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Estimating direct and indirect genetic effects on
offspring phenotypes using genome-wide summary
results data
Nicole M. Warrington 1,2,3,4,5✉, Liang-Dar Hwang 1,2, Michel G. Nivard 6 & David M. Evans 1,2,3

Estimation of direct and indirect (i.e. parental and/or sibling) genetic effects on phenotypes is

becoming increasingly important. We compare several multivariate methods that utilize

summary results statistics from genome-wide association studies to determine how well they

estimate direct and indirect genetic effects. Using data from the UK Biobank, we contrast

point estimates and standard errors at individual loci compared to those obtained using

individual level data. We show that Genomic structural equation modelling (SEM) outper-

forms the other methods in accurately estimating conditional genetic effects and their

standard errors. We apply Genomic SEM to fertility data in the UK Biobank and partition the

genetic effect into female and male fertility and a sibling specific effect. We identify a novel

locus for fertility and genetic correlations between fertility and educational attainment, risk

taking behaviour, autism and subjective well-being. We recommend Genomic SEM be used

to partition genetic effects into direct and indirect components when using summary results

from genome-wide association studies.
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There is growing interest in estimating maternal genetic
effects, via the intrauterine environment, on offspring
outcomes (for example refs. 1–3) and also in elucidating the

causal effect of maternal environmental exposures on offspring
outcomes (for example refs. 3–5). Likewise, it is also important to
estimate the direct effect of an individual’s own genotype on their
own phenotype independent of any indirect parental effects. These
estimates can subsequently be used in Mendelian randomization
studies to make causal inferences, without introducing biases due
to dynastic effects and assortative mating6–8. However, for correct
inference to be made regarding maternal genetic effects and an
individual’s own genetic effect independent of parental effects,
analyses must adjust for the individual’s own genetic effect on
their own outcome as well as one or both parents. This adjustment
has traditionally been performed using conditional analyses
applied to individual level genotypes from mother-offspring pairs
or parent-offspring trios; however, there are few cohorts world-
wide with large numbers of genotyped mother-offspring pairs or
parent-offspring trios with offspring phenotypes, leading to lim-
ited statistical power in many studies. We have developed a
structural equation model (SEM) that can partition genetic effects
into maternal and offspring mediated components9. This model
can incorporate data from genotyped mother-offspring pairs with
offspring phenotypes, mother-offspring pairs with maternal gen-
otypes and both mother and offspring phenotypes, individuals
with their own genotype and phenotype and mothers with their
own genotype and their offspring’s phenotype. We have recently
described how the maternal and offspring partitioning from this
SEM can be used to facilitate large-scale two-sample Mendelian
randomization studies investigating whether maternal exposures
are causally related to offspring outcomes10.

Although our SEM is flexible in terms of incorporating many
study designs, it is computationally intensive when using indivi-
dual level data, prohibiting its use for genome-wide association
studies (GWAS). Therefore, we wanted to identify other existing
methods that could be used on summary results statistics from
GWAS to estimate the conditional maternal (paternal) and off-
spring genetic effects on a trait. There are a number of multi-
variate methods available that utilize summary statistics from
GWAS of multiple traits. For example, metaCCA11, metaUSAT12,
MTAG13, TATES14, SHOM and SHET

15, mtCOJO16 and most
recently Genomic SEM17 are a subset of the multivariate methods
that have been proposed for use with GWAS summary statistics
to increase statistical power to detect an association with a cor-
related set of traits and diseases. Although we are interested in
combining the summary statistics of the same trait from different
genotypes (i.e. the individuals’ own genotype and their mother’s
genotype), we hypothesize that some of these methods could be
appropriate. However, because we are interested in using the
adjusted maternal and offspring genetic effect in downstream
analyses, such as Mendelian randomization, we need methods
that would provide unbiased estimates of parental and offspring
genetic effects (and standard errors) for each variant. In addition,
if we are to use publicly available summary statistics from large
GWAS, such a method would need to account for any known or
unknown overlap of individuals contributing to maternal
(paternal) and offspring GWAS.

In this manuscript, we compare several different multivariate
methods to identify the most appropriate method for partitioning
the genetic effect of a trait into maternal and offspring compo-
nents, based on how well the effect estimates compare to those
from our SEM using individual level data, the computational time
and how well the method accounts for unknown sample overlap.
We use birth weight to compare the different methods as we have
a substantial number of known associated genetic loci for birth
weight, with the genetic effect partitioned into maternal and

offspring genetic components. We subsequently use the most
appropriate method to conduct conditional GWAS of fertility,
partitioning the effects into parental and offspring mediated
components providing evidence for how these different loci exert
their effect on number of children in a family.

Results
We searched the literature for multivariate methods that fit the
following four criteria: (1) had published code or software, (2)
used summary results statistics and did not require individual
level data, (3) accounted for sample overlap and (4) produced an
effect size estimate and standard error for each trait. In addition
to our published structural equation model (SEM)9 (which can
use either individual level data, or variance-covariance matrices,
which can be constructed using GWAS summary results statis-
tics) and linear approximation of the SEM3, we identified three
published methods including multi-trait analysis of GWAS
(MTAG)13, multi-trait-based conditional and joint analysis using
GWAS summary data (mtCOJO)16 and Genomic SEM17. MTAG
is a multivariate method, which uses genome-wide GWAS sum-
mary results from multiple correlated phenotypes to increase
power to detect pleiotropic loci. mtCOJO is another multivariate
method, which uses summary results data but is designed to
estimate genetic effects on a trait conditional on a correlated
phenotype(s). Although MTAG and mtCOJO are not specifically
designed to partition genetic effects into maternal and offspring
components (i.e. by conditioning on a correlated genotype), they
are user friendly and computationally efficient, and given the
dearth of existing software packages to generate conditional
genetic effect estimates using genome-wide summary results data,
we were interested in investigating whether they would approx-
imate the effects of interest accurately. Genomic SEM on the
other hand is a highly flexible (albeit computationally intensive)
method that allows users to specify a wide range of models to fit
to the data. A summary of each of the methods and their
underlying assumptions is provided in Table 1.

