
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Henrik Forbord

Balancing Alignment and Autonomy
in Large-Scale Agile Software
Development

A Mixed-Methods Exploratory Case Study

Master’s thesis in Computer Science
Supervisor: Torgeir Dingsøyr
July 2022

M
as

te
r’s

 th
es

is

Henrik Forbord

Balancing Alignment and Autonomy in
Large-Scale Agile Software
Development

A Mixed-Methods Exploratory Case Study

Master’s thesis in Computer Science
Supervisor: Torgeir Dingsøyr
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
The success of agile development methods in small teams has inspired the use in large software development
settings. However, applying agile at scale has proven challenging. In large-scale software development,
many teams need to work together to coordinate their efforts. Prior studies report on challenges related
to communication overload, external distraction, absence of transparency and alignment across teams,
and lack of team autonomy. In particular, finding the optimum balance between alignment and teams’
willingness to be autonomous remains an unresolved issue. I conducted a mixed-methods case study in a
large-scale software development firm to provide contextually relevant advice for practitioners on how
to achieve this balance. The firm had adopted a tribe structure and implemented several communities
of practice for alignment and decision-making. Based on an analysis of 13 interviews, 35 hours of
observations, a questionnaire with 31 respondents, and a variety of supplemental material, I present
several findings on inter-team coordination and team autonomy.

I found that the teams were partly autonomous. Every team defined and customized their internal
work processes, whereas team autonomy on software requirements and architectural decisions was neither
expedient nor desirable from the developers’ point of view. For alignment, I found that communities of
practice with decision-making authority functioned effectively. The communities let teams align on tools
and best practices, and they fostered relationships and increased transparency levels. Further, I found
that team synchronization demands dedicated formal arenas. Specifically, I suggest project-specific team
leader meetings. The latter was lacking in the case organization.

From my findings, I offer the following three contributions. First, I identify three practices for
mitigating team synchronization and transparency challenges at scale: guide teams within the same
product or feature area into sub-groups; decentralize decision-making by fostering communities with
decision-making authority in specific areas; facilitate small inter-team meetings for teams having joint
goals. Second, I present a team autonomy model on four dimensions relevant to software development
teams in multi-team environments. The four dimensions are processes, requirements, architecture, and
tasks. Processes relate to the team-internal agile way of working. Requirements refer to functional and
non-functional software requirements. Architecture pertains to local architectural and technical choices.
Tasks capture the how and who of task execution. Third, and finally, I demonstrate how the team
autonomy model can be used to understand what decisions teams influence.

Keywords— Team synchronization, Transparency, Autonomy, Self-management, Inter-team coordina-
tion, Large-scale agile, Software development, Software engineering, Case study

i

Sammendrag
Bruken av smidige metoder i små team har vist seg å være suksessfult, hvilket har inspirert til bruk
også i større programvareutviklingprosjekt. Dette har imidlertid vist seg å være utfordrende. I storskala
programvareutvikling må mange team samarbeide for å koordinere arbeid. Tidligere studier rapporterer
om utfordringer knyttet til kommunikasjonsoverbelastning, ekstern distraksjon, fravær av åpenhet og
synkronisering på tvers av team, og mangel på teamautonomi. Særlig har det vist seg vanskelig å balansere
koordinasjon av team med hvert enkelt teams ønske om å være autonom. Jeg gjennomførte et kombinert
kvalitativt og kvantitativt casestudie hos et storskala programvareutviklingsfirma for å gi praktikere
kontekstrelevante råd for hvordan man best oppnår denne balansen. Firmaet hadde implementert en
tribestruktur, samt flere praksisfellesskap for koordinasjon og beslutningstaking. Basert på en analyse av
13 intervjuer, 35 timer med observasjoner, et spørreskjema med 31 respondenter og en del tilleggsmateriale,
presenterer jeg med denne masteroppgaven flere funn på inter-team-koordinasjon og teamautonomi.

Jeg fant at teamene var delvis autonome. Alle teamene definerte og tilpasset sine interne arbeidsprosesser,
hvorpå teamautonomi vedrørende programvarekrav og arkitekturavgjørelser så ut til å være hverken
formålstjenelig eller ønskelig fra utviklernes ståsted. Hva gjelder koordinasjon, fant jeg at praksisfellesskap
med beslutningsmyndighet fungerte effektivt. Praksisfellesskapene lot teamene koordinere bruken av
verktøy og gode utviklingspraksiser, og de fostret kollegiale forhold og økt åpenhet. Videre fant jeg
at teamsynkronisering krever dedikerte formelle arenaer. Mer konkret foreslår jeg prosjekt-spesifikke
teamledermøter. Dette manglet hos caseorganisasjonen.

Oppgaven har tre bidrag. Først presenterer jeg tre praksiser som reduserer utfordringer knyttet til
teamsynkronisering og åpenhet i storskala programvareutvikling: lokaliser team som opererer innenfor
samme produktområde eller leverer tjenester innenfor samme funksjonalitetsområde i sub-grupperinger;
desentraliser avgjørelser gjennom praksisfellesskap med beslutningsmyndighet på spesifikke områder; og
fasiliter små møtearenaer for team med felles mål. Bidrag nummer to er en teamautonomi-modell med
fire dimensjoner relevant for programvareutviklingsteam i miljø med mange team. De fire dimensjonene
er prosess, programvarekrav, arkitektur og arbeidsoppgaver. Prosess viser til teaminterne smidige
prosesser. Programvarekrav referer til funksjonelle og ikke-funskjonelle krav. Med arkitektur menes
lokale programvarearkitekturvalg og andre lokale tekniske valg. Arbeidsoppgaver innbefatter hvordan
oppgaver løses og hvem som løser dem. Til sist, som et tredje bidrag, demonstrerer jeg hvordan
teamautnomi-modellen kan benyttes til å forstå hvilke avgjørelser programvareteam påvirker.

ii

Preface
Sadly, but not so sadly, this master’s thesis, written between January and July 2022 by the undersigned
(aka me), concludes my master’s degree in Computer Science at the Norwegian University of Science
and Technology (NTNU). What started with an introductory course to information technology, examen
philosophicum, discrete mathematics, and single variable calculus fall 2017 has come to an end.

This thesis follows a preparatory specialization project on large-scale agile software development written
last fall. The specialization project included a literature review, and it aroused my curiosity and interest
in software development efforts at scale. I therefore decided to dedicate my last semester at NTNU to
studying this topic further.

Some people enabled me to write this thesis. First and foremost, I would like to thank my supervisor
Professor Torgeir Dingsøyr at NTNU for his valuable guidance throughout the spring and last fall. His
weekly feedback and suggestions have guided me steadily toward the goal of this master’s thesis. I also
wish to thank Signicat and the informants for their willingness to share their experiences. I especially
thank those who took the time to participate in interviews. Further, I would like to thank my fellow
master hall students for the (too) many hours of procrastination. Last but not least, I would like to
thank my girlfriend and all who made my time at NTNU in Trondheim and Gløshaugen so memorable.
Thank you.

Henrik Forbord
Trondheim, 15th July 2022

iii

Contents
1 Introduction 1

1.1 Problem Statement . 1
1.2 Goal and Research Question . 2
1.3 Contributions . 3
1.4 Scope and Target Audience . 3
1.5 Thesis Structure . 3

2 Background Theory and Related Work 5
2.1 Agile Software Development . 5

2.1.1 Scrum . 6
2.1.2 Kanban . 7

2.2 Large-scale Agile Software Development . 8
2.2.1 Inter-team Coordination . 9
2.2.2 Team Autonomy . 11
2.2.3 Scaling Agile . 12

3 Research Method 15
3.1 Research Design . 15
3.2 Data Collection . 16

3.2.1 Observations . 16
3.2.2 Interviews . 17
3.2.3 Documents . 17
3.2.4 Questionnaire . 17

3.3 Data Analysis . 18
3.4 Research Critique . 19

4 Results 23
4.1 Case Description . 23
4.2 Development of a Team Autonomy Model . 27
4.3 Inter-team Coordination Meetings . 30
4.4 Inter-team Coordination Roles . 33
4.5 Inter-team Coordination Tools and Artifacts . 38

5 Discussion 41
5.1 Team autonomy . 41
5.2 Synchronization . 44
5.3 Transparency . 46
5.4 Implications for Practice and Theory . 46
5.5 Evaluations and Limitations . 48

6 Conclusion and Future Work 49

Bibliography 51

Appendices 57
A Case study proposal . 57
B Observation protocol . 58

v

C Interview . 58
I Invitation . 58
II Interview guide . 59

D Questionnaire . 59

vi

List of Figures
1.1 Software practitioners working in organizations with distributed teams 2

2.1 The Scrum framework . 7
2.2 A taxonomy of scale for agile software development (Dingsøyr et al., 2014) 8
2.3 Team autonomy model on four dimensions . 12
2.4 The main five large-scale agile methods (Edison et al., 2021) 13
2.5 The organizational components of the Spotify Model’s matrix structure 14

3.1 Timeline showing the data collection points . 15
3.2 Example of how data were analysed . 20

4.1 Main technology sites of Signicat . 24
4.2 Transformation from inter-connected technology stacks to a unified platform 25
4.3 Questionnaire responses on team autonomy . 28
4.4 Questionnaire responses on inter-team coordination . 29
4.5 The level of team autonomy at Signicat on four dimensions 30
4.6 The work context of the agile teams at Signicat . 34
4.7 Decision flow diagram for assessing architecture issues 35

vii

List of Tables
2.1 Comparison of Scrum and Kanban . 8

3.1 Data collection details . 16
3.2 Phases of the qualitative analysis. 19

4.1 Team roles at Signicat . 27
4.2 Inter-team coordination mechanisms at Signicat . 31

ix

Acronyms
CoP community of practice. 10, 12, 13, 17, 30, 31, 41, 44–49

CPM country product manager. 24, 27, 31, 32, 43–45

DA disciplined agile. 1

DevOps development and operations. 27, 31, 36

eID electronic identification. 23, 24, 26, 27, 32, 37, 43–45

KPI key performance indicator. 26, 27, 30–32, 37, 45

LeSS Large-scale Scrum. 1, 45

PM product manager. 24, 25, 31–33, 47

PO product owner. 6, 10, 24, 25, 27, 31, 32, 36–38, 43, 45–47

QA quality assurance. 25, 31, 36, 38

S@S Scrum-at-Scale. 1, 45

SAFe Scaled Agile Framework. 1, 12, 13

SM scrum master. 6, 24, 27, 32, 33, 37, 46, 47

SoS Scrum of Scrums. 9, 10, 12, 45, 46, 49

UX user experience. 25, 31, 34, 37, 38

WIP work in progress. 7

XP eXtreme programming. 6

xi

1 Introduction
In this chapter, I introduce agile and large-scale agile before I present indicated challenges with crucial
aspects of agile software development: alignment and autonomy. I also illustrate why scaling agile seems
to be a thorny issue for practitioners. Further, I present the goal and research question of the thesis, and
I also manifest the scope and target audience. Lastly, I outline the overall structure of the thesis. —

1.1 Problem Statement
Since the formulation of the agile manifesto in 2001 (Beck et al.), agile methods (e.g., Scrum and Kanban)
have transformed the way software is developed by emphasizing short iterations of work, adaptability
and flexibility, active end-user involvement, and tolerance to change (Dingsøyr et al., 2012). Traditional
approaches assuming information systems are fully specifiable and best built sequentially with extensive
up-front planning have been nearly entirely eradicated (Sridhar Nerur et al., 2005). In the latest State of
Agile (2021), 94 % of the respondents report their company is practicing agile. Additionally, the report
sees an explosive increase in agile adoption across functions of enterprises. The success of agile methods in
small software development projects has turned attention towards using such methods at scale (Dingsøyr
et al., 2019), despite being criticized for being applicable only to small teams (Dybå and Dingsøyr, 2008).

Several approaches to scaling agile have been proposed over time. The first generation of large-scale
agile methods combined advice from agile practices and project management frameworks such as the
Project Management Body of Knowledge. Later on, large-scale agile frameworks such as Scaled Agile
Framework (SAFe), Scrum-at-Scale (S@S), Large-scale Scrum (LeSS), disciplined agile (DA) and the
Spotify model have evolved to support agile software development at scale. This master’s thesis reports a
case study of an organization that has adopted and is adjusting certain elements similar to core elements
of the Spotify Model. The model, introduced by Kniberg and Ivarsson (2012), has become influential
among agile proponents and has formed the basis of agile methods used in several organizations (Salameh
and Bass, 2018, 2021), though only 5% of practitioners, according to the latest State of Agile, works in
an organization following the Spotify model. In the report, SAFe significantly outdistances the Spotify
model and other frameworks as the prominent scaling framework, being used by more than a third of the
respondents. However, SAFe is a comprehensive system dedicated to scaling agile, whereas the Spotify
model is not trademarked as a model. In the 12th State of Agile (2018), the Spotify model was not even
included as a scaled method but as an agile method and practice along with Scrum, Kanban, and other
agile method variants. There may therefore be reasonable to consider the number of practitioners using
the Spotify Model to scale agile to be under-reported.

The term "large-scale development" has several definitions and interpretations. Barlow et al. (2011)
define the term as characterized by multiple stakeholders and complex projects within large organizations,
whereas Rolland et al. (2016) suggests that large-scale involves complex integration with various internal
and external information systems and multiple stakeholders with different interests. This master’s thesis
however applies the definition by Dingsøyr et al. (2018a) which defines it as "development efforts that
involve a large number of actors, a large number of systems and interdependencies, which have more than
two teams."

Scaling agile raises many challenges, including a lack of alignment among teams and issues regarding
decision-making efficiency (Dingsøyr et al., 2019). Applying agile at scale threatens fundamental assump-
tions of agile. Self-management is one of the core principles of the agile manifesto, and providing teams
with the autonomy to self-organize is considered a success factor at scale (Dikert et al., 2016; Edison et al.,
2021). Self-managing teams offer some advantages over traditionally managed teams because bringing
decision-making authority to the operational level increases the speed and accuracy of problem-solving
(Dingsøyr et al., 2018a; Moe et al., 2009). However, self-management reduces the ability to coordinate

1

across teams (Ingvaldsen and Rolfsen, 2012). While teams need to self-manage, teams working towards
the same goal require much coordination and management effort (Petersen and Wohlin, 2010). The more
complex software projects get, the more difficult they become to control and manage. According to
Malone and Crowston (1993), coordination is "the managing of dependencies". Intricate and numerous
dependencies complicate the coordination of multiple teams, and this calls for processes for managing and
aligning inter-team decisions. In this thesis, I use the inter-team coordination taxonomy by Berntzen et
al. to identify inter-team coordination mechanisms at Signicat. The taxonomy includes three categories
of mechanisms that contribute to sharing information and knowledge about the software development
process, namely meetings, roles, and tools and artifacts.

An increasingly distributed workforce may amplify inter-team coordination challenges, and the outbreak
of COVID-19 has accelerated this trend. According to the latest State of Agile report, only 3 % (!) of the
4182 respondents indicated that they plan to return to office full time, and since the 7th State of Agile
(2013), the number of practitioners that works in a company with distributed agile teams has increased
from 35% to 89% (see Figure 1.1). This calls for coordination mechanisms that do not rely only on
co-location but rather embrace other characteristics. I use the TOPS framework (Berntzen et al., 2022) to
illustrate the underlying characteristics of the identified inter-team coordination mechanisms at Signicat.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

40%

60%

80%

100%

Year

Figure 1.1: Software practitioners working in organizations with distributed teams for the last
ten years according to the State of Agile. No report in 2020 due to COVID-19

1.2 Goal and Research Question
In 2012, Paasivaara et al. (2012) asked for more empirical research on how to tackle inter-team coordination
in large-scale agile projects. Still, in 2018, achieving inter-team coordination was highlighted by Bick
et al. (2018) as one of the most pressing challenges in large-scale software development. Dingsøyr et al.
(2018a) called for further investigation on how to balance autonomy with the need for alignment and
organizational control after exploring software development at the very large-scale, and more recently,
Moe et al. (2021) asked for further studies to investigate various ways of balancing the need for alignment
and autonomy. As new frameworks increase in popularity, Dingsøyr et al. (2019) ask researchers to
provide contextually relevant advice for practitioners on how to introduce scaling frameworks. With this
case study, I seek to contribute to this. Most recently, Moe et al. (2021) helped deepen the understanding
of what kind of authority teams should have by analyzing the autonomy of agile teams in an organization
using Hackman’s classification of unit authority. However, how to best achieve a balance between the
need for alignment and each team’s need to be autonomous remained an open question of Moe et al.,
which is a gap I aim to contribute to filling by addressing the following research question:

How can alignment and autonomy be balanced in large-scale agile software development?

2

1.3 Contributions
With this master’s thesis, I move the research one step closer to identifying how to balance alignment
and autonomy in large-scale agile by providing the following three contributions:

1. Three identified practices for mitigating team synchronization and transparency challenges at scale:
guide teams within the same product or feature area into sub-groups (tribes); decentralize decision-
making by fostering communities (guilds) with decision-making authority; facilitate small inter-team
meetings for teams having joint goals.

2. A team autonomy model on four dimensions relevant to software development teams: process,
requirements, architecture, and tasks.

3. An actionable approach to use the team autonomy model by introducing four statements that map
to each of the dimensions in the model.

I further elaborate on the contributions in the concluding chapter of this master’s thesis (Chapter 6).

1.4 Scope and Target Audience
Due to a limited time scope of six months (January-July), I have scoped this master’s thesis to only
discuss the main findings against a few of the challenging areas large-scale agile faces. I will also
emphasize that I have written this thesis with a software engineering lens, simplifying some organizational
aspects of the case organization. I exclude departments such as sales and marketing when outlining the
organizational structure, and I omit the role of managers and C-executives. As the daily business and
regular deliveries happen via the software development teams, I argue that the most relevant details
regarding the organizational structure are brought to the table from the lens of software engineering by
providing an overview of the work context in which the teams operate within on a daily basis.

I have set researchers with a particular interest in large-scale agile software development as the targeted
audience of this master’s thesis. Specifically, researchers interested in process improvement and agile
transformations will likely find the issues discussed in this thesis interesting. I also target software project
managers and agile coaches practicing agile at scale. Additionally, the thesis may be an example study of
large-scale agile for computer science students curious about the topic.

Primarily, the design of the master’s requires the reader to have some experience with software
development to fully understand the potential intricate and complex processes software development
(at scale) involves. It is an advantage to have prior knowledge of agile software development, but not
necessarily as Chapter 2 should present the fundamental principles behind agile. However, suppose
you are a novice computer science student or just interested in the topic without certain experience in
computer science and agile methodologies. In that case, I strongly recommend reading the chapters
chronologically with special attention to the theory chapter (Chapter 2). As an experienced researcher
or software practitioner within large-scale agile, you can dip into any chapter of interest. However, I
recommend you to start by getting familiar with the TOPS framework presented in subsection 2.2.1 as
this frames most of the analysis. Further, I recommend you to read the research critique section (Section
3.4) and the case description section (Section 4.1) in order to obtain an understanding of the limitations
of the research design and contextual factors of the study before diving into the the results (Chapter 4)
and discussions (Chapter 5).

1.5 Thesis Structure
The remainder of this article is structured as follows. Chapter 2 presents relevant background theory to
the reported findings in Chapter 4 and the elaborations and discussions in Chapter 5.

Chapter 3, the method chapter, outlines the research design of the master’s thesis, the chosen strategies,
and data collection methods. It also describes the analyzing approaches I have utilized. The method
chapter also highlights significant factors limiting or strengthening the study.

3

In Chapter 4, I present a new autonomy model and report the identified findings. I also present the
case context in depth.

In Chapter 5, I discuss my main findings, present implications for research and practice, and discuss
and evaluate the potential limitations of my findings.

Finally, Chapter 6 concludes the thesis. Here I bring a conclusion to the research question of the thesis,
and I also outline my contributions and suggestions for future work.

