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Clonal evolution after treatment pressure in multiple myeloma:
heterogenous genomic aberrations and transcriptomic
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We investigated genomic and transcriptomic changes in paired tumor samples of 29 in-house multiple myeloma (MM) patients and
28 patients from the MMRF CoMMpass study before and after treatment. A change in clonal composition was found in 46/57 (82%)
of patients, and single-nucleotide variants (SNVs) increased from median 67 to 86. The highest increase in prevalence of genetic
aberrations was found in RAS genes (60% to 72%), amp1q21 (18% to 35%), and TP53 (9% to 18%). The SBS-MM1 mutation signature
was detected both in patients receiving high and low dose melphalan. A total of 2589 genes were differentially expressed between
early and late samples (FDR < 0.05). Gene set enrichment analysis (GSEA) showed increased expression of E2F, MYC, and glycolysis
pathways and a decreased expression in TNF-NFkB and TGFbeta pathways in late compared to early stage. Single sample GSEA
(ssGSEA) scores of differentially expressed pathways revealed that these changes were most evident in end-stage disease. Increased
expression of several potentially targetable genes was found at late disease stages, including cancer-testis antigens, XPO1 and ABC
transporters. Our study demonstrates a transcriptomic convergence of pathways supporting increased proliferation and
metabolism during disease progression in MM.
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INTRODUCTION
Multiple myeloma (MM) is a hematological malignancy, which is
characterized by uncontrolled proliferation of plasma cells. Novel
treatments introduced the last two decades have improved overall
survival (OS) of MM patients. Nevertheless, MM remains an
incurable disease that in advanced stages is characterized by an
aggressive phenotype and treatment resistance.
At the genetic level, MM is characterized by a limited number of

driver mutations in genes including NRAS and KRAS and recurrent
copy number aberrations (CNAs) including hyperdiploidy, deletion
of chromosome 17p (del17p) and gain of chromosome 1q
(gain1q), as well as primary translocations involving the immu-
noglobulin heavy locus (IgH) [1–5]. Still, the MM genome is also
characterized by a high degree of inter- and intra-patient
variability, which raises the possibility that diverse changes at

the DNA level may lead to a common phenotype at the
transcriptional level.
Disease progression from newly diagnosed MM to progressive

disease (PD) is driven by selection of the fittest clones in the
context of treatment pressure. At the DNA level, this can be
observed as differential, linear or stable evolution and is
associated with depth of response [1, 6–8]. Even though specific
mutations in drug targets are rarely identified, biallelic events in
tumor suppressor genes and gain1q have shown to be enriched in
PD samples [9–11], and alkylating drugs like melphalan can have
direct mutagenic effect [12].
Array-based gene expression profiling, and recently also RNA

sequencing (RNA-seq), have so far provided useful information for
classifying of MM patients according to prognostic subtypes [13].
Comprehensive studies have described transcriptomic changes
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related to specific mutations. Biallelic deletions of tumor
suppressors and chr(1q) amplifications (amp1q) have shown the
greatest impact on gene expression, deregulating pathways
related to cell-cycle, proliferation and expression of immunother-
apy targets [14]. Yet, it remains largely unknown how disease
progression under treatment pressure is characterized at the
transcriptomic level, and if there is any association with clonal
evolution at the genomic level. Since MM eventually will progress
in most patients, it is of great interest to identify specific tumor
vulnerabilities at the time of PD [15, 16].
In this study, whole exome sequencing (WES) and RNA-seq

were performed on paired early and late tumor samples of 57 MM
patients to identify genomic and transcriptomic changes during
disease progression.

