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Abstract—In this paper, we address the problem of distributed
detection of a non-cooperative (unknown emitted signal) target
with a Wireless Sensor Network (WSN). When the target is
present, sensors observe an (unknown) deterministic signal with
attenuation depending on the unknown distance between the sen-
sor and the target, multiplicative fading, and additive Gaussian
noise. To model energy-constrained operations within Internet
of Things (IoT), one-bit sensor measurement quantization is
employed and two strategies for quantization are investigated.
The Fusion Center (FC) receives sensor bits via noisy Binary
Symmetric Channels (BSCs) and provides a more accurate global
inference. Such a model leads to a test with nuisances (i.e.
the target position xT ) observable only under H1 hypothesis.
Davies’ framework is exploited herein to design the generalized
forms of Rao and Locally-Optimum Detection (LOD) tests. For
our generalized Rao and LOD approaches, a heuristic approach
for threshold-optimization is also proposed. Simulation results
confirm the promising performance of our proposed approaches.

Index Terms—Distributed detection; Generalized Likelihood
Ratio Test; Internet of Things (IoT); Locally-Optimum Detection
(LOD), Rao test; Wireless Sensor Networks (WSNs).

I. INTRODUCTION

THE INTERNET OF THINGS (IoT) envisages billions of
tiny devices with sensing, computation, and communi-

cation capabilities to be used in everyday life and currently
represents a game-changing technology for the wireless com-
munications and sensing sector [1], [2]. Wireless Sensor Net-
works (WSNs) constitute the “sensing arm” of the IoT, with
Distributed Detection (DD) representing a widely-investigated
task [3], [4] having multifold applications such as cognitive
radio systems [5], [6] or surveillance [7]. Unfortunately, strict
bandwidth and energy constraints in WSNs hamper full-
precision reporting by the sensors, which usually are limited
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Figure 1: System model considered.

to sending one bit to the Fusion Center (FC) regarding the
inferred hypothesis. For the mentioned reason, in last years
several works have focused on DD based on one-bit quantized
measurements [8], [9], [10]. In such a case, the optimal
decision procedure at the sensors is one-bit quantization of
the local Likelihood-Ratio (LR) [11], [12]. There are two
problems with this procedure. First, the design complexity of
the quantizer thresholds grows exponentially [13], [14] and,
second, the sensor LR cannot be evaluated due to unknown
target parameters [14]. Hence, the bit reported is either the
outcome of a raw-measurement quantization [15], [16], [17]
or represents the inferred binary-valued event (via sub-optimal
detection statistics [18]).

In both options, the FC gathers the sensor-generated bits
and fuses them via a suitably-designed fusion rule to improve
the single-sensor detection capability. In IoT-based systems,
the FC could be hosted in the cloud by implementing a
“sensing as a service” paradigm [19]. The optimum fusion
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rule, under conditional independence, involves the comparison
of a weighted sum of the received sensor bits with a threshold,
with weights depending on the unknown target parameters
[3]. Still, when the model is parametrically-specified (with
some parameters unknown), the FC faces a composite test
of hypotheses and the Generalized LRT (GLRT) is the usual
design choice [20]. Indeed, GLRT-based fusion of quantized
data has been extensively studied in the DD-focused WSN
literature [16], [21], [22], including the challenging case of an
unknown source located at an unknown position (uncoopera-
tive target), because it requires the least amount of knowledge.
Accordingly, some recent works have dealt with this problem
[15], [22], [7], [23], [24]. In [22], a GLRT was derived for
detecting a target with unknown position and emitted power.
To obtain computationally simpler solutions (not requiring
a grid search over both the target location and the emit-
ted power/signal domains), generalized forms of score tests
(abbreviated as G-Score tests) have been proposed for non-
cooperative detection of both deterministic [15] and stochastic
target emissions [7], [23]. Recently, [25] and [24], [26] have
addressed the challenging multiplicative fading scenario in
distributed estimation and detection problems, respectively.
The latter scenario is a generalization of both deterministic
and stochastic models, and is able to model complicated
propagation mechanisms (e.g. a Rician model or estimated
small-scale fading).

The main contributions of this paper are summarized as
follows:

• In this paper, we focus on DD of a non-cooperative
target with a spatially-dependent emission (signature),
that experiences multiplicative fading. Our DD scenario
encompasses detection of a non-cooperative target with
an Amplitude Attenuation Function (AAF) depending on
the sensor-target distance, one-bit measurement quanti-
zation and noisy reporting channels (modelled as Bi-
nary Symmetric Channels, BSCs) emulating orthogonal
multiple-access channels such as in NB-IoT [27]. Such a
scenario encompasses those considered in previous works
as special cases [15], [7], [23].

• We consider both Raw Quantization (RQ) and Square-
based Quantization (SQ) in the design of low-complexity
fusion rules that yield good performance. We show that
the usual RQ [26], [24] does not always represent a good
choice when non-line-of-sight terms become relevant in
multiplicative fading. Hence, we consider SQ to cope
with this issue. This operation transforms the composite
test from two-sided (on the signal) to one-sided (on the
power) with nuisance parameters present only under the
hypothesis H1 [28].

• We devise and optimize (a) Generalized Rao (G-Rao) and
(b) Generalized LOD (G-LOD) approaches based on RQ
and SQ, respectively, for the aforementioned scenario.
The derived expression is shown to require significantly-
lower complexity than their GLR counterparts based
on the same quantization type, thus highlighting their
practical applicability. Furthermore, the resulting SQ (for
G-Rao) and RQ (for G-LOD) optimization (by means of

the corresponding quantization thresholds) are shown to
be sensor-individual (i.e. each threshold can be optimized
independently of the others), considers the sensor-FC
channel status, and does not depend upon either the target
strength or its position, thus allowing offline computation.

• A comprehensive simulation-based analysis is presented
to compare the proposed G-Rao and G-LOD tests with
(i) their GLR counterparts and (ii) tests based on full-
precision measurements (i.e. no quantization and re-
porting loss). The above comparison is performed over
relevant WSN parameters, such as the sensing Signal-to-
Noise Ratio (SNR), the ratio between direct and scattered
terms, and the current reporting channel quality.

We note that the present work extends our earlier conference
paper [24] which provided only a preliminary analysis of
fusion rule design and quantizer optimization based only on
the G-Rao test. To the best of our knowledge, only the
aforementioned work has tackled DD of an uncooperative
target in the multiplicative fading case to date.

The remainder of the manuscript is organized as follows.
Sec. II states the considered problem; Sec. III develops GLR
and G-score tests for the setup introduced; then, Sec. IV
focuses on quantizer design; numerical results and concluding
discussion are given in Sec. V.

Notation: lower-case bold letters are adopted for vectors,
with an representing the nth component of a; E{·}, (·)T
and u(·) denote expectation, vector-transpose and the unit
step function, respectively; p(·) and P (·) represent probability
density functions (pdf) and probability mass functions (pmf),
respectively; χ2

k (resp. χ
′2
k (ξ)) denotes a chi-square (resp. a

non-central chi-square) pdf with k degrees of freedom (resp.
and non-centrality parameter ξ); N (µ, σ2) denotes a Gaussian
pdf with mean µ and variance σ2; Q(·) (resp. pN (·)) denotes
the complementary cumulative distribution function (resp. the
pdf) of a normal random variable in its standard form, i.e.
N (0, 1); the symbol ∼ (resp. a∼) corresponds to “distributed
as” (resp. to “asymptotically distributed as”).

II. WSN MODEL AND PROBLEM FORMULATION

We consider a set of sensors k ∈ K , {1, . . . ,K}
monitoring a given area to test the absence (H0) or presence
(H1) of a non-cooperative target. When the target is present
(H1), we assume that it radiates an unknown deterministic
isotropic signal θ, which is affected by path-loss, multiplicative
fading and additive noise, before reaching each sensor:{

H0 : zk = wk

H1 : zk = g(xk,xT )hk θ + wk
, (1)

In Eq. (1), zk ∈ R denotes the kth sensor observation,
whereas wk ∼ N (0, σ2

w,k) and hk ∼ N (µh,k, σ
2
h,k) are

the noise and multiplicative fading terms, respectively1. Also,
xk ∈ Rd denotes the known kth sensor position (obtained
via self-localization procedures), while xT ∈ Rd denotes the
unknown target position. Both the terms xT and xk determine

1We hypothesize that sufficient spatial separation of the sensors implies
statistical independence of noise and fading terms wks and hks.
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the value of the generic Amplitude Attenuation Function
(AAF) g(xT ,xk). In fact, any functional form of the AAF
(accounting for the spatial target signature) may be considered
in this paper, given the availability of g(·, ·) at the FC2.

For compactness, in what follows, we use the short-
hand notation gk , g(xT ,xk). Hence, based on the
above assumptions, zk|H0 ∼ N (0, σ2

w,k) and zk|H1 ∼
N (gk µh,k θ , σ

2
eq,k(θ)), k ∈ K, where σ2

eq,k(θ) =
(g2
k σ

2
h,k θ

2 + σ2
w,k) denotes the kth equivalent variance.

