5 Limitations

This thesis is written from an engineering perspective. As pointed in the previous section,

the work included here falls into the category of applied science and research rather than

on basic or pure science. Parts of this thesis deal with mathematical models and statisti-

cal methods for estimation of model parameters. These are part of the work of considering

available knowledge and its extension, with the intention of solving actual problems. In our

case, related to condition-based maintenance of critical infrastructures. Hence, the main

contributions of this thesis are not necessarily in statistics and mathematics but in applied

engineering for maintenance modelling.
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In this thesis the focus is placed on Piecewise deterministic Markov processes as a general

class of non-diffusion stochastic models, for studying CBM problems with discrete-state de-

terioration. In this way, the intention is to include different modelling formalisms available

in the literature under the same framework. There exists a large collection of special models

and methodologies available for studying non-diffusion stochastic models within reliabil-

ity and maintenance applications. It is not an easy task to compare and organize models in

terms of their correctness, as different models may be used to analyze the same systems [14].

The focus of model developing is often place on usefulness. Although the class of PDMP vir-

tually covers all stochastic non-diffusion applications [15], it is not intended to replace the

existing models in the literature, many of which present efficient techniques for calculations

by making use of the special structure of specific models given the application and its model

assumptions.

A model is an abstraction or simplification of the reality it is designed to represent [16,

17]. In systems modelling, there is a popular saying: a model is only as good as its assump-

tions. It is therefore duty of the model developer to carefully formulate the model assump-

tions. In this thesis, we take assumptions for deterioration processes and maintenance man-

agement inspired from critical infrastructures applications. These assumptions are clearly

stated throughout the thesis where they apply.

This thesis includes relevant case studies on the application of the proposed modelling

framework for assessment of CBM policies. These case studies have been developed in col-

laboration with the sector of critical infrastructures. They involved constraints related to lim-

ited access to data: current data bases available for critical infrastructures are characterized

by a mixture of qualitative and quantitative information, important problems of censoring,

incompleteness, and pollution by maintenance actions. Therefore, the model parameters

have been estimated from a combination of limited data and expert judgement, and sup-

ported from previous internal works of the corresponding sector. The results of these case

studies are therefore intended to show the capabilities of the modelling framework in captur-

ing an overview of the systems and some of their interesting features, rather than presenting

a definite solution to the specific CBM problem.

1.6 Structure of the thesis

The thesis is structured in chapters. Chapter 2 introduces the theoretical background that

serves as basis for the thesis, including the relevant terms, concepts and basic theory for the

formulations developed through the thesis. Chapter 3 explores on the application of a Piece-

wise deterministic Markov process (PDMP) to encompass different modelling assumptions

as non-negligible maintenance delays and inspection-based condition monitoring of single-

unit systems. A numerical scheme for quantification, as an approximation of the Chapman-

Kolmogorov equation, is described. A case study dealing with CBM of road bridges by the

NPRA (Norwegian Public Roads Administration) is presented, guiding through the modelling
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and quantification approach. Chapter 4 explores on the application of PDMP and multi-

state systems theory, for modelling CBM of multi-component system, allowing for the per-

formance assessment of maintenance policies at the system level, while taking into account

some structural and resources dependencies among the components with non-negligible

actions duration and constraints related to the production profile. A case study dealing with

CBM of a gas compression system is presented, with modelling and quantification guides to

assess the performance of a maintenance policy at the system level Finally, chapter 5 sum-

marizes and concludes the thesis, highlighting features of PDMP as a framework for CBM

models and recommending future directions of research and applications.



Chapter 2

Theoretical background

This chapter introduces the theoretical background that serves as basis for the thesis, in-

cluding the relevant terms, concepts and basic theory for the formulations developed and

presented in subsequent chapters.

The chapter starts by introducing the maintenance concept and engineering challenge

and types of maintenance in section 2.1. Next, section 2.2 presents the purpose and elements

of condition-based maintenance models, and an overview of the common approaches avail-

able. This is followed by an introduction to Markov processes, a class of stochastic processes

that are the focus of the thesis in section 2.3, while section 2.4 introduces the main frame-

work of the thesis: Piecewise deterministic Markov processes, a more general class of non-

diffusion stochastic models. Section 2.5 presents a classification of the system models as

single-item and multi-component. Finally, section 2.6 concludes the chapter by highlight-

ing the key concepts, theory and features of this chapter that are key for the developments

presented in subsequent chapters.

2.1 Maintenance

The European committee for standardization has prepared the standard: EN 13306:2017

Maintenance - Maintenance terminology [18], with the purpose of defining the generic terms

used for all types of maintenance and maintenance management, irrespective of the type of

item considered. Such terms may be of particular importance in formulations of mainte-

nance contracts. The standard, defines maintenance as: "combination of all technical, ad-

ministrative and managerial actions during the life cycle of an item intended to retain it in,

or restore it to, a state in which it can perform the required function".

Maintenance management is a problem of decision making under uncertainty. The main-

tenance decisions may need to account for several criteria that can sometimes be contradic-

tory. Hence, choosing the "best" maintenance strategy is a complex task that is not only

dependent on the state of the system, but also in uncertain future factors, such as the conse-

quences of this choice in the long term life of the unit. The objective of such optimization is

to determine a maintenance policy that optimizes system performance according to certain

9
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criteria (e.g. cost, availability) [19, 20].

Traditionally, maintenance management has been a reverse engineering activity, where

the decision process is dependent on the technical and mechanical education of the mainte-

nance staff and their hands on expertise. However, even though expertise is crucial, it should

not be the only basis for decisions related to maintenance [19]. By using stochastic models, it

may be possible to simulate different maintenance strategies and to assess the associated ef-

fects, the maintenance costs and the operational performance. Therefore, these simulations

can be used to determine the best maintenance strategy to implement.

2.1.1 Types of maintenance

Maintenance tasks can be classified in different ways. The most common designations are

shown in figure 2.1 and described hereafter.

Figure 2.1: Types of maintenance

Maintenance

Preventive
maintenance

Corrective
maintenance

Predetermined
maintenance

Condition-based
maintenance (CBM)

Non-predictive CBM Predictive
maintenance

PrognosisDiagnosis

Condition
assessment

No Condition
assessment

Before failure After failure

As shown in figure 2.1, at the highest level maintenance is classified with respect to when

the tasks are carried out in corrective and preventive maintenance.

Corrective Maintenance (CM)

Corrective maintenance refers to all actions that are carried out after an item failure or fault

has been detected, with the goal of restoring the item to a functioning state.

Preventive Maintenance (PM)

The International Electrotechnical Commission [21] defines Preventive maintenance as "main-

tenance carried out to mitigate degradation and reduce the probability of failure". PM tasks

can include activities like inspections, lubrication, adjustments, replacement of parts, re-

pairs of parts wearing out, among others [22].
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Per definition of critical infrastructures, it is crucial to avoid failures, therefore preventive

maintenance is imperative for these assets or systems. Preventive maintenance tasks can be

further split into Predetermined maintenance and Condition-based maintenance.

Predetermined PM By predetermined PM tasks we refer to scheduled tasks that do not

rely on measurements of condition variables of the item. Typical implementations include

clock-based and age-based strategies. In clock-based the tasks are carried out at specified

calendar times and in age-based the tasks are carried out at a specified age of the item. The

age of the item is measured in ways that depend on the application and examples are the

time in operation, charge cycles, kilometers driven. Traditionally, predetermined PM has

been the most common type of PM applied in the industry, particularly with clock-based

tasks due to being easier to manage.

For critical infrastructures, it is not only crucial to avoid failures but also interruptions

of their service, including those due to maintenance actions. Hence, there is a need to for

reducing unnecessary inspections and/or preventive maintenance actions. The challenge is

then to select the most cost efficient maintenance strategy while meeting risk and availability

criteria. The development of the technology and techniques for condition monitoring has

enabled massive data collection and with this critical infrastructures adopt condition-based

maintenance as a way to optimize their maintenance strategies. CBM is the topic of the next

section.

2.1.2 Condition-based Maintenance

Condition-based maintenance refers to those tasks that are carried out based on measure-

ments of one or more condition variables of the item. The condition of an item typically

exhibits degradation over its lifetime, which eventually leads to failure.

In CBM, a task is started when the degradation or accumulated damage reaches a thresh-

old value [22]. To implement CBM, it is then required to monitor the condition of the item

and its degradation. In the recent decades research on condition based maintenance (CBM)

has been growing rapidly, assisted by the rapid development of computer based monitoring

technologies. Research studies have proved that when CBM is correctly planned and im-

plemented, it can be effective to improve systems reliability/availability with reduced costs

[20].

CBM tasks can be classified into predictive and non-predictive as seen in figure 2.2. The

principle of this classification is the base for the maintenance decisions, i.e. whether they

are based on fault diagnosis or prognosis, as presented on figure 2.2.

CBM that is carried out following prognosis, i.e. forecast analyses taking into account the

degradation of the item, conditions about the future as environmental, operational as well

as the performance of the maintenance actions, is also known as predictive maintenance.

Currently, the trend in many fields and in critical infrastructures is to move the CBM pol-

icy from diagnosis to prognosis. Through fault diagnosis, it is possible to implement mainte-
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Figure 2.2: Diagnosis vs prognosis

nance decisions by following pre-established rules and recommendation saying when to do

what, i.e. regulations or recommended practices that link a condition to a suggested main-

tenance action. In this way, the maintenance teams performs fault diagnosis on an item and

then follow the recommendation based of the findings.

Failure prognosis allows to take the maintenance to a next step in order to question such

pre-established rules, to reduce overestimated margins and to optimize decision rules. Using

mathematical models, it can be possible to simulate different maintenance strategies and to

assess the associated effects, the maintenance costs and the operational performance. These

simulations can then be used to determine the best maintenance strategy to implement [19].

The next section is dedicated to the elements and approaches for CBM modelling and prog-

nostics.

2.2 CBM modelling and prognostics

The purpose of a CBM model is to determine a maintenance strategy that optimises the per-

formance according to some criteria such as cost, availability or others. In general, a model

designed to optimise a CBM policy should consist of two elements: (i) a deterioration model

and (ii) an intervention model [23] [24]. The deterioration model is used to forecast the ac-

tual process of degradation of the health condition of a unit, while the intervention model

captures the effect of maintenance and/or inspections in its health condition. Therefore the

global model can be used to find the optimal performance under a given intervention strat-

egy (parametric optimisation) or to investigate for an optimal strategy, as in figure 2.3. In

this sense, the CBM model involves prognostics in pursuance to support the maintenance

decision making.

There is a large amount of literature devoted to CBM optimization with a wide range of

modelling frameworks and application areas. A key indicator in failure prognostics is the

Remaining Useful Life (RUL). It is commonly understood as the useful life of an asset left at

a particular time of operation, given a particular degradation state (defined by a health indi-

cator) and given operational conditions in the future (if available). Its estimation is central

for condition based maintenance optimization.

During the last two decades a number of degradation models have been developed to
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Figure 2.3: Condition-based maintenance model

capture the degradation and assist the decision making [25, 26]. The first step in CBM mod-

elling is the identification and definition of the degradation model. Based on this, the ap-

proaches in prognostics can be categorized on physics-based and data-driven [27], as in fig-

ure 2.4.

Figure 2.4: Classification of prognostics approaches

Prognostic approaches

Physics-based Data-driven

Artificial Intelligence 
approaches

Statistical &
Stochastic 

approaches

Physics-based approaches Physics-based approaches refer to those degradation models

that rely on physical laws that describe the behaviour of the damage. The behaviour of the

physical model depends model parameters that are usually obtained from laboratory tests

or estimated from measured historical operational data up to the current time [27]. The RUL

is predicted by progressing the degradation until it reaches a threshold.

The Paris’ law is one of the first crack propagation concepts [28] and an example of a

physics-based model. The equation 2.1 describes a region of a crack propagation curve in

terms of material dependent quantities.

d a

d N
=C (∆K )m (2.1)

Where a is the crack length and d a
d N is the fatigue crack growth for a load cycle N in terms

of material coefficients C and m. These material coefficients are obtained empirically and

depend on factors such as: environment, frequency, temperature and stress ratio.
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Data-driven approaches In contrast with the physics-based, data-driven approaches are

those which do not rely on physical laws or properties but instead use information from ob-

served data to identify the characteristics of the damage progress and to predict its future

evolution. Generally, these data-driven approaches are divided in two categories: one in-

volving statistical and stochastic models and one for artificial intelligence approaches.

For the statistical and stochastic models, the aim is to use a data set to fit a degradation

model to the items condition from working state until failure. This category can involve

trend models, time series and stochastic processes. The law of the RUL is often estimated

with these models.

In the case of the artificial intelligence approaches, the aim is to use the data with an

automated model building. They rely on machine learning and based on pattern recognition

and the theory of computers learning from data, without being programmed for specific

tasks. Neural networks, fuzzy logic are some typical approaches of this category used for

predictions of RUL. A key difference to the statistical and stochastic models is that the law of

the RUL is not estimated but the uncertainty of the prediction is assessed through an error

estimated on a validation data set [29].

The focus of this thesis is placed on stochastic processes and these are the approaches

which are further discussed.

Stochastic processes

The degradation phenomena is many cases is considered to be random or the factors influ-

encing it are too complex so that the degradation process cannot be described in a determin-

istic way. In these cases stochastic processes can be used to model the random behaviour.

A stochastic process is any process that describes the evolution of a random phenome-

non. From the mathematical perspective, the theory of stochastic processes was established

during the 1950s [30]. Stochastic processes have now applications in a wide range of applica-

tions in disciplines like physics, control theory, biology, image processing, signal processing,

computer science and degradation modelling among others.

Mathematically, a stochastic process is a collection of random variables {X (t ), t ∈ T } de-

fined in a common probability space, taking values in a state space χ and indexed by a set T ,

often thought of as time. For each index t in T , X (t ) is called the state of the process at time

t . In other words, there is a system for which there are observations at certain times and the

observed value at each time is a random variable [31].

In our context, the degradation is considered to follow a continuous-time stochastic pro-

cess. The state of the process is random and its state space χ can be discrete or continuous.

Based on this, the stochastic processes commonly used in degradation and CBM modelling

can be classified in discrete-state and continuous-state deterioration.

The choice of discrete-state or continuous-state stochastic processes for CBM modelling,

depends mainly on the application field. In many applications, it is reasonable to charac-

terize the condition of the item by a finite set of deterioration states or levels and there is
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no need to work in every continuous value of the degradation (from an engineering prac-

tice perspective). For these applications, discrete-state stochastic process are used for CBM

modelling. For other systems, it is practicable to measure and monitor the degradation in

a continuous scale, without the need to classify the multiple states. Therefore, continuous-

state stochastic processes can be better suited and provide more precision in the results.

A review in CBM modelling for stochastic degrading systems [20] has found that the most

common discrete-state deterioration models are Markov chains and extensions of these such

as semi-Markov chains and hidden Markov process to account for different model assump-

tions, examples are found in [32, 33, 34].

On the other hand, the most common continuous-state stochastic processes available in

the literature for CBM and degradation modelling are Wiener process, Gamma process and

Inverse Gaussian process. A Wiener process [35, 36, 37] can describe degradation that might

exhibit increments and decrements. Gamma process [38, 39, 40] are more suitable to mono-

tonic degradation phenomena and Inverse Gaussian process [41, 42, 43] can be more flex-

ible for incorporating random effects and/or co-variates to account for non-homogeneous

degradation.

All of these stochastic processes commonly used in degradation and CBM models have

something in common: they possess the Markov property and hence, are considered Markov

processes (regardless of their designated noun).

There is a good reason why Markov processes are the most commonly applied stochas-

tic processes. In a stochastic process the state of the process X (t ) at a certain time, is ran-

dom and hence has an associated probability to its outcome or observation. In general, this

probability depends on what has been obtained in previous observations at previous times.

However, this general situation is tedious and very difficult to treat with a tractable formalism

[31]. Because of this, simplified processes that are still very relevant are the most commonly

used, such as Markov processes which are further described in the following section.

2.3 Markov Processes

A major interest in applied probability is the time-dependent evaluation of the state of ran-

dom phenomena. The theory of Markov processes have played a key part in these investi-

gations [44] and in particular for the CBM modelling and assessment approach presented in

this thesis. The theory of Markov processes take their name from the Russian mathematician

Andrey A. Markov who led research on the mathematical description of stochastic processes.

2.3.1 Markov Chains

Markov processes are most regularly associated with Markov Chains and these are a good

way to introduce the theory of Markov processes. A Markov chain is a stochastic process

{X (t ), t ≥ 0} where t denotes time, that has the Markov property (described next). The state
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space χ is either finite or countable infinite. When the time domain is continuous, we have

a continuous-time Markov chain.

When X (s) = i , the chain is said to be in state i at time s. The conditional probability for

the chain to be in state j at time t + s, given that at time s the state was i , is:

Pr (X (t + s)) = j | X (s) = i , X (u) = x(u), 0 ≤ u < s) (2.2)

Markov property The Markov property states that for a Markov chain {X (t ), t ≥ 0}, the fol-

lowing condition is true:

Pr (X (t + s)) = j | X (s) = i , X (u) = x(u), 0 ≤ u < s)

= Pr (X (t + s)) = j | X (s) = i ) for all possible x(u), 0 ≤ u < s. (2.3)

Z When the present state of the process is known, the future development of the process is

independent of anything that has happened in the past [22]. The stochastic process is said

to have no memory, therefore the Markov property is also known as the memoryless property.

A Markov chain is said to be homogeneous or stationary if the probability of moving from

one state to another in a time interval, depends only on the length of time interval and not

on where the interval is on the time axis, i.e. for all states of the process i , j and for any time

s, k:

Pr (X (t + s) = j | X (s) = i ) = Pr (X (t +k) = j | X (k) = i ) (2.4)

Consider the Markov process {X (t ), t ≥ 0} with state space χ = {0,1,2, ...,r } and that pro-

cess begins at state 0 at time 0, i.e. X (0) = 0. Let 0 = S0 ≤ S1 ≤ S2 ≤ ... be the times at which

jumps between states occur and T j = S j+1 −S j be the time between two consecutive jumps.

A possible trajectory of this random process is shown in figure 2.5.

The time spent during a visit to state i is random, e.g. in figure 2.5 it can be observed that

state 1 is visited twice during the illustrated trajectory with duration T2 and T4 respectively.

Let T̃i be the random variable denoting the duration of a visit to state i , called sojourn time.

Let us assume that the process enters state i and s units of time later it remains in state

i . We want to find the probability that it will stay in state i for t units of time more, i.e.

Pr (T̃i > t + s | T̃i > s). Because of the Markov property, we know that the probability for the

process to stay t more units of time in state i depends only on its current state i . We have:

Pr (T̃i > t + s | T̃i > s) = Pr (T̃i > t ) for s, t ≥ 0 (2.5)

The random variable T̃i is memoryless. Assuming that the process is homogeneous and

a continuous time domain, T̃i must be exponentially distributed, i.e. T̃i ∼ E xp(a). The
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Figure 2.5: Trajectory of a Markov chain
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amount of time that the process spends in a state i and the next state to visit are independent

random variables. Let αi denote the rate at which the process leaves state i and Pi j denote

the probability that it goes into state j . Then, the transition rate from state i to state j is:

ai j =αi Pi j for all i ̸= j

Let Ti j be the time the process spends in state i before a transition to state j ( ̸= i ). For the

homogeneous Markov chain we have that this time is random and exponentially distributed

with rate ai j . Considering a small time interval ∆t , we have:

Pi i (∆t ) = Pr (T̃i >∆t ) = e−αi∆t ≈ 1−αi∆t

Pi j (∆t ) = Pr (Ti j >∆t ) = 1−e−ai j∆t ≈ ai j∆t

Therefore, we have by taking the limit when ∆t is small:

lim
∆t→0

1−Pi i (∆t )

∆t
= lim

∆t→0

Pr (T̃i <∆t )

∆t
=αi (2.6)

lim
∆t→0

Pi j (∆t )

∆t
= lim

∆t→0

Pr (Ti j <∆t )

∆t
= ai j for i ̸= j (2.7)

Chapman-Kolmogorov equations

By using the Markov property and the law of total probability we can find the probability that

the process is in a state j at a given time. Let us split a time interval (0, t +∆t ) into two parts.

First, we consider that a transition from a state i to a state k occurs in a small interval of time

(0,∆t ), and then a transition from state k to state j occurs in the rest of the interval. We have:
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Pi j (t +∆t ) =
r∑

k=0
Pi k (∆t )Pk j (t ) (2.8)

Equation 2.8 is known as the Chapman-Kolmogorov equation and it was named after

the British mathematician Sydney Chapman and the Russian mathematician Andrey Kol-

mogorov, who independently derived the equation.

To find Pi j (t ) it is possible to write a set of differential equations. We begin by consider-

ing:

Pi j (t +∆t )−Pi j (t ) =
r∑

k=0
k ̸=i

Pi k (∆t )Pk j (t )− [1−Pi i (∆t )]Pi j (t )

Dividing by ∆t and taking the limit when ∆t → 0:

lim
∆t→0

Pi j (t +∆t )−Pi j (t )

∆t
= lim
∆t→0

r∑
k=0
k ̸=i

Pi k (∆t )

∆t
Pk j (t )−αi Pi j (t )

Then, replacing by equation 2.7, we get:

d

d t
Pi j (t ) =

r∑
k=0
k ̸=i

ai k Pk j (t )−αi Pi j (t ) =
r∑

k=0
ai k Pk j (t ) (2.9)

Equations 2.9 are known as the Kolmogorov backwards equations [22] and they describe

how the probability that the process is in a certain state changes over time. This characterizes

the evolution of the Markov process.

As mentioned earlier, for a homogeneous Markov chain the sojourn times (T̃i ) are ex-

ponentially distributed. This is a major limitation for their applicability in CBM modelling.

As pointed in section 2.2 and figure 2.3, a CBM model must capture not only the stochas-

tic degradation but also the maintenance interventions like inspections, repairs, replace-

ments. For the global model to be a Markov chain, restrictive assumptions must be made,

which might not be realistic, e.g. the time for a repair must be random and exponentially

distributed, the inspection or condition monitoring must be continuous, among others.

2.3.2 Jump and diffusion Markov processes

Any stochastic process with the Markov property is a Markov process. In the field of RAMS,

failures are random events that are assumed to be able to occur at any time and degrada-

tion processes are considered to be continuous in time. Therefore, we deal mostly with

continuous-time Markov processes. The state space however, can be discrete, continuous,

or hybrid and the evolution of the process can also be discrete, continuous or hybrid.
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Jumps processes

A jump process is a stochastic process with discrete movements, called jumps, with random

arrival times, rather than movement with continuous paths. A jump process with a finite

number of jumps in a finite interval is called a pure jump process. A Markov chain is an

example of a pure jump process that jumps between discrete states.

Gamma and Inverse Gaussian processes are examples of pure jump processes that evolve

in a continuous state space, commonly used in degradation and CBM modelling, as men-

tioned in section 2.2. These processes belong to the family of Lévy processes.

Lévy processes

Lévy processes are named after the french mathematician Paul Lévy [45]. A Lévy process

{X (t ), t ≥ 0} is a stochastic process with the following properties:

1. X (0) = 0 , almost surely

2. It has independent and stationary increments.

3. It has stochastic continuity: for any ϵ> 0 and t ≥ 0, it holds that:

limh→0 Pr (|X (t +h)−X (h)| ≥ ϵ) = 0

The distribution of a Lévy process has the property of infinite divisibility, i.e. for any

integer n, the law of a Lévy process at time t can be expressed as the law of n independent

random variables, that correspond to the increments of the Lévy process over time intervals

of lenght t/n, which by condition 2 are independent and identically distributed.

Condition 3, does not imply that the sample paths are continuous. Jump processes such

as the Poisson process and the Gamma process satisfy this condition. However, a process

with continuous paths can also satisfy these three conditions to be a Lévy process. The Brow-

nian motion, also called Wiener process, is a Lévy process with continuous paths.

Brownian motion and diffusion processes

In some instances, systems are modelled by a process that moves continuously between all

possible states that lie in an interval of the real line. An example of such process is the Brow-

nian motion.

Brownian motion Brownian motion was first described in 1828 by the botanist Robert

Brown [46] while studying the movement of pollen particles suspended in a fluid. Brown

found out that the movement was "chaotic", exhibiting an irregular random behaviour. In

1923 Norbert Wiener [47] established mathematically the foundation of a stochastic process

describing the Brownian motion. Consequently, the terms Brownian motion and Wiener

process are used interchangeably.
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The Brownian motion {W (t ), t ≥ 0} is a stochastic process modelling random continuous

motion with the following properties:

1. W (0) = 0

2. W (t ) is continuous at t ≥ 0, i.e. it has continuous sample paths with no jumps.

3. It has both stationary and independent increments

4. For 0 ≤ s < t , the random variable W = W (t )−W (s) has a normal distribution with

mean 0 and variance σ2
w =σ2(t − s), i.e. W ∼N (0,σ2(t − s)).

As a process with independent increments, a Brownian motion is also a Markov process.

Because of the conditions 1 and 4, we have W (t ) =W (t )−W (0) ∼N (0,σ2(t−0)) =N (0,σ2t ).

W (t ) is called the Wiener process or classical Brownian motion. Since a degradation process

do not generally have a zero mean, it is common to include a drift measure as:

X (t ) =µt +W (t ) for t ≥ 0 (2.10)

Then {X (t ), t ≥ 0} is the Brownian motion with drift rate µ> 0 and infinitesimal variance

σ2, where W (t ) is the classical Brownian motion. It follows that X (t ) ∼ N (µt ,σ2t ). This is

the Brownian motion or Wiener process commonly used in degradation and CBM modelling

mentioned in 2.2.

Diffusion process A diffusion process is a continuous-time, continuous-state process with

paths that are continuous everywhere. It can be considered a generalized version of Brown-

ian motion. While Brownian motion originates from the random motion of molecules with

random direction of motion, diffusion is the movement of particles from areas of high con-

centration to areas of low concentration. Thus, diffusion can be seen as occurring when a

system is not in equilibrium and random motion tends to bring the system to uniformity.

In probability theory, a diffusion process is defined as a solution to a stochastic differ-

ential equation. Consider a continuous-time continuous-state Markov process {X (t ), t ≥ 0}

with a probability distribution given by:

F (y, t |x, s) = Pr [X (t ) ≤ y |X (s) = x] for s < t (2.11)

If the derivative f (y, t |x, s) = ∂
∂y F (y, t |x, s) exists, it is called the transition density function

of the diffusion process, and it satisfies the Chapman-Kolmogorov equation:

f (y, t |x, s) =
∫ ∞

−∞
f (y, t |z,u) f (z,u|x, s)d z (2.12)

A diffusion process is a Markov process that satisfies the following three conditions [48]:

1. Pr [|X (t +∆t )−X (t )| > ϵ|X (t )] = o(∆t ), for ϵ> 0, meaning that the sample path is con-

tinuous. Alternatively, the process is continuous in probability.
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2. E [X (t +∆t )−X (t )|X (t ) = x] = a(x, t )∆t +o(∆t ), so that:

lim
∆t→0

E [X (t +∆t )−X (t )|X (t ) = x]

∆t
= lim

∆t→0

1

∆t

∫ ∞

−∞
(y −x) f (y, t +∆t )|x, t )d y

= a(x, t )

3. E [{X (t +∆t )−X (t )}2|X (t ) = x] = b(x, t )∆t +o(∆t ) is finite, so that:

lim
∆t→0

{E [X (t +∆t )−X (t )}2|X (t ) = x]

∆t
= lim

∆t→0

1

∆t

∫ ∞

−∞
(y −x)2 f (y, t +∆t )|x, t )d y

= b(x, t )

The function a(x, t ) is called the infinitesimal drift of X (t ) and the function b(x, t ) is

called the infinitesimal variance of X (t ). Let the increment of X (t ) over a small interval d t

be denoted d X (t ). It can be shown that if W (t ) is a classical Brownian motion, the above

properties can be incorporated into the following stochastic differential equation:

d X (t ) = a(x, t )d t +b(x, t )dW (t ) for t ≥ 0 (2.13)

where dW (t ) is the increment of W (t ) over the small interval (t , t +∆t ). Equation 2.13 is

know as a Itô stochastic differential equation, whose solution is a diffusion process {X (t ), t ≥
0}. Although there exist different diffusion processes, they differ only in the way the drift and

diffusion coefficients are defined [48]. If we make a(x, t ) = 0 and b(x, t ) = 1 and solve equa-

tion 2.13, we obtain the classical Brownian motion, and by making a(x, t ) =µ and b(x, t ) = 1,

we obtain the Brownian motion with drift from equation 2.10. Hence, Brownian motion is a

particular diffusion process.

In general, the techniques used in the analysis of diffusion processes are highly devel-

oped and have a unified theory based on Itô calculus and stochastic differential equations.

On the contrary, the theory for studying random jumps processes consists of a large collec-

tion of special models and methods. This is one of the main motivations to introduce Piece-

wise deterministic Markov processes as a general class of non-diffusion stochastic models

[15], which are the main topic of this thesis and are introduced in the next subsection.

2.4 Piecewise deterministic Markov Processes

Piecewise deterministic Markov Processes (PDMP) were introduced by M.H. Davis in 1984

[15] as a general class of non-diffusion stochastic models. Davis points out that almost all

continuous-time stochastic process models of applied probability consists of some combi-

nation of:

(a) Diffusion.

(b) Deterministic motion.
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(c) Random jumps.

A review on the literature, shows that the techniques used for diffusion processes con-

trasts radically from the ones usually employed in connection with the other two classes.

Moreover, the techniques for diffusion processes form a unified and well developed theory

based on the theory of Itô calculus ans stochastic differential equations (as mentioned in

section 2.3.2), while the non-diffusion theory is formed by a large and heterogeneous collec-

tion of special models and methods applicable for specific problems [15].