Birth weight GWAS. Approximately 19 million genetic variants
were included in the GWAS analysis of own and offspring birth
weight that passed our filtering criteria (INFO score <0.4 and
minor allele frequency <0.1%). We excluded variants from the
SEM using summary statistics if the minor allele frequency in the
sample was <0.5%; this led to ~11 million genetic variants with
results. MTAG also implements additional filtering criteria; var-
iants with missing values, variants that are not SNPs, variants
with duplicated rs numbers and variants that are strand ambig-
uous are excluded leading to ~14 million genetic variants with
results.

We used bivariate LD score regression18 to estimate the sample
overlap between the GWAS of own and offspring birth weight.
We observed a regression intercept of 0.1287 (0.0078) in the
analyses where there were individuals in both the GWAS of own
and offspring birth weight, indicating that ~91,790 individuals
were in both GWAS (true overlap is 85,503 individuals). In the
analyses where there were unique individuals in the GWAS of
own and offspring birth weight, the observed regression intercept
from LD score regression was 0.0161 (0.0064), indicating that
~8396 individuals were in both GWAS (true overlap is 0
individuals). These estimates of sample overlap were used in the
SEM analysis using covariance matrices derived from the GWAS
summary statistics.

Comparison with SEM using individual level data. We com-
pared the effect size and standard errors estimated using the SEM
with the individual level data to those estimated using methods
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based on the summary statistics from the GWAS of own and
offspring birth weight for the 300 autosomal genome-wide sig-
nificant SNPs identified in the latest GWAS of birth weight3. Due
to the additional exclusions, MTAG had 258 SNPs available for
comparison and the SEM using summary statistics had 298 SNPs.
We use the estimates from the SEM using individual level data as
a baseline comparator as we have previously shown that they are
asymptotically unbiased estimates of the maternal and offspring
genetic effects9. Figure 1 (also summarized in Table 2) indicates
that the effect sizes for each of the 300 genetic variants are
accurately estimated using the SEM based on covariance matrices
derived from the summary statistics, the linear approximation of
the SEM or Genomic SEM, and these do not appear to be
influenced by sample overlap. Given mtCOJO and MTAG were
not developed to estimate maternal and offspring specific genetic

effects, it is perhaps not surprising that there appears to be a slight
underestimation of the effect sizes using mtCOJO, which is
consistent with and without sample overlap. In contrast, the effect
size estimates from MTAG (which also is not explicitly developed
for estimating maternal and offspring genetic effects) differ from
the SEM effect sizes for both the maternal and offspring effect,
with and without sample overlap.

The comparison of the standard errors for the genetic effects
for each of the 300 genetic variants are displayed in Fig. 2 and a
summary of the comparison is presented in Table 2. The standard
errors for both the maternal and offspring effect are comparable
to the SEM using individual level data when using Genomic SEM,
both with and without sample overlap. They are also comparable
using the linear approximation of the SEM when there is no
sample overlap, but are slightly inflated relative to the SEM using

Table 1 Summary of each of the methods used to derive maternal and offspring specific genetic effects using summary statistics
from a GWAS of own birth weight and a GWAS of offspring birth weight.

Method Major assumptions Data used Variant exclusions

SEM using summary
statistics

• Multivariate normal outcomes
• Allele frequency, beta coefficient and
SNP variance are consistent across the
three groups (individuals with own birth
weight only, with offspring birth weight
only or with both own and offspring
birth weight)

• LD reference sample and GWAS
samples all drawn from the same
population for LD score regression
analysis

• The effect sizes for each genotype are
identically normally distributed with
mean zero and the same variance for LD
score regression analysis

• Covariance matrices derived from:
• GWAS summary results data for own
and offspring birth weight

• Estimated sample overlap using
bivariate LD score regression with a
phenotypic correlation between own
and offspring birth weight of 0.24

• European reference panel from LD
score regression

Minor allele frequency <0.5%

Linear
approximation of SEM

• No sample overlap between GWAS of
offspring birth weight and GWAS of own
birth weight

• GWAS summary results data for own
and offspring birth weight

None

MTAG • LD reference sample and GWAS
samples all drawn from the same
population for LD score regression
analysis

• The effect sizes for each genotype are
identically normally distributed with
mean zero and the same variance for LD
score regression analysis

• All SNPs share the same variance-
covariance matrix of effect sizes
across traits

• GWAS summary results data for own
and offspring birth weight

• European reference panel from LD
score regression

Variants with missing values,
that are not SNPs, with
duplicated rs numbers or that
are strand ambiguous

mtCOJO • LD reference sample and GWAS
samples all drawn from the same
population for LD score regression
analysis

• The effect sizes for each genotype are
identically normally distributed with
mean zero and the same variance for LD
score regression analysis

• GWAS summary results data for own
and offspring birth weight

• Reference panel of 50,000 randomly
sampled individuals from the UK
Biobank

• European reference panel from LD
score regression

Multi-allelic variants

Genomic SEM • LD reference sample and GWAS
samples all drawn from the same
population for LD score regression
analysis

• The effect sizes for each genotype are
identically normally distributed with
mean zero and the same variance for LD
score regression analysis

• All SNPs share the same variance-
covariance matrix of effect sizes
across traits

• European reference panel from LD
score regression

• GWAS summary results data for own
and offspring birth weight

None
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individual level data when there is sample overlap that is not
accounted for. This is expected as the standard error equations for
the linear approximation would need to adjust for twice the
covariance between estimates of the maternal and offspring
genetic effects when there is sample overlap. In contrast, the
standard errors for the maternal and offspring effects are
accurately estimated using the SEM based on covariance matrices
derived from the summary statistics when there is sample overlap
that has been estimated using LD score regression and
incorporated in the model, but they are underestimated when
there is no sample overlap. This could be due to the small sample
overlap that was estimated by LD score regression (8396
individuals were estimated to overlap both GWAS when in
reality there were no individuals overlapping. This could be due
to e.g. LD score regression identifying cryptic relatedness across
the GWAS) and included in the SEM using covariance matrices.
We showed in the initial paper describing the SEM9 that there is
an increase in power, due to a reduction in the standard error,
when individuals with both their own and their offspring’s
phenotype are included in a model that specifies this relationship.
Therefore, the 8396 individuals estimated to overlap between the
GWAS will result in a reduction of the standard error in the SEM
using summary statistics (where we model this relationship) in
comparison to the SEM using individual level data (where no
sample overlap is modelled). As expected due to the difference in

purpose of the method, the standard errors estimated using
MTAG and mtCOJO were smaller than those estimated by the
SEM using individual level data for the maternal and offspring
genetic effect, with and without sample overlap, with the largest
difference for MTAG.