METHODS
Patients and samples
Two patient cohorts were used in this study. The in-house cohort
consisted of sequential tumor samples (n= 69) from 29 MM patients
(Table S1A) from the MM biobank at St. Olavs Hospital, Norway
(Biobank1) (n= 18) and Erasmus MC Cancer Institute, the Netherlands. A
subgroup of patients had been enrolled in the EMN02/HO95 trial [17]
(n= 9) or HOVON-87/NMSG18 trial [18] (n= 2). For 23 patients, the first
sample (early sample) was taken before start of first treatment
(diagnosis), and for 6 patients at the time of PD. Nine patients had
3–4 samples. CD138-positive tumor cells were isolated using RoboSep
(StemCell Technologies, Grenoble, France). Tumor purity was subse-
quently determined morphologically or by flow cytometry. Only
samples with a tumor purity ≥80% were included in the study (range
80–100, median 95%) (Table S2). WES was performed on all samples
(n= 69), and RNA-seq on 52 samples from 21 patients (Table S1A). The
study was approved by Regional Committee for Medical and Health
Research Ethics (2012/1915, 2017/2043).
The second cohort comprised 28 patients from the CoMMpass study

[19], release IA13. First sample was taken at diagnosis and the second at PD
(Table S1B). Two patients had 3–4 samples. Estimated tumor purity was
>75% by CNV analysis. FASTQ files were downloaded from dbGap (Study
Accession: phs000748), while processed data were downloaded from
(http://research.themmrf.org).
All patients had received a proteasome inhibitor and/or immunomodu-

latory drug (IMiD) at least once between sampling. Clinical data for both
cohorts are summarized in Table 1, S3A, S3B.

WES
WES of DNA from bone marrow myeloma cells and matched germline
controls has previously been described [20].

Detection and filtering of somatic variants
Somatic variant detection was performed with Strelka2 (v2.9.10).

Copy number variant (CNV) estimation
Allele-specific CNV estimation was performed with Sequenza [21], and
Facets_cnv (v0.14.0) [22].

Clonal evolution analysis
Subclonal reconstruction was performed in R with DPClust (v2.2.8) using
default settings. Filtered Strelka2 variants and the allele specific CNV calls
from Facets were used as input.

Mutational signature analysis
Mutational signature fitting was performed with the mmsig package in R as
previously described [23, 24].

RNA-seq library construction and sequencing
RNA-seq libraries were prepared with the TruSeq Stranded mRNA kit
(Illumina, San Diego, CA, USA) according to the manufacturer’s instructions,
and run on NextSeq500 or HiSeq4000 (Illumina).

Table 1. Clinical characteristics of patients.

In-house cohort CoMMpass cohort

n= 29 n= 28

Age at first
treatment Median
(range)

62 (42–84) years 68 (39–82) years

Male 52% 50%

Ig class Patients Patients

IgG 20 11

IgA 7 4

IgD 1 0

Light chain disease 1 3

Unknown 0 5

Missing 0 5

Kappa 20 15

Lambda 9 8

missing 0 5

ISS

1 4 8

2 14 6

3 9 14

missing 2 0

R-ISS

1 3 2

2 14 17

3 6 3

missing 6 6

FISH /FISH-seq# Detected (# tested) Detected (# tested)

t(11;14) 4 (12) 6 (27)

t(4;14) 5 (28) 6 (27)

t(14;16) 0 (11) 0 (27)

t(14;20) 0 (0) 1 (27)

Other primary
transl.

0 (0) 3 (27)

del17p 4 (28) 1 (27)

Respons 1.
Treatment

Patients Patients

CR 4 5

VGPR 12 15

PR 9 6

SD 3 0

PD 0 2

PFS Median (range) 14 (2–113) months 17 (2–42) months

OS Median (range) 40 (8–245) months 48 (13–72) months

Interval Sample 1
and 2 Median
(range)