For Davis, the ambition when introducing PDMP is to place non-diffusion models (those

involving classes (b) and (c) from the list above but not (a)), under a similar foundation to

diffusion theory in the availability of both:

1. A generic model capable to encompass a wide selection of special cases.

2. General methods based on stochastic calculus for analysis of the generic model.

2.4.1 Stochastic hybrid systems

Before introducing the formalism of PDMP, it is worth to present the concept of stochastic

hybrid systems. A hybrid system is a dynamical system that cannot precisely be represented

and analyzed either by methods of continuous systems theory or by methods of the discrete

system theory [49].

Discrete systems theory assumes that the system has abrupt changes in its state but the

continuous movements of the system cannot be described precisely. Continuous systems

theory on the other hand, assumes that the system under consideration is described by some

differential equation, which in order to have a unique solution must satisfy a smoothness

condition, called Lipschitz continuity, a strong form of uniform continuity.

Stochastic hybrid systems arise from the combination of hybrid systems with the theory

of probability to deal with randomness. A stochastic hybrid system is a dynamical system

with both continuous and discrete behaviour in which some variables cannot be described

in a deterministic way, but they involve randomness.

Randomness and hence stochastic hybrid systems are of particular interest in CBM mod-

elling, where we consider stochastic degradation processes, to account for uncertainties of

the influencing factors such as operating conditions, loads and strength of components, en-

vironmental conditions and so on. Such randomness can be in the form of diffusion or ran-

dom jumps as described in section 2.3.2. A PDMP is then a hybrid stochastic process which

exhibits a combination of continuous state changes and random jumps.

2.4.2 PDMP formalism

A PMDP is a Markov process consisting of a mixture of deterministic motion of random

jumps. It is a stochastic hybrid process {I (t ), X (t )} t ≥ 0 with values in a discrete-continuous

space E ×Rd .
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The first component I (t ) is discrete and takes values in a finite state space E . The second

component X (t ) is continuous and takes values in a d-dimensional real coordinate space

Rd .

Evolution of the process

The probability law of the PDMP is determined by three local characteristics: the jump rate

(λ), the deterministic motion (or flow) (v) and the transition measures (Q) [50].

Consider the process starts in a state {I (0), X (0)} = (i , x). In a simple overview the process

evolves as follows:

Figure 2.6: Evolution of a PDMP

1. The process follows the deterministic motion v(i , x) until a jump occurs at T1. Such

jump can occur either:

• Randomly, with rate λ(i , x).

• When the flow hits a boundary in the continuous-state space.

2. The post jump location is selected from the transition measure Q[(i , x), ( j , y)].

3. The motion restarts from this state.

Between two consecutive jumps, the process follows the deterministic motion, which in

general corresponds to the solution of a set of differential equations for a fixed discrete state,

i.e. given that I = i between two jumps, X (t ) is solution of:

d x

d t
= v(i , x)

A jump from state (i , x) towards discrete state j occurs with a rate λ(i , x)Q(i , x, j ), where

λ(i , x) is the rate at which the process leaves i and Q(i , x, j ) is the probability distribution of

the jump from i to j . In this sense, the rate at which the process jumps from the discrete state

i to a discrete state j is dependent on both the discrete and continuous components before

the jump (i , x) and the discrete component after the jump ( j ). Hence, the rate does not need

to be constant as it can be dependent on the continuous component. Likewise, there is no

extra generality in allowing a PDMP to be non-stationary, since time can be included as one

component of X (t ).
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2.4.3 Hybrid modelling

The class of PDMP provides a framework for models consisting of a stochastic hybrid sys-

tem that combines deterministic motion with random jumps. From a modelling perspec-

tive this opens up a large range of possibilities. Davis [15] claims that the class of PDMP

provides a general family of stochastic models that virtually covers all non-diffusion appli-

cations. Moreover, it provides a framework for modelling hybrid phenomena involving state

transitions that cannot be represented or analyzed appropriately by the methods developed

in continuous or discrete systems theory.

Traditionally, the methods used in reliability analyses assume a constant operated con-

text and are usually supported by the practice of thinking of the worst scenario [51]. The

possibility of including bi-directional interactions between I (t ) and X (t ) is key in the hybrid

modelling used in the field of dynamic reliability. Dynamic reliability is an extension of the

traditional reliability models and methods, in order to be able of capturing the dynamics of

the operational and environmental conditions in which systems evolve.

Hybrid modelling is an approach to solve dynamic reliability problems based on a "sep-

aration of concern" approach [52]. The idea is to model two mutually dependent processes:

a deterministic and a stochastic, and then couple them by means of shared variables. Un-

der this formulation, the deterministic process can describe the dynamic system in terms of

physical laws that determine its physical behaviour, like thermofluid, chemical, rotational,

by a set of differential equations. The stochastic process accounts for random events such

as component failures that can modify the physical behaviour of the system described by

the differential equations, and reversely, the rates of the random jumps can depend on the

evolution of the continuous variables described in the deterministic model. Commonly this

stochastic process is a random jump process and not a diffusion one, hence, the resulting

process from hybrid modelling is a PDMP.

Figure 2.7: Hybrid modelling (adapted from [52])

Figure 2.7 shows the interaction between the deterministic and stochastic process. Ex-

amples of such interactions, in a PDMP {I (t ), X (t )}, t ≥ 0, for a dynamic reliability problem
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are [53]:

• X(t) acts on I(t). A physical variable reaching a boundary or threshold in the continuous-

state space can cause a discrete abrupt change such: a tank explosion from over pres-

sure, change in a fluid state due to temperature, activation of an on/off controller due

to reaching a set point, among others. A physical variable can also influence the rate

of the discrete events, for example, the failure or deterioration rate may depend on

variables such as temperature and pressure.

• I(t) acts on X(t). The differential equations governing the deterministic motion may

change when discrete events such failures in the system, an on/off control function on

the system is activated, and others.

For CBM modelling, this thesis proposes a specific case of PDMP in which the deter-

ministic motion is linear and intended to keep track of time to maintenance interventions

(boundary jumps). In this way, the differential equation is reduced to a trivial one. This

can be seen as a state augmentation, i.e. a process involving enlargement of the state space

[54] that allows to formulate the problem in a Markovian manner. This class of models have

also been called Piecewise-linear Markov processes and have been first introduced in 1966

by Gnedenko and Kovalenko [55] and more developed later by Vermes [56] in 1980 with a

fairly complete theory of optimal control [15]. Boundaries or threshold are placed in the

continuous-state space to mark the time of a maintenance intervention with a correspond-

ing jump in the process. For the sake of generalization, these processes are still called PDMP

in this thesis, as the class of PDMP introduced by Davis [15] is a generalized version of the

Piecewise-linear processes. It is important to clarify what is meant by single-item model and

multi-component model throughout this thesis.

2.5 CBM models for single-item and multi-component sys-

tems

The word "system" is commonly used in all fields and aspects of life. Examples of its use are:

solar system, decimal system, transport system, equation system, digestive system, political

system and infinite more. By the use of the word system, people usually refer to either an

ordering or to something consisting of interacting parts. Aslaken [57] proposed the following

formal definition:

A system consists of three related sets:

• A set of elements.

• A set of internal interactions between elements.

• A set of external interactions between one or more elements and the external world.
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In the field of reliability and maintenance, the elements of the system are usually classi-

fied as subsystems, subsubsystems, and so on, until the component level [58]. The system

can be broken down in levels of hierarchy, called indenture levels, representing a break down

structure. An example with three levels of indenture is shown in figure 2.8.

Figure 2.8: System breakdown structure example

System modelling refers to the craft of developing an abstract representation of a real sys-

tem with the purpose of analyzing its behaviour in terms of performance and dependability,

without resorting to measurements on the real system or prototypes [59]. Within CBM mod-

elling, we can consider that the external interactions refer to the interventions and main-

tenance actions on the system, while the internal interactions between the elements of a

system are commonly referred to as dependencies. CBM modelling of systems with discrete

state deterioration is related to multi-state systems. In this thesis we distinguish between

two ways to approach the CBM modelling for a system:

i. Begin the modelling work at the system level perspective. The deterioration states are

directly defined at the system level, while limiting the study to the states that are rele-

vant for the performance assessment.

ii. Begin the modelling work at the components perspective. The deterioration states are

defined at components level and then the states at the system level can be computed,

in order to assess the performance of a maintenance strategy.

The result from i. is what in this thesis is called Single-item model. The word "item" is

used to refer to any system, subsystem or component that can be considered as an entity

[22]. The system is treated as one unit with independent states. The maintenance policies

are directly proposed and assessed at the system level. Figure 2.9 shows an overview of a

CBM model for a single-item.
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System 
(as single-unit)

Intervention  
schedule PerformancePolicies

Chosen policy

CBM model - Single-item

Figure 2.9: Single-item CBM model

On the other hand, with ii. we intend to begin by defining states for each component of

the system, then study how they interact to formulate the evolution at the system level and

finally assess the performance of the policy at the system level. Here, a model following this

approach is called a multi-component model.

System

Subsystem 1 Subsystem 2

Component 1.1 Component 1.2 Component 2.1 Component 2.2Intervention
policies

Performance 
assessment

Component dependencies Sub-system dependencies

Figure 2.10: Multi-component CBM model

Figure 2.10 gives an overview of a multi-component model for CBM. Some of the common

dependencies addressed within CBM modelling of systems include structural, stochastic,

economic and resource dependencies.

Structural dependence Structural dependence is related to the structural, static relation-

ships among components, from a technical or a performance perspective. From the tech-

nical point of view, it relates to systems which are configured in a way that maintaining one

component requires or prohibits other to be maintained or at least dismantled. From the

performance perspective it refers to systems in which their performance is impacted by the

configuration and by the performance of the components, e.g. series, parallel and k-out-of-n

relations [60].
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Stochastic dependence Stochastic dependence refers to the interaction between failures

or deterioration processes of components of the system, as well as the influence of external

factors on these. For example the deterioration of one component may influence the rate of

deterioration of another component, and if we consider that these deterioration process are

stochastic, then the parameters (and the associated stochastic process) are impacted.

Economic dependence Economic dependence indicates that the cost of maintenance is

influenced by joining the maintenance tasks of different components.

Resource dependence Resource dependence concerns systems in which maintenance ac-

tions can only be executed if the required resources (e.g. spare parts, tools, personnel) are

available. It concerns systems in which several components share limited resources, requir-

ing maintenance to be optimized at the system level [61].

Most of the existing CBM strategies for multi-component systems have traditionally been

done at the component level, meaning that the optimal CBM policy for a single component

is employed per component in the system without taking into account components inter-

dependencies [20].

2.6 Chapter conclusion

The focus of this thesis is placed in studying CBM problems with prognosis, which is also

known as predictive maintenance. Within prognostic approaches the central point of this

thesis are Piecewise deterministic Markov processes, a stochastic process presented as a gen-

eral class of non-diffusion stochastic models, in which the future development of the process

depends only on a current state of the process and not on what has happened in the past.

The key element of a prognosis approach is the deterioration of the system or unit. Since

the focus of this thesis is placed on PDMP, this means that the applications considered through

this thesis assume that the deterioration of the system or unit evolves in a discrete-state

space with random jumps and continuous-time. This is the case of many engineering appli-

cations, where due to practical reasons it is more reasonable to characterize the condition

or health of the system by a finite set of deterioration states instead of in a continuous-state

space.

The class of PDMP that is the focal point in this thesis is a particular category, also known

as Piecewise linear Markov process. To keep things in a general class, we keep the PDMP de-

nomination. In this class, the deterministic evolution of the continuous component is linear.

With this background we proceed to propose PDMP for modelling and studying CBM prob-

lems of a single-item under certain assumptions and later as a framework for multi-state

multi-components systems subjected to some dependencies, together with an approach to

assess the performance of maintenance policies at the system level. To solve the models we
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propose an analytical approach with a numerical scheme and present Monte Carlo simula-

tion for validation.





Chapter 3

Piecewise deterministic Markov process

for condition-based maintenance models

of single-items

This chapter explores on the application of a Piecewise deterministic Markov process (PDMP)

to encompass different modelling assumptions as non-negligible maintenance delays and

inspection-based condition monitoring of a single-item. These assumptions are relevant for

many critical infrastructures in civil engineering or in oil & gas industry whose deteriora-

tion states are classified at a very high level of abstraction among a finite and small set of

possible states. A formalism to model this type of problems is proposed in which the deter-

ministic motion of the PDMP is reduced to a trivial differential equation to track the time

elapsed between events. A numerical scheme for quantification, as an approximation of the

Chapman-Kolmogorov equation, is presented. Later, a case study dealing with CBM of road

bridges by the NPRA (Norwegian Public Roads Administration) is presented, guiding through

the modelling and quantification approach.

The final objective is to challenge pre-established CBM strategies that might be not op-

timal and to provide time dependent or long term decision criteria to optimize them. The

decision criteria are basically the probability, for the maintained system, to be in a deteri-

orated or critical state at any time (e.g closure of the bridge), or the maintenance strategy

mean cost over a period of time. The main assumptions we keep from the application field

of critical infrastructures are: we consider that the system condition is characterized at a

high level of abstraction with few discrete states (often given by guidelines in the applica-

tion field), the complete condition of the system is only known at inspection dates, and the

maintenance tasks require a delay before execution.

The main content of this chapter is based on the published articles included in appen-

dices A and B, which have been prepared as part of this PhD project.

31
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3.1 Background and state-of-the-art

There is a large amount of literature devoted to CBM optimization with a wide range of mod-

elling frameworks and application areas. From a generic perspective, we can distinguish two

modelling methodologies: i) the approaches based on the description of scenarios, with an

exhaustive listing of all the possible sequences of events related to the deterioration evolu-

tion and the maintenance effects on a given horizon, ii) the approaches based on the de-

scription of the states of the maintained system and the possible transitions between them.

Usually, the first ones are preferred when the number of scenarios is low enough to be

described in a tractable way. Analytical solutions for the calculation of associated costs are

commonly based on renewal theory and the identification of a renewal process. The second

ones are preferred when the number of scenarios is too large. These are the focus of this the-

sis, in which the deterioration of a system is considered the state of a stochastic process as

described in section 2.2. It can be easier to list system states and to model transitions from

one state to the possible next ones instead of looking at the complete sequences of possi-

ble events on a given horizon. Certainly, such approaches are tractable when the number

of states is reasonable or when it can be reduced enough for the modelling and optimiza-

tion purpose. In this case, analytical solutions for the calculation of associated costs are

usually based on the identification of a Markov process or an extension of such a process.

Both approaches can be a good support to build Monte Carlo simulation algorithms and to

empirically optimize a CBM strategy.

Under these circumstances, the inspections and the delay in the maintenance sched-

ule could increase quite a lot the number of possible scenarios to list, whereas the reduced

number of discrete states is a benefit for using a modelling framework based on states and

transitions. This is what is proposed here.

In some applications it is practicable to monitor, measure and describe the condition or

health of the system, in a continuous-state space. In these cases, the deterioration process

can then be modelled by a continuous-space-time stochastic process. CBM models consid-

ering this, usually model the deterioration with a diffusion process and commonly used are

the gamma process, inverse Gaussian process and Wiener processes. Some recent exam-

ples of CBM models that consider continuous-space-time stochastic process are found in

[62, 63, 64, 65, 66].

However, for many applications it is more reasonable to characterize the condition or

health of the system by a finite set of deterioration states. This thesis is focused on CBM

modelling for this type of applications. In these cases, the deterioration is modelled by a

jump process between the discrete deterioration states. The time of the jumps cannot be

predicted without any uncertainty and are therefore considered to be random. The sequence

of deterioration states that the system experiences is then described by a continuous-time

discrete-state stochastic process. In addition to these random jumps, the system experi-

ences changes of state according to the maintenance intervention schedule. These types of

problems are commonly related to Markov processes [20]. To support the decision-making
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associated to maintenance, Markov (or semi-Markov) decision processes (MDP) are usually

proposed. MDP are controlled stochastic processes in which the outcome has an associated

uncertainty.

MDP have been proposed for CBM of different critical infrastructures. Tao et al. [67]

consider the problem of optimizing maintenance strategies for highway bridges subject to

progressive deterioration and sudden earthquakes. Compare et al. [68] develop a decision-

support framework for the management of gas transmission networks subject to degradation

modelled as a Markov process. González-Domínguez et al. [69] use Markov-chains to model

the deterioration of the roofs of healthcare centers. The maintenance optimization problem

on these cases is formulated as a MDP. In some cases, the condition monitoring process does

not reveal the true state of the system with certainty. The system dynamics are determined by

a MDP but the decision maker may not directly observe the underlying state with certainty.

To handle this, observation probabilities over the set of possible system states are introduced

in the model and the resulting framework is named a Partially Observable Markov Decision

Process. Recent examples can be found in [68], [70], [71].

In most works related to MDP, the action from a decision related to maintenance (mod-

elled as a transition to other discrete states) takes place at the inspection time instanta-

neously. Some have consider a duration for the maintenance action with the system be-

ing stopped immediately and restarted after the intervention. We intend in this chapter to

propose a framework capable of addressing cases in which the delay from the time of the

decision to the time of the maintenance action may result in further deterioration of the

system, which in return will require a different maintenance action than originally planned.

In order to characterize the transitions, support the modelling work, and to provide a for-

malism that can be relevant for a large set of application cases, we propose to use a specific

class of Piecewise Deterministic Markov Process (PDMP). This PDMP can serve as a basis to

implement a numerical scheme and provide numerical solutions for the maintenance strat-

egy cost evaluation. It can be also a basis to build a Monte Carlo simulation algorithm and

provide empirical solutions for the maintenance costs.

A PDMP can be considered as an extension of a Markov chain that incorporates con-

tinuous variables to allow a combination of deterministic motion and random jumps. In

the framework of dynamic reliability, the continuous variables are used to describe physical

phenomena that influences the jump process between discrete states and that can be de-

fined by rather complex differential equations. Some works that have proposed PDMP as a

modelling framework for problems that combine deterministic behaviour (described using

physics-based knowledge and equations) and stochastic jumps are found in [72], [73], [74].

Other applications of PDMP for CBM focus on problems that require a combination of ran-

dom jumps and jumps that occur at deterministic times (meeting a maintenance schedule

set in advance). Examples of these can be found in [75], [76], [77].
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3.2 PDMP

In this section we present in details the modelling framework by defining the modelling as-

sumptions and then the formalism of the corresponding PDMP with linear deterministic

motion. At last, a method for numerical calculations of the state probabilities of the PDMP

is developed. It is based on a classical Euler numerical scheme. We also provide a formal

proof of the convergence of this scheme towards the Chapman-Kolmogorov equations of

the PDMP.

3.2.1 Modelling assumptions

As described in section 2.2, a model designed to assess the performance of a CBM policy,

consists of two elements: a deterioration model and an intervention model. We propose

PDMP as a framework for studying CBM problems with the assumptions explained here un-

der and summarized in figure 3.1.

Figure 3.1: Model assumptions for the proposed framework

On the deterioration model side, we assume that the system condition is described by

a set of discrete states and the deterioration follows a random jump process between these

states. There is no assumption about homogeneity and the jump rate could depend on time

as will be presented later.

On the intervention model, there are three main types of monitoring schedules consid-

ered in CBM models [20]: continuous monitoring, periodic and non-periodic inspection.

When monitoring is continuous the jumps associated to the deterioration process are com-

monly detected quickly, so information about the health condition of the system could be

available on real time or near real time.

When monitoring is performed via inspections (periodic or non-periodic), the condition

of the system is unknown to the operator until an inspection is executed. In these cases,

the choice of the inspection times obviously influences the performance of the maintenance
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policy. Our proposed model is aimed at applications of this type, without additional assump-

tions about the periodicity (or non-periodicity) of the inspection scheme, or the quality of

the inspections. Discussions about how these can be handled are presented during the case-

study.

In addition to the inspection-based monitoring, we consider that there is a significant

time elapsed between the date on the detection and planning of a maintenance task until the

date of the execution of the maintenance task. We refer to this elapsed time as maintenance

delay. We consider that such delay is mainly due to logistic reasons and as such, its duration

is assumed deterministic. It is worth to point out that during this delay the stochastic process

is not stopped, which means that further deterioration of the system can occur, requiring a

different maintenance task than the originally planned one.

To handle problems with these assumptions, we resort to a specific class of PDMP: the

deterministic motion is linear and is intended to keep track of the time to an intervention

jump. This will allow compensation of a lack of Markov property and will facilitate the de-

scription of the transitions between states.

3.2.2 Formalism

We consider a stochastic hybrid process {I (t ), X (t )}t ≥ 0 with values in a discrete-continuous

space E ×R.

Variables

The first component, {I (t )} is discrete and used to represent the deterioration states of the

unit. We consider that the deterioration states can be categorized in a finite number N of

levels. E is the finite set made of N points.

The second component, {X (t )} is continuous, introduced in our case as a way to keep

track for the intervention jumps that occur at specified times. We consider x = (x1, x2, t ),

x is a vector in which x1 corresponds to the date of the next inspection, x2 corresponds to

the date of the next maintenance operation, and t stands for time. Hence, the continuous

component {X (t )} evolves in R, a three-dimensional orthotope of R3.

The process {I (t ), X (t )}t ≥ 0 experiences jumps at random times and jumps at interven-

tion times. Between the times of two consecutive jumps (random or deterministic) the con-

tinuous component X (t ) evolves with deterministic motion.

Deterministic motion

In general, the deterministic motion of a PDMP corresponds to the solution of a set of dif-

ferential equations for a fixed discrete state, i.e. given that I = i between two jumps, X is

solution of:
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∂x

∂t
= v(i ,x) (3.1)

In our case, the deterministic evolution of the continuous component between two con-

secutive jumps is very simple: only the continuous variable t evolves with a speed of one, i.e.

v(i ,x) = (0,0,1); ∀ i . This kind of process is a particular case of PDMP, also named piecewise-

linear process [56].

Random jumps

Jumps at random times correspond to the stochastic deterioration of the unit. A jump from

state (i ,x) towards discrete state ( j ) occurs with a rate λ(i ,x)Q(i ,x, j ), where λ(i ,x) is the rate

at which the process leaves i and Q(i ,x, j ) is the probability of the jump from i to j . In this

sense, the rate at which the process jumps from the discrete point i to a discrete point j is

dependent on both the discrete and continuous component before the jump (i ,x) and the

discrete component after the jump ( j ). Hence, the rate does not need to be constant and in

the model here proposed it could be time dependent.

Intervention jumps

Jumps at intervention times are associated to the inspections and maintenance operations.

To model these jumps a frontier is defined, such as when the continuous component reaches

the frontier due to the deterministic motion, a jump occurs. Let Γ= {x1 = t }∪ {x2 = t } be the

set of points we refer to as the frontier for our case. Such frontier is reached when time (t )

reaches the date of an inspection (x1) or the date of a maintenance operation (x2). When the

frontier Γ is reached at (i ,x), a jump occurs in the discrete component towards a point j of

E and in the continuous component to a point y of R equal to mΓ(i ,x, j ), with a probability

distribution q(i ,x, j ). The function x → mΓ(i ,x, j ) is a function from Γ to R. This means that

both the discrete and continuous components jump at the intervention time.

The post jump location ( j ,y) is dependent on the discrete component before and after

the jump and the continuous component before the jump (the frontier).

For example, if the reached frontier corresponds to an inspection of the unit (i.e. when t =
x1), a maintenance action and the next inspection of the unit can be scheduled, depending

on the deterioration state of the unit, thus a jump in the dates of next inspection (x1) and next

maintenance (x2) occurs. Similarly, if the reached frontier corresponds to a maintenance

action (i.e. when t = x2) a jump occurs in the deterioration state of the unit (i ), (usually

to a less deteriorated state) and if imperfect maintenance is considered, then a probability

distribution can be associated to the post jump location.
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3.2.3 Numerical calculations

We calculate now an approximation of the law of this process. This approach is based on

the proposed finite volume scheme by Cocozza-Thivent et al. in [78, 79] and some of its

applications as [77, 80].

Every term of the continuous state space R is discretized in a finite number of values.

In our case, we have R ⊂ R3 with time as the quantity for every dimension. Let δ be the

continuous state space step. Then, the approximation of the k-ith term has values in Fk =
{0,δ,2δ, . . . ,nδ}, with k = {1,2,3} and n an integer. In this way, R is replaced by the discrete

state space F = F1 ×F2 ×F3.

The deterministic motion of the process between jumps can be described with a function

from F to F by solving equation 3.1 with the Euler method. In our case, between iterations nδ

and (n +1)δ the continuous component follows the function x → x+vδ. When the frontier

Γ is reached at x, the continuous component jumps instantaneously from Γ to F as x →
mΓ(i ,x, j ).

Let P ((i ,x), ( j ,y)) denote the conditional transition probability from state (i ,x) to state

( j ,y) with values in the finite state space E ×F , and F̃ denote the set of points in F which

are not on the frontier Γ. The arrivals into a state ( j ,y) may proceed from different paths as

represented in figure 3.2.

i,x

j,x

j,y

h,w

k,w

k,z

Legend

Random jump + deterministic motion

Deterministic motion

Instantaneous jump due to process  
 hitting the frontier

Figure 3.2: Transitions into state ( j ,y) in (nδ, (n +1)δ]

Between t = nδ and t = (n + 1)δ, the non-null values of such conditional probabilities

due to random jumps and deterministic motion are:

• for any x,w in F̃ , for any j different from i , for any k different from h:

P ((i ,x), ( j ,y)) ≈λ(i ,x)Q(i ,x, j )δwith y = x+vδ (3.2)

P ((h,w), (k,z)) ≈λ(h,w)Q(h,w,k)δwith z = w+vδ
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• for any x,w in F̃ :

P (( j ,x), ( j ,y) ≈ 1−λ( j ,x)δwith y = x+vδ (3.3)

P ((k,w), (k,z) ≈ 1−λ(k,w)δwithz = w+vδ

When z ∈ Γ, an instantaneous jump occurs with the conditional probability:

• for any z in Γ, for any k:

P ((k,z), ( j ,y)) = q(k,z, j ) (3.4)

Let πnδ denote the law of this stochastic process at the n-ith iteration. By using the law of

total probability and the Markov property, we can write the law of the process for state ( j ,y)

at the (n+1)-ith iteration based on the transitions showed on figure 3.2. We have for any i ,h

in E and x,w in F :

π(n+1)δ( j ,y) =
N−1∑
i ̸= j

y=x+vδ

πnδ(i ,x)[P ((i ,x), ( j ,y))] (3.5)

+ 1{y=x+vδ}πnδ( j ,x)[P (( j ,x), ( j ,y))]

+
N∑

k=1
y=mΓ(k,z, j )

N−1∑
h=1
h ̸=k

z=w+vδ
z∈Γ

πnδ(h,w)[P ((h,w), (k,z))][P ((k,z), ( j ,y))]

+
N∑

k=1
z=w+vδ

z∈Γ
y=mΓ(k,z, j )

πnδ(k,w)[P ((k,w), (k,z))][P ((k,z), ( j ,y))]

In equation 3.5, the first term accounts for the transitions related to a random jump and

deterministic motion; the second term for the transitions related to only deterministic mo-

tion; the third term for the transitions with a random jump, deterministic motion and an

instantaneous jump from the frontier; and the last term accounts for the transitions with

deterministic motion and an instantaneous jump from the frontier; as shown in figure 3.2.

Substituting the conditional probabilities by their approximation or value from equa-

tions 3.2, 3.3 and 3.4, gives:
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π(n+1)δ( j ,y) ≈
N−1∑
i ̸= j

y=x+vδ

πnδ(i ,x)[λ(i ,x)Q(i ,x, j )δ] (3.6)

+ 1{y=x+vδ}πnδ( j ,x)[1−λ( j ,x)δ]

+
N∑

k=1
y=mΓ(k,z, j )

N−1∑
h=1
h ̸=k

z=w+vδ
z∈Γ

πnδ(h,w)[λ(h,w)Q(h,w,k)δ][q(k,z, j )]

+
N∑

k=1
z=w+vδ

z∈Γ
y=mΓ(k,z, j )

πnδ(k,w)[1−λ(k,w)δ][q(k,z, j )]

Computing this equation fully describes the evolution of the PDMP. For Markov pro-

cesses, it is known that the Chapman-Kolmogorov equation describes the time-evolution

of the states probabilities. Equation 3.6 corresponds to an approximation of the known

Chapman-Kolmogorov equation. Since this is not very obvious, we proceed to demonstrate

it by deriving the Chapman-Kolmogorov equation starting from equation 3.6.