4

2 Background Theory and Related
Work

Software development at scale has proven to be challenging because it demands several teams to coordinate
their efforts (Moe et al., 2016). A central question is whether or not one should apply and adapt agile
methods to such environments (Dingsøyr et al., 2019). In this chapter, I first describe the differences
between traditional and agile software development before presenting two agile methods in detail, Scrum
and Kanban. Second, I provide different views on what constitutes large-scale before presenting the
first approaches to scaling agile. I also provide an overview of some of the most common large-scale
agile software development frameworks used in the industry, particularly the Spotify model. Further,
I present coordination and team-related challenges in large-scale agile (Edison et al., 2021), before I
focus on two critical aspects in agile software development at scale: inter-team coordination and team
autonomy. Finally, I introduce a new team autonomy model for large-scale agile software development.

2.1 Agile Software Development
Traditional approaches to software development, for instance, the Waterfall method, emphasize intense
upfront planning, documentation, and sequential implementation and deployment (Sridhar Nerur et al.,
2005), which builds upon an assumption that software is fully specifiable prior to start developing it.
Contrary to this, agile approaches assume that software can be built iteratively in small increments based
on feedback and continuous learning and adaptation (Dingsøyr et al., 2012).

With agile, the literature report benefits on customer collaboration, work processes for handling defects,
and estimation. On the other hand, agile approaches are repeatedly criticized for lacking support for
design and architecture (Dybå and Dingsøyr, 2008). But what exactly does it mean to be agile, and what
are the key characteristics of agility when developing software? In 2001, a group of software developers
formulated the agile manifesto, highlighting interactions, working software, customer collaboration, and
responding to change as important factors (Beck et al., 2001). However, there has not been a clear
and unified theoretical understanding of agile software development until recently. Most definitions
provided in the literature since 2001 highlight, in different ways, the ability to create and respond to
change as the underlying core of being agile (Highsmith, 2002; Conboy, 2009; Agile Alliance, 2021). In
2002, Highsmith defined agile as "the ability to both create and respond to change in order to profit in a
turbulent business environment". In 2009, Conboy argued that agility means to "rapidly or inherently
create change, proactively or reactively embrace change, and learn from change while contributing to
perceived customer value, and the Agile Alliance has defined agile as "the ability to create and respond to
change". More recently, Baham and Hirschheim (2021) suggested four core concepts and facets of agile
software development:

1. Incremental design and iterative development: Anticipating change by working iteratively in
short delivery cycles, thereby reducing the product scope to small increments to create opportunities
for inspection; Creating change through incremental software design in response to change from
what has been learned.

2. Inspect and adapt cycles: Anticipating change by instituting ceremonies for inspecting and
adapting (i.e., learning from and creating change in response to discovered changes) the product
increment (e.g., simplifying design, testing software frequently) and the development process (e.g.,
updating work statuses, reevaluating team processes, reprioritizing requirements).

5

3. Working cooperatively/Collaboratively/In close communication: Anticipating change
through recognizing and predicting changes in one’s environment; Creating change as a team by
working together to respond to change from what has been learned collectively.

4. Continuous customer involvement:In addition to the cell above, centralizing user requirements
changes by working together with the customer to collectively identify and respond to change early
through close customer involvement.

Since the formulation of the Agile Manifesto 2001, several agile methods have been proposed. According
to the 15th State of Annual (2021), Scrum1, Kanban2, or a mix of them (Scrumban), are the most popular
ones, with Scrum as the overwhelmingly most popular with 66% of the respondents identifying it as
the methodology they follow most closely. Examples of other methods addressing core principles of the
Agile Manifesto are eXtreme programming (XP)3, Lean startup4 and Crystal methodologies5. Albeit,
they seem to be significantly less popular and on the brink of being eradicated: XP and combinations
of Scrum and XP have dropped from 30 % use in the third State of Agile to less than 7 % today, and
only 1% are now using pure XP; 1 % only uses Lean startup, and the most recent report merged Crystal
methodologies into a pot of "others" methods in with a total of 5 %. In contrast, the most significant
growth trend has been the usage of Kanban boards for workflow management and visualization. This
approach is now used by 77% of respondents, heavily increasing from 6% in the very first State of Agile,
and is now the most used practice for agile planning regardless of method implementation.

The trend of applying Scrum or Kanban, or a mix of them, is also reflected in the case organization
studied in this master’s thesis. Scrum and Kanban are the only two methods applied at the team level,
and almost all teams use Kanban boards. Consequently, I focus on those two methods in the following.

2.1.1 Scrum
Schwaber and Sutherland developed the Scrum framework in the early 1990s aiming at small software
development projects. However, its usage has extended to environments of multiple teams (Dingsøyr et al.,
2019), becoming what is known as Scrum at Scale (later presented in Section 2.2). Scrum established the
scrum master (SM) role and product owner (PO) role. Along with developers, those roles compose a
cross-functional and self-organizing Scrum team - meaning the Scrum team has all the skills necessary to
create value and manage their work. Within such a team, no sub-team exists, and hierarchies are absent.
The SM is a process facilitator, and the PO is accountable for maximizing product and business value.
Central in Scrum is rather three artifacts representing work or value: a product backlog, a sprint backlog,
and an increment. Whereas the product backlog is the ordered list of all work remaining to be undertaken
by a Scrum team, a sprint backlog is a subset of the product backlog selected for a sprint - a time-boxed
iteration of fixed length (one month or less, typically). During a sprint, a Scrum team develops a product
increment, a concrete stepping stone toward a final product. Another artifact some Scrum teams use is
the burndown chart - a graphical representation of the completed work in a sprint and the total work
remaining in the same sprint. The sprint is the heart of Scrum, figuring as a container of the four other
events of Scrum: sprint planning; daily Scrum; sprint review; and sprint retrospective. A new Sprint
starts immediately after the conclusion of the previous Sprint. Typically, a Scrum team makes no changes
during a sprint. Instead, they can cancel a sprint if the sprint goal becomes obsolete. Only the PO has
the authority to cancel the Sprint. I present an overview of a Sprint in Figure 2.1, which also present
the four other events in more detail. The SM drives all the events during a sprint. The events facilitate
Scrum teams to discuss requirements, identify potential dependencies, estimate efforts, and reflect on
recent experiences to fine-tune their processes. However, research on Scrum has shown that this may be
challenging (Moe et al., 2010), particularly in distributed environments (Hossain et al., 2009). Though
the Scrum framework provides a set of clearly defined roles, events, and artifacts, (Hron and Obwegeser)
suggest tailoring Scrum to its specific needs and contextual circumstances. This may include employing

1https://www.scrum.org/resources/what-is-scrum
2https://kanban.university/
3http://www.extremeprogramming.org/
4http://theleanstartup.com/
5https://alistair.cockburn.us/

6

processes, techniques, and methods that are not part of Scrum per se, for instance, by applying elements
from Kanban or implementing elements from traditional non-agile project management frameworks.

Initiates the sprint by laying out the
work to be performed for the Sprint.
This resulting plan is created by the
collaborative work of the entire
scrum team. Other people may be
invited to attend sprint planning to
provide advice. Sprint Planning is
timeboxed to a maximum of eight
hours for a one- month Sprint. For
shorter Sprints, the event is usually
shorter.

Sprint
planning Sprint review

Sprint
retrospective

Daily scrum

Product backlog Sprint backlog Increment

Several incrementsScrum team

A 15- minute event for the scrum
team to inspect progress and adapt
the sprint backlog as necessary,
adjusting the upcoming planned
work. Typically, three questions are
addressed: what did I do yesterday,
what will I do today and what
impediments are in my way?

The purpose of the Sprint Review is
to inspect the outcome of the sprint
and determine future adaptations.
The scrum team presents the results
of their work to key stakeholders and
progress is discussed. The Product
Backlog may also be adjusted to
meet new opportunities. It is
timeboxed to a maximum of four
hours for a one- month Sprint. For
shorter Sprints, the event is usually
shorter.

The purpose of the Sprint
Retrospective is to plan ways
to increase quality and
effectiveness. The most
impactful improvements are
addressed as soon as
possible. They may even be
added to the Sprint Backlog
for the next sprint. It is
timeboxed to a maximum of
three hours for a one- month
Sprint. For shorter Sprints,
the event is usually shorter.
next Sprint.

Figure 2.1: The Scrum framework

2.1.2 Kanban
What differentiates Kanban from Scrum and other methods is that Kanban is neither a methodology
nor a process framework. According to the Kanban University, it is a management method or approach
that should be applied to an existing process or way of working. Kanban does not require the creation of
any new roles or events (Dingsøyr et al., 2019) but is instead all about visualizing work, limiting work in
progress (WIP), and maximizing efficiency, which the Kanban board facilitates. Within a Kanban board,
one pulls work from left to right: new work items enter the board on the left. When they exit on the
right, customers should have received value. Work items of a Kanban board can be of different types and
sizes, and board designs may vary greatly, often including columns more than only "to do," "doing," and
"done." In order to maximize flow, the WIP limit is key, serving as a constraint of work that is allowed to
enter the different columns of the board. However, Kanban does not specify what the WIP limit should
be (Sjøberg et al.). Setting correct WIP limits is perceived as challenging and has taken more time than
expected for teams implementing the Kanban method (Senapathi and Drury-Grogan, 2020). One of the
ground pillars of Kanban is that completed work is more valuable than starting new work: too much
ongoing work may create bottlenecks and reduce developer efficiency, negatively affecting the work flow.

7

Compared to Scrum, the central idea of Kanban is continuous and fluid processes rather than short and
structured sprints with a start and end. A comparison of Scrum and Kanban is provided in Table 2.1.

Scrum Kanban

Idealogy
Cross-functional, self-organizing
teams delivering small increments
and learning through experiences

Visualize work to ensure WIP is
limited such that a continuous
flow can be maintained

Cadence Fixed-length sprints (typically 2-
4 weeks) Continuous flow

Practices
Sprint planning, daily Scrum,
sprint review and sprint retro-
spective

Visualize work, limit WIP, man-
age flow, implement feedback
loops, make policies explicit, and
improve collaboratively, evolve
experimentally

Roles Scrum master and product owner No required roles

Artifacts Product backlog, sprint backlog
and increment Kanban board

Notes: WIP=Work In Progress.

Table 2.1: Comparison of Scrum and Kanban

2.2 Large-scale Agile Software Development
Despite being criticized for being applicable only to small teams (Dybå and Dingsøyr, 2008), the popularity
of agile has expanded well beyond small-team projects and into the large-scale. The topic "large-scale agile"
appears to originate in the mid-2000s (Hoda et al., 2018). Eckstein’s book Agile Software Development in
the Large, published in 2004 was the first on the topic. Despite the growing interest in applying agile
methods to large projects (Freudenberg and Sharp, 2010), there is no single definition in the literature
of what constitutes large-scale agile. Researchers have suggested several interpretations over the years:
a minimum number of developers (e.g., 50 developers); a minimum number of teams (e.g., five teams);
a minimum lines of code (e.g., ½ million lines); or a minimum of different time zones covered by the
development organization (e.g., three zones). In 2014, Dingsøyr et al. proposed a taxonomy of scale of
agile software development projects, defining large-scale as agile development efforts with two to nine
teams, and very large-scale as agile development efforts with more than nine teams. Figure 2.2 illustrates
the taxonomy. As mentioned in the introductory chapter (Chapter 1), this master’s thesis applies this
definition.

Large- scale
(2-9 teams)

Very large- scale
(10+ teams)

Small- scale
(1 team)

Figure 2.2: A taxonomy of scale for agile software development (Dingsøyr et al., 2014)

However, scaling agile is a significant change for many organizations (Dingsøyr et al., 2019). It causes the
rise of several challenges as it brings along difficulties such as an increased number of stakeholders, a higher

8

number of teams that need to coordinate their efforts, an added system and software complexity, and an
increasingly intricate architecture (Badampudi et al., 2013). In "Comparing Methods for Large-scale Agile
Software Development: A Systematic Literature Review," Edison et al. (2021) identified 31 challenges
associated with the five large-scale agile methods and grouped them into categories. Understanding how
to avoid all those challenging categories and their sub-challenges is key to harnessing the benefits of agility
on a large scale. However, according to the goal and scope of this master’s thesis, which is to provide
answers on how to balance alignment with team autonomy, this thesis focuses on inter-team coordination
and team-related challenges.

2.2.1 Inter-team Coordination

In large-scale agile software development, well-functioning collaboration within each team is not sufficient
to develop desired software solutions. As one scales up, the complexity of the developed software increases,
and several teams need to work together (Rolland et al., 2016). Previous studies have addressed challenges
associated with the lack of synchronization and alignment among teams, (Bick et al., 2018), and at
Ericsson, maintaining transparency across the high number of development teams and projects has seen
to be a demanding challenge (Paasivaara et al., 2018).

The increased complexity at scale and the high number of involved stakeholders often result in multiple
and possibly intricate dependencies not necessarily present in smaller development efforts. According to
Strode’s dependency taxonomy (Strode, 2016), dependencies occur when the completion of a task or an
action relies either on the output of a previous task or action (process dependency), the presence of some
artifact or person (resource dependency), or when a project requires a form of information to progress
(knowledge dependency): process dependencies consist of activity and business process dependencies;
resource dependencies include entity and technical dependencies; and knowledge dependencies comprise
requirement, expertise, historical, and task-allocation dependencies. When dependencies are well managed,
appropriate coordination mechanisms are in place to support the smooth flow of interdependent work.
Poorly managed dependencies indicate that the chosen coordination mechanisms are inappropriate,
inadequate, or absent. Furthermore, unmanaged dependencies can constrain or block progress leading to
delay as people wait for resources, for the activities of others to be completed, or for necessary information.

In order to manage such dependencies between teams, inter-team coordination is necessary (Strode,
2016). In the Performe progamme at the Norwegian Public Service Pension Fund (the "Pension Fund"),
Dingsøyr et al. (2018a) found that many arenas for coordination of work and knowledge sharing made it
easy for team members to adjust to activities of other teams. This included arenas such as Scrum of
Scrums (SoS) and open work area. SoS are a form of the daily stand-up meeting practice in Scrum where
"ambassadors" represent their teams (Agile Alliance, 2022), and open work area typically allows teams to
sit together in an open-plan office space on one floor.

Extant literature presents several taxonomies, frameworks, and mechanisms to categorize coordination
within software development. Strode et al. (2011) distinguish between explicit and implicit coordination.
The first consist of mechanistic and organic elements such as plans, rules, routines, mutual adjustment, and
feedback, whereas the latter consist of cognitive elements like shared mental models and team expertise.
Based on this, Scheerer et al. (2014) conceptualize mechanistic elements as centralized top-down planning
with vertical coordination, e.g., between a team and a hierarchically superior person or a central team,
and organic elements as decentralized bottom-up adjustments with horizontal coordination between
teams. In organizational science, earlier contributions to coordination include Ven et al. ’s (1976) three
coordination modes, differentiating between coordination by feedback (personal and group mode) and
coordination by plans, procedures, and tools (impersonal mode). A more novel approach to categorize
coordination is the taxonomy and TOPS framework proposed by Berntzen et al. (2022), in which is the
taxonomy and framework I use to analyze (Chapter 4) the coordination mechanisms present at Signicat
(for the reasoning of this choice, see Section 5.5 in the discussion chapter). Therefore, I choose to present
this taxonomy and the TOPS framework in more detail.

9

TOPS framework

The taxonomy of inter-team coordination mechanisms proposed by Berntzen et al. (2022) contributes to
the dependency taxonomy of Strode (2016) by extending the focus to the inter-team level. The taxonomy
includes three categories that includes a total of six sub-categories:

• Meetings: Scheduled and un-scheduled, such as SoS and ad-hoc chats.
• Roles: Individual and teams, such as program architects and platform teams.
• Tools and artifacts: Tangible and intangible, such as Slack and physical task boards.

In total, the taxonomy identify 27 inter-team coordination mechanisms (see Berntzen et al., 2022, pg.
11).

Coordination meetings contribute to sharing information and knowledge about product and development
processes and provide inter-team representatives with access to information held by expert roles (e.g., an
architect), hence managing knowledge, process, and resource dependencies. Examples of meetings are
CoP meetings and PO workshops (e.g., for planning and discussing longer-term technical product-related
areas).

Coordination roles may manage resource, knowledge, and process dependencies. Their overview of
technical and business process dependencies makes them important assets for developers to resolve
dependencies across teams. Contrary to previous significant studies of inter-team coordination in large-
scale agile (Dingsøyr et al., 2018a; Moe et al., 2018; Dingsøyr et al., 2018b; Paasivaara and Lassenius, 2019;
Stray and Moe, 2020), Berntzen et al. also include certain team roles as coordination mechanisms. For
instance, they show how platform teams help assure technical alignment by providing product teams with
common platform level services, thus managing resource dependencies. Other examples of coordination
roles are program architects and dedicated test teams.

Coordination tools and artifacts are the third and last category of the taxonomy and may be tangible,
material, or intangible, digital entities. Examples of tools are communication tools such as Slack and
documentation tools such as Confluence, both being intangible tools for managing dependencies related
to the development process. Slack supports communication and enables frequent and timely knowledge
sharing across locations, whereas Confluence may store several intangible artifacts such as burndown
charts and task boards (e.g., Kanban boards). A task board may also be a tangible entity (e.g., represented
on a whiteboard in an open space area).

As introducing a scaling framework is a significant change for many (Dingsøyr et al., 2019), a central
question is how to implement and adapt different inter-team coordination mechanisms. The technical-
organizational-physical-social (TOPS) framework proposed by the same Berntzen et al. lets organizations
assess different mechanisms’ underlying characteristics. The four characteristics of TOPS are defined as
follows:

• Technical characteristics refers to coordination mechanisms related to managing dependencies
related to the software product. It also applies to digital tools or platforms supporting the
development process. For example, the architect role or the tool Slack.

• Organizational characteristics refers to coordination mechanisms that capture the wider
structural context of the development organization, managing business process dependencies in
particular. For instance, team design and organizational design.

• Physical characteristics refers to spatial or tangible characteristics of a coordination mechanism.
For instance, intangible mechanisms with spatial dependencies and physical artifacts and objects
such as task boards

• Social characteristics refers to interpersonal or community-based characteristics of a coordination
mechanism related to the management of interpersonal dependencies. For example, roles or activities
that enable coordination through groups, typically a meeting.

These characteristics help organizations choose the mechanisms that address their coordination needs.
For instance, implementing a large number of mechanisms requiring physical presence may not be adequate
for distributed environments, and the early phases of a development programme may benefit from having
a series of mechanisms with social characteristics to establish communication (Dingsøyr et al., 2018a).

10

2.2.2 Team Autonomy
Self-organization (i.e., autonomy) in software development is recognized as one of the central principles
behind the Agile manifesto, which states that "the best architectures, requirements, and designs emerge
from self-organizing teams". Team-level autonomy refers to teams being provided freedom in carrying out
tasks within their organization (Langfred, 2007). However, maintaining team autonomy and aligning
self-organizing teams when scaling agile has proven to be challenging (Moe et al., 2016; Stray et al., 2018).
Previous research has identified several barriers to autonomous teams in large-scale agile. For example,
Scrum lacks guidelines for team organizing (Moe et al., 2008), and the Spotify model does not provide
guidelines or influential factors for aligning autonomous teams. Besides, there is a tension between teams’
autonomy and alignment (Salameh and Bass, 2018, 2019), and the introduction of extra roles and agile
arenas at the inter-team level negatively affects team autonomy (Dingsøyr et al., 2018a).

The right balance between formal control and alignment and team autonomy are context-dependent
and may vary based on organizational culture, developers’ skill level, and attributes of a product and
its markets (Moe et al., 2021). Also, the need for formal control may change over time, depending, for
example, on the maturity of a team or an organization. Several studies recommend fostering communities
with decision-making authority to increase the level of team autonomy without jeopardizing the need for
alignment (Paasivaara and Lassenius, 2014; Salameh and Bass, 2018, 2021; Paasivaara and Lassenius,
2019; Moe et al., 2021), but research on the amount of team autonomy that is appropriate at scale remains
an unresolved issue.

