
Next Generation Compression
Algorithm

July 2022M
as

te
r's

 th
es

is

M
aster's thesis

Kåre-Benjamin Hammervold Rørvik

2022
Kåre-Benjam

in H
am

m
ervold Rørvik

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

Next Generation Compression Algorithm

Kåre-Benjamin Hammervold Rørvik

Electronic Systems Design
Submission date: July 2022
Supervisor: Milica Orlandic
Co-supervisor: Lars Erik Songe Paulsen

Norwegian University of Science and Technology
Department of Electronic Systems

Preface

This master thesis is my work for the spring of 2022. It was written at the Department of Electrical
Engineering at the Norwegian University of Science and Technology. The thesis is credited 30 points
and is part of course TFE4930. Councillors for this master thesis were Milicia Orlandic and Lars
Erik Songe Paulsen.

This thesis’s objective has been to create a synthesizable hardware implementation of the com-
pression algorithm Asymmetric Numeral Systems (ANS), specifically the uniform binary variant
(uABS) of the algorithm, and verify the design. Therefore a software model should also be made
and used for prototyping purposes, and as a reference. My preparational project thesis introduced
the concept of compression, which will be briefly summarized in this master thesis. Furthermore, I
have created two new and improved software models based on the experiences gained from the pro-
ject thesis. While the software models are new and improved, they are based on the software model
of the project thesis. The UVM testbench was based on strategies and methodology proposed by
Cadence in their course ”SystemVerilog Accelerated Verification with UVM” [1] (completed while
working with ARM).

My motivation for making a hardware implementation of the uniform binary variant is twofold:

• I want to learn more about hardware implementation, design, and verification processes. My
ambition is to take an arbitrary algorithm and be able to work out a fully synthesizable
design, thoroughly verify it, and implement it on an FPGA.

• This uniform binary variant (uABS) of ANS does not have any online open-source hard-
ware implementation. This lack of available open-source implementations makes the work
even more exciting. My work could be a meaningful contribution to the world of hardware
compressors (e.g., an accelerator in an embedded system).

Acknowledgement

I would like to extend my deepest gratitude to my councillors Lars-Erik and Milica for being very
helpful and accessible during the work of this master thesis. I am also grateful for the support and
experience I received at ARM. Furthermore, I would like to thank my loving family, friends and
colleagues for helping with proofreading and support.

———————————

Trondheim, 14.7.2022

K̊are-Benjamin Hammervold Rørvik

i

Abstract

Compression serves an instrumental role in today’s computer systems. Next generation compressors
seek to bring modern innovation to the field of compression and answer today’s demand for trans-
mitting more data between devices. Although rapid development is happening with software-based
compression algorithms, hardware implementations may also bear significant gains. Such gains are
improved computational speed, cheaper circuitry and decreased power consumption.

Historically, entropy-based compression techniques offer compression ratios close to the theoretical
limits. However, the emergence of the Asymmetric Numeral Systems (ANS) algorithm in 2014 by
Jaros law Duda provides a new and innovative take on the family of compressors [2]. Contrary to
numerous other entropy-based compressors, the algorithm offers highly competitive compression
ratios while still boasting low computation times.

The thesis’s main objective is to create a high-quality synthesizable hardware implementation of
the Uniform Binary Variant (uABS) of ANS. This is done in hardware descriptive language using
industry-standard tools. The final hardware implementation was achieved through an iterative
process, first by implementing a higher level software model and a lower level software model,
before implementing the hardware model. An iterative approach was needed due to the increased
complexity of implementing a hardware design and the lack of software implementation.

The hardware implementation was later optimized to achieve higher performance and to ensure
lightweight circuitry. A balance between high performance and resource usage (Power, Performance
and Area) had to be found. This balance was struck without sacrificing precision and robustness,
thus not adversely affecting compression ratios.

Lastly, the hardware designs were verified with UVM and non-UVM testbenches. The hardware
implementation was tested for correctness, accuracy, and performance(compression ratios), among
other metrics. It revealed that both timing and results satisfy the conditions of a full-fledged
ANS compressor, where the hardware implementation yielded compression ratios converging the
theoretical limit while maintaining low processing times. The verification process also revealed
how the compressor was suited to handle a considerable amount of inaccuracy in the probability
modelling.

The implementation reports revealed peak encoding and decoding speeds in the mega-bit range.
Being able to handle sizeable bitstreams of data situates the implementation as useful for modern
world applications, especially given its low resource requirements. Therefore, based on the imple-
mentation and verification reports results, one may conclude that the hardware implementation is
successful.

ii

Sammendrag

Kompresjon har en viktig rolle i dagens datasystemer. Neste generasjons kompressorer forsøker å
tilfredsstille dagens økende krav om å kunne h̊andtere stadig økende datamengder. P̊a tross av rask
utvikling innen programvarebaserte komprimeringsalgoritmer, kan maskinvareimplementasjoner gi
betydelige gevinster. Eksempler p̊a slike gevinster er forbedret beregningshastighet, rimeligere
elektronikk og redusert strømforbruk.