Chapman-Kolmogorov

If f (i , x) is a function from E ×F to R, we can write:

∑
j ,y

f ( j ,y)π(n+1)δ( j ,y) =∑
j ,y

f ( j ,y)πnδ( j ,y)−∑
j ,y

f ( j ,y)πnδ( j ,y) (3.7)

+ ∑
j ,y

f ( j ,y)
∑
i ̸= j

y=x+vδ

πnδ(i ,x)λ(i ,x)Q(i ,x, j )δ

+ ∑
j ,y

f ( j ,y)1{y=x+vδ}πnδ( j ,x)[1−λ( j ,x)δ]

+ ∑
j ,y

y=mΓ(k,z, j )

f ( j ,y)
∑

h ̸=k
z=w+vδ; z∈Γ

πnδ(h,w)λ(h,w)Q(h,w,k)q(k,z, j )δ

+ ∑
j ,y

f ( j ,y)
∑
k

z=w+vδ; z∈Γ
y=mΓ(k,z, j )

πnδ(k,w)[1−λ(k,w)]q(k,z, j )δ

By changing some indices, we can write:
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∑
j ,y

f ( j ,y)π(n+1)δ( j ,y) = ∑
j ,y

f ( j ,y)πnδ( j ,y)−∑
j ,y

f ( j ,y)πnδ( j ,y) (3.8)

+ ∑
i , j ; i ̸= j
y=x+vδ

f (i ,y)πnδ( j ,x)λ( j ,x)Q( j ,x, i )δ

+ ∑
j ,x

x=y+vδ

f ( j ,x)πnδ( j ,y)[1−λ( j ,y)δ]

+ ∑
i ,k, j ,y

k ̸= j
z=w+vδ; z∈Γ
y=mΓ(k,z,i )

f (i ,y)πnδ( j ,w)λ( j ,w)Q( j ,w,k)q(k,z, i )δ

+ ∑
i , j

z=w+vδ; z∈Γ
y=mΓ( j ,z,i )

f (i ,y)πnδ( j ,w)[1−λ( j ,w)δ]q( j ,z, i )δ

After grouping, it can be written as:

∑
j ,y

f ( j ,y)π(n+1)δ( j ,y) =∑
j ,y

f ( j ,y)πnδ( j ,y) (3.9)

+ ∑
j ,y

(y+vδ)∉Γ

πnδ( j ,y)λ( j ,x)δ

 ∑
i ̸= j

y=x+vδ

f (i ,y)Q( j ,x, i )− f ( j ,y)


+ ∑

j ,y
(y+vδ)∉Γ

πnδ( j ,y)[1−λ( j ,y)][ f ( j ,y+vδ)− f ( j ,y)]

+ ∑
j ,w

(w+vδ)∈Γ

πnδ( j ,w)λ( j ,w)δ

 ∑
i ,k; k ̸= j

z=(w+vδ)∈Γ

f (i ,mΓ(k,z, i ))Q( j ,w,k)q(k,z, i )− f ( j ,w)


+ ∑

j ,w
(w+vδ)∈Γ

πnδ( j ,w)(1−λ( j ,w)δ)

 ∑
i ,z

z=(w+vδ)∈Γ

f (i ,mΓ( j ,z, i ))q( j ,z, i )− f ( j ,w)


If nδ= t by summation of successive differences, we can write:

∑
j ,y

f ( j ,y)π(n+1)δ( j ,y) =∑
j ,y

f ( j ,y)π0( j ,y) (3.10)

+ δ
n∑

m=0

∑
j ,y

(y+vδ)∉Γ

πmδ( j ,y)λ( j ,y)

(∑
i ̸= j

f (i ,y)Q( j ,y−vδ, i )− f ( j ,y)

)

+ δ
n∑

m=0

∑
j ,y

(y+vδ)∉Γ

πmδ( j ,y)(1−λ( j ,y)δ)

(
f ( j ,y+vδ)− f ( j ,y)

δ

)

+ δ
n∑

m=0

∑
j ,w

(w+vδ)∈Γ

πmδ( j ,w)λ( j ,w)

( ∑
i ,k; k ̸= j

f (i ,mΓ(k,w+vδ, i ))Q( j ,w,k)q(k,w+vδ, i )− f ( j ,w)

)

+
n∑

m=0

∑
j ,w

(w+vδ)∈Γ

πmδ( j ,w)(1−λ( j ,wδ))

(∑
i

f (i ,mΓ( j ,w+vδ, i ))q( j ,w+vδ, i )− f ( j ,w)

)
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Finally, by making δ tend towards 0, we get the Chapman-Kolgomorov equation for a

following regular function f from E ×R to R, where πt ( j ,y) denotes the law of the process

{I (t ), X (t )} at time t :

∑
j ,y

f ( j ,y)πt ( j ,y) =∑
j ,y

f ( j ,y)π0( j ,y) (3.11)

+
∫ t

0
du

∫
F̃

∑
j
πu( j ,d y)λ( j ,y)

(∑
i ̸= j

f (i , j )Q( j ,y, i )− f ( j ,y)

)

+
∫ t

0
du

∫
F̃
πu( j ,d y)

∑
l

d f

d yl
( j ,y)vl

+
∫

(0,t ]×Γ

∑
j

(∑
i

f (i ,mΓ( j ,w, i ))q( j ,w, i )− f ( j ,w)

)
σ( j ,dw,d s)

The measuresσ( j ,dw,d s) on the time-space R+×Γ describe the way the process reaches

the frontier. If t1 and t2 are two points in time (t1 < t2) and Γl is a part of the frontier Γ, then∫
Γl×(t1,t2]σ( j ,dw,d s) is the mean number of times the process reaches the frontier between

t1 and t2 on the part Γl of the frontier with the discrete part being j . In our case, the mean

number that the process reaches a part of the frontier corresponds to the mean number of

maintenance actions or inspections.

3.3 Case study

This section illustrates the proposed modelling approach through a case study and explores

on how different assumptions could be taken into account. The case is related to bridge

management, i.e. the planning of inspections and maintenance activities of road bridges, in

Norway.

3.3.1 Background

The use of automobiles experienced a rapid growth during the 20th century and with this

growth came the development of a massive transportation infrastructures. In [2], the Coun-

cil of the European Union includes the transport sector in the list of Critical Infrastructures,

considering that modern societies depend on the availability of this service and that its dis-

ruption or unavailability poses risks with serious consequences to the health, safety, eco-

nomic or social well-being of people and vital societal functions. A systematic approach to

maintenance and rehabilitation strategies for the transportation system was not identified

until the late 1960s. The Highway Safety Act of 1968 was a development that resulted from

the collapse of the Silver bridge across the Ohio River, USA in 1967, and the concerns related

to the bridge management problem [81]. This Act required state road officials to inspect and

rate the condition of the bridges.

Bridge management can be understood as the optimal planning of inspections and main-

tenance activities of road bridges, with the goal of preserving the asset value of the infrastruc-
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ture by optimizing the costs over its lifetime, while ensuring the safety of users and offering a

sufficient quality of service [82]. More than 50 years after the collapse of the Silver bridge, de-

spite the advances in technology, rehabilitation techniques and safety assessments, bridge

collapses continue to occur. On August 2018, Ponte Moranti on the A10 motorway in Genoa,

Italy (figure 3.3), collapsed resulting in the loss of 43 human lives [83].

Figure 3.3: Ponte Moranti. Photo credit: Michelle Ferraris, Wikimedia Commons

Bridge collapses have been historically caused by a variety of factors or a combination of

these, including poor engineering judgement, use of substandard materials, extreme load-

ing, inadequate maintenance, among others. From all the causes of bridge failure, improper

maintenance is the most preventable [84]. Moreover, the construction of new bridges has

been slowing down in most countries, which now face a stock of aging bridges, requiring an

effective and efficient bridge management.

3.3.2 Problem statement

Road bridges are a vital part of the Norwegian transportation infrastructure. In Norway, there

are more than 18,000 road bridges across the country, so an efficient bridge management

system is vital for avoiding high costs from over expending and for ensuring safety of the

public and availability of the transportation system.

Many factors can make bridge management a challenging task, such as: the varying

weight and intensity of the traffic, the evolution of the building codes over the years, the

weather influence on the structures, large number of structures spread over a large area,

and others [24]. All these factors create uncertainty, which makes the bridge management a

problem of decision making under uncertainty.

In the bridge management system applied by the Norwegian Public Roads Administra-

tion (NPRA), the agency responsible for planning, building, operating, and maintaining na-

tional and country bridges, the inspections are mainly carried out periodically based on pre-

defined rules and the decision about when to perform maintenance is based on the findings

of these inspections. The handbooks for management and inspections of bridges [85, 7], es-

tablish types of inspections for the bridges and the period in which they must be performed,
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e.g. a main inspection of a bridge, with an overview of all the elements of the bridge, must

(in general) be performed every five years. They also establish how the inspections must be

logged in a database, how the findings must be reported and provides guidelines on when to

perform the repairs for found damages.

There exists an extensive list of damage mechanisms that can affect a structure. The in-

spection handbook of the NPRA [7] provides an overview of these mechanisms with guide-

lines on how to assess their severity. The assessment of the severity consists in a combina-

tion of quantitative and qualitative methods. The resulting condition is presented in a scale

of one to four, as: (1) Small damage, (2) Medium damage, (3) Large damage and (4) Critical

damage.

The regulations dictate a CBM strategy that establishes when the damage must be re-

paired based on the condition at the inspection. According to the severity of the damage,

a maintenance action (or no action) must be scheduled. For small damage (1), no main-

tenance action is required; for medium damage (2), a maintenance action must take place

between four and ten years; for large damage (3), a maintenance action must take place be-

tween one and three years and for critical damage (4), a maintenance action must take place

in less than six months. Figure 3.4 shows an overview of the described bridge management

process.

Figure 3.4: Bridge management process

We proceed to build a CBM model illustrating the PDMP formalism described in section

3.2.2. We recall that a state of the PDMP {I (t ), X (t )}t ≥ 0 to consider is made of {i,x} with x =
(x1, x2, t ), where x1 corresponds to the date of the next inspection, x2 corresponds to the date

of the next maintenance operation, t stands for time and i corresponds to the deterioration

level of the unit.
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3.3.3 Deterioration model

For modelling the deterioration process of a structure, we need to define the deterioration

states and to describe the jumps between these states.

In the bridge management of the NPRA a condition is assigned to the structure as a level

that ranges from one to four. In order to distinguish between a condition not known to the

NPRA and a condition which is known based on information from the inspection, we split

the deterioration state of the unit in two parts: a real state and a virtual state. In this sense,

i = (i1, i2) where i1 = {1,2,3,4} denotes the real state of the structure, and i2 = {1,2,3,4} de-

notes the virtual state of the structure (known by the operator based on the inspections). A

condition (real or virtual) of the structure is assigned as:

• 1 : Small or no damage

• 2 : Medium damage

• 3 : Large damage

• 4 : Critical damage

The deterioration is modelled with random jumps between these states. Since the unit

is not continuously monitored, when a deterioration jump occurs, it is not detected until an

inspection is performed, so only the real state (i1) changes and the virtual state (i2) remains

unchanged. In this case, we consider that the structure deteriorates gradually as shown in

figure 3.5.

i1 = 1 i1 = 2 i1 = 3 i1 = 4
λ12 λ23 λ34

Figure 3.5: Deterioration process.

As described in section 3.2.2, a jump from state (i,x) towards discrete state (j) occurs

with a rate λ(i,x)Q(i,x, j). Considering constant transition rates, i.e. dependent only on the

discrete components before and after the jump and not on the continuous component, we

can write the transition rates out of a discrete component i, as:

• From i1 = 1, ∀ i2, x:

λ((1, i2),x) =λ12 and Q((1, i2),x, (2, i2)) = 1

• From i1 = 2, ∀ i2, x:

λ((2, i2),x) =λ23 and Q((2, i2),x, (3, i2)) = 1

• From i1 = 3, ∀ i2, x:
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λ((3, i2),x) =λ34 and Q((3, i2),x, (4, i2)) = 1

• From i1 = 4, ∀ i2, x:

λ((4, i2),x) = 0

3.3.4 Intervention model

The inspections and maintenance operations are described by jumps at intervention times

as described in section 3.2.2.

Inspections

When a structure is inspected its condition is revealed and a maintenance task and the next

inspection are scheduled accordingly. A jump in the PDMP related to an inspection occurs

when the part of the frontier Γ made of the points {x1 = t } is reached. To describe a jump at

this time we must define the post jump location of the discrete and continuous components

and the associated probability distribution of such location.

There are two characteristics about the inspections that can be addressed in the mod-

elling framework: frequency and quality. The frequency of the inspections can be periodic

or non-periodic. Currently, due to regulations, the bridge inspections of the NPRA are car-

ried out periodically, i.e. inspections are performed at equal time intervals. Let T denote

the constant interval for inspections and Mi2 denote the delay for maintenance based on the

virtual deterioration condition i2. As described in section 3.3.2, maintenance is scheduled

according to the known deterioration state to the operator (i2) as: M1 =∞, M2 ∈ [4,10] years,

M3 ∈ [1,3] years, M4 ∈ [0,0.5] years. The post jump location of the continuous component

is: mΓ(i,x, j) = (t +T,min(xB , Mi2 ), t ). Non-periodic inspections could for example follow a

pre-determined condition-based inspection scheme, in which the time of a next inspection

is decided based on the deterioration state of the unit at the current one. To model such in-

spection scheme, the inspection interval can be set according to the virtual state of the unit

(i2), (similar to the maintenance delay) as Ti2 instead a constant interval.

The quality of the inspections can be taken into account by assigning a probability q(i,x, j)

distribution to the post-jump location, as described in section 3.2.2. If the inspections are

considered perfect, i.e. the real state of the unit is revealed at the inspection without un-

certainty, then the virtual state becomes equal to the real state of the unit at the inspection

time, with probability of one. In some cases, the inspections may not perfectly reveal the

real condition of the unit, due to for example hidden damages or errors in measurements. If

the inspections are considered non-perfect or subject to errors, then we can write a condi-

tional probability of the post-jump location of the virtual state ( j2), given the real state of the

unit before the jump (i1), as P ( j2|i1) = q(i,x, j) and the post jump location of the continuous

component would be mΓ(i,x, j) = x+ (T j2 , M j2 ,0)
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Maintenance

A maintenance task is scheduled according to the condition of the structure at inspection.

The maintenance is arranged to take place after a delay with deterministic duration. When

a maintenance action is performed, a jump occurs to a less deteriorated state. The degree

of the maintenance is modelled by assigning the post-jump location. For example, if per-

fect maintenance or replacement is considered, the unit is considered as-good-as-new, thus

the discrete component (i1, i2) jumps to (1,1). In addition, the date to the next inspection

(x1) does not change, and the date of the next maintenance action (x2) is set to infinite (no

maintenance scheduled).

To consider possible errors in the maintenance operation, a probability distribution q(i,x, j)

can be assigned the post-jump location. For example, let θ denote the probability of main-

tenance error, i.e. the probability that a maintenance action results in a state other than as-

good-as-new e.g. a state with medium damage, then the discrete component jumps from i to

j = (1,1) with probability q(i,x, j) = (1−θ) or from i to k = (2,1) with probability q(i,x,k) = θ.

3.3.5 Quantification

The following assumptions are considered in the illustration case for quantification pur-

poses, in addition to those listed in section 3.2.1:

(i) The unit is inspected periodically, i.e. at equal time intervals T

(ii) Inspections are perfect and reveal the true state of the unit.

(iii) Maintenance interventions occur at the scheduled date instantaneously, i.e. the dura-

tion of the intervention is neglected

(iv) After a maintenance action, the unit is considered as-good-as-new without error.

From assumptions (i) and (ii), it can be written that if x ∈ Γwith x1 = t , a jump occurs from

state (i,x) to state (j,mΓ(i,x, j)) with probability q(i,x, j) = 1. The discrete component jumps

to j with j1 = j2 = i1, i.e. the virtual deterioration state becomes equal to the real state before

the jump, while the continuous component jumps to mΓ(i,x, j) = (t +T,min(x2, Mi2 ), t ).

From assumption (iv), if z ∈ Γ with z2 = t then a jump occurs from state (k,z) to state

(j,mΓ(k,z, j)) with probability q(k,z, j) = 1 (no error). The discrete component jumps to j =
(1,1), i.e. as-good-as-new, while the continuous component jumps to mΓ(k,z, j) = (z1,∞, t ).

Numerical approach

The states probabilities can be found by iterating on the recursive equation 3.6. At every

iteration step, the real deterioration states probabilities πnδ((i1, ·),x) can be found with the

summation:
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πnδ((i1 = k, ·), (·, ·,nδ)) = ∑
x2

∑
x1

∑
i2

πnδ((k, i2), (x1, x2,nδ)) (3.12)

Monte Carlo simulation

An alternative quantification method to the numerical approach introduced in 3.2.3 is to

perform Monte Carlo simulation of the process to estimate the quantities of interest. The

modelling framework described in section 3.2.2 is convenient for setting the structure to

simulate problems of CBM with the aforementioned assumptions.

The simulation procedure of the PDMP is shown in figure 3.6. It includes five main steps

to simulate a realization of the PDMP until a horizon time thor .

(i) Set initial system time and initial system state

In our case, initial time is set to zero, the unit is set to be in new condition with no

maintenance action scheduled and the date of the first inspection is set to the period.

(i.e. t = 0, i1 = 1, i2 = 1, x1 = T and x2 =∞).

(ii) Sample date of next random jump, if enabled

The date of the next random jump t j ump is sampled from the corresponding probabil-

ity density function and the corresponding parameter(s).

(iii) Identify next event

The date of the next random jump t j ump is compared with date of next inspection x1,

the date of next maintenance action x2 and the horizon time thor .

The system time is updated as: t = min(t j ump , x1, x2, thor ). If the simulation time has

reached the horizon time, t ≥ thor , the simulation continues to step (v), otherwise it

continues to step (iv).

(iv) Update system state

The system state is updated according to the jump that takes place at time t : deterio-

ration, inspection or maintenance.

(a) Deterioration: (t = t j ump )

Only i1 is updated in this jump

(b) Inspection: (t = x1)

The values of i2, x1, x2 are updated. The post-jump values are:

i+2 = i−1 ;

x+
1 = t +T ;

x+
2 = t +Mi2 ;

(c) Maintenance: (t = x2)

The values of i1, i2, x2 are updated. The post-jump values are:
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i+1 = i+2 = 1;

x+
2 =∞.

(v) Set final system state and time

The final time is thor and the final system state is the state resulting from the last jump

to take place no later than thor .

I. Set initial sys-
tem time and ini-
tial system state

II. Sample date of
next stochastic jump

III. t =
min(tjump, x1, x2)

t ≥ thor ? t =?
IVa. Update i1.

(Unit deteriorates)

IVc. Update i1, i2, x2.
(Unit is maintained)

IVb. Update
i2, x1, x2. (Unit is

inspected and main-
tenance is scheduled)

V. Final time thor
and final system state

no

yes

tjump

x2

x1

Figure 3.6: Simulation procedure.

This simulation procedure is replicated a high number of times, to approximate quanti-

ties of interest, such as deterioration state probabilities and mean numbers of interventions

of a given type.

3.3.6 Experiments and results

State probabilities

The model parameters used for quantification are shown in table 3.1. The deterioration rates

have been estimated from previous works carried by the NPRA based on the information

available on their database for bridge inspections and maintenance actions.

The time dependent real deterioration states probabilities P (i1) are found using both the

numerical approach and Monte Carlo simulation. The results are shown in figure 3.7.

To compare the results of the quantification from both approaches, the residuals or dif-

ference between the state probabilities is shown in figure 3.8. It can be observed that the
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Deterioration Maintenance Inspection
rates (h−1) delays (y) interval (y)
λ12 = 1.5e−5 M1 =∞ T = 5
λ23 = 6e−6 M2 = 8
λ34 = 1.4e−6 M3 = 3

M4 = 0.5

Table 3.1: Model parameters
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Figure 3.7: Deterioration state probabilities

difference in results is small with an order of magnitude of 10−3. In addition, the difference

is reduced by performing a higher number of replications of the Monte Carlo simulation,

showing same convergence.

The Monte Carlo simulation method is widely used in practice, conceptually easy to ap-

ply and without particular restrictions on the dimension of the PDMP. On the other hand,

the numerical scheme has high accuracy with short computation times [73]. In our case, the

Monte Carlo simulation with 100,000 replications took approximately one hour to obtain

time-dependent probabilities, while with the numerical scheme the results are obtained in

approximately ten seconds.

Maintenance optimization

The PDMP allows to test different inspection and maintenance strategies and assess their

effect on the structure condition. For example, different periods of inspection can be con-

sidered, evaluating the effect on the condition of the structure. Figure 3.9 shows how the

critical condition of the unit (i1 = 4), varies with time for different inspection periods. This

allows to support the decision process related to inspections by evaluating the associated

risk on the structure.

Moreover, to assist the decision process in bridge management, the expected cost per
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Figure 3.8: Numerical approach and simulation results

unit of time of a given strategy can be assessed in addition to the effect on the condition of a

structure. Then a favorable inspection/maintenance strategy which minimizes the cost per

unit of time with an acceptable risk for the structure can be chosen. The function for the

expected cost can be set as:

E [C ] = E [Ni n]Ci n +E [Nmr ]Cmr +E [Nl r ]Cl r +E [Ncr ]Ccr (3.13)

Where Ci n : cost of inspection, Cmr : cost of medium repair (unit with medium damage),

Cl r : cost of large repair (unit with large damage), Ccr : cost of critical repair (unit with critical

damage), Ni n : number of inspections per unit of time, Nmr : number of medium repairs per

unit of time, Nl r : number of large repairs per unit of time, Nl r : number of large repairs per

unit of time.

The mean number of inspections and repairs can be estimated from Monte Carlo simu-

lations or expressed in terms of the marginal distributions of the PDMP and approximated

with the numerical scheme. We look at a long time horizon for the expected cost to be con-

sidered asymptotic. For example, the mean number of medium repairs until t, corresponds

to the mean number of times the process reaches the part of the frontier related to mainte-

nance (t = x2) with the discrete component i = (2,2) until time t, which can be approximated

by equation 3.14.

Nmr (t ) ≈
t∑

u=0
x∈Γ2

πu{(2,2), (x)} (3.14)
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Where Γ2 refers to the part of the frontier made by the points {x2 = t }. To illustrate, we

look at the expected cost per unit of time for different inspection intervals (keeping the pa-

rameters from table 3.1 fixed, with the exemption of the inspection interval which is varied).

We set symbolic values of Ci n = 50, Cmr = 100, Cl r = 250, Ccr = 5000.
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Figure 3.10: Mean number of repairs per unit of time

Figure 3.10 shows the mean number of medium, large and critical repairs per unit of

time for different inspection intervals and the resulting cost is shown in figure 3.11. In this

case, the expected cost is lowest for an inspection interval T = 13.75 years or 13 years and 9

months.
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3.4 Chapter conclusion

A framework for CBM models with discrete-state stochastic deterioration has been proposed

based on the theory of PDMP. The proposed model allows to study problems in which the

condition monitoring is not continuous but inspection-based and there is an inherent delay

for performing maintenance actions. Therefore, the transition law cannot be found by a sim-

ple Markov process neither a semi-Markov one. Although this family of problems has been

the motivation to propose PDMP, it is worth to mention that PDMP have been introduced

as general class of non-diffusion stochastic models and as such can cover a wide variety of

applications that involve some combination of random jumps and deterministic motion.

The proposed framework allows the assessment of the probability for the infrastructure

to be in a deterioration or a critical state given an inspection period and given a maintenance

schedule. In this way, it is possible to evaluate if a given CBM policy is adequate regarding

some safety requirements by making variations of the inspection period, the delay before in-

tervention, or the state to which the system is restored after maintenance (imperfect mainte-

nance). It is also possible to assess the cost of a CBM policy and find the optimal parameters

of the policy.

A numerical approach for quantification of time dependent probabilities has been de-

veloped. This approach is an approximation to the solution of the Chapman-Kolmogorov

equation. In comparison, Monte Carlo simulation is in general conceptually easier to ap-

ply while the numerical approach could provide better accuracy in the results with faster

computation times. However, the system complexity and the number of discrete states can

be limitations for this numerical approach while Monte Carlo simulation could offer more

flexibility in this aspect. Given that the deterioration of the system can be characterized by a

reasonable number of discrete states and that the deterministic motion is reduced to a trivial

equation, it is relatively simple to make use of the numerical approach, making it a conve-
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nient alternative for problems which require studying different strategies and repeating the

quantification procedure several times in order to support the decision-making.

A case study has been presented to illustrate the modelling and quantification approach.

Through the case, guidelines on how to account for different assumptions about the inspec-

tion frequency and quality as well as maintenance strategies are given.

The proposed modelling framework presented, as well as much of the existing research

on CBM focuses on single-item models. Moreover, multistate systems reliability theory usu-

ally deals with systems made of independent multistate components. An interesting direc-

tion of further works could be to study the application of PDMP under the framework of mul-

tistate systems, exploring on the modelling of dependencies among the components such as

stochastic, structural and/or economical. In this way, a decision-making process for main-

tenance at the system level can be considered. This is discussed in the next chapter.





Chapter 4

Piecewise deterministic Markov process

for condition-based maintenance models

of multi-component systems

This chapter presents a modelling framework for studying the CBM optimization problem of

a multi-component system, with application to a gas compressor. The proposed framework

is based on a Piecewise deterministic Markov Process (PDMP) and multi-state systems the-

ory, allowing for the performance assessment of maintenance policies at the system level,

while taking into account some structural and resources dependencies among the compo-

nents with non-negligible actions duration and constraints related to the production profile.

A case study dealing with CBM of a gas compression system is presented, introducing the

assumptions, variables, evolution of the PDMP, numerical calculations of the process and

the approach to assess the performance of a maintenance policy at the system level.

The main content of this chapter is based on the published article in appendix C and the

article under review in appendix D which have been prepared as part of this PhD project.

4.1 Background and state-of-the-art

The literature on CBM models for multi-component systems is more limited than on single-

item. As Alaswad and Xiang [20] have pointed, most of the existing CBM strategies for multi-

component systems have traditionally been done at the component level, meaning that

the optimal CBM policy for a single component is employed per component in the multi-

component system [86, 87, 88] without taking into account components inter-dependencies.

However, in practice, multi-component systems are subject to dependencies among the

components that should be considered in the decision making for choosing a maintenance

policy while assessing the performance at the system level. Neglecting dependencies among

components may not guarantee the best maintenance performance. Therefore the study of

component dependencies has been gaining attention on CBM models for multi-component

55
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systems and they can be classified as hereafter.

Structural dependence is related to the structural, static relationships among compo-

nents, from a technical or a performance perspective. From the technical point of view, it

relates to systems which are configured in a way that maintaining one component requires

or prohibits other to be maintained, and from the performance perspective it refers to sys-

tems in which their performance is impacted by the configuration and by the performance

of the components, e.g. series, parallel and k-out-of-n relations [60]. Resources dependence

concerns systems in which maintenance actions can only be executed if the required re-

sources (e.g. spare parts, tools, personnel) are available. It concerns systems in which several

components share limited resources, requiring maintenance to be optimized at the system

level [61]. Stochastic dependence refers to the interaction between failures or deterioration

processes of components of the system, as well as the influence of external factors on these

and economic dependence indicates that the cost of maintenance is impacted by joining the

maintenance tasks of different components [89].

Some authors have studied maintenance problems of systems while addressing these

dependencies. Most of them are based on the identification of a Markov process. Zhang et al.

have considered a condition-based maintenance policies for systems whose components are

subjected to failure (stochastic) dependency, formulating the problem as a Markov renewal

process [62], [90]. Xu et al. [91] and Andersen et al. [92] make use of a Markov Decision

process (MDP) to find the optimal maintenance decisions in systems where the dependence

among components is characterized by a copula function. MDP have also been developed

for joint optimization problems of systems exposed to restrictions such as inventory of spare

parts or production schedules [93, 94, 95].

However, the aforementioned works deal with cases in which the duration of the ac-

tions (inspections, repairs) is considered negligible. In practice, in systems difficult to main-

tain, the action duration can be significant and influence the optimal maintenance decision.

Some systems are required to operate continuously, with a dynamic demand that alternates

between periods that require the system to operate at full capacity while other periods pro-

vide better margin for maintenance actions due to the ability of sharing the load. When a

maintenance action takes place in part of the system, the rest of the components must en-

sure the continuous operation and meet the requirements of the system. It is then important

to consider the evolution and deterioration of the active components in order to assess the

risk in the system’s performance while a maintenance action is taking place. For this, we pro-

pose a specific class of Piecewise Deterministic Markov Process (PDMP) in order to support

the modelling work and to provide a formalism that can be suitable to a larger set of applica-

tion cases. Such PDMP can serve as a basis to implement a numerical scheme and provide

numerical solutions for the maintenance strategy cost evaluation.

PDMP have been proposed in works dealing with maintenance problems. Zhang et al.

[75] proposed PDMP for an offshore oil production system and Lair et al. [77] for a train air

conditioning system. However, the policy on those cases is not CBM since the health of the
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components is considered binary, with components being either working or failed. Lin et

al. [76] proposed PDMP as a framework for considering dependencies among degradation

processes affecting a single item. We propose PDMP for studying CBM problems of a multi-

state system made of multi-state components, while addressing some dependencies. At last,

in order to have more concise and elegant formulation of the system-level performance for

a given maintenance policy, we propose to use a formalism taken from multi-state system

theory. This formalism allows for the description of the system performance (level of pro-

duction) as a function of few system states, by avoiding a complete combinatorial develop-

ment.

4.2 PDMP

In this section we present the modelling assumptions and then the formalism of the corre-

sponding PDMP with linear deterministic motion. The process evolution is made of linear

motion between jumps that can be random or due to the continuous part hitting a boundary,

just like in section 3.2.2.

4.2.1 Modelling assumptions

We consider a system that has a breakdown structure with three indentation levels as shown

in figure 4.1 and propose PDMP as a framework for studying CBM problems with the as-

sumptions explained here under and summarized in figure 3.1.

Figure 4.1: Generic breakdown structure

On the deterioration model side, we assume that the system condition is a function of

the conditions of its components. The condition of each component is described by a set of

discrete states and the deterioration follows a random jump process between these states.

For the interventions, we consider that the system alternates between periods of high

demand and periods of low demand. The optimal selection of maintenance activities for

systems with these characteristics is known as selective maintenance. Selective maintenance

aims to determine which subsystems or components should be maintained and how they

should be maintained during a mission break or opportunity, with the available resources,

in order to meet the performance requirements of the system during future missions or high

demand periods [96].
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Figure 4.2: Model assumptions for the proposed framework

In addition, we consider that there is only one maintenance crew available, meaning that

only one of the subsystems can be maintained at a time. Likewise, we consider that the

subsystems are configured in a way that maintaining one of its components requires to take

the other component of the same subsystem out of operation.

Once again, we make use of a specific class of PDMP in which the deterministic motion

is linear and intended to keep track of the time to an intervention jump. This allows to for-

mulate the problem in a Markovian way.

4.2.2 Formalism

We consider a stochastic hybrid process {I (t ), X (t )}t ≥ 0 with values in a discrete-continuous

space E ×R.