A few studies (Moe et al., 2021; Lee and Edmondson, 2017) have investigated authority distribution in
large-scale contexts using the work of Hackman (1986). According to Hackman, there are four types of
organizational authorities that need to be handled, and four types of teams depending on which of the
authorities they have decision authority: a manager-led team lets the team decide on how to execute
tasks only, whereas a self-managing team has authority to execute its tasks, as well as to monitor and
manage its internal work process and progress; self-designing teams also get to design the team and its
context, while a self-governing team has the authority to set the overall direction as well.

However, as outlined by Moe et al., the work of Hackman origins from the airline industry and not
the software development industry, and though his studies were conducted in large-scale settings, the
framework is not straightforward to use in the context of large-scale agile software development. With
this master’s thesis, I seek to begin the work of developing a model suited for measuring team autonomy
in large-scale agile software development. I propose a model designed as a Kiviat chart (see Figure 2.3),
which quantitatively measures levels of team autonomy in four areas (named dimensions in the model),
namely on architecture, process, requirements, and tasks. The four dimensions are defined as follows:

• Requirements: Identifying, shaping, and prioritizing software requirements (what shall be in the
system)

• Architecture: Deciding on local architectural decisions (all kinds of local technical choices)

• Process: Defining, changing, and improving internal agile framework, ceremonies, and processes
(how to work)

• Tasks: Deciding how tasks should be executed and solved (how and by who)

This is in line with how Moe et al. understood the four functions of Hackman ’s (1986) authority
matrix in software development companies: when investigating the allocation of authority in large-scale
agile, Moe et al. sought to address whom design product architecture and features; who defines, changes,
and improves internal team processes; who decides what shall be in the system; and who develops features.
As Moe et al., I use the expression "level of autonomy" to refer to the amount of authority held by a
team, and the model measures the levels of team autonomy on a scale ranging from 1 to 5 (with 5 as the
highest level of autonomy). How to derive the level of autonomy for a team with this model is presented
in more detail in the method chapter (see Section 3.3). In the result chapter, I present the model with
data from Signicat, the case organization, to demonstrate how the model can be used to understand what
decisions development teams influence.

Process

Requirements

Tasks

Architecture

1
2
3
4
5

Figure 2.3: Team autonomy model on four dimensions

2.2.3 Scaling Agile

Several approaches to scale agile have been proposed over time. One of the earliest described practices to
scale agile is the Scrum of Scrums (SoS) - a scaled form of the daily stand-up meeting practice in Scrum
where "team ambassadors" represent their team (Agile Alliance, 2022). The format of the SoS is similar
to Scrum’s regular daily stand-up meeting. Each team representative presents work completed, the work
to be conducted, and eventual impediments that need resolving. However, the practice has been reported
as ineffective due to an often too wide audience to keep every participant interested and participants not
knowing what to report that might be valuable to other teams (Paasivaara et al., 2012). Albeit, more
successful variants such as weekly SoS meetings covering specific features, so-called feature SoS meetings
(Paasivaara and Lassenius, 2014), and SoS meetings at sub-project level (Dingsøyr et al., 2018a) have
been reported.

Another practice early proposed as a possible approach to scale agile is with Communities of Practice.
A community of practice (CoP) is a group of people of a common interest or knowledge that meet regularly
(e.g., once a week or monthly). Examples of such CoP include security CoP for software security and
a Scrum Master CoP for sharing best practices on the agile way of working. In some cases, CoP have
replaced the SoS approach, and shown to be a central mechanism behind successful large-scale agile
implementations (Paasivaara and Lassenius, 2014). The formation of CoP can help achieve coordination
and alignment, common design principles, organizational transparency, and knowledge sharing on best
practices on several topics (Paasivaara and Lassenius, 2014). However, similar to SoS, implementing
well-functioning communities is not easy, for instance, due to the lack of common activities and goals,
persons at different levels, or participants at different time zones (Smite et al., 2019).

In response to the difficulties faced when scaling agile, several agile methods dedicated to large-scale
have been proposed over the last decade, aiming at addressing large-scale development challenges. In
Figure 2.4, I present an overview of the main five methods (Edison et al., 2021). The methods offer, to
a different extent, specific sets of principles, practices, roles, tools, and metrics in order to scale agile.
Whereas some of the methods are comprehensive frameworks providing extensive recommendations,
such as the Scaled Agile Framework (SAFe), other methods, for instance, the Spotify Model, provide
less rigidity and ceremony and instead emphasize a culture of distributed decision authority among
self-organizing teams (Dingsøyr et al., 2019). Since Signicat, the case organization of this master’s thesis
has recently adopted and is currently tailoring a structure that evokes associations to some of the core
elements of the Spotify model, I present that specific model and related literature in more detail in the
following.

12

Comprehensive framework that
incorporates ideas from agile
development and lean production.
A central concept is the "agile
release train" with five to twelve
development teams that develop
increments every eight to twelve
weeks.

LeSS

SAFe
Spotify Model

Emphasizes culture and
autonomous teams.
A vital part is different types
of communities of practice
and/or interest to ensure
alignment and learning
across teams.

Focuses on networks
of scrum teams.
Separates
responsibility for
coordinating the "how"
and "what" of work in
an organization by
featuring a scrum
master cycle and a
product owner cycle,
respectively.

DA

Comprehensive framework that
incorporates ideas from agile
development and lean production.
Introduces several roles, such as
chief architecture owner, chief
product owner, and communities of
practice lead, to name but a few.

2011

Scrum- at- Scale

A "minimal
extension" of Scrum:
seeks to apply the
principles of Scrum in
large- scale as simply
as possible.
Product owners are
supported by area
product owners to
coordinate across
teams.

2012

2014
2008

Figure 2.4: The main five large-scale agile methods (Edison et al., 2021)

Spotify Model
The Spotify model was introduced to the world in 2012 by Henrik Kniberg and Anders Ivarsson when
they published the whitepaper Scaling Agile @ Spotify (Kniberg and Ivarsson, 2012), which introduced
the radically simple way Spotify6, the largest and most popular audio streaming subscription service in
the world, approached agile software development. The model is a people-driven approach for scaling
agile that emphasizes the importance of culture and network rather than a specific set of practices. In
traditional scaling frameworks, such as SAFe, specific practices tell how to execute the framework. In
contrast, the Spotify model focuses on how businesses can structure organizations to enable agility. The
Spotify Model is usually composed of four core elements, namely squads (commonly referred to as teams
in the literature), chapters, and guilds (commonly referred to as CoP in the literature), and so-called
tribes. This forms a variant of a matrix organization; several teams compose a tribe, representing the
vertical structure of the matrix; whereas personnel of different teams composes chapters (within a tribe)
and guilds (across tribes), representing the horizontal structure of the matrix (see Figure 2.5).

Each team is a cross-functional, autonomous team responsible for its way of working, and an agile
coach (or Scrum Master) should support the team, and a product owner should guide it (Kniberg and
Ivarsson, 2012). Tribes foster alignment across feature area-related teams, and a tribe is led by a tribe
lead responsible for resource utilization and coordination across agile teams within the tribe and for
helping teams collaborate with other tribes. Within each tribe, one can form chapters to allow personnel
of different teams to align on best practices and solve problems within their expertise (e.g., a specific
programming language or a specific frontend framework). The last core piece of the matrix is the
guild. Whereas chapters belong to a tribe, guilds are wide-reaching groups of personnel across the whole
organization with a desire to share knowledge and practice over the whole organization (Smite et al.,
2019). As indicated, both chapters and guilds are model-specific variants of the CoP (previously described

6https://newsroom.spotify.com/company-info/

13

in Section 2.2), and they may vary in size, mission, membership, and activities.
However, a common tendency among the Spotify Model and the previously presented large-scale

methods is to take greenfield settings for granted, which rarely is the case. Large, established software
vendors often do not face legacy-free development and structure, and hence, most organizations confront
challenges when applying large-scale agile development methods (Edison et al., 2021).

Team

Chapter

Guild

Tribe

Figure 2.5: The organizational components of the Spotify Model’s matrix structure

14

3 Research Method
To answer my research question, I used a mixed-method exploratory case study (Oates, 2006; Yin, 2014).
I chose to perform an explorative case study because my goal is to provide new insights on how to balance
alignment and autonomy in large-scale agile software development (see Section 1.2). In the following,
I present the research process in detail. This includes insights on how I designed the case study and
an introduction to the company I chose to study. I also present details on the data collection and data
analysis. Finally, I critically assess my research by highlighting the limitations and strengths of the study
design (Runeson and Höst, 2009).

3.1 Research Design

The company I chose to study, Signicat, is a leading provider of digital identity solutions in Europe.
Signicat, established in Norway in 2007, now employs around 400 people around Europe. I chose this
case because it involved many agile teams maintaining and developing a complex product portfolio, thus
being well suited to explore inter-team coordination at scale. I present a thorough case description in the
results (see Section 4.1).

My supervisor facilitated the initial contact with Signicat, and my supervisor and I met with Signicat
representatives in November 2021. During this meeting, we learned more about the organization, the
team structure, and the ongoing development projects. aIt became clear that the case represented a
unique opportunity to study inter-team coordination in a fast-growing, large-scale agile software company
with a complex and compound product portfolio with an extensive stakeholder group across Europe.

Following the November meeting, I articulated a paper elaborating on my thoughts for a possible case
study at Signicat, including a sketch for data collection, which I sent to Signicat for consideration (see
appendix A). I wanted to observe two teams in-depth, and to remove effects due to a particular way of
working, I argued for observing teams operating in different product areas with different agile methods
and processes. When the opportunity arose to conduct a case study in spring 2022, we scheduled another
meeting in the middle of December 2021, and I commenced the data collection ultimo January 2022. I was
designated one Scrum team and one Kanban team, operating in two different product areas at Signicat,
just as requested. In the following section and subsections, I present details on the data collection.

Jan Feb Mar Apr May Jun

Interviews Questionnaire

Observations

Document access

Observations

Figure 3.1: Timeline showing the data collection points. Document access includes access to
Slack, Atlassian, and other supplemental material

15

3.2 Data Collection
The data collection occurred from January to May, and Figure 3.1 provides an overview of the data
collection events during this period. To obtain rich and as detailed insights as possible, I utilize both
qualitative and quantitative data collection methods and analysis. My collected data consists of meeting
and ceremony observations of two teams, individual interviews, a questionnaire, and documents (a
documentation database and a digital communication tool). Table 3.1 provides a more detailed overview
of the collected data, and the following subsections present the different collection methods in more detail.

Data collec-
tion method Details

Observations

Two periods of three weeks with observations of two teams’ agile
ceremonies and meetings. In total, 35 hours of observations, in-
cluding:

• 8 Stand-up meetings
• 8 Planning meetings
• 6 Prioritization meetings*
• 2 Common retrospective meetings
• 3 Demo meetings**
• 1 Retrospective meetings

Interviews

13 interviews with a mean length of 27 minutes (11 on-site and 2
remote). Interviewees:

• 5 developers (mean company tenure 3 years, mean IT tenure
8 years with a low of 2 years and a high of 31 years)

• 1 scrum master
• 2 product owners
• 1 product manager
• 2 tech leads
• 1 tribe architect
• 1 tribe lead

Excluding the 5 developers: mean company tenure 4.5 years, mean
IT tenure 22 years with a minimum of 4 years and a maximum of
40 years.

Documents Access to documents January-June, including Slack logs and in-
ternal documentation on Confluence and Jira.

Questionnaire
Nine statements, with a five-level Likert scale, on team autonomy
and inter-team coordination distributed to all tech sites across
Europe. I collected 31 anonymous responses.

Notes: *backlog refinements, **including a company-wide variant.

Table 3.1: Data collection details

3.2.1 Observations
I observed the two agile teams I had been designated, including all their daily and weekly meetings and
ceremonies for six weeks. I conducted the observations as non-participant observations with detailed
notetaking, and I consider this appropriate to the research question I seek to answer. I wrote my
observation notes following a predefined observation protocol (see appendix B). The protocol specified
the record’s content, participants present, description and purpose of the activity, direct quotes snippets
of conversations, and my reflections on the observations. The extensive amount of detailed field notes
resulted in a large data material of the observations. Figure 3.2 includes a snippet from a sample note
from a team’s stand-up meeting.

16

The observations allowed me to understand different people’s behavior and actions in natural settings.
I conducted the observations in two rounds, each round being three weeks, separated by a pause of three
weeks. I split observations into two rounds to allow me to analyze data and see if some adjustments were
necessary before conducting another round of observations. I made a few adjustments, such as asking
to attend some other types of agile arenas (resulting in an invitation to a refinement meeting 22nd of
March with several stakeholders I did not get to meet in the first round of the observations). Most of
the observations were intra-team meetings within the two development teams. However, the intra-team
meetings almost always covered inter-team aspects, which made them relevant to my analyses.

3.2.2 Interviews
I conducted 13 semi-structured individual interviews at Signicat’s offices in Trondheim. I targeted
informants from different areas of software development (i.e. personnel holding different roles) to obtain
various perspectives (see Table 3.1). The interviews were conducted March 2022 (see Figure 3.1). Although
the interviews were largely conversation-driven, I used an interview guide to guide the conversations. The
full interview guide is provided in appendix C. Some standard questions asked were:

• What responsibilities do you have?
• Who decides on architecture?
• How do you manage dependencies?
• How do you share information across teams?

The interview guide was revised after the first six interviews to adapt the questions to provide more
specific information on concerns emerging from the first six interviews. For instance, in the last seven
interviews, I included more specific questions regarding the community of practice at Signicat.

I invited the interviewees via e-mail, and they were provided an information letter and consent according
to the standards of the Norwegian center for research data a few days before the interview’s scheduled
date. I considered an interview length of 20-30 minutes appropriate to retrieve as much information
as possible without being too time exhaustive such that someone avoided accepting an invitation. I
transcribed the interviews verbatim for detailed analysis (further described in Section 3.3). Figure 3.2
includes an excerpt from an interview with a developer.

3.2.3 Documents
A third source of data is documents. Documents include material accessible within project management
and communication tools used at Signicat (Confluence, Jira, and Slack). I had access to those tools
throughout the data collection period (see Figure 3.1). Examining these sources provided me additional
data for the analysis, for instance, information about team organization and documentation of the "way
of working" of personnel and teams I did not observe nor interview. Figure 3.2 includes an extracted
Slack chat log of a product owner and developer conversation.

3.2.4 Questionnaire
A questionnaire was used as a final data source to provide quantitative data. The questionnaire contained
eight statements, four regarding team autonomy and four regarding inter-team coordination. The
respondents indicated their degree of agreement on a five-level Likert scale. A ninth question let the
respondents pick three improvement areas out of the eight areas covered in the eight statements. Two of
the topics and statements were:

• Requirements: It is the team itself that identifies, shapes, and prioritizes the software requirements
(what shall be in the system).

• Dependency awareness: We are aware of dependencies to other teams.
See Appendix D for the entire questionnaire.

To distribute the questionnaire, I e-mailed each tribe lead. Before distribution, Signicat representatives
and my supervisor and I refined the questionnaire during a meeting. I also user-tested the questionnaire on
a fellow master student to weed out ambiguities, which resulted in a reformulation of two statements and
a redesign of the improvement area section of the questionnaire. I targeted all tech sites at Signicat, not

17

just the two teams I got to know during my observations. Out of 110 agile team members, 31 responded
to the questionnaire.

3.3 Data Analysis

Due to the chosen data collection methods’ divergent nature, the analysis was quantitative and qualitative.
I applied the quantitative analysis to the questionnaire results. First, the collected data were aggregated
into histograms using PGFPlots1 to illustrate the distribution of answers on all the eight statements
provided in the questionnaire.

Further, to develop the autonomy model I briefly presented in the theory chapter (see Section 2.2.2),
the five-level Likert scale of the questionnaire was translated into numerable equivalents to form a system
suited for mean calculations: strongly disagree (=1); disagree (=2); neither agree nor disagree (=3);
agree (=4); and strongly agree (=5). This allowed me to calculate mean values based on answers (la)
from n respondents (see equation 3.1) on the team autonomy statements in the questionnaire such that I
could score the level of team autonomy at Signicat. Each mean was rounded to one decimal place with a
minimum value of 1 and a maximum value of 5. Further, as a final step in the quantitative analysis, I used
the tkz-kiviat package2 to design the autonomy model as a Kiviat diagram (also known as a radar chart
or spider chart). I chose a kiviat design as this type of diagram is well suited for displaying multivariate
data. To draw the model, I used PGFPlots functionality. The results chapter presents the model with
mean values from Signicat respondents (see Section 4.2).

autonomydimension = 1
n

n∑
i=1

an = a1 + a2 + · · · + an

n
(3.1)

To analyze the interview data, I used qualitative direct content analysis as described by Schreier (2013).
I systematically assigned segments of interview transcripts (phrases, sentences, or even whole paragraphs)
to coding frames using different colorized markers. The inter-team coordination taxonomy developed by
Berntzen et al. (2022) was chosen as the coding frame because I considered this taxonomy to be best
suited for identifying inter-team coordination mechanisms in place at Signicat (see Section 5.5 for more
details on this choice). I also used the same Berntzen et al.’s TOPS framework (see Section 2.2.1) to
identify the underlying characteristic(s) of each potential inter-team coordination mechanism. As a third
coding framework, I used the dependency taxonomy of Strode (2016) to define what dependencies each
potential inter-team coordination mechanism managed.

However, as my research question is open-ended and explorative, and some of my data collection
methods (the documents, as well as the observations to some extent) turned out to be better suited for a
less systematic analysis, I decided to also investigate my collected data less rigid and without coding
frameworks (Mayring, 2000). I continued the qualitative analysis by thematically grouping data from
different data sources by linking them to three challenges at scale identified by Edison et al. (2021), namely
team synchronization, transparency, and team autonomy. I outline these three challenges in Section 2,
and they are further elaborated in Section 5 as they underpin the discussion of the main findings of this
master’s thesis. Figure 3.2 provides an illustrative example of the less rigid analysis approach.

After coding the interview material and thematically grouping items of retrieved data material, I
wrote down what I considered the most interesting findings and made a slide presentation. I presented
this to Signicat representatives of the two teams for checking and feedback. The meeting led to minor
adjustments to the outlined findings and guidance for further data collection. Reactions to the findings
included a broad agreement on the lack of dedicated coordination arenas among inter-related teams
identified during the observation and interviews. I also held a final presentation in mid-June 2022 for
Signicat representatives presenting the main findings from my analysis.

1https://ctan.org/pkg/pgfplots
2https://ctan.org/pkg/tkz-kiviat

18

Phases Description

1: Familiarizing
with the data

I transcribed the interview data after the thirteenth and final
interview. I visited several Slack channels over numerous points in
time during the spring. I took extensive meeting notes during all
observations.

2: Coding the
data

Along with reading transcriptions and meeting notes, I coded
the material based on the taxonomy of Berntzen et al. (2021)
to identify mechanisms used for inter-team coordination. I also
used the TOPS framework (Berntzen et al., 2021) to identify
the characteristics of each mechanism and Strode et al.’s (2016)
dependency taxonomy to define which type of dependencies each
mechanism managed.

3: Grouping the
data

I linked data material from transcripts, meeting notes, and docu-
ments to the challenging areas of synchronization, transparency,
and team autonomy (Edison et al., 2021). Figure 3.2 shows an
example of how I did this. The figure also illustrates how the
quantitative data from the questionnaire supplemented the qualit-
ative data.

4: Reexam-
ining the data

I re-examined the identified inter-team coordination mechanisms
from step 2 to investigate whether or not they addressed some of
the three challenges mentioned in step 3.

5: Reporting the
data

I reported the findings. The outcome of step 2 formed the analysis
(results section), whereas the outcome of step 3 and 4 lay the
foundation for elaborating and discussing the findings (discussion
chapter).