Historisk sett tilbyr entropibaserte kompresjonsteknikker kompresjonsforhold nær de teoretiske
grensene. Da Asymmetric Numeral Systems (ANS)-algoritmen av Jaros law Duda kom i 2014 fikk
verden tilgang til et nytt og innovativt medlem av kompressorfamilien [2]. Sammenlignet med an-
dre entropibaserte kompressorer tilbyr algoritmen meget konkurransedyktige kompresjonsforhold,
samtidig som den kan skilte med hurtig beregning.

Avhandlingens hovedm̊al er å lage en syntetiserbar maskinvareimplementasjon av høy kvalitet
basert p̊a Uniform Binary Variant (uABS) av ANS. Dette gjøres ved hjelp av maskinvare-beskrivende
spr̊ak og industristandardverktøy. Den endelige maskinvareimplementasjonen ble oppn̊add gjen-
nom en iterativ prosess, først ved å implementere en programvaremodell p̊a høyniv̊a og s̊a en
programvaremodell p̊a lavniv̊a, før maskinvaremodellen ble implementert. En iterativ tilnærming
ble brukt for å h̊andtere maskinvaredesignkompleksiteten og en grunnleggende mangel p̊a likn-
ende programvareimplementasjoner. Maskinvareimplementasjonen ble senere optimalisert for å
oppn̊a høyere ytelse og for å sikre et enkelt kretsdesign samt en skalerbar arkitektur. Det m̊atte
samtidig oppn̊as en god balanse mellom forbruk, ytelse og elektronikkareal (PPA). Denne bal-
ansen ble oppn̊add uten å m̊atte ofre presisjon og robusthet, og uten negative p̊avirkning p̊a
kompresjonsforholdet. Til slutt ble maskinvaredesignene verifisert gjennom bruk av b̊ade UVM
og ikke-UVM testbenker. Maskinvareimplementasjonen ble blant annet undersøkt med tanke
p̊a korrekthet, nøyaktighet og ytelse (kompresjonsforhold). Verifikasjonen viste at b̊ade timing
og kompresjonsresultater tilfredsstiller kravene til en fullverdig ANS-kompressor. Den endelige
maskinvareimplementasjonen ga kompresjonsforhold som konvergerte mot den teoretiske grensen,
samtidig som lave behandlingstider ble beholdt. Verifikasjonsprosessen viste ogs̊a at kompressoren
kunne h̊andtere en betydelig økning i unøyaktighet i sannsynlighetsmodelleringen.

Implementasjonsrapportene viste encodings- og dekodingshastigheter i megabitomr̊adet. Selv uten
ytterligere optimaliseringer vil den dermed kunne h̊andtere betraktelige bitstrømmer med data, og
gjøre implementasjonen nyttig for moderne anvendelser, spesielt gitt det lave ressursbehovet. Ut
fra resultatene av implementasjons- og verifikasjonsrapportene kan det derfor konkluderes med en
vellykket maskinvareimplementasjon.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Compression uses cases with room for innovation 1