Furthermore, we define the (a) target Signal-To-Noise Ratio
(SNR) and (b) the ratio between direct (Line-of-Sight, LoS)
and scattered (Non Line-of-Sight, NLoS) target power terms
respectively as

SNR , 10 log10(θ2 (µ2
h + σ2

h) /σ2
w) (2)

κ , 10 log10(µ2
h /σ

2
h) (3)

To address the energy and bandwidth limitations in IoT
scenarios, the kth sensor quantizes zk into a single bit3. Herein,
we investigate two quantization strategies. In the first case,
we consider the usual Raw Quantization (RQ) [15], namely
bk , u (zk − τk). In the second case, we investigate Square-
based Quantizers (SQ), namely dk , u(z2

k − γk), which was
used for the purely-random (viz. stochastic) signal case in [23],
[29]. For RQ, the bit detection probability under H1 equals

βk(θ,xT ) ,Q
(

[τk − gk µh,k θ] /
√
σ2

eq,k(θ)
)
, (4)

while for H0 it is given by β0,k , βk(θ = 0,xT ) =

Q(τk/
√
σ2
w,k). Differently, for SQ, the bit detection proba-

bility under H1 equals

ρk(θ,xT ) ,Q
(

[
√
γk − gk µh,k θ] /

√
σ2

eq,k(θ)
)

+

Q
(

[
√
γk + gk µh,k θ] /

√
σ2

eq,k(θ)
)
, (5)

while for H0 it is ρ0,k , ρk(θ = 0,xT ) = 2Q
(√

γk/σ2
w,k

)
.

To model energy-constrained communications within the
IoT context, after RQ (resp. SQ) the kth sensor bit bk
(resp. dk) is sent over a channel modeled as a BSC. Hence,
the FC receives a noisy version b̂k (resp. d̂k), where Pe,k

denotes the known bit-error probability of the kth link, namely
b̂k = (1 − bk) (resp. d̂k = (1 − dk)) with bit-flip probability
Pe,k. We note that the considered set of independent BSCs

2The latter functional form may be estimated by means of some training
data obtained by running an initialization phase (consisting of n = 1, . . . , N
timeslots) in which a cooperative target (with emitted signal θ[n] and position
xT [n] known at the FC) moves throughout the surveilled area and the
(quantized) measurements transmitted by the WSN are collected by the FC.
Once a sufficient number of training data has been gathered, the AAF may
be estimated via standard learning techniques (e.g. kernel-based regression).

3In this work we restrict our attention to (i) deterministic and (ii) one-bit
quantizers. Still, the proposed fusion methodology (including the quantizer
optimization later reported in Sec. IV) could be in principle applied also in
the general case of non-deterministic (e.g. dithered) and multi-bit quantizers.
The above interesting generalization is however left to future studies.

can emulate the modulation-decoding process4 usually adopted
in WSNs and IoT applications employing the uplink of the
narrowband IoT (NB-IoT) standard [27]. Indeed, although
WSNs need to provide connectivity to a large number of sen-
sors, the latter have low data rate requirements. Accordingly,
low-order modulation schemes (e.g. BPSK) and single-carrier
frequency division multiple access perfectly fit their needs.
Such configuration is a common operational mode of NB-IoT
uplink, as detailed in what follows.

More specifically, NB-IoT has a bandwidth of 180 kHz,
corresponding to one LTE physical resource block. Addi-
tionally, a possible subcarrier spacing equals 3.75 kHz (the
other configuration spacing allowed is 15 kHz) in single-tone
transmission, for a total of 48 subcarriers, and each subcarrier
can be allocated to a different user for a time slot of 32 ms. The
latter constitutes the elementary resource unit to be allocated
to a single user for sending its data. Therefore, if the sensing
duty cycle for each node is 0.1 s, then the system can support
the non-interfering transmission/reception of more than 150
sensors performing one-bit quantization of their corresponding
measurements in a given cell. In view of these considerations,
we can safely hypothesize orthogonal channels between the
sensors and the FC, similar to [2].

For the sake of a compact notation, we collect the received
bits as b̂ ,

[
b̂1 · · · b̂K

]T
and d̂ ,

[
d̂1 · · · d̂K

]T
in RQ and SQ cases, respectively.

Given these assumptions, when RQ is applied, the prob-
ability that b̂k = 1 under H1 is given by αrq

k (θ,xT ) ,
(1 − Pe,k)βk(θ,xT ) + Pe,k(1 − βk(θ,xT )), whereas under
H0 α

rq
0,k = (1 − Pe,k)β0,k + Pe,k(1 − β0,k). Similarly, when

SQ is adopted, the probability that d̂k = 1 under H1 is given
by αsq

k (θ,xT ) , (1− Pe,k)ρk(θ,xT ) + Pe,k(1− ρk(θ,xT )) ,
whereas under H0 the expression equals αsq

0,k = (1 −
Pe,k)ρ0,k + Pe,k(1− ρ0,k).

Definition of Test of Hypotheses: Note that the full-
precision testing problem, i.e., that assumes the availability
of original measurements z1, . . . zK , depends on the unknown
target position xT , which can be observed at the FC only
when the signal is present (θ 6= θ0, where θ0 = 0), i.e.
{H0,H1} → {θ = θ0, θ 6= θ0}. Hence, the test with full-
precision measurements is a two-sided one with a nuisance
term (xT ) identifiable only under H1 [28].

However, when considering the two quantization ap-
proaches, some further clarifications are necessary. In the
case of RQ, the unknown target position xT can be observed
at the FC only when the signal is present (θ 6= θ0, where
θ0 = 0), i.e. {H0,H1} → {θ = θ0, θ 6= θ0}, since βk(θ,xT )
(and, as a consequence, αrq

k (θ,xT )) depends on θ. Hence, the
corresponding test is again a two-sided one with a nuisance
term (xT ) identifiable only under H1 [28]. Conversely, when
considering SQ, the kth probability ρk(θ,xT ) (and, as a

4We remark that the explicit inclusion of noisy and fading effects in
the model underlying the design of the presented fusion rules (that is,
considering a “decode-and-fuse” approach [30]), although promising in terms
of achievable performance gains, constitutes a challenging task. This is due to
the more involved expression of the pdf of the resulting received signal vector
and to the difficulty in the evaluation of the consequent score/FI expressions.
For this reason, the design of aforementioned class of fusion rules is left to
future studies.
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consequence, αsq
k (θ,xT )) is actually a function of the target

emitted power Pθ , θ2. Therefore, we have:

ρk(Pθ,xT ) ,Q
(

[
√
γk − |gk µh,k|

√
Pθ] /

√
σ2

eq,k(Pθ)
)

+

(6)

Q
(

[
√
γk + |gk µh,k|

√
Pθ] /

√
σ2

eq,k(Pθ)
)
,

where σ2
eq,k(Pθ) = (g2

k σ
2
h,k Pθ + σ2

w,k). Hence xT can be
observed only when the power is present (Pθ > Pθ0 , where
Pθ0 = 0), i.e. {H0,H1} → {Pθ = Pθ0 , Pθ > Pθ0}. Thus, in
the SQ case, we test a one-sided parameter with a nuisance
term (xT ) identifiable only under H1 [28].

The aim of our study is to design a simple test (from a
computational viewpoint) deciding in favor of H0 (resp. H1)
when the statistic (Λ(b̂) or Λ(d̂)) is below (resp. above) the
threshold γfc, and the design of the quantizer (i.e. optimized
τk or γk, k ∈ K) for each sensor. The FC performance is eval-
uated in terms of its false alarm (PF , Pr{Λ > γfc|H0}) and
detection (PD , Pr{Λ > γfc|H1}) probabilities, respectively,
with Λ denoting the generic decision statistic at the FC.

III. DESIGN OF THE FUSION RULES

First of all, we observe that the log-likelihood function of
the received vector b̂ versus (θ,xT ), namely logP (b̂; θ,xT ),
can be expressed in explicit form as [7], [22]
K∑
k=1

{b̂k log[αrq
k (θ,xT )] + (1− b̂k) log[1− αrq

k (θ,xT )]}. (7)

We recall that the above expression holds also for SQ, i.e.,
with the log-likelihood logP (d̂; θ,xT ), if we replace b̂k and
αrq
k (θ,xT ) with d̂k and αsq

k (θ,xT ), respectively. We now
introduce the design rationales considered for obtaining the
proposed fusion rules.

The GLR is the most common approach for tests with
composite hypotheses [22], with its implicit expression for
the decision statistic based on RQ given by

ΛGLR(b̂) , 2 log

[
P (b̂; θ̂1, x̂T )

P (b̂; θ0)

]
. (8)

In the above equation, the pair (θ̂1, x̂T ) represents the Maxi-
mum Likelihood (ML) estimates under H1, i.e.