16 (5–70) months 21 (3–45) months

Sample type

Diagnosis-1.PD 17 patients 15 patients

Diagnosis-later PD 6 13

PD-PD 6*
*In addition, 8 patients from in-house cohort and 2 patients from
CoMMpass dataset had more than 2 samples.
#CoMMpass dataset: Primary translocations detected by long-insert WGS,
del17p by CN data.
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Fig. 1 Increased mutation load and clonal evolution during the myeloma disease course. A Increase in number of mutations in samples
taken at PD. There was a particular increase in patients that had received HDM (*p < 0.05, Kruskal–Wallis test). D diagnosis (start of treatment),
PD: progressive disease, HDM: high-dose melphalan. For Diagnosis-PD pairs the first available PD sample was used in the analysis.
B Alternating dominance in myeloma clones harboring RAS mutations. In all 7 patients with decreased clonal fraction of mutated KRAS/NRAS
genes, another NRAS/KRAS mutation appeared. C Overview of treatment and M component in patient 15. Below is shown the estimated clonal
composition from the DPclust analysis. The patient had a RAS shift. Also see Table S5 and Fig S3. CCF Cancer Cell Fraction, M Melphalan, R
Revlimid, V Velcade, C Cyclophosphamide, Pom Pomalidomide, P Prednisolon, D Dexamethasone.
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Differential expression analysis, GSEA and ssGSEA
A DESeq2 (v1.28.1) paired analysis was performed in R Studio to identify
differentially expressed genes. GSEA (v4.1.0; Broad Institute), using
hallmark gene sets, was performed to identify enriched pathways.
Proliferation index (PI) was calculated according to Zhan et al. [25] based
on 11 genes that previously have been shown to be involved in
proliferation. A PI change was defined as an increase if >0.4 and decrease
if <−0.4, and high increase if >1.
ssGSEA was performed by sorting the genes in each sample in

descending order according to their expression level, for each of the
GSEA hallmark gene sets (core enriched genes). A ssGSEA score was
calculated using a previously published algorithm [26]. To emphasize
relative differences in ssGSEA scores between samples, expression levels
(TPM) were centered and normalized across samples before sorting.

Statistical analysis
Survival analysis was performed in GraphPad Prism9. p-values were
determined with the log-rank (Mantel–Cox) test and hazard ratios (HR)
with the Mantel-Haenszel method. Cox regression analysis was performed
in SPSS (v27). Groupwise correlations were performed in Prism9 using the
Spearman correlation test. We used Prism9 and R Studio (v3.6.3) for group
comparisons, Wilcoxon rank-sum analysis for paired analysis, Mann-
Whitney test for unpaired analysis and Kruskal-Wallis test for comparisons
of groups. p-values <0.05 were considered significant.
Additional detailed information on all used methods is provided in

Supplementary Methods.

RESULTS
Increase in mutation load after treatment
WES analysis showed an increased number of exonic SNVs
between early and late stage disease samples from a median of
67 [range 29–204] to 86 [26–252] (nonsynonymous: 45 to 59)
(both p < 0.01). The fold change (FC) in mutations was highly
variable between patients (range 0.80–2.81), and a significant
increase was seen when comparing both diagnosis-PD and PD-PD
samples (Fig. S1A–D). The most prominent increase of mutations
was found in patients receiving treatment with high-dose
melphalan (HDM) (median 36 versus 7, p < 0.05, Fig. 1A) [27].

Genomic alterations and clonal changes during disease
progression
Ninety-eight percent (56/57) of the patients had a mutation in at
least one of the 80 previously identified MM driver genes [4, 5]
(Table S4) at one or more timepoints during the disease course.
RAS gene mutations were the most frequent driver in our cohort
[1–3, 28], and 74% of patients had a KRAS or NRAS mutation in at
least one timepoint (Fig. S2A).
In 7 patients with a reduction or disappearance of a dominating

clone with a RAS mutation, this was replaced by another clone
with a different RAS mutation. Thus, the major clone still harbored
a RAS mutation (Fig. 1B), indicating a benefit for the tumor to keep
a consistently activated RAS pathway during disease progression.
Altogether, the most frequent events acquired or enriched for

at PD were KRAS mutations (39% late versus 28% early), NRAS
mutations (39% versus 33%), amp1q21 (35% late versus 18%
early), and TP53 mutations or deletions (18% late versus 9% early).
Half of the patients with an amp1q21 at the later stage, had a
gain1q21 at the earlier stage. Hyperdiploid (HRD) tumors were
most likely to acquire RAS mutations at PD, accounting for 80% of
acquired/enriched NRAS/KRAS SNVs (Table S5).
Seventy-five percent of patients in our cohort became refractory

