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Bayesian Seismic AVO Inversion Using a Laterally
Coupled Multimodal Prior Model

Ole Bernhard Forberg , Øyvind Kjøsnes, and Henning Omre

Abstract— A Bayesian seismic amplitude versus offset (AVO)
inversion scheme with a laterally coupled prior model for
porosity, water saturation, and volume of clay is proposed. A 2-D
section and a 3-D volume of an oil reservoir are studied. The
oil reservoir is considered at the initial state, which entails
gravitationally induced bimodality in the water saturations along
vertical traces. A selection Gaussian random field (S-GRF) prior
model, capable of representing this bimodality, is specified for
porosity, water saturation, and volume of clay. The S-GRF is
specified to have lateral correlation, which may reduce the impact
of trace-unique signal errors in the seismic AVO data on the
inversion results. The likelihood model is linear and Gaussian, for
which the S-GRF prior model is conjugate; hence, the posterior
model is also an S-GRF. The form of the posterior distribution
is therefore known and its parameter values can be analytically
computed. Real seismic AVO data from the 2-D section and the
3-D volume are inverted and the results appear to be reliable
along validation wells and represent a geologically plausible
reservoir design. Furthermore, a notable variance reduction in
the laterally coupled posterior model relative to an alternative
posterior model without lateral coupling is achieved.

Index Terms— Bayes methods, geophysics, inverse problems,
mathematical model, reservoirs, rocks, statistics.

I. INTRODUCTION

THE seismic properties of a reservoir are related to its
petrophysical properties, which are the basis for reservoir

characterization. Porosity and water saturation are informative
about the storage capacity and fluid content of a reservoir and
may adequately characterize reservoirs that have a relatively
homogeneous lithology. Within a fixed lithotype, the seis-
mic velocities and density tend to be negatively correlated
with porosity, and the seismic velocities are higher in pores
filled with water than in pores filled with hydrocarbon [19].
However, lithological heterogeneity may induce effects in the
seismic properties that cannot be accounted for by porosity
and water saturation alone; hence, a lithological variable may
be necessary to adequately characterize such reservoirs [12],
[24]. Seismic amplitude versus offset (AVO) data are often
collected in order to characterize reservoirs. These data can
be related to petrophysical properties by seismic models based
on the Zoeppritz equations [28] and rock physics models.
A seismic model can either be approximated or be based
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on full waveform, and similarly, a rock physics model can
either be approximated from empirical data or be based on
poroelasticity theory [19].

In practice, the seismic AVO data are known, while the
petrophysical properties are unknown. The prediction of the
petrophysical properties from the seismic AVO data can be
formulated as an inverse problem [26]. Seismic inverse prob-
lems are often approached probabilistically, in a Bayesian
framework [5], [14], [18]. This framework requires the defin-
ition of a likelihood model and a prior model, which together
determine the form of the solution [27]. The likelihood model
is a probabilistic forward model describing the data acquisition
procedure and is often comprised of an approximate forward
function and a stochastic error term [5], [10], [13]. The prior
model is a probability distribution representing knowledge and
beliefs about the properties to be predicted. The Bayesian solu-
tion to the inverse problem is the posterior model, which is a
probability distribution proportional to the product of the like-
lihood model and the prior model. A Gauss-linear likelihood
model, defined by a linear forward model with Gaussian error
terms, paired with a Gaussian random field (GRF) prior model,
yields a computationally advantageous solution in a Bayesian
seismic inversion framework [6]. These model assumptions are
convenient because Gaussian prior models are conjugate with
respect to Gauss-linear likelihood models, i.e., the posterior
model is of the same form as the prior model. Consequently,
the posterior model is Gaussian, which is extremely computa-
tionally advantageous in high-dimensional settings since pre-
dictive quantities can be analytically computed. Should these
Gaussian assumptions be unjustifiable, one may use Markov
chain Monte Carlo (McMC) methods [4], [8], [20], [22], [25]
to assess the posterior distribution. These techniques are
based on iterative algorithms that usually obtain samples from
the posterior model by generating proposals from the prior
model that are accepted or rejected based on the Metropolis
rule applied to the likelihood of the proposed and current
sample. McMC algorithms tend to converge slowly for models
that are defined on large spatial grids with strong spatial
coupling; hence, the approach may be problematic in such
cases.

Porosity and water saturation, and other continuous petro-
physical or elastic properties, seldom appear as Gaussian
due to underlying lithology and fluid classes. Rather, they
appear as multimodal [12]; hence, a Gaussian prior model is
usually not appropriate. A mixture Gaussian model [15] offers
support for multimodality and can be used in spatial settings.
A spatial definition of the mixture Gaussian model requires a
spatially defined mode indicator, for which a Markov random
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field prior model has been proposed [9], [24]. An advantage
of this approach is that the mixture Gaussian model is a
conjugate prior model with respect to Gauss-linear likelihood
models. However, evaluation of the posterior distribution is
computationally demanding and relies on McMC algorithms.
An alternative approach relies on a selection Gaussian ran-
dom field (S-GRF) prior model. The concept of selection
probability distributions [3] has been developed and extended
to spatial settings [2], [21] and has been applied to seismic
inversion [10], [16], [23]. This approach is further explored in
the current study.

We extend the study in [10] to invert a 2-D section and
a 3-D volume of a reservoir and use data from the same
oil and gas discovery in the North Sea. However, whereas
porosity and water saturation could provide adequate reser-
voir characterization in [10], the chosen inversion zones in
the current study are more lithologically heterogeneous and
contain a mix of sand and shale. Therefore, we are also
interested in characterizing the clay content in the inversion
zones. We operate in a Bayesian framework. The forward
model consists of an empirically approximated rock physics
model combined with the linearized seismic AVO formulation
used in [5]. The seismic model is a wavelet convolution of the
linear Aki and Richards [1] approximation of the Zoeppritz
equations [28]. From this model, the seismic AVO responses
are predicted from the elastic properties: P-wave velocity,
S-wave velocity, and density. The rock physics model is
approximated by multiple linear regressions of the logarithmic
elastic properties on porosity, water saturation, and volume
of clay [10], [13], [17]. We associate Gaussian error terms
with the forward function; hence, the likelihood model is
Gauss-linear. The prior model is an S-GRF, which provides
support for multimodality and is conjugate with respect to
the Gauss-linear likelihood model [21]. Moreover, the S-GRF
prior model is laterally coupled with support for volume of
clay. To facilitate the extensions made in the current study,
a feasible sampling scheme for higher dimensions, which
honors lateral coupling and supports different anisotropy for
porosity and water saturation, is developed. The methodology
is demonstrated on real 2-D and 3-D data from the Kneler
field in the Alvheim oil and gas field in the North Sea.