(θ̂1, x̂T ) , arg max
(θ,xT )

P (b̂; θ,xT ) . (9)

Similarly, the GLR statistic based on SQ is given by

ΛGLR(d̂) , 2 log

[
P (d̂; P̂θ1 , x̂T )

P (d̂;Pθ0)

]
. (10)

Analogously, the pair (P̂θ1 , x̂T ) represents the ML estimates
under H1, obtained as

(P̂θ1 , x̂T ) , arg max
(Pθ,xT )

P (d̂;Pθ,xT ) . (11)

We observe that ΛGLR (see Eqs. (8) and (10)) requires the so-
lution of an optimization task. Unfortunately, the ML estimate
pair (θ̂1, x̂T ) (resp. (P̂θ1 , x̂T )) cannot be obtained in closed
form and this hinders its practical implementation. Hence,

a (joint) grid approach is usually adopted on (θ,xT ) (resp.
(Pθ,xT )) [7], [21], [22]. Accordingly, the GLR statistic is
able to provide an estimate for both the emitted signal θ (resp.
power Pθ) and the target location xT .

On the other hand, Davies’ work represents an alternative
approach for capitalizing on either the two-sided (when RQ
is applied) or one-sided (when SQ is applied) nature of the
considered hypothesis test [28], allowing to generalize score
tests to the more challenging scenario of nuisance parameters
observed only under H1. In fact, score tests rely on the ML
estimates of nuisances under H0 [20], that cannot be obtained
here since they are unobservable.

For instance, referring to our model and considering
the design of a Rao test (based on RQ), the
numerator of the statistics would be given by
(∂ log

[
P
(
b̂ ; θ,xT

)]
/∂θ)2

∣∣∣
θ=θ0,xT=x̂T,0

, where x̂T,0

represents the ML estimate of the target position under H0.
However, when the hypothesis H0 holds, the target is absent
and thus its position xT cannot be estimated.

Conversely, if xT were known, the Rao (LOD) statistic
would represent a suitable decision statistic for the corre-
sponding two-sided (resp. one-sided) testing on θ (resp. Pθ)
[20]. Unfortunately, since the target location parameter is
not known in our case, we rather obtain a functional score
statistics indexed by xT . Thus, to overcome this technical
difficulty, Davies proposed the functional supremum as the
relevant statistic, that is:

ΛGRao

(
b̂
)
, max

xT

(
∂ log

[
P
(
b̂ ; θ,xT

)]
/∂θ

)2
∣∣∣∣
θ=θ0

Irq(θ0,xT )

(12)

ΛGLOD

(
d̂
)
, max

xT

∂ log
[
P
(
d̂ ;Pθ,xT

)]
/∂Pθ

∣∣∣
Pθ=Pθ0√

Isq(Pθ0 ,xT )
(13)

where Irq(θ,xT ) , E
{(

∂ log[P (b̂; θ,xT )]/∂θ
)2
}

rep-

resents the Fisher Information (FI) of b̂ (with respect
to θ), assuming xT known. Similarly, Isq(Pθ,xT ) ,

E
{(

∂[log(d̂;Pθ,xT )]/∂Pθ

)2
}

represents the Fisher Infor-

mation (FI) of d̂ (with respect to Pθ), assuming xT known. The
underlying idea of Davies’ approach is to select a test which
accepts the hypothesis H1 when the functional statistic evalu-
ated at the most-likely target position (i.e. that corresponding
to arg maxxT Λ (·;xT )) exceeds a given threshold γfc. This
choice can be also interpreted as a “GLRT-like” philosophy
on these particular nuisance parameters. Accordingly, both the
generalized score statistics in Eqs. (12) and (13) implicitly
estimate only the target location xT .

Hereinafter, we will refer to the decision statistics in
Eqs. (12) and (13) as Generalized Rao (G-Rao) and General-
ized LOD (G-LOD), respectively, to indicate the use of Rao
and LOD as the inner statistic within Davies framework [7].

The closed-form expression of ΛGRao is drawn by
means of the explicit forms of the score function (i.e.
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∂ log[P (b̂ ; θ,xT ) /∂θ]) and the FI (i.e. Irq(θ,xT )), both eval-
uated at θ = θ0. Their derivation is provided in Appen-
dices A and B, respectively. In the former case, the final
expression of the (xT -conditional) score function at θ = θ0 is
given by

∂ logP (b̂; θ,xT )

∂θ

∣∣∣∣∣
θ=θ0

=

K∑
k=1

(
b̂k − αrq

0,k

)
Ξrq
k gk , (14)

where the auxiliary definition

Ξrq
k ,

(1− 2Pe,k)

αrq
0,k

[
1− αrq

0,k

] µh,k
σw,k

pN

 τk√
σ2
w,k

 (15)

has been employed. We recall that pN (·) is used to denote
the pdf of a normal random variable in its standard form.
Also, we highlight that the term Ξrq

k allows to express the
(xT -conditional) score function at θ = θ0 in Eq. (14) in a
compact form by separating deterministic terms not depending
on xT from (a) random contributions (i.e. (b̂k − αrq

0,k)) and
(b) deterministic terms which are instead function of xT (i.e.
gk ). In the latter case, the (xT -conditional) FI at θ0 is given
by

Irq(θ0,xT ) =

K∑
k=1

αrq
0,k(1− αrq

0,k) (Ξrq
k )2 g2

k

=

K∑
k=1

ψrq
0,k g

2
k (16)

where the definition ψrq
0,k , αrq

0,k(1 − αrq
0,k) (Ξrq

k )2 has been
employed in the last line. Accordingly, the explicit form of
the G-Rao statistic can be thus rewritten as ΛGRao(b̂) ,
maxxT ΛRao( b̂,xT ), where

ΛRao

(
b̂,xT

)
=

{∑K
k=1 ν

rq
k (̂bk) g(xT ,xk)

}2

∑K
k=1 ψ

rq
0,k g

2(xT ,xk)
(17)

denotes the Rao statistic assuming xT known, and we have
defined νrq

k (̂bk) , (̂bk − αrq
0,k) Ξrq

k .
In contrast, the explicit expression of ΛGLOD is drawn

by means of the explicit forms of the score function
(log

[
P
(
d̂ ;Pθ,xT

)]
/∂Pθ) and the FI (Isq(Pθ,xT )), both

evaluated at Pθ = Pθ0 . Their derivation is provided in the
Appendices A and B, respectively. In the former case, the final
expression of the (xT -conditional) score function at Pθ = Pθ0
is given by:

∂ logP (d̂; θ,xT )

∂Pθ

∣∣∣∣∣
Pθ=Pθ0

=

K∑
k=1

(
d̂k − αsq

0,k

)
Ξsq
k g2

k (18)

where the definition

Ξsq
k ,

(1− 2Pe,k)
√
γk (µ2

h,k + σ2
h,k)

αsq
0,k

[
1− αsq

0,k

]
σ3
w,k

pN

(√
γk
σ2
w,k

)
(19)

has been employed. We highlight that the term Ξsq
k allows to

express the (xT -conditional) score function at Pθ = Pθ0 in
Eq. (18) in a compact form by separating deterministic terms

not depending on xT from (a) random contributions (i.e. (d̂k−
αsq

0,k)) and (b) deterministic terms which are instead function
of xT (i.e. g2

k). In the latter case, the (xT -conditional) FI at
Pθ0 is given by

Isq(Pθ0 ,xT ) =

K∑
k=1

αsq
0,k (1− αsq

0,k) (Ξsq
k )2 g4

k

=

K∑
k=1

ψsq
0,k g

4
k (20)

where the definition ψsq
0,k , αsq

0,k

(
1− αsq

0,k

)
(Ξsq
k )2 has been

employed in the last line. As a result, the explicit form
of the G-LOD statistic can be shown to be ΛGLOD(d̂) ,
maxxT ΛLOD( d̂,xT ), where

ΛLOD

(
d̂,xT

)
=

∑K
k=1 ν

sq
k (d̂k) g2(xT ,xk)√∑K

k=1 ψ
sq
0,k g

4(xT ,xk)
(21)

denotes the LOD statistic assuming xT known, and we have
defined νsq

k (d̂k) , (d̂k − αsq
0,k) Ξsq

k .
The appeal of G-Rao and G-LOD statistics is motivated by

their simpler implementation (as θ̂1 and Pθ̂1 are not needed),
requiring solely a grid with respect to xT , that is

ΛGRao(b̂) ≈ max
i=1,...NxT

ΛRao(b̂,xT [i]) (22)

ΛGLOD(d̂) ≈ max
i=1,...NxT

ΛLOD(d̂,xT [i]) (23)

Thus, their complexity is O (KNxT ), implying a significant
reduction with respect to the GLR. Indeed, the complexity of
the latter equals O (KNxT Nθ) and O (KNxT NPθ ) when
RQ and SQ are adopted, respectively. In the above expressions,
the terms NxT and Nθ (resp. NPθ ) denote the number of posi-
tion and amplitude (resp. power) bins employed. A comparison
of the complexity involved in the implementation of the above
fusion rules is summarized in Table I.