We conducted heterogeneity tests for the 300 autosomal
genome-wide significant SNPs between the SEM using individual
level data and each of the summary statistics methods
(Supplementary Data 1 and 2). After Bonferoni correction for
the number of SNPs with results, as we would expect, we
identified 18 SNPs with significant heterogeneity between the
MTAG estimates and the SEM for the offspring effect and 9 SNPs
for the maternal effect (3 SNPs showed significant heterogeneity
for both the maternal and offspring effect) when there was sample
overlap between the GWAS of own and offspring birth weight
(Supplementary Data 1). In contrast, were unable to detect
significant heterogeneity for any SNPs using mtCOJO (offspring
effect Pmin= 0.039, maternal effect Pmin= 0.083), the SEM based
on covariance matrices derived from the summary statistics
(offspring effect Pmin= 0.700, maternal effect Pmin= 0.585), the
linear approximation of the SEM (offspring effect Pmin= 0.707,
maternal effect Pmin= 0.595) or Genomic SEM (offspring effect
Pmin= 0.762, maternal effect Pmin= 0.758). Similar results were
seen when there was no sample overlap between the GWAS of
own and offspring birth weight (Supplementary Data 2).

Fig. 1 Comparison of the effect size estimates from the SEM using individual level data (x-axis) and the various different methods using the summary
statistics from the GWAS of own and offspring birth weight (y-axis) for the 300 autosomal genome-wide significant SNPs from Warrington et al.3.
The columns summarize the results from the analysis including unique individuals in the GWAS of own and offspring birth weight for the offspring and
maternal effect, respectively, followed by the results from the analysis where there were overlapping samples in the GWAS of own and offspring birth
weight for the offspring and maternal effect.
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Comparison of computational time. The computational time
was not influenced by sample overlap. MTAG, mtCOJO and the
linear approximation of the SEM all took approximately between
30 and 60 min (see Table 2 for precise computational time for
each method). When running each chromosome in parallel,
Genomic SEM took under 4 h to complete. In contrast, the SEM
based on covariance matrices derived from the summary statistics
took over 60 h to complete, indicating that it is much more
computationally intensive than the other methods.

Evidence of inflation of test statistics across the genome.
Manhattan plots and Q–Q plots for each of the conditional
GWAS are presented in Supplementary Figs. 1–20. The LD score
regression intercepts and number of genome-wide significant
(P < 5 × 10−8) SNPs are presented in Table 2. Inflation in the test
statistics was detected for the SEM based on covariance matrices
derived from the summary statistics when there was no sample
overlap (LD score regression intercepts: offspring= 1.754,
maternal= 1.197). This resulted in a larger number of variants/
loci being identified as genome-wide significant (Table 2). This
appears to predominantly be driven by the underestimation of the
standard error (as seen in Fig. 2), which is most prominent for
SNPs with lower minor allele frequency or SNPs where the
maternal and offspring genetic effect are going in opposite

directions. Deflation in the test statistics was detected for the
linear approximation of the SEM when there was sample overlap
(LD score regression intercepts: offspring= 0.939, maternal=
0.941). This is expected as the standard errors are slightly larger
because the equations do not account for sample overlap. The LD
score regression intercepts for the other methods ranged between
0.971 and 1.066, indicating that there was not much genome-wide
inflation in the test statistics.

We defined a birth weight associated locus as being 500 kb
from a previously identified birth weight associated sentinel
SNP3. Although a large number of birth weight associated loci
were detected using some of the methods (5–546 loci; Table 2),
the majority of them have been previously associated with birth
weight (which we assume are true positives). The SEM using
summary statistics detected a large number of what are
presumably false positives (those loci that have not previously
been associated with birth weight in far larger samples of
individuals3), particularly when there is no sample overlap, which
is in line with the inflated LD score intercepts. MTAG also
detected a substantial number of false positives, whereas the three
other methods only detected up to three false positives.

Fertility GWAS. Through the methods comparison, we have
shown that Genomic SEM outperforms the other methods in

Fig. 2 Comparison of the standard error from the SEM using individual level data (x-axis) and the various different methods using the summary
statistics from the GWAS of own and offspring birth weight (y-axis) for the 300 autosomal genome-wide significant SNPs from Warrington et al.3.
The columns summarize the results from the analysis including unique individuals in the GWAS of own and offspring birth weight for the offspring and
maternal genetic effect, respectively, followed by the results from the analysis where there were overlapping samples in the GWAS of own and offspring
birth weight for the offspring and maternal genetic effect.
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terms of its ability to accurately estimate conditional effect sizes
and standard errors at individual genetic variants and its ability to
account for sample overlap appropriately. It is also a highly
flexible method, allowing the estimation of other genetic effects,
such as paternal-specific effects. To illustrate application of this
method and how it can be extended to simultaneously estimate
conditional maternal, paternal and offspring genetic effects, we
applied it to fertility data from the UK Biobank. Given an off-
spring’s genotype is correlated ~0.5 with both parental genotypes,
and the offspring could influence parental decision to have
additional children (for example, due to certain behavioural
traits), it is important to adjust for offspring specific genetic
effects when investigating the genetic determinants of fertility.
We will refer to this offspring specific genetic effect as a sibling-
specific effect as we are estimating it using the number of siblings
an individual has. Additionally, we will estimate the female-
specific genetic effect on fertility using the number of children
mothered and the male-specific genetic effect on fertility using the
number of children fathered.