1.3 New and innovative compression candidates . 2

1.4 Research questions and contributions . 2

2 Theoretical background 3

2.1 Compression theory . 3

2.1.1 Data compression . 3

2.1.2 Shannon’s source coding theorem . 4

2.1.3 Lossless compression . 4

2.1.4 Lossy compression . 4

2.2 Asymmetric Numeral Systems . 5

2.2.1 Solving issues of basic ANS . 6

2.2.2 uABS . 6

2.3 General HW implementation . 8

2.3.1 FPGA . 8

2.3.2 Xilinx target FPGAs . 9

2.3.3 Briefly about thermal considerations . 11

2.3.4 Timing: Setup and hold slack . 12

2.3.5 The Ready-Valid data interfacing design pattern 12

2.3.6 FPGA divide library . 14

2.3.7 FPGAs and fixed point numbers . 15

2.4 Using SystemVerilog for synthesis . 16

2.5 State machines . 17

2.6 UVM . 18

2.6.1 Standard UVM testbench architecture . 18

2.6.2 UVM testbench . 18

2.6.3 UVM test . 19

2.6.4 UVM environment . 19

2.6.5 UVM scoreboard . 19

2.6.6 UVM agent . 19

2.6.7 UVM sequencer . 20

2.6.8 UVM sequence . 20

iv

2.6.9 UVM driver . 20

2.6.10 UVM monitor . 20

2.6.11 UVM phases . 20

3 Implementation 21

3.1 Introduction to implementation . 21

3.2 Systems overview . 23

3.3 Software models . 25

3.3.1 ANS C++ software Model . 25

3.3.1.1 Creating the ANS C++ software Model 25

3.3.1.2 ANS C++ software model testbench 28

3.3.2 ANS SystemVerilog software Model . 28

3.3.2.1 Creating the ANS SystemVerilog software model 29

3.3.2.2 ANS SV model testbench . 29

3.4 Hardware implementations . 30

3.4.1 Unoptimized ANS compressor . 30

3.4.1.1 Overview . 30

3.4.1.2 Interface . 31

3.4.1.3 Finite State Machine . 31

3.4.1.4 Arithmetic . 35

3.4.1.5 Preparations for Synthesis and Implementations 35

3.4.2 Optimized ANS compressor . 36

3.4.2.1 Overview . 36

3.4.2.2 Interface . 36

3.4.2.3 Decoder . 37

3.4.2.4 Encoder . 37

3.4.2.5 FSM . 37

3.4.2.6 Arithmetic . 39

3.4.2.7 Preparations for synthesis and implementations 39

3.4.3 Verification of Hardware Implementations 39

3.4.3.1 Master testbench . 40

3.4.3.2 UVM testbench . 40

4 Results 44

4.1 Introduction to results . 44

4.2 Parameters . 45

v

4.3 Optimized ANS compressor hardware implementation 46

4.3.1 Waveforms and verification . 46

4.3.1.1 UVM environment reports . 46

4.3.1.2 Master testbench reports . 47

4.3.1.3 Decoder waveforms . 48

4.3.1.4 Encoder waveforms . 49

4.3.2 Synthesis and implementation reports . 51

4.3.3 FPGA Zynq UltraScale+ ZCU106 . 51

4.3.3.1 Decoder . 52

4.3.3.2 Encoder . 53

4.3.4 Porting the solution to the FPGA Devboard Spartan-7-SP701 54

4.3.4.1 Decoder . 54

4.3.4.2 Encoder . 55

4.3.5 Performance analysis . 57

4.3.5.1 Encoding and decoding speeds . 57

4.3.5.2 Compression behavior . 58

4.3.5.3 Compression behavior with probability deviations 61

4.3.6 RTL analysis schematics . 69

4.3.6.1 Decoder . 69

4.3.6.2 Encoder . 69

4.4 Unoptimized ANS compressor hardware implementation 72

4.4.1 RTL Analysis schematics . 72

4.4.1.1 Decoder . 72

4.4.1.2 Encoder . 72

4.5 Software models . 73

4.5.1 C++ software model . 73

4.5.2 SystemVerilog software model . 73

5 Discussion 74

5.1 Overall evaluation . 74

5.2 Evaluation of the compression behavior . 75

5.3 Evaluation of compression rates . 75

5.4 Cases of errors in compression . 75

5.5 Effect of BIT WIDTH and FBITS . 76

5.6 Evaluation of FSMs . 76

vi

5.7 Interface . 76

5.8 Evaluation of the Ready/Valid interface . 77

5.9 Clock gating and further power saving . 77

5.10 Effect of chosen FPGA on performance, utilization and power results 78

5.11 Evaluation of testbench . 78

5.12 Issues during simulation . 79

5.13 Analysis of RTL views . 79

5.14 The ANS compressor as part of a larger system. 79

5.15 Experimental software Models . 81

6 Further work 81

7 Conclusion 82

References 84

Appendix A Optimized ANS compressor - decoder 87

Appendix B Optimized ANS compressor - encoder 92

Appendix C Master testbench 99

Appendix D UVM testbench 105

D.1 UVM uABS . 105

D.2 UVM testbench . 122

Appendix E SystemVerilog software model, both encoder and decoder 127

Appendix F C++ software model, both encoder and decoder 130

Appendix G Unoptimized ANS compressor 137

vii

1 Introduction

1.1 Background

Data storage and communication capacity are always limited and associated with a cost. A wide
range of computing devices uses compression, ranging from powerful supercomputers to Internet
of Things (IoT) microcontrollers and nodes. With the desire of transmitting more data between
devices, compression of data becomes even more relevant. Compression can be implemented in
software (SW) or hardware (HW), with compression innovation taking occurring more rapidly in
software.

Software compression utilizes the most expensive computing resources on devices, such as the
central processing units (CPUs, computing cores) and the graphical processing units (GPUs).
These resources must also serve other tasks, such as the user applications (apps) and the operating
system (OS).