II. DEFINITIONS AND NOTATION

The reservoir zone under study is of spatial dimension m
and it is discretized into the reservoir grid Gr , consisting
of nr grid points. The petrophysical properties of interest
in the reservoir zone are referred to as reservoir properties.
In the current study, the reservoir properties are porosity, water
saturation, and volume of clay, which are contained in the
nr -dimensional vectors φ, sw, and vc, respectively. Hence,
the reservoir properties are represented by the 3nr -dimensional
vector r = [φ, sw, vc]. The following shorthand notation is
useful:

rk =

⎧⎨⎨
⎨⎩

φ, for k = 1

sw, for k = 2

vc, for k = 3.

(1)

Seismic AVO data informative about the reservoir properties
are available on the seismic grid Gd , consisting of nd grid
points. These data are represented by the nθ nd-dimensional
vector d, where nθ is the number of offset angles. The
elastic properties on logarithmic form are contained in the
3nr -dimensional vector m = [log(vp), log(vs), log(ρ)], where
the three nr -dimensional vectors vp, vs, and ρ contain the
P-wave velocities, S-wave velocities, and densities, respec-
tively. All vectors, defined and yet to be defined, are column
vectors unless otherwise stated. An (n1 × n2) matrix is a
matrix with n1 rows and n2 columns, and In is the (n × n)
identity matrix. The superscript T indicates the transpose.

The reservoir properties are assumed to be stochastic; hence,
r is a random vector, implying the existence of an associ-
ated probability density function (pdf) and a corresponding
cumulative density function (cdf), denoted by p(r) and P(r),
respectively. Moreover, since each element of r is considered
to be a random variable associated with a specific location
in the reservoir grid Gr , r is a so-called discretized random
field (RF).

The RF r is a discretized GRF if its pdf is Gaussian, i.e., of
the form

p(r) = (2π)−
3nr

2 |�r |− 1
2 exp

�
−1

2
(r − μr )

T �−1
r (r − μr )

�

(2)

where μr is the 3nr -dimensional expectation vector and �r

is the (3nr × 3nr ) covariance matrix. This pdf is denoted by
ϕ3nr (r; μr ,�r ). The probability that r belongs to a subset Q
of the 3nr -dimensional space of real numbers is denoted by
Φ3nr (Q; μr ,�r ) and given by the integral

Φ3nr (Q; μr ,�r ) = Prob(r ∈ Q)

=
�

R3nr

I (r ∈ Q)ϕ3nr (r; μr ,�r ) dr (3)

where I (·) is the indicator function, which is equal to 1 if the
argument is true and equal to 0 otherwise.

The RF r is a discretized S-GRF if its pdf is selection
Gaussian, i.e., of the form demonstrated in [3], [21]

p(r) = p(r̃|ν ∈ A) = p(ν ∈ A|r̃)
p(ν ∈ A)

p(r̃)

= Φnν

	
A; μν|r̃ ,�ν|r̃



ϕ3nr (r̃; μr̃ ,� r̃ )

Φnν

	
A; μν,�ν


 (4)

where r̃ is the 3nr -dimensional basis variable, ν is the
nν-dimensional auxiliary variable, and A is the nν-dimensional
selection set (see [10] for details). The conditional parameters
involved in the pdf can be computed as

μν|r̃ = μν + �r̃ν�
−1
r̃ (r̃ − μr̃ )

�ν|r̃ = �ν − �r̃ν�
−1
r̃ �νr̃ (5)

where the (3nr × nν) matrix �r̃ν contains the covariances
between r̃ and ν.

The RF r is said to be stationary if the pdf of any subset
of random variables in r is shift invariant; hence, the pdf
must depend only on the distances between the selected
random variables in the reservoir grid and not on their specific
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locations. For the GRF r, this holds if the locationwise expec-
tations and variances are constant, and the correlation structure
is spatially shift-invariant. This entails that the expectation
vector and covariance matrix has the following form:

μrk
= μrk inr , and �rk = σ 2

rk
�rk ; k = 1, 2, 3 (6)

where μrk and σ 2
rk

are the locationwise expectation and vari-
ance, respectively, and �rk is the spatial correlation matrix.
This spatial correlation matrix is defined through the shift-
invariant and positive-definite correlation function ρrk (τ ),
where τ is the distance between two grid points. Finally, inr

is the nr -dimensional vector of ones. The S-GRF r is said to
be stationary if the criteria for a stationary GRF hold and the
selection set A is identical in all locations, that is, if it can be
expressed as the Cartesian product A = Anν , with A a subset
of the real numbers.

III. METHODOLOGY

The prediction of the reservoir properties r from the seismic
AVO data d is approached in a Bayesian framework. The
solution to the inverse problem is the posterior pdf p(r|d),
defined by Bayes’ rule

p(r|d) = p(d|r)p(r)
p(d)

∝ p(d|r)p(r) (7)

where p(d|r) and p(r) are the likelihood and prior models,
respectively. The denominator p(d) is the normalizing con-
stant, which is generally hard to compute. The methodology
is based on model assumptions for the likelihood and prior
models that make analytical computation of p(d) feasible.

A. Likelihood Model

The relationship between the seismic responses and the
reservoir properties represents the seismic data acquisition
procedure and is described by the likelihood model p(d|r).
This model can be decomposed into a seismic likelihood
model p(d|m) and a rock physics model p(m|r) (see [10]
for details).

The seismic model relates the elastic properties to the
seismic responses. In the current study, this model is based
on a convolution of the linear Aki and Richards approxi-
mation [1] to the Zoeppritz equations and is of the form
[d|m] = WADm + ed|m = W(c + ec|m) + ed|c [5], where the
nθ nr -dimensional vector c contains the computed reflectivity
coefficients. The (nθnr × 3nr ) matrix A and the (3nr × 3nr )
matrix D represent the Aki and Richards approximation, with
A containing angle dependent coefficients and D being a first-
order differential operator. Convolution is introduced through
the (nθ nd × nθ nr ) matrix W, which contains discretizations
of the seismic wavelet. Furthermore, the nθ nd -dimensional
vector ed|m is an error term assumed to be Gaussian, with
expectation zero and (nθ nd × nθnd) covariance matrix �d|m =
Wσ 2

c|mInθ nr W
T +σ 2

d|cInθ nd . The variance σ 2
c|m is associated with

model error from the Aki and Richards approximation, while
the variance σ 2

d|c is associated with observation error. Note that
ed|m contains both white and colored noise since the model

error is wavelet convolved. The seismic likelihood model is
Gauss-linear and can be expressed as

p(d|m) = ϕnθ nd

	
d; WADm,�d|m



. (8)

The rock physics model relates the reservoir properties
to the elastic properties. As in previous studies [10], [11],
the model is inspired by Landrø [17] and formulated as a
multiple linear regression, [m|r] = Br + em|r . Regression
coefficients from multiple linear regressions of the logarithmic
elastic properties on the reservoir properties are contained in
the (3nr × 3nr ) matrix B, while the 3nr -dimensional vector
em|r represents the error associated with the model. The error
term em|r is assumed to be Gaussian with expectation zero and
(3nr × 3nr ) covariance matrix �m|r . Hence, the rock physics
likelihood model is Gauss-linear and can be expressed as

p(m|r) = ϕ3nr

	
m; Br,�m|r



. (9)

Alternatively, a linear rock physics model can, for example,
be based on a linearized theoretical model [7]. The seismic and
rock physics model applied in succession define the forward
model, which takes the form [d|r] = Gr + ed|r . Here, the
(nθ nd × 3nr ) matrix G = WADB is the forward operator
and the nθ nd-dimensional vector ed|r = WADem|r + ed|m is an
error term assumed to be Gaussian with expectation zero and
(nθ nd × nθnd) covariance matrix �d|r =WAD�m|r (WAD)T +
�d|m . Hence, the likelihood model is Gauss-linear and can be
expressed as

p(d|r) = ϕnθ nd

	
d; Gr,�d|r



. (10)

The Gauss linearity of the likelihood model entails that for
certain parametric prior models, the posterior model will be
of the same form as the prior model [11].