The first component, {I (t )} is discrete and used to represent the deterioration states of

the components of the system. The system is made of m components and the condition

of each component of the system can be categorized in a finite number of states ni . We

consider i = (i1, i2, ..., im , im+1) a vector in which (i1...im) denote the state of each component

of the system. The last term im+1 and im+1 denotes an operational mode of the system and

is used to keep track of the availability of the maintenance crew. The discrete state space E

is the finite set made of n1 ×n2 × ...×nm+1 points.

The second component, {X (t )} is continuous, introduced in our case as a way to keep

track for the intervention jumps that occur at specified times. We consider x = (x, t ), x is a

vector in which x is used to mark the time of an intervention or boundary jump and t stands

for time. Hence, the continuous component {X (t )} evolves in R2.

The process {I (t ), X (t )}t ≥ 0 evolves as what is described in section 3.2.2 (for a more de-

tailed description). It experiences jumps at random times with from a state (i,x) towards

discrete state (j) with rate λ(i,x)Q(i,x, j) and jumps at intervention times when t reaches the

boundary x. Between the times of two consecutive jumps (random or deterministic) only
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the continuous variable t evolves with speed of one, i.e. v(i,x) = (0,1).

Dependencies

We highlight here how some dependencies are handled from a generic point of view and

illustrate them later through the case study in section 4.3.

Structural According to the model assumptions, there are structural dependencies at the

subsystem level. From the technical perspective, maintaining one component requires tak-

ing the other component of the same sub-system out of operation. This also gives an oppor-

tunity for grouping maintenance activities of components of the same subsystem. From the

performance perspective, we consider that the performance of the system is dependent on

the states and availability of their subsystems.

To handle these dependencies, as later seen in the case study, we first write the states at

the subsystem level by developing the full combination states of the components, as in table

4.1, and write a structure functions that outputs the performance at the system level as a

function of the states of the maintained components, as section 4.3.4.

Stochastic and resource dependencies There can be stochastic dependence between com-

ponents of the system in the sense that the rates of deterioration of a component are depen-

dent on the states of the other. Additionally, there is only one maintenance crew available

for the subsystems, meaning that only one of the subsystems can be maintained at a time,

while also opening the opportunity to work on both components of the subsystem.

It is possible to take these assumptions into account by doing the modelling work of

defining the jump rate and transition measures accordingly. The system jumps from a state

(i,x) towards discrete state ( j ) occurs with a rate λ(i,x)Q(i,x, j). Is is part of the modelling

work to define the random jump rates that are dependent on the states of the components of

the system (i = (i1, ..., im+1)) and to map the jumps between states with the transition mea-

sures Q(i,x, j). The extra term in the discrete-component allows to prevent a maintenance

action starting in a component if the maintenance crew is unavailable. By assigning a value

to this term, it is possible to write and map the random jumps as well as the deterministic

motion of the process. This is shown through the case study in the description of the PDMP

evolution in section 4.3.3.

4.3 Case study

This section illustrates the proposed modelling approach through a case study and explores

on how different assumptions could be taken into account. The case is related to a gas com-

pressor system.
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4.3.1 Background

Norway is the European Union (EU) second largest gas supplier, covering 27% of the total

gas imports of the EU during the third quarter of 2019 [97]. The large majority of these gas

exports from Norway to the EU is transported through pipelines. Pipeline networks are the

preferred and most efficient method of transporting natural gas. An integral part of a nat-

ural gas pipeline network are the compressor stations, which are strategically placed within

the network with the function of maintaining the pressure and flow of gas, from the produc-

tion sites to the end users [98]. Ensuring high availability of compressor stations is of key

importance to avoid the large production losses associated to the network downtime.

Usually, high reliability is implemented by robust design at the system design phase. Dur-

ing the operation, rigorous maintenance policies are the means to ensure high availability of

the compressor station. Traditionally, these maintenance policies consist on calendar-based

preventive maintenance interventions, that may result in high costs from over expending.

This situation could be improved by moving towards condition-based maintenance (CBM)

policies and a decision process based on prognostics. As pointed out by Kermanshachi et

al. [99], the studies on optimal natural gas pipeline maintenance strategies using reliability

analysis are limited, leaving a knowledge gap and lack of predictive models to estimate major

incidents in natural gas pipeline systems.

4.3.2 System description and model assumptions

We consider a compressor train consisting of a variable speed drive (VSD), an electrical mo-

tor (M), a gearbox (GB) and the gas compressor (C), as shown in figure 4.3.

VSD MOTOR GEARBOX COMPRESSOR

GB CM

Figure 4.3: Compressor train diagram (adopted from [4])

From these components, the variable speed drive and the gearbox are considered to be

much more reliable than the other two, and their repairs are considered to be easy and with

short duration, in accordance to [4]. Therefore, their contribution to the unavailability of

the train can be considered negligible and here we focus on modelling the deterioration and

CBM for the other two components, i.e. the electrical motor and the gas compressor.

In order to propose a framework illustrating the inclusion of dependencies, we consider

a system composed of two redundant compressor trains. The structure of the system con-

sidered is represented in figure 4.4. In this structure, indenture level one corresponds to the

compression system here referred to as the system, indenture level two corresponds to the

compressor trains and indenture level three corresponds to the motor and gas compressor,
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here called components, which are treated as black boxes in our study.

Compression System

Compressor Train 2

Motor 2 Gas compressor 2

Compressor Train 1

Motor 1 Gas compressor 1

System: 

Sub-systems: 

Components: 

Figure 4.4: Compression system breakdown structure

Condition monitoring is performed on the components: the gas compressors are contin-

uously monitored with online sensors, while the electrical motors can be subject to inspec-

tions that require to take them out of operation.

The condition of the gas compressor is described with four discrete states: perfect, low

degraded, high degraded and failed. The condition is monitored indirectly but continuously.

The production capacity of the compressor drops to 80% when its condition reaches the high

degraded state.

The condition of the motor is described with three discrete states: perfect, degraded and

failed. The motor is not continuously monitored. In order to detect its degraded state, an

inspection must be performed.

For both the motor and the gas compressor, the deterioration process is considered to

follow random jumps with constant transition rates, with the deteriorated state gradually

increasing from perfect to failed, in accordance to previous works [4, 100]. The state of the

motor can jump from perfect to deteriorated with rate λmd , and from deteriorated to failed

with rate λm f . The state of the gas compressor can jump from perfect to low degraded with

rate λcd1, from low degraded to high degraded with rate λcd2, and from high degraded to

failed with rate λc f .

In addition to the random jumps, the system experiences changes of state according to

the maintenance intervention schedule. The production requirements and variations in the

demand profile, can lead to delaying the execution of maintenance tasks. For example, the

compression system is required at full capacity during peak season, so any preventive main-

tenance task should not be triggered at that time. On the other hand, periods of low demand

present an opportunity to preventively maintain the system in order to ensure an acceptable

level of the system reliability during the following high demand periods.

Both structural and resources dependencies are present in our case. At the components

level, there is an obvious dependency, e.g. a gas compressor cannot function without a failed

drive motor and contrariwise, a failure in the gas compressor would activate a shut down

of the motor. At the sub-systems level, although we could consider that the operation and

performance of one compressor train does not influence the other, both compressor trains

contribute to the performance of the system and when assessing a maintenance policy this

should be take into consideration. In addition, we consider that there is only one mainte-

nance crew available and it can only work on one compression train (motor + gas compres-
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sor) at a time. Then a maintenance task in one compressor train prohibits a maintenance

task on the other train. To manage the structural dependencies at the component level, we

propose to model states and transitions at the compressor train (sub-system) level. Later,

to deal with the resource dependency to maintain the syb-systems, the maintenance epoch

and duration, we propose a PDMP at the system level, mapping the transitions and the pro-

cess evolution.

We consider that when one of the unit fails, the train immediately stops and no further

deterioration on the train occurs. Based on the condition of its components, we define the

states of the compression train as in table 4.1.

Train state Motor state Gas compressor state Capacity
11 Perfect Perfect 100%
10 Degraded Perfect 100%
9 Perfect Low degraded 100%
8 Degraded Low degraded 100%
7 Perfect High degraded 80%
6 Degraded High degraded 80%
5 Failed Perfect 0%
4 Failed Low degraded 0%
3 Failed High degraded 0%
2 Perfect Failed 0%
1 Degraded Failed 0%

Table 4.1: Compression train states

In a simplification of the production profile, one year can be divided into two seasons,

based on the gas demand: winter (high demand) and summer (low demand). Hence, it is

preferred to take care of maintenance actions during a summer season since the production

losses during winter season are considered to be way too high. We consider there is only one

maintenance crew, so only one compressor train can be maintained at a time.

Based on the PDMP framework, we describe the stochastic process at the system level,

considering random jumps related to components deterioration, jumps at specific times re-

lated to maintenance and the constraint of the resources which require a synchronization of

the maintenance tasks.

4.3.3 PDMP Formalism

Consider the process {I (t ), X (t )} = {i,x} with values in a discrete-continuous space E × R.

Both the discrete and continuous components are vectors and their elements are described

next.

Variables

The discrete component for our case is a vector of three elements, i = (i1, i2, i3), where:
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• (i1, i2) is a pair denoting the state of both compression trains, as listed in table 4.1.

• i3 = {3,2,1} is used to indicate an operation mode, where: 3 indicates that both trains

are in operation, and both 2 and 1 indicate that a maintenance task is in progress in

one of the trains. This variable allows us to define the appropriate boundary jumps

related to interventions, as described later in section 4.3.3.

The discrete state space of the process is then made of E : Si1 ×Si2 ×Si3 , where Si1 and

Si2 correspond to the possible states of the compressor trains and Si3 corresponds to the

possible states of operation, i.e. Si1 ,Si2 = {11,10,9,8,7,6,5,4,3,2,1} (as defined in table 4.1)

and Si3 = {3,2,1}.

The continuous component is a vector of two elements x = (x, t ), where:

• x denotes the date of a next maintenance related transition. This can be a date in

which a maintenance starts on a compressor train or finishes.

• t denotes time.

We use x as a variable to keep track of time of an intervention jump. This allows to de-

scribe the process in a Markovian way, analogous to the state augmentation mentioned in

[54]. Between two consecutive jumps, the deterministic motion is linear with only t evolving

with speed of one. In our case, x correspond to a frontier or boundary placed on the time

domain. This boundary also experiences jumps in its value that are related to the mainte-

nance scheduling or maintenance actions duration, as later described in the section related

to intervention jumps.

Random Jumps (t ̸= x)

Random jumps correspond to the stochastic deterioration of the system. In general, a jump

from state (i,x) towards discrete state j occurs with a rate λ(i,x)Q(i,x, j), where λ(i,x) is the

rate at which the process leaves i and Q(i,x, j) is the probability distribution of the jump from

i to j. In this sense, the rate at which the process jumps from the discrete component i to a

discrete component j is dependent on both the discrete and continuous component before

the jump (i,x) and the discrete component after the jump (j).

In our case, we consider that the jump rate and the transition measures are homoge-

neous, meaning that they do not depend on time or the continuous component. Then

the transition kernels (given by the pair (λ,Q)) are said to be homogeneous. For the sake

of simplicity, we write the transition kernel from discrete component i to j as g (i, j), with:

g (i, j) =λ(i)Q(i, j) and g (i, i) = 1−λ(i).

We distinguish here two cases: the first one when i3 ̸= 3, which means that one train is

under maintenance and only the train with subscript 1 is in operation, and a second case

when i3 = 3, which means that both compression trains are in actual operation.
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One compressor train in operation. i3 ̸= 3 We consider that the compressor train denoted

with subscript 1 is in operation while the compressor train denoted with subscript 2 is under

maintenance. Hence, only the state of the unit i1 might experience random jumps while the

state of the unit under maintenance i2 remains constant, until a boundary jump.

The process might jump from discrete component i = (i1, i2, i3) to a discrete component

j = ( j1, j2, i3) with i2 = j2. The transition kernels of such jump is given by equation 4.1, where

ai , j is the transition rate from i to j of a single compressor train and αi is the total departure

rate from i of a single compressor train. The list of such rates is shown in table 4.2.

g ((i1, i2, i3), ( j1, j2, j3)) = ai1, j1 for i1 ̸= j1, i2 = j2, and i3 = j3 ̸= 3

g ((i1, i2, i3), (i1, i2, i3)) = 1−αi1

(4.1)

Both compressor trains in operation. i3 = 3 In this case both compressor trains might

experience random jumps related to their deterioration. The transition kernels from the

discrete component i to the discrete component j are given by the transitions and departure

rates for a single compressor train, as shown in equation 4.2.

g ((i1, i2,3), ( j1, j2,3)) =


ai1, j1 ai2, j2 for i1 ̸= j1 and i2 ̸= j2

(1−αi1 )ai2, j2 for i1 = j1 and i2 ̸= j2

ai1, j1 (1−αi2 ) for i1 ̸= j1 and i2 = j2

g ((i1, i2,3), (i1, i2,3)) = 1− (αi1 +αi2 )

(4.2)

The departure rate α(i ) of a single compressor train from discrete state i and the non-

zeros transition rates (ai , j ) from state i into state j are shown in table 4.2. As mentioned in

section 4.3.2, it is assumed that the states 5,4,3,2 and 1 are absorbing states and hence their

total departure rate is zero.

Intervention jumps (t = x)

We distinguish here three cases based on the value of i3 when the boundary is reached. When

the boundary is hit at t = x, both the discrete and the continuous component of the PDMP

experience a jump. We denote b(i, j) the transition kernel from discrete component i to j

corresponding to a boundary jump and mΓ(i, j) the value of the continuous component after

the jump.

When the operation mode of the post-jump is different than three ( j3 ̸= 3), the date of

a next maintenance intervention (x) after the boundary jump corresponds to the time to

maintain the compressor train j2, denoted (M j2 ). When j3 = 3, the date of a next mainte-

nance intervention corresponds to a period to maintain the system, denoted τ. The variable

time t does not change with the boundary jump, so the value of the continuous component
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State Total departure rate Non-null transition rates
11 α11 =λmd +λcd1 a11,10 =λmd

a11,9 =λcd1

10 α10 =λmd +λcd1 a10,8 =λcd1

a10,5 =λm f

9 α9 =λmd +λcd2 a9,8 =λmd

a9,7 =λcd2

8 α8 =λm f +λcd2 a8,6 =λcd2

a8,4 =λm f

7 α7 =λmd +λc f a7,6 =λmd

a7,2 =λc f

6 α6 =λm f +λc f a6,1 =λc f

a6,3 =λm f

Table 4.2: Random jump rates

post-jump are shown in equation 4.3.

mΓ((i1, i2,3), ( j1, j2,1)) = (M j2 , t )

mΓ((i1, i2,1), ( j1, j2,2)) = (M j2 , t )

mΓ((i1, i2,2), ( j1, j2,3)) = (τ, t )

(4.3)

Start of first maintenance task (i3 = 3 and t = x) The maintenance policy must decide

which of the two compressor trains should be maintained first, given their states. In our case,

the state of the gas compressor unit is known due to continuous monitoring, while the motor

might have a hidden degradation. The operator can use the information about the state of

the gas compressor as a way to prioritize what to maintain first. However, it is not possible to

distinguish between train states with the same gas compressor state and non failed motor.

For example, it is not possible to distinguish between train states 11 and 10 before inspecting

the motor due to the hidden degradation. This is the case for the (unordered) pairs (10,11),

(8,9), (6,7) and (1,2). The transition kernel for the discrete component for these pairs are

shown in equation 4.4.

b((i1, i2,3), ( j1, j2,1)) = 0.5; with j1 = i1 and j2 = i2

b((i1, i2,3), ( j1, j2,1)) = 0.5; with j1 = i2 and j2 = i1

(4.4)

For all other compressor train states, the maintenance crew gives priority to the train

with the more degraded gas compressor, which is expressed in equation 4.5, meaning that

the compressor train with the most degraded gas compressor is maintained while the other

is kept in operation.
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b((i1, i2,3), ( j1, j2),1)) = 1; with j1 = max(i1, i2) and j2 = mi n(i1, i2) (4.5)

In both cases, the variable indicating an operation mode (i3) changes its value from 3 to

1 to express the change from operating both compressor trains to operating only one and

placing the first train under maintenance.

Finish first and start second maintenance task (i3 = 1 and t = x) The compressor train

which has been maintained is placed into operation (with its new state S(i2)) and the other

is taken into maintenance. There is a switch between i1 and i2 and the operation mode (i3)

changes from 1 to 2, as expressed in equation 4.6.

b((i1, i2,1), ( j1, j2,2)) = 1; with j1 = S(i2) and j2 = i1 (4.6)

The new state of the maintain compressor train is expressed S(i2) as a function of the

state of the train before the maintenance action. It is a decision or intervention parameter,

which corresponds to a jump in the discrete state of the compressor train, mapped S : i2 → j .

Finish second maintenance task (i3 = 2 and t = x) When the second maintenance task is

finished, both compressor trains are placed into operation, hence the variable indicating the

operation mode (i3) changes from 2 to 3, as shown in equation 4.7.

b((i1, i2,2), ( j1, j2,3)) = 1; with j1 = i1 and j2 = S(i2) (4.7)

Numerical approach

We proceed to quantify an approximation of the states probabilities of the underlying Markov

process. This approach is based on a finite-volume scheme proposed in previous works

[78, 79]. Examples of its application can be found in [77, 80, 101, 73].

Every term of the continuous state space R is discretized in a finite number of values.

In our case, we have R ⊂ R2 with time as the quantity for both dimensions. Let δ be the

continuous state space step. Then, the approximation of the k-ith term has values in Fk =
{0,δ,2δ, . . . ,nδ}, with k = {1,2} and n an integer. In this way, R is replaced by the discrete-state

space F = F1 ×F2.

In our case, we have a simple linear (deterministic) motion. Between t = nδ and t =
(n + 1)δ the continuous component follows the function x → x + vδ, with v = (0,1), since

between two consecutive jumps, only the variable t (time) evolves with a speed of one. When

the frontier Γ is reached at x, the continuous component jumps instantaneously from Γ to F

as x → mΓ(i, j).
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Let P ((i,x), (j,y)) denote the conditional transition probability from state (i,x) to state (j,y)

with values in the finite state space E ×F , and F̃ denote the set of points in F which are not

on the frontier Γ. The arrivals into a state (j,y) may proceed from different paths.

Legend

Random jump + deterministic motion

Deterministic motion

Instantaneous jump due to process   
 hitting the frontier

(a)

(b)

(c) - II

(c) - I

(d) - I

(d) - II

Figure 4.5: Transitions into state (j,y) in (nδ, (n +1)δ]

Let πnδ denote the marginal probability of this stochastic process at the n-ith iteration.

By using the law of total probability and the Markov property, we can write the law of the

process for state (j,y) at the (n + 1)-ith iteration based on the transitions showed on figure

4.5. We have for any i,h in E and x,w in F :

π(n+1)δ(j,y) =
N−1∑
i ̸=j

y=x+vδ

πnδ(i,x)[P ((i,x), (j,y))] (4.8)

+ 1{y=x+vδ}πnδ(j,x)[P ((j,x), (j,y))]

+
N∑
k

y=mΓ(k,j)

N−1∑
h ̸=k

z=w+vδ
z∈Γ

πnδ(h,w)[P ((h,w), (k,z))][P ((k,z), (j,y))]

+
N∑
k

z=w+vδ
z∈Γ

y=mΓ(k,j)

πnδ(k,w)[P ((k,w), (k,z))][P ((k,z), (j,y))]

In equation 4.8, the first term accounts for the transitions related to a random jump and

deterministic motion (shown as (a) in figure 4.5); the second term for the transitions related

to only deterministic motion (shown as (b) in figure 4.5); the third term for the transitions

with a random jump, deterministic motion plus an instantaneous jump from the frontier

(shown as (c)-I + (c)-II in figure 4.5); and the last term accounts for the transitions with de-

terministic motion plus an instantaneous jump from the frontier (shown as (d)-I + (d)-II in

figure 4.5).
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Substituting the conditional probabilities by their approximation or value from equa-

tions 4.1-4.7, gives:

π(n+1)δ(j,y) ≈
N−1∑
i ̸=j

y=x+vδ

πnδ(i,x)[g (i, j)δ] (4.9)

+ 1{y=x+vδ}πnδ(j,x)[g (j, j)δ]

+
N∑
k

y=mΓ(k,j)

N−1∑
h ̸=k

z=w+vδ
z∈Γ

πnδ(h,w)[g (h,k)δ][b(k, j)]

+
N∑
k

z=w+vδ
z∈Γ

y=mΓ(k,j)

πnδ(k,w)[g (j, j))δ][b(k, j)]

Equation 4.9 corresponds to an approximation of the Chapman-Kolmogorov equation

which describes the time evolution of the states probabilities for Markov processes. Demon-

stration by mathematical proof and validation and comparison with Monte Carlo simulation

has been developed in chapter 3.

4.3.4 System performance

The compression system made of the two compressor trains can be categorized according to

its capacity as a system. In this case, we have a multi-state system with multi-state compo-

nents. The total capacity of the system is given by the combination of the capacities of both

trains and its operation mode (up or in-maintenance). As shown in table 4.1, the capacity of

a single compression train can be of 100%, 80% or 0%, depending on its state. At the system

level, we consider not only the state of each train, but also the operation mode of the sys-

tem, e.g. whether both trains are active or one is unavailable due to maintenance. The total

capacity of the system can be classified in six levels: 100%, 90%, 80%, 50%, 40% and 0%. We

denote S the state space of the compression system, with S = {100,90,80,50,40,0}.

Multi-state systems reliability theory is as a natural extension of the binary theory com-

monly used in system reliability analysis. In binary theory, Reliability block diagrams (RBD)

model a system function with a success oriented graph with a single source and a single ter-

minal. The nodes are called blocks and each one represents a component function. Each

block is either up or down and intermediate states are not allowed. The blocks are con-

nected by edges and the system function is up if there exists a path from the source to the

terminal through blocks that are up [58]. Each block has an associated binary state variable

and the state of the system can be described by a binary function of such variables based on

the system structure (structure function).

In a multi-state system case, we can use a similar approach with binary variables and



4.3. CASE STUDY 69

functions, providing an algebraic method to compute the system reliability. Such algebraic

method has been studied and proposed with an efficient algorithm for the computation

which is applicable to complex systems with independent non-identical components [102].

We can introduce binary variables χ j
ik

such as:

χ
j
ik
=

1 if component ik is in state j or above

0 if component ik is in a state below j
(4.10)

Where k = {1,2,3} and j ∈ Sik . We can then write binary structure functions φs for each

state s ∈S , such as:

φs =
1 if the system is performing at state s or above

0 if the system is performing at a state lower than s
(4.11)

Let us consider a structure for the system to function at state s with associated minimal

paths sets P1,P2, ...,Pp . Every minimal path set Pn has a structure function of a series of

components of the type χ j
ik

. We know that the system functions at state s if and only if one

of its minimal path series structure is up. Then the system state s has a binary structure

function as equation 4.12 that can be interpreted as a parallel structure of the minimal path

series structures.

φs (⃗χ) =
p∐

n=1

∏
χ

j
ik
∈Pn

χ
j
ik

(4.12)

The system structure function for state s is then a polynomial formula in terms of the

states of the components used to obtain the s-reliability of the system. Pascual-Ortigosa et

al. [102] proposed associating an algebraic object called a monomial ideal to the coherent

system, and by studying the algebraic properties of this ideal obtain information about the

system and its reliability. In particular, the numerator of the Hilbert series of an ideal, cor-

responds to the structure function presented here. In our case we have the system states’

structure functions shown in equation 4.13.

φ100(⃗χ) =χ8
1χ

8
2χ

3
3

φ90(⃗χ) =χ6
1χ

8
2χ

3
3 +χ8

1χ
6
2χ

3
3 −χ8

1χ
8
2χ

3
3

φ80(⃗χ) =χ6
1χ

6
2χ

3
3

φ50(⃗χ) =χ8
1 +χ8

2χ
3
3 +χ6

1χ
6
2χ

3
3 −χ8

1χ
6
2χ

3
3 −χ6

1χ
8
2χ

3
3

φ40(⃗χ) =χ6
1 +χ6

2χ
3
3 −χ6

1χ
6
2χ

3
3

(4.13)

Let Rs denote the probability that the system is performing at level greater than or equal

to s. For time dependent probability, we have Rs(t ) = [Pr (φs)(t ) = 1] which is obtained by

assigning probabilities to equation 4.13, which are obtained from the recursive equation 4.9.
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4.3.5 Experiments and results

State probabilities

We find the time dependent solution by computing the recursive equation 4.9. That results

in a finite number of state vectors at every time point t with an associated probability mass,

as: πt ( j⃗ , y⃗). Then we focus only on the discrete component of the system state, so at every

time step, we can use the procedure described in section 4.3.4 and by assigning probabilities

to equation 4.13, we obtain the s-reliability of the system, i.e. the probability that the system

performance is at least at s capacity, with s ∈ S and from there we can directly obtain the

system states probabilities as shown in figure 4.6.

System states probabilities and Reliability
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Figure 4.6: System states and reliability

The deterioration parameters used for quantification are shown in table 4.3. In addition,

for the interventions we considered a maintenance policy for a compressor train every three

years, in which: preventive maintenance is only performed in the gas compressor when in

the high degraded state. There is no preventive maintenance actions in the motor (replace-

ments nor inspections) or in the gas compressor when in low degraded state. Corrective

maintenance actions are performed in any of both components and when carried out in the

motor they are joined with preventive maintenance in the gas compressor if it is in high de-

graded state. These assumptions are reflected in table 4.4.

Motor Gas compressor

λcd1 = 1e−6 h−1

λmd = 1e−6 h−1 λcd2 = 1e−5 h−1

λm f = 1e−5 h−1 λc f = 1e−4 h−1

Table 4.3: Deterioration parameters
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State before (i ) State After (Si ) Duration (Mi )

11 11 N/A

10 10 N/A

9 9 N/A

8 8 N/A

7 11 3650 h

6 10 3650 h

5 11 3650 h

4 9 3650 h

3 11 3650 h

2 11 3650 h

1 10 3650 h

Table 4.4: Scope of Maintenance

In figure 4.6 we can observe how in the long run the performance of the system between

maintenance windows tends to decrease since the proposed maintenance policy is not a full

renewal of the system, i.e. not all system states are maintained to a good-as-new condition.

Maintenance analysis

The proposed model allows to test different maintenance policies and assess their effect on

the system capacity. As previously stated, it is considered that only one maintenance crew

is available, so only one compressor train can be intervened at a time. Maintenance tasks

on the components of a compressor train are joint. For illustration purposes, we consider

three preventive maintenance policies in addition to the one considered in section 4.3.5 and

table 4.4 (from now on denoted policy 0), keeping the maintenance windows every three

years. We make variations on the scope of the policies, from the less conservative in which

no preventive maintenance actions are contemplated, to the most conservative in which

preventive maintenance is performed for any condition of the components.

• Policy 1: Only corrective maintenance actions are considered on both components

without any preventive maintenance.

• Policy 2: Preventive maintenance performed on the gas compressor from any state but

not on the motor.

• Policy 3: Preventive maintenance on the compressor train is performed for both the

motor and gas compressor for any state. This means that the motor is inspected and if

degradation is found then it is replaced to the perfect state.

In this sense, policy 3 could be considered the most conservative which would result in

the highest average maintenance cost, policies 0 and 2 are have a lower degree of preven-
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tive maintenance scope and policy 1 is only corrective maintenance for comparison. The

parameters of these maintenance policies are shown in table 4.5.

Policy 1 Policy 2 Policy 3

i Si Mi Si Mi Si Mi

11 11 N/A 11 N/A 11 120 h

10 10 N/A 10 N/A 11 3770 h

9 9 N/A 11 1820 h 11 1820 h

8 8 N/A 10 1820 h 11 3770 h

7 7 N/A 11 3650 h 11 3650 h

6 6 N/A 10 3650 h 11 3770 h

5 11 3650 h 11 3650 h 11 3650 h

4 9 3650 h 11 3650 h 11 3650 h

3 7 3650 h 11 3650 h 11 3650 h

2 11 3650 h 11 3650 h 11 3650 h

1 10 3650 h 10 3650 h 10 3770 h

i - State before, Si - State after, Mi - Duration

Table 4.5: Scope of Maintenance policies

From the system state probabilities we can get the average or expected available system

state capacity, for the simulated maintenance policy with equation 4.14. Figure 4.7 on the

left subplot shows the average available system capacity of the four maintenance policies

considered and on the right subplot shows a zoom into a maintenance window.

E(S ) =∑
sPr (S = s) (4.14)
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Figure 4.7: Average available system capacity for different maintenance policies

In figure 4.7 it can be observed how while maintenance policy 1 results in higher average

available system capacity on intervals between maintenance windows, it also results in lower
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average available capacity during the summer. For example, the average available system

capacity may be unnecessarily reduced in some cases due to inspections on the motor even

when it is in perfect state. Since the production demand does not stop, a maintenance policy

like this one could involve potential losses during the duration of the action that could be

important to quantify, adding up to the costs of performing the maintenance.

Besides considering maintenance policies which keep the interval every three years, it is

also possible to make variations on the interval between maintenance windows and assess

the performance to choose a favorable interval for the given policy.

To assess the cost-benefit of the maintenance policies it is necessary to quantify the ex-

pected number of actions of a certain type (e.g. motor inspections, small preventive com-

pressor repairs, large preventive compressor repairs, corrective maintenance) in a given time

horizon and its cost. In addition, it is possible to quantify the expected losses in production

by comparing the average time-dependent capacity to a predicted time-dependent demand

of the system in the given time horizon. With this information maintenance policies can be

properly assessed and compared. The lower the negative impact of a maintenance policy the

better.

4.4 Chapter conclusion

A framework for CBM models with multi-state components based on the theory of PDMP has

been presented as an approach to simulate maintenance policies assessing the performance

at the system level. State augmentation allows to reformulate problems that initially do not

posses the Markov property into one that can be described in a Markovian form, and since

a PDMP is a stochastic hybrid model, it widely opens the possibilities for what stochastic

processes can be formulated in this form, as the case presented in this chapter. Modelling a

problem as a Markov process facilitates the description of its evolution, which can serve as a

basis to implement a numerical scheme or to build a Monte Carlo simulation algorithm for

its solution.