Even though software compression may offer real savings in terms of storage and data transfer
if used extensively, it does take a heavy toll on both processing capacity and associated power
consumption.

User perception is also a practical side of it, especially noticeable for portable equipment where
higher power consumption translates into shorter runs per charge and where a sluggish response
may be at least partly due to background processes such as data compression when employed there.

The environmental footprint of software compression is also significant, both in terms of the power
consumption (and associated CO2 emissions) and for the manufacture of both new equipment and
the recycling of old. Moreover, it appears fair to assume that the upgrade frequency of computing
devices is somewhat higher in the lack of hardware compression, with compression as an extra
burden on top of running apps and OS.

Implementing compression in hardware therefore potentially offers tangible relief on all those ac-
counts. Moreover, hardware compression ultimately places electronics designers, design houses,
and chipmakers in a very privileged position, being able to implement and market well-designed
hardware-based compression solutions that will benefit users, enterprises, manufacturers, and the
environment.

1.2 Compression uses cases with room for innovation

There are two categories of compression algorithms: The lossless and the lossy. The lossy ones
might optimize away some of the original data, preserving just as much as is necessary to be of
practical use when decompressed. Many hardware compressor designs exist, supporting compres-
sion standards such as AV1, VP9, AVS2, H.264, and H.265, which are a vital integral part of
today’s photographic equipment, video cameras, and smartphones [3]. No one would even suggest
reverting to using general computing cores for such compression operations today, with increased
cost, size, and power consumption.

Lossless compression is a strong contender for general hardware-based compression implementa-
tions. As there are also many use cases where lossy compression is undesirable. Lossless compres-
sion algorithms alleviate transfer and storage bottlenecks while unambiguously reproducing the
original data’s exact representation.

Some of the lossless compression algorithms are limited in terms of performance or unfit for random
binary data. One reason is that many well-known techniques from lossless compression perform
best on higher-level data with specific characteristics and use cases, such as text compression.
However, they will not compress well in other settings and are typically demanding in terms of
processing requirements and memory usage. They play an important role in the compression
ecosystem, however, does not cover all use cases. In particular, the lowest level of data, where
there might be typically relatively random binary datasets, with large companies keeping much

1

of their accelerators proprietary. This use case has room for innovation and improvement and is
an especially important use case for hardware compressors as naturally find themselves handling
binary data.

1.3 New and innovative compression candidates

Entropy-based compression techniques are known to offer compression close to theoretical limits
with relatively lightweight computations. The Asymmetric Numeral Systems (ANS) algorithm
by Jaros law Duda (2014) offers highly competitive compression ratios while still boasting efficient
computation. Whereas there are a handful of variants, such as uABS and rANS with different
features and advantages. It is a family of compressors being praised highly as being next generation
and seeing many new design additions in the past years.

The ANS entropy coding principles have also influenced previously existing compression algorithms
and have influenced many of the most proliferated compression standards, such as JPEG XL, Face-
book/Zstandard, Google pik, Apple/LZFSE, as well as the lowest layers of compression found in
iOS and macOS [4]. Whereas macOS squarely points toward the benefits of a hardware compressor
implementation as well, operating at the bottom layer of the OS’s themselves to the benefit of all
applications running on them.

ANS performs well with relatively random data, even those featuring an uneven distribution of
1s and 0s. The so-called uniform binary variant (uABS) of ANS works well for the compression
of binary data (interpreted as natural numbers) as long as the probability of the number of 1s
and 0s is known. The probability can easily be computed, making a software implementation
relatively straightforward to model. Whereas the algorithm itself consists dominantly of arithmetic
operations and conditional statements, which are convenient to model in software.

Overall, uABS appears to be well-posed for successful low-power hardware implementation. How-
ever, no hardware implementations appear to be published or readily available for reuse as of now.
This is illustrated by worldwide web searches and using database queries of reusable electronic
designs such as [5].

Narrowing the research to uABS appears to therefore be a good choice, focusing on the implement-
ation challenges since possible alternative compressors have been well covered in the preceding
project thesis [6].

1.4 Research questions and contributions

The thesis’s main objective is to create a high-quality synthesizable hardware implementation of the
compression algorithm Asymmetric Numeral Systems (ANS) using hardware descriptive language.
Specifically the uniform binary variant of the algorithm, and to verify the design. Based on this
following research questions were posed:

• Is it possible to design a modular hardware implementation of the uABS algorithm using
industry-standard tools which are:

– Configurable,

– performs close to the theoretical limits of entropy-based compression

– and are easily implementable on commercial FPGA?

• Is it possible to design a hardware decoder performant enough to be useful to decode large
streams of data at a sufficient speed for real use cases?