We use the signal-to-noise ratio (SNR) as a measure of the
magnitude of error in the seismic data. The SNR is defined as

SNR = Trace(Var(Gr))
Trace(Var(d|r)) = Trace

	
G�r GT



Trace

	
�d|r


 (11)

with Trace(·) being a function returning the sum of the
diagonal elements of its matrix argument. SNR is dependent
on the prior model specification because �r is involved in the
expression.

B. Prior Model

The prior model p(r) represents our understanding, expe-
rience, and beliefs about the reservoir properties to be pre-
dicted. We operate in a setting where porosity is assumed to
be predominantly spatially smoothly varying and to have a
locationwise skewed and unimodal pdf. Water saturation and
volume of clay are assumed to exhibit abrupt spatial transitions
and to have locationwise bimodal pdfs. We base the model
construction on the decomposition

p(r̃, ν) = p(ν|r̃)p(r̃). (12)

The basis variable r̃ is assumed to be a stationary GRF

p(r̃) = ϕ3nr (r̃; μr̃ ,� r̃ ) (13)
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with

μr̃ =
⎡
⎣μφ̃inr

μs̃w
inr

μṽc inr

⎤
⎦

� r̃ =
⎡
⎣ σ 2

φ̃
�s λ1σφ̃σs̃w

�x λ2σφ̃σṽc �s

λ1σφ̃σs̃w
�x σ 2

s̃w
�h λ3σs̃w

σṽc �x

λ2σφ̃σṽc �s λ3σs̃w
σṽc �x σ 2

ṽc
�s

⎤
⎦. (14)

Here, (μφ̃, μs̃w , μṽc) and (σ 2
φ̃
, σ 2

s̃w
, σ 2

ṽc
) are the location-

wise expectations and variances of φ̃, s̃w, and ṽc, respec-
tively. Moreover, (λ1, λ2, λ3) are the locationwise correlations
between φ̃ and s̃w, between φ̃ and ṽc, and between s̃w and ṽc,
respectively. Finally, (�s ,�h,�x) are (nr × nr ) correlation
matrices containing structural spatial correlation, horizontal
spatial correlation, and a mix between structural and horizontal
spatial correlation, respectively. Different spatial correlation
structures are needed because porosity and volume of clay
are defined by previous sedimentation, whereas water satura-
tion is governed largely by current gravitation; hence, their
anisotropies are likely to differ. The correlation matrices are
defined through shift-invariant and positive-definite correlation
functions ρrk (τ ; αk). The correlation structure between water
saturation and the other reservoir properties is defined to be
�x = (1/2)�s + (1/2)�h .

The auxiliary GRF ν is defined on the reservoir grid Gr

and we define one auxiliary variable for each basis variable,
i.e., ν = [ν1, ν2, ν3]. Hence, nν = 3nr . The conditional rela-
tion between the auxiliary variable ν and the basis variable r̃ is

p(ν|r̃) =
3�

k=1

p(νk |r̃k) =
3�

k=1

ϕnr (νk; μνk |r̃k
,�νk |r̃k )

=
3�

k=1

�
nr�

i=1

ϕ1(νk,i ; μνk,i |r̃k , (1 − γ 2
k ))

�
. (15)

Here, γk is the locationwise correlation between
r̃k and νk , and the conditional expectation is
μνk |r̃k

= 0inr + �r̃kνk �
−1
r̃k

(r̃k − μr̃k
), k = 1, 2, 3. The (nr × nr )

cross-covariance matrix �r̃kνk contains the covariances
between r̃k and νk and can be found on the diagonal of the
(3nr × 3nr ) cross-covariance matrix �r̃ν

�r̃ν =
⎡
⎣ γ1σφ̃�s λ1γ2σφ̃�x λ2γ3σφ̃�s

λ1γ1σs̃w
�x γ2σs̃w

�h λ3γ3σs̃w
�x

λ2γ1σṽc �s λ3γ2σṽc �x γ3σṽc �s

⎤
⎦. (16)

Note that the expectation μνk |r̃k
is linear in r̃ and the

conditional pdf p(ν|r̃) in (15) is Gaussian; hence, the auxiliary
GRF is defined to be Gauss-linearly related to the basis
GRF, which entails that their joint pdf p(r̃, ν) is Gaussian.
Moreover, locationwise conditional independence for [ν|r̃] is
assumed.

The (3nr × 3nr ) covariance matrix associated with the
auxiliary GRF ν is

�ν =
⎡
⎣ �ν1 λ1γ1γ2�x λ2γ1γ3�s

λ1γ1γ2�x �ν2 λ3γ2γ3�x

λ2γ1γ3�s λ3γ2γ3�x �ν3

⎤
⎦ (17)

where

�νk =

⎧⎨⎨
⎨⎩

γ 2
1 �s + 	

1 − γ 2
1



Inr , k = 1

γ 2
2 �h + 	

1 − γ 2
2



Inr , k = 2

γ 2
3 �s + 	

1 − γ 2
3



Inr , k = 3.

(18)

Finally, the 3nr -dimensional selection set A = [A1, A2, A3]
consists of the selection sets Ak corresponding to νk ,
k = 1, 2, 3. These selection sets are of the form Ak = Anr

k ,
where Ak = 	n Ak

i=1[ak,i , bk,i ] are subsets of the real numbers,
with n Ak being the number of disjoint subsets that selection set
Ak consists of. The prior model for the reservoir properties,
p(r), is the trivariate discretized stationary S-GRF

p(r) = p(r̃|ν ∈ A)

=
�3

k=1

�nr
i=1 ϕ1(Ak; μνk,i |r̃k , (1 − γ 2

k ))

Φ3nr (A; 0i3nr ,�ν)
ϕ3nr (r̃; μr̃ ,� r̃ ).