Through the application on the compression system, resource dependency is contem-

plated as a constraint on the availability of a maintenance crew and structural dependency

is considered since the performance (available capacity) of the system is determined by the

condition of the components. For this purpose, we have proposed a PDMP in which the dis-

crete component is a vector containing information on the state of both compressor trains

plus a variable denoting an operational mode. This last variable allows us simulate a syn-

chronisation on the maintenance tasks of the system by enabling and restricting certain

transitions of the stochastic process depending on its value.

In the case presented here, the implementation of the numerical approach has been

found to be an efficient method for computing the time dependent probabilities, concur-

ring with previous studies. Nevertheless, the discretization of the continuous state space

results in high computer memory consumption. Increasing the dimension of the process
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or the dynamic of the deterministic flow can make this numerical approach a challenge to

implement and compute.

The states of the proposed PDMP are developed based on the condition or health of the

components in order to allow the simulation of different CBM policies. However, to assess

the performance of the policies, the available capacity of the system can be compared to a

production or demand plan, which by nature can be dynamic and time-dependent. This de-

mand plan is considered fixed in the case study presented in this chapter, but in reality it can

be subject to unexpected fluctuations and uncertainties of the market. The available capac-

ity of the system depends on the condition of the trains and on its operation or maintenance

status, with structures that are not homogeneous across the system states, e.g. one system

state has a series structure of component states while other has a k-out-of-n structure. To

assess the performance at the system level, an algebraic approach from multi-state systems

reliability theory has been described. This is an efficient approach to describe and calculate

the combinatorial problem for our case.

The proposed framework allows to assess the performance of maintenance policies for

systems which are required to operate continuously, while taking into account the duration

of the maintenance actions according to the component states and its impact on the per-

formance of the system. A direction of further works could be to study the scalability of the

framework for larger systems, with special attention on the capabilities of the implementa-

tion of the numerical approach compared to Monte Carlo simulation.



Chapter 5

Highlights, conclusion and further works

Throughout the thesis we have resorted to a simplified class of PDMP that can be called

Piecewise-linear Markov Processes for modelling of the studied CBM problems. As formu-

lated by Vermes [56], a Piecewise-linear process is a hybrid Markov process {I (t ), X (t )} where

the primary component I (t ) takes integer values and the secondary component X (t ) takes

values in an interval of the real line. When the process starts, the primary component keeps a

fixed value while the secondary component moves to the right with unit speed, until a jump

occurs. A jump in the process can occur either randomly or when the secondary component

hits a boundary in its interval. Then the motion restarts from the new state. Thus, the law

of the process is determined by specifying the boundaries, the jump rate and the transition

measures.

By making use of the relatively simple structure and evolution of this model, we are able

to greatly increase the flexibility of the model assumptions that can be handled for CBM

problems, when compared to a Markov chain. In this chapter the modelling capabilities for

CBM problems of this specific class are highlighted, with the intention of serving as a guide

for CBM model developers. As previously described, we separate the CBM model into two

dependent models, a deterioration model and an intervention model.

5.1 Highlights of PDMP as a framework for CBM modelling

5.1.1 Deterioration model

The main requirement on the deterioration model is that the deterioration is characterized

as a jump process with random transition times between discrete states.

Time-dependent jump rates

An interesting feature of the proposed PDMP, is that the jump rate λ(i , x) is dependent on

both the discrete and continuous component of the process. In the case of a Piecewise-

linear process, this allows to model time-dependent transition rates between the states. For

75
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example, when sojourn times follow a Weibull distribution with shape parameterα and scale

parameter θ, the jump rate of the process, for a discrete state i , is given by:

λ(i , x) =αθ−αtα−1 (5.1)

where t , denoting time, is included in the continuous component of the process, as in

the proposed formalism in this thesis (x = (x1, ..., t )). It is possible to map the random jumps

such that a change in the discrete component also entails a restart of time, or a jump to zero

in t , such as that time is not global but keeping track of the time spent in the discrete state i ,

say state-age.

For the numerical approach, as an example, one could write the non-null conditional

probabilities keeping the notation from section 3.2.3, between t = nδ and t = (n +1)δ, as:

P ((i ,x), ( j ,y)) ≈λ(i ,x)Q(i ,x, j )δwith y = (x1, ...,0) (5.2)

P (( j ,x), ( j ,y) ≈ 1−λ( j ,x)δwith y = x+vδ

It is worth to point out that for the numerical approach, having time-dependent (or con-

tinuous component-dependent) jump rates, requires recomputing the jump rate at each

time-step and increases greatly the amount of vector-states with non-null probability mass

at each time-step. This may require large computational memory, and could result in prob-

lems for the numerical approach depending on the computer memory and software capac-

ity, depending on the complexity or dimensionality of the process. In these cases, Monte

Carlo simulations are a useful method for analyzing the process with the trade-off of compu-

tational time. Other solutions could be also studied, such as Phase-type distributions [103].

It could be possible to account for non-exponential sojourn times by introducing additional

virtual discrete state (with no physical meaning), with constant jump rates. The trade-off be-

tween adding discrete states vs time-dependent jump rates, must unfortunately be assessed

for the specific cases, and it is difficult to generalize the solution.

Beyond the Piecewise-linear process, on PDMP the jump rate for the deterioration pro-

cess can be dependent in physical variables included in the model in the continuous com-

ponent, such as temperature, pressure, flow and others. Such physical variables evolve in

deterministic fashion as solution of differential equations for a fixed discrete state. Again,

for implementation of the numerical approach, the jump rate must be recomputed at each

time-step, which in some cases and depending on the complexity of the model, could result

in computational challenges related to memory and simulations of the process could be a

good alternative.

Stochastic dependencies

For a multi-component system, the interesting feature in deterioration modelling is the ca-

pability of including stochastic dependencies among components. In section 4.2.2, the dis-
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crete component of the process is proposed as a vector i = (i1, ..., im+1) that contains the state

of every component. Stochastic dependencies can be accounted in the model by writing the

corresponding jump rates λ(i,x) for every component states combination. This is part of the

modelling work and depending on the dimension of the system, the number of components

and their number of states, it can be a challenging task. No shortcut has been envisioned

for this and therefore the dimension of the system can be pose a limitation for the use of

this modelling approach. Object-oriented programming methods are worth exploring for

complex systems modelling.

5.1.2 Intervention model

One of the aspects of CBM models is capturing the condition monitoring of the system. Two

relevant properties of the monitoring are important for the model, frequency and quality.

Other features explored in this thesis in the intervention model are maintenance delays and

resources dependencies.

Monitoring frequency

The frequency of the monitoring can be continuous or inspection-based (non-continuous).

In continuous monitoring, the system is constantly monitored, by sensors and a setup that

assess the condition of the system and triggers an alarm or warning when a threshold is

met. Since continuous monitoring is not always technically possible or financially benefi-

cial, some system are inspected at specified times in order to assess their condition. CBM

models are useful to study the optimal frequency of inspections. These are the applications

considered in this thesis in chapter 3.

The continuous component proposed in section 3.2.2, is a vector x = (x1, x2, t ) in which x1

corresponds to the date of the next inspection, x2 corresponds to the date of the next main-

tenance operation, and t stands for time. In this way, x1 is used in the model as a boundary

to keep track to the time in which the system is inspected, allowing to specify in the model

the appropriate transition as a jump. When this boundary is reached by the process, then

the time of the next inspection is specified in mΓ(i ,x, j ), the function for the location of the

continuous component of the process after the jump. This allows to have a predetermined

inspection scheme in which the period can be condition-based, that is, depending on the

condition of the system (in the discrete component i , j ) at the time of an inspection, the

date of the next inspection is set.

Inspection quality

The CBM model should also capture the quality of the inspections. The PDMP framework

allows to account for the degree of the quality of the inspection in form of a probability to

reveal the true condition of the system. In a perfect inspection the exact state of the system
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is revealed without error. However, in some applications it is more realistic to assume that

the inspections are imperfect and might not reveal the true state of the system.

The quality of the inspections can be taken into account by assigning a probability q(i,x, j)

distribution to the post-jump location, as described in section 3.2.2. If the inspections are

considered perfect, then the virtual state becomes equal to the real state of the unit at the in-

spection time, with probability of one. If the inspections are considered imperfect or subject

to errors, then we can write a conditional probability of the post-jump location of the virtual

state ( j2), given the real state of the unit before the jump (i1), as:

P ( j2|i1) = q(i,x, j) (5.3)

The post jump location of the continuous component is given by:

mΓ(i,x, j) = x+ (T j2 , M j2 ,0) (5.4)

These terms are included in the iterative equation of the numerical approach shown in

equation 3.6.

Maintenance delay

Maintenance delay in this thesis is understood as the time elapsed from when a mainte-

nance task is ordered until it is carried out. Maintenance lead time is another used term to

refer to this. The framework of PDMP with linear motion gives the opportunity to model

maintenance delay in the process, while keeping the process Markovian.

A maintenance task can be ordered when certain condition of the system is detected by

continuous monitoring or by a scheduled inspection. When a task is ordered, its date is

placed as a boundary for the time variable. From the process perspective, this is similar to

scheduling the next inspection as previously described. The time of the maintenance action

is specified in mΓ(i ,x, j ), which is a deterministic function, meaning that the maintenance

delay is predetermined by the modeller in order to assess its performance.

The evolution of the process continues as usual during this delay, random jumps might

occur or the boundary could be reached in the inspection dimension. Some scenarios that

can take place during the delay are:

1. There is no further deterioration of the system (no random jump) and no inspection.

In this case, the maintenance task takes place as planned on the corresponding date.

2. There is an inspection scheduled during the delay but no further deterioration has

occurred. Then, the ordered maintenance is kept as planned and there is an extra cost

of the inspection.

3. There is further deterioration of the system (random jumps) and an inspection. This

gives the opportunity to re-schedule the maintenance task accordingly with the asso-

ciated logistic, resources and date.
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4. There is further deterioration of the system (random jumps) but no inspection. In

this case, when the process hits the maintenance date boundary, additional resources

might be required as the maintenance tasks is different than originally planned.

These scenarios impact the performance of the maintenance policy. Scenario 4 can result

in a penalty cost due to wrong planning of the required maintenance task. In scenario 3,

there is the added cost of the extra inspection, the correct maintenance task is planned, but

no penalty is added. In scenario 2, there is the added cost of the extra inspection and in

scenario 1 there is no added cost to the maintenance task. These quantities would impact

the expected cost of the overall maintenance policy.

The number of wrongly planned maintenance tasks of scenario 4, could be quantified

similarly to equation 3.14. For example, lets consider that when the maintenance boundary

(Γ2) is reached, the real deterioration state of the system is state i1 = 4, but the maintenance

that was ordered was for the system in state 2, i.e. the virtual state is i2 = 2. Then, the number

of these actions N (t ) can be quantified with the numerical scheme as:

N (t ) ≈
t∑

u=0
x∈Γ2

πu{(4,2), (x)} (5.5)

Resource and structural dependencies

By resource dependency we have considered that sub-systems share a maintenance crew,

so that one sub-system cannot be maintained while a maintenance action is taking place in

other subsystem. To achieve this, we propose that the discrete component of the PDMP is a

vector i = (i 1, ..., i m +1) that contains the state of every component and the last term im+1

denotes an operational mode of the system and it is used to keep track of the availability of

the maintenance crew. In this way, this last term can be used as a mean to count when a

maintenance action is taking place in a sub-system or to indicate that the maintenance crew

is available to initiate an action. Again, as with the stochastic dependencies, it is part of the

modelling work to write the corresponding non-null transitions for every vector of states of

components, including the maintenance crew state. Then manually, one can describe the

process such as that a maintenance action can only initiate on given states of the mainte-

nance crew operation mode.

To assess the overall performance of the system we consider the impact of the combina-

tion of the states of the components. This is considered structural dependence. For this, we

write the multi-state structure functions for each performance level of the system, as can be

seen in equation 4.13. This is an elegant and efficient way to communicate and aggregate a

large amount of combination of component states into a few system states of interest.

These are the highlights from the capabilities of PDMP with linear motion as a framework

for modelling CBM problems, based on the contents of this thesis. All of these features can

be quantified with the numerical approach presented throughout this thesis. However, the
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dimension and complexity of the model might present a challenge for the numerical com-

putation and implementation, as has been discussed. On the other hand, the framework of

PDMP can provide a systematic approach to model the problem in terms of variables, ran-

dom jumps, linear motion, while setting a foundation for simulations. It is worth to point out

that although the class of PDMP virtually covers all stochastic non-diffusion applications, it

is not intended to replace existing models in the literature, many of which present efficient

techniques for calculations by making use of the special structure of specific models given

the application and its model assumptions.

5.2 Conclusion

The focus of this thesis has been placed in studying CBM problems with prognosis, also

called predictive maintenance. More specifically, Piecewise deterministic Markov processes

are the central focus of the thesis for modelling and assessing CBM policies. PDMP is a

stochastic process presented as a general class of non-diffusion stochastic models, in which

the future development of the process depends only on a current state of the process and

not on what has happened in the past. PDMP can cover a wide variety of applications that

involve some combination of random jumps and deterministic motion. State augmentation

allows to reformulate problems that initially do not posses the Markov property into one that

can be described in a Markovian form. The structure of PDMP as a stochastic hybrid model,

widely opens the possibilities for what stochastic processes can be formulated in this form.

A key element of a prognosis model is the deterioration of the system or unit. For PDMP,

this means that the applications considered through this thesis assume that the deteriora-

tion of the system or unit evolves in a discrete-state space with random jumps and continuous-

time. This is the case of many engineering applications, that due to practical reasons it is

more reasonable to characterize the condition or health of the system by a finite set of de-

terioration states instead of in a continuous-state space. The PDMP mainly studied in this

thesis can be seen as particular category of the class, in which the deterministic evolution of

the continuous component is linear. This class has also been called Piecewise linear Markov

process.

First, a framework for the modelling and assessment of CBM policies of single-items has

been proposed and studied based on the theory of PDMP. The proposed model allows to

study problems in which the condition monitoring is not continuous but inspection-based

and there is an inherent delay for performing maintenance actions. Therefore, the transition

law cannot be found by a simple Markov chain. The proposed framework allows the assess-

ment of the probability for the infrastructure to be in certain deterioration state given an

inspection period and given a maintenance schedule. In this way, it is possible to evaluate

if a given CBM policy is adequate regarding some safety requirements by making variations

of the inspection period, the delay before intervention, or the state to which the system is

restored after maintenance. It is also possible to assess the cost of a CBM policy to find the
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optimal parameters of the policy.

Then, the capabilities of PDMP for the modelling and assessment of CBM policies of

multi-component system subjected to inter-dependencies has been explored. Resource de-

pendency has been contemplated as constraints on the availability of maintenance crew and

structural dependency has been considered in the sense that the overall performance of the

system is determined by the condition of the multi-state components. For this, we have pro-

posed a PDMP in which the discrete component is a vector containing information on the

state of each component plus a variable denoting an operational mode. This last variable al-

lows to simulate a synchronisation on the maintenance tasks of the system by enabling and

restricting certain transitions of the stochastic process depending on its value. The available

capacity of the system depends on the condition of the trains and on its operation or main-

tenance status, with structures that are not homogeneous across the system states, e.g. one

system state has a series structure of component states while other has a k-out-of-n struc-

ture. To assess the performance at the system level, an algebraic approach from multi-state

systems reliability theory has been described. This is an efficient approach to describe and

calculate the combinatorial problem of component states. The proposed framework allows

to assess the performance of maintenance policies for systems which are required to operate

continuously, while taking into account the duration of the maintenance actions according

to the component states and its impact on the performance of the system.

Modelling a problem as a Markov process facilitates the description of its evolution, which

can serve as a basis to implement a numerical scheme or to build a Monte Carlo simulation

algorithm for its solution. A numerical approach for quantification of time dependent prob-

abilities has been developed in this thesis. This approach is an approximation to the solu-

tion of the Chapman-Kolmogorov equation. The implementation of the numerical approach

has been found to be an efficient method for computing the time dependent probabilities,

concurring with previous studies. In comparison, Monte Carlo simulation is in general con-

ceptually easier to apply while the numerical approach could provide better accuracy in the

results with faster computation times. , However, the system complexity and the number

of discrete states can be limitations for this numerical approach while Monte Carlo simu-

lation could offer more flexibility in this aspect. Given that the deterioration of the system

can be characterized by a reasonable number of discrete states and that the deterministic

motion is reduced to a trivial equation, it is relatively simple to make use of the numerical

approach, making it a convenient alternative for problems which require studying differ-

ent strategies and repeating the quantification procedure several times in order to support

the decision-making. Nevertheless, the discretization of the continuous state space results

in high computer memory consumption. Increasing the dimension of the process or the dy-

namic of the deterministic flow can make this numerical approach a challenge to implement

and compute.

The proposed framework has been applied to relevant case studies of critical infrastruc-

tures to illustrate the modelling and quantification approach. One case was related to the
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transport sector with road bridges modelled as a single-item, and another case was related

to the energy sector with gas compressors, exploring the capabilities for modelling of multi-

component systems. Through the case studies, guidelines on how to account for different as-

sumptions such as inspection frequency and quality, system dependencies, as well as main-

tenance policies are discussed.

5.3 Further works

This thesis could serve as a basis for further research or engineering applications. The hybrid

modelling capabilities of PDMP provides a framework for studying CBM problems in which

the deterioration process can be categorized by a mixture of random jumps and determin-

istic motion. In this sense, a combination of physics-based and data-driven approaches for

deterioration can be studied with PDMP as framework.

Although potential challenges have been mentioned in the application of the numeri-

cal approach for quantification of PDMP models of complex systems, it is worth to find out

more clearly the applications in which these problems arise, to find a sort of boundary of

when it is more efficient to move to simulations. In addition, the numerical approach has

been presented in form of a forward equation. Computing this equation requires to have

an overview of the possible paths of the process and designing an algorithm that stores the

non-null state-vector probabilities at each time step. It could be useful to work in designing

and presenting efficient algorithms for this computation.

The application cases presented have been intended more as an illustration of the mod-

elling approach and capabilities which are the main focus of the thesis, rather than as real

problem to solve and optimize the CBM. Hence, dealing with parameters estimation and un-

certainty has been left outside of the scope of the thesis. It is however recognized that this is

an important part of modelling and in the assessment of the performance of CBM policies.

A direction of research could be placed on advanced statistical approaches for estimation of

parameters of the process when dealing with limited data that is characterized by a mixture

of qualitative and quantitative information, important problems of censoring, incomplete-

ness, and pollution by maintenance actions. This could include a combination of data and

elicitation approaches from expert judgement. An interesting direction could be studying

reinforced learning approaches with PDMP as base model.
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This paper has been written in collaboration with the Norwegian Public Roads Administration (NPRA). In Norway,
bridges are a vital part of the transportation infrastructure. With more than 18,000 road bridges across the country,
an efficient bridge management system is of critical importance to avoid high costs from over expending, to ensure
safety of the public and availability of the transportation system. In the bridge management system applied by
NPRA, the inspections are mainly carried out periodically based on pre-defined rules and the decision about when
to perform the maintenance is based on the findings of these inspections. The objective of this paper is to propose
a modelling framework that makes it possible to challenge these pre-defined rules by doing degradation prognostic
and maintenance optimization. We propose to use a Piecewise Deterministic Markov Process to encompass
different modelling assumptions as non-negligible maintenance delays and time dependent inspections. State
probabilities and performance indicators are assessed through Monte Carlo simulations and a numerical scheme.
The experimental values provided at the end show that optimal maintenance and optimization strategies should be
investigated and further developed.

Keywords: Bridge management, stochastic modelling, piecewise deterministic Markov process, prognostics, numer-
ical assessment, Monte Carlo simulation, road bridges.

1. Introduction
The use of automobiles experienced a rapid
growth during the 20th century and with this
growth came the development of a massive trans-
portation infrastructures. In Comission (2008),
the Council of the European Union includes the
transport sector in the list of Critical Infrastruc-
tures, considering that modern societies depend
on the availability of this service and that its
disruption or unavailability poses risks with seri-
ous consequences to the health, safety, economic
or social well-being of people and vital societal
functions. A systematic approach to maintenance
and rehabilitation strategies for the transportation
system was not identified until the late 1960s. The
Highway Safety Act of 1968 was a development
that resulted from the collapse of the Silver bridge
across the Ohio River, USA in 1967, and the con-
cerns related to the bridge management problem.
This Act required state road officials to inspect
and rate the condition of the bridges as mentioned
by Scherer and Glagola (1994).

Bridge management can be understood as the
optimal planning of inspections and maintenance
activities of road bridges, with the goal of pre-
serving the asset value of the infrastructure by
optimizing the costs over its lifetime, while en-
suring the safety of users and offering a sufficient

quality of service, as Woodward et al. (2000).
More than 50 years after the collapse of the Sil-
ver bridge, despite the advances in technology,
rehabilitation techniques and safety assessments,
bridge collapses continue to occur. Moreover,
the construction of new bridges has been slowing
down in most countries, which now face a stock of
aging bridges, requiring an effective and efficient
bridge management.

1.1. Bridge management in Norway
In Norway, bridges are a vital part of the trans-
portation infrastructure. With more than 18,000
road bridges across the country, an efficient bridge
management system is of critical importance to
avoid high costs from over expending and to en-
sure safety of the public and availability of the
transportation system.

As pointed by Kallen (2007), there are many
factors that make bridge management a challeng-
ing task, such as: the varying weight and inten-
sity of the traffic, the evolution of the building
codes over the years, the weather influence on the
structures, large number of structures spread over
a large area, and others. All these factors create
uncertainty, which makes the bridge management
a problem of decision making under uncertainty.

In the bridge management system applied
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by the Norwegian Public Roads Administration
(NPRA), the agency responsible for planning,
building, operating, and maintaining national and
country bridges in Norway, the inspections are
mainly carried out periodically based on pre-
defined rules and the decision about when to per-
form the maintenance is based on the findings of
these inspections. The handbooks for manage-
ment and inspections of bridges, Statens Vegvesen
(2014a,b), establish types of inspections for the
bridges and the period in which they must be
performed, e.g. a main inspection of a bridge,
with an overview of all the elements of the bridge,
must (in general) be performed every five years.
Statens Vegvesen (2014b) also establishes how the
inspections must be logged in a database, how the
findings must be reported and provides guidelines
on when to perform the repairs for found damages.

When an inspection is performed on a bridge,
the severity of the found damages is assessed in a
scale of one to four, as:

• 1 - Small damage
• 2 - Medium damage
• 3 - Large damage
• 4 - Critical damage

Based on the severity of the damage, a mainte-
nance action is scheduled:

• Severity: 1 - No maintenance action is required
• Severity: 2 - A maintenance action must take

place between four and ten years
• Severity: 3 - A maintenance action must take

place between one and three years
• Severity: 4 - A maintenance action must take

place in less than six months

This bridge management system can be char-
acterized as a condition-based maintenance pro-
gram, in which the maintenance decisions are
based on recommendations from the information
gathered through condition monitoring. However,
following this program is a challenging task for
the NPRA. With such a large stock of bridges
throughout the country, it is difficult to keep up
to date the inspection program due to budget and
resources constraints.

A problem raised for some years by the NPRA
is to question if this bridge management system
can be optimized by moving from diagnostics to
prognostics.

1.1.1. Diagnostics to Prognostics

The current trend in many fields and with critical
infrastructures is to move the decision making in
condition-based maintenance from diagnostics to
prognostics.

Diagnostics involve the techniques and prac-
tice of determining whether a fault is present,
identifying its nature and estimating its severity.

Prognostics on the other hand, is the practice of
forecasting the likely development of such fault.

Through fault diagnosis, it is possible to im-
plement maintenance decisions by following pre-
established rules and recommendations saying
when to perform what. This process tends to be
dependent on the technical and mechanical edu-
cation of the maintenance staff and their hands
on expertise, and as pointed out by Rausand and
Høyland (2004), although the expertise is key
in maintenance management and performance, it
should not be the only basis for making the deci-
sions.

Prognostics allow to take the analysis one step
further in order to question such pre-established
rules, to reduce overestimated margins and to opti-
mize decision rules. With the use of mathematical
models, it may be possible to simulate different
maintenance strategies and to assess the associ-
ated effects, the maintenance costs and the oper-
ational performance in the long run. Therefore,
these simulations can be very helpful for deciding
the most appropriate maintenance strategy to im-
plement.

In this sense, the maintenance decision-making
in the bridge management of the NPRA may
be improved by using information available in a
national data base (BRUTUS), the NPRAs tool
for management and supervision of bridge-related
work tasks, and a model capable of describing the
deterioration of the bridge and the effect of deci-
sion criteria, such as: inspection interval, condi-
tion thresholds for performing preventive repairs,
and type of repair (complete renewal or partial
repairs).

The objective of this paper is to demonstrate
the implementation of a Piecewise-Deterministic
Markov Process (PDMP) as a framework to model
the deterioration process of a structure and main-
tenance strategies applicable by the NPRA, in
order to assess the effects of such strategies and
assist the decision-making process. The remain-
der of this paper is organized as follows: section
2 states the assumptions, the problem statement
and model formulation. Section 3 describes the
implementation and quantification of the model in
terms of next-event simulation and Monte Carlo
simulation. Section 4 presents discussions around
the framework and results.

2. Modelling Framework and
Assumptions

In the field of civil engineering and bridge man-
agement, it is widely common to assess the sever-
ity and condition of the structures in a discrete
scale similar to the one used by the NPRA. To
quantify for the uncertainties involved in the de-
terioration process of a structure, described in a
discrete scale, finite-state Markov processes have
been applied often for modelling the deterioration
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of bridges, as Kallen (2007), Cesare et al. (1992),
and Morcous (2006). More recently, semi-Markov
processes have been studied in order to account
for the aging of the structures as Mašović et al.
(2015), Thomas and Sobanjo (2016) and Zambon
et al. (2019).

2.1. Assumptions
For modelling the deterioration process of a struc-
ture and inspections and maintenance strategy
consistent with the bridge management of the
NPRA, the following assumptions are made:

(i) The observed condition of the unit is repre-
sented by a discrete variable ranging from
small or no damage to critical damage

(ii) The deterioration process of the unit can be
modelled with a homogeneous Markov chain
with constant transition rates

(iii) The unit is periodically inspected and not
continuously monitored

(iv) Inspections are perfect and reveal the true
state of the unit

(v) When an inspection reveals a damage with
severity medium or higher, a maintenance
action is scheduled

(vi) There is a significant delay before a mainte-
nance is performed

(vii) The duration of the delay is deterministic
(viii) Maintenance interventions occur at the

scheduled date instantaneously, i.e. the du-
ration of the intervention is null

(ix) After a maintenance action, the unit is as
good as new

A Markov process is not suitable to model the
inspection and maintenance strategy of the NPRA
due to assumptions iii and vii. Here, we propose a
PDMP, as a framework to model the deterioration
of the structure and the effect of inspection and
maintenance strategies.

2.2. Modelling framework
A PDMP is an extension of a Markov chain that
incorporates continuous states with evolution that
follow discrete state-dependent deterministic dif-
ferential equations. The resulting stochastic pro-
cess is a Markov process with a mixture of ran-
dom jumps and deterministic motion. They were
introduced by Davis (1984), as a general class
of non-diffusion stochastic models that provides
a framework for studying optimization problems.

A PDMP is a hybrid process {It, Xt}t>0 with
values in a discrete-continuous space E × R, as
described by Lair et al. (2011, 2012). The first
component It is discrete, with values in a finite
state space E and corresponds to the unit states.
The second component Xt takes values in a Borel
subset R ⊂ Rk and it stands for the environmental
conditions, which in our case will refer to the time
until next inspection and next maintenance action.

2.2.1. Discrete component It

The discrete component It of the PDMP in our
case, is used to model the deterioration process of
the structure and to indicate a type of maintenance
that has been scheduled.

First, a variable indicating the condition of the
structure can be denoted iA(t).

iA(t) = {1, 2, 3, 4}, where:

• iA = 1 : Small or no damage
• iA = 2 : Medium damage
• iA = 3 : Large damage
• iA = 4 : Critical damage

Only when the unit is inspected, the degree of
deterioration of the unit is detected, and a main-
tenance is scheduled accordingly. The type of
scheduled maintenance can be denoted iB(t).

iB(t) = {1, 2, 3, 4}, where:

• iB = 1 : No maintenance is scheduled
• iB = 2 : Slow maintenance is scheduled, (i.e.

a maintenance intervention takes place between
four and ten years)

• iB = 3 : Medium maintenance is scheduled,
(i.e. a maintenance intervention takes place
between one and three years)

• iB = 4 : Fast maintenance is scheduled, (i.e. a
maintenance intervention before six months)

The discrete component of the PDMP is then
It = i, with i = (iA, iB), given that all the
combinations are not possible and should be taken
only in the finite state space E of the PDMP, E =
{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2),
(4,3),(4,4)}. To simplify, we denote hereafter
i = (iA, iB), without reminding that the possible
couples of values (iA, iB) are limited to E.

2.2.2. Continuous component Xt

The continuous component here is not related to
any physical phenomena, but it is used as an
artefact to model a process that requires a com-
bination of stochastic random jumps and contin-
uous variables to count time. The environmental
condition in this case, stands for the date of the
next inspection, the date of the next maintenance
action and time.

Let Xt = x, with x = (xA, xB , t), where:

• xA : date of next inspection
• xB : date of next maintenance action
• t : time

2.2.3. PDMP

The complete process to consider {It, Xt} is
made of {(iA, iB), (xA, xB , t)}. The process may
experience jumps at random or at deterministic
times.