Results from the unconditional GWAS analysis conducted in
BOLT-LMM of the number of children fathered, the number of
children mothered and the number of siblings can be visualized in
Supplementary Fig. 21. We conducted two separate analyses in
Genomic SEM; firstly we calculated only the female and sibling-
specific effects using the GWAS results from number of children
mothered and number of siblings (Supplementary Fig. 22), and
secondly we utilized all three GWAS to calculate the female, male
and sibling-specific effects (Fig. 3). Using LD score regression18,
we estimated the genetic correlations between the unconditional
and conditional GWAS. There was a strong genetic correlation
between the number of children mothered (unconditional) and
the female-specific effect on fertility (analysis one: rg= 0.941,
SE= 0.006; analysis two: rg= 0.932, SE= 0.008) and similarly
between the number of children fathered and the male-specific
effect on fertility (analysis two: rg= 0.904, SE= 0.013). In
contrast, the genetic correlation was weaker between the number
of siblings and the sibling-specific effect, particularly once male-
specific effects were incorporated (analysis one: rg= 0.712,
SE= 0.025; analysis two: rg= 0.173, SE= 0.058). We also used
LD score regression to estimate the genetic correlation between
the conditional GWAS for male and female fertility (rg= 0.871,
SE= 0.023), male fertility and sibling effects (rg=−0.826,
SE= 0.023) and female fertility and sibling effects (rg=−0.812,
SE= 0.019).

Both male and female fertility from the conditional analysis
were negatively genetically correlated with years of education
(male rg=−0.17, SE= 0.03, P= 7 × 10−8; female rg=−0.20,
SE= 0.03, P= 3 × 10−13) and positively genetically correlated
with risk-taking behaviours (male rg= 0.27, SE= 0.05,
P= 1 × 10−7; female rg= 0.17, SE= 0.04, P= 6 × 10−5; Supple-
mentary Fig. 23), whereas sibling effects were not correlated with
years of education or risk-taking behaviours. Additionally, male
fertility was negatively genetically correlated with autism
spectrum disorder (rg=−0.24, SE= 0.07, P= 6 × 10−4). Sub-
jective well-being was also genetically correlated with fertility;
positively correlated with male fertility (rg= 0.23, SE= 0.06,
P= 7 × 10−5) and negatively correlated with sibling effects
(rg=−0.23, SE= 0.06, P= 3 × 10−4).

The results from analysis one estimating the female and
sibling-specific effects only on fertility, where we identified four
loci (P < 5 × 10−8) associated with the number of children
mothered, after conditioning on the number of siblings, and
one locus associated with the number of siblings, conditional on
the number of children mothered. When we extended the
Genomic SEM model to estimate female, male and sibling-
specific genetic effects in analysis two, we identified six loci

associated with maternal-specific effects, one locus associated
with paternal-specific effects (in the same region as one of the
maternal-specific loci) and one locus associated with sibling-
specific effects (Fig. 3). After conditioning on male fertility, the
locus associated with a sibling-specific effect in the female/sibling
only analysis attenuated slightly (P= 3.6 × 10−5), even though it
is a different locus to the one identified on chromosome 3 for the
male and female-specific effects. The full results for each of these
genome-wide significant loci are presented in Supplementary
Data 3. Interestingly, a number of the genes nearest to our
genome-wide significant loci have previously been associated with
age at first sexual intercourse (ESR1, CADM2), number of sexual
partners (CADM2), educational attainment (ESR1, TUBB3,
MC1R, CADM2, MDFIC) and risk-taking behaviour (MDFIC).

Discussion
We compared five different statistical methods to estimate
maternal and offspring specific genetic effects on an offspring
outcome using summary statistics from GWAS and have shown
that Genomic SEM outperforms the other methods in terms of
accurate estimation of the effect size and standard error, ability to
account for sample overlap appropriately, and flexibility to esti-
mate other genetic effects such as a paternal-specific effect. It was
more time consuming than several of the other methods; how-
ever, running the chromosomes in parallel allowed the GWAS to
be completed in under 4 h. Additionally, we detected some
deflation in the test statistics that could have been due to the use
of the stricter version of genomic control that was implemented
in the version of the software used for this analysis; this has been
relaxed in more recent releases. Subsequently, we used Genomic
SEM to identify the genetic loci associated with male and female
fertility, after adjusting for sibling genetic effects, and identified
seven loci, one of which was novel.

There are several strengths and limitations of our study. First,
not all of the five methods we examined were developed to
condition on a correlated genotype (i.e. parental and/or offspring
genotype in the present context). In particular, MTAG and
mtCOJO are multivariate methods that were specifically devel-
oped for other purposes (i.e. to increase power to detect pleio-
tropic loci, and to estimate genetic effects conditional on a
correlated phenotype, respectively). Previous work has shown
that both methods perform excellently when applied to the
situations for which they were originally developed13,16. However,
given the paucity of existing software to estimate conditional
effects from summary results data especially genome-wide, we
were interested in whether these user friendly software packages
could also be used to approximate conditioning on a correlated
genotype, and generate accurate parental and offspring specific
genetic effects on a phenotype.

Of the comparisons that we made across all the different
methods (i.e. comparing effect size estimates and standard errors,
computational time, inflation in the test statistics, ability to
account for sample overlap and ability to be extended to incor-
porate additional genetic effect estimates), Genomic SEM per-
formed best on all comparisons except computational time. In
contrast, mtCOJO and MTAG did not yield accurate estimates or
SEs of conditional maternal and/or offspring genetic effects.
Although we based our conclusions on findings from a single
large dataset, we believe that our results are likely to hold more
generally and are a reflection of Genomic SEM’s flexibility in
being able to accurately model the relationship between parental
and offspring genotypes (i.e. neither MTAG nor mtCOJO spe-
cifies this relationship accurately—see below for further discus-
sion of this point) and Genomic SEM’s ability to take into
account sample overlap and cryptic relatedness across the
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different GWAS (i.e. the weighted linear model does not estimate
sample overlap and utilization of this information is not optimal
in ordinary SEM).