(19)

This prior model is parameterized by 
SG
p = {[μr̃k , σ 2

r̃k
, λk ,

γk , Ak , ρrk (·)]; k = 1, 2, 3}, where the first five parameters
for each k are primarily related to the locationwise trivariate
selection Gaussian pdf, whereas the last parameter for each k
primarily relates to the spatial correlation structure.

The prior model p(r) has support for values outside the
physical range [0, 1] of the reservoir properties. In line
with [10], we correct for this effect in the predictor and
prediction intervals, which is described in Section III-C.

The spatial correlation functions are for pairs of grid points
defined as

ρrk (τ ; αk) = exp

�
− τv

αv,k

�
× exp

�
− τh

αh,k

�
; k = 1, 2, 3 (20)

where τ = [τv , τh] are the grid distances, with τv ≥ 0
being the vertical distance and τh ≥ 0 being the lateral
distance between the grid points. In m = 3 spatial dimensions,
τh is the Cartesian distance; hence, the lateral correlation is
isotropic. Finally, αk = [αv,k , αh,k] are the range parameters,
being positive. These correlation functions define the spatial
correlation matrices �s and �h . Different anisotropies can be
represented by transformation of the reservoir grid, which will
be explained later.

A spatially stationary prior model may be inadequate for
some applications, which is prominently exemplified by case
studies that require modeling of a depth trend. A depth trend
is typically modeled by a depth-dependent expectation, which
can readily be accommodated by an S-GRF prior model.
In a multimodal setting, a depth-dependent expectation can
be defined through two mechanisms: either through a depth
trend for the mode locations or through a depth trend for
the mode probabilities. The former mechanism may be useful
for modeling reservoir properties with a deterministic depth
trend, whereas the latter mechanism can, for example, be used
to model a depth-dependent belief in hydrocarbons. A depth
trend for the mode locations can be achieved by defining a
depth trend in μr̃ . Depth-dependent mode probabilities can
be defined by specifying a depth trend in μν . Alternatively,
these two types of depth trends can be specified through depth-
dependent selection sets.
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Fig. 1. Geometry of the 2-D section with wells marked.

C. Posterior Model

Because the S-GRF prior model p(r) is conjugate with
respect to the Gauss-linear likelihood model p(d|r), the pos-
terior model p(r|d) is also an S-GRF (see [21])

p(r|d)= p(r̃|ν ∈ A, d)

=
�3

k=1 Φnr

	
Ak; μνk |r̃k ,d ,�νk |r̃k ,d



Φ3nr

	
A; μν|d ,�ν|d


 ϕ3nr

	
r̃; μr̃ |d,� r̃ |d



.

(21)

The conditional parameters of this posterior model are
developed in [10]. We use a block-independent Metropolis–
Hastings (M-H) McMC algorithm [23] to simulate from
the posterior model. These simulations form the basis for
prediction and uncertainty assessment. Simulation is done
either trace-by-trace or by conditioning on neighboring traces,
depending on whether the lateral correlation is present or not.
The McMC algorithms are presented in the Appendix.

The reservoir properties are predicted by the marginal
maximum posterior (MMAP). This predictor identifies the
values of the reservoir properties with the highest marginal
posterior probability density at each grid point in Gr and is
defined as

r̂MMAP =



argmax
rk,i

{p(rk,i |d)}; k = 1, 2, 3, i = 1, . . . , nr

�
.

(22)

Prediction intervals in the form of (1 − α) × 100% highest
posterior density intervals (HPDI) are used to reflect the
variability in the locationwise posterior distributions [10].
These intervals may consist of a collection of disjoint regions,
thereby reflecting multimodality in the posterior distribution.
The MMAP is located within one of the HPDI regions. The
coverage level (1−α) × 100% is user-specified and should be
assigned based on considerations about the application and the
shape of the distribution. Since the prior model can support
nonphysical values, so can the MMAP predictions and HPDI.
If they exceed [0, 1], they are truncated to the appropriate
limits of this range.

The MMAP prediction and accompanying (1 −α) × 100%
HPDI can be quantitatively evaluated if observations of the
reservoir properties, robs, are available in some locations. The
root-mean-square error (RMSE) is a measure of the deviation
between predictions and observations, with low values being
favorable. The prediction intervals are evaluated by empirical

coverage (EC), i.e., by computing the percentage of observa-
tions within the prediction intervals. EC close to the chosen
coverage level of the prediction intervals is favorable.

IV. CASE: REAL SEISMIC AVO DATA

FROM A 2-D SECTION

We apply the proposed Bayesian seismic inversion method-
ology to a 2-D section of the Kneler field in the Alvheim oil
and gas field, in the North Sea. The turbidite Alvheim reservoir
is challenging to characterize due to complex geological
depositions. The oil reservoir under study mostly consists
of porous sandstone and is underlain by an aquifer, but its
upper part is composed of unconsolidated and interbedded
sand and shale. The chosen 2-D section, with the location
of two nearby exploration wells indicated, is shown in Fig. 1.
Note that the true aspect ratio of the 2-D section is altered
for visualization purposes. The section has a much bigger
lateral extent than what it appears to; hence, the apparent
curvature in the section is much less severe. The 2-D section
follows the interpreted top reservoir, ranging in depth from
1972 to 2052 ms in two-way time, for 4600 m along a
cross line. Vertically, the section starts two seismic sample
points above the interpreted top horizon, presumably in a
top shale layer, and ends in the underlying aquifer. The 2-D
section contains 93 traces with a regular inter-trace spacing
of 50 m, each of which covers a depth range of 52 ms in
two-way time. The reservoir grid Gr consists of nr = 2511
grid points that are regularly spaced laterally and with trace-
unique vertical gridding, whereas the seismic grid Gd consists
of nd = 1302 grid points with similar grid structure. The
trace-unique vertical gridding consists of 27 points in the
reservoir grid and 14 points in the seismic grid. The data and
inversion results are linearly interpolated to a finer and regular
grid for visualization. This artificial increase in resolution
produces somewhat smoother figures, but all computations are
performed on the irregular grids Gr and Gd .

The exploration wells can be used for model construction
and validation. Well B is in immediate vicinity of the 2-D
section, whereas Well A is located a few cross lines away.
Well B is the exploration well studied in [10], and its location
relative to the 2-D section makes it the preferred basis for
model construction. Measured well logs from Well B are
shown in Fig. 2. The top reservoir is at about 1990 ms, and
the underlying aquifer starts at 2020 ms, as reflected by a
clear oil–water contact (OWC) in the water saturation log.
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Fig. 2. Well B logs, displayed column-wise from left to right: P-wave velocity, S-wave velocity, density, porosity, water saturation, and volume of clay.

Fig. 3. Well A logs, displayed column-wise from left to right: porosity, water
saturation, and volume of clay.