Jumps at random times are used in our case to
simulate the deterioration of the unit. The unit
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makes a transition to a more degraded state. This
degradation is not detected immediately, so the
scheduled type of maintenance does not change.
The discrete component jumps from (iA, iB) =
(j, k) to (iA, iB) = (m, k), while the continuous
component does not change. The deterioration
process of the unit with random jumps is shown
in figure 1.

iA = 1 iA = 2 iA = 3 iA = 4
λ12 λ23 λ34

Fig. 1. Deterioration process.

Jumps at deterministic times are used to model
the inspection and maintenance actions.

When an inspection is performed, the date to
the next inspection (xA) is updated, a maintenance
action is scheduled (xB) and the type of scheduled
maintenance (iB) is updated according the condi-
tion of deterioration of the unit.

When a maintenance action is performed, the
discrete component (iA, iB) jumps to (1, 1) (as
good as new), the date to the next inspection (xA)
does not change, and the date of the next main-
tenance action (xB) is set to infinite (no mainte-
nance scheduled).

Between two consecutive jumps, only the con-
tinuous variable t evolves, with speed of one.

3. Quantification
Solving the PDMP analytically is generally im-
possible due to complex system behaviour. For re-
liability assessments, Monte Carlo simulation and
numerical scheme based on finite-volume meth-
ods are two commonly used approaches to solve
PDMP. In our case, both approaches are used for
validating the results and compare the advantages
or disadvantages from each.

3.1. Monte Carlo simulation
The simulation procedure of the PDMP is shown
in figure 2. It includes five main steps to simulate
a realization of the PDMP until the horizon time
thor.

(i) Set initial system time and initial system state
In our case, initial time is set to zero, the

unit is set to be in new condition with no
maintenance action scheduled and the date of
the first inspection is set to the period. (i.e.
t = 0, iA = 1, iB = 1, xA = T and
xB = ∞), where T is the inspection period.

(ii) Sample date of next stochastic jump, if en-
abled

The date of the next stochastic jump tjump
is sampled from the corresponding probabil-
ity density function and the corresponding

I. Set initial system
time and initial

system state

II. Sample date of
next stochastic jump

III. t =
min(tjump, xA, xB)

t ≥ thor ? t =?
IVa. Update iA.

(Unit deteriorates)

IVc. Update iA, iB , xB .
(Unit is maintained)

IVb. Update
iB , xA, xB . (Unit
is inspected and

maintenance
is scheduled)

V. Final system
time thor and

final system state

no

yes

tjump

xB

xA

Fig. 2. Simulation procedure.

parameter(s). In our case, exponential dis-
tribution is considered with rates as shown in
figure 1.

(iii) Identify next event
The date of the next stochastic jump tjump

is compared with date of next inspection xA,
the date of next maintenance action xB and
the horizon time thor.

The system time is updated as: t =
min(tjump, xA, xB , thor). If the simulation
time has reached the horizon time, t = thor,
the simulation continues to step v, otherwise
it continues to step iv.

(iv) Update system state
The system state is updated according to

the jump that takes place at time t, deteriora-
tion, inspection or maintenance.

(a) Deterioration: (t = tjump)
Only iA is updated in this jump

(b) Inspection: (t = xA)
Variables iB , xA, xB are updated. The
after jump values (+) are:
i+B = iA;
x+
A = t+ T ;

x+
B = t + MiB ; where MiB is the delay

for maintenance action of the type iB .
(c) Maintenance: (t = xB)

Variables iA, iB , xB are updated. The
after jump values (+) are:
i+A = i+B = 1;
x+
B = ∞.

(v) Set final system time and final system state
The final system time is thor and the final
system state is the state resulting from the last
jump to take place no later than thor.

This simulation procedure is replicated N
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times, to approximate quantities of interest, such
as deterioration state probabilities.

3.2. Numerical scheme
The probability of the state of the system
of a PDMP can be completely described by
the Chapman-Kolmogorov equations, as demon-
strated by Cocozza-Thivent et al. (2006). A
numerical scheme based in finite-volume meth-
ods to approximate these probability measures is
proposed by Cocozza-Thivent et al. (2006), with
proof of the convergence to the unique solution.

The principle of the scheme is the discretization
of the continuous component Xt into cells. The
time evolution of the probability masses in each
cell of the environmental space is followed, and
at each step, a balance between the in-coming and
out-going probability masses is written, allowing
us to solve a linear system, as Lair et al. (2012).

Let M denote the mesh of the discretization of
the environmental state space R and δt denote the
environmental state space step (we use the same
step for xA, xB and t in our case, since xA, xB
and t have units of time). A cell w of M has cubic
shape w = [n1δt; (n1+1)δt)×[n2δt; (n2+1)δt)×
[n3δt; (n3 + 1)δt), with (n1, n2, n3) ∈ N3.

The evolution of the process, between t and t+
δt can be written as:

pt+δt{i, x} =
∑

u∈E
w∈M

pt{u,w}G{i,x}{u,w} (1)

Where G{i,x}{u,w} is the probability that the system
moves from state {u,w} to state {i, x} in the time
interval [t; t + δt). The conditional probabilities
for this model are included in the appendix.

The probability for the unit to be in the state of
deterioration j, Pr(iA = j), at time t is:

Pr(iA = j)t =
∑

k,r,s

pt((j, k), (r, s, t)) (2)

4. Results and Discussions
Both quantification approaches are used to ap-
proximate the deterioration states probabilities
shown in figure 3. The parameters used are
shown in table 1. The deterioration rates have
been estimated from previous works carried by the
NPRA based on the information available on their
database for inspections and maintenance actions,
BRUTUS.

4.1. Monte Carlo simulation vs numerical
scheme

To compare the results of the quantification from
both approaches, the residuals or difference be-
tween the state probabilities is shown in figure 4.

Table 1. Model parameters.

Deterioration Maintenance Inspection
rates (h−1) delays (y) interval (y)

λ12 = 1.5e−5 M1 =∞ T = 5

λ23 = 6e−6 M2 = 8
λ34 = 1.4e−6 M3 = 3

M4 = 0.5

0 5 10 15 20 25 30 35 40

Time (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

States probabilities - Numerical

P1

P2

P3

P4

Fig. 3. Deterioration states probabilities

It can be observed that the difference in results is
small, with an order of magnitude of 10−3. In
addition, the difference is reduced by performing a
higher number of replications of the Monte Carlo
simulation, showing same convergence.

The Monte Carlo simulation method is widely
used in practice, conceptually easy to apply and
without particular restrictions on the dimension
of the PDMP. On the other hand, the numerical
scheme has high accuracy with short computation
times, as pointed by Lin et al. (2018). In our case,
the Monte Carlo simulation with 100,000 replica-
tions took approximately one hour to obtain time-
dependent probabilities, while with the numerical
scheme the results are obtained in one second.

4.2. Strategy assessment
The PDMP allows to test different inspection and
maintenance strategies and assess their effect on
the structure condition. In a first attempt, we
can challenge the inspection period, evaluating the
effect on the condition of the structure. Figure
5 shows how the critical condition of the unit
(iA = 4), varies with time for different inspec-
tion periods. This allows to support the decision
process related to inspections by evaluating the
associated risk on the structure.

The PDMP framework supports the modelling
of a strategy in which the inspection is not per-
formed periodically, but that can instead be de-
pendent on the condition of the structure. The
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Fig. 4. Residuals between quantification approaches

Fig. 5. Critical damage probability for different inspection
intervals

model proposed here can be modified to allow for
this strategy, in a similar way to how different
maintenance delays have been set dependent on
the condition of the unit.

Moreover, to assist the decision process in
bridge management, the cost of a strategy can be
evaluated in addition to the effect on the condition
of a structure. In this way the strategy can be

optimized, by finding an inspection/maintenance
strategy that minimizes the mean cost over a time
period, with acceptable risk for the structure. The
cost function can be set as:

(3)C(t) = Ninsp(t) · Cinsp +Nmr(t) · Cmr

+Nlr(t) · Clr(t) +Ncr(t) · Ccr(t)

Where:

• Cinsp: Cost of inspection
• Cmr: Cost of medium repair (unit with medium

damage)
• Clr: Cost of large repair (unit with large dam-

age)
• Ccr: Cost of critical repair (unit with critical

damage)
• Ninsp(t): Mean number of inspections until t
• Nmr(t): Mean number of medium repairs until

t
• Nlr(t): Mean number of large repairs until t
• Ncr(t): Mean number of critical repairs until t

The number of inspections and repairs can be
counted from Monte Carlo simulations or ex-
pressed in terms of the marginal distributions of
the PDMP and approximated with the numeri-
cal scheme. For example, the mean number of
medium repairs until t, can be approximated as
the probability that the system jumps from state:
{u,w} to state {i, x} with u = (2, 2) and i =
(1, 1) before time t, when δt is small so that
the probability of two or more medium repairs in
(t, t+ δt] is negligible, as:

Nmr(t) ≈
t∑

z=0

pt{(2, 2), w}G{(1,1),x}
{(2,2),w} (4)

5. Conclusions and Further Works
Diagnostics allow the application of condition-
based maintenance by following pre-established
rules and guidelines that state when to perform
inspection and maintenance activities. Prognos-
tics empower the decision makers by enabling
them to evaluate the effect and cost of a given
strategy, therefore allowing to allocate resources
in a more efficient manner and optimize the bridge
management.

In this paper, we propose a PDMP as a sta-
tistical data driven approach to model the dete-
rioration of a structure as a stochastic process,
relying on available past observed data, and to
make prognosis for a unit that is not monitored
continuously but periodically and with significant
delay for a maintenance action to be performed.

Two approaches for solving the PDMP are pre-
sented. In general, the Monte Carlo simulation
approach is conceptually easier to apply while the
numerical scheme can provide better accuracy in
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the results with faster computation times. In the
PDMP presented here, the evolution of the contin-
uous component is reduced to a trivial equation.
This makes it relatively simple to apply the numer-
ical scheme, presenting a convenient alternative
for optimization problems which require testing
different strategies, thus repeating the quantifica-
tion procedure several times.

With support from the NPRA, the work pre-
sented here can be developed further. More ad-
vanced estimation of parameters for the PDMP
can be explored, with sensitivity analysis. Other
strategies can be evaluated, such as a condition-
based inspection policy rather than inspections
performed at equal time intervals, and other main-
tenance alternatives than as-good-as-new replace-
ments. A PDMP is a framework suitable to model
such strategies. In addition, the proposed cost
function needs to be addressed together with the
definition of constraints on the risk, to optimize
the bridge management.

A PDMP presents a framework for hybrid
models prognostics, a combination between data-
driven and physics-based models, that could be
explored for bridge management. It is also of
interest to study the application of the PDMP
for maintenance models for multi-units systems,
accounting for their dependencies, and evaluating
the advantages and disadvantages of the numeri-
cal scheme and Monte Carlo simulation in these
applications.
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Appendix. Conditional probabilities for
the numerical scheme
Consider the environmental state space cells w =
w1 ×w2 ×w3 and x = x1 × x2 × x3. Where wj ,
xj are intervals, e.g. wj = [njδt, (nj +1)δt) with
nj ∈ N , j = {1, 2, 3}. For simplicity, we denote:
wj = [wj , wj), where wj = wj + δt

Due to the deterioration of the unit, modelled
with random jumps, the probability masses move
from w to x, which are neighboring cells of the
mesh M, i.e. x1 = w1, x2 = w2 and x3 =
w3+[δt, δt), since only the environmental variable
t evolves with speed of one between two consecu-
tive jumps.

The non-null transition probabilities due to a
random jump, can be written as:

• G
{(1,1),(x)}
{(1,1),(w)} = 1− (λ12δt)

• G
{(2,1),(x)}
{(1,1),(w)} = λ12δt

• G
{(2,1),(x)}
{(2,1),(w)} = 1− (λ23δt)

• G
{(3,1),(x)}
{(2,1),(w)} = λ23δt

• G
{(2,2),(x)}
{(2,2),(w)} = 1− (λ23δt)

• G
{(3,2),(x)}
{(2,2),(w)} = λ23δt

• G
{(3,1),(x)}
{(3,1),(w)} = 1− (λ34δt)

• G
{(4,1),(x)}
{(3,1),(w)} = λ34δt

• G
{(3,2),(x)}
{(3,2),(w)} = 1− (λ34δt)

• G
{(4,2),(x)}
{(3,2),(w)} = λ34δt

• G
{(3,3),(x)}
{(3,3),(w)} = 1− (λ34δt)

• G
{(4,3),(x)}
{(3,3),(w)} = λ34δt

• G
{(4,1),(x)}
{(4,1),(w)} = 1

• G
{(4,2),(x)}
{(4,2),(w)} = 1

• G
{(4,3),(x)}
{(4,3),(w)} = 1

• G
{(4,4),(x)}
{(4,4),(w)} = 1

In our case, jumps between non-neighboring
cells of the environmental space occur only at
inspection and maintenance dates.

At inspection dates (w1 = w3), the probability
masses may move from cell w to cell x, when a
maintenance is scheduled or re-scheduled, or may
move from cell w to cell y when no maintenance
action needs to be scheduled or re-scheduled,
with: x1 = w1 + [T, T ), x2 = min(w2, x3 +
MiB), x3 = w3, y1 = w1 + [T, T ), y2 = w2 and
y3 = w3. The non-null transition probabilities of
this type are:

• G
{(1,1),(y)}
{(1,1),(w)} = 1

• G
{(2,2),(x)}
{(2,1),(w)} = 1

• G
{(2,2),(y)}
{(2,2),(w)} = 1

• G
{(3,3),(x)}
{(3,1),(w)} = 1

• G
{(3,3),(x)}
{(3,2),(w)} = 1

• G
{(3,3),(y)}
{(3,3),(w)} = 1

• G
{(4,4),(x)}
{(4,1),(w)} = 1
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• G
{(4,4),(x)}
{(4,2),(w)} = 1

• G
{(4,4),(x)}
{(4,3),(w)} = 1

• G
{(4,4),(y)}
{(4,4),(w)} = 1

At maintenance dates, (w2 = w3), the prob-
ability masses move from cell w to cell x, with
x1 = w1, x2 = ∞ and x3 = w3. The non-null
transition probabilities of this type are:

• G
{(1,1),(x)}
{(2,2),(w)} = 1

• G
{(1,1),(x)}
{(3,2),(w)} = 1

• G
{(1,1),(x)}
{(3,3),(w)} = 1

• G
{(1,1),(x)}
{(4,2),(w)} = 1

• G
{(1,1),(x)}
{(4,3),(w)} = 1

• G
{(1,1),(x)}
{(4,4),(w)} = 1
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A B S T R A C T

In recent decades, the technology and techniques for condition monitoring have experienced a rapid devel-
opment. However, there is still a need for reducing unnecessary inspections and/or preventive maintenance
actions and their associated cost, through optimal design of condition-based maintenance (CBM) strategies.
Accordingly, mathematical modelling and optimization of CBM has become of interest for industry managers
and researchers. This work explores on the application of a piecewise deterministic Markov process (PDMP)
to encompass different modelling assumptions as non-negligible maintenance delays and inspection-based
condition monitoring. These assumptions are relevant for many critical infrastructures in civil engineering
or in oil & gas industry whose deterioration states are classified at a very high level of abstraction among a
finite and small set of possible states. A formalism to model this type of problems is proposed in which the
deterministic motion of the PDMP is reduced to a trivial differential equation to track the time elapsed between
events. A numerical scheme for quantification, as an approximation of the Chapman–Kolmogorov equation, is
presented. Later, an illustration case dealing with CBM of road bridges by the NPRA (Norwegian Public Roads
Administration) is presented, guiding through the modelling and quantification approach.

1. Introduction

In recent decades, the technology and techniques for condition
monitoring have experienced a rapid development. However, there is
still a need for reducing unnecessary inspections and/or preventive
maintenance actions and their associated cost, through optimal design
of condition-based maintenance (CBM) strategies. If we consider critical
infrastructures in civil engineering or in oil & gas industry, CBM strate-
gies are often carried without any modelling and assessment of their
efficiency in the mid or long term. This fact usually pushes the decision
makers to take large safety margins and to over-inspect, or to postpone
maintenance tasks taking the risk of facing up critical situations. Gen-
erally speaking, the problem is about sub-optimal decisions in terms of
maintenance cost, availability of production and even reputation [1,2].

In the bridge management system applied in Denmark, Finland,
France, South Africa, United Kingdom, China, South Korea, United
States of America, Norway and other countries, inspections are carried
out by following pre-defined procedures and a condition rating is
assigned to the structure in a discrete scale [3]. The decision about

∗ Corresponding author.
E-mail address: renny.j.arismendi@ntnu.no (R. Arismendi).

when to perform maintenance is based on the condition rating as-
signed at these inspections. In Norway, handbooks for management
and inspections of bridges [4,5], establish the types of inspections for
the bridges and the period in which they must be performed. For
example, the main inspection of a bridge, with an overview of all the
elements of the bridge, must (in general) be performed every five years.
The handbooks also establish how the inspections must be logged in
a database, how the found damages must be reported and when to
schedule the repairs for found damages: given the reported damages,
the condition of the whole bridge is ranked among a very limited
number of global deterioration states and the delay before repair is
chosen accordingly. However, the period of inspection and the delay
before repair are not optimized according to a time-dependent or a long
term safety criteria or maintenance cost.

In the oil & gas industry, the natural gas transportation infrastruc-
ture is dependent on high capacity compressors to supply the required
flow of gas at any time all over the year. This is especially important
during the winter season where a full capacity is needed and one

https://doi.org/10.1016/j.ress.2021.107540
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hundred per cent of the equipment is used. Most of the compression
systems involve high voltage electrical motors which are subject to
deterioration which is assessed by the number of partial discharges in
the insulation layers. These electrical motors are periodically inspected
and their global deterioration state is ranked among a limited number
of discrete states (6 levels according to ABB and Karsten Moholts
scale for example [6]). A preventive maintenance can be recommended
according to this rank but the production requirements can lead to post-
pone the execution of the maintenance tasks. For example, a preventive
maintenance will not be triggered during the consumption peak in the
winter season. Consequently, knowing the electrical motor condition
at the inspection date is not enough to make an optimal decision for
the maintenance time and task. It is required to model the overall CBM
strategy including the maintenance delay due to seasonal constraints
and the costs related to maintenance and failures.

In this paper, we intend to propose a framework for CBM modelling
dedicated to critical infrastructures. The final objective is to challenge
pre-established CBM strategies that might be not optimal and to provide
time dependent or long term decision criteria to optimize them. The de-
cision criteria are basically the probability, for the maintained system,
to be in a deteriorated or critical state at any time (e.g closure of the
bridge), or the maintenance strategy mean cost over a period of time.
The main assumptions we keep from the application field of critical
infrastructures are: we consider that the system condition is character-
ized at a high level of abstraction with few discrete states (often given
by guidelines in the application field), the complete condition of the
system is only known at inspection dates, and the maintenance tasks
require a delay before execution.

The paper is organized as follows: Section 2 gives a presentation
of the proposed modelling framework with the background and the
state of the art. Section 3 describes the model in detail and in light of
the modelling assumptions. A numerical approach is proposed for the
quantification and its relation to the Chapman–Kolmogorov equation
is shown. Section 4 presents an illustration case based on road bridges
maintenance in Norway. It is intended to clarify the proposed model
and quantification method. Guidance on how to account for different
aspects of inspection and maintenance is included. Finally, concluding
remarks and future directions of research are provided in Section 5.

2. Modelling framework: background and state of the art

2.1. Background

The purpose of a CBM model is to determine an intervention strat-
egy that optimizes the performance according to some criteria such as
cost, availability or others. In general, a model designed to optimize a
CBM policy should consist of two elements: (i) a deterioration model
and (ii) an intervention model [7,8]. The deterioration model is used
to forecast the actual process of degradation of the health condition of
a unit, while the intervention model captures the effect of maintenance
and/or inspections in its health condition. Therefore, the global model
can be used to find the optimal performance under a given intervention
strategy (parametric optimization) or to investigate for an optimal
strategy, as in Fig. 1.

There is a large amount of literature devoted to CBM optimization
with a wide range of modelling frameworks and application areas.
From a very generic point of view, we can distinguish two main
categories: (i) the approaches based on the description of scenarios,
with an exhaustive listing of all the possible sequences of events related
to the deterioration evolution and the maintenance effects on a given
horizon, (ii) the approaches based on the description of the states of
the maintained system and the possible transitions between them.

Usually, the first ones are preferred when the number of scenarios
is low enough to be described in a tractable way. Analytical solutions
for the calculation of associated costs are commonly based on renewal
theory and the identification of a renewal process. The second ones

are preferred when the number of scenarios is too large. It can be
easier to list system states and to model transitions from one state to
the possible next ones instead of looking at the complete sequences
of possible events on a given horizon. Certainly, such approaches are
tractable when the number of states is reasonable or when it can be
reduced enough for the modelling and optimization purpose. In this
case, analytical solutions for the calculation of associated costs are
usually based on the identification of a Markov process or an extension
of such a process. Both approaches can be a good support to build
Monte Carlo simulation algorithms and to empirically optimize a CBM
strategy.

Under these circumstances, the inspections and the delay in the
maintenance schedule could increase quite a lot the number of possible
scenarios to list, whereas the reduced number of discrete states is a
benefit for using a modelling framework based on states and transitions.
This is what we propose in this paper.

2.2. State of the art

In some applications it is practicable to monitor, measure and
describe the condition or health of the system, in a continuous-state
space. In these cases, the deterioration process can then be modelled by
a continuous-space–time stochastic process. CBM models considering
this, usually model the deterioration with a diffusion process and
commonly used are the gamma process, inverse Gaussian process and
Wiener processes. Some recent examples of CBM models that consider
continuous-space–time stochastic process are found in [9–13].

However, for many applications it is more reasonable to character-
ize the condition or health of the system by a finite set of deterioration
states. This paper is focused on CBM modelling for this type of ap-
plications. In these cases, the deterioration is modelled by a jump
process between the discrete deterioration states. The time of the
jumps cannot be predicted without any uncertainty and are there-
fore considered to be random. The sequence of deterioration states
that the system experiences is then described by a continuous-time
discrete-state stochastic process. In addition to these random jumps,
the system experiences changes of state according to the maintenance
intervention schedule. These types of problems are commonly related
to Markov processes [14]. To support the decision-making associated to
maintenance, Markov (or semi-Markov) decision processes (MDP) are
usually proposed. MDP are controlled stochastic processes in which the
outcome has an associated uncertainty.

MDP have been proposed for CBM of different critical infrastruc-
tures. Tao et al. [15] consider the problem of optimizing maintenance
strategies for highway bridges subject to progressive deterioration and
sudden earthquakes. Compare et al. [16] develop a decision-support
framework for the management of gas transmission networks subject
to degradation modelled as a Markov process. González-Domínguez
et al. [17] use Markov-chains to model the deterioration of the roofs
of healthcare centres. The maintenance optimization problem on these
cases is formulated as a MDP. In some cases, the condition monitoring
process does not reveal the true state of the system with certainty. The
system dynamics are determined by a MDP but the decision maker
may not directly observe the underlying state with certainty. To handle
this, observation probabilities over the set of possible system states
are introduced in the model and the resulting framework is named a
Partially Observable Markov Decision Process. Recent examples can be
found in [16,18,19].

In most works related to MDP, the action from a decision related to
maintenance (modelled as a transition to other discrete states) takes
place at the inspection time instantaneously. Some have consider a
duration for the maintenance action with the system being stopped
immediately and restarted after the intervention. We intend in this
paper to propose a framework capable of addressing cases in which
the delay from the time of the decision to the time of the maintenance
action may result in further deterioration of the system, which in return
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Fig. 1. Condition-based maintenance model.

will require a different maintenance action than originally planned.
In order to characterize the transitions, support the modelling work,
and to provide a formalism that can be relevant for a large set of
application cases, we propose to use a specific class of Piecewise
Deterministic Markov Process (PDMP). This PDMP can serve as a basis
to implement a numerical scheme and provide numerical solutions for
the maintenance strategy cost evaluation. It can be also a basis to build
a Monte Carlo simulation algorithm and provide empirical solutions for
the maintenance costs.

PDMPs were introduced in 1984 by Davis [20], as a general class of
non-diffusion stochastic models that provides a framework for studying
optimization problems. A PDMP can be considered as an extension
of a Markov chain that incorporates continuous variables to allow
a combination of deterministic motion and random jumps. In the
framework of dynamic reliability, the continuous variables are used to
describe physical phenomena that influences the jump process between
discrete states and that can be defined by rather complex differential
equations. Some works that have proposed PDMPs as a modelling
framework for problems that combine deterministic behaviour (de-
scribed using physics-based knowledge and equations) and stochastic
jumps are found in [21–23]. Other applications of PDMPs for CBM focus
on problems that require a combination of random jumps and jumps
that occur at deterministic times (meeting a maintenance schedule set
in advance). Examples of these can be found in [24–26].

3. Piecewise deterministic Markov processes

In this section we present in details the modelling framework by
defining the modelling assumptions and then the formalism of the cor-
responding PDMP with linear deterministic motion. At last, a method
for numerical calculations of the state probabilities of the PDMP is
developed. It is based on a classical Euler numerical scheme. We also
provide a formal proof of the convergence of this scheme towards the
Chapman–Kolmogorov equations of the PDMP.

3.1. Modelling assumptions

We propose PDMP as a framework for studying CBM problems with
the following modelling assumptions:

• The deterioration of the unit can be described by a discrete system
• Monitoring of the deterioration of the unit is performed by means

of an inspection scheme
• There is a significant time elapsed from the date of detection and

planning of a maintenance operation until the date of actually
performing the operation. This elapsed time is referred to as
maintenance delay

• The maintenance delay is mainly due to logistics reasons and
hence its duration considered deterministic

To handle problems with these assumptions, we resort to a specific
class of PDMP: the deterministic motion is linear and is intended
to keep track of the time to an intervention jump. This will allow
compensation of a lack of Markov property and will facilitate the
description of the transitions between states.

3.2. Formalism

We consider a hybrid stochastic process {𝐼𝑡, 𝑋𝑡} with values in a
discrete-continuous space 𝐸 × 𝑅.

The first component, {𝐼𝑡} is discrete and used to represent the
deterioration states of the unit. We consider that the deterioration states
can be categorized in a finite number 𝑁 of levels. 𝐸 is the finite set
made of 𝑁 points.

The second component, {𝑋𝑡} is continuous, introduced in our case
as a way to keep track for the intervention jumps that occur at specified
times. We consider 𝐱 = (𝑥1, 𝑥2, 𝑡), x is a vector in which 𝑥1 corresponds
to the date of the next inspection, 𝑥2 corresponds to the date of the next
maintenance operation, and 𝑡 stands for time. Hence, the continuous
component {𝑋𝑡} evolves in 𝑅, a three-dimensional orthotope of R3.

The process {𝐼𝑡, 𝑋𝑡} experiences jumps at random times and jumps
at intervention times. Between the times of two consecutive jumps
(random or deterministic) the continuous component 𝑋𝑡 evolves with
deterministic motion.

3.2.1. Deterministic motion
In general, the deterministic motion of a PDMP corresponds to the

solution of a set of differential equations for a fixed discrete state,
i.e. given that 𝐼𝑡 = 𝑖 between two jumps, 𝑋𝑡 is solution of:
𝜕𝐱
𝜕𝑡

= 𝐯(𝑖, 𝐱) (1)

In our case, the deterministic evolution of the continuous compo-
nent between two consecutive jumps is very simple: only the continu-
ous variable 𝑡 evolves with a speed of one, i.e. 𝐯(𝑖, 𝐱) = (0, 0, 1); ∀ 𝑖. This
kind of process is a particular case of PDMP, also named piecewise-
linear process [27].

3.2.2. Jumps at random times
Jumps at random times correspond to the stochastic deterioration of

the unit. A jump from state (𝑖, 𝐱) towards discrete state (𝑗) occurs with a
rate 𝜆(𝑖, 𝐱)𝑄(𝑖, 𝐱, 𝑗), where 𝜆(𝑖, 𝐱) is the rate at which the process leaves
𝑖 and 𝑄(𝑖, 𝐱, 𝑗) is the probability distribution of the jump from 𝑖 to 𝑗. In
this sense, the rate at which the process jumps from the discrete point
𝑖 to a discrete point 𝑗 is dependent on both the discrete and continuous
component before the jump (𝑖, 𝐱) and the discrete component after the
jump (𝑗). Hence, the rate does not need to be constant and in the model
here proposed it could be time dependent.

3.2.3. Jumps at intervention times
Jumps at intervention times are associated to the inspections and

maintenance operations. To model these jumps a frontier is defined,
such as when the continuous component reaches the frontier due to
the deterministic motion, a jump occurs. Let 𝛤 = {𝑥1 = 𝑡} ∪ {𝑥2 = 𝑡} be
the set of points we refer to as the frontier for our case. Such frontier
is reached when time (𝑡) reaches the date of an inspection (𝑥1) or the
date of a maintenance operation (𝑥2). When the frontier 𝛤 is reached
at (𝑖, 𝐱), a jump occurs in the discrete component towards a point 𝑗 of 𝐸
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Fig. 2. Transitions into state (𝑗, 𝐲) in (𝑛𝛿, (𝑛 + 1)𝛿].

and in the continuous component to a point 𝐲 of 𝑅 equal to 𝑚𝛤 (𝑖, 𝐱, 𝑗),
with a probability distribution 𝑞(𝑖, 𝐱, 𝑗). The function 𝐱 → 𝑚𝛤 (𝑖, 𝐱, 𝑗) is a
function from 𝛤 to 𝑅. This means that both the discrete and continuous
components jump at the intervention time.

The post jump location (𝑗, 𝐲) is dependent on the discrete compo-
nent before and after the jump and the continuous component before
the jump (the frontier).