to immunomodulatory drugs (IMiDs) and/or proteasome inhibi-
tors. However, few mutations were found in the IMiD pathway
genes and proteasome subunits [29–31] (Tables S5, S6, Fig. S2A,
B), and there was no obvious pattern associated with treatment.
Twenty-eight percent of all mutations in the in-house cohort

were found to be expressed (Fig. S1E), and this increased to 66%
when considering mutations in driver genes only. There was a
slight increase in the fraction of expressed mutations at late stage
compared to early (29% versus 22.5%, p < 0.001; Fisher’s
exact test).
We further studied changes in clonal substructure during the

myeloma disease course by DPclust. Fifty-eight percent (33/57),
had a shift in clonal dominance (differential clonal response)
from early to a later stage, 23% (13/57) acquired novel genomic
aberrations (linear evolution) and 19% (11/57) had no/minor
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genomic changes (stable evolution) (Table S5) [8]. Evidently, the
clonal patterns may change during the disease course as
observed in patients with 3 or more samples (Table S5, Figs. 1C,
and S3). Tumors changing their clonal dominance tended to

select for a clone with more high-risk features later in the
disease course, as illustrated by the loss of Chr17p or
acquisition of a TP53 mutation in 5 patients (including one bi-
allelic TP53 event) [10].
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Mutational signature related to melphalan and depth of
response
Analyses of mutational signatures have demonstrated a single
base substitution signature that is associated with the use of HDM
(SBS-MM1) [23, 24]. Performing mutational signature analysis
using the mmsig algorithm, we found strong evidence of presence
of SBS-MM1 (95% CI > 0) in eight patients; six received HDM and
two had been treated with regimens containing low dose
melphalan (LDM) (Figs. 2A and S4A, B). Six of these patients also
had statistically significant transcriptional strand bias in the
pattern typically associated with SBS-MM1 (five HDM patients).
Group analysis according to melphalan exposure confirmed the
presence of SBS-MM1 in the HDM group (n= 20), but not in the
LDM (n= 18) or no melphalan (n= 15) groups (Fig. 2B). All of the
eight individual patients with strong evidence of SBS-MM1 had
either a differential clonal response or linear evolution and all but
one achieved a VGPR or CR following melphalan therapy,
however, the associations were not statistically significant (Figs. 2C
and S4C). The results demonstrate that SBS-MM1 can be found
after both HDM and LDM, and indicate an association with deep
responses and shifts in clonal structure.

Increased expression of cell cycle and proliferative genes at
progression
We went on to investigate whether the corresponding transcrip-
tomic changes led to changes in specific biological processes. We
started with a paired groupwise comparison between the
transcriptomes of the latest available PD sample versus the
early-stage samples (n= 49 patients). We found 2589 genes to be
differentially expressed between these timepoints, 1562 by more
than 1.5 FC (FDR < 0.05; Table S7). 1642 genes (1050, FC > 1.5)
were upregulated and 947 (512, FC < 0.66) downregulated at the
later disease stage. GSEA of the hallmark pathways [32] identified
a significant enrichment of genes involved in cell division and
growth-related pathways (G2M, E2F targets), as well as DNA repair
and cell metabolism (MYC targets, glycolysis) in late stage disease
(Fig. 3A). TNFα signaling via NFκΒ (TNF-NFκB) and TGFβ signaling
were the most significantly downregulated pathways. A heatmap
of the 50 most upregulated genes later in the disease course are
shown in Fig. 3B.

Increased proliferative status in end-stage disease
To further characterize cell division and proliferation, we
calculated the PI [25] per tumor sample. We analyzed changes
over time at both the individual tumor level and between disease
stages. PI was significantly increased at later stages (p < 0.0001;
Table S8). Fifty-seven percent (28/49) had increased PI at a later
stage, 29% (14/49) had no change, and 14% (7/49) had decrease.
In patients with end-stage disease (time to death <12 months)
80% patients (16/20) had increased PI (Fig. 3C). We further

addressed whether PI at diagnosis was associated with clinical
outcomes. For this purpose, we analyzed 767 patients in the
CoMMpass dataset (IA13) of newly diagnosed MM patients.
Indeed, patients with PI > 75th percentile showed adverse
progression free survival (PFS) (HR 1.8, p < 0.0001) and OS (HR
2.2/1.3;univariate/multivariate, p < 0.0001) (Fig. S5A, B).