The characteristics of the logs above 1990 ms reflect an
overlying shale layer. An increased variability in the logs can
be seen between roughly 1990 and 2004 ms. This variability
does not appear to be consistent with variations in the volume
of clay alone; hence, there may be a notable contribution from
other minerals in this region. Below 2004 ms, a more homoge-
neously cemented porous sandstone can be seen. Furthermore,
note that the elastic properties reflect two anomalous regions,
which are located at roughly 1998 and 2014 ms. These anom-
alies, and the above-mentioned increased variability between
1990 and 2004 ms, are likely caused by intermittently occur-
ring limestone, which has a small presence throughout the 2-D
section. Well A is used exclusively for validation of inversion
results. The measured porosity, water saturation, and volume
of clay along Well A are shown in Fig. 3. The oil reservoir
zone appears to extend from the top of the depth interval to

about 2030 ms where the underlying aquifer starts. The OWC
is not as clearly reflected as in Well B since the oil–water
transition seems to occur in a region that has relatively large
variability in the volume of clay. Moreover, the well logs
indicate specks of limestone around 2005, 2010, and 2022 ms
in the oil reservoir zone.

The seismic AVO data are presented in Fig. 4, where the
nθ = 4 angle stacks are displayed row-wise. The signal is
relatively strong roughly between traces 20 and 35, especially
in the 27◦ and 35◦ stacks, which in addition to fluid transitions
may indicate a more abrupt change in lithological properties
here than elsewhere. The signal in the middle part of the 2-D
section, roughly between traces 40 and 65, is relatively weak
in the 35◦ stack, indicating an absence of fluid transitions.
Moreover, this region is located deeper than either side of it,
which may indicate a higher content of more compressible
lithologies here than elsewhere in the reservoir, for example,
a higher fractional content of shale. We hereafter refer to this
region as center region (CR).

A. Model Construction

Model construction entails assigning parameter values to the
likelihood model p(d|r) and prior model p(r). Because the
construction is based on well logs from Well B, the model may
not be adequately representative in the entire 2-D section. The
effects of lateral correlation in the prior model on the inversion
results are highlighted by defining an alternative prior model
without lateral correlation, as in [11], for comparison. We refer
to these prior models as prior models 1 and 2, correspond-
ing to the prior model with and without lateral correlation,
respectively. The inversions are carried out using SNR = 5.

1) Likelihood Model: The likelihood model consists of
a seismic likelihood p(d|m) and a rock physics likelihood
p(m|r). The matrices A and D in the seismic likelihood
model are known, while the convolution matrix W requires
estimation. The wavelet function defining W is chosen to
be the same as in [10]; hence, the wavelet is estimated
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Fig. 4. Seismic AVO data from the 2-D section under study. The angle stacks 10◦, 18◦, 27◦ , and 35◦ are displayed in order from the top to bottom row.

Fig. 5. Estimated wavelet.

by regressing the seismic AVO data on synthetic reflection
coefficients generated from the observed elastic properties by
cmod = ADmobs. The estimation is based on data from a depth
interval of 300 m containing the reservoir zone and should be
representative in the current study. The estimated wavelet is
shown in Fig. 5.

The rock physics likelihood model requires specification
of the regression matrix B and the covariance matrix �m|r .

The model is based on well logs from Well B after removal
of the possible limestone influences. The three regression
models all have an associated R2 value of at least 0.9.
In Table I, the numerical values of the estimated regression
coefficients and standard deviations associated with the Gauss-
linear rock physics likelihood model are displayed. Moreover,
the estimated inter-covariances between the elastic properties
are (ξ̂vpvs , ξ̂vpρ , ξ̂vsρ ), with corresponding correlations (0.656,
0.319, 0.446). The performance of the rock physics model
is represented graphically in Fig. 6, where the measured
and rock physics predicted logarithmic elastic properties are
displayed together. Note that the rock physics model performs
relatively poorly in the possibly limestone-influenced interval
between roughly 1990 and 2004 ms. The covariance matrix
�m|r has the variances associated with the regressions on the
diagonal and the inter-covariances (ξ̂vpvs , ξ̂vpρ , ξ̂vsρ ) on the
off-diagonal.

2) Prior Model: The parameter values used in prior model 1
are obtained by the heuristic parameter estimation approach
described in [10] and are listed in Table II. Determining
an appropriate value for the range parameter associated with
lateral correlation is particularly difficult due to insufficient
well data. The 2-D section is assumed to be lithologically
varying laterally because of different mineral fractions in
CR. We, therefore, take a conservative approach and use

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 15,2021 at 17:28:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE I

ESTIMATED PARAMETERS IN THE ROCK PHYSICS LIKELIHOOD MODEL.
THE ESTIMATED INTERCEPT α̂ AND THE SLOPES (β̂φ, β̂sw , β̂vc ) OF

POROSITY, WATER SATURATION, AND VOLUME OF CLAY,
RESPECTIVELY, ARE DISPLAYED TOGETHER WITH THE

ESTIMATED STANDARD DEVIATION σ̂ FOR EACH

REGRESSION MODEL IN THE TOP TABLE. EACH ROW

OF THE TABLE CONTAINS THE PARAMETERS
ASSOCIATED WITH THE MODEL FOR THE

ELASTIC PROPERTY SPECIFIED IN THE

LEFTMOST COLUMN. THE ESTIMATED

CROSS COVARIANCES BETWEEN THE
ELASTIC PROPERTIES, (ξ̂vpvs , ξ̂vpρ ,

ξ̂vsρ), ARE SHOWN IN THE
BOTTOM TABLE

Fig. 6. Predicted and measured logarithmic elastic properties, displayed
column-wise from left to right: P-wave velocity, S-wave velocity, and density.
The logarithm of the measured elastic properties (points) and of the rock
physics predicted elastic properties (orange solid lines) with associated 90%
prediction intervals (transparent orange regions) are displayed together.

a degree of lateral correlation that in practice establishes a
locationwise lateral dependency that only extends to the two
nearest traces in each direction. It is also necessary to specify
the anisotropies of porosity and water saturation. Because the
2-D section follows the interpreted horizon of the reservoir,
we assume lithological layering to follow the geometry of the
section. This lithological layering is described by structural
correlation in porosity and volume of shale, represented by �s ,
and it is achieved by computing the spatial correlations on a
rectangular version of the irregular 2-D section. The fluid con-
tent in the reservoir zone is superimposed on the lithology and
obeys gravitational effects. Therefore, the correlation structure
of water saturation, represented by �h , is defined to favor

TABLE II

PARAMETER VALUES USED IN THE S-GRF PRIOR MODEL. THE PARA-
METERS ASSOCIATED WITH THE BASIS GRF MODEL ARE SHOWN

IN THE TOP; THE LOCATIONWISE EXPECTATIONS μr̃k IN THE

LEFTMOST BLOCK, THE LOCATIONWISE VARIANCES σ 2
r̃k

IN

THE MIDDLE BLOCK, AND THE INTER-VARIABLE CORRE-
LATIONS λk TO THE RIGHT, k = 1, 2, 3. THE PARA-

METERS ASSOCIATED WITH THE AUXILIARY GRF
ARE SHOWN IN THE MIDDLE; THE MARGINAL

SELECTION SETS Ak TO THE LEFT AND THE

CORRELATIONS WITH THE BASIS GRF γk
TO THE RIGHT. THE RANGE PARAME-

TERS αk,i ASSOCIATED WITH THE

SPATIAL CORRELATION STRUC-
TURES ARE LISTED IN THE

BOTTOM, FOR k = 1, 2, 3
AND i = 1, 2

horizontal fluid contacts, which is achieved by computing the
spatial correlations on the irregular 2-D section.