• Will the hardware compressor be robust enough to compress datasets with inaccurate prob-
ability modelling?

2

The workflow of this thesis was to first implement higher-level models, before moving to the low level
of abstraction with the hardware implementations. This led to four iterations: High-level software
model (C++ model), low-level software model (SV model), unoptimized ANS hardware compressor
and optimized ANS hardware compressor. Each preceding step was based on the previous one, and
between each step, comparisons were made to ensure the robustness and accuracy of the solution.
This led to the following contributions:

• An iterative approach towards implementing an optimized hardware design, basing it on
high-level and low-level software implementations, and their performance.

• A high-performance open source modular plug-and-play hardware implementation of the
uABS algorithm using industry-standard tools, which was fully synthesized in an EDA. It is
also easily implementable on commercial FPGA, with a configurable encoder/decoder mod-
ule. The final hardware implementation was optimised in order to achieve higher performance
and make the circuitry lightweight, compared to an unoptimized implementation. In order
to achieve this, a trade-off analysis was performed. The analysis balances high performance
and low resource usage while keeping the compressor high in efficiency and accuracy.

• The optimized and unoptimized implementations were verified through a testbench. The top
testbench was simulated using a reliable verification methodology (UVM). The simulations
verified that:

– Both timing and behavior act according to the requirements of a full-fledged ANS com-
pressor. With performance approaching the theoretical limits of entropy-based com-
pression.

– Peak encoding and decoding speeds were measured to be in the mega-bit range, making
them useful for modern world applications. The decoder in particular is expected to
perform well enough to decode streams of video.

– It was also proven that the ANS compressor achieves accurate compression behaviour
even with inaccurate probability modelling (up to ±10% deviation in probability).

• Implementation of two easily configurable software reference models, one high and low level,
in a well-designed software simulation environment. Both software models were verified
through similar testbenches as the hardware model, where the testbench tested for correct
compression behaviour.

2 Theoretical background

2.1 Compression theory

Some key aspects of compression theory are presented to provide the reader with a background
for understanding the compression algorithms, which will be briefly presented thereafter. In addi-
tion to those presented below, the preparatory project thesis [6] delves into more detail on other
compression algorithms.

2.1.1 Data compression

The hunger for storage and communication bandwidth is high and ever increasing, due to a broad
range of data intensive applications ranging from high-power supercomputer scientific applications
to ultra-low-power Internet of things (IoT) applications.

Reducing the number of bits stored or transferred, and still being able to retrieve or receive
them exactly as they were originally (lossless) or sufficiently recognizable (lossy) is the goal of all
compression/decompression techniques [7].

3

There are several ways to achieve data compression, with differences in areas such as implement-
ation complexity and suitability for different types of data [8]. The following is a brief summary
of notable compression algorithms. Special emphasis is given to the Asymmetric Numeral System
(ANS) and uABS (uniform binary variant) [2], the latter being the main focus of the hardware
implementation of this thesis.

Compression algorithms are implemented in ways that take advantage of characteristics of the
input data, such as the type of data and how the different symbols of the data type occur in the
input data. Data may exhibit repeating sequences of data and statistical properties of data, such
as uniformly or non-uniformly distributed symbols.

In all cases, the capabilities of compression techniques are expressed using a few important metrics.
One of them is the compression ratio, which is the ratio of uncompressed data versus compressed
data size [9], given by equation (1):

Compressionratio =
UncompressedSize

CompressedSize
(1)

Alternatively, in order to compare the compression ratio to the Shannon source coding theorem[10]
directly, the compression ratio may be expressed as, as shown in equation (2):

Compressionratio =
CompressedSize

UncompressedSize
(2)

Within the field of data communication, compression will be relative to the data rate [11, 12] of
the data passing by as shown in equation (3):

CompressionRatio =
UncompressedDataRate

CompressedDataRate
(3)

2.1.2 Shannon’s source coding theorem

Shannon’s source coding theorem [10] states that the smallest possible code that can express a given
piece of information (such as string of symbols) with sufficient precision and reliably is limited,
thus defining a theoretical limit of data compression. The average number of bits per symbol
must be equal to or larger than this limit [13], as shown in equation (4) below, with the index ”i”
representing a given symbol to get coded with a given probability p, which, in summation provides
the entropy H over all possible symbols X:

H(X) = −
n∑

i=1

pi log2(pi) (4)

2.1.3 Lossless compression

Shannon’s discussion on entropy provides a solid groundwork for how much we can compress
original data composed of discrete data, yet reproduce them exactly and losslessly. Examples of
discrete data are human readable texts, CAD drawings, computer software and control signals.