For example, if the reached frontier corresponds to an inspection
of the unit (i.e. when 𝑡 = 𝑥1), a maintenance action and the next
inspection of the unit can be scheduled, depending on the deterioration
state of the unit, thus a jump in the dates of next inspection (𝑥1)
and next maintenance (𝑥2) occurs. Similarly, if the reached frontier
corresponds to a maintenance action (i.e. when 𝑡 = 𝑥2) a jump occurs
in the deterioration state of the unit (𝑖), (usually to a less deteriorated
state) and if imperfect maintenance is considered, then a probability
distribution can be associated to the post jump location.

3.3. Numerical calculations

We calculate now an approximation of the law of this process. This
approach is based on the proposed finite volume scheme by Cocozza-
Thivent et al. in [28,29] and some of its applications as [26,30].

Every term of the continuous state space 𝑅 is discretized in a finite
number of values. Let 𝛿 be the continuous state space step. Then, the
approximation of the 𝑘-ith term has values in 𝐹𝑘 = {0, 𝛿, 2𝛿,… , 𝑛𝛿}. In
this way, 𝑅 is replaced by the discrete state space 𝐹 = 𝐹1 × 𝐹2 × 𝐹3.

The deterministic motion of the process between jumps can be
described with a function from 𝐹 to 𝐹 by solving Eq. (1) with the Euler
method. In our case, between iterations 𝑛𝛿 and (𝑛+ 1)𝛿 the continuous
component follows the function 𝐱 → 𝐱 + 𝐯𝛿. When the frontier 𝛤 is
reached at 𝐱, the continuous component jumps instantaneously from 𝛤
to 𝐹 as 𝐱 → 𝑚𝛤 (𝑖, 𝐱, 𝑗).

Let 𝑃 ((𝑖, 𝐱), (𝑗, 𝐲)) denote the conditional transition probability from
state (𝑖, 𝐱) to state (𝑗, 𝐲) with values in the finite state space 𝐸 × 𝐹 ,
and 𝐹 denote the set of points in 𝐹 which are not on the frontier
𝛤 . The arrivals into a state (𝑗, 𝐲) may proceed from different paths as
represented in Fig. 2.

Between 𝑡 = 𝑛𝛿 and 𝑡 = (𝑛 + 1)𝛿, the non-null values of such con-
ditional probabilities due to random jumps and deterministic motion
are:

• for any 𝐱,𝐰 in 𝐹 , for any 𝑗 different from 𝑖, for any 𝑘 different
from ℎ:

𝑃 ((𝑖, 𝐱), (𝑗, 𝐲)) ≈ 𝜆(𝑖, 𝐱)𝑄(𝑖, 𝐱, 𝑗)𝛿 with 𝐲 = 𝐱 + 𝐯𝛿 (2)
𝑃 ((ℎ,𝐰), (𝑘, 𝐳)) ≈ 𝜆(ℎ,𝐰)𝑄(ℎ,𝐰, 𝑘)𝛿 with 𝐳 = 𝐰 + 𝐯𝛿

• for any 𝐱,𝐰 in 𝐹 :

𝑃 ((𝑗, 𝐱), (𝑗, 𝐲)) ≈ 1 − 𝜆(𝑗, 𝐱)𝛿 with 𝐲 = 𝐱 + 𝐯𝛿 (3)
𝑃 ((𝑘,𝐰), (𝑘, 𝐳)) ≈ 1 − 𝜆(𝑘,𝐰)𝛿 with 𝐳 = 𝐰 + 𝐯𝛿

When 𝐳 ∈ 𝛤 , an instantaneous jump occurs with the conditional
probability:

• for any 𝐳 in 𝛤 , for any 𝑘:

𝑃 ((𝑘, 𝐳), (𝑗, 𝐲)) = 𝑞(𝑘, 𝐳, 𝑗) (4)

Let 𝜋𝑛𝛿 denote the law of this stochastic process at the 𝑛-ith iteration.
By using the law of total probability and the Markov property, we can
write the law of the process for state (𝑗, 𝐲) at the (𝑛 + 1)-ith iteration
based on the transitions showed on Fig. 2. We have for any 𝑖, ℎ in 𝐸
and 𝐱,𝐰 in 𝐹 :

𝜋(𝑛+1)𝛿(𝑗, 𝐲) =
𝑁−1∑
𝑖≠𝑗

𝐲=𝐱+𝐯𝛿

𝜋𝑛𝛿(𝑖, 𝐱)[𝑃 ((𝑖, 𝐱), (𝑗, 𝐲))] (5)

+ 1{𝐲=𝐱+𝐯𝛿} 𝜋𝑛𝛿(𝑗, 𝐱)[𝑃 ((𝑗, 𝐱), (𝑗, 𝐲))]

+
𝑁∑
𝑘=1

𝐲=𝑚𝛤 (𝑘,𝐳,𝑗)

𝑁−1∑
ℎ=1
ℎ≠𝑘

𝐳=𝐰+𝐯𝛿
𝐳∈𝛤

𝜋𝑛𝛿(ℎ,𝐰)[𝑃 ((ℎ,𝐰), (𝑘, 𝐳))][𝑃 ((𝑘, 𝐳), (𝑗, 𝐲))]

+
𝑁∑
𝑘=1

𝐳=𝐰+𝐯𝛿
𝐳∈𝛤

𝐲=𝑚𝛤 (𝑘,𝐳,𝑗)

𝜋𝑛𝛿(𝑘,𝐰)[𝑃 ((𝑘,𝐰), (𝑘, 𝐳))][𝑃 ((𝑘, 𝐳), (𝑗, 𝐲))]

In Eq. (5), the first term accounts for the transitions related to a ran-
dom jump and deterministic motion; the second term for the transitions
related to only deterministic motion; the third term for the transitions
with a random jump, deterministic motion and an instantaneous jump
from the frontier; and the last term accounts for the transitions with
deterministic motion and an instantaneous jump from the frontier; as
shown in Fig. 2.

Substituting the conditional probabilities by their approximation or
value from Eqs. (2), (3) and (4), gives:

𝜋(𝑛+1)𝛿(𝑗, 𝐲) ≈
𝑁−1∑
𝑖≠𝑗

𝐲=𝐱+𝐯𝛿

𝜋𝑛𝛿(𝑖, 𝐱)[𝜆(𝑖, 𝐱)𝑄(𝑖, 𝐱, 𝑗)𝛿] (6)

+ 1{𝐲=𝐱+𝐯𝛿} 𝜋𝑛𝛿(𝑗, 𝐱)[1 − 𝜆(𝑗, 𝐱)𝛿]

+
𝑁∑
𝑘=1

𝐲=𝑚𝛤 (𝑘,𝐳,𝑗)

𝑁−1∑
ℎ=1
ℎ≠𝑘

𝐳=𝐰+𝐯𝛿
𝐳∈𝛤

𝜋𝑛𝛿(ℎ,𝐰)[𝜆(ℎ,𝐰)𝑄(ℎ,𝐰, 𝑘)𝛿][𝑞(𝑘, 𝐳, 𝑗)]

+
𝑁∑
𝑘=1

𝐳=𝐰+𝐯𝛿
𝐳∈𝛤

𝐲=𝑚𝛤 (𝑘,𝐳,𝑗)

𝜋𝑛𝛿(𝑘,𝐰)[1 − 𝜆(𝑘,𝐰)𝛿][𝑞(𝑘, 𝐳, 𝑗)]

Computing this equation fully describes the evolution of the PDMP.
For Markov processes, it is known that the Chapman–Kolmogorov
equation describes the time-evolution of the states probabilities. Eq. (6)
corresponds to an approximation of the known Chapman–Kolmogorov
equation. Since this is not very obvious, we proceed to demonstrate it
by deriving the Chapman–Kolmogorov equation starting from Eq. (6).

Chapman–kolmogorov
If 𝑓 (𝑖, 𝑥) is a function from 𝐸 × 𝐹 to R, we can write:
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋(𝑛+1)𝛿(𝑗, 𝐲) =
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋𝑛𝛿(𝑗, 𝐲) −
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋𝑛𝛿(𝑗, 𝐲) (7)

+
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)
∑
𝑖≠𝑗

𝐲=𝐱+𝐯𝛿

𝜋𝑛𝛿(𝑖, 𝐱)𝜆(𝑖, 𝐱)𝑄(𝑖, 𝐱, 𝑗)𝛿

+
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)1{𝐲=𝐱+𝐯𝛿}𝜋𝑛𝛿(𝑗, 𝐱)[1 − 𝜆(𝑗, 𝐱)𝛿]
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+
∑
𝑗,𝐲

𝐲=𝑚𝛤 (𝑘,𝐳,𝑗)

𝑓 (𝑗, 𝐲)
∑
ℎ≠𝑘

𝐳=𝐰+𝐯𝛿; 𝐳∈𝛤

𝜋𝑛𝛿(ℎ,𝐰)𝜆(ℎ,𝐰)𝑄(ℎ,𝐰, 𝑘)𝑞(𝑘, 𝐳, 𝑗)𝛿

+
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)
∑
𝑘

𝐳=𝐰+𝐯𝛿; 𝐳∈𝛤
𝐲=𝑚𝛤 (𝑘,𝐳,𝑗)

𝜋𝑛𝛿(𝑘,𝐰)[1 − 𝜆(𝑘,𝐰)]𝑞(𝑘, 𝐳, 𝑗)𝛿

By changing some indices, we can write:
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋(𝑛+1)𝛿(𝑗, 𝐲) =
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋𝑛𝛿(𝑗, 𝐲) −
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋𝑛𝛿(𝑗, 𝐲) (8)

+
∑
𝑖,𝑗; 𝑖≠𝑗
𝐲=𝐱+𝐯𝛿

𝑓 (𝑖, 𝐲) 𝜋𝑛𝛿(𝑗, 𝐱)𝜆(𝑗, 𝐱)𝑄(𝑗, 𝐱, 𝑖)𝛿

+
∑
𝑗,𝐱

𝐱=𝐲+𝐯𝛿

𝑓 (𝑗, 𝐱) 𝜋𝑛𝛿(𝑗, 𝐲)[1 − 𝜆(𝑗, 𝐲)𝛿]

+
∑
𝑖,𝑘,𝑗,𝐲
𝑘≠𝑗

𝐳=𝐰+𝐯𝛿;𝐳∈𝛤
𝐲=𝑚𝛤 (𝑘,𝐳,𝑖)

𝑓 (𝑖, 𝐲)𝜋𝑛𝛿(𝑗,𝐰)𝜆(𝑗,𝐰)𝑄(𝑗,𝐰, 𝑘)𝑞(𝑘, 𝐳, 𝑖)𝛿

+
∑
𝑖,𝑗

𝐳=𝐰+𝐯𝛿; 𝐳∈𝛤
𝐲=𝑚𝛤 (𝑗,𝐳,𝑖)

𝑓 (𝑖, 𝐲) 𝜋𝑛𝛿(𝑗,𝐰)[1 − 𝜆(𝑗,𝐰)𝛿]𝑞(𝑗, 𝐳, 𝑖)𝛿

After grouping, it can be written as:
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋(𝑛+1)𝛿(𝑗, 𝐲) =
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋𝑛𝛿(𝑗, 𝐲) (9)

+
∑
𝑗,𝐲

(𝐲+𝐯𝛿)∉𝛤

𝜋𝑛𝛿(𝑗, 𝐲)𝜆(𝑗, 𝐱)𝛿
⎛⎜⎜⎜⎝

∑
𝑖≠𝑗

𝐲=𝐱+𝐯𝛿

𝑓 (𝑖, 𝐲)𝑄(𝑗, 𝐱, 𝑖) − 𝑓 (𝑗, 𝐲)
⎞⎟⎟⎟⎠

+
∑
𝑗,𝐲

(𝐲+𝐯𝛿)∉𝛤

𝜋𝑛𝛿(𝑗, 𝐲)[1 − 𝜆(𝑗, 𝐲)][𝑓 (𝑗, 𝐲 + 𝐯𝛿) − 𝑓 (𝑗, 𝐲)]

+
∑
𝑗,𝐰

(𝐰+𝐯𝛿)∈𝛤

𝜋𝑛𝛿(𝑗,𝐰)𝜆(𝑗,𝐰)𝛿
⎛⎜⎜⎜⎝

∑
𝑖,𝑘; 𝑘≠𝑗

𝐳=(𝐰+𝐯𝛿)∈𝛤

𝑓 (𝑖, 𝑚𝛤 (𝑘, 𝐳, 𝑖))𝑄(𝑗,𝐰, 𝑘)𝑞(𝑘, 𝐳, 𝑖)

− 𝑓 (𝑗,𝐰)
⎞
⎟⎟⎟⎠

+
∑
𝑗,𝐰

(𝐰+𝐯𝛿)∈𝛤

𝜋𝑛𝛿(𝑗,𝐰)(1 − 𝜆(𝑗,𝐰)𝛿)
⎛⎜⎜⎜⎝

∑
𝑖,𝐳

𝐳=(𝐰+𝐯𝛿)∈𝛤

𝑓 (𝑖, 𝑚𝛤 (𝑗, 𝐳, 𝑖))𝑞(𝑗, 𝐳, 𝑖)

− 𝑓 (𝑗,𝐰)
⎞⎟⎟⎟⎠

If 𝑛𝛿 = 𝑡 by summation of successive differences, we can write:
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋(𝑛+1)𝛿(𝑗, 𝐲) =
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋0(𝑗, 𝐲) (10)

+ 𝛿
𝑛∑

𝑚=0

∑
𝑗,𝐲

(𝐲+𝐯𝛿)∉𝛤

𝜋𝑚𝛿(𝑗, 𝐲)𝜆(𝑗, 𝐲)
(∑

𝑖≠𝑗
𝑓 (𝑖, 𝐲)𝑄(𝑗, 𝐲 − 𝐯𝛿, 𝑖) − 𝑓 (𝑗, 𝐲)

)

+ 𝛿
𝑛∑

𝑚=0

∑
𝑗,𝐲

(𝐲+𝐯𝛿)∉𝛤

𝜋𝑚𝛿(𝑗, 𝐲)(1 − 𝜆(𝑗, 𝐲)𝛿)
(
𝑓 (𝑗, 𝐲 + 𝐯𝛿) − 𝑓 (𝑗, 𝐲)

𝛿

)

+ 𝛿
𝑛∑

𝑚=0

∑
𝑗,𝐰

(𝐰+𝐯𝛿)∈𝛤

𝜋𝑚𝛿(𝑗,𝐰)𝜆(𝑗,𝐰)
( ∑

𝑖,𝑘; 𝑘≠𝑗
𝑓 (𝑖, 𝑚𝛤 (𝑘,𝐰

+ 𝐯𝛿, 𝑖))𝑄(𝑗,𝐰, 𝑘)𝑞(𝑘,𝐰 + 𝐯𝛿, 𝑖) − 𝑓 (𝑗,𝐰)
)

+
𝑛∑

𝑚=0

∑
𝑗,𝐰

(𝐰+𝐯𝛿)∈𝛤

𝜋𝑚𝛿(𝑗,𝐰)(1 − 𝜆(𝑗,𝐰𝛿))
(∑

𝑖
𝑓 (𝑖, 𝑚𝛤 (𝑗,𝐰

+ 𝐯𝛿, 𝑖))𝑞(𝑗,𝐰 + 𝐯𝛿, 𝑖) − 𝑓 (𝑗,𝐰)
)

Finally, by making 𝛿 tend towards 0, we get the Chapman–
Kolmogorov equation for a following regular function 𝑓 from 𝐸 × 𝑅
to R, where 𝜋𝑡(𝑗, 𝐲) denotes the law of the process (𝐼𝑡, 𝑋𝑡) at time 𝑡 :
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋𝑡(𝑗, 𝐲) =
∑
𝑗,𝐲

𝑓 (𝑗, 𝐲)𝜋0(𝑗, 𝐲) (11)

+ ∫
𝑡

0
𝑑𝑢∫𝐹

∑
𝑗
𝜋𝑢(𝑗, 𝑑𝑦)𝜆(𝑗, 𝐲)

(∑
𝑖≠𝑗

𝑓 (𝑖, 𝑗)𝑄(𝑗, 𝐲, 𝑖) − 𝑓 (𝑗, 𝐲)
)

+ ∫
𝑡

0
𝑑𝑢∫𝐹

𝜋𝑢(𝑗, 𝑑𝑦)
∑
𝑙

𝑑𝑓
𝑑𝑦𝑙

(𝑗, 𝐲)𝑣𝑙

+ ∫(0,𝑡]×𝛤

∑
𝑗

(∑
𝑖
𝑓 (𝑖, 𝑚𝛤 (𝑗,𝐰, 𝑖))𝑞(𝑗,𝐰, 𝑖)−𝑓 (𝑗,𝐰)

)
𝜎(𝑗, 𝑑𝐰, 𝑑𝑠)

The measures 𝜎(𝑗, 𝑑𝐰, 𝑑𝑠) on the time–space R+×𝛤 describe the way
the process reaches the frontier. If 𝑡1 and 𝑡2 are two times (𝑡1 < 𝑡2) and
𝛤𝑙 is a part of the frontier 𝛤 , ∫𝛤𝑙×(𝑡1 ,𝑡2] 𝜎(𝑗, 𝑑𝐰, 𝑑𝑠) is the mean number
of times the process reaches the frontier between 𝑡1 and 𝑡2 on the part
𝛤𝑙 of the frontier with the discrete part equals 𝑗. In our case, the mean
number that the process reaches a part of the frontier corresponds to
the mean number of maintenance actions or inspections.

4. Illustration case. Bridge management in Norway

This section illustrates the proposed modelling approach through
a case study and explores on how different assumptions could be
taken into account. The case is related to bridge management, i.e. the
planning of inspections and maintenance activities of road bridges, in
Norway.

4.1. Problem statement

Road bridges are a vital part of the Norwegian transportation infras-
tructure. In Norway, there are more than 18,000 road bridges across the
country, so an efficient bridge management system is vital for avoiding
high costs from over expending and for ensuring safety of the public
and availability of the transportation system.

Many factors can make bridge management a challenging task, such
as: the varying weight and intensity of the traffic, the evolution of the
building codes over the years, the weather influence on the structures,
large number of structures spread over a large area, and others [8]. All
these factors create uncertainty, which makes the bridge management
a problem of decision making under uncertainty.

In the bridge management system applied by the Norwegian Public
Roads Administration (NPRA), the agency responsible for planning,
building, operating, and maintaining national and country bridges, the
inspections are mainly carried out periodically based on pre-defined
rules and the decision about when to perform maintenance is based
on the findings of these inspections. The handbooks for management
and inspections of bridges [4,5], establish types of inspections for the
bridges and the period in which they must be performed, e.g. a main
inspection of a bridge, with an overview of all the elements of the
bridge, must (in general) be performed every five years. They also
establish how the inspections must be logged in a database, how the
findings must be reported and provides guidelines on when to perform
the repairs for found damages.

There exists an extensive list of damage mechanisms that can affect
a structure. The inspection handbook of the NPRA [5] provides an
overview of these mechanisms with guidelines on how to assess their
severity. The assessment of the severity consists in a combination
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Fig. 3. Deterioration process.

of quantitative and qualitative methods. The resulting condition is
presented in a scale of one to four, as: (1) Small damage, (2) Medium
damage, (3) Large damage and (4) Critical damage.

The regulations dictate a CBM strategy that establishes when the
damage must be repaired based on the condition at the inspection.
According to the severity of the damage, a maintenance action (or
no action) must be scheduled. For small damage (1), no maintenance
action is required; for medium damage (2), a maintenance action
must take place between four and ten years; for large damage (3), a
maintenance action must take place between one and three years and
for critical damage (4), a maintenance action must take place in less
than six months.

We proceed to build a CBM model illustrating the PDMP formalism
described in Section 3.2. We recall that a state of the PDMP {𝐼𝑡, 𝑋𝑡}
to consider is made of {𝐢, 𝐱} with 𝐱 = (𝑥1, 𝑥2, 𝑡), where 𝑥1 corresponds
to the date of the next inspection, 𝑥2 corresponds to the date of the
next maintenance operation, 𝑡 stands for time and 𝑖 corresponds to the
deterioration level of the unit.

4.2. Deterioration model

For modelling the deterioration process of a structure, we need to
define the deterioration states and to describe the jumps between these
states.

In the bridge management of the NPRA a condition is assigned
to the structure as a level that ranges from one to four. In order
to distinguish between a condition not known to the NPRA and a
condition which is known based on information from the inspection,
we split the deterioration state of the unit in two parts: a real state and
a virtual state. In this sense, 𝐢 = (𝑖1, 𝑖2) where 𝑖1 = {1, 2, 3, 4} denotes the
real state of the structure, and 𝑖2 = {1, 2, 3, 4} denotes the virtual state
of the structure (known by the operator based on the inspections). A
condition (real or virtual) of the structure is assigned as:

• 1 : Small or no damage
• 2 : Medium damage
• 3 : Large damage
• 4 : Critical damage

The deterioration is modelled with random jumps between these
states. Since the unit is not continuously monitored, when a deterio-
ration jump occurs, it is not detected until an inspection is performed,
so only the real state (𝑖1) changes and the virtual state (𝑖2) remains
unchanged. In this case, we consider that the structure deteriorates
gradually as shown in Fig. 3.

As described in Section 3.2.2, a jump from state (𝐢, 𝐱) towards
discrete state (𝐣) occurs with a rate 𝜆(𝐢, 𝐱)𝑄(𝐢, 𝐱, 𝐣). Considering constant
transition rates, i.e. dependent only on the discrete components before
and after the jump and not on the continuous component, we can write
the transition rates out of a discrete component 𝐢, as:

• From 𝑖1 = 1, ∀ 𝑖2, 𝐱:
𝜆((1, 𝑖2), 𝐱) = 𝜆12 and 𝑄((1, 𝑖2), 𝐱, (2, 𝑖2)) = 1

• From 𝑖1 = 2, ∀ 𝑖2, 𝐱:
𝜆((2, 𝑖2), 𝐱) = 𝜆23 and 𝑄((2, 𝑖2), 𝐱, (3, 𝑖2)) = 1

• From 𝑖1 = 3, ∀ 𝑖2, 𝐱:
𝜆((3, 𝑖2), 𝐱) = 𝜆34 and 𝑄((3, 𝑖2), 𝐱, (4, 𝑖2)) = 1

• From 𝑖1 = 4, ∀ 𝑖2, 𝐱:
𝜆((4, 𝑖2), 𝐱) = 0

4.3. Intervention model

The inspections and maintenance operations are described by jumps
at intervention times as described in Section 3.2.3.

4.3.1. Inspections
When a structure is inspected its condition is revealed and a mainte-

nance task and the next inspection are scheduled accordingly. A jump in
the PDMP related to an inspection occurs when the part of the frontier
𝛤 made of the points {𝑥1 = 𝑡} is reached. To describe a jump at
this time we must define the post jump location of the discrete and
continuous components and the associated probability distribution of
such location.

There are two characteristics about the inspections that can be
addressed in the modelling framework: frequency and quality. The
frequency of the inspections can be periodic or non-periodic. Currently,
due to regulations, the bridge inspections of the NPRA are carried out
periodically, i.e. inspections are performed at equal time intervals. Let
𝑇 denote the constant interval for inspections and 𝑀𝑖2 denote the delay
for maintenance based on the virtual deterioration condition 𝑖2. As
described in Section 4.1, maintenance is scheduled according to the
known deterioration state to the operator (𝑖2) as: 𝑀1 = ∞, 𝑀2 ∈ [4, 10]
years, 𝑀3 ∈ [1, 3] years, 𝑀4 ∈ [0, 0.5] years. The post jump location
of the continuous component is: 𝑚𝛤 (𝐢, 𝐱, 𝐣) = (𝑡 + 𝑇 ,min(𝑥𝐵 ,𝑀𝑖2 ), 𝑡).
Non-periodic inspections could for example follow a pre-determined
condition-based inspection scheme, in which the time of a next in-
spection is decided based on the deterioration state of the unit at the
current one. To model such inspection scheme, the inspection interval
can be set according to the virtual state of the unit (𝑖2), (similar to the
maintenance delay) as 𝑇𝑖2 instead a constant interval.

The quality of the inspections can be taken into account by assigning
a probability 𝑞(𝐢, 𝐱, 𝐣) distribution to the post-jump location, as described
in Section 3.2.3. If the inspections are considered perfect, i.e. the real
state of the unit is revealed at the inspection without uncertainty, then
the virtual state becomes equal to the real state of the unit at the
inspection time, with probability of one. In some cases, the inspections
may not perfectly reveal the real condition of the unit, due to for
example hidden damages or errors in measurements. If the inspections
are considered non-perfect or subject to errors, then we can write a
conditional probability of the post-jump location of the virtual state
(𝑗2), given the real state of the unit before the jump (𝑖1), as 𝑃 (𝑗2|𝑖1) =
𝑞(𝐢, 𝐱, 𝐣) and the post jump location of the continuous component would
be 𝑚𝛤 (𝐢, 𝐱, 𝐣) = 𝐱 + (𝑇𝑗2 ,𝑀𝑗2 , 0)

4.3.2. Maintenance
A maintenance task is scheduled according to the condition of the

structure at inspection. The maintenance is arranged to take place
after a delay with deterministic duration. When a maintenance action
is performed, a jump occurs to a less deteriorated state. The degree
of the maintenance is modelled by assigning the post-jump location.
For example, if perfect maintenance or replacement is considered, the
unit is considered as-good-as-new, thus the discrete component (𝑖1, 𝑖2)
jumps to (1,1). In addition, the date to the next inspection (𝑥1) does
not change, and the date of the next maintenance action (𝑥2) is set to
infinite (no maintenance scheduled).

To consider possible errors in the maintenance operation, a proba-
bility distribution 𝑞(𝐢, 𝐱, 𝐣) can be assigned the post-jump location. For
example, let 𝜃 denote the probability of maintenance error, i.e. the
probability that a maintenance action results in a state other than
as-good-as-new e.g. a state with medium damage, then the discrete
component jumps from 𝐢 to 𝐣 = (1, 1) with probability 𝑞(𝐢, 𝐱, 𝐣) = (1 − 𝜃)
or from 𝐢 to 𝐤 = (2, 1) with probability 𝑞(𝐢, 𝐱,𝐤) = 𝜃.
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Fig. 4. Simulation procedure.

4.4. Quantification

The following assumptions are considered in the illustration case for
quantification purposes, in addition to those listed in Section 3:

(i) The unit is inspected periodically, i.e. at equal time intervals 𝑇
(ii) Inspections are perfect and reveal the true state of the unit.

(iii) Maintenance interventions occur at the scheduled date instanta-
neously, i.e. the duration of the intervention is neglected

(iv) After a maintenance action, the unit is considered as-good-as-
new without error.

From assumptions (i) and (ii), it can be written that if 𝐱 ∈ 𝛤
with 𝑥1 = 𝑡, a jump occurs from state (𝐢, 𝐱) to state (𝐣, 𝑚𝛤 (𝐢, 𝐱, 𝐣))
with probability 𝑞(𝐢, 𝐱, 𝐣) = 1. The discrete component jumps to 𝐣 with
𝑗1 = 𝑗2 = 𝑖1, i.e. the virtual deterioration state becomes equal to the
real state before the jump, while the continuous component jumps to
𝑚𝛤 (𝐢, 𝐱, 𝐣) = (𝑡 + 𝑇 ,min(𝑥2,𝑀𝑖2 ), 𝑡).

From assumption (iv), if 𝐳 ∈ 𝛤 with 𝑧2 = 𝑡 then a jump occurs from
state (𝐤, 𝐳) to state (𝐣, 𝑚𝛤 (𝐤, 𝐳, 𝐣)) with probability 𝑞(𝐤, 𝐳, 𝐣) = 1 (no error).
The discrete component jumps to 𝐣 = (1, 1), i.e. as-good-as-new, while
the continuous component jumps to 𝑚𝛤 (𝐤, 𝐳, 𝐣) = (𝑧1,∞, 𝑡).

4.4.1. Numerical approach
The states probabilities can be found by iterating on the recursive

Eq. (6). At every iteration step, the real deterioration states probabili-
ties 𝜋𝑛𝛿((𝑖1, ⋅), 𝐱) can be found with the summation:

𝜋𝑛𝛿((𝑖1 = 𝑘, ⋅), (⋅, ⋅, 𝑛𝛿)) =
∑
𝑥2

∑
𝑥1

∑
𝑖2

𝜋𝑛𝛿((𝑘, 𝑖2), (𝑥1, 𝑥2, 𝑛𝛿)) (12)

4.4.2. Monte Carlo simulation
An alternative quantification method to the numerical approach

introduced in 3.3 is to perform Monte Carlo simulation of the process
to estimate the quantities of interest. The modelling framework de-
scribed in Section 3.2 is convenient for setting the structure to simulate
problems of CBM with the aforementioned assumptions.

The simulation procedure of the PDMP is shown in Fig. 4. It includes
five main steps to simulate a realization of the PDMP until a horizon
time 𝑡ℎ𝑜𝑟.

Fig. 5. Deterioration state probabilities.

(i) Set initial system time and initial system state
In our case, initial time is set to zero, the unit is set to be in new
condition with no maintenance action scheduled and the date of
the first inspection is set to the period. (i.e. 𝑡 = 0, 𝑖1 = 1, 𝑖2 = 1,
𝑥1 = 𝑇 and 𝑥2 = ∞).

(ii) Sample date of next random jump, if enabled
The date of the next random jump 𝑡𝑗𝑢𝑚𝑝 is sampled from the cor-
responding probability density function and the corresponding
parameter(s).

(iii) Identify next event
The date of the next random jump 𝑡𝑗𝑢𝑚𝑝 is compared with date of
next inspection 𝑥1, the date of next maintenance action 𝑥2 and
the horizon time 𝑡ℎ𝑜𝑟.
The system time is updated as: 𝑡 = min(𝑡𝑗𝑢𝑚𝑝, 𝑥1, 𝑥2, 𝑡ℎ𝑜𝑟). If the
simulation time has reached the horizon time, 𝑡 ≥ 𝑡ℎ𝑜𝑟, the
simulation continues to step (v), otherwise it continues to step
(iv).