The parameter values used in prior model 2 are shown
in Table II, except for the lateral correlation that is assigned
αh,1 = αh,2 = αh,3 = 0, that is, no lateral correlation.

The locationwise prior models for porosity, water saturation,
and volume of clay, representing the marginal pdfs in the
RF r, are shown in Fig. 7. The prior models are superim-
posed on histograms of well log data, after outlier removal.
The locationwise prior model for porosity is unimodal and
notably skewed in sandy regions, whereas the locationwise
prior models for water saturation and volume of clay are
distinctly bimodal. The distinct bimodality in the prior model
for water saturation reflects the gravitational effects assumed
to be present, which causes abrupt spatial fluid transitions.
Volume of clay has a notable effect on the prior models for
porosity and water saturation. We see that the clay effect on the
prior model for porosity is a shift of location and an inverse
relationship between skewness and volume of clay, whereas
the clay effect on the prior model for water saturation is the
alteration of the oil and water probabilities, with high volume
of clay corresponding to high probability of water.

B. Results

We refer to the posterior models corresponding to prior
models 1 and 2 simply as models 1 and 2, respectively. The
convergence of the simulation-based model assessments is
ensured by running several M-H McMCs from random initial
states until the assessed models cannot be distinguished, and
by evaluation of locationwise convergence plots [10].

The MMAP predictions from models 1 and 2 are shown
in Figs. 8 and 9, respectively. The predictions from model 1
(see Fig. 8) indicate two major high porosity oil zones between
the overlying shale layer and the underlying aquifer, separated
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Fig. 7. Locationwise prior models superimposed on histograms of well logs
from Well B. The histograms of porosity and water saturation are colored
yellow and brown, corresponding to data from sandy and presumably shaly
regions, respectively. This classification is based on the bimodal distribution
assigned to volume of clay. Moreover, because the prior models for porosity
and water saturation are relatively strongly influenced by the volume of clay,
a sandy prior model is displayed in hatched yellow and a shaly prior model
is displayed in hatched brown. These models are based on the expected clay
volume within each clay mode.

by CR where, as suspected, a considerable presence of high
clay content is reflected in the predicted volumes of clay.
Moreover, the geometry of the predicted oil zones can be
seen to have a natural explanation in the predicted volumes
of clay. A few specks of low water saturation are predicted
outside the major oil zones, but these are most likely reflecting
unsupported lithological heterogeneity or noise in the seismic
AVO data. The predicted water saturations exhibit strong
continuity and smoothness, with distinctly defined regions of
low values and high values. The predictions from model 2
(see Fig. 9) indicate high porosity oil zones on each side
of CR, between the overlying shale layer and the underlying
aquifer. The geometry of the major oil zones appears to have a
natural explanation in the predicted volumes of clay. However,
the major oil zone to the right of CR is not contained within
the 2-D section and appears to continue in the top horizon
above CR. Moreover, several minor disconnected regions of
low water saturation are predicted in CR, which based on
the volume of clay predictions in CR are overlaid by water.
Despite a prior model without lateral correlation, the predic-
tions clearly exhibit continuity, indicating strong continuity in
the seismic AVO data. Both models predict the top of the

reservoir zone to primarily have high water saturation and
high clay content, which strongly indicates the presence of an
overlying shale layer. The porosity predictions from the two
models are very similar, but the predicted water saturations and
volumes of clay differ notably in CR. The predictions from
model 1 indicate that this region does not contain oil, whereas
the predictions from model 2 indicate several irregular and
disconnected regions of low water saturation and unphysical
fluid transitions. Based on the seismic data in Fig. 4, we do
not expect oil in CR. The predicted volumes of clay from
model 1 indicate a dominant presence of high clay content in
CR, whereas model 2 indicates more of a mix between sandy
regions and shaly regions. The volume of clay predictions from
model 1 seem geologically more plausible.

The locationwise variances of models 1 and 2 are shown
in Figs. 10 and 11, respectively. The variances associated
with the porosity predictions from the two models are very
similar and relatively low, except for along the top and bottom
of the 2-D section and along a thin structure across CR.
The variances of water saturation and volume of clay from
model 1 (see Fig. 10) display a similar pattern with respect to
their corresponding predictions: the variances appear relatively
low except for at the borders separating low value and high
value regions in the MMAP predictions, and this effect is
particularly apparent for water saturation. The relatively strong
variance contrast for water saturation is likely due to less
mixing of low value and high value regions in the predictions
than in the volume of clay predictions, which results in
lower background variance. Moreover, the contrast between
low and high variance is stronger for water saturation and
volume of clay than for porosity because the locationwise
posteriors of porosity are unimodal, while they are bimodal
at the region borders for water saturation and volume of clay.
Finally, the variances appear to be relatively low to the left
of CR, coinciding with the strongest signals in the seismic
AVO data (see Fig. 4). The variances of water saturation and
volume of clay from model 2 (see Fig. 11) appear particularly
high in CR and moderately high to the right of CR. To the
left of CR, where the strongest signals in the seismic AVO
data are, some identifiable regions can be discerned and the
background variance appears relatively low. Upon comparison
of the two models, the variances of model 1 appear to be more
structured and the background variances seem to be lower.
This is particularly evident for water saturation. Consequently,
predictions from model 2 are more uncertain than predictions
from model 1, as expected, because model 1 incorporates
data from neighboring traces and thereby reduces uncertainty.
The differences in the locationwise variances should generate
apparent differences in realizations from the two posterior
models and for water saturation in particular.

The inversion results from models 1 and 2 along Well A and
Well B are jointly presented in Fig. 12. The two models yield
very similar porosity results; the predicted porosity profiles are
in good agreement with the well log data and the associated
HPDI looks reasonable. The predicted water saturation profiles
are mostly in good agreement with the well log data, but a few
notable exceptions occur. In Well A, the predictions from the
two models along the top reservoir suggest the presence of a

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 15,2021 at 17:28:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 8. MMAP predictions from model 1. (Top) Porosity. (Middle) Water saturation. (Bottom) Volume of clay. The locations of Well A and Well B are
marked.