It is evident that ΛGRao depends on τk’s (collected as τ ,[
τ1 · · · τK

]T
), via the terms νrq

k (̂bk) and ψrq
0,k, k ∈ K,

which can be optimized to boost performance, as performed in
[24]. The same reasoning applies to ΛGLOD, as it is a function
of γk’s (collected as γ ,

[
γ1 · · · γK

]T
), through νsq

k (d̂k)
and ψsq

0,k, k ∈ K, which can be optimized as well. We notice
that the same optimization applies also to ΛGLR for RQ and
SQ cases. We accomplish this objective in what follows.

IV. OPTIMIZATION OF QUANTIZERS THRESHOLDS

We point out that (asymptotically) optimal deterministic
quantizers cannot be obtained, since no closed-form perfor-
mance expressions exist for the tests based on Davies approach
[28]. Hence, the rationale in [16], [29], [31] cannot be applied
to our case. Due to this reason, we use a modified approach
(that resorts to a heuristic, yet intuitive, basis) that has been
successfully applied to DD problems for the special cases of
either purely deterministic or stochastic target emission [15],
[23].
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Table I: Summary of fusion rules considered in this work. For each of these, the computational complexity required needed
for its implementation (via grid discretization) is also reported (last column).

Fusion Rule Quantization Expression Complexity

GLRrq RQ 2 max(xT ,θ)

∑K
k=1 b̂k log

[
α
rq
k

(θ,xT )

α
rq
0,k

]
+ (1− b̂k) log

[
1−αrq

k
(θ,xT )

1−αrq
0,k

]
O (KNxT Nθ)

G-Raorq RQ maxxT

{∑K
k=1 ν

rq
k (̂bk) gk

}2
/
∑K
k=1 ψ

rq
0,k g

2
k O (KNxT )

GLRsq SQ 2 max(xT ,Pθ)

∑K
k=1 d̂k log

[
α
sq
k

(Pθ,xT )

α
sq
0,k

]
+ (1− d̂k) log

[
1−αsq

k
(Pθ,xT )

1−αsq
0,k

]
O
(
KNxT NPθ

)
G-LODsq SQ maxxT

∑K
k=1 ν

sq
k (d̂k) g2k /

√∑K
k=1 ψ

sq
0,k g

4
k O (KNxT )

GLRfp – max(xT ,θ)

∑K
k=1 log

[
σ2
w,k / σ

2
eq,k(θ)

]
+
[
z2k / σ

2
eq,k(θ)

]
−
[
(zk − gk µh,k θ)2 / σ2

eq,k(θ)
]

O (KNxT Nθ)

G-Raofp – maxxT (
∑K
k=1 gk µh,k zk/σ

2
w,k)2 /

∑K
k=1 g

2
k µ

2
h,k / σ

2
w,k O (KNxT )

G-LODfp – maxxT

∑K
k=1

1
2

[
g2k
σ2
w,k

(µ2h,k + σ2
h,k)

(
z2k
σ2
w,k

− 1

)]
/

√
1
2

∑K
k=1

g4
k

σ4
w,k

(µ2h,k + σ2
h,k)2 O (KNxT )
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(a) Objective function for selection of τ?k in G-Raorq and GLRrq.
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(b) Objective function for selection of ρ?0,k (viz. γ?k ) in G-LODsq and GLRsq.

Figure 2: Threshold objectives used for optimizing RQ (ψrq
0,k(τk), subfigure a) and SQ (ψsq

0,k(ρ0,k), subfigure b) for Pe,k ∈
{0, 0.1, 0.2} and κ ∈ {−5, 0} dB.

In detail, it is well known that the xT -clairvoyant Rao
statistic ΛRao is distributed (under an asymptotic, weak-signal,
assumption5) as [20]

ΛRao(xT , τ )
a∼

{
χ2

1 under H0

χ
′2
1 (λQ(xT , τ )) under H1

, (24)

A similar result applies to the xT -clairvoyant LOD statistic
ΛLOD, which is asymptotically (under the same conditions as
the Rao test) distributed as [20]

ΛLOD(xT ,γ)
a∼

{
N (0, 1) under H0

N (δQ(xT ,γ), 1) under H1

, (25)

The non-centrality λQ(xT , τ ) , (θ1 − θ0)2 I(θ0,xT ) and
the deflection δQ(xT ,γ) , (Pθ1 −Pθ0)

√
I(Pθ0 ,xT ,γ) mea-

5That is |θ1 − θ0| = c/
√
K for a certain value c > 0 [20].

sures6 in Eqs. (24) and (25), respectively, are given as:

λQ(xT , τ ) = θ2
1

K∑
k=1

ψrq
0,k(τk) g2(xT ,xk) ; (26)

δQ(xT ,γ) = Pθ1

√√√√ K∑
k=1

ψsq
0,k(γk) g4(xT ,xk) . (27)

Additionally, they are reported as a function of (xT , τ ) and
(xT ,γ), respectively, to stress the dependence on the unknown
position xT and the vector of variables to optimize (τ or γ).
Finally, the terms θ1 and Pθ1 represent the true values of the
target signal and power, respectively, under H1.

Clearly the larger λQ(xT , τ ) and δQ(xT ,γ) are, the better
the xT−clairvoyant Rao and LOD tests, respectively, will
perform when the target to be detected is located at xT . The

6We employ the slightly-modified notations I(θ,xT , τ ) and ψrq
0,k(τk)

(resp. I(Pθ,xT ,γ) and ψsq
0,k(γk)), as opposed to I(θ,xT ) and ψrq

0,k (resp.
I(Pθ,xT ) and ψsq

0,k), to stress the dependence on thresholds τk’s. (resp.
γk’s).
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same applies to the xT−clairvoyant GLR on either quantizer-
originated data. For this reason, we aim to design the threshold
vectors τ and γ, respectively, as

τ ? , arg max
τ

λQ(xT , τ ) ; (28)

γ? , arg max
γ

δQ(xT ,γ) . (29)

However, by doing so, we could potentially obtain (impracti-
cal) solutions τ ? and γ? which depend on xT . Luckily, for
this particular problem, the optimization simplifies into K de-
coupled threshold designs (hence the optimization complexity
scales linearly with the number of sensors K), whose solutions
are also independent of xT (cf. Eqs. (26) and (27)).

Indeed, for the G-Rao case, it holds (for each k):

max
τk

ψrq
0,k(τk) =

µ2
h,k

σ2
w,k

p2
N

(
τk /

√
σ2
w,k

)
∆k + β0,k(τk) [1− β0,k(τk)]


(30)

where ∆k , [Pe,k (1 − Pe,k)]/(1 − 2Pe,k)2. The aforemen-
tioned objective is shown in Fig. 2a for different values of Pe,k,
and κ. It is known from the quantized estimation literature
[32], [33] that for Gaussian pdf τ?k , arg maxτk ψ

rq
0,k(τk) = 0

when ∆k = 0 (corresponding to Pe,k = 0). However, it is
not difficult to show7 that this result holds for any value of
∆k 6= 0, which corresponds to different conditions of the
noisy (Pe,k 6= 0) reporting channels. It is worth noticing that
the objective maximizer in Eq. (30) coincides with the one
obtained for the case of a purely-deterministic (LoS) parameter
in [15] and is thus independent of the specific LoS/NLoS
relative weight.

Differently, for the G-LOD case, we have (for each k):

max
γk

{
ψsq

0,k(γk) =
(µ2
h,k + σ2

h,k)2

(σ2
w,k)2

(31)

×
p2
N

(√
γk/σ2

w,k

)
(γk/σ

2
w,k)

∆k + ρ0,k(γk) [1− ρ0,k(γk)]


Such maximization can be re-formulated in terms of the sensor
false-alarm probability ρ0,k (being in bijective correspondence

7Indeed, the inequality p2N
(
τ◦k
)
/
{

∆k +Q(τ◦k )
[
1−Q(τ◦k )

]}
≤

p2N (0) / {∆k +Q(0) [1−Q(0)]}, where τ◦k , τk /
√
σ2
w,k , can be

rewritten as

{
p2N (τ◦k )Q(0) [1−Q(0)]− p2N (0)Q(τ◦k ) [1−Q(τ◦k )]

}
+

∆k

{
p2N (τ◦k )− p2N (0)

}
≤ 0

The above condition is always satisfied since the negativity of first term
within the curly brackets follows directly from the result for ideal BSCs
(∆k = 0) [32], [34], while for the second term both (a) ∆k > 0 and
(b)
{
p2N
(
τ◦k
)
− p2N (0)

}
≤ 0 (because the normal distribution attains its

mode at zero) hold.

with γk), as

ψsq
0,k(ρ0,k) =

(µ2
h,k + σ2

h,k)2

(σ2
w,k)2

(32)

×
p2
N (Q−1(ρ0,k/2))

[
Q−1(ρ0,k/2)

]2
∆k + ρ0,k (1− ρ0,k)

The aforementioned objective is shown in Fig. 2b for different
values of Pe,k and κ. The optimized ρ?0,k can be easily
evaluated via a 1-D line search. It is worth noticing that
the objective maximizer in Eq. (32) coincides with the one
obtained for the case of a purely-random (NLoS) parameter
in [23] and is thus independent on the specific LoS/NLoS
relative weight.