2.1.4 Lossy compression

Lossy compression allows for and assumes that a certain degree of information will be lost during the
compression/decompression cycle, yet with a decompressed variant of the original data sufficiently
similar to be of practical use [14]. The compression task thus relies on eliminating the least
necessary information, in essence reducing the entropy of the data. Lossy compression is therefore
used where absolute accuracy is not required and/or feasible. One example is in the use of digital

4

audio, where the level of compression can increase while still maintaining a sufficient degree of
entropy to afford a good reproduction of the original [15].

2.2 Asymmetric Numeral Systems

The Asymmetric Numeral Systems (ANS) lossless entropy based encoding method [16] describes
the conversion of sequences of symbols (messages) originating from a given alphabet, to natural
numbers. This is done using statistical compression schemes, where the most frequent symbols are
mapped in an optimal fashion onto shorter (i.e. small) natural numbers, and less frequent symbols
onto longer natural numbers, thus providing high compression ratios if the implementation works
properly[13].

As an introduction to elements of the ANS scheme, a simple but still fully working encoder,
assuming a binary string with equal probability of the two symbols ’0’ and ’1’ can be demonstrated.
The corresponding natural number of the string can be coded, one bit at a time based upon the
input string of bits b1b2b3...bi where bi is MSB. In this simple coder, new bits bi+1 can be inserted
after multiplying the already coded number by two and adding the new bit. Encoding is presented
in equation (5). Decoding follows in a similar simple fashion with equation (6), as given by [13].

C(xi, bi+1) = 2xi + bi+1 (5)

(xi, bi+1) = D(xi+1) := (⌊xi+1

2
⌋, xi+1 mod 2) (6)

It is however important to note that in this case, the equations (5) and (6) provides optimal
compression according to Shannon’s source coding theorem only when the probabilities of ”0” and
”1” are equal, i.e. there is a uniform distribution of these two symbols. In this particular case
entropy is given as H(x) = −(2 · 1

2 log2(1
2)) = 1, since p0 = p1 = 1

2 .

This indicates that there is 1 bit per binary digit in the coded natural number, excluding a starting
bit for the natural number x0 = 1, and therefore no real gain in terms of compression of the encoder.

This can be illustrated by recalculating the resulting entropy for a slightly skewed distribution using
t his coder, with p0 = 3

8 and p1 = 5
8 . The resulting entropy is H(x) = −(· 38 log2(3

8) + · 58 log2(5
8)) ≈

0.954. The simple ANS implementation of (5) and (6) sorely lacks statistical coding that could
take advantage of the skew in distribution, taking into advantage the overrepresentation of ’1’
versus ’0’ in this example.

Coding perfectly the (qs) symbol distribution onto a (ps) symbol sequence, this would produce an
average of

∑
s pslg(1

qs
) bits per symbol. The difference between this value and the optimal one is

called the Kullback - Leiber distance[2], in shorthand notation given as:

∆H =
∑
s

pslg(
ps
qs

) (7)

This can be simplified as follows, using a second order Taylor’s expansion of the logarithm, around
1:

∆H =
∑
s

−ps
ln(2)

((1 − qs
ps

) − 1

2
(1 − qs

ps
)2) ≈ 0.72

∑
s

(ps − qs)
2

ps
(8)

Note that in the case of true entropy coding, qs = ps, and hence the difference (and distance) will
be zero. It can also be seen that if not, the Kullback-Leiber distance for non-entropic coding grows
for each encoded symbol contributing to deviations from the ideal of ps − qs = 0.

5

Utilizing the statistical properties of a data set with ANS will be further discussed in subsection
2.2.1.

The natural number (also known as state) must always be given an initial value. In other systems
this value is often refereed to as check sum. This initial value could theoretically be initialized to
’0’, however will lead to potential loss of data. This means that the case where the natural number
is initialized as x0 = 0, is not guaranteed to result in the indented compression behavior. Common
practice is to initialize the natural number x0 = 1 [6].

Note that one important feature of ANS is that it has been shown to be suited for hardware
implementation, in an adaptation known as Low Complexity ANS (LOCO ANS) [17].

2.2.1 Solving issues of basic ANS

While the simple ANS algorithm discussed previously only works optimally with uniform dis-
tribution, most data deviate more or less from this assumption, that is for p0 ̸= p1, such as
p1p1p1 = p <<< 1 − p = p0p0p0.