Phenotypic transformation independent of cytogenetic
subgroup or initial risk status
To investigate whether certain tumor types were more prone to
transform into a proliferative type, paired diagnosis-1st PD samples
were analyzed (n= 27 patients). We observed that the 7 patients
with high PI (all PI > 3) at 1st PD had different cytogenetic
backgrounds (Fig. 3D). We did not find significant differences in
levels of PI increase between the cytogenetic subgroups (Figs. 3E
and S6). Thus the transformation into more proliferative tumors
seem to be independent from the canonical IGH-background.
Out of 13 patients progressing within 2 years from diagnosis

with a high PI increase, 7 were defined to have standard risk (SR),
i.e. ISS stage I/II (Table S8, Fig. S7A). This shows that PI increase can
occur irrespective of initial risk status. Five of the 7 patients died
within 4 months from the time of this PD. Six were HRD patients (1
uncertain), two had undergone HDM. All had a shift in their
dominating clone and mutational increase. There were no
common genetic changes; two acquired a FAM46C mutation,
one a del17p, one acquired and two had enrichment of a
mutation in NRAS Q61 at PD, for 3 of them in combination with
either a gain (n= 2) or amp (n= 1) 1q21, exemplifying the
heterogeneity in genetic aberrations associated with PI increase.

High co-regulation of proliferative and metabolic pathways at
late stage
To study changes in differentially expressed pathways over time
both at the individual level and between diseases stages, variance
in ssGSEA scores was compared between early and late samples.
We found an increased expression of genes involved in MYC,
glycolysis, oxidative phosphorylation, and MTORC1 pathways at a
later stage in the majority of patients within all molecular
subgroups (Fig. 3F). Interestingly, 81% of patients with increased
glycolysis also had increased expression of genes involved in
oxidative phosphorylation. As MYC is known to be regulated by
structural rearrangements leading to increased gene expression
levels [33, 34], we analyzed whether increased MYC target genes
correlated with increased MYC transcription. This was observed in
59% (17/29) of patients with FC > 1.5, of these 27% had FC > 3
(Table S9). Thus, our data suggest that in 40% of patients MYC
signaling was activated by other means than increased MYC
transcript levels.
Altogether, 89% (34/38) of patients having increased PI at a later

stage in the disease course, also had an increased expression of

Fig. 3 Increased expression of genes involved in proliferative and metabolic pathways at progression. A GSEA analysis using hallmark
gene sets showed that 23 pathways were upregulated and 7 downregulated (FDR q-value<0.2, NES > 1.3) at late stage (latest available PD
sample) versus early (1st sample). The top upregulated pathways were E2F targets and G2M checkpoint involved in cell division and cell cycle.
FDR: False discovery rate. B Heatmap showing the top 50 upregulated genes and their expression levels (log2(TPM+ 1), z scored) in early and
late samples. C The figure shows the evolvement in proliferative index (PI) between early and late samples in deceased patients. There was
significant increase in PI in end-stage disease. D The figure shows diagnosis-1st PD paired samples, and shows that patients with high PI at 1st