Table 3.2: Phases of the qualitative analysis.

3.4 Research Critique

The choice of coordination mechanisms has proven to be context-depend (Šmite et al., 2010). Therefore, I
chose a case study strategy to investigate my research question rather than another strategy, for instance,
a survey, which most often simplifies the complexities of the real world (Oates, 2006).

However, I only examined what is occurring at Signicat in spring 2022. According to Dingsøyr et al.
(2018a), coordination mechanisms change over time. Thus, a longitudinal case study would have been a
more proper choice to observe potential changes over time and give me a deeper understanding of Signicat.
However, a longitudinal case study is out of the scope of this master’s thesis (see Section 1.4).

The thesis could have benefited from more observation hours outside formal arenas and ceremonies.
However, due to the coronavirus pandemic, this was not feasible in the first part of the case study period.
As I spent considerable time observing the agile ceremonies of the two teams, did I neither prioritize
staying at Signicat’s offices over some time during the last part of the case study period. Conducting a
master’s thesis involves some prioritizations and some of the ones I took include toning down ethnographic
data collection procedures such as participative observations and long-term fieldwork. That said, my
notetaking during the observations has been extensive, and the transcribed interview data covers some of
the negatives of not observing the participants outside meeting rooms and agile ceremonies.

The findings of my master’s thesis rely on data from only one case within a single organization
with a restricted number of interviews (13 out of 110 agile team personnel, roughly) and questionnaire
respondents (31 out of a possible 120, roughly). More cases, more organizations, and a more extensive
data collection (despite the usage of four different data collection methods) may have identified additional
or disconfirming findings and limited the significance of context.

The limitations of this case study include the potential issue with external validity. There is a potential
bias that the questionnaire respondents might be more interested in the topic investigated than the average
person (at Signicat) working with software development. The observed teams and interviewed personnel

19

17/32 respondents highlight
synchronisation across teams to be one
of the two most important areas to
improve (out of eight areas)

" [tech lead and developer], will you be
testing this today?"

"Pretty sure there's nothing for us to
test. We just need to get [developer's]
fixes into master."

"Do you know who you should speak
to?"

"Yes, we’ll speak with [person 1] and
[person 2] to find out how they'll do it."

"In what ways do you coordinate with
other teams or sites involved in that
project?"

"Mostly, Slack channels or meetings
have been set up as needed.
However, we sometimes organize
general information meetings where
we invite members of the other teams
to keep them informed about what's
going on. We haven't been very
successful at doing this though, but
we try."

Ad- hoc

Synchronization

Opportunities for
Improvement

ChallengeDescriptionData (source in header)
Observation of conversation

within a team:

Interview with a technical
team member:

Excerpt from
questionnaire:

Slack log of conversation
between two teams:

Figure 3.2: Example of how data were analysed. Visualizing this way is inspired by Stray and
Moe (2020)

were also only working from Trondheim and consisted mainly of Norwegians, which may influence their
opinions on team autonomy and collaboration with other teams and parts of an organization.

Since my research is exploratory, internal validity does not apply as it is concerned only with explanatory
or causal relationships (Yin 2009).

The construct validity of a case study concerns the identification of the correct operational measures for
the concepts being studied (Yin, 2014). The main threat to the construct validity of this study was the
choice of dimensions for the team autonomy model (4.5). I used the work of Moe et al. (2021) as a basis
to decide on the four dimensions, and those choices relate to the accuracy of my interpretation of Moe
et al. extensions of Hackman ’s (1986) authority matrix, i.e., the types of decisions software engineering
teams face. I suggested four statements to gather data on the four dimensions (see Section 2.2.2).

Regarding the interview data, a potential threat to validity is that I rely first on the interviewees’
understanding of team synchronization, transparency, team autonomy, and inter-team coordination
mechanisms, and then my interpretation of those terms when evaluating the findings. However, I have
sought to ensure reliability through detailed descriptions of the data collection and data analysis and a
thorough presentation of the data material in the results section (Section 4).

20

To improve the validity, I have utilized different types of triangulation (Oates, 2006). Triangulation
is an approach to investigating a research problem with two or more perspectives. I have employed
triangulation in the choice of methods, time, and space. Firstly, I used four methods for generating
data: interviews, observations, questionnaires, and documents. Secondly, my observations of the two
teams occurred at two different points. However, I consider the relatively short period between those two
periods (3 weeks) not to be a significant factor in enhancing my findings’ validity. Thirdly, I can argue
that I presumably have conducted my study in two or more countries as I distributed the questionnaire
to all sites of Signicat, including Scandinavian and Benelux countries, as well as Portugal, Lithuania,
and Romania. That said, the questionnaire was anonymous, and it might be the case that just one site
of Signicat responded to the questionnaire. I also consider my mixed-method approach, utilizing both
qualitative and quantitative data analysis techniques, a strength of the study. Nevertheless, I believe
the study would have benefited from investigator triangulation. A fellow researcher and I could have
discussed and compared findings, and we could have set a broader and deeper theoretical foundation.
Additionally, a more comprehensive data collection and a more thorough discussion in Chapter 5 would
have been likely outcomes of such a triangulation.

21

4 Results
In this case study, I investigate how to balance alignment and team autonomy in large-scale agile software
development and how inter-team coordination mechanisms affect this balance. From my analysis, I
identified 12 inter-team coordination mechanisms. The analysis of the identified inter-team coordination
mechanisms is structured according to the inter-team coordination taxonomy proposed by Berntzen et al.
(2022). The taxonomy includes three main categories, namely meetings, roles, and tools and artifacts,
which are further divided into six sub-categories: scheduled and unscheduled meetings, individual and team
roles, and tangible and intangible tools and artifacts. I present the taxonomy in more detail in the theory
chapter (Chapter 2). Additionally, all mechanisms have been examined according to the TOPS framework
(Berntzen et al., 2022) to identify each mechanism’s underlying characteristics (technical, organizational,
physical, and/or social). As described in the theory chapter (Chapter 2), inter-team coordination is
necessary to manage inter-team dependencies, and I therefore also use the dependency taxonomy of
Strode (2016) to analyze which dependencies each of the 12 inter-team coordination mechanism manage.

Table 4.2 provides an overview of all 12 inter-team coordination mechanisms and their TOPS char-
acteristics and a brief description of which dependencies they manage. As the table illustrates, I have
merged some mechanisms to count as one (table design by Berntzen et al. 2022, page 11).

However, before diving into the details of the identified inter-team coordination mechanisms, I follow up
the introductory presentation of Signicat in Chapter 3 by providing more details on the case context and
by presenting an analysis of the questionnaire data I collected. The first provides in-depth information
about Signicat and the context in which the agile teams operated, particularly the two teams I observed
in-depth, and the latter gives an overview of the agile teams’ perception of certain aspects regarding team
autonomy and inter-team coordination at Signicat.

4.1 Case Description
Signicat is recognized as a leading provider of digital identity solutions in Europe, with numerous companies
utilizing their services, most being customers with high security requirements in regulated industries.
Their product portfolio includes solutions for identity verification, authentication, and electronic signing,
and their platforms offer connections to more than 30 electronic identification ’s (eID) companies can
use to connect to their customers to comply with security requirements and regulations (e.g., Norwegian
BankID, Swedish BankID, and MitID name but a few). The complete list of available eID ’s can be found
at Signicat’s developer portal1

Signicat was established in Norway in 2007 and has since expanded its business significantly. Over
the past few years, they have gone through several company acquisitions and are now employing more
than 400 people across several European countries spanning regions such as the Nordics, Baltics, Benelux,
DACHs, and Balkans. However, their main technology sites were Oslo, Bergen, Trondheim, Vilnius,
Rotterdam, Estoril/Lisboa, and Bucharest. The two teams I observed in-depth (Team Signature and
Team Nordic eID) were located in Trondheim (see Figure 4.1).

Signicat was and is currently transforming from several technology platforms (also called "stacks,"
and more specifically green stack, blue stack, and orange stack) to a unified one (see Figure 4.2). Their
main argument for initiating this transformation process is that their fragmented technology platforms
of today sooner or later will hinder further growth and increasingly complicate the design of services
relying on cross-stack features. Their previous strategy to inter-connect technology stacks started to raise
several issues: reduced agility in creating cross-stack service combinations; confused customers and staff
regarding forward integration path; and potential cost synergies suffering from duplicated services and a

1https://developer.signicat.com/enterprise/docs/authentication/apis

23

fragmented tech platform. To mitigate these issues, they initialized a transformation towards a unified
platform for the agile teams and their customers. Additionally, they considered a future common and
coherent developer experience to make them more flexible as a global organization.

Estoril / Lisbon

Bucharest

Oslo and Bergen

Vilnius

Team Signature
(10 people)

Trondheim

AC

Rotterdam

Team Nordic eID
(7 people)

PO PM

TL

SM PO

TL

Developer

Figure 4.1: Main technology sites of Signicat. Team Signature (10 people) and team Nordic eID
(7 people) were located primarily in Trondheim. Team Nordic eID relied upon country
product managers (CPMs), albeit the CPMs worked across all teams, whereas team
Signature had a product manager (PM) within the team. Additional roles were
developer, agile coach (AC), scrum master (SM), product owner (PO) and tech lead

In parallel, Signicat was and is currently undergoing an organizational transformation. Recently, they
have implemented a tribe structure to better connect the technology and product environments and
more successfully integrate the sales units (see Figure 4.6). The agile teams operated within this tribe
structure and were clustered in tribes according to product areas. During the case study period (spring
2022), there were 14 agile development teams involving around 110 people, of whom roughly 15 were

24

tribe personnel, distributed among seven tribes. Many teams in Signicat were co-located, but also some
of the teams were internationally distributed. However, Signicat aimed not to have teams covering more
than two or three different sites. The agile teams came in two types, product teams and platform teams,
each with its set of designated roles. Whereas the product teams developed services and solutions used
externally (customers) and hence had resources from the product department (product manager (PM)
and product owner (PO)), the platform teams mainly developed and facilitated internal solutions in which
the product teams relied upon, and hence consisted only of personnel from the technology department
(no PM, and platform owner instead of PO). In Table 4.1, I present an overview of the different team
roles in the agile teams in Signicat. I omit user experience (UX), tech writer, and quality assurance (QA)
personnel from the table, although most teams were allocated these resources. I also omit the tribe lead
and tribe architect roles from the table as these were tribe roles, though closely connected to the agile
teams. Instead, these five roles are presented as inter-team coordination roles in Section 4.4 since they
ensured alignment between teams.

Customers

Organization

Technology

Unified customer interface

Common infrastructure/platform

Figure 4.2: Signicat’s transformation from inter-connected technology stacks to a unified platform.
Until recently, the agile teams and Signicat’s customers relied on different technology
stacks and platforms. The figure design is a minor redesign of Signicat’s illustration
of the transformation

Together with the tribe structure, seven communities of practice (named guilds at Signicat) formed
the two major elements within which the agile teams operated. Figure 4.6 provides an illustration of this
context. These elements may invoke associations with how Spotify scaled agile at the beginning of the
previous decade (see Section 2.5). However, Signicat has not implemented the Spotify Model but found
their model and way of working with tribes. The tribe structure clustered the agile teams operating in the
same product area. The guilds provided a foundation for aligning a common direction and best practices
on certain matters across the agile teams and tribes, just as the Spotify Model recommends. However, as
described in Section 1.4, this master’s thesis is written with a software engineering lens, and I therefore
simplify some organizational aspects: the technology department at Signicat is a line organization, but I
am only focusing on the agile team personnel (and tribe leads and architects) since the line managers
were not accountable for daily planning or follow-up on team activities; I also exclude departments such
as sales and marketing when outlining the organizational structure; and I am as well omitting the role of
managers and C-executives. By providing an overview of the tribe structure and outlining how the agile
teams interconnected through the guilds, I argue that I have brought the most relevant details regarding
organizational structure to the table from a software engineering lens.

In the following, I present the two agile teams (Team Signature and Team Nordic eID) I observed
in-depth during the spring in more detail before outlining the analyzed questionnaire data.

25

Team Signature
Team Signature was co-located in Trondheim and operated as the only team within the Signature tribe
(see Figure 4.6). The tribe lead was however located in Oslo. The team developed solutions for electronic
signatures and seals across Europe, which often relied upon eID services, for instance, integrated by Team
Nordic eID (presented in Section 4.1). Whereas an electronic signature is data in an electronic form used
by a neutral signatory to sign, e.g., a document, an electronic seal is data in an electronic form used by a
legal person to ensure the origin and integrity of the data of, for instance, a document2. The signature
services were web-based and could be integrated into websites, applications, or business systems using
Signicats REST APIs or SDKs3. Customers of Signicat could also let their customers sign contracts,
declarations, forms, or other documents by using digital signatures, a variant of electronic signatures
based on PKI, Public Key Infrastructure (for the sake of simplicity: a mathematical and cryptographic
concept).

Before my case study period started, team Signature had replaced their Scrum with a Kanban-based
process. As described in Section 2.1.2, roles are less central in Kanban compared to Scrum, but Team
Signature kept following the Signicat guidelines for team composition and roles (presented in Table 4.1),
though their agile coach was interim. They were as well running several agile ceremonies on the team
level during the case study period, including:

• Backlog refinement (70 minutes bi-weekly. No developers attended, typically. Further presented in
Section 4.3 since tribe personnel had an active role during this meeting)

• Planning meeting (60 minutes bi-weekly)
• Readiness meeting (30 minutes weekly. Certain developers could sometimes attend depending on

the topic of discussion)
• Demonstration meeting (60 minutes monthly)
• Bi-daily stand-up meeting (20 minutes midday, alternating between three days a week and two

days a week)
• Retrospective meeting (60 minutes monthly)

Since Kanban emphasize continuous flow rather than fixed-length sprints (see Table 2.1), there may
be a little more challenging to track key performance indicators (KPIs) reasonably compared to Scrum
teams, but several interviewees were determined that they do what "feels best for the team to create the
best product" and that they anyways "had tried both methods, and agreed that their Kanban was more
agile and worked better than the Scrum."

Team Nordic eID
Team Nordic eID was responsible for the integration of Nordic eID’s, for instance the Norwegian BankID
and the Swedish BankID in the Authentication tribe (see Figure 4.6). Like team Signature, they were
co-located in Trondheim and had adopted team roles in line with the Signicat guidelines for team
composition and roles (presented in Table 4.1). Albeit, their tribe lead and tribe architect were operating
from the Rotterdam office. The electronic eID services allow customers of Signicat to verify/authenticate
the identity of users who sign up and log into a service with national or public eID ’s. Many of the
signature solutions of Team Signature were dependent on such authentication. That said, the Nordic
eID team and the Signature team did not necessarily work closely together, yet their services certainly
related to each other. Signicat also offered authentication services based on biometric scanning, which
are compliant with an even higher level of assurance than eID ’s. However, this product area belonged to
another team within another tribe (Mobile ID tribe).

At the team level, Team Nordic eID had adopted the Scrum framework. They ran iterations of three
weeks, which differed from the other Scrum teams at Signicat, which ran sprints of two weeks. However,
team Nordic eID had previously run iterations of two weeks as well, but as they experienced two weeks to
be "simply too short (for us) to produce anything of notable value," they argued why their team and the
eID product would benefit from increasing the iteration length by one week. By running two weeks, they
too often experienced that "a new round of ceremonies simply came too soon" [developer], and that there

2https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eSignature+FAQ
3https://developer.signicat.com/enterprise/docs/electronic-signatures/introduction

26

were "too little time for the developers to actually develop software" [developer]. However, the three-week
cycle did not fit very well with the two-week cadence of the other teams, for instance, concerning reporting
key performance indicator (KPI) trendlines, so transitioning to three weeks had to be argued for.

Team Nordic eID used a sort of Kanban boards to manage their workloads, including columns such as
"sprint backlog" (aka todo’s), "in progress," "on hold," "in review," "ready for release" and "done" (from
left to right). The board was split into rows containing sub-project tasks (e.g., tasks on different eID ’s)
within the team.

The team had adopted all the artifacts and events of the Scrum framework (see Figure 2.1). Additionally,
the PO had a prioritization meeting with CPMs every third week. In total, these were the regular meetings
of the team:

• Backlog refinement with CPMs (30 minutes every third week. Only the POfrom the team. Further
presented in Section 4.3 since different geographical market areas coordinated during this meeting)

• Backlog refinement (90 minutes every third week)
• Planning meeting (3 hours every third week)
• Sprint review (2 hours every third week)
• Sprint retrospective (90 minutes every third week)
• Daily stand-up meeting (15 minutes around midday five days a week)

Role Description

Product
Owner (PO)
or Platform
Owner

Responsible for the backlog and correct prioritization, and for
communicating requirements (both functional and non-functional)
to the rest of the agile team. Some PO ’s represented their team in
the tech excellence guild. PO for product teams, platform owner
for platform teams.

Product
Manager

Responsible for the "why, when, and what" related to products.
Worked closely with the PO such that the PO was able to define
work for the agile team.

Scrum Mas-
ter (SM) or
Agile Coach

Accountable for driving the agile ceremonies of the agile team.
Represented the team in the tech excellence guild. SM for Scrum
teams, agile coach for Kanban teams.

Tech Lead

Responsible for setting and steering the team’s technical direction.
Aligned with the tribe architect on key technical decisions and
overall design, and ensured compliance with decisions/guidelines
by the architecture guild

Developers
4-7 seven developers were allocated to a team (a mixture of junior
and senior developers). Some also undertook responsibilities in
either the DevOps or security guild

Table 4.1: Team roles at Signicat

4.2 Development of a Team Autonomy Model
In this section, I analyze how agile team personnel perceived the current state on certain topics regarding
team autonomy and inter-team coordination at Signicat. The analysis is based on collected data from 31
anonymous questionnaire responses. Hence I do not know the respondents’ location or position within
the agile teams. The questionnaire contained eight statements, four on team autonomy (Figure 4.3) and
four on inter-team coordination (Figure 4.4). The respondents specified their level of agreement to a
statement on a five-level Likert scale: strongly agree; agree; neither agree nor disagree; disagree; and
strongly disagree. Additionally, the respondents were allowed to pick one, two, or three areas (out of
the eight areas covered in the eight preceding statements of the questionnaire) they wanted to highlight
as the most important to improve at Signicat. Among the 31 respondents, hence 93 possible selections
for improvement, 77 picks were collected, meaning that not all respondents considered that three areas
of those covered in the questionnaire called for improvement. The histograms in Figure 4.3 shows the

27

distribution of answers on the four team autonomy statements, and the histograms in Figure 4.4 shows
the distribution on the four inter-team coordination statements. The topic each statement/histogram
covers is stated in the bold title on top of each histogram. The red horizontal line within each histogram
shows the number of times the respective topic was chosen as one of the three most important areas to
improve.