Remarks: although optimization of both raw- and square-
quantizer thresholds has been to shown to be independent of
the specific LoS/NLoS relative weight, we stress that detection
performance in both cases is going to depend significantly
on the above parameter instead. Indeed, we observe that the
(optimized) non-centrality λQ(xT , τ ) grows, via the terms
ψrq

0,k(τk), k = 1, . . .K, with µ2
h,k / σ

2
w,k (see Eq. (30)). Con-

versely, the (optimized) non-centrality δQ(xT ,γ) grows, via
the terms ψsq

0,k(ρ0,k), k = 1, . . .K, with (µ2
h,k + σ2

h,k) / σ2
w,k

(see Eq. (32)). Hence, the above observations highlight that:
(a) the performance of G-LOD is likely to be weakly-
dependent over a wide range of LoS/NLoS relative conditions
(because of the presence of the sum µ2

h,k + σ2
h,k), (b) G-

Rao is expected to suffer from severe performance degradation
when NLoS terms become dominant (because of the absence
of σ2

h,k) and (c) in highly-LoS conditions we expect a more
sensible gain achieved by G-Rao at low SNR as the result of
the squaring of (µ2

h,k + σ2
h,k) / σ2

w,k in Eq. (32).

V. NUMERICAL RESULTS AND DISCUSSION

Simulation setup: Herein, we compare the numerical
performance of the optimized G-Rao, G-LOD and GLR
tests, based on the threshold-optimization design proposed in
Sec. IV. Specifically, our simulation setup considers a 2-D
(xT ∈ R2) square area defined as A , [0, 1]2, in which a
non-cooperative target is detected by a WSN with K = 49
sensors. For simplicity, the nodes are arranged to uniformly
cover the whole A in a grid fashion. Regarding the sensing
model, the AAF considered is a power-law, namely

g(xT ,xk) , 1 /
√

1 + (‖xT − xk‖ / η)
α (33)

where we have set η = 0.2 (viz. approximate target extent)
and α = 4 (viz. decay exponent). Also, for simplicity, wk ∼
N (0, σ2

w = 1) and µ2
h = 1, k ∈ K. Initially, we assume error-

free BSCs, namely Pe,k = 0, k ∈ K. All the simulations are
based on 105 Monte Carlo runs.

Based on Sec. III, the implementation of ΛGLR, ΛGRao and
ΛGLOD leverages grid search. Specifically, the search space
of the target signal θ (resp. power Pθ) is assumed to be
Sθ ,

[
−θ̄, θ̄

]
(resp. SPθ , [0, Pθ̄]), where θ̄ > 0 (resp.

Pθ̄ > 0) is such that the SNR = 20 dB. The vector collecting
the points on the grid is then defined as

[
−gTθ 0 gTθ

]T
(resp.[

0 gTPθ
]
), where gθ (resp. gPθ ) collects target strengths
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(power values) corresponding to the SNR values −10 : 2.5 :
20 (dB). As a result, the number of amplitude and power
bins equals Nθ = 25 and NPθ = 13, respectively. Secondly,
the search support of xT coincides with the monitored area
(SxT = A). Accordingly, the 2-D grid is the result of sampling
A uniformly with NxT = N2

c points, where Nc = 100.
In this setup, the evaluation of G-Rao (G-LOD) requires
N2
c = 104 grid points, as opposed to N2

cNθ = 2.5 × 105

(resp. N2
cNPθ = 1.3 × 105) points for GLR. This leads to

a > 20 (resp. > 10 ) times lower complexity of G-Rao (G-
LOD) with respect to a GLR based on the same quantization
strategy.

Considered Baselines: For the sake of a complete compar-
ison and to assess the loss due to quantization, we consider
the following baselines: (i) a GLR having available the full-
precision measurements zk’s, (ii) G-Rao and (iii) G-LOD tests
based on the same data. Regarding (i), its (implicit) expression
is analogous to that in Eq. (8) and is implemented via the
following explicit expression:

Λfp
GLR(z) = max

(xT ,θ)

K∑
k=1

{
log
[
σ2
w,k / σ

2
eq,k(θ)

]
[
z2
k / σ

2
eq,k(θ)

]
−
[
(zk − gk µh,k θ)2 / σ2

eq,k(θ)
]}

(34)

For (ii) and (iii), their explicit expressions (the proof is not
included for brevity) are respectively given as

Λfp
GRao(z) , max

xT

(
∑K
k=1 gk µh,k zk/σ

2
w,k)2∑K

k=1 g
2
k µ

2
h,k / σ

2
w,k

(35)

Λfp
GLOD(z) , max

xT

∑K
k=1

1
2

[
g2k
σ2
w,k

(µ2
h,k + σ2

h,k)
(

z2k
σ2
w,k
− 1
)]

√
1
2

∑K
k=1

g4k
σ4
w,k

(µ2
h,k + σ2

h,k)2

(36)

We remark that, in order to apply G-LOD, the derivation is
actually performed starting from the square values z2

k (leading
to an analogous change of the nature of the test from two-sided
to one-sided as in the one-bit quantization case).

Discussion of Results: First, Fig. 3 provides a PD compari-
son (subject to PF = 0.01) of considered fusion rules versus κ
(dB), to assess their detection sensitivity versus the LoS/NLoS
relative terms ratio emitted by the non-cooperative target. In
the present analysis, the target position xT is randomly sam-
pled within A at each run (when H1 is drawn). We consider
a sensing SNR = 10 dB for the target. Results highlight that
G-LODsq performs as well as a GLRsq and outperforms both
G-Rao and GLR based on RQ, over the whole κ range. The
observation of the performance for tests based on full-precision
highlight (i) the loss due to quantization and (ii) problems
related to considering a Rao test for the multiplicative fading
case, especially in a low κ condition.

Then, in Fig. 4 we perform a PD comparison (subject to
PF = 0.01) of considered fusion rules versus SNR (dB), to
assess their detection rate versus the sensing SNR for two
different conditions of “scatteredness”, namely κ = 0 dB and
κ = 10 dB. Results highlight the close match between the
GLR and the corresponding generalized score test (G-Rao or

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Figure 3: PD vs. κ factor (dB); false-alarm probability at FC
is set to PF = 0.01. A WSN with K = 49 sensors and a target
with SNR = 10 dB is considered. The sensor thresholds for
RQ and SQ are set according to the design reported in Sec. IV.
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(a) κ = 10 dB;

0 5 10 15 20
0
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1

(b) κ = 0 dB;

Figure 4: PD vs. SNR (dB); false-alarm probability at FC is
set to PF = 0.01. A WSN with K = 49 sensors is considered.
Sensor thresholds for RQ and SQ-based rules are set according
to Sec. IV.

G-LOD) based on the same type of data (i.e. FP, RQ or SQ).
By comparing G-Raorq and G-LODsq, it is apparent that their
relative performance depends on the scatteredness condition.
For example, while for high-LoS, G-Raorq performs better,
in the case of low-LoS, the advantage of G-LODsq becomes
apparent. The advantage of the squaring operation is also
evident from the performance gap reduction achieved by G-
LODfp with respect to GLRsq and G-Raofp.

As a complementary analysis, in Fig. 5 we deepen the
PD comparison (subject to PF = 0.01) by analyzing a
variable number of sensors K. In detail, we consider the same
square surveillance area A = [0, 1]2, but we assume a linear
increase of the number of sensors on the grid length (i.e. a
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Figure 5: PD vs. number of sensors K; false-alarm probability
at FC is set to PF = 0.01. A target with SNR = 10 dB and
κ = 10 dB is considered. Sensor thresholds for RQ and SQ-
based rules are set according to Sec. IV.

quadratic grow of K) so as to investigate the effect of WSN
grid densification on the system detection rate. As expected,
all the considered fusion rules benefit from a finer grid of
sensors monitoring the target to be detected, with the rules
based on FP achieving near-ideal performance with a lower
number of sensors (i.e. a coarser grid). Differently, concerning
fusion rules based on one-bit quantization, those based on SQ
achieve slightly improved performance for lower values of
K. Differently, as the WSN densification grows, such gain
over RQ-based rules reduces. For instance, when targeting
PD ≈ 0.8 (resp. PD ≈ 0.9) a uniform grid with K = 49
(resp. K = 64) sensors suffices for both RQ-based and SQ-
basd rules.