PD have different cytogenetic backgrounds. Mutation load and increase from diagnosis, time from diagnosis (TFD), and time to death/last
control (TTD) are shown for patients with high PI at 1st PD. E There was no significant difference in PI increase in diagnosis-first available PD
sample between cytogenetic subgroups. This did not change when dividing the HRD group into cyclinD1 or cyclinD2 expressers (Fig. S6).
CCND2, CCND3 and MAFs were not included due to few samples. F Heatmap for selected pathways showing ssGSEA for early-late pairs.
Information on mutation load and presence of the most frequently enriched/acquired genomic aberrations at PD (KRAS, NRAS, amp1q21, and
TP53) as well as intervening treatment received between the two BM sample timepoints are shown. In heatmaps patients are sorted
horizontally by increasing PI of the late samples (right half ) and the same patient order is used for the early samples (left half ). SR standard risk
according to ISS/R-ISS, HR High risk, ESD End-stage disease (<12 months from death). Cytogenetic subgroups; t(11;14)/CCND1, t(12;14)/
CCND2, t(6;14)/CCND3, t(4;14)/WHSC1(NSD2/MMSET), t(8;14)/MAFA are shown (Table S12). IMID Immunomodulatory drug, ProtInhib
Proteasome inhibitor.
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either the MYC, glycolysis, or MTORC1 pathway. For the majority of
patients (76%; 29/38) all 3 pathways were increased (Table S9).
This suggests a high correlation and co-regulation of proliferative
and metabolic pathways in the disease course of MM.

Decreased expression of genes involved in the TNF-NFκB
pathway
ssGSEA showed that most tumors (64%) with an increased
expression of proliferative and metabolic pathways had decreased
expression of the TNF-NFκB gene set. For a subset of patients, this
decrease was accompanied by a decrease in gene sets involved in
TGF Beta signaling, unfolded protein response, and hypoxia (Fig. 3F
and Table S9). Mutations in the NFκB pathway were found in 12% (6/
49) of patients, with identical frequency early and late (10%), and
affected CYLD and TRAF3. Activating mutations were found in two
patients with decreased TNF-NFκB pathway activity. When measuring
the NFκB activity with the NFκB index [35], 25% of the patients kept
an active NFκB pathway at PD despite decreased TNF-NFκB,
suggesting compensation by activating mutations [34, 35] (Table S9).
We were not able to find treatment-specific differences in the

transcriptional patterns, and transcriptional changes were inde-
pendent of having received HDM or not (Fig. S7B).

Relation between transcriptomic changes and clonal
evolution patterns
The majority of MM tumors with transcriptomic changes also had
a change in clonal composition (32/35; 91%) (Figs. 4 and S2C, D
and Table S10). This suggests that the increased PI could be a
result of either a selection of a more proliferative clone later in the
disease course (differential clonal response), or acquisition of new
mutations at progression (linear pattern). However, 3 tumor pairs
with a change in PI, one with a PI increase, were found to be
evolutionary stable (Fig. S8).

Expression of genes related to transportation of or sensitivity
to drugs
We analyzed for expression of clinically relevant treatment targets in
PD clones. Exportins are responsible for transportation of a number
of substances from nucleus to cytoplasm and are of major interest as
drug targets in cancer [36]. XPO1 is particularly relevant as a target
for selinexor which is an approved drug for relapsed or refractory
MM. Expression of XPO1 and other exportins were increased later in
the disease course, and were positively correlated to PI (Spearman r
> 0.4, p < 0.00001) (Fig. 5). The ATP-binding cassette (ABC) transpor-
ters transport a variety of substrates across the membrane, many
being involved in multidrug resistance. We observed increased
expression of a range of ABC transporters at PD, especially prominent
in samples with high PI (Fig. 5). However, ABCB1 which has been
related to proteasome inhibitor resistance in MM cell lines [37] and in
extra-medullary myeloma [38], had low expression and was not
upregulated at later disease stages.
For other relevant targets, BCL2 (venetoclax), CD38 (daratumu-

mab, isatuximab), and SLAMF7 (elotuzumab), we found no
particular trend in expression in different disease stages (Fig. 5).
Mutations in the relevant drug target genes were rare (Table S11).
CRBN expression levels have occasionally been linked to IMiD

sensitivity [39, 40]. Gene expression levels of CRBN were not changed
from diagnosis to IMiD resistant PD (n= 23). However, looking
specifically into the exon 10 splicing transcript [31], and its ratio to the
longest transcript variant, we found this significantly increased at the
time of IMiD resistance (p= 0.04; Fig S9), indicating that this could be
a relevant mechanism of resistance for some patients. For patients
developing proteasome inhibitor resistance (n= 19), eight patients
(42%) had increased transcript levels of proteasome B (PSMB) genes 5,
6, and 7, but the change was not statistically significant.