There were several limitations with using summary statistics in
the SEM, which resulted in inflation in the test statistics. First, we
estimated the sample overlap using LD score regression18, which
was overestimated in both of our analyses with and without
sample overlap. This overestimation has been described pre-
viously when there is population stratification19, and the authors
suggest a modified formula to calculate the overlap. We did not
use this modified formula in the current analysis as we and others
have previously used LD score regression to estimate sample
overlap and we wanted to get an idea of how this would
perform3,20. It could also be due to cryptic relatedness between
the GWAS; for example, there might be close relatives in both
GWAS of own and offspring birth weight that are adding to this
overestimation. Second, estimates of the maternal and offspring
specific genetic effects can vary dramatically if the phenotypic

correlation between the maternal and offspring phenotype is
misspecified (results not shown). Given we had access to the
phenotypic data that was used for the GWAS analysis, we were
able to obtain a good estimate of the phenotypic correlation;
however, this might be more difficult to estimate accurately if
using publically available GWAS results. Third, this method
assumes that the effect size estimates from the unadjusted GWAS
are estimated accurately and does not account for the standard
errors. Therefore, for low frequency genetic variants that have
large standard errors, we saw the method performed poorly. We
also found the method performed poorly for a subset of genetic
variants where the maternal-specific genetic effect on the off-
spring outcome went in the opposite direction to the offspring
specific genetic effect, particularly when there was no sample
overlap between the unadjusted GWAS. However, as we showed
in the initial paper describing the SEM9, including some raw data
in addition to the covariance matrices estimated from the sum-
mary statistics improves estimation of the maternal and offspring

Fig. 3 Manhattan plot and quantile–quantile (Q–Q) plot for the fertility GWAS estimating male, female and sibling-specific genetic effects using
Genomic SEM. 237,768 women from the UK Biobank contributed to the unconditional GWAS of the number of children mothered, 199,570 men
contributed to the GWAS of the number of children fathered and 430,466 individuals contributed to the GWAS of the number of siblings (see
Supplementary Fig. 26 for the Manhattan plots of the unconditional GWAS). Point estimates for male, female and sibling effects and their standard errors
were estimated using diagonally weighted least squares as implemented in Genomic SEM, and two-sided P-values obtained from Z tests on these
estimates. The two-sided association P-value, on the −log10 scale, obtained from Genomic SEM for each of the SNPs (y-axis) was plotted against the
genomic position (NCBI Build 37; x-axis). Association signals that reached genome-wide significance (P < 5 × 10−8) are shown in red. In the Q–Q plots, the
black dots represent observed two-sided P-values and the grey line represents expected two-sided P-values under the null distribution. The SNP
heritability, estimated using LD score regression, was 0.033 (SE= 0.003) for male fertility, 0.042 (SE= 0.003) for female fertility and 0.012 (SE= 0.001)
for sibling-specific effects. P-values are not adjusted for multiple comparisons.
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specific genetic effects. It is likely that the SNPs that reached
genome-wide significance using this method, but are unknown
birth weight associated loci, are false positives for three main
reasons; (1) as seen in the Manhattan plots presented in the
Supplementary Material, the majority of these SNPs are single-
tons and not part of LD blocks, (2) none of the other methods
included in the comparison identified these loci and (3) the most
recent GWAS of birth weight3, which included the data in this
study in addition to data from many birth cohorts and also
partitioned the genetic effect into maternal and offspring com-
ponents, did not identify these loci.

The linear approximation of the SEM assumes no sample
overlap, so performed well when there was no overlap; however,
the standard errors were overestimated when there was sample
overlap, deflating the test statistics. The formula for estimating
the standard error of the maternal and offspring specific effects
could be extended to account for any sample overlap, but it would
need to rely on LD score regression to estimate the sample
overlap which has issues as described previously. Otherwise, this
method performed well in terms of accurately estimating the
maternal and offspring specific effects and was one of the fastest
methods to perform the conditional analysis.

Given that MTAG is not designed to estimate maternal and
offspring specific effects at individual loci, it was not surprising
that it performed poorly in terms of accurately partitioning the
genetic effect into maternal and offspring components. This is
because the MTAG model estimates combined pleiotropic genetic
effects on both phenotypes (i.e. in the context of this manuscript,
a pleiotropic effect on own birth weight and offspring birth
weight c.f. Supplementary Fig. 24). Intuitively, the MTAG model
borrows power from a correlated phenotype to increase overall
power to detect association. Previous work by other groups
suggests that MTAG is likely to be a powerful approach if the goal
of the investigator is locus discovery- particularly in situations
where the magnitude of the genetic correlation between variables
is high, and where the pattern of genetic effects at the individual
SNP level is concordant with the genetic correlation between the
phenotypes across the genome more broadly13. In contrast, our
results suggest that if the focus is on locus characterization/
accurately partitioning effects into maternal and offspring com-
ponents (e.g. for downstream MR analyses where it is important
to block potentially pleiotropic paths through related
individuals10) then one of the SEM based procedures discussed in
this manuscript will be more appropriate.

Finally, mtCOJO was originally developed to condition the
outcome on one or more covariate phenotypes16; whereas the other
methods we compare are equivalent to conditioning the outcome
on the genotype. For example, to estimate the offspring specific
genetic effect, mtCOJO is conditioning the genetic effect on off-
spring birth weight rather than maternal genotype. This means that
the effects estimated by mtCOJO were slightly different to those
obtained using the SEM based approaches. We therefore recom-
mend that when the goal is to accurately estimate maternal and
offspring genetic effects (e.g. for downstream Mendelian rando-
mization analyses) that other methods be used.

We performed the first GWAS partitioning the genetic effect
into male and female fertility specific genetic effects and a sibling-
specific effect. The heritability of number of children ever born
has been estimated to be between 0.24 and 0.4321, and the var-
iance explained by common genetic variants (SNP based herit-
ability) has been estimated to be ~10%22. Although there have
been two GWAS previously conducted on number of children
born23,24, no study to date has estimated the conditional male,
female and sibling genetic effects at individual genetic loci. Both
previous studies observed significant genetic correlations for the
number of children between men and women (Barban and

colleagues24: rg= 0.97, SE= 0.095; Mathieson and colleagues23:
rg= 0.74, 95% CI= 0.66–0.82), which our findings from the
conditional analysis are consistent with (rg= 0.871, SE= 0.023).
We also identified a strong negative genetic correlation between
both male/female fertility and sibling effects; this is likely to be
due to a technical artefact of the analyses as described by Wu and
colleagues25. We replicate the negative genetic correlation
between years of education and fertility described in Barban
et al.24. Furthermore, we found a positive genetic correlation
between risk-taking behaviour and both male and female fertility,
showing that having more increasing alleles for the number of
children is associated with a higher genetic risk for partaking in
risk-taking behaviours. Due to our ability to partition the genetic
effect, we were also able to identify a negative genetic correlation
between male fertility and autism, indicating that fathers at
genetically increased risk of autism are more likely to have fewer
children. This relationship between fertility and autism, particu-
larly in males, has previously been shown in a large population
based study in Sweden using patients with various psychiatric
disorders and their unaffected siblings26. Interestingly, we iden-
tified a positive genetic correlation between male fertility and
subjective well-being and a negative genetic correlation with the
sibling effect. We identified six of the previous 28 statistically
independent loci for fertility, and one of the 16 loci for
childlessness23. In addition, we identified a novel locus on chro-
mosome 9 that is associated with female fertility. This locus is
near RFX3, which harbours genetic variants that have previously
been associated with smoking initiation. Our genetic correlation
analysis shows a positive genetic correlation between both male
and female fertility and smoking initiation; however, it does not
meet our multiple testing threshold.