(a) Process:
It is the team itself that defines,
changes and improves the internal agile
framework, ceremonies and processes

SA A NAnD D SD
0

10

20

30

10

20

1 0 0

(b) Requirements:
It is the team itself that identifies,
shapes and prioritizes the software
requirements

SA A NAnD D SD
0

10

20

30

6
10

12

3
0

(c) Tasks:
It is the team itself that decides how
tasks should be executed

SA A NAnD D SD
0

10

20

30

18

11

1 0 1

(d) Architecture:
It is the team itself that makes the
local architectural decisions

SA A NAnD D SD
0

10

20

30

8

15

5
2 1

Figure 4.3: Distribution of the responses on the four statements regarding team autonomy in
the questionnaire.
SA=Strongly Agree, A=Agree, NAnD=Neither Agree nor Disagree, D=Disagree,
SD=Strongly Disagree
lPicked by respondents as one of the three most important areas to improve

Figure 4.3 shows that a vast majority of the respondents either agreed or strongly agreed that the agile
teams self-decided their internal work processes (30/31, see Figure 4.3a) and how tasks should be executed
(29/31, see Figure 4.3c), while there were less agreement on the level of autonomy on architectural
decisions and software requirements (see Figure 4.3d and 4.3b, respectively). However, none of the

28

(a) Transparency:
I am aware of other teams and their
areas of responsibility

SA A NAnD D SD
0

10

20

30

3

13
9

4
2

(b) Dependency awareness:
We are aware of dependencies to other
teams

SA A NAnD D SD
0

10

20

30

4

18

6
2 1

(c) Synchronization:
We get interrupted by other teams and
their tasks

SA A NAnD D SD
0

10

20

30

1

6

13

8

3

(d) Communication overload:
I spend more time than necessary on
agile ceremonies and other meetings

SA A NAnD D SD
0

10

20

30

0

8 9
12

2

Figure 4.4: Distribution of the responses on the four statements regarding inter-team coordination
in the questionnaire.
SA=Strongly Agree, A=Agree, NAnD=Neither Agree nor Disagree, D=Disagree,
SD=Strongly Disagree
lPicked by respondents as one of the three most important areas to improve

respondents picked architecture autonomy as one of the three most important areas to improve, whereas
11/31 picked the level of autonomy on software requirements as one (indicated by the red horizontal line).

Upon considering inter-team coordination, the respondents’ answers were a little more distributed (see
Figure 4.4). 12/31 disagreed that they spent too much time on agile ceremonies and other meetings,
8/31 agreed, and nine neither agreed nor disagreed. A similar distribution of answers was seen when
considering if teams were interrupted by each other (see Figure 4.4c). The respondents were more in
agreement regarding dependency awareness (18/31 agreed that they were aware of dependencies to other
teams, see Figure 4.4b).

I identified a greater call for inter-team coordination improvements than team autonomy. The four
areas regarding inter-team coordination were picked 55 times as areas to improve at Signicat, whereas the

29

four aspects regarding team autonomy were picked 22 times. With a total of 77 picks, 16 of the possible
93 were not used (each respondent could pick three areas for improvement). Transparency (Figure 4.4a),
dependency awareness (Figure 4.4b), and synchronization (Figure 4.4c) were by far picked most times as
one of the three most important areas to improve with 18/31, 17/31, and 19/31, respectively. Contrary,
communication overload (Figure 4.4d) was picked only two times by the 31 respondents (with 93 possible
picks) as an area to improve.

To develop the team autonomy model, I derive mean values on each of the four team autonomy
statements (for more details, see Section 3.3). The model is displayed in Figure 4.5. Each corner in the
diagram represents one dimension. On the statement regarding team autonomy on process, ten strongly
agreed, 20 agreed, one neither agreed nor disagreed, and none disagreed or strongly disagreed. Hence the
mean on the process dimension is calculated to be 4.3. The other means were 3.6 on requirements, 4.5 on
tasks, and 3.9 on architecture.

Process

Requirements

Tasks

Architecture

1
2
3
4
5

4.3

3.6

4.5

3.9

Figure 4.5: The level of team autonomy at Signicat on four dimensions

4.3 Inter-team Coordination Meetings
Several inter-team coordination meetings were held at Signicat. Table 4.2 presents all the seven types
of meetings highlighting their TOPS characteristics and which type of dependencies they managed. I
include both scheduled and unscheduled meetings. Some of the scheduled meetings were customized
agile ceremonies such as the catwalks (company-wide internal demonstrations of any sort), the common
retrospectives (mainly an arena for reporting KPI trendlines), the different types of refinement meetings,
and the yearly company-wide kick-off meeting serving several purposes. Other scheduled meetings included
weekly, bi-weekly, or monthly CoP meetings (called guild meetings at Signicat) and tribe lead meetings.
In addition, numerous ad-hoc meetings occurred across teams and tribes, both digitally/remotely and
on-site. All meetings managed knowledge dependencies, and almost all were related to technical product
progress. However, they did serve different purposes. To illustrate, I describe the seven meetings and
their characteristics in more detail.

Coordination
Mechanism T O P S Description

MEETINGS (n=7)

Catwalks ⊠ □ ⊠ ⊠
A monthly demo for all employees. An arena for the development teams to showcase
their work (the latest features and/or ideas), and hence an arena for managing
knowledge dependencies. Conducted as a hybrid meeting.

Common retro-
spectives □ ⊠ ⊠ ⊠

A monthly arena for sharing of agile best practises, key performance indicator, and key
actions across teams. As such, process dependencies as well as knowledge dependencies
were managed. Conducted as a hybrid meeting.

Guild meetings* ⊠ ⊠ ⊠ ⊠

Team and/or tribe representatives met either weekly, biweekly or monthly to align
and synchronize direction and best practices within the specific domain of the guild
(referred to as CoP in the literature), which in total managed knowledge, process and
resource dependencies. Conducted as a hybrid meeting.

Refinement
Meetings (A) ⊠ □ ⊠ ⊠

POand CPMs met every third week to discuss and assess the product backlog of the
team, and to do an overall prioritization of the upcoming sprint. The involvement of
CPMs ensured the team stayed up to date on the status of different geographical market
areas. Primarily focusing on product-related aspects. Managed process dependencies.

Refinement
meetings (B) ⊠ □ ⊠ ⊠

agile coach, PM, tribe lead and tribe architect met bi-weekly (digitally) to refine
and prioritize the team’s product backlog. The focus was on product and technical
requirements, and thus, this meeting managed knowledge and process dependencies.

Kick-off Meeting □ ⊠ ⊠ ⊠

Yearly full-day socializing conference bringing clarity to all employees regarding the
firms’ mission, its overall product vision and future direction, and the key targets
for the upcoming year, as well as showing recently launched products. Managed
knowledge and process dependencies. Conducted as a hybrid meeting.

Unscheduled
Meetings ⊠ □ ⊠ ⊠

Cross-team ad-hoc meetings/chats held when needed, managing knowledge and re-
source dependencies. Conducted either physically (over desk or inside a meeting room)
or digitally (by chat or by audio/video).

ROLES (n=3)

Guilds* ⊠ ⊠ ⊠ ⊠
The seven guilds (Architecture, DevOps, QA, Security, Tech Excellence, TechDoc and
UX) aligned best practices across tribes. In total, process and resource dependencies
were managed. Referred to as CoP’s in the literature.

Platform teams* ⊠ □ ⊠ ⊠
Platform teams managed technical resource dependencies by providing product teams
common platform services.

Tribe Leads □ ⊠ □ ⊠
Drove strategy and operations within a tribe’s product area and ensured resource
utilization. Managed knowledge, resource and process dependencies. Compare to the
PM at the study of Entur by Berntzen et al. (2022).

TOOLS AND ARTIFACTS (n=2)

Communication
Tools* ⊠ □ □ ⊠

Tools (e.g. Slack and Zoom) managed resource and knowledge dependencies by
facilitating communication and information sharing. Slack, Zoom and Outlook are
three examples.

Documentation
Tools* ⊠ ⊠ □ ⊠

Tools (e.g. Confluence and Jira) managed resource and knowledge dependencies by
facilitating information sharing and supporting development processes. This included
artifacts such as OKRs, knowledge bases, task boards, roadmaps, burdown charts,
product backlogs, and overview of the organisational structure.

Notes: An asterisk (*) indicates that similar mechanisms were collapsed into one. TOPS characteristics of a mechanisms are
illustrated with ⊠. PO = Product Owner. PM = Product Manager. CPM = Country Product Manager. DevOps = Development
and Operations. QA = Quality Assurance. TechDoc = Technical Documentation. UX = User Experience. OKR = Objective and
Key Results. The types of dependencies, following Strode (2016), are described in Chapter 2

.

Table 4.2: Inter-team coordination mechanisms per taxonomy category and TOPS characteristic (Berntzen et al., 2022)
at Signicat. Same table design as Berntzen et al.

31

Catwalks. The catwalks were primarily an arena for teams to "showcase the latest work to other
employees at Signicat" [PO], and hence, managing knowledge dependencies across all teams. The meeting
occurred every other week for one hour, and all employees across all sites were invited and free to attend.
Because it spanned all locations of Signicat, the meeting was held as a hybrid meeting: typically, a
meeting room at each site was booked, thus having a physical and social characteristic, and each site was
then connected through a Zoom4 meeting session. The number of participants varied, but during the
spring, an average of 135 participated in each catwalk (the average calculation is based on the number of
accepted invitations of seven catwalks during spring 2022).

Common retrospectives. Every month, the scrum master (SM)/agile coaches of each team met
for one hour to share key performance indicators, key action points, and agile best practices and thus
managed process and knowledge dependencies. However, the arena seemed to be focusing more on KPI
’s than aligning of best practices: "I wish the arena were used more frequently to address collaboration
problems between teams, but that said, it is a large arena, so such issues might be better addressed within
an arena with fewer teams"[SM]. The KPI reporting of each team includes completion rate (delivered tasks
divided by the amount planned) and productivity (delivered issues divided by the number of developers).
The meeting leader aggregated the KPIs of each team to calculate an average of the KPI ’s across teams
for graphical representation to discover emerging company trends. As the meeting involved teams from
different sites, the meeting was conducted digitally. However, teams at the same site typically sat together
in a booked meeting room. Thus physical and social characteristics are illustrated as well.

Guild meetings. The guild meetings allowed team members of different teams within different tribes
to meet, either weekly, biweekly, or monthly (depending on which guild they belonged to), to align and
synchronize direction and best practices within the specific domain of the guild. The length of the meetings
varied from 30 minutes to 90 minutes. The meetings served as an arena for technical coordination, thus
managed knowledge, process, and resource dependencies. As the guild meetings connected personnel
across teams and tribes, the meetings also had a social characteristic. The different guilds are described
in more detail as inter-team coordination roles in Section 4.4.

Refinement meeting (Team Nordic eID). Every third week prior to the start of a proceeding
sprint, the PO of team Nordic eID met with country product managers (CPMs) (typically three or
four) for one hour to discuss and assess the team’s product backlog. The PO updated the CPMs on the
current product roadmap of the team, primarily focusing on the shorter perspective. Therefore, these
meetings were characterized primarily as a technical inter-team coordination mechanism. The CPMs
shared insights on what functionality is needed to stay competitive within their respective areas and
issues regarding already developed features. As these meetings focused on product-related requirements,
they managed knowledge dependencies. Involving CPMs in the overall prioritization allowed the PO and
hence the team to stay up to date on the needs of different geographical market areas. The meetings
also had an organizational characteristic, as discussions on the prioritization process across teams and
tribes occurred, albeit this was not the intention of these meetings. Since the CPMs and the PO were at
different locations, these meetings were held digitally. The length of these meetings decreased from one
hour to 30 minutes during the spring as the participants experienced the meetings being more effective.

Refinement meeting (Team Signature). Every second week before an upcoming two-week cycle,
the PO, agile coach, and PM of team Signature met for 70 minutes to refine and prioritize the team’s
product backlog. Usually, the tribe lead and tribe architect of the Signature tribe did also attend these
bi-weekly meetings. The rest of the team (i.e., the developers) was not intended to attend these meetings
except in some very specific cases where their oral feedback was necessary. However, this did not happen
during my observations. Primarily, these meetings focused on feature- or product-related progress, thus
serving as a coordination mechanism for managing knowledge and process dependencies. The participation

4https://explore.zoom.us/en/about/

32

of the tribe personnel ensured the tasks on the top of the backlog were the correct ones to include in the
upcoming two-week iteration.

The outcome of the refinement sessions could either be a re-prioritization of the (top of the) backlog,
creation of new issues, or closing issues. A dedicated Jira refinement board was used for these meetings.
As the tribe lead was located in Oslo, and the team and tribe architect sat in Trondheim, these meetings
were held digitally/as a hybrid.

Kick-off meeting. Each January, a kick-off meeting is arranged for all Signicat employees. The
meeting is conducted as a hybrid meeting: different sites, sitting together (physical characteristic), were
connected through a joint video conference session. It is a full-day socializing conference presenting
Signicat’s mission, the recently launched products, the company’s overall product vision, future direction,
and the key targets for the upcoming year, thus an arena for managing knowledge dependencies. The
meeting also facilitated informal socializing and served as an arena for creating and sharing a positive
attitude, thereby bringing a social characteristic. That said, I did not attend this meeting myself. The
reason is that the meeting was held in the first part of January, whereas I began my observations in the
last days of January. However, I have read through the presented material, watched some of the recorded
parts of the 2022 meeting, and collected insights during my interviews.

Unscheduled meetings. The unscheduled meetings were the most regular inter-team coordination
meeting to manage knowledge, resource, or process dependencies. The length of ad-hoc meetings differed
greatly, and they occurred frequently to resolve inter-team dependencies: "Often, it [a dependency] can
be solved just by talking to each other, instead of involving architects or whoever" [Developer]. Such
conversations enabled quick coordination and decision-making and were facilitated by, but not limited by,
co-location and open landscape. However, physical proximity and co-location were valued by many: "I
believe that having lunch and coffee together is an important part of bonding collegial relationships. My
experience is that spending some time together at least a few days a week enhances productivity, as well
as well-being and motivation among the team, and these factors may contribute to the overall success of
a project"[PM]. Slack5 figured as a substitute for physical ad-hoc discussions when necessary and was
used extensively as a platform for information sharing across teams and sites. However, the threshold of
initiating a digital chat and/or meeting seemed to be a bit higher than the case for co-located employees
to initiate an ad-hoc conversation at the office. One of the reasons much inter-team coordination took
place ad-hoc was that "all teams do not have established channels of communication between one another,
such as a Scrum-of-Scrum or meetings of a similar format." [Developer/SM].

4.4 Inter-team Coordination Roles

Like Berntzen et al. (2022), I consider roles external to the teams as the inter-team coordination roles.
This includes both individual roles and team roles. Table 4.2 presents the three types of identified roles
and their TOPS characteristics in more detail. The different types of roles served different purposes:
whereas the architect guild had a stake in technical and structural discussions and thus managed resource,
business process, and knowledge dependencies, the platform teams provided the teams with a common
environment managing technical resource dependencies; and whereas some guilds devoted resources
(personnel) to the agile teams, some guilds were rather composed of agile team members (see Figure 4.6).
Seven guilds were operating across teams and tribes at Signicat, aiming to align and synchronize direction
and best practices in certain domains. The guilds were composed of employees with skills, interests, or
stakes in the discipline under consideration. In the following, I describe the seven guilds in more detail.

5https://slack.com/about

33

UX

Team
Nordic eID

Tribe

Platform tribe: 3 teams

Customer & Developer Experience (CDX) tribe: 2 teams

Value Added Products (VAP) tribe: 1 team

Team
Signature

Auth. tribe Sign. tribe Mob.ID tribeID proofing tribe

TechDoc DevOps Security

TechExcellenceQAArchitecture

Tribe lead Tribe architect Team CoP (Guild)

Business units

Figure 4.6: The work context of the agile teams at Signicat. The figure shows the seven tribes,
the seven guilds, and a sketch of the business units which sell products from all
tribes. Each tribe is led by a tribe lead and designated a tribe architect. The
three platform teams manage the software foundation upon which team Nordic eID,
team Signature, and the other teams above the platform tribe relied. The CDX
tribe and VAP tribe use and integrate services from all tribes underneath such
that Signicat can offer combinations of products "out-of-the-box" to customers (i.e.,
tying the services/features/products of the other tribes together). The seven guilds
either provide the agile teams/tribes with resources (personnel, e.g., a UXer) or are
composed of personnel from the agile teams (e.g., a developer figuring as a "security
champion")

Architecture Guild

The architecture guild was a group whose purpose was to coordinate architecture, technology standards,
and associated best practices across tribes, ensuring the company moved in a coherent technological

34

direction. The group consisted of the seven tribe architects and the security guild lead (lead of another
guild at Signicat). Other people with a stake or knowledge could also be invited to the guild for some
time. The lead architect led the group in Signicat, and they met every other week for one and a half
hours to discuss and elaborate on relevant topics. The architect guild also operated a Slack channel open
to everyone in the organization, and ad-hoc meetings occurred regularly.

Anyone in the organization could suggest issues to be considered by the architecture guild by creating
issues in the guild’s dedicated Jira board. The architecture guild assessed every issue using a decision
flow diagram illustrated in Figure 4.7. The flow diagram also shows the assessment of three real-case
architecture issues at Signicat with differing outcomes:

• Issue #1 (REST guidelines) is defined as a guideline on the autonomy scale, meaning new develop-
ment of REST APIs is recommended to follow the defined guidelines. Already existing REST APIs
may be upgraded to follow the guidelines. The audience for the guidelines is the whole company.

• Issue #2 (Choice of containerization technologies) is defined as a forward compatible standard.
Meaning k8s [Kubernetes] shall be the choice for container orchestration as long as it exists as
a managed service. This is applicable for future containers. The standard applies to the whole
company.

• Issue #3 (Automation of non-containerized workloads) is defined as stack autonomy, as each stack
should agree on the choice for automation in non-containerized applications. Each stack can choose
that this is team autonomy.

Rejected

Is it an absolute
requirement that

this rule is
established?

Is there a need for
common

guidelines for this
issue?

Is this something
each stack can

manage
individually?

Is this something
each team can

manage
individually?

NoNo No No

Yes

Is it possible for existing
setup/solutions to

continue without fulfilling
this requirement?

Yes Yes Yes

Gudeline etablished Stack autonomy Team autonomy

Forward compatible Backward compatible

Yes No

Issue #1

Issue #2

Issue #3

Issue #1 Issue #2

Issue #3

Figure 4.7: Decision flow diagram for assessing architecture issues used by the architect guild at
Signicat. Stack autonomy refers to autonomy within each technology platform (see
Figure 4.2). Example issues #1, #2, and #3 are presented in the text

35

Autonomy reflects that no decision is made, and the team (or teams developing features in a certain
technology stack) can carry out their mission with zero to minimal involvement from external parties.
Thus autonomy prevails.

A guideline can either be best practice statements or strong recommendations, where the latter indicates
an important guideline. A standard is a requirement applying to the whole organization, either valid from
the time of establishment (forward compatible) or requiring existing projects to adopt the new standard
(backward compatible). This is the level of most external control. However, the architecture group strives
for team autonomy, being highly appreciated by the tech leads and developers: "It is important for
the developers’ well-being that they do not just get dictated" [Tech Lead], and most of the daily local
architectural choices, such as "code structure and which classes to create and things like that" were "mostly
discussed and clarified at team level" [Developer].

DevOps Guild

The development and operations (DevOps) guild was a community providing its participants an arena
for asking DevOps-related questions, presenting and sharing DevOps best practices, and deciding on
company-wide DevOps practices that should be standardized. This includes decisions and training on
tooling, automation, deployment, monitoring and alerting, and reacting and resolving incidents. The guild
consisted of 20 people, including developers and POs across the company and the seven tribe architects.
However, the guild emphasized transparency, and anyone could ask to participate in the guild’s bi-weekly
meetings and suggest solutions and ideas to the guild. The guild was led by a guild lead (the interim agile
coach of Team Signature) responsible for facilitating the group’s activities and ensuring sufficient DevOps
training exists in all tribes and teams. The guild operated its own open-access space in Confluence, which
showed the guild’s current work items, a decision log showing the history of the decision made and their
outcomes, relevant DevOps literature, and meeting notes.

QA Guild

The quality assurance (QA) guild’s mission was to agree upon and share best practices on tools and
processes for ensuring software quality across Signicat. Each team had a QA representative in the guild
that acted as the test and QA "champion" for the team, and the guild consisted of 18 people led by a
QA guild lead. However, each agile team was collectively responsible for testing and quality, but the QA
champion facilitated with knowledge about tools, good practices, and guidance. The QAs seemed to be
successfully embedded within their respective teams, even if they "work more horizontally and among the
firm’s different teams and sites" [Developer].

The guild arranged frequent status meetings (typically once a week), workshops, and training when
needed to maintain QA domain knowledge. The purpose of the status meetings was to share and inform
the rest of the guild about upcoming news from the different development teams and discuss improvements,
activities, and releases done during the week.