Cancer germline antigens and immunotherapy targets
We observed that 14% of the top 50 increased genes at progression
were defined as cancer-testis antigens, including MAGEB1 and CTAG2
(Fig. 3B). We, therefore, analyzed whether expression of this group of
genes was generally increased at later disease stages. To this end, we
took advantage of a well-defined set of 27 cancer-testis antigens
defined in a recent study as hematological Cancer Germline Antigens
(CGAs) [41]. We found that 43% (22/49) had an increased expression
(defined as an increase of #CGA≥3) at a later disease stage (p<
0.0001) and 65% in end-stage disease (Figs. 6A, B, and S10). Increased
expression of CGAs correlated with elevated PI and mutation load
(Spearman r= 0.73 and r= 0.47, respectively; Fig. 6C). CGA expression
was also positively associated with gene expression signatures
reflecting cell-cycle activity, MYC targets, and metabolic pathways,
whereas the TNF-NFκB gene set was downregulated in CGA-high MM.
As CGA epitopes can be presented by MHC and recognized by

T cells, we estimated expression of MHC I and II genes. We did not
find any correlation between CGA expression and HLA-II score [41]
(r= 0.01) or HLA-I score (r= 0.15) (Fig. 6A, C). Somatic mutations in
immune checkpoints (1 patient) or CGAs (3 patients) were
uncommon (Table S11).
We investigated whether T cell stimulatory ligands were

downregulated or inhibitory ligands upregulated on the late-
stage tumors. However, there were no obvious changes in
expression of checkpoint molecules (Fig. 6A) [41, 42]. We found
CD58 (LFA-3), an adhesion molecule that binds CD2 on T cells [43]
and ENTPD1 to be positively correlated (r= 0.59 and 0.54,
respectively) with increased PI (Fig. 6A, C). ENTPD1 codes for
CD39, an exoenzyme involved in generation of immunosuppres-
sive adenosine. This may be an alternative immune evasion
mechanism in a subset of patients [44].

DISCUSSION
In this study we find that changes at the transcriptomic level
during disease progression show a uniform increase into a more
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proliferative phenotype as well as increased expression of genes
that enable the tumor cells to tolerate increased cell growth and
energy demand. This included metabolic pathways such as
glycolysis, oxidative phosphorylation, MTORC1, and MYC signaling.
Our data showed that the phenotypic transformation is more
pronounced at end-stage disease. Increased PI was found to be a
marker of end-stage/aggressive disease. Importantly, we identified
increased expression of treatment targets that can be clinically
relevant.
Increased expression of proliferative and metabolic pathways in

extramedullary myeloma [45] and high-risk transcriptional profile
during myeloma progression have recently been described [46].
Our data show a similar transformation in bone marrow at disease
progression.
Almost all patients showing this phenotypic transformation had

a predominant clonal change during their disease course,
indicating that a more proliferative clone was selected for. In
most cases the new clone had new driver mutations or CNAs,
including TP53, NRAS Q61 and amp1q21. Although our WES
strategy did not allow detection of structural variants and other
non-coding drivers [34, 47], acquisition of such drivers at
progression would have been detected implicitly through a shift
in clonal architecture.
This suggests that genomic changes are involved in the

phenotypic transformation. However, one patient had increased
PI, but no changes in the genome at the sensitivity level applied in
our studies. This observation is principally important because it
indicates that other mechanisms than genomic changes and
clonal selection, such as microenvironmental factors, are involved
in disease progression.
Our data demonstrate a heterogenous evolution of the

genomic landscape based on the high number of mutations
appearing and disappearing throughout the disease course as well
as a considerable number of mutations appearing in only one
patient. We confirmed a further increase of mutational load and
the presence of the mutational signature SBS-MM1 in patients
who had received HDM [23, 24]. Additionally, we found the