A more in depth comparison of G-LODsq and G-Raorq

along the κ and SNR dimensions is reported in Fig. 6.
Specifically, we present the PD vs. (κ,SNR) (dB) for a FC
false-alarm probability set to PF = 0.01 for G-LODsq (left)
and G-Raorq (center), respectively, and their difference ∆PD

(right). From the inspection of results, we can infer how G-
Raorq is highly sensitive to low values of κ ( NLoS condition).
Differently, G-LODsq is almost insensitive to the specific
Los/NLoS condition (viz. the value of κ). The performances of
both fusion rules degrade with a decreasing SNR. By compar-
ing the performance of both rules (via the difference ∆PD ,
(PGLOD

D − PGRao

D )) over the whole (κ,SNR) plane, it is ap-
parent how high SNR and high κ represents the region where
G-LODsq “wins”, whereas an opposite outcome is observed in
the case of low SNR and low κ (i.e. G-Raorq wins). Still, in
the latter case, the performance gain ensured by G-Raorq over
G-LODsq (right figure) is not as high as the winning G-LODsq

region. Such results may be explained by looking at the terms
ψrq

0,k(τk) and ψsq
0,k(ρ0,k) (cf. Eqs. (30) and (32), respectively),

and their relative trends highlighted at the end of Sec. IV.
Indeed, ψrq

0,k(τk) and ψsq
0,k(ρ0,k) directly influence the value

of the xT -clairvoyant non-centrality parameters λQ(xT , τ )
and δQ(xT ,γ), respectively, which limit (from the above) the
achievable performance of G-Raorq and G-LODsq.

We then delve into the analysis of the effect of the reporting
errors by means of Fig. 7. The latter provides a PD comparison
(subject to PF = 0.01) of the seven fusion rules versus
Pe,k = Pe, k ∈ K (i.e. the same BEP for all the sensors). Two
different scatteredness cases are considered, namely κ = 0 dB
(Fig. 7a) and κ = 5 dB (Fig. 7b). Results highlight that BEP
(viz. Pe) increase has a detrimental effect on all the RQ/SQ-
based rules and further enlarges their gap with respect to FP-
based counterparts. Remarkably, in the case of κ = 5 dB, the
benefits of SQ (over RQ) are almost nullified when Pe ≈ 0.15.

Finally, we investigate the detection coverage properties of
the considered fusion rules over the entire surveillance area
A. To this end, in Fig. 8, we report PD (under PF = 0.01)
versus the target location xT (for SNR = 5 dB and κ =
0 dB) for all the rules considered, except of G-Raofp, due
to its poor performance in this peculiar NLoS configuration.
It is apparent that the PD(xT ) surface is similar for all the
rules from a qualitative viewpoint. Also, it underlines lower
detection performance at the edges of the surveillance area.
This outcome arises from the regular WSN placement within
A for the scenario analyzed. From the comparison among the
different rules, it is apparent that the G-LODsq test presents
only marginal loss with respect to the GLRsq, and significant
gain with respect to G-Raorq and GLRrq. Clearly, the detection
coverage is not as good as the FP counterparts considered, due
to the degrading effect of parsimonious (one-bit) quantization.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we devised a WSN-based DD scheme in the
presence of (a) multiplicative fading, (b) quantized measure-
ments, (c) non-ideal and non-identical BSCs. The target to
be detected emits an unknown (since it is non-cooperative)
deterministic signal (θ) from unknown location (xT ), Since
xT is a nuisance parameter present only under H1 (i.e. when
θ 6= 0), we designed generalized versions of the Rao and
LOD tests as attractive (low-complexity) alternatives to GLR
(the latter requiring a grid search on the whole space (θ,xT ))
based on the same quantization choice. These generalized
forms were obtained from the framework in [28]. The resulting
forms of G-Rao and G-LOD require single maximization (with
respect to xT ) of a family of xT -conditional decision statistics,
obtained by assuming xT known, thus avoiding the need
for grid search over θ (or Pθ). Further, we developed an
effective criterion (drawn from semi-theoretical performance)
to optimize sensor thresholds of either quantization type (RQ
or SQ). This resulted in a zero-threshold choice for RQ and a
simple 1-D search for SQ. Also, these outcomes were shown
to be independent of the specific κ value. Numerical results
for G-LODsq underlined (i) similar PD values to both G-Raorq

and GLRrq in the LoS case, (ii) similar performance of GLRsq

in the NLoS case, (iii) high gains with respect to G-Raorq over
a relevant κ range. Accordingly, we believe the adoption of SQ
with G-LODsq represents an appealing design choice for DD
in such scenario for a wide range of Los/NLoS conditions.
The sole exception is represented by highly-LOS low-SNR
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A WSN with K = 49 sensors is considered: their thresholds are optimized as in Sec. IV; ideal BSCs are assumed, i.e. Pe,k = 0.
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Figure 7: PD vs. BEP (Pe,k = Pe); the FC false-alarm
probability is set to PF = 0.01. A WSN with K = 49 sensors
and a target with sensing SNR = 10 dB are considered.

scenarios, where the joint use of RQ and G-Rao test at the FC
should be preferred.

Future directions of research will investigate DD via sen-
sor fusion in more challenging and close-to-real contexts.
These include multi-bit quantizers [35], robustness to phy-
layer attacks [36], time-correlated reporting channels [37],
multidimensional measurement models [38], incompletely-
specified noise and model pdfs (e.g. unknown AAF), models
enjoying sparsity [8] and energy-efficient censoring sensors.

Additionally, the derivation of (asymptotic) theoretical expres-
sions for the detection (PD) and false-alarm (PF) probabilities
of generalized score tests is also foreseen as a (challenging)
avenue for future research.

APPENDIX A
DERIVATION OF THE SCORE FUNCTIONS

In this Appendix, we derive the xT -conditional
score functions for G-Rao and G-LOD tests, namely
∂ log[P (b̂ ; θ,xT ) /∂θ] and (i.e. ∂ log[P (d̂ ;Pθ,xT ) /∂Pθ],
evaluated at θ0 and Pθ0 , respectively.

We first focus on the score function needed for G-Rao eval-
uation. Precisely, based on the factorization form in Eq. (7),
the log-likelihood function logP (b̂; θ,xT ) is given by

logP (b̂; θ,xT ) (37)

=

K∑
k=1

{b̂k log[αrq
k (θ,xT )] + (1− b̂k) log[1− αrq

k (θ,xT )]}

Taking the derivative of logP (b̂; θ,xT ) with respect to θ, we
write the corresponding expression as (due to independence)

∂ logP (b̂; θ,xT )

∂θ
=

K∑
k=1

P
′
(b̂k; θ,xT )

P (b̂k; θ,xT )
(38)

=

K∑
k=1

∂αrq
k (θ,xT )

∂θ

(
b̂k − αrq

k (θ,xT )
)

αrq
k (θ,xT ) [1− αrq

k (θ,xT )]
,

According to the bit probability model in Eq. (4), the derivative
of the αrq

k (θ,xT ) with respect to θ is given explicitly as:

∂αrq
k (θ,xT )

∂θ
= (1− 2Pe,k) pN

τk − gk µh,k θ√
σ2

eq,k(θ)


×

(
τk g

2
k σ

2
h,kθ + gk µh,k σ

2
w,k

)
[σeq,k(θ)]

3/2
(39)
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Figure 8: PD heatmaps vs. target position xT for (a) G-Raorq, (b) G-LODsq, (d) GLRrq and (e) GLRsq. For completeness,
also the best two full-precision baselines ((c) and (f), corresponding to GLRfp and G-LODfp, respectively) are reported. The
FC false-alarm probability is set to PF = 0.01. A WSN with K = 49 sensors and a target with sensing SNR = 5 dB and
κ = 0 dB are considered. Corresponding decisions are sent over BSCs with Pe,k = 0.1. The sensor thresholds for RQ and SQ
are set according to the design reported in Sec. IV.