Fig. 9. MMAP predictions from model 2. (Top) Porosity. (Middle) Water saturation. (Bottom) Volume of clay. The locations of Well A and Well B are
marked.

shale layer that is not indicated by the well logs. Moreover,
the two models predict different OWC locations, with model
1 predicting the OWC location roughly 4 ms deeper than
model 2. Because Well A is not located exactly on the cross
line under study, it is unclear whether these well log data
are representative; hence, we cannot conclude anything about

these apparent discrepancies. In Well B, neither model predicts
the highly water-saturated interval between 1998 and 2002 ms.
However, this high water saturation occurrence is located
within the interval in which the rock physics model performs
relatively poorly. The predicted volume of clay profiles from
models 1 and 2 are mostly in good agreement but differ at
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Fig. 10. Locationwise variances of model 1. (Top) Porosity. (Middle) Water saturation. (Bottom) Volume of clay. The locations of Well A and Well B are
marked.

Fig. 11. Locationwise variances of model 2. (Top) Porosity. (Middle) Water saturation. (Bottom) Volume of clay. The locations of Well A and Well B are
marked.

several lithological transitions. In Well A, the two models
produce very similar volume of clay results, but model 1
predicts the deepest high clay content interval to start higher
than what model 2 does. In Figs. 8 and 9, we see that model
1 predicts a connected high clay content layer from the left
of the 2-D section and through Well A, whereas model 2

predicts disconnected regions here. A connected region is
geologically more likely. In Well B, the two models predict
a different thickness of the overlying shale layer. Based on
the well log data, model 1 appears to predict the shale layer
thickness accurately, whereas model 2 underpredicts. Both
models seem to overpredict the thickness of the high clay
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Fig. 12. Inversion results from model 1 (black) and model 2 (orange) along Well A and Well B. The MMAP predictions (solid lines) are displayed with
90% HPDI (dotted-dashed lines). Well log data are displayed on the reservoir grid (black points) and on the well log grid (transparent points).

Fig. 13. One realization of water saturation from each model, truncated to [0, 1]. (Top) Model 1. (Bottom) Model 2.

content interval in the middle of the well, but model 2 predicts
a slightly shorter interval than model 1. Note that the possibly
limestone-influenced interval is located within these predicted
high clay content intervals. Finally, model 2 predicts a slightly
shorter interval of high clay content than model 1 near the
deeper end of the reservoir profile. Here, the predictions from
model 2 appear to be more accurate than the predictions
from model 1. As expected from the locationwise model
variances shown in Figs. 10 and 11, the HPDI from model 2
reflects more bimodality in the locationwise posteriors of water
saturation than the HPDI from model 1.

One realization of water saturation from each model, trun-
cated to the physical range [0, 1], is shown in Fig. 13.
These realizations should be compared with the corresponding
MMAP predictions in Figs. 8 and 9. The realization from
model 1 exhibits most features of the MMAP prediction, with
identifiable regions of low water saturation and with CR being

a region of mostly high water saturation. In CR and to the
right of CR, the realization appears more heterogeneous than
the MMAP, as expected based on the locationwise posterior
variances shown in Fig. 10. The realization from model 2
appears similar to the corresponding MMAP prediction to
the left of CR, but it is otherwise difficult to recognize
features of the MMAP due to very high heterogeneity. The
large locationwise posterior variances in Fig. 11 support
this predominant heterogeneity and lack of spatial structure.
Realizations of porosity and volume of clay do not have
as marked differences, but the clear differences observed in
the water saturation realizations may still impact potential
subsequent results, such as production forecasting by fluid flow
simulation.

Quantitative performance measures, based on well log data
on the reservoir grid, are presented for the inversion results
along Well A and Well B in Tables III and IV, for models 1
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Fig. 14. MMAP predictions, displayed row-wise from top to bottom for crosslines C2-D− 2 to C2-D + 2. (Left column) Porosity. (Middle column) Water
saturation. (Right column) Volume of clay. The location of Well B is marked.

TABLE III

RMSE AND EC OF THE 90% HPDI ALONG

WELLS A AND B FOR MODEL 1

TABLE IV

RMSE AND EC OF THE 90% HPDI ALONG

WELLS A AND B FOR MODEL 2

and 2 respectively. As expected, the RMSE and EC indicate
that the results in Well B are overall better than in Well A. The
difference in result quality between the two wells is mostly a
consequence of the conflicting predictions and observations at

the top of Well A. The two models perform very similarly
in terms of RMSE. Neither model achieves the desired EC
of 0.9, which is most likely a result of partly unrepresentative
data in Well A and a few poorly supported data points in
Well B. Model 1 appears to have lower EC than model 2,
as expected, due to variance reduction from lateral correlation.
The most favorable feature of the predictions from model 1 is
the relatively high homogeneity compared to the predictions
from model 2 (see Figs. 8 and 9), which strongly suggests that
the lateral coupling in model 1 reduces the effects of trace-
unique signal errors in the seismic AVO data.

V. CASE: REAL SEISMIC AVO DATA

FROM A 3-D VOLUME

We apply the proposed seismic inversion methodology to
a 3-D volume of the Kneler field in the Alvheim oil and
gas field, in the North Sea. The 3-D volume consists of five
crosslines containing traces 70–90; hence, the region between
traces 70 and 90 of the 2-D section studied previously, see
Fig. 1, is contained. The center crossline in the 3-D volume
is referred to as C2-D, which is the crossline studied in
Section IV. The 3-D volume contains a total of 105 traces with
a regular inter-trace spacing of 50 m, each of which covers a
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Fig. 15. Locationwise variances of the posterior on C2−D . (Left) Porosity. (Middle) Water saturation. (Right) Volume of clay. The location of Well B is
marked.

depth range of 52 ms in two-way time, that is, the distance
between inlines and crosslines is 50 m.

The reservoir grid Gr consists of nr = 2835 grid points
that are regularly spaced laterally and with trace-unique
vertical gridding, whereas the seismic grid Gd consists of
nd = 1470 grid points with similar grid structure. The trace-
unique vertical gridding consists of 27 points in the reservoir
grid and 14 points in the seismic grid.

A. Model Construction

The model construction is based on Well B; hence, the like-
lihood model is, except for dimensionality, identical to the
likelihood model used in Section IV with estimated wavelet
shown in Fig. 5 and rock physics parameters listed in Table I.
Moreover, the prior model parameter values are also identical
and are shown in Table II. However, note that the prior model
is laterally correlated in one additional spatial dimension
compared to the laterally correlated prior model used in
Section IV.

B. Results

The MMAP predictions are shown in Fig. 14. The MMAP
predictions in Section IV should be compared to the predic-
tions on crossline C2-D, which appear very similar. However,
a notable exception can be seen in the water saturations and
volumes of clay: the oil region and the high clay content region
in the middle are now apparently disconnected. The geometry
of the oil zone and the high clay content regions slowly varies
across crosslines, demonstrating lateral continuity perpendic-
ular to the 2-D studied in Section IV.