In conclusion, when estimating maternal and offspring (and
paternal) specific genetic effects on an offspring outcome using
GWAS summary statistics, we recommend using Genomic SEM.

Methods
Participants. The UK Biobank has ethical approval from the North West Multi-
Centre Research Ethics Committee (MREC), which covers the UK, and all parti-
cipants provided written informed consent. UK Biobank phenotype data was
available on 502,543 individuals, of which 280,142 reported their own birth weight
at either the baseline or first two follow-up visits. There were 7701 individuals who
were part of a multiple birth and were excluded from the analyses. There were
10,670 individuals who reported their birth weight at more than one visit, with 83
individuals reporting the two values to be different by more than 1 kg; these
individuals were excluded from the analyses. For those individuals who reported
different values between baseline and follow-up (<1 kg) we took the measure from
the first reported visit for the analyses. Finally, we excluded individuals who
reported their birth weight to be <2.5 kg or >4.5 kg, as these are implausible for live
term births before 1970. In total, 234,154 individuals had data on their birth weight
matching our inclusion criteria.

Women in the UK Biobank were also asked to report the birth weight of their
first child to the nearest pound and were converted to kilograms for analyses
(N= 216,782). We excluded individuals with multiple measures that differed by
>1 kg (N= 29) or if their birth weight was <2.2 kg (5 pounds) or >4.6 kg (10
pounds), leaving 210,423 individuals with birth weight of their first child matching
our inclusion criteria.

We analysed genetic data from the April 2018 release of imputed data from the
UK Biobank, a resource that is described extensively elsewhere27. In addition to the
quality control metrics performed centrally by the UK Biobank, we defined a subset
of white European ancestry, unrelated individuals. First, we generated ancestry
informative principal components (PCs) in the 1000 genomes samples. The UK
Biobank samples were then projected into this PC space using the single nucleotide
polymorphism (SNP) loadings obtained from the PC analysis using the 1000
genomes samples. The UK Biobank participants’ ancestry was classified using
K-means clustering centered on the three main 1000 genomes populations
(European, African, South Asian). Those clustering with the European cluster were
classified as having European ancestry. The UK Biobank participants were asked to
report their ethnic background. Only those reporting as either “British”, “Irish”,
“White” or “Any other white background” were included in the clustering analysis.
Second, to identify a subset of unrelated individuals in the UK Biobank, we
generated a genetic relationship matrix in the GCTA software package28 (version
1.90.2) and excluded one of every pair of related individuals with a genetic
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relationship greater than 9.375%. A subset of 257,696 individuals with genotype
data, a valid birth weight for themselves or their first child, were unrelated and were
genetically of white European ancestry remained for analysis. Of these, 72,274 were
men so only reported their own birth weight, 25,951 women reported only their
own birth weight, 73,968 reported only the birth weight of their first child and
85,503 reported both. We adjusted both the individuals’ own birth weight and the
birth weight of their first child for the principal components provided by the UK
Biobank, assessment center and genotyping array, and sex for own birth weight,
and then created z-scores.

Because we were interested in how each of the statistical methods handled
sample overlap, we created two sets of data (Fig. 4). The first contained all of the
data available, including the 85,503 that contributed to both the GWAS of own
birth weight (N= 183,728) and the GWAS of offspring birth weight (N= 159,471).
The second contained all of the data for the GWAS of offspring birth weight
(N= 159,471) but excluded those individuals from the GWAS of own birth weight
that were included in the GWAS of offspring birth weight
(N= 183,728− 85,503= 98,225).

GWAS analysis. GWAS of own and offspring birth weight was conducted using a
linear mixed model implemented in BOLT-LMM v2.3.229 to account for popula-
tion structure and subtle relatedness. Only autosomal genetic variants which were
common (minor allele frequency >0.1%), had Hardy-Weinberg equilibrium P-
value > 1 × 10−6 and missingness <0.1 were included in the genetic relationship
matrix (GRM). We excluded genetic variants with an INFO score < 0.4 and minor
allele frequency <0.1% from the analysis in BOLT-LMM (BOLT-LMM uses the full
sample to exclude SNPs based on these thresholds, so some SNPs may have minor
allele frequency <0.1% in our subset of the UK Biobank data with clean birth
weight data). We then used the summary statistics from the GWAS of own and
offspring birth weight in the following analyses to estimate the conditional
maternal and offspring genetic effects at each genetic variant.

SEM analysis using summary statistics. The SEM to estimate the adjusted
maternal and offspring genetic effects has been described in detail previously9

(Supplementary Fig. 25). Briefly, to estimate the parameters for the adjusted off-
spring and maternal genetic effects on birth weight, we use three observed variables
available in the UK Biobank; the participant’s genotype, their own self-reported
birth weight, and in the case of the UK Biobank women, the birth weight of their
first child. Additionally, the model comprises two latent (unobserved) variables,
one for the genotype of the UK Biobank participant’s mother and one for the
genotype of the participant’s offspring. From biometrical genetics theory, these
latent genetic variables are correlated 0.5 with the participant’s own genotype, so
we fix the path coefficients between the latent and observed genotypes to be 0.5. We
have previously described how the SEM can be fit with either the individual level
data or observed covariance matrices derived from the individual level data9. To
derive the observed covariance matrices from GWAS summary statistics, we need
the allele frequency of the genetic variant, beta coefficient from the regression
model of the genetic variant on own or offspring phenotype, variance of the
phenotype (which will be one if the phenotype was standardized prior to the
regression analysis) and the sample size. We assume that the allele frequency, beta