Looking at equation (5) for encoding, each bit should contribute with as little entropy as possible.
Optimal encoding Copt may be expressed using (9) according to [13]:

H(Copt(xi, bi+1)) = H(xi+1) = H(xi) + H(bi+1)

= log2(xi) − log2(pbi+1
)

=⇒ Copt(xi, bi+1) ≈ xi

pbi+1

(9)

Using this result, a coder true to the criterium of minimizing entropy can be implemented [13],
mapping odd and even binary numbers according to probabilities (p, 1-p) using the coding function
in equation (10). Decoding would then be using equation (11), using the result of (9):

xi+1 = C(xi, bi+1) (10)

(xi, bi+1) = D(xi+1) (11)

The three first variants of ANS (chronologically) according to the distributions of the source sym-
bols and methods of realization are [4]:

1. Uniform Asymmetric Binary System (uABS): Only for the processing of binary symbols

2. Range Asymmetric Numeral System (rANS): Is not only ’0’ and ’1’, but with sub-cycles
(ranges) as well.

3. Table Asymmetric Numeral System (tANS): Tabularizing the ANS’s encoding/decoding pro-
cess

These will be explained very briefly in the following sections, with special emphasis on uABS,
which is the basis of the hardware implementation of this paper.

2.2.2 uABS

uABS (uniform binary variant of ANS) can compress/decompress binary messages of finite size,
providing an optimal entropy coding/decoding process covering all distributions; including non-
even.

6

Assuming a binary alphabet, and focusing on the odds, N · p odd numbers can be mapped in the
first N natural numbers with probability p=Pr(1), so that for any given N and N + 1 [13]:

⌈(N + 1) · p⌉ − ⌈N · p⌉ =

{
1 , if N has an odd mapped
0 , otherwise

(12)

Note that this may be interpreted as N satisfying the outcome of [N ∗p] in respect of odd numbers
with no odd numbers expected at N + 1.

The encoding function is presented in equation (13), and satisfies the requirements for distribution
as set forth by (12) [13].

C(xi, bi+1) =

{
⌈xi+1

1−p ⌉ − 1 , if bi+1 = 0

⌊xi

p ⌋ , otherwise
(13)

The decoding function presented in equation (14) is the reverse calculation, and returns the original
binary sequence [13].

(xi, bi+1) = D(xi+1)

bi+1 = ⌈(xi+1 + 1) · p⌉ − ⌈xi+1 · p⌉

xi =

{
xi+1 − ⌈xi+1 · p⌉ , if bi+1 = 0
⌈xi+1 · p⌉ , otherwise

(14)

Knowing the probability is vital to make uABS work correctly. Obviously readily available on the
coding side, but must be made available to the decoding process work. In practice, p has to be
stored or transferred along the compressed data, hence requiring space and thereby reducing the
effective compression ratio.

An encoding example is shown in equations (15) of the 8-bit binary sequence 10011000 to a natural
number, using the uABS variant adapted from [13]. Note that p of odds (counting 1s) is p = 3

8
(and hence p = 5

8 for evens), and initial value (also known as state) is x0 = 1.

x1 = C(x0, b1) = ⌊x0

p
⌋ = ⌊1 · 8

3
⌋ = 2

x2 = C(x1, b2) = ⌈x1 + 1

1 − p
⌉ − 1 = ⌈(2 + 1)

8

5
⌉ − 1 = 4

x3 = C(x2, b3) = ⌈x2 + 1

1 − p
⌉ − 1 = ⌈(4 + 1)

8

5
⌉ − 1 = 7

x4 = C(x3, b4) = ⌊x3

p
⌋ = ⌊7 · 8

3
⌋ = 18

x5 = C(x4, b5) = ⌊x4

p
⌋ = ⌊19 · 8

3
⌋ = 48

x6 = C(x5, b6) = ⌈x5 + 1

1 − p
⌉ − 1 = ⌈(48 + 1)

8

5
⌉ − 1 = 78

x7 = C(x6, b7) = ⌈x6 + 1

1 − p
⌉ − 1 = ⌈(78 + 1)

8

5
⌉ − 1 = 126

x8 = C(x7, b8) = ⌈x7 + 1

1 − p
⌉ − 1 = ⌈(126 + 1)

8

5
⌉ − 1 = 203

(15)

The corresponding decoding of the natural number 203 of uABS variant is shown in (16) [13]. Note
that it is generated in reversed order.