Evaluating the derivative of the log-pdf in Eq. (38) at θ = θ0

(corresponding to the null hypothesis H0), leads to:

∂ logP (b̂; θ,xT )

∂θ

∣∣∣∣∣
θ=θ0

=

K∑
k=1

∂αrq
k (θ,xT )

∂θ

∣∣∣∣
θ=θ0

(
b̂k − αrq

0,k

)
αrq

0,k

[
1− αrq

0,k

] (40)

and, in turn

∂αrq
k (θ,xT )

∂θ

∣∣∣∣
θ=θ0

= (1− 2Pe,k) pN

 τk√
σ2
w,k

 gk µh,k
σw,k

(41)

Then, exploiting the appropriate substitutions, we obtain:

∂ logP (b̂; θ,xT )

∂θ

∣∣∣∣∣
θ=θ0

=

K∑
k=1


(
b̂k − αrq

0,k

)
αrq

0,k

[
1− αrq

0,k

] (42)

× (1− 2Pe,k) pN

 τk√
σ2
w,k

 gk µh,k
σw,k


By defining the auxiliary quantity

Ξrq
k ,

(1− 2Pe,k)

αrq
0,k

[
1− αrq

0,k

] µh,k
σw,k

pN

(
τk /

√
σ2
w,k

)
(43)

we obtain the final expression

∂ logP (b̂; θ,xT )

∂θ

∣∣∣∣∣
θ=θ0

=

K∑
k=1

(
b̂k − αrq

0,k

)
Ξrq
k gk (44)

Differently, referring to the xT -conditional score func-
tion needed for G-LOD evaluation, we observe that
logP (d̂;Pθ,xT ) admits a similar additive form as Eq. (37).
Accordingly, ∂ logP (d̂;Pθ,xT ) / ∂Pθ can be rewritten sim-
ilarly as the last line of Eq. (38) if we replace b̂k,
αrq
k (θ,xT ) and ∂αrq

k (θ,xT )/∂θ with d̂k, αsq
k (Pθ,xT ) and

∂αsq
k (Pθ,xT ) / ∂Pθ, respectively.
Based on the bit probability model in Eq. (6), the derivative

of αsq
k (Pθ,xT ) with respect to Pθ is more involved and given

explicitly as in Eq. (45), at the top of next page.
Evaluating the derivative of the log-pdf in (38) at Pθ = Pθ0

(corresponding to the null hypothesis H0), leads to:

∂ logP (d̂;Pθ,xT )

∂Pθ

∣∣∣∣∣
Pθ=Pθ0

=

K∑
k=1

(
lim

Pθ→Pθ0

∂αsq
k (Pθ,xT )

∂Pθ

) (
d̂k − αsq

0,k

)
αsq

0,k

[
1− αsq

0,k

] (46)

The above limit is an undetermined form of the type 0
0 and

its explicit solution (obtained by leveraging limx→0[exp(x)−
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∂αsq
k (Pθ,xT )

∂Pθ
= (1− 2Pe,k) ×

 |gk| |µh,k|σ2
w,k

2
√
Pθ [σeq,k(Pθ)]

3

−pN
√γk + |gk| |µh,k|

√
Pθ√

σ2
eq,k(Pθ)

+ pN

√γk + |gk| |µh,k|
√
Pθ√

σ2
eq,k(Pθ)


√
γk g

2
k σ

2
h,k

2 [σeq,k(Pθ)]
3

pN
√γk + |gk| |µh,k|

√
Pθ√

σ2
eq,k(Pθ)

+ pN

√γk + |gk| |µh,k|
√
Pθ√

σ2
eq,k(Pθ)

 (45)

1]/x = 1) is:

∂ logP (d̂;Pθ,xT )

∂Pθ

∣∣∣∣∣
Pθ=Pθ0

=

K∑
k=1


(
d̂k − αsq

0,k

)
αsq

0,k

[
1− αsq

0,k

]
× (1− 2Pe,k) pN

(√
γk
σ2
w,k

) √
γk g

2
k [µ2

h,k + σ2
h,k]

σ3
w,k

}
(47)

By exploiting the definition

Ξsq
k ,

(1− 2Pe,k)

αsq
0,k

[
1− αsq

0,k

] √γk [µ2
h,k + σ2

h,k]

σ3
w,k

pN

(√
γk
σ2
w,k

)
(48)

we obtain the final expression:

∂ logP (d̂;Pθ,xT )

∂Pθ

∣∣∣∣∣
Pθ=Pθ0

=

K∑
k=1

(
d̂k − αsq

0,k

)
Ξsq
k g2

k (49)

This concludes the proof.

APPENDIX B
DERIVATION OF THE FISHER INFORMATION

In this Appendix, we derive the xT -conditional FI expres-
sions needed for G-Rao and G-LOD tests, respectively.

In detail, exploiting (conditional) independence of the bits
received from different sensors (this applies to both RQ and
SQ), we express both these quantities as:

Irq(θ,xT ) =

K∑
k=1

Irq
k (θ,xT ) , (50)

Isq(Pθ,xT ) =

K∑
k=1

Ik(Pθ,xT ) , (51)

where we have denoted with Irq
k (θ,xT ) (resp. Isq

k (Pθ,xT ))
the contribution of kth sensor to the FI, that is
Irq
k (θ,xT , ) = E

{
(∂ ln[P (b̂k|xT , θ)]/∂θ)2

}
(resp.

Isq
k (Pθ,xT ) = E

{
(∂ ln[P (d̂k|xT , Pθ)]/∂Pθ)2

}
). Then,

the substitution θ → θ0 in Irq(θ,xT ) (and exploiting
Eq. (44)) provides:

Irq(θ0,xT ) =

K∑
k=1

E
{[(

b̂k − αrq
0,k

)]2}
(Ξrq
k )2 g2

k (52)

=

K∑
k=1

αrq
0,k

[
1− αrq

0,k

]
(Ξrq
k )2 g2

k (53)

and a similar expression holds for G-LOD case (exploiting
Eq. (49)), that is:

Isq(Pθ0 ,xT ) =

K∑
k=1

E
{[(

d̂k − αsq
0,k

)]2}
(Ξsq
k )2 g4

k (54)

=

K∑
k=1

αsq
0,k

[
1− αsq

0,k

]
(Ξsq
k )2 g4

k (55)

By using the definitions ψrq
0,k , αsq

0,k

(
1− αsq

0,k

)
(Ξrq
k )2

and ψsq
0,k , αsq

0,k

(
1− αsq

0,k

)
(Ξsq
k )2, in conjunction with

Eq. (50), we obtain the (conditional) final FI results in
Eqs. (16) and (20), respectively.

REFERENCES

[1] ITU-T Rec. Y.2060 (06/2012), “Overview of the Internet of Things
(IoT),” Jun. 2012.

[2] M. A. Al-Jarrah, M. A. Yaseen, A. Al-Dweik, O. A. Dobre, and
E. Alsusa, “Decision fusion for IoT-based wireless sensor networks,”
IEEE Internet Things J., vol. 7, no. 2, pp. 1313–1326, 2019.

[3] P. K. Varshney, Distributed Detection and Data Fusion, 1st ed.
Springer-Verlag New York, Inc., 1996.

[4] D. Ciuonzo and P. Salvo Rossi, Eds., Data Fusion in Wireless Sensor
Networks: A statistical signal processing perspective, ser. Control,
Robotics & Sensors. Institution of Engineering and Technology (IET),
2019.

[5] Z. Chen and Y. Zhang, “Providing spectrum information service using
TV white space via distributed detection system,” IEEE Trans. Veh.
Technol., vol. 68, no. 8, pp. 7655–7667, 2019.

[6] H. Zayyani, F. Haddadi, and M. Korki, “One-bit spectrum sensing in
cognitive radio sensor networks,” Springer Circuits, Systems, and Signal
Processing, vol. 39, no. 5, pp. 2730–2743, 2020.

[7] D. Ciuonzo and P. Salvo Rossi, “Distributed detection of a non-
cooperative target via generalized locally-optimum approaches,” Infor-
mation Fusion, vol. 36, pp. 261–274, 2017.

[8] H. Zayyani, F. Haddadi, and M. M. Korki, “Double detector for sparse
signal detection from one-bit compressed sensing measurements,” IEEE
Signal Process. Lett., vol. 23, no. 11, pp. 1637–1641, 2016.

[9] C. Li, Y. He, X. Wang, G. Li, and P. K. Varshney, “Distributed detection
of sparse stochastic signals via fusion of 1-bit local likelihood ratios,”
IEEE Signal Process. Lett., vol. 26, no. 12, pp. 1738–1742, 2019.

[10] C. Li, G. Li, and P. K. Varshney, “Distributed detection of sparse
stochastic signals with 1-bit data in tree-structured sensor networks,”
IEEE Trans. Signal Process., 2020.

[11] I. Y. Hoballah and P. K. Varshney, “Distributed Bayesian signal detec-
tion,” IEEE Trans. Inf. Theory, vol. 35, no. 5, pp. 995–1000, 1989.

[12] A. R. Reibman and L. W. Nolte, “Optimal detection and performance of
distributed sensor systems,” IEEE Trans. Aerosp. Electron. Syst., no. 1,
pp. 24–30, 1987.

[13] J. N. Tsitsiklis, “Decentralized detection,” Advances in Statistical Signal
Processing, vol. 2, no. 2, pp. 297–344, 1993.

[14] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple
sensors - Part I: Fundamentals,” Proceedings of IEEE, vol. 85, no. 1,
pp. 54–63, Jan. 1997.

[15] D. Ciuonzo, P. Salvo Rossi, and P. Willett, “Generalized Rao test
for decentralized detection of an uncooperative target,” IEEE Signal
Process. Lett., 2017.