coefficient and variance is consistent across the following three groups, but the
sample size will differ: individuals with their own phenotype only, individuals with
their offspring’s phenotype only and individuals with both. We therefore need to
estimate the sample overlap from the summary statistics in order to include the
sample size for each of the covariance matrices. To do this, we performed bivariate
linkage disequilibrium (LD) score regression (version 1.0.0) analysis using the
summary statistics from the GWAS of own birth weight and the GWAS of off-
spring birth weight and used the regression intercept to estimate the number of
individuals in both analyses. We used a phenotypic correlation between own and
offspring birth weight of 0.24 in the calculation, which was estimated using the
cleaned phenotype data that was included in the GWAS analysis. We have pre-
viously shown that the SEM has difficulty optimizing with low frequency variants,
so we excluded SNPs with a minor allele frequency less than 0.5%. For each genetic
variant we then calculated the observed covariance matrices from the summary
statistics and fit the SEM with the relevant estimated sample sizes. We calculated a
Wald P-value for the maternal and offspring genetic effects using the effect size
estimates and their standard errors. We conducted the analysis of each chromo-
some in parallel to reduce the computational time. Analyses were conducted in R
(version 3.4.3) using the OpenMx package (version 2.6.9).

Analysis using a linear approximation of the SEM. We have previously derived a
weighted linear model that is a good approximation of the SEM but substantially
less computationally intensive3. This model uses a linear transformation of the
effect sizes from the GWAS of own birth weight and the GWAS of offspring birth
weight based on the principles of ordinary least squares linear regression. The
offspring effect at each genetic variant is estimated as:
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Where β̂_(o_adj) is the offspring effect adjusted for the effect of maternal genotype,
β̂_(m_unadj) is the unadjusted maternal effect from the GWAS of offspring birth
weight and β̂_(o_unadj) is the unadjusted offspring effect from the GWAS of own
birth weight. Likewise, the maternal effect is estimated as:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
9
var β̂munadj

� �
þ 4

9
var β̂ounadj

� �r
ð4Þ

Where β̂_(m_adj) is the maternal effect adjusted for the effect of offspring
genotype. The full derivation can be found in Warrington et al. (2019)3. Similar to
the SEM using summary statistics, we calculated a Wald P-value for the maternal
and offspring genetic effects using the effect size estimates and their standard
errors. This method assumes that the two unadjusted GWAS are independent, and

Fig. 4 Schematic of the study design for comparing methods using self-reported birth weight data from the UK Biobank. We conducted two sets of
analysis, one with and one without sample overlap between the genome-wide association studies (GWAS), to investigate the effect of sample overlap in
each of the methods.
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do not contain any sample overlap. We performed the linear transformation in R
(version 3.4.3) and each of the chromosomes were run in parallel to reduce the
computational time.

Analysis using MTAG. MTAG enables joint analysis of multiple traits using
summary statistics from GWAS, while accounting for the possibility of overlapping
samples, and produces trait-specific effect estimates for each genetic variant13. It is
based on the idea that when GWAS estimates from different traits are correlated,
the SNP effect estimates can be improved by incorporating information from the
other correlated traits. This method was not developed to estimate SNP effects
conditional on parental genotypes; however, we were interested in investigating
how well it approximated the maternal and offspring genetic effects on birth weight
(Supplementary Fig. 24). We used python version 2.7.12 and set the lower sample
size bound to zero (--n_min 0.0) when running MTAG.

Analysis using mtCOJO. mtCOJO16 performs an approximate multi-trait-based
conditional GWAS using summary statistics from a GWAS of two or more traits.
For our birth weight analysis, the method approximates the following two models
(Supplementary Fig. 26):

BW ¼ βoff BWoff þ βSNP own;iSNPi þ ε ð5Þ

BWoff ¼ βownBW þ βSNP off ;iSNPi þ εoff ð6Þ
where BW is the individual’s own birth weight, BWoff is offspring birth weight,
SNPi is the ith SNP, βoff is the effect of offspring birth weight on the an individual’s
own birth weight, βSNP_own,I is the effect of SNPi on the individual’s own birth
weight, βown is the effect of individual’s own birth weight on the their offspring’s
birth weight, βSNP_off,I is the effect of SNPi on offspring birth weight, ɛ and ɛoff are
the residuals. Although this method conditions on the phenotype of the other
individual in the pair (i.e. conditioning on the offspring’s phenotype when ana-
lysing own birth weight, rather than their genotype), we wanted to investigate how
well this approach would approximate conditioning on the genotype. In other
words, we were interested in investigating how well β̂_(SNP_own,i) approximates
β̂_o from the SEM for SNP i, and β̂_(SNP_off,i) approximates β̂_m.

To conduct analysis in mtCOJO, we needed a reference sample with individual
level genotypes for LD estimation. Therefore, we randomly sampled 50,000
individuals from the UK Biobank and extracted their imputed genetic data, using
Plink2 (released 18 March 2019), for each of the unique genetic variants that were
included in the cleaned GWAS summary statistics. mtCOJO could not handle
genetic variants that had the same rs number but different alleles (i.e. multi-allelic
markers), so we removed all duplicate rs numbers from the reference dataset. Using
this reference dataset, we conducted the mtCOJO analysis with the default
parameters in GCTA (version 1.92.0beta3), using the summary statistics from the
GWAS of own birth weight as the outcome and conditioning on offspring birth
weight and then using the summary statistics from the GWAS of offspring birth
weight as the outcome and conditioning on own birth weight.

Analysis using Genomic SEM. Genomic SEM17 is a highly flexible, two stage
multivariate statistical method for analysing the joint genetic architecture of traits
using GWAS summary results statistics. In stage one, a K order genetic covariance
matrix is estimated from the genome-wide summary results data of K GWAS using
LD score regression17. Estimates of the standard errors for each of the variance-
covariance terms, which account for sample overlap between the GWAS are also
obtained. This stage contrasts with ordinary structural equation modelling, which
uses a covariance matrix obtained from individual level data (e.g. a covariance
matrix derived from individual level genotype, own birth weight and offspring
birth weight). In stage two, a user specified model is then fit to the genetic cov-
ariance matrix in an attempt to explain the underlying pattern of genetic corre-
lations across the traits in terms of a series of latent genetic variables. The model
can be augmented through the addition of observed SNP variables, providing the
opportunity to perform multivariate tests of association between individual SNPs
and phenotypes, estimate the conditional effect of SNPs, and in some cases increase
statistical power to detect association. In this manuscript, we create a path model
based on standard biometrical genetics theory to model the genetic relationship
between own and offspring birth weight, and use Genomic SEM to estimate
conditional maternal (paternal) and offspring specific genetic effects. The specific
model that we fit to the birth weight data is depicted in Supplementary Fig. 27.