mutational signature in two patients who received LDM. Absence
of SBS-MM1 in the pooled analysis of LDM patients may be
explained by a dilution effect because most patients lack the
signature. Thus, our study provides proof of principle that
melphalan can have a mutagenic effect on myeloma cells
irrespective of dose-intensity. HDM consists of melphalan
150–200mg/sqm given once whereas LDM is 36mg/sqm given
during 4 days and repeated every month. The accumulated dose
will after 10 months be comparable to HDM, but with another
profile of exposure.
SBS-MM1 could only be detected in patients who had a

differential or linear pattern of clonal evolution. This observation
supports the proposed model where chemotherapy-related
signatures become detectable when one affected cell expands
to clonal dominance [48]. Intensive therapy which induces a deep
response provides fertile ground for such a clonal expansion but is
not a pre-requisite. Indeed, one of the patients had a differential
clonal response and was resistant to LDM.
The pathways that were transcriptionally upregulated at later

disease stages were highly correlated. MYC is an important
regulator of metabolic pathways, including glycolysis and
oxidative phosphorylation (reviewed in [49]). Our data suggest
that MYC was regulated partly at the post-transcriptional level.
Indeed, MYC is regulated by MTORC1 signaling [50] and stabilized
by activated RAS [51]. Both MYC activity and loss of TP53 can
promote glycolysis [52]. Most samples with increased transcription
of glycolysis genes also had increased expression of genes
involved in oxidative phosphorylation. This is in line with growing
evidence that oxidative phosphorylation is active in many
malignancies, including leukemias and lymphomas, and emerges
as a potential treatment target [53].
Interestingly, TNF signaling via NFκB was downregulated later in

the disease course, and was inversely correlated with the
proliferative and metabolic pathways. TNF via NFκB signaling
has in a recent study been found to be downregulated in patients
with double refractory disease [11], and in extramedullary disease
[45]. Our results also fit with a previous study showing
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complementary activation of MYC and NFκB in diagnostic tumors
[34], and our results suggests more active MYC and less NFκB
dependent tumors in late-stage disease.
We found significantly increased expression levels of the ABC

transporters and nuclear exportins in relapsed patients with high

PI (Fig. 5). XPO1 is an important transporter of more than 200
nuclear cargo proteins including many tumor suppressor proteins.
Overexpression of XPO1 has been demonstrated in myeloma cell
lines as well as in myeloma cells from patients [36] and was a
rationale for testing of the XPO1-inhibitor selinexor in patients.
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In 2019 this drug was approved for myeloma patients that had
acquired resistance against 4 prior drugs. If the effect of selinexor
is dependent on the level of expression, patients with highly
proliferative tumors having high expression may benefit from this
treatment. We have not identified studies that have examined the
relation between XPO1 expression and effect of selinexor in more
detail.
Another potentially clinically relevant finding in this work is the

increased expression of CGAs detected at later disease stages. CGA
could be directly involved in regulating proliferation by preventing
cyclin degradation or inhibition [54]. CGA expression and anti-CGA
immune responses have been demonstrated in MM [55, 56], but
have to the best of our knowledge not been analyzed in longitudinal
samples before. CGAs can elicit immune responses [55] and are
expressed in progressive tumors, yet this is not enough to reject the
tumor. Whether these CGAs also are translated and presented to
T cells with MHC molecules, needs to be verified. It is also not known
whether T cells against CGAs are present in patients at later disease
stages or if these cells are unable to reject the tumor due to immune
suppression in the tumor microenvironment or insufficient T cell
activation. One of the hallmarks of late disease is a suppressed
immune system which may allow myeloma cells expressing CGAs to
expand. Although these CGAs are potential targets for immunother-
apy, clinical studies in MM so far have not been successful
(NCT01245673). However, TCR-engineered T cells against MAGE
may be more efficient (NCT03139370).
A main conclusion of this study is that disease progression

eventually is characterized by a transcriptomic convergence into a
more proliferative phenotype supported by expression of genes
that enable the tumor cells to tolerate increased cell growth and
energy demand.
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