Security Guild

Each team had a developer designated security "champion" to build and share security knowledge across
teams. The champion was part of the security guild, and "once a month, we meet to discuss topics related
to security"[Developer]. The guild’s duty was to help all teams establish a secure development process
compliant with best practices, standards, and policies. The champions introduced and supported the
agile teams with relevant security tools (e.g., how to perform static code analysis): "We want to use the
same technologies across the firm and ensure all teams utilize the tools in the best possible manner, which
I would say is the primary objective of the guild"[Developer]

36

The information security officer at Signicat was the guild lead, and the guild was composed of around
15 developers. Before each meeting, the security officer prepared the agenda, including topics such as
vulnerability, risk, and security. To stay up-to-date within the security field, the guild could also discuss
recently published news of interest, and all guild members could propose topics for inclusion.

TechDoc Guild

TechDoc (abbreviation for technical documentation) comprised four technical communicators, led by the
Head of Product Experience at Signicat. A substantial portion of the workload was devoted to writing
developer documentation for Signicat’s developer sites. However, they also write and maintain product
literature, create style guides and templates for documentation, manage product language translations,
and create and maintain company naming conventions. To facilitate the handling of documentation as
an iterative task, each communicator was assigned several agile teams, and they could attend all agile
meetings of their respective teams. The communicators collaborated closely with the developers by using
the same tools and processes for producing documentation that the developers use to produce code (the
docs-as-code approach). The POs prioritized documentation tasks as it did for all other tasks, and most
documentation tasks were submitted through each team’s sprint or Kanban board. The guild maintained
a dedicated Kanban board for documentation tasks outside agile teams. To ensure transparency, the
guild operated a comprehensive confluence page which included information about established standards
and processes, ongoing projects, meeting notes, and an informative and open-access landing page with
key information on how to reach out to the guild.

Tech Excellence Guild

Signicat’s tech excellence guild helped agile teams adopt best practices on agile principles, as well as
facilitated the reporting of relevant KPI ’s for each team within the monthly common retrospective
meeting (presented in Section 4.3). Initially, the guild was accelerated during the early phases of the
organizational transformation (see Section 4.1) as a tech excellence program between October 2020-March
2021. However, it has continued as a regular business since then. The guild was composed of SMs/agile
coaches and some POs, making a total of 20 members, roughly. The members reported their respective
team’s KPI ’s from the latest iterations at a monthly common retrospective meeting. Most teams ran two
sprints (Scrum teams) or two iterations (Kanban teams) a month, but Nordic eID, which ran three-week
sprints, had their SM adjusting the KPI ’s within her spreadsheet, recalculating the team’s 3-weekly efforts
to fit the four-week cadence of the guild. The tech excellence guild did not have a dedicated lead during
my observation period, so technology site leaders chaired the common retrospectives in a round-robin
fashion. The guild managed a Confluence page storing all the common retrospective meetings and the
aggregated KPI ’s, as well as a knowledge-sharing base divided into "agile tips and tricks" and "agile help
wanted ." The first contained tips and tricks on topics to be presented (or previously presented) in a
lightning talk, whereas the latter contained topics guild members sought advice on. All guild members
could propose topics. Table 4.3 presents the structure of the "tips and tricks" table and two examples of
topics presented by guild members. The "help wanted" table was of a similar format. However, more
of the time could have been spent on these activities: "for the SMs, it is great to have some exchanges
of ideas because I believe you may learn more from your own company than from random blogs on the
internet"[SM].

UX Guild

The user experience (UX) guild was led by the head of product experience at Signicat. It consisted of a
UX lead and five UX designers who were assigned different agile teams as distributed UX resources (see

37

Topic Team
methodology Description Contact Presented on

Make your epics
smaller Scrum

Smaller epics
help the team
focus

@[person1]
@[person2] dd.mm.yyyy

Retro.io for ret-
rospectives Scrum

Very easy to use,
export and look
back into past
action items

@[person1]
@[person2] dd.mm.yyyy

Table 4.3: Tips & tricks topics presented in the Tech Excellence guild

Figure 4.6). In addition to sharing best practices within the UX domain, the guild managed checklists for
developers, QA employees, and designers to ensure they covered all of the basic accessibility requirements
relating to their work roles. Confluence was used by the UX team to store their work and larger UX
projects. During the observation period, one of the main ongoing projects of the UX guild was creating
a comprehensive design system that would bring together a common library that is easy to use by the
agile teams and the marketing department. That said, I did not observe their activities closely. The
information conveyed regarding the guild and the responsibilities of the UX designers is mostly based on
information obtained from interviews and the guild’s Confluence pages.

4.5 Inter-team Coordination Tools and Artifacts
Tools and artifacts are the last types of mechanism in the inter-team coordination taxonomy of Berntzen
et al.. In line with the taxonomy, I have considered these to be objects that manage dependencies between
development activities across teams. It can be material entities (tangible) and digital entities (intangible).
All identified tools and artifacts supported coordination across teams by managing resource dependencies,
either entity and/or technical dependencies. Also, they all managed knowledge dependencies, either due to
the tools’ nature of being collaborative facilitators (Slack and e-mail) or due to the fact that they contain
knowledge and information per se. In total, I identified two main types of tools: communication tools
and documentation tools. The latter includes artifacts: OKRs, burndown charts, roadmaps, knowledge
bases, task boards, and product backlogs. In the following, I describe the usage of Slack for managing
inter-team dependencies in more detail. This tool was used extensively by almost all agile team members
to coordinate within and across teams and sites.

Communication tool: Slack

Slack seemed to be the most frequently used platform for communication across teams, tribes, and
sites among several tools used for digital communication at Signicat (e.g., Outlook and Zoom). Slack
enabled individuals and teams to communicate in an ad-hoc and rapid manner, contributing to knowledge
dependency management. "We have always used Slack, though at first mostly within the team only,
but now you have a lot of channels across teams" [Developer]. Apart from written communication in
open spaces, Slack was also used for file sharing and private instant messaging, as well as for creating
automated bots known as Slackbots that assisted in various tasks, such as alerting production errors.
A wide variety of chat spaces were available, both open and private, known as channels, most of which
were open team channels and specific channels dedicated to inter-team coordination. All teams have
their open channel that external to the team can use, and there is a lot of activity in the channels"
[Developer]. Such open channels helped transparency, allowing employees to get insights into other teams
and products. Also, for instance, the POs had their channel for coordination of work related to the

38

technology transformation (presented in Section 4.1). The TOPS framework presents Slack as a technical
tool, given that most communication is driven by product development. However, Slack also supported
social needs by connecting people, particularly teams at different sites and if some team members were
working remotely.

39

5 Discussion
My research question is "How to balance alignment and autonomy in large-scale agile software develop-
ment?". In line with Dingsøyr et al. (2018a), I defined large-scale as "development efforts that involve a
large number of actors, a large number of systems and interdependencies, which have more than two
teams." Development efforts at such scale have raised a set of challenges, including lack of alignment
among teams and issues regarding decision-making efficiency (Dingsøyr et al., 2019). Previous research
has described how well-functioning community of practice (CoP) preserve alignment and team autonomy
at scale (Paasivaara and Lassenius, 2014; Smite et al., 2019; Paasivaara and Lassenius, 2019), but the
research on how to best achieve a balance between the need for alignment and the need for teams to be
autonomous is scarce. With this study, I contribute to filling this gap.

Large-scale agile frameworks have been created to address the challenges associated with software
development at scale, and implementations of such frameworks are increasingly prevalent in contemporary
software development organizations. However, the industry lacks contextually relevant advice from
researchers to scale agile with these frameworks (Dingsøyr et al., 2019). I therefore decided to conduct a
case study at Signicat, a leading provider of digital identity solutions in Europe. Similar to Ericsson’s "agile
journey" (Paasivaara et al., 2018), Signicat has gone through an agile transformation, or "tech excellence
program," as Signicat called it. Signicat decided to employ a tribe structure and to unify their several
technology platforms (see Section 4.1) to prepare for further growth and to better align their current
agile teams and software products. My investigation of Signicat has resulted in a thorough description of
Signicat and their transformation, identification and description of 12 inter-team coordination mechanisms
(see Table 4.2), and a model for ascertaining the level of team autonomy on four dimensions.

In "Comparing Methods for Large-Scale Agile Software Development: A Systematic Literature Review,"
Edison et al. (2021) identified a total of 31 challenges across nine main categories associated with the use
of large-scale agile frameworks. In the following, I discuss how to mitigate one team-related challenge
and two inter-team coordination challenges, namely 1) lack of team autonomy, 2) synchronizing across
dynamic and fast-moving teams, and 3) maintaining transparency across a high number of fast-moving,
adaptive teams and projects. Addressing these challenges help me answer my research question.

5.1 Team autonomy
Providing teams with decision-making authority increases the speed and accuracy of problem-solving (Moe
et al., 2009) and may offer several other advantages compared to traditionally managed teams. However,
full team autonomy does not seem to be a realistic approach to software development at scale because
teams in such environments do not deliver their work outcomes alone (Moe et al., 2021). Neither does full
autocracy of management seem to be a valid approach to authority distribution as management-taken
decisions within such contexts can "easily fail to recognize the needs and the complexity of the work
performed by the individual teams" (Moe et al., 2021).

To understand the distribution of authority at Signicat, I collected data on team autonomy through a
questionnaire distributed to all main technology sites of Signicat. In line with Moe et al. (2021), I have
used the expression "level of autonomy" to refer to the amount of authority held by a team. I collected
data on architecture, process, requirements, and tasks because I considered these to be important areas
for software development teams. This is in line with how Moe et al. interpreted the functions of Hackman’

41

1986 authority matrix when they investigated the allocation of authority in large-scale agile (see Section
2.2.2). I could have investigated the autonomy level in several more areas. However, I found these four to
be a reasonable pick given the limited time scope of this master’s thesis (see Section 1.4). I also collected
qualitative data on team autonomy. In the following, I discuss my findings in the four areas.

Architecture

Out of the 30 questionnaire respondents, only three disagreed or strongly disagreed with the statement
that "It is the team itself that makes the local architectural decisions", and none of the respondents chose
autonomy on local architectural decisions as one of the three most important areas to improve at Signicat.
It does not necessarily mean that architecture autonomy is not an area that should be improved at
Signicat, but it is clearly one of the areas that need the least focus for further improvement. This goes
well with the interview data, where a significant amount of the developers elaborated on how most of
the architectural and technical choices were left to the team, and how wide-reaching decisions were left
to management or the architecture guild. Several interviewees emphasized this as a reasonable balance
between local decision authority and needed overarching bounds.

In the result section, I described how decentralizing architectural decisions, with the tech lead of
each team as the main responsible for technical decisions made within each team, was beneficial for
sharing architectural knowledge among teams. The collaborative team-based approach to architectural
decision-making seemed to increase individuals’ ability to see the big picture of the systems developed.
Local technical consistency was preserved by distributing some of the responsibility to the tech lead and
the developers. However, all developers emphasized the need for architects to be responsible for the
overall architecture and for providing guidelines, which I further discuss in the following.

Overall architecture. At Signicat, architecture decision-making was decentralized to the operational
level, with several tribe architects working together within an architect guild. The need for architects
is supported by Dingsøyr et al. (2018a). Having tribe architects from each tribe operating together
helped prevent the risk of changing feature prioritizations at each team or tribe causing major challenges
in design, coding, and testing. It seemed to be beneficial in aligning architectural decisions across
the company. This way of decentralization is supported by Salameh and Bass (2020), which found
that instead of having a centralized group of architects responsible for the software architecture, the
responsibility could be distributed among a set of architecture owners. The tribe architects at Signicat
did not necessarily need to execute decision-making authority to ensure each team stayed in line with
Sigicat’s overarching architecture. Instead, the guild could facilitate overarching alignment with guidelines
and recommendations. However, some decisions needed to be established as standards, whereas others
could be left completely to the team themselves, thus prevailing team autonomy. Signicat’s decision flow
diagram for assessing architecture issues (see Figure 4.7) helped the architecture group to make sure
the right decisions were made to ensure a balance between establishing standards and preserving team
autonomy.

Guidelines. Architecture guidelines are a success factor for avoiding a divergent architecture at scale
(Dingsøyr et al., 2018a,b). At Signicat, guidelines seemed to be beneficial for the development teams as an
abstraction level of the software and for providing input on which programming languages are appropriate
for which contexts, to be specific on one example. The question to be raised is how definite guidelines
shall be. Should it be a list of recommendations on best practices, or should it be strict requirements?
For instance, deciding which programming languages the teams are allowed to use is more than just
deciding per se. It influences which people Signicat can hire and how easy or difficult it will be to transfer
resources between teams. Allowing teams to decide on programming languages for specific applications in
certain cases preserved autonomy on the team level, which seemed to raise the hunger for learning new
technologies and programming languages.

42

On the other hand, to ensure a unified architecture, larger applications or components followed
architectural principles and standards and were written in certain programming languages. Generally,
one can understand that the teams are skeptical about must-use programming languages and would
rather be able to decide for themselves. However, as one of the tribe architects emphasized, within a large
and complex organization, there is a need for more guidelines and sometimes standards than the case
for small businesses. It seems that Signicat had found the middle between extremes, which was highly
appreciated among the interviewed developers at Signicat.

Process
The agile teams at Signicat ran either Scrum or Kanban. This is in line with Bjornson et al.’s (2018)
suggestion to build on lightweight frameworks. All teams at Signicat had gone through the aforementioned
"tech-excellence program," aiming to become more mature in the agile way of working, learning about
best practices, and improving processes. However, the agile teams were allowed to adjust ceremonies, and
add or remove arenas, which Hackman (1986) refers to as managing own work processes.

Both Team Signature and Team Nordic eID were adjusting their process during the observation period
(e.g., shortening certain ceremonies or changing the frequency of a ceremony). Out of the 31 questionnaire
respondents, 30 either strongly agreed (10) or agreed (20) that autonomy on processes was in place.
Allowing teams to self-organize and decide how to implement agile practices is a reported success factor of
large-scale agile transformations (Dikert et al., 2016; Edison et al., 2021). Albeit, Edison et al. suggests
standardizing the way of working among teams as this enables people to be moved around easily and
transferred between projects within an organization if needed (e.g., due to specialized competencies,
employees leaving a company). Signicat’s two methods at the team level (Scrum and Kanban), guidelines
for team composition and roles (see Table 4.1), and the common cadence in the tech excellence guild
ensured a satisfactory standardization across teams. So in parallel with allowing teams to decide their
own agile practices, Signicat managed to standardize processes across teams: the tech excellence guild
accelerated similar ways of working, and the tribe structure facilitated coordination and collaboration
across teams working on inter-connected areas; but each team customized the daily way of working to fit
their specific context, product, team size, and site distribution.

Requirements
Out of the four autonomy dimensions, requirements were the area the respondents differed most in their
perception of the level of autonomy. The respondents clearly indicated that the teams do not have full
decision authority on identifying, shaping, and prioritizing software requirements. That said, requirement
specification and prioritization may not be an area in which developers should have a too large stake. A
developer in team Signature emphasized that his job was to develop Signicat’s signature product, and
not "to sit and prioritize as that’s not my job". Requirements engineering is its own discipline and is
by Edison et al. (2021) mentioned along with inter-team coordination and team-related challenges as
one of the challenging areas within large-scale agile software development, including coordination of
rapidly changing requirements across teams and capturing value and prioritization. Those challenges were
seen at Signicat as well. The country product managers (CPMs) complained about the lack of a similar
prioritization refinement process across the company. The refinement meeting of Team Nordic eID’s PO
and Signicat’s CPMs worked properly as an arena for discussing and elaborating on prioritization across
geographical markets. Team Signature did not have such an arena and emphasized the need to establish
a similar arena to better communicate and refine requirements and prioritizations.

The point of discussing these aspects is to illustrate that it is not necessarily a lack of autonomy on
requirements, as properly deciding on requirements demands a strategical view. The developers of both
Team Nordic eID and team Signature participated in team refinement meetings and were invited to

43

discussions when needed. The developers got insights on all issues and prioritizations, which led to more
knowledge shared among participants. More autonomy on software requirements may not be needed, but
improvements on the requirements engineering process per se are more likely to be beneficial.

Tasks

Team autonomy on task execution, referred to as "executing the task" by Hackman (1986), prevailed at
Signicat. Most respondents either agreed or strongly agreed, and only four had it on their list of areas to
improve. This impression was supported during the observations: both teams sat their sprint or iteration
plans (with some inputs on prioritization from team externals as previously discussed), and the developers
chose which tasks to work on. Additionally, the developers mostly made their own decisions on executing
and solving tasks. That said, there were areas and features certain developers typically tended towards
picking. "You touch it, you own it" was mentioned by some interviewees, indicating an implicit allocation
of work. An advantage of such allocation is that developers are likely to build expertise within a specific
domain of a team’s responsibility, increasing coding efficiency and quality. A downside is the possible
"bus factor effect," as one may risk depending on certain developers on certain segments of work, which
the team may suffer from if a developer gets ill or leaves the team/company. However, this discussion
concerns developer autonomy (individual autonomy) rather than team autonomy. The intention is to
illustrate how developer autonomy may be fruitful and risky to the team and the organization. At the
team level, autonomy on tasks was present.

5.2 Synchronization
Synchronizing the efforts of several teams when scaling agile has proven challenging (Paasivaara et al.,
2018). Increased product complexity and intricate dependencies demand dependency awareness and
aligned planning activities among teams (Bick et al., 2018). At Signicat, formal and informal arenas were
in place to manage inter-team dependencies. Most meetings provided personnel access to information,
particularly the unscheduled ones, facilitating quick coordination and decision-making. This is similar
to the findings of Bjornson et al. (2018), where formal areas often finalized decisions, whereas informal
and direct coordination between members of different teams made sure information was received and
interpreted correctly across teams. Unscheduled meetings have also been demonstrated as a proper
arena to resolve emerging coordination in several other studies (Dingsøyr et al., 2018a; Moe et al., 2018).
Co-location and open landscape enabled the unscheduled meetings at Signicat. This is in line with
Dingsøyr et al. (2018a) and Bjornson et al. (2018) which identified physical proximity to lowering the
threshold of initiating ad-hoc contact. However, physical proximity was not a limiting factor for informal
ad-hoc chats. At Signicat, Slack made up an extensive part of the daily communication within and across
teams, tribes, and sites. Supporting the findings at Entur (Berntzen et al., 2022), instant messaging within
dedicated channels successfully supported knowledge sharing and contributed to alignment. The usage of
Slack as a well-functioning coordination tool is supported by several other studies as well (Dingsøyr et al.,
2018b,b; Stray and Moe, 2020).

In addition to unscheduled meetings, the teams at Signicat used a series of scheduled inter-team
coordination. The catwalks, common retrospectives, and the yearly kick-off meeting contributed to
managing dependencies by enabling knowledge sharing across teams. These first two arenas compare to
the demos and retrospectives in the Perform Programme Dingsøyr et al. (2018a). Additionally, both team
Nordic eID and team Signature had refinement meetings with either CPMs or tribe personnel to manage
process dependencies, and all agile teams at Signicat had team members participating in guild meetings,
which the literature more commonly refers to as CoP meetings (Smite et al., 2019). In line with research
conducted by Paasivaara and colleagues (2014), Smite and colleagues (2019), and Berntzen and colleagues

44

(2022), CoP (guilds) were used to support inter-team coordination across a wide range of areas. Each
guild served a clear purpose, and though the mandate and scope varied among the guilds, all guilds were
left with decision authority on the matters they handled. This is highlighted as success criteria for CoP
in previous studies on guilds as well (Smite et al., 2019; Paasivaara and Lassenius, 2019). Yet I merged
the guilds at Signicat to one role in Table 4.2, it is not adequate to elaborate on them as one type of
role since they served quite different purposes. Whereas the security guild was composed of agile team
members and aligned best practices, the architecture guild, for instance, was composed of tribe architects
whose main purpose was to align architecture and technically synchronize teams, tribes, and sites. These
tribe architects compare to the program architects at Entur (Berntzen et al., 2022). Most interviewees
highlighted Signicat’s tribe architects as important personnel for managing technical dependencies. The
tribe architects ensured technical consistency within and across tribes and coordinated teams’ efforts
through tech leads.