We conducted GWAS analysis using the userGWAS function in Genomic SEM
v0.0.2 (installed 9 Jan 2020), which creates genetic covariance matrices for individual
SNPs and estimates SNP effects for a user specified multivariate GWAS. Following the
workflow described on the github Wiki, we ran multivariate LD score regression to
estimate the genetic covariance matrix and corresponding sampling covariance
matrix, which accounts for any potential sample overlap between the GWAS
summary statistics. After preparing the summary statistics for analysis, we used the
estimated matrices to run the GWAS using 50 cores on a computing cluster.

Comparison of methods. We fit the same SEM as described above, but using the
individual level data rather than observed covariance matrices, for the 300 auto-
somal genetic variants that reached P < 5 × 10−8 in the latest GWAS of birth

weight3; we excluded rs2428362 from the comparison as it is tri-allelic. For the
SEM using the data with no sample overlap (i.e. where the individuals from the UK
Biobank had either their own birth weight measure or their offspring’s, but not
both), we did not estimate the correlation between the birth weight measures as we
had no data to estimate the parameter. We visualized the difference between the
effect size estimates and standard errors from this SEM and those estimated using
the GWAS summary statistics and methods described above. We conducted a
heterogeneity test to assess the difference in the beta coefficients using the rmeta
package (version 3.0) in R (version 3.5.2).

We were also interested in how the methods compared in terms of
computational time, inflation of the test statistics and number of genome-wide
significant SNPs identified. We saved the computational time for each of the
methods (we used the run time from chromosome two for the time of the SEM
using summary statistics as each chromosome ran in parallel so this was the longest
chromosome to run) for comparison purposes. We note that the computational
time will differ between computing resources and we present them here to compare
the methods relative to each other. We conducted an LD score regression (version
1.0.0) analysis to estimate the inflation in test statistics for each method.

Application to real data: fertility GWAS. In the UK Biobank, 272,579 women
and 225,349 men reported how many children they had given birth to (live births
only) or fathered, respectively. Additionally, each of the participants reported how
many full brothers (N= 493,181) and sisters (N= 493,257) they had at each
follow-up. There were 28,609 women who reported how many children they
mothered at more than one visit, 263 (0.9%) of whom changed their response over
time so were excluded. Similarly, there were 26,171 men who reported how many
children they had fathered at more than one visit, 1103 (4%) of whom changed
their response over time so were excluded. In terms of siblings, 54,480 participants
reported how many full brothers they had and 54,489 how many full sisters they
had at more than one visit, with 2430 (4%) and 1802 (3%) excluded, respectively,
because their response changed over time. We added the number of brothers and
sisters to get the total number of siblings, with 489,701 participants reporting how
many siblings they had available for analysis. Participants reporting greater than
10 siblings (N= 1,720, 0.4%) or children (mothered N= 18, 0.007%; fathered
N= 43, 0.02%) were recoded to have 10 in case these were data errors and to avoid
a distribution with a large tail. We excluded individuals who were not part of our
white European ancestry cluster, leaving 237,768 women reporting how many
children they mothered, 199,570 men reporting how many children they had
fathered and 430,466 individuals reporting how many siblings they have available
for GWAS analysis.

GWAS of the number of siblings and number of children for the women and
men were conducted using a linear mixed model implemented in BOLT-LMM
v2.3.229. We used the same GRM as was used in the birth weight analyses, and
excluded genetic variants with an INFO score <0.4 and minor allele frequency <0.1%
from the analysis. We adjusted for the 40 principal components provided by the UK
Biobank, genotyping array, age that the number of siblings or children was reported,
assessment centre that the participant attended, and for the siblings analysis we also
adjusted for sex of the participant. Subsequently, we used the summary statistics to
conduct two analyses in Genomic SEM;

(1) Similar to the birth weight analysis, we used the GWAS summary statistics
of the number of siblings and number of children mothered to generate
female and sibling-specific genetic effects on fertility (Supplementary
Fig. 28A).

(2) We used the GWAS summary statistics for all three traits to generate female,
male and sibling-specific effects for fertility to illustrate how the structural
equation model can be extended when data from fathers is also available
(Supplementary Fig. 28B).

To investigate how Genomic SEM performed on a genome-wide scale, we
estimated genetic correlations between the unconditional GWAS conducted in
BOLT-LMM and the conditional GWAS conducted in Genomic SEM using LD
score regression18. Subsequently, we used LD Hub30 (ldsc.broadinstitute.org) to
estimate genetic correlations between the conditional estimates from Genomic
SEM and a range of developmental, reproductive, behavioural, neuropsychiatric
and anthropometric phenotypes that were investigated in Barban et al.24. We also
investigated the genetic correlation between the conditional estimates and risk-
taking behaviour as one of the genome-wide significant loci was previously
associated with this trait. Due to the different linkage disequilibrium structure
across ancestry groups, we only used summary statistics from LD Hub that were of
European origin. There were several traits that had summary statistics from
multiple GWAS available in LD Hub, so we used the latest GWAS to estimate the
genetic correlations with fertility.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Human genotype and phenotype data on which the results of this study were based were
accessed from the UK Biobank (http://www.ukbiobank.ac.uk/) with accession ID 53641.
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The genotype and phenotype data are available upon application from the UK Biobank
(http://www.ukbiobank.ac.uk/). GWAS summary statistics from the fertility GWAS are
available at the Evans Group website (https://evansgroup.di.uq.edu.au/
GWAS_RESULTS/FERTILITY/). Genomic positions are based on NCBI Build 37.

Code availability
All analyses conducted in this manuscript were performed with publicly available
software or published code.
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