(iv) Update system state
The system state is updated according to the jump that takes
place at time 𝑡: deterioration, inspection or maintenance.

(a) Deterioration: (𝑡 = 𝑡𝑗𝑢𝑚𝑝)
Only 𝑖1 is updated in this jump

(b) Inspection: (𝑡 = 𝑥1)
The values of 𝑖2, 𝑥1, 𝑥2 are updated. The post-jump values
are:
𝑖+2 = 𝑖−1 ;
𝑥+1 = 𝑡 + 𝑇 ;
𝑥+2 = 𝑡 +𝑀𝑖2 ;

(c) Maintenance: (𝑡 = 𝑥2)
The values of 𝑖1, 𝑖2, 𝑥2 are updated. The post-jump values
are:
𝑖+1 = 𝑖+2 = 1;
𝑥+2 = ∞.

(v) Set final system state and time
The final time is 𝑡ℎ𝑜𝑟 and the final system state is the state
resulting from the last jump to take place no later than 𝑡ℎ𝑜𝑟.

This simulation procedure is replicated a high number of times, to
approximate quantities of interest, such as deterioration state probabil-
ities and mean numbers of interventions of a given type.
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Fig. 6. Deterioration state probabilities.

Table 1
Model parameters.
Deterioration Maintenance Inspection
rates (ℎ−1) delays (𝑦) interval (𝑦)

𝜆12 = 1.5e−5 𝑀1 = ∞ 𝑇 = 5
𝜆23 = 6e−6 𝑀2 = 8
𝜆34 = 1.4e−6 𝑀3 = 3

𝑀4 = 0.5

4.5. Experiments and results

4.5.1. State probabilities
The model parameters used for quantification are shown in Table 1.

The deterioration rates have been estimated from previous works car-
ried by the NPRA based on the information available on their database
for bridge inspections and maintenance actions.

The time dependent real deterioration states probabilities 𝑃 (𝑖1) are
found using both the numerical approach and Monte Carlo simulation.
The results are shown in Fig. 5.

To compare the results of the quantification from both approaches,
the residuals or difference between the state probabilities is shown in
Fig. 6. It can be observed that the difference in results is small with
an order of magnitude of 10−3. In addition, the difference is reduced
by performing a higher number of replications of the Monte Carlo
simulation, showing same convergence.

The Monte Carlo simulation method is widely used in practice,
conceptually easy to apply and without particular restrictions on the
dimension of the PDMP. On the other hand, the numerical scheme
has high accuracy with short computation times [22]. In our case,
the Monte Carlo simulation with 100,000 replications took approxi-
mately one hour to obtain time-dependent probabilities, while with
the numerical scheme the results are obtained in approximately ten
seconds.

4.5.2. Maintenance optimization
The PDMP allows to test different inspection and maintenance

strategies and assess their effect on the structure condition. For ex-
ample, different periods of inspection can be considered, evaluating
the effect on the condition of the structure. Fig. 7 shows how the
critical condition of the unit (𝑖1 = 4), varies with time for different
inspection periods. This allows to support the decision process related
to inspections by evaluating the associated risk on the structure.

Moreover, to assist the decision process in bridge management, the
expected cost per unit of time of a given strategy can be assessed in

Fig. 7. Critical damage probability for different inspection intervals.

addition to the effect on the condition of a structure. Then a favourable
inspection/maintenance strategy which minimizes the cost per unit
of time with an acceptable risk for the structure can be chosen. The
function for the expected cost can be set as:

𝐸[𝐶] = 𝐸[𝑁𝑖𝑛]𝐶𝑖𝑛 + 𝐸[𝑁𝑚𝑟]𝐶𝑚𝑟 + 𝐸[𝑁𝑙𝑟]𝐶𝑙𝑟 + 𝐸[𝑁𝑐𝑟]𝐶𝑐𝑟 (13)

Where 𝐶𝑖𝑛: cost of inspection, 𝐶𝑚𝑟: cost of medium repair (unit with
medium damage), 𝐶𝑙𝑟: cost of large repair (unit with large damage),
𝐶𝑐𝑟: cost of critical repair (unit with critical damage), 𝑁𝑖𝑛: number of
inspections per unit of time, 𝑁𝑚𝑟: number of medium repairs per unit
of time, 𝑁𝑙𝑟: number of large repairs per unit of time, 𝑁𝑙𝑟: number of
large repairs per unit of time.

The mean number of inspections and repairs can be estimated from
Monte Carlo simulations or expressed in terms of the marginal distri-
butions of the PDMP and approximated with the numerical scheme.
We look at a long time horizon for the expected cost to be considered
asymptotic. For example, the mean number of medium repairs until t,
corresponds to the mean number of times the process reaches the part
of the frontier related to maintenance (𝑡 = 𝑥2) with the discrete com-
ponent 𝐢 = (2, 2) until time t, which can be approximated by Eq. (14).
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Fig. 8. Mean number of repairs per unit of time.

Fig. 9. Expected cost per unit of time.

𝑁𝑚𝑟(𝑡) ≈
𝑡∑

𝑢=0
𝐱∈𝛤2

𝜋𝑢{(2, 2), (𝐱)} (14)

Where 𝛤2 refers to the part of the frontier made by the points
{𝑥2 = 𝑡}. To illustrate, we look at the expected cost per unit of time
for different inspection intervals (keeping the parameters from Table 1
fixed, with the exemption of the inspection interval which is varied).
We set symbolic values of 𝐶𝑖𝑛 = 50, 𝐶𝑚𝑟 = 100, 𝐶𝑙𝑟 = 250, 𝐶𝑐𝑟 = 5000.

Fig. 8 shows the mean number of medium, large and critical repairs
per unit of time for different inspection intervals and the resulting cost
is shown in Fig. 9. In this case, the expected cost is lowest for an
inspection interval 𝑇 = 13.75 years or 13 years and 9 months.

5. Conclusion

A framework for CBM models with discrete-state stochastic deterio-
ration has been proposed based on the theory of PDMPs. The proposed
model allows to study problems in which the condition monitoring is
not continuous but inspection-based and there is an inherent delay for

performing maintenance actions. Therefore, the transition law cannot
be found by a simple Markov process neither a semi-Markov one.
Although this family of problems has been the motivation to propose
PDMP, it is worth to mention that PDMPs have been introduced as
general class of non-diffusion stochastic models and as such can cover a
wide variety of applications that involve some combination of random
jumps and deterministic motion.

The proposed framework allows the assessment of the probability
for the infrastructure to be in a deterioration or a critical state given
an inspection period and given a maintenance schedule. In this way, it
is possible to evaluate if a given CBM policy is adequate regarding some
safety requirements by making variations of the inspection period, the
delay before intervention, or the state to which the system is restored
after maintenance (imperfect maintenance). It is also possible to assess
the cost of a CBM policy and find the optimal parameters of the policy.

A numerical approach for quantification of time dependent proba-
bilities has been developed. This approach is an approximation to the
solution of the Chapman–Kolmogorov equation. In comparison, Monte
Carlo simulation is in general conceptually easier to apply while the
numerical approach could provide better accuracy in the results with
faster computation times. However, the system complexity and the
number of discrete states can be limitations for this numerical approach
while Monte Carlo simulation could offer more flexibility in this aspect.
Given that the deterioration of the system can be characterized by a
reasonable number of discrete states and that the deterministic motion
is reduced to a trivial equation, it is relatively simple to make use
of the numerical approach, making it a convenient alternative for
problems which require studying different strategies and repeating
the quantification procedure several times in order to support the
decision-making.

A case study has been presented to illustrate the modelling and
quantification approach. Through the case, guidelines on how to ac-
count for different assumptions about the inspection frequency and
quality as well as maintenance strategies are given.

The proposed modelling framework presented, as well as much of
the existing research on CBM focuses on a single-unit system. Moreover,
multistate systems reliability theory usually deals with systems made of
independent multistate components. An interesting direction of further
works could be to study the application of PDMPs under the framework
of multistate systems, exploring on the modelling of dependencies
among the components such as stochastic, structural and/or econom-
ical. In this way, a decision-making process for maintenance at the
system level can be considered.
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Compressor stations are an essential part of natural gas networks, enabling the transportation of natural gas from
producing wells to the final users. An efficient scheduling of maintenance tasks is key for ensuring high availability
of the system and avoiding production losses and high costs from over expending. The demand of natural gas is
highly dependent on weather and seasonal conditions, being higher during winter and lower during summer. Thus,
the operation of the compressor stations alternates between periods of full capacity and periods of reduced capacity.
The optimal planning of maintenance tasks needs to take into account such constraints from the production plans.
Currently, preventive maintenance tasks are usually carried out periodically, following a calendar-based strategy.
This maintenance strategy can be improved by moving to predictive maintenance in which the decisions are based
on prognostics that consider both the deterioration of the system and the production profile.
This work explores on the application of Piecewise-deterministic Markov Process (PDMP) as a framework for
the optimization problem. The system level model captures the deterioration process of the units, the condition
monitoring techniques, maintenance strategies and production profile in order to assess the performance of a
maintenance strategy.

Keywords: Preventive maintenance, maintenance modeling, Piecewise-deterministic Markov process, numerical
approach, compressor, natural gas.

1. Introduction
Norway is the European Union (EU) second
largest gas supplier, covering 27% of the total
gas imports of the EU during the third quarter of
2019, according to Commission (2019). The large
majority of these gas exports from Norway to the
EU is transported through pipelines. Pipeline net-
works are the preferred and most efficient method
of transporting natural gas.

An integral part of a natural gas pipeline net-
work are the compressor stations, which are strate-
gically placed within the network with the func-
tion of maintaining the pressure and flow of gas,
from the production sites to the end users (Messer-
smith et al. (2015)). Ensuring high availability
of compressor stations is of key importance to
avoid the large production losses associated to the
network downtime.

Usually, high reliability is implemented by ro-
bust design at the system design phase. Dur-
ing the operation, rigorous maintenance policies
are the means to ensure high availability of the
compressor station. Traditionally, these mainte-

nance policies consist on calendar-based preven-
tive maintenance interventions, that may result in
high costs from over expending. This situation
could be improved by moving towards condition-
based maintenance (CBM) policies and a decision
process based on prognostics.

As pointed out by Kermanshachi et al. (2020),
the studies on optimal natural gas pipeline main-
tenance strategies using reliability analysis are
limited, leaving a knowledge gap and lack of
predictive models to estimate major incidents in
natural gas pipeline systems.

The objective of this paper is to propose a mod-
eling framework for a CBM optimization problem
of a gas compressor station, based on prognosis
that take into account the condition monitoring
techniques and the production profile. The case
study is inspired by a real compressor station in
Norway with modifications due to confidentiality.

1.1. System description
The compressor station to consider is composed
of six compressor trains. Each compressor train
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consist of a variable speed drive (VSD), an elec-
trical motor (M), a gearbox (GB) and the gas
compressor (C), as shown in figure 1.

VSD MOTOR GEARBOX COMPRESSOR

GB CM

Fig. 1. Compressor train diagram

In a simplification of the production profile, a
year can be divided into two seasons, based on the
gas demand: winter (high demand) and summer
(low demand). During winter, it is assumed that
all the six compressor trains are required to oper-
ate in order to meet the market demand, while dur-
ing summer season three out of the six compressor
trains are enough to meet the requirements.

Assumptions about the lifetime of the units of
the compressor station (e.g. Weibull distributed)
and about the maintenance interventions (e.g. in-
spection based monitoring, deterministic delays
for maintenance preparations) prevent the use of a
Markov chain as modeling framework. A previous
work on this system by Zhang et al. (2018), has
explored on a modeling methodology based on
object-oriented language and Montecarlo simula-
tion for the assessment of a maintenance strategy.
In our case, the units of the system are modelled
as piecewise-deterministic Markov processes and
the availability of the system is assessed by the
structure function with support of a numerical
scheme.

The rest of this paper is organized as follows:
section 2 describes the framework of PDMP and
the numerical scheme used for quantification, sec-
tion 3 describes the assumptions and models of
the compressor station units, section 4 presents
numerical experiments and results and section 5
presents the conclusions and further works.

2. Modeling framework
A PDMP is an extension of a Markov chain that
incorporates continuous states with evolution that
follow discrete state-dependent deterministic dif-
ferential equations. The resulting stochastic pro-
cess is a Markov process with a mixture of ran-
dom jumps and deterministic motion. They were
introduced by Davis (1984), as a general class
of non-diffusion stochastic models that provides
a framework for studying optimization problems.

A PDMP is a hybrid process {It, Xt}t>0 with
values in a discrete-continuous space E × R, as
described by Lair et al. (2011, 2012). The first
component It is discrete, with values in a finite

state space E and corresponds to the unit condi-
tion. The second component Xt is continuous,
taking values in a Borel subset R ⊂ Rk, which
in our case will be used to model a process which
requires to keep track of time for interventions.

As described by Azaı̈s et al. (2014), the motion
of a PDMP {It, Xt}t>0 is determined by three
local characteristics: the jump rate λ, the flow
φ and the transition measure Q. The process
starts from (i, x) and follows the flow φ(i, x) until
a first jump occurs at T1. A jump can occur
either randomly with the rate λ(i, x) or when the
flow hits a boundary in the continuous state space
R. The post-jump location of the jump at time
T1, denoted Z1 = {IT1

, XT1
} is selected from

the transition measure Q[(i, x), (·, ·)] (conditional
probability that the process jumps from (i, x) to a
new location). Then the motion restarts from this
point. This describes the evolution for {It, Xt}
with jump times Tk, post-jump locations Zk and
evolving according to the flow φ between two
consecutive jumps. The flow of a PDMP is deter-
ministic and in general described by differential
equations.

Once the trajectory of a PDMP is described, the
challenge is to solve for quantities of interest. An-
alytically solving the PDMP is a difficult task due
to the complexity in the system behavior. In reli-
ability assessments Monte Carlo simulation and a
finite-volume numerical scheme are two common
approaches used for solving such problems (Lin
et al. (2018)). In this paper, we make use of
the numerical scheme based on the finite-volume
method.

2.1. Numerical scheme for quantification
The probability of the state of the system
of a PDMP can be completely described by
the Chapman-Kolmogorov equations, as demon-
strated by Cocozza-Thivent et al. (2006). A nu-
merical scheme based in finite-volume methods to
approximate these probability measures has been
proposed by Cocozza-Thivent et al. (2006), with
proof of the convergence to the unique solution.

The principle of the scheme is the discretization
of the continuous component Xt into cells. The
time evolution of the probability masses in each
cell of the environmental space is followed, and
at each step, a balance between the in-coming and
out-going probability masses is written, allowing
us to solve a linear system, as Lair et al. (2012).

Let δt denote the step for the discretization
of the continuous state space R and M be the
resulting discrete state space. The part of M
which forms the boundary is denoted Γ and the
part which is not in the boundary is denoted Γ̃.

Let πt{i, x} denote the probability that the
process state is {i, x} at time t. By using the
law of total probability and since the process is
Markovian, the probability that the process is in
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state {j, y} at time (t+ δt) can be written as:

πt+δt{j, y} =
∑

i∈E
x∈Γ̃

πt{i, x}G{j,y}
{i,x}

+
∑

k∈E
z∈Γ

∑

h∈E
w∈Γ̃

πt{h,w}G{k,z}
{h,w}B

{j,y}
{k,z}

(1)

Where G
{j,y}
{i,x} and G

{k,z}
{h,w} are the probabilities

that the process moves from state {i, x} to states
{j, y} and {k, z} respectively, in the time inter-
val (t; t + δt], and B

{j,y}
{k,z} is the probability that

the process moves from {k, z} to {j, y} instanta-
neously at time (t+ δt) due to the process hitting
the boundary.

These conditional probabilities are determined
by the jump rate λ, the flow φ and the transition
measure Q as described in the previous section.
Since in our case, for every of the unit models, the
flow of the process is linear, then y = x+ φ(i)δt,
where φ(i) is the speed of the linear motion for
a fixed discrete component i. The conditional
probabilities for the interval (t, t + δt] can be
written according to possible transition scenarios
in the interval, as:

(i) Random jump + flow (y = x+ φ(i)δt)

G
{j,y}
{i,x} ≈ λ(i, x)Q[(i, x), (j, y)]δt

(ii) Only flow (y = x+ φ(i)δt)

G
{j,y}
{i,x} ≈ 1− λ(i, x)δt

(iii) Random jump + flow (z = w + φ(h)δt) +
boundary jump (z ∈ Γ)

G
{k,z}
{h,w} ≈ λ(h,w)Q[(h,w), (k, z)]δt

B
{j,y}
{k,z} = Q[(k, z), (j, y)]

(iv) Flow (z = w + φ(h)δt) + boundary jump
(z ∈ Γ)

G
{k,z}
{k,w} ≈ 1− λ(k, w)δt

B
{j,y}
{k,z} = Q[(k, z), (j, y)]

For every unit of the system we propose a
PDMP model which is determined by defining:
the variables, the random jump rates, the flow and
the transition measures.

3. System modeling

3.1. VSD and gearbox
3.1.1. Assumptions

The lifetime of the VSD and the gearbox are
assumed to be Weibull distributed with shape pa-
rameter higher than one. A failure of these units
is immediately detected and a corrective mainte-
nance action begins. The duration of the main-
tenance action (ρmn) is deterministic and after
the action the unit is considered to be as-good-
as-new (AGAN). Only corrective maintenance is
considered for these units.

3.1.2. Variables, flow, jumps and transition
measures

The discrete component of the PDMP for these
units is a binary variable, I , that indicates the
condition of the unit: working (1) or failed (0) at
time t. In this sense, It = {1, 0}.

The continuous component is a variable X
whose value x corresponds to the amount of time
spent in a given discrete state i at time t. In
this way, when the unit is working, the failure
rate λ is a function of x, and when the unit is
in failed state, x corresponds to the time spent in
maintenance. The complete process to consider is
made of {It, Xt}t>0.

Between two consecutive jumps, x evolves with
a speed of one, i.e. φ(i, x) = 1, ∀i, t ≥ 0. The
jump rate (failure) for this process is:

λ(1, x) =
α

μ

(
x

μ

)(α−1)

(2)

Where α and μ are the shape and scale param-
eter of the Weibull distribution respectively. The
measure of the random jump is Q[(1, x), (0, 0)] =
1.

In addition to the random failures, the process
can jump at intervention times that correspond to
a maintenance action finishing (after ρmn). The
flow of the process is bounded with ρmn for i = 0
and not bounded for i = 1. The measure of a jump
related to maintenance is Q[(0, ρmn), (1, 0)] = 1.

The non-null conditional transition probabili-
ties for the numerical scheme can then be written
as:

G
{(1,x+δt)}
{(1,x))} ≈ 1− λ(1, x)δt

G
{(0,0)}
{(1,x))} ≈ λ(1, x)δt

G
{(0,x+δt)}
{(0,x))} = 1

B
{(1,0)}
{(0,ρmn))} = 1

The availability of the VSD or gearbox at time
t is found by using eq. 1 recursively until time t,
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and:

AV SD(t) =
∑

x∈M
πt{1, x} (3)

3.2. Motor
3.2.1. Assumptions

The condition of the motor is described with three
discrete states: new (2), degraded (1) and failed
(0). The deterioration process is considered to be
gradually increasing from (2) to (0) with constant
transition rates λ21 and λ10.

The motor is periodically inspected with an
interval of τ . In case that degradation is detected
during an inspection, a preventive maintenance
is planned and a spare unit is ordered for the
replacement. There is a delay for the maintenance
action due to the preparation of the work and lo-
gistics involved. A failure of the motor is detected
immediately and the spare unit for the corrective
replacement is ordered (if it has not been ordered
earlier as result of an inspection, shortening the
delay).

The duration of the inspection, the delay for
maintenance and the maintenance action are con-
sidered deterministic and last for ρin, δmn and
ρmn units of time, respectively. During the delay
for maintenance the unit is placed back into oper-
ation, while an inspection or maintenance action
require to take the motor out of operation. After
a maintenance action the motor is assumed to be
AGAN.

3.2.2. Variables, flow, jumps and transition
measures

The discrete component of the PDMP for the
motor is composed of two variables Ia, Ib. The
first one Ia indicates the condition of the unit:
new (2), degraded (1) and failed (0) at time t, so:
Iat

= {2, 1, 0}. The second one Ib represents
three distinct modes in which the unit can be: in
operation (2), in inspection (1) or in maintenance
(0), then: Ibt = {2, 1, 0}.

The continuous component is composed of Xa
which represents the date of a next inspection,
Xb which represents the date of a next mainte-
nance action and t stands for time. Then X =
(Xa, Xb, t). Viewed in another way, xa and xb
represent boundaries for t, marking the time for
an intervention jump.

Between two consecutive jumps, only the con-
tinuous variable t evolves with a speed of one, i.e.
φ(i, x) = (0, 0, 1), ∀i

The process {(Ia, Ib), (Xa, Xb, t)}, experi-
ences jumps at random times due to deterioration
of the unit. We assume that the unit can only
deteriorate while in operation mode, i.e. when
Ibt = 2. Then, the non-null random jump rates

for this process are:

λ((2, 2), x) = λ21

λ((1, 2), x) = λ10

The transition measures of random jumps are:

Q[((2, 2), (xa, xb, t)), ((1, 2), (xa, xb, t))] = 1

Q[((1, 2), (xa, xb, t)), ((0, 2), (xa, t+ δmn, t))] = 1

The process also jumps at intervention times
when t = xa or t = xb. The transition measures
related to an inspection (t = xa) are:

Q[((ia, 2), (t, xb, t)), ((ia, 1), (t+ ρin, xb, t))] = 1

Q[((2, 1), (t, xb, t)), ((2, 2), (t+ τ, xb, t))] = 1

Q[((1, 1), (t, xb, t)), ((1, 2), (t+ τ, t+ δmn, t))] = 1

The transition measures related to a maintenance
action (t = xb) are:

Q[((ia, 2), (xa, t, t)), ((ia, 0), (t, t+ ρmn, t))] = 1

Q[((ia, 0), (t, xb, t)), ((2, 2), (t,∞, t))] = 1

With the given information, the non-null con-
ditional probabilities (G) of transitions in a time
interval (t, t + δt] could be written (similarly to
the case of the VSD and gearbox in section 3.1.2).

The availability of the motor at time t is found
by using eq. 1 recursively until time t, and:

AM (t) =

2∑

ia=1

∑

x∈M
πt{(ia, 2), x} (4)

3.3. Compressor
3.3.1. Assumptions

The condition of the compressor is described with
four discrete states: new (3), low degradation (2),
high degradation (1) and failed (0). The condition
is monitored indirectly but continuously. The
deterioration process is considered to be gradually
increasing from (3) to (0) with constant transition
rates λ32, λ21 and λ10.

When the condition of the compressor reaches
the low degradation level (2), a minor preventive
maintenance is planned and when it reaches the
high degradation level (1) or failed level (0) a
major preventive (or corrective) maintenance is
planned. The duration of a minor preventive main-
tenance action is ρmn and the duration of a major
preventive maintenance or corrective maintenance
action is ρmj . The delay for maintenance due
to preparation is δmn or δmj respectively. The
duration of a maintenance action and the delay
are considered deterministic. After a maintenance
action the compressor is assumed to be AGAN.
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3.3.2. Variables, flow, jumps and transition
measures

The discrete component of the PDMP for the
compressor is composed of two variables Ia, Ib.
The first one Ia indicates the condition of the unit:
new (3), low degradation (2), high degradation (1)
and failed (0) at time t, so: Iat = {3, 2, 1, 0}.
The second one Ib represents two distinct modes
in which the unit can be: in operation (1) or in
maintenance (0), then: Ibt = {1, 0}.

The continuous component is composed of
variable X whose value x denotes the date of a
next maintenance, and t which stands for time.
The process to consider is {(Ia, Ib), (X, t)}

Between two consecutive jumps, only the con-
tinuous variable t evolves with a speed of one, i.e.
φ(i, x) = (0, 1), ∀i

Considering that the compressor only deterio-
rates when in operation (ib = 1), the process
{(Ia, Ib), (X, t)} experiences random jumps re-
lated to the deterioration process with jump rates:

λ((3, 1), x) = λ32

λ((2, 1), x) = λ21

λ((1, 1), x) = λ10

The transition measures of random jumps are:

Q[((3, 1), (x, t)), ((2, 1), (t+ δmn, t))] = 1

Q[((2, 1), (x, t)), ((1, 1), (t+ δmj , t))] = 1

Q[((1, 1), (x, t)), ((0, 1), (x, t))] = 1

The transition measures related to a mainte-
nance action (t = x) are:

Q[((2, 1), (t, t)), ((2, 0), (t+ ρmn, t))] = 1

Q[((1, 1), (t, t)), ((1, 0), (t+ ρmj , t))] = 1

Q[((0, 1), (t, t)), ((0, 0), (t+ ρmj , t))] = 1

Q[((ia, 0), (t, t)), ((3, 1), (∞, t))] = 1

With the given information, the non-null con-
ditional probabilities (G) of transitions in a time
interval (t, t + δt] could be written (similarly to
the case of the VSD and gearbox in section 3.1.2).

The availability of the compressor at time t is
found by using eq. 1 recursively until time t, and:

AC(t) =
3∑

ia=1

∑

x∈M
πt{(ia, 1), x} (5)

3.4. System - compressor station
Assuming that all units in a compressor train are
independent, a compressor train is modelled with
a series structure and its availability (ACT (t)) is
found by:

ACT (t) = AV SD(t) ·AM (t) ·AGB(t) ·AC(t) (6)

Where AV SD(t), AM (t), AGB(t) and AC(t)
are the availability of the VSD, motor, gearbox
and compressor given by equations 3, 4 and 5.

During winter season, the compressor system
can be modelled with a series structure of six
compressor trains, and during summer season, the
system can be modelled as a 3-out-of-6 structure.
Assuming that all compressor trains are identical
and independent, the availability of the whole
compression system (ACS(t)) can be written as:

ACS(t) =

{
ACT (t)

6 t ∈ HD

1− (1−ACT (t)
3)(

6
3) t ∈ LD

(7)

Where HD stands for high demand season (win-
ter) and LD stands for low demand season (sum-
mer).

4. Numerical experiment and results
The described numerical scheme is applied to find
the time-dependent availability for each unit of
the compressor train and equation 7 is used to
find the time dependent availability for the whole
compression station. A set of parameters chosen
for illustration purposes only (not necessarily re-
alistic) are shown in table 1.

Table 1. Model parameters

Parameter VSD / Gearbox Motor Compressor

α 3

μ (h) 9× 108

λ32 (h−1) 1× 10−6

λ21 (h−1) 1× 10−4 1× 10−5

λ10 (h−1) 1× 10−3 1× 10−4

ρmn (h) 10 180 180

δmn (h) 360 500

ρmj (h) 360
δmj (h) 1000

τ (h) 730

ρin (h) 10

It is assumed that the initial state for every
unit is new and that the initial season is summer
(low demand). Figure 2 shows the time-dependent
availability for the whole compressor system dur-
ing the first two years. From the figure it can be
observed that the frequent periodic inspections of
the motor are a contributor to the system unavail-
ability, since the inspection requires to take the
motor out of operation for its duration (ρin).
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Fig. 2. Availability of the compressor system

To assess the impact of the motor inspection
period in the system availability, different values
of the inspection period are considered, (180h ≤
τ ≤ 2160h). Figures 3 and 4 show the average
availability of the system with respect to the motor
inspection period.
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Fig. 3. Seasonal average availability of the compressor sys-
tem
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Fig. 4. Average availability of the compressor system

Figure 3 shows the impact of variations in the
motor inspection period on the average availabil-
ity of the system by season. Due to the compres-
sor system structure, the average availability for
summer is strictly increasing while the average
availability for the winter has a maximum around
τ = 450h, within the given range of τ .

Figure 4 shows the average availability of the
compressor system together with the seasonal
availability. The horizontal lines show the sea-
sonal and average availability of the system for a
maintenance strategy of the motor consisting on
only corrective maintenance (no inspections and
no preventive maintenance interventions). Within
the given range, the average availability for the
system is maximum around τ = 550h, indicating
that the inspection interval is at its optimum at
τ ≈ 550h.

Inspections and preventive maintenance of the
motor are a strategy to increase the average avail-
ability of the system during winter season and as
result, the overall average availability. However,
during summer, the inspections and preventive
maintenance of the motor may reduce the avail-
ability of the system when compared to an only
corrective maintenance strategy, as shown for the
given parameters. Cost analyses of maintenance
strategies must be carried out in order to find
optimal an optimal policy for the system, while
considering the cost of downtime and production
losses.

5. Conclusions and further works
Predictive maintenance is appealing because it
allows to make maintenance decisions based not
only on the current information about the system,
but on projections of the condition of the system
into the future, taking into account estimations of
the future use profile.

In this paper, we propose PDMP models for
each unit of a compressor station as an approach to
model the deterioration of the unit with a stochas-
tic process and maintenance interventions, con-
sidering different assumptions, such as an aging
unit, maintenance delay and periodic inspections.
The numerical scheme presented allows for the
assessment of availability quantities in relatively
short computing times and it is well suited for the
optimization of maintenance policies.

For the compressor system, an illustration of
finding an optimal inspection interval for the mo-
tor has been shown. However, there are limita-
tions for the proposed model. First, all units are
considered independent, both in terms of stochas-
tic deterioration and for maintenance interven-
tions. Second, the models at the unit level make
no distinction of the production season profiles.
Hence, there are no constrains about the availabil-
ity of maintenance crews and system maintenance
strategies like opportunistic maintenance have not
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been considered. In practice, any preventive main-
tenance intervention should be carried out during
the summer season when the demand can be sat-
isfied without all compressor trains in operation,
while aiming to reduce the risk of production
losses for the winter season. The authors intend to
further explore on modifications to the proposed
models to overcome these limitations. Estimating
the remaining useful life of the system at the start
of the winter could allow to make maintenance de-
cisions for the summer. The optimization problem
should also include a cost analysis that considers
not only unit replacements but also minimal re-
pairs.
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