Despite all the different meetings, arenas, and tools and artifacts for inter-team coordination, the
questionnaire results indicated great possibilities for improvement on synchronization. This was further
supported by the observations and interviews, where it seemed to be a lack of dedicated arenas for
coordinating daily and weekly efforts between teams, in particular resource dependencies, but also
dependencies on task allocation and activities at Signicat: the guilds appeared to be well-functioning
arenas primarily for aligning knowledge, tools and procedures; the catwalks were an arena for showcasing
work, not an arena for teams to synchronise work; the common retrospectives seemed to be too focused on
key performance indicator (KPI) trendlines to be an effective arena for synchronising teams’ development
efforts; the kick-off meeting was a company wide conference bringing clarity to all employees on Signicat’s
mission and further direction, not an arena for synchronising development efforts, albeit establishing a
common vision and clarity of goals and direction should not be underestimated as a factor when striving
to align and synchronize teams (Paasivaara et al., 2018); and neither did the refinement meetings with
CPMs and the PO (Team Nordic eID), or with tribe personnel and the PO (Team Signature) contribute
much to coordinate technical resource dependencies among teams.

Some of the main large-scale agile frameworks introduce dedicated events for frequent coordination
across teams. With Large-scale Scrum (LeSS), it is common to implement so-called multi-team meetings
for product backlog refinement or sprint planning, and Scrum-at-Scale (S@S) offers a scaled daily scrum
for teams to more easily be responsive to emerging impediments. Implementing such arenas is supported
by the literature as a success factor. Previous research has identified several inter-team coordination
mechanisms focusing on coordinating task progression between teams. For example, and contrary to
Signicat, one of the largest IT projects undertaken in Norway, the Perform Progamme at the Norwegian
Public Service Pension Fund (the "Pension Fund"), implemented many arenas to coordinate work between
the teams (Dingsøyr et al., 2012). For instance, Scrum of Scrums (SoS) within subprojects, so-called
Metascrums at project level, and a technical corner for architectural briefings for the teams were successfully
implemented. The SoS and Metascrums may compare to both the multi-team meetings in the LeSS
framework and the scaled version of the daily scrum in the S@S framework. Albeit, Perform was composed
of a combination of in-house personnel and external consultants from five companies. Such a context
is likely to demand other coordination needs than product development settings with stable domain
knowledge (Dingsøyr et al., 2019), just as the case is for Signicat (digital identity solutions). However,
with Signicat’s several company acquisitions over the last few years, and the ongoing organizational and
technological transformations, it may not be accurate to currently consider Signicat a stable large-scale
software development case with established and mature teams. Rather, Signicat may be an extreme case
requiring several arenas to foster communication and coordination across sites.

SoS may be a proper arena to implement at Signicat to better coordinate the efforts across teams,
tribes, and sites. However, wide-reaching SoS has shown to work poorly since it often involves too many
participants and disjoint interests and concerns (Paasivaara et al., 2012). Contrary, more narrowed

45

inter-team meetings with participants having joint goals and interests are seen to more likely be perceived
as successful. This is also supported by Dingsøyr et al. (2018a) which identified SoS on the subproject
level as successful arenas. At Signicat, this may compare to SoS within tribes or SoS across tribes in
certain development projects spanning two or more tribes. This would allow product owners, scrum
master/agile coaches and/or tribe leads to meet and discuss projects to ensure all know what is going on
(tribe leads at Signicat may be compared, for instance, to the product manager role at Entur (Berntzen
et al., 2022)).

5.3 Transparency
Transparency "improves awareness across an organization regarding the ongoing development, as well
as incentives teams to deliver high-quality software and to promote collaboration, communication and
knowledge sharing" (Edison et al., 2021). At Signicat, the rapid growth over the past few years with
several company acquisitions around Europe seems to have diminished transparency, and the corona
pandemic with a heavily increased amount of remote working may have been a worsening factor. In their
research, Dingsøyr and colleagues (2018), as well as Bjornson et al. (2018), find co-location and open work
area to facilitate the flow of communication and information. Co-location allowed team members to get
insights into what was going on in other teams, and several interviewees emphasized returning to the office
as important to foster transparency at Signicat. However, post-corona, and as a continental organization,
Signicat cannot rely upon co-location and mechanisms with physical characteristics to achieve and retain
transparency. Instant messaging with Slack was used extensively to exchange information across teams,
thus increasing transparency. Among digital communication tools, Slack has recently been identified as
useful for instant messaging and information sharing (Stray and Moe, 2020). Stray and Moe found Slack
to increase transparency by supporting constant information sharing.

Also, documentation tools and artifacts worked as transparency enablers at Signicat, in contrast to
Ericsson’s lack of shared backlogs, which led to poor transparency (Paasivaara et al., 2018). At Signicat,
knowledge-based information was shared on Confluence (documentation tool), and each agile team’s
product backlog and sprint backlog/Kanban board were accessible to all employees. The latter may
be compared to the physical boards in the Perform Programme (Dingsøyr et al., 2018a) and at Entur
(Berntzen et al., 2022). Albeit, the physical boards at Perform and Entur seemed to be more effective
enablers for discussions and information sharing.

The tribe leads and tribe architects’ overview of technical and business process dependencies made
them important inter-team roles, and developers’ access to them was important for obtaining information.
The allocation of teams into product tribes facilitated fostering of relation networks between teams
operating within the same product area, thus increasing transparency. Also, the guilds seemed to function
properly as transparency enablers. As the CoP at Ericsson (Paasivaara and Lassenius, 2014), the guilds at
Signicat had open-access wiki pages storing meeting notes and other material. Additionally, the guilds let
personnel get insights into other teams and their ongoing projects, and the prominent social characteristic
of guilds let employees get to better know each other. Meeting regularly is supported in previous studies
as an enabler for employees to foster relationships (Bjornson et al., 2018; Dingsøyr et al., 2018a).

5.4 Implications for Practice and Theory
My study of Signicat generates several practical implications. Regarding team autonomy, I have found
that:

• Teams should define, change and improve their own internal agile framework, ceremonies and
processes. However, light methodologies such as Scrum or Kanban should be adopted.

46

• Architectural decision-making authority should be decentralized from management to an architecture
group. However, team autonomy on architecture decisions, with the tech lead of each team as the
main responsible, should be strived for.

• Software requirements can hardly be fully identified, shaped, and prioritized by teams. What
matters most is to continually include all team members in the backlog’s evolution. Developers
may have a role in some of the requirement engineering, but the identification and prioritization
should be left to the POs, PMs, and team external roles.

• Teams should decide on task execution. Here, it is rather important to be aware of developer
autonomy, which may introduce the "bus factor effect." To contradict this risk, stand-up meetings
and other agile team ceremonies should be held to help the team stay updated on each other’s
work.

The tribe structure surrounded development teams and prevented teams from working in silos. Ad-
ditionally, I have identified the following regarding synchronization practitioners should pay attention
to:

• CoP (guilds at Signicat) function as efficient arenas for aligning teams on tools and best practices,
and they should be provided decision-making authority on the matters they handle.

• Unstable large-scale agile development settings demand dedicated arenas for scrum masters/agile
coaches, POs, and PMs to synchronize and stay up to date on related teams’ work. Such arenas
should be kept as narrow and focused as possible to avoid too many participants and disjoint
interests.

• Unscheduled meetings and instant messaging with Slack work well to resolve inter-team dependencies.
However, it should not replace formal arenas but rather be a supplement. Whereas ad-hoc chats
often resolve dependencies, formal arenas may hinder them at an earlier stage.

As a final implication for practice, I have identified two facilitators and enablers for transparency at
scale:

• CoP, bringing personnel across the company together to meet and discuss certain topics and
build relationships. Additionally, it fosters information sharing and openness. However, increasing
transparency is a gradual process, not something done overnight, and it therefore demands
continuous attention from management and the firm.

• Co-location, whenever it is realistic, should be strived for. However, the modern work life (accelerated
by the COVID-19 pandemic) demands digital collaboration tools. Slack is a proper substitute for
ad-hoc discussions for instant sharing of information.

Besides the practical implications, my work also has some implications for theory. I have developed
a team autonomy model that can be further examined and enhanced by researchers. The model lets
researchers evaluate teams’ level of autonomy on four dimensions in large-scale agile software development
settings. Also, the model is suited to compare the level of autonomy among several teams, projects, and
organizations or to compare autonomy levels across time and geographical locations within the same
organization.

Additionally, I have demonstrated the explanatory ability of Berntzen et al.’s 2022 inter-team coordin-
ation taxonomy categories by using the taxonomy to identify inter-team coordination mechanisms at
Signicat. I have also demonstrated its usability.

47

5.5 Evaluations and Limitations
In this master’s thesis, I sought to understand how to balance alignment and team autonomy in large-scale
agile software development settings. I conducted a mixed-methods exploratory case study at Signicat.
In the following, I evaluate and discuss the limitations of my findings. However, an evaluation of the
research design is not included as this is provided in the method chapter (Chapter 3).

The conceptual framework adapted by Scheerer et al. (2014) and the framework proposed by Ven et al.
(1976) were considered to be used for my analysis. However, I decided to utilize the novel taxonomy and
TOPS framework proposed by Berntzen et al. (2022). The taxonomy contributes to earlier taxonomies
on inter-team coordination by extending the focus to the inter-team level and the knowledge domain of
large-scale agile. Additionally, the taxonomy is developed in the current global "work from anywhere"
situation where many inter-personal meeting arenas have been replaced with digital spaces, which applies
to Signicat. Summa summarum, I considered the taxonomy and TOPS framework proposed by Berntzen
et al. to be a reasonable choice for framing my analysis of Signicat’s inter-team coordination mechanisms.
A more comprehensive assessment of inter-team coordination at Signicat should have also obtained data
from the management parts of the organization. This would have provided deeper insights on strategical
decisions affecting underlying aspects of inter-team coordination and team autonomy.

There may as well be limitations related to theory. In particular, the body of literature on team
autonomy in large-scale agile is scarce. The recently published study by Moe et al. (2021), which applied
Hackman’s 1986 classification of unit authority when analyzing how much authority teams at large-scale
agile have, has been used extensively. To substantiate the analysis on autonomy, I have used studies on
how CoP with decision-making authority help decentralize authority frequently (Paasivaara and Lassenius,
2014; Smite et al., 2019; Paasivaara and Lassenius, 2019). Also, findings from Entur (Berntzen et al.,
2022) and the Performe Programme (Dingsøyr et al., 2018a), in particular, have been extensively used for
comparisons. Nevertheless, the reliability of my analysis and discussion of autonomy at Signicat suffer
from relatively few studies of related work available for comparison. The body of literature on inter-team
coordination is larger and thus has provided me a greater amount of relevant comparisons to my findings
on inter-team coordination at Signicat.

48

6 Conclusion and Future Work
In this master’s thesis, I addressed the research question "How can alignment and autonomy be balanced
in large-scale agile software development?". To answer the question, I conducted a mixed-methods case
study at Signicat, a leading provider of digital identity solutions in Europa. I analyzed data from 35 hours
of observation, 13 interviews, a questionnaire with 31 respondents, and various documents. I used the
inter-team coordination taxonomy and TOPS framework proposed by Berntzen et al. (2022) to identify
inter-team coordination mechanisms. In total, I identified 12 mechanisms.

As noted by Dingsøyr et al. (2019), large-scale agile software development is seldom easy, and this
master’s thesis has investigated three challenges identified by Edison et al. (2021) in-depth, namely team
autonomy, synchronization, and transparency. The literature provides little contextually advice on how to
scale agile practices and implement large-scale frameworks. My description of the software development
setting at Signicat shows one way to organize agile teams in large-scale development. I show how a tribe
structure is adopted and how decision-making authority was decentralized with several community of
practice (CoP), called guilds at Signicat. Tribes and guilds are both core elements of the Spotify model,
but Signicat has found its way of implementing these structures.

With this study, I confirmed that large-scale agile software development efforts require both alignment
and autonomy. Guilds enable alignment and transparency, as well as foster autonomy. Tribes tear
down silos and may facilitate the creation of proper lines of communication and collaboration among
product-related development teams. However, well-functioning guilds need to be provided decision-making
authority on the matters they handle, and tribes do not foster proper arenas for communication between
teams out of the book. Additional inter-team practices should be adopted to utilize the benefits of the tribe
structure. This applies particularly to unstable large-scale software development settings. Specifically,
this master’s thesis suggests product or project-specific Scrum of Scrums (SoS).

From my findings, I make three contributions to large-scale agile software development. First, I identify
three practices for mitigating team synchronization and transparency challenges at scale: guide teams
within the same product or feature area into groups (tribes); decentralize decision-making by fostering
communities (guilds) with decision-making authority; and facilitate small inter-team meetings for teams
that have joint goals, for instance, SoS. Second, I propose a model for team autonomy on four dimensions:
process, requirements, architecture, and tasks. Last, I provide an actionable approach for using the team
autonomy model by introducing four statements that I map to each dimension in the model.

With these contributions, I hope to advance the knowledge on how to succeed in balancing the need for
organizational control with the need and willingness of teams to be autonomous. I have proposed some
clarity on how to mitigate poor synchronization and transparency and lack of team autonomy. However,
I do not provide definite answers to my research question but rather several implications for practice
and theory that should interest software practitioners and researchers. The team autonomy model is a
flexible approach for measuring the level of team autonomy on relevant aspects to software engineering
teams. Future studies may enhance the model by extending it with other dimensions, and I encourage
future research to use the model for measuring team autonomy of software development teams at scale.

Further, the team autonomy model may support researchers and agile coaches and leaders in tracking
changes in the level of team autonomy over time. Also, I encourage future studies to investigate how
team autonomy and alignment can be balanced in more extreme contexts of distributed environments
with employees primarily working remotely. After the outbreak of COVID-19, the work from anywhere-

49

philosophy has accelerated, which may demand other mechanisms for inter-team coordination to ensure
transparency and team synchronization without depriving each team or each developer’s autonomy.

50

Bibliography
7th State of Agile. Technical report, 2013. URL https://www.se.rit.edu/~swen-356/resources/7th-

Annual-State-of-Agile-Development-Survey.pdf.

8th State of Agile. 2014. URL https://www.learningtree.com/Files/2013-state-of-agile-
survey_LT.pdf.

9th State of Agile. Technical report, 2015. URL https://kipdf.com/state-of-agile-survey-9-th-
annual_5afcc7c18ead0eb9108b4692.html.

10th State of Agile. Technical report, 2016. URL https://www.slideshare.net/Mateuszeromski/
version-one-10thannualstateofagilereport.

11th State of Agile. Technical report, 2017. URL https://www.agile247.pl/wp-content/uploads/
2017/04/versionone-11th-annual-state-of-agile-report.pdf.

12th State Of Agile. Technical report, 2018. URL http://www.eg.bucknell.edu/~cs479/common-
files/resources/versionone-state-of-agile/versionone-12th-annual-state-of-agile-
report.pdf.

13th State of Agile. Technical report, 2019. URL https://www.duxdiligens.com/wp-content/uploads/
2019/09/13th-annual-state-of-agile-report_7_May_2019.pdf.

14th State of Agile. Technical report, 2020. URL https://www.qagile.pl/wp-content/uploads/2020/
06/14th-annual-state-of-agile-report.pdf.

15th State of Agile. Technical report, 2021. URL https://digital.ai/resource-center/analyst-
reports/state-of-agile-report.

Agile Alliance. Agile 101, 2021. URL https://www.agilealliance.org/agile101/.

Agile Alliance. Definition of Scrum of Scrums, 2022. URL https://www.agilealliance.org/glossary/
scrum-of-scrums.

Deepika Badampudi, Samuel A. Fricker, and Moreno Ana M. Perspectives on Productivity and Delays in
Large-Scale Agile Projects. In Barbara Baumeister Hubert
}and Weber, editor, Agile Processes in Software Engineering and Extreme Programming, pages 180–194,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-38314-4.

Corey Baham and Rudy Hirschheim. Issues, challenges, and a proposed theoretical core of agile software
development research. Information Systems Journal, 2021. ISSN 13652575. doi: 10.1111/isj.12336.

Jordan Barlow, Justin Giboney, Mark Keith, Ryan Schuetzler, Paul Lowry, and Anthony Vance. Overview
and Guidance on Agile Development in Large Organizations. Communications of the Association for
Information Systems, 29:25–44, 7 2011. doi: 10.2139/ssrn.1909431.

51

K Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile software development,
2001. URL https://agilemanifesto.org/iso/en/manifesto.html.

Marthe Berntzen, Rashina Hoda, Nils B Moe, and Viktoria Stray. A Taxonomy of Inter-Team Coordination
Mechanisms in Large-Scale Agile. IEEE Transactions on Software Engineering, PP(99):1, 2022. ISSN
0098-5589. doi: 10.1109/tse.2022.3160873.

Saskia Bick, Kai Spohrer, Rashina Hoda, Alexander Scheerer, and Armin Heinzl. Coordination Challenges
in Large-Scale Software Development: A Case Study of Planning Misalignment in Hybrid Settings.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 44(10):932–950, 2018. ISSN 0098-5589.
doi: 10.1109/tse.2017.2730870.

Finn Olav Bjornson, Julia Wijnmaalen, Christoph Johann Stettina, and Torgeir Dingsoyr. Inter-team
Coordination in Large-Scale Agile Development: A Case Study of Three Enabling Mechanisms. In
AGILE PROCESSES IN SOFTWARE ENGINEERING AND EXTREME PROGRAMMING, XP
2018, volume 314 of Lecture Notes in Business Information Processing, pages 216–231, 2018. ISBN
978-3-319-91602-6; 978-3-319-91601-9. doi: 10.1007/978-3-319-91602-6{_}15.

Kieran Conboy. Agility From First Principles: Reconstructing the Concept of Agility in Information
Systems Development. Information Systems Research, 20, 7 2009. doi: 10.1287/isre.1090.0236.

Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success factors for large-scale agile
transformations: A systematic literature review. Journal of Systems and Software, 119:87–108, 9 2016.
ISSN 01641212. doi: 10.1016/j.jss.2016.06.013.

Torgeir Dingsøyr, Sridhar Nerur, Venu Gopal Balijepally, and Nils Brede Moe. A decade of agile
methodologies: Towards explaining agile software development. Journal of Systems and Software, 85
(6):1213–1221, 2012. ISSN 0164-1212. doi: 10.1016/j.jss.2012.02.033.

Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. What Is Large in Large-Scale? A Taxonomy
of Scale for Agile Software Development. In Product-Focused Software Process Improvement, pages
273–276, Cham, 2014. Springer International Publishing. ISBN 978-3-319-13835-0.

Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Faegri, and Eva Amdahl Seim. Exploring software
development at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. EMPIRICAL SOFTWARE ENGINEERING, 23(1):490–520, 2018a. ISSN 1382-3256. doi:
10.1007/s10664-017-9524-2.

Torgeir Dingsøyr, Nils Brede Moe, and Eva Amdahl Seim. Coordinating Knowledge Work in Mul-
titeam Programs. Project Management Journal, 49(6):64–77, 2018b. ISSN 8756-9728. doi:
10.1177/8756972818798980.

Torgeir Dingsøyr, Davide Falessi, and Ken Power. Agile Development at Scale: The Next Frontier. IEEE
Software, 36(2):30–38, 2019. ISSN 0740-7459. doi: 10.1109/ms.2018.2884884.

Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A systematic
review. Information and Software Technology, 50(9-10):833–859, 8 2008. ISSN 0950-5849. doi:
10.1016/J.INFSOF.2008.01.006.