CIUONZO et al.: DIST. DET. IN WIRELESS SENSOR NETWORKS UNDER MULTIPLICATIVE FADING VIA GEN. SCORE-TESTS 13

[16] J. Fang, Y. Liu, H. Li, and S. Li, “One-bit quantizer design for
multisensor GLRT fusion,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 257–260, Mar. 2013.

[17] S. Laitrakun, “Decision fusion for composite hypothesis testing in
wireless sensor networks over a shared and noisy collision channel,”
Int. J. Distrib. Sens. Netw., vol. 16, no. 7, p. 1550147720940204, 2020.

[18] D. Ciuonzo and P. Salvo Rossi, “Decision fusion with unknown sensor
detection probability,” IEEE Signal Process. Lett., vol. 21, no. 2, pp.
208–212, Feb. 2014.

[19] F. H. Bijarbooneh, W. Du, E. C.-H. Ngai, X. Fu, and J. Liu, “Cloud-
assisted data fusion and sensor selection for Internet of Things,” IEEE
Internet Things J., vol. 3, no. 3, pp. 257–268, 2015.

[20] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2:
Detection Theory. Prentice Hall PTR, Jan. 1998.

[21] R. Niu and P. K. Varshney, “Joint detection and localization in sensor
networks based on local decisions,” in 40th Asilomar Conference on
Signals, Systems and Computers, 2006, pp. 525–529.

[22] A. Shoari and A. Seyedi, “Detection of a non-cooperative transmitter in
Rayleigh fading with binary observations,” in IEEE Military Communi-
cations Conference (MILCOM), 2012, pp. 1–5.

[23] D. Ciuonzo and P. Salvo Rossi, “Quantizer design for generalized
locally optimum detectors in wireless sensor networks,” IEEE Wireless
Commun. Lett., vol. 7, no. 2, pp. 162–165, 2018.

[24] D. Ciuonzo and P. Salvo Rossi, “Distributed detection of a non-
cooperative target with multiplicative fading,” in International Sympo-
sium on Signal Processing and Intelligent Recognition Systems (SIRS).
Springer, 2019, pp. 263–275.

[25] J. Zhu, X. Lin, R. S. Blum, and Y. Gu, “Parameter estimation from
quantized observations in multiplicative noise environments,” IEEE
Trans. Signal Process., vol. 63, no. 15, pp. 4037–4050, 2015.

[26] X. Wang, G. Li, and P. K. Varshney, “Distributed detection of weak sig-
nals from one-bit measurements under observation model uncertainties,”
IEEE Signal Process. Lett., vol. 26, no. 3, pp. 415–419, 2019.

[27] B. Martinez, F. Adelantado, A. Bartoli, and X. Vilajosana, “Exploring
the performance boundaries of NB-IoT,” IEEE Internet Things J., vol. 6,
no. 3, pp. 5702–5712, 2019.

[28] R. D. Davies, “Hypothesis testing when a nuisance parameter is present
only under the alternative,” Biometrika, vol. 74, no. 1, pp. 33–43, 1987.

[29] F. Gao, L. Guo, H. Li, and J. Fang, “One-bit quantization and distributed
detection with an unknown scale parameter,” Algorithms, vol. 8, no. 3,
pp. 621–631, 2015.

[30] D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Channel-aware decision
fusion in distributed MIMO wireless sensor networks: Decode-and-fuse
vs. decode-then-fuse,” IEEE Trans. Wireless Commun., vol. 11, no. 8,
pp. 2976–2985, Aug. 2012.

[31] D. Ciuonzo, G. Papa, G. Romano, P. Salvo Rossi, and P. Willett, “One-
bit decentralized detection with a Rao test for multisensor fusion,” IEEE
Signal Process. Lett., vol. 20, no. 9, pp. 861–864, 2013.

[32] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Sequen-
tial signal encoding from noisy measurements using quantizers with
dynamic bias control,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 978–
1002, Mar. 2001.

[33] D. Rousseau, G. V. Anand, and F. Chapeau-Blondeau, “Nonlinear
estimation from quantized signals: Quantizer optimization and stochastic
resonance,” in Proc. 3rd Int. Symp. Physics in Signal and Image
Processing, 2003, pp. 89–92.

[34] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed
estimation for wireless sensor networks - Part I: Gaussian case,” IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 1131–1143, Mar. 2006.

[35] X. Cheng, D. Ciuonzo, P. Salvo Rossi, X. Wang, and L. Shi, “Multi-
bit decentralized detection of a non-cooperative moving target through
a generalized Rao test,” in IEEE 11th Sensor Array and Multichannel
Signal Processing Workshop (SAM), 2020, pp. 1–5.

[36] P.-Y. Chen, S.-M. Cheng, and K.-C. Chen, “Information fusion to defend
intentional attack in internet of things,” IEEE Internet Things J., vol. 1,
no. 4, pp. 337–348, 2014.

[37] N. Biswas, P. Ray, and P. K. Varshney, “Distributed detection over
channels with memory,” IEEE Signal Process. Lett., vol. 22, no. 12,
pp. 2494–2498, 2015.

[38] J. Fang, X. Li, H. Li, and L. Huang, “Precoding for decentralized
detection of unknown deterministic signals,” IEEE Trans. Aerosp. Elect.
Syst., vol. 50, no. 3, pp. 2116–2128, July 2014.

Domenico Ciuonzo (SM’16) is an Assistant Profes-
sor at University of Napoli Federico II. He holds a
Ph.D. in Electronic Engineering from the University
of Campania, Italy. Since ’11, he has been holding
several visiting researcher appointments. Since ’14,
he has been (Area) Editor of several IEEE journals.
He is the recipient of Best Paper awards from IEEE
ICCCS (’19) and COMPUTER NETWORKS (’20),
the Exceptional Service award from IEEE AESS
(’19), and the Early-Career Technical Achievement
award from IEEE SENSORS COUNCIL for sensor

networks/systems (’20). His research interests include data fusion, wireless
sensor networks, the Internet of Things and machine learning.

Pierluigi Salvo Rossi (SM’11) was born in Naples,
Italy, in 1977. He received the Dr.Eng. degree
(summa cum laude) in telecommunications engineer-
ing and the Ph.D. degree in computer engineering
from the University of Naples “Federico II”, Italy,
in 2002 and 2005, respectively. He held visiting
appointments at Drexel University, USA; Lund Uni-
versity, Sweden; Norwegian University of Science
and Technology (NTNU), Norway; and Uppsala
University, Sweden. From 2005 to 2008, he held
postdoctoral positions at the University of Naples

“Federico II”, Italy; Second University of Naples, Italy; and NTNU, Norway.
He was an Assistant Professor (2008--2014, tenured in 2011) at the Second
University of Naples, Italy. He was an Associate Professor (2014--2016) and
a Full Professor (2016-2017) at NTNU, Norway. He was a Principal Engineer
(2017--2019) with Kongsberg Digital AS, Norway. Since 2019, he is a Full
Professor with the Dept. Electronic Systems, NTNU, Norway, and the Director
of IoT@NTNU. His research interests fall within the areas of communication
theory, data fusion, machine learning, and signal processing. He is Executive
Editor for the IEEE COMMUNICATIONS LETTERS; Area Editor for the IEEE
OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY; Associate Editor for
the IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING
OVER NETWORKS. He was Associate Editor of the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS; Senior Editor and Associate Editor of
the IEEE COMMUNICATIONS LETTERS. He was awarded as an Exemplary
Senior Editor of the IEEE COMMUNICATIONS LETTERS in 2018.

Pramod Varshney (LF’18) Pramod K. Varshney
received the B.S. degree in electrical engineering
and computer science (with highest Honors), and
the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Illinois at Urbana-
Champaign, USA, in 1972, 1974, and 1976 respec-
tively. Since 1976, he has been with Syracuse Uni-
versity, Syracuse, NY, USA, where he is currently
a Distinguished Professor of Electrical Engineering
and Computer Science and the Director of CASE:
Center for Advanced Systems and Engineering. He

has published over 530 conference papers and 310 journal papers. During his
career, he has supervised 62 doctoral dissertations. He is a member of Tau Beta
Pi and received the 1981 ASEE Dow Outstanding Young Faculty Award. He
was elected to the grade of Fellow of the IEEE in 1997 for his contributions in
the area of distributed detection and data fusion. In 2000, he received the Third
Millennium Medal from the IEEE and Chancellor’s Citation for exceptional
academic achievement at Syracuse University. He received the IEEE 2012
Judith A. Resnik Award, Doctor of Engineering degree honoris causa from
Drexel University in 2014, the ECE Distinguished Alumni Award from the
University of Illinois in 2015 and ISIF’s Yaakov Bar-Shalom Award for a
Lifetime of Excellence in Information Fusion in 2018. He is on the Editorial
Board of the Journal on Advances in Information Fusion and has served on
the editorial boards of IEEE TRANSACTIONS OF SIGNAL PROCESSING as
well as IEEE SIGNAL PROCESSING MAGAZINE among others. He was the
President of International Society of Information Fusion during 2001.