The locationwise variances of the posterior model on
crossline C2-D are shown in Fig. 15. Compared to the location-
wise variances of the posterior models in Section IV, shown
in Figs. 10 and 11, the variances appear to be reduced. This
is particularly evident in the variances of water saturation,
which now have more structure due to the disappearance of
some high variance borders inside the oil zone. The vari-
ance reduction is expected due to conditioning on additional
neighboring traces perpendicular to the orientation of the 2-D
section studied in section IV in the sampling. Consequently,
realizations from this posterior model should exhibit less
heterogeneity than realizations from either of the posterior
models in the previous section.

The inversion result is presented along Well B in Fig. 16.
The MMAP predictions are overall in good agreement
with the observations for all reservoir properties. Furthermore,
the HPDI appears reasonable. Compared to the inversion

Fig. 16. Inversion result along Well B. The MMAP predictions (solid lines)
with 90% HPDI (dotted-dashed lines). Well log data are displayed on the
reservoir grid (black points) and the well log grid (transparent points).

TABLE V

RMSE AND EC OF THE 90% HPDI ALONG WELL B

results along Well B in Section IV, the porosity result appears
as very similar. The predicted water saturation profile is very
similar to the previously predicted profiles, but the associated
HPDI now reflects less bimodality in the locationwise posteri-
ors. Finally, the predicted volume of clay profile is consistent
with the predicted volume of clay profile from the laterally
correlated model in Section IV but does not overpredict the
thickness of the high clay content interval in the middle of
the well as much. Moreover, the associated HPDI reflects less
bimodality in the locationwise posteriors.

Quantitative performance measures, based on well log data
on the reservoir grid, are presented for the inversion results
along Well B in Table V. Compared to the RMSE and EC
of model 1 along Well B in Section IV, the RMSE has
slightly improved for all reservoir properties. The ECs have
not changed.

VI. CONCLUSION

A Bayesian seismic AVO inversion scheme for porosity,
water saturation, and volume of clay is proposed. The prior
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model is a laterally correlated S-GRF, which can represent
the gravitationally induced bimodality observed in the water
saturations. The likelihood model is Gauss-linear, for which
the S-GRF prior model is conjugate; hence, the posterior
model is also an S-GRF. An alternative S-GRF prior model
without lateral correlation is defined for comparison through
seismic inversion of a 2-D section of real seismic AVO data
from the Kneler field in the Alvheim oil and gas field in
the North Sea. Two major high porosity oil zones are identi-
fiable in the inversion results from both models, indicating
high lateral continuity in the seismic AVO data. However,
the laterally correlated S-GRF provides predictions that are
more homogeneous and with more clearly defined regions
than the laterally uncorrelated S-GRF. Furthermore, a relative
reduction in the locationwise variances is observed in the
laterally correlated S-GRF posterior model for water saturation
and volume of clay, and this is reflected in realizations of
water saturation from the posterior models. Inversion of a 3-D
volume containing a region of the 2-D section is performed,
and the inversion of the 2-D region is compared between the
2-D and 3-D model. An improvement in the predictions and
a reduction in the inversion uncertainty are observed in the
3-D inversion. Hence, although the seismic AVO data appear
to have strong lateral continuity, lateral correlation in the prior
model for the reservoir properties appears to be favorable, even
in conservative amounts as in this study.

Computationally, a laterally uncorrelated prior model is
preferable because sampling from the posterior model can
be done on a trace-by-trace basis. A laterally correlated prior
model entails the involvement of neighboring traces in condi-
tional sampling from the posterior. This requires more complex
sampling schemes and higher computer demands. However,
conditioning on neighboring traces appears to improve the
inversion results and make the results less susceptible to trace-
unique signal errors. The laterally correlated S-GRF is a more
complex prior model, but the benefits discussed above seem
to justify the additional cost this entails.

APPENDIX

SAMPLING FROM AN m-DIMENSIONAL S-GRF

To draw samples from the m-dimensional and n-variate
S-GRF x, we make use of the decomposition

p(x) = p(x̃|ν ∈ A) = p(x̃|ν)p(ν|ν ∈ A)

= ϕn
	
x̃; μx̃|ν,� x̃|ν


 × I (ν ∈ A)ϕn
	
ν; μν,�ν



�

Rn I (ν ∈ A)ϕn
	
ν; μν,�ν



dν

.

(A-1)

A sample is drawn by first sampling [ν|ν ∈ A], followed by
sampling x from ϕn(x̃; μx̃ |ν,� x̃|ν). The S-GRF is assumed to
consist of n = nv × nh grid points, with nv and nh being the
number of grid points vertically and laterally, respectively.

We use the proposal distribution

q(νb|bn ) =
�
i∈b

I (νi ∈ A)
ϕ1

	
νi; μνi |νbv,n , σ 2

νi |νbv,n



Φ1

	
A; μνi |νbv,n , σ 2

νi |νbv,n


 (A-2)

with subindex bn denoting the set of indices in the neighbor-
hood of block b and subindex bv,n denoting the union of the

set of indices in b already visited and the block neighborhood.
The associated M-H acceptance probability, α, is

α = min

⎧⎨
⎩1,

p
�
ν �

b|bn

�
p
	
νb|bn


 · q
	
νb|bn



q
�
ν �

b|bn

�
⎫⎬
⎭

= min



1,
�
i∈b

Φ1
�

A; μ�
νi |νbv,n , σ

2
νi |νbv,n


Φ1
�

A; μνi |νbv,n , σ 2
νi |νbv,n


�

. (A-3)

The blocks and the order in which they are visited are
predetermined, and the associated covariance matrices are
precomputed to reduce the computational time.

Algorithm 1 Draw k Samples From x by M-H McMC,
Trace-by-Trace

Partition x̃ and ν into traces, i.e., x̃ ∈ R
nv and ν ∈ R

nv .
Partition each trace into nb vertical blocks
bi ⊂ {1, . . . , nv}; i = 1, . . . , nb, and define block
neighborhoods bn

i = {1, . . . , nv}\bi .
Iterate nh times

Initialize ν with a value in A.
Iterate k times

Iterate nb times
Select vertical block bi .
Sample ν�

bi |bn
i

sequentially from q(ν�
bi |bn

i
).

Accept ν = [ν �
bi |bn

i
, νbn

i
] with probability α.

End
Sample x ∼ ϕnv

(x̃; μx̃|ν,� x̃|ν).
End

End

Algorithm 2 Draw k Samples From x by M-H McMC
Partition the field into nb m-dimensional rectangular
blocks, bi ⊂ {1, . . . , n}; i = 1, . . . , nb, and define block
neighborhoods bn

i ⊆ bc
i , with bc

i = {1, . . . , n}\bi being
the block complements. The spatial correlation in the
field will influence the extent of the neighborhoods.
Initialize ν with a value in A.
Iterate k times

Iterate nb times
Select block bi .
Sample ν �

bi |bn
i

sequentially from q(ν�
bi |bn

i
).

Accept ν = [ν�
bi |bn

i
, νbc

i
] with probability α.

End
Sample x ∼ ϕn(x̃; μx̃ |ν,� x̃ |ν).

End
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