Jutta Eckstein. Agile software development in the large. Dorset House, 2004. ISBN 978-3-947991-23-5.

52

Henry Edison, Xiaofeng Wang, and Kieran Conboy. Comparing Methods for Large-Scale Agile Software
Development: A Systematic Literature Review. IEEE Transactions on Software Engineering, PP(99):
1, 2021. ISSN 0098-5589. doi: 10.1109/tse.2021.3069039.

Sallyann Freudenberg and Helen Sharp. The Top 10 Burning Research Questions from Practitioners.
IEEE Software, 27(5):8–9, 2010. doi: 10.1109/MS.2010.129.

J R Hackman. The psychology of self-management in organizations. In M S Pallack and R O Perloff, editors,
Psychology and work: Productivity, change, and employment. American Psychological Association,
Washington, DC, 1986.

James A Highsmith. Agile software development ecosystems. Addison-Wesley, 2002.

Rashina Hoda, Norsaremah Salleh, and John Grundy. The Rise and Evolution of Agile Software
Development. IEEE Software, PP:1, 7 2018. doi: 10.1109/MS.2018.290111318.

Emam Hossain, Muhammad Ali Babar, and Hye-young Paik. Using Scrum in Global Software Development:
A Systematic Literature Review. In 2009 Fourth IEEE International Conference on Global Software
Engineering, pages 175–184, 2009. doi: 10.1109/ICGSE.2009.25.

Michal Hron and Nikolaus Obwegeser. Scrum in practice: an overview of Scrum adaptations. ISBN
9780998133119. URL http://hdl.handle.net/10125/50568.

Jonas A Ingvaldsen and Monica Rolfsen. Autonomous work groups and the challenge of inter-group
coordination. Human Relations, 65(7):861–881, 2012. doi: 10.1177/0018726712448203. URL https:
//doi.org/10.1177/0018726712448203.

Henrik Kniberg and Anders Ivarsson. Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds.
Technical report, 2012.

Claus W Langfred. The Downside of Self-Management: A Longitudinal Study of the Effects of Conflict
on Trust, Autonomy, and Task Interdependence in Self-Managing Teams. Technical Report 4, 2007.
URL https://about.jstor.org/terms.

Michael Y Lee and Amy C Edmondson. Self-managing organizations: Exploring the limits of less-
hierarchical organizing. Research in Organizational Behavior, 37:35–58, 2017. ISSN 0191-3085. doi:
10.1016/j.riob.2017.10.002.

Thomas Malone and Kevin Crowston. The Interdisciplinary Study of Coordination. Massachusetts
Institute of Technology (MIT), Sloan School of Management, Working papers, 26, 7 1993. doi: 10.1145/
174666.174668.

Philipp Mayring. Qualitative Content Analysis. Technical report, 2000. URL http://www.zuma-
mannheim.de/research/en/methods/textanalysis/.

Nils Moe, Torgeir Dingsøyr, and Tore Dybå. Understanding Self-Organizing Teams in Agile Software
Development. In Proceedings of the Australian Software Engineering Conference, ASWEC, pages 76–85,
7 2008. ISBN 978-0-7695-3100-7. doi: 10.1109/ASWEC.2008.4483195.

Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå. Overcoming Barriers to Self-Management in Software
Teams. IEEE Software, 26(6):20–26, 2009. ISSN 07407459. doi: 10.1109/MS.2009.182.

53

Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå. A teamwork model for understanding an agile team:
A case study of a Scrum project. Information and Software Technology, 52(5):480–491, 2010. ISSN
0950-5849. doi: https://doi.org/10.1016/j.infsof.2009.11.004. URL https://www.sciencedirect.com/
science/article/pii/S0950584909002043.

Nils Brede Moe, Helena Holmstrom Olsson, and Torgeir Dingsøyr. Trends in Large-Scale Agile De-
velopment: A Summary of the 4th Workshop at XP2016. In PROCEEDINGS OF THE XP2016
SCIENTIFIC WORKSHOPS, Proceedings of the Scientific Workshop Proceedings of XP2016, pages
1–4, 2016. ISBN 978-1-4503-4134-9. doi: 10.1145/2962695.2962696.

Nils Brede Moe, Torgeir Dingsøyr, and Knut Rolland. To schedule or not to schedule? An investigation
of meetings as an inter-team coordination mechanism in large-scale agile software
}development. IJISPM-INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS AND PRO-
JECT MANAGEMENT, 6(3):45–59, 2018. ISSN 2182-7796. doi: 10.12821/ijispm060303.

Nils Brede Moe, Darja Šmite, Maria Paasivaara, and Casper Lassenius. Finding the sweet spot for
organizational control and team autonomy in large-scale agile software development. Empirical Software
Engineering, 26(5):101, 2021. ISSN 1382-3256. doi: 10.1007/s10664-021-09967-3.

Briony J Oates. Researching Information Systems and Computing. Technical report, 2006.

Maria Paasivaara and Casper Lassenius. Communities of practice in a large distributed agile software
development organization – Case Ericsson. Information and Software Technology, 56(12):1556–1577,
2014. ISSN 0950-5849. doi: 10.1016/j.infsof.2014.06.008.

Maria Paasivaara and Casper Lassenius. Empower Your Agile Organization: Community-Based Decision
Making in Large-Scale Agile Development at Ericsson. IEEE Software, 36:64–69, 7 2019. doi:
10.1109/MS.2018.2886827.

Maria Paasivaara, Casper Lassenius, and Ville T Heikkilä. Inter-team Coordination in Large-Scale
Globally Distributed Scrum: Do Scrum-of-Scrums Really Work? Proceedings of the 2012 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement, pages 235–238, 2012.
doi: 10.1145/2372251.2372294.

Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hallikainen. Large-scale agile trans-
formation at Ericsson: a case study. Empirical Software Engineering, 23(5):2550–2596, 10 2018. ISSN
15737616. doi: 10.1007/s10664-017-9555-8.

Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven to an incremental software
development approach with agile practices: An industrial case study. Empirical Software Engineering,
15(6):654–693, 12 2010. ISSN 13823256. doi: 10.1007/s10664-010-9136-6.

Knut Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol. Problematizing Agile in the Large:
Alternative Assumptions for Large-Scale Agile Development Completed Research Paper, 7 2016.

Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering, 14(2):131–164, 4 2009. ISSN 13823256. doi: 10.1007/
s10664-008-9102-8.

Abdallah Salameh and Julian Bass. Influential Factors of Aligning Spotify Squads in Mission-Critical
and Offshore Projects - A longitudinal embedded case study, 7 2018.

54

Abdallah Salameh and Julian Bass. Spotify Tailoring for Promoting Effectiveness in Cross-Functional
Autonomous Squads. pages 20–28. 7 2019. ISBN 978-3-030-30125-5. doi: 10.1007/978-3-030-30126-
2{_}3.

Abdallah Salameh and Julian M. Bass. Heterogeneous Tailoring Approach Using the Spotify Model.
In PervasiveHealth: Pervasive Computing Technologies for Healthcare, pages 293–298. ICST, 4 2020.
ISBN 9781450377317. doi: 10.1145/3383219.3383251.

Abdallah Salameh and Julian M Bass. An architecture governance approach for Agile development by
tailoring the Spotify model. AI & SOCIETY, pages 1–20, 2021. ISSN 0951-5666. doi: 10.1007/s00146-
021-01240-x.

Alexander Scheerer, Tobias Hildenbrand, and Thomas Kude. Coordination in Large-Scale Agile Software
Development: A Multiteam Systems Perspective. In 2014 47TH HAWAII INTERNATIONAL CONFER-
ENCE ON SYSTEM SCIENCES (HICSS), Proceedings of the Annual Hawaii International Conference
on System Sciences, pages 4780–4788, 2014. ISBN 978-1-4799-2504-9. doi: 10.1109/hicss.2014.587.

Margrit Schreier. Qualitative content analysis. SAGE Publications Ltd, 2013.

Ken Schwaber and Jeff Sutherland. The Scrum Guide The Definitive Guide to Scrum: The Rules of the
Game. Technical report, 2020.

Mali Senapathi and Meghann Drury-Grogan. Systems Thinking Approach to Implementing Kanban: A
Case Study. Journal of Software: Evolution and Process, 33, 7 2020. doi: 10.1002/smr.2322.

Dag I K Sjøberg, Anders Johnsen, and Jørgen Solberg. Quantifying the Effect of Using Kanban vs. Scrum:
A Case Study 1. Technical report.

Darja Šmite, Claes Wohlin, Tony Gorschek, and Robert Feldt. Empirical evidence in global software
engineering: A systematic review. Empirical Software Engineering, 15(1):91–118, 2 2010. ISSN
13823256. doi: 10.1007/s10664-009-9123-y.

Darja Smite, Nils Brede Moe, Georgiana Levinta, and Marcin Floryan. Spotify Guilds: How to Succeed
With Knowledge Sharing in Large-Scale Agile Organizations. IEEE Software, 36(2):51–57, 2019. ISSN
0740-7459. doi: 10.1109/ms.2018.2886178.

By Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges of migrating to agile
methodologies. Technical Report 5, 2005.

Viktoria Stray and Nils Brede Moe. Understanding coordination in global software engineering: A
mixed-methods study on the use of meetings and Slack. Journal of Systems and Software, 170:110717,
2020. ISSN 0164-1212. doi: 10.1016/j.jss.2020.110717.

Viktoria Stray, Nils Brede Moe, and Rashina Hoda. Autonomous agile teams. Proceedings of the
19th International Conference on Agile Software Development: Companion, pages 1–5, 2018. doi:
10.1145/3234152.3234182.

Diane E Strode. A dependency taxonomy for agile software development projects. Information Systems
Frontiers, 18(1):23–46, 2016. ISSN 1387-3326. doi: 10.1007/s10796-015-9574-1.

Diane E Strode, Beverley Hope, Sid Huff, Sebastian Link, Diane E ; Strode, Beverley ; Hope, Sid ; Huff,
and Sid L Huff. Coordination Effectiveness In An Agile Software Development Context. 2011. ISBN
978-1-86435-644-1. URL http://aisel.aisnet.org/pacis2011/183.

55

Andrew H Van De Ven, Andre L Delbecq, and Richard Koenig. Determinants of Coordination Modes within
Organizations. American Sociological Review, 41(2):322, 1976. ISSN 0003-1224. doi: 10.2307/2094477.

RK Yin. Case Study Research: design and methods. Sage, 5 edition, 2014.

56

Appendices

A Case study proposal

Following the first meeting with Signicat representatives fall 2021, I wrote a case study proposal (in
Norwegian) including suggestions for data collection. See the proposal below.

Tanker om tematikk, vinkling og mulig spissing
Med storskala smidig utvikling og en struktur inspirert av Spotifymodellen med tribestruktur med
profitloss-ansvar på tribenivå som bakteppe, så kunne en mulig interessant vinkling være å se på hvordan
koordinering av mange team balanseres med selvstyre innad i hvert enkelt team. Med andre ord hvordan
autonomi innad og på squadnivå lar seg forene med styringsbehov på tribenivå og eventuelt andre høyere
nivåer.

Gitt en slik vinkling, vil en mulig spissing rettet mot eksempelvis enten arkitekturarbeid, prosess eller
kravspec kunne være aktuelt og interessant, for å ta tre eksempler. Her er det vanskelig å nødvendigvis
peke ut ett av forslagene allerede nå. Det er mye mulig at det vil være hensiktsmessig å avvente dette til
ut på nyåret etter en evt. observasjonsstart, samt etter å ha rukket en viss opplesing på bakgrunnsstoff
på både caset og på fagfeltet.
Grovskissert mulig plan for våren
Observasjoner og kortere intervjuer fremstår som interessante aktiviteter å kunne få til og gjennomføre.
Et forslag er å kjøre to runder atskilt av en del ukers opphold for å 1) få tid til å transkribere og analysere
funn, samt 2) la organisasjonen og strukturen få tid til å modne litt (hvor enn mye det er mulig på noen
uker). Hvilke arenaer som egner seg (og som er aktuelle/tilgjengelige for meg) må vi eventuelt komme til
enighet på, men tenker at det vil være hensiktsmessig å få til noe utover å være fysisk tilstede, selv om
det også vil være nyttig på sine måter.

Kortere intervjuer kunne blitt gjennomført med medlemmer fra et par-tre utvalgte team, og da gjerne
“ekstrem”-team som skiller seg litt fra hverandre (eksempelvis på metodikk, arbeidsområder i teckstacken
etc.). Eventuelt kunne disse teamene også vært team jeg prioriterer i observasjoner. Hvorvidt man
plukker ut disse teamene allerede til runde 1, eller om dette først skjer til runde to, kan vi se på (gitt at
det blir aktuelt å rette fokuset inn mot et utvalg av to-tre team). Godt mulig at runde 1 bør/må benyttes
til å se hvilke arenaer og hvilke team som kan være av ekstra interesse for runde 2.

Mhp. varighet av en “runde” med observasjoner/intervjuer, så kan en hel iterasjonslengde + eventuell
en liten uke for å få med litt overlapp mellom to iterasjoner være en fornuftig tilnærming. Frekvensen på
observasjoner i en periode kan være på alt fra kun én gang i uken til en litt høyere frekvens. Dette beror
på hva som er praktisk mulig, hva som lar seg gjennomføre mhp. andre aktiviteter/planer hos meg, men
også deres interesse av å ha tredjeparter tilstede.

Mer konkret, foreslår jeg følgende grovskisserte plan slik at dere lettere får en oversikt over hva omtrent
jeg ser for meg:
Runde 1: Oppstart en gang mellom 17.jan-24.jan, slutt en gang mellom 14.feb-21.feb, to observasjonsdager
i uka, og kortere intervju med utvalgte personer fra to team.
Runde 2: Oppstart: en gang mellom 7.mars-14.mars, slutt en gang mellom 28.mars-4.april, én observas-
jonsdag i uka, og kortere intervju med utvalgte personer fra to team.

57

Etter runde 2 (medio mai): Feedback-sesjon for legge fram “foreløpige” funn før planlagt innlevering
av oppgave i starten av juni.

B Observation protocol

I made an observation protocol to standardize my meeting notes to simplify the process of analysing my
meeting notes. See the protocol below.

Topic Question
What What meeting type is it?

Participants Who are intended participants?
Who leads the meeting?

Activities What do they discuss?
Goals What are they trying to accomplish with this meeting?

Feelings Does the meeting work properly in order to accomplish the goal?
How is the atmosphere?

Time
When does the meeting start?
When does the meeting end?
Delays?

C Interview

I Invitation

Interviewees were invited by e-mail (in Norwegian). Along with the invitation, an information letter and
consent following the the standards of the Norwegian Centre for Research Data was attached. See the
invitation template below.

Hei, [NAVN]
Jeg har de foregående ukene deltatt på mange av de agile seremoniene til dere i Team [TEAMNAVN],
men det har du antagelig fått med deg alt. Som jeg annonserte på Slack forrige uke, så har jeg et ønske
om å tillegg få til noen intervjuer med en del av dere. Jeg har lagt intervjuene til neste uke, og jeg kunne
veldig gjerne tenkt meg å invitere deg selv om jeg antar at du har nok å henge fingrene i som utvikler.
Kort om intervjuet/praten
Intervjuet vil være en del av datagrunnlaget i masteroppgaven min i datateknologi dette semesteret.
Temaet i oppgaven er hvordan behovet for koordinering på tvers av squads (og tribes) lar seg forene med,
og evt. går utover, selvstyre på squadnivå. Intervjuet vil følgelig ta for seg temaer knyttet til dette. Det
er ikke meningen at dette skal være de altfor omstendelige og formelle greiene, men snarere en “løs prat”
rundt noen få tema slik som din rolle og seremoniene og arenaene dere i Team [TEAMNAVN] benytter i
det daglige. Håper en slik prat er noe som virker ok å delta på, og at du både har tid og lyst.
Tidspunkt og sted
Har satt opp et forslag til tidspunkt neste uke. Det er bare å foreslå et annet tidspunkt den samme
tirsdagen eller den påfølgende onsdagen om mitt forslag ikke passer. Hvis uke 10 er håpløst, så kan du
foreslå et tidspunkt tirsdag/onsdag i uke 11 også. Jeg tar gjerne praten på Signicats lokaler i Trondheim
(et av møterommene), men Zoom fungerer også fint om det heller er å foretrekke.

58

II Interview guide
The interviews were unstructured, but followed an interview guide approved by the Norwegian Centre for
Research Data. The interview guide stated several categories, each holding a number of possible questions.
All questions were formulated as general and unbiased as possible to avoid prompting the respondents
towards providing already-determined answers. See the most used questions during the interviews below.

Part Question

1. Introduction

Present myself and the project
Thanks for participating
Assure confidentiality
Asks for permission to tape record

2. Warm up

What is you role and what projects do you work on?
Tenure?
How do you make plans?
How are architectural choices agreed upon?
Do you collaborate with people outside the team?

3. Synchronisa-
tion

Do you need to communicate with other teams?
What kind of dependencies do you have to other teams?

• Examples?
• Consequences?

How do you manage (and solve) dependencies?
• Formal or informal?
• Who manage them?
• Examples?
• Challenges?
• Most important arena?

4. Transparency

Do you have practices for knowledge sharing?
• How is it organized?
• What type of knowledge do you share?
• Decision-making authority?

Do you know what other teams are working on?

Closing Anything else you think we should have discussed?
Thank you

D Questionnaire
The questionnaire contained four sections: an introduction; two sections with statements (each with a
semi-introduction); and a section for the respondents to highlight improvement areas from eight pre-
selected areas. Possible answers on the statements were from 1 - strongly disagree to 5 - strongly agree.
See the questionnaire below.

59

Part Question/Information

Introduction

You are asked to answer four question about team autonomy, and
four questions about inter-team coordination (definitions of those two
terms will be provided). You are asked to indicate the current state.
The questionnaire is anonymous, and takes no more than 5-7 minutes
to complete. The collected data will be part of the results of a master
thesis in computer science at the Norwegian University of Science
and Technology spring 2022. The thesis seeks to answer how software
development organizations balance inter-team coordination and team
autonomy

Team autonomy

Team autonomy refers to how much freedom a team has while it is
working. Autonomy within the field of software engineering mean
teams are allowed to decide on the priority, design and development
of features, and to set their own scheduled and decide how their work
should be done. The intentions is to see which decisions regarding
day-to-day software engineering activities are made by your team, and
which decision are made outside your team.

• Agile process: It is the team itself that defines, changes and
improves the internal agile framework, ceremonies and processes
(how to work)

• Software requirements: It is the team itself that identifies,
shapes and prioritizes the software requirements (what shall be
in the system)

• Local architectural decisions: It is the team itself that makes
the local architectural decisions (all kinds of technical choices)

• Task execution: It is the team itself that decides how tasks
should be executed and solved (how and by who)

Inter-team
coordination

Inter-team coordination (ITC) is the coordination between two or
more teams. Do not confuse it with intra-team coordination, which is
coordination within a team. ITC involves synchronising the efforts of
multiple teams and managing cross-team dependencies, and it can be
done through scheduled and non-scheduled activities, formal as well
as informal

• Transparency: I am aware of other teams and their areas of
responsibility

• Dependency awareness: We are aware of dependencies to other
teams

• Team synchronisation: We get interrupted by other teams and
their tasks

• Time spent on ceremonies/meetings: I spend more time than
necessary on agile ceremonies and other meetings

Improvement(s)

If there are any, will you point out the most important topics to
improve at Signicat? (max. three out of the eight topics covered in
this questionnaire). If necessary, go back to the question sections to
get an overview of the covered topics

• The most important
• The second most important
• The third most important

60

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Henrik Forbord

Balancing Alignment and Autonomy
in Large-Scale Agile Software
Development

A Mixed-Methods Exploratory Case Study

Master’s thesis in Computer Science
Supervisor: Torgeir Dingsøyr
July 2022

M
as

te
r’s

 th
es

is