7

b8 = ⌈(x8 + 1) · p⌉ − ⌈x8 · p⌉ = ⌈(203 + 1) · 3

8
⌉ − ⌈203 · 3

8
⌉ = 0

x7 = x8 − ⌈x8 · p⌉ = 203 − ⌈203 · 3

8
⌉ = 126

b7 = ⌈(x7 + 1) · p⌉ − ⌈x7 · p⌉ = ⌈(126 + 1) · 3

8
⌉ − ⌈126 · 3

8
⌉ = 0

x6 = x7 − ⌈x7 · p⌉ = 126 − ⌈126 · 3

8
⌉ = 78

b6 = ⌈(x6 + 1) · p⌉ − ⌈x6 · p⌉ = ⌈(78 + 1) · 3

8
⌉ − ⌈78 · 3

8
⌉ = 0

x5 = x6 − ⌈x6 · p⌉ = 78 − ⌈78 · 3

8
⌉ = 48

b5 = ⌈(x5 + 1) · p⌉ − ⌈x5 · p⌉ = ⌈(48 + 1) · 3

8
⌉ − ⌈48 · 3

8
⌉ = 1

x4 = ⌈x5 · p⌉ = ⌈48 · 3

8
⌉ = 18

b4 = ⌈(x4 + 1) · p⌉ − ⌈x4 · p⌉ = ⌈(18 + 1) · 3

8
⌉ − ⌈18 · 3

8
⌉ = 1

x3 = ⌈x4 · p⌉ = ⌈18 · 3

8
⌉ = 7

b3 = ⌈(x3 + 1) · p⌉ − ⌈x3 · p⌉ = ⌈(7 + 1) · 3

8
⌉ − ⌈7 · 3

8
⌉ = 0

x2 = x3 − ⌈x3 · p⌉ = 7 − ⌈7 · 3

8
⌉ = 4

b2 = ⌈(x2 + 1) · p⌉ − ⌈x2 · p⌉ = ⌈(4 + 1) · 3

8
⌉ − ⌈4 · 3

8
⌉ = 0

x1 = x2 − ⌈x2 · p⌉ = 4 − ⌈4 · 3

8
⌉ = 2

b1 = ⌈(x1 + 1) · p⌉ − ⌈x1 · p⌉ = ⌈(2 + 1) · 3

8
⌉ − ⌈2 · 3

8
⌉ = 1

x0 = ⌈x1 · p⌉ = ⌈2 · 3

8
⌉ = 1

(16)

2.3 General HW implementation

2.3.1 FPGA

A wide scale of standalone field programmable gate array (FPGA) chips, as well as embedded
FPGA functionality on multi-function chips are manufactured. Several are well posed as possible
targets for a hardware implementation of the compressor in this project.

As an introduction to this section of theory on FPGAs, one may illustrate the core functionality
with figure 1, courtesy National Semiconductors [18]. This shows the three basic FPGA function-
alities of logic, routing and I/O.

Logic, as embedded in so-called Configurable Logic Blocks (CLBs) typically contains a number
of slices, each with flip/flops, look-up-tables (LUTs), registers, multiplexers, wiring, carry logic,
arithmetic logic and storage logic and similar. Some CLB slices also include distributed RAM and
32-bit shift registers [19].

Block memory, DRAM, registers and FIFO queues are commonplace in FPGAs today, providing
easy access to different types of storage, with different strengths and weaknesses.

I/O is organised in Input/Output Blocks (IOBs) where each of these handles a certain type of I/O
[20]. Assigning IOBs to physical ports, they become bonded IOBs. IOBS is connected to an actual
physical wire going out of the chip. Physical connect can be such as PXI backplanes or Real-Time
System Integration (RTSI) connectors. Note that non-bondable IOBs encompass (among others)

8

Figure 1: Configurable Logic Blocks, routing and I/O on FPGAs. Illustration taken from [18]

internal lines that provide I/O between configurable and non-configurable parts within the FPGA
[20].

Routing allows for the transport of data to and from the different parts of the FPGA.

For small-scale system design, manually wiring components on an FPGA provides tight optim-
ization but requires an intimate understanding of the FPGA components and their uses. To be
productive at scale, high-level tools converting statement-based designs expressed in either VHDL
or Verilog/SystemVerilog offers good results as well, given a performant EDA for synthesis.

The FPGAs range from traditional standalone chips such as the 7-series of Xilinx (starting with
the Spartan-7) to a variety of FPGA functionality on multiprocessor on a chip (MPSoC) systems.

2.3.2 Xilinx target FPGAs

A possible standalone-FPGA target for a hardware implementation of the compressor in this
project is the Xilinx XC7S100 Spartan-7, the 7-series entry-point low-power FPGA.

Figure 2: Xilinx Spartan-7 FPGA, illustration taken from [21]

The best quipped Spartan-7 has 1100KB DRAM and 1 analog to digital converter (XADC), based
on a 28 nm process [21]. The 7 Series families is summarized in table 1 and 2 for supplemental
info.

Xilinx offers the SP701 Evaluation Kit for prototyping and development using the top-of-the
Spartan-7 variant Xilinx XC7S100. Third-party vendors are marketing other more or less elabor-
ate development kits and hobby kits based on the Spartan-7, such as a small-factor board IAM

9

Table 1: Xilinx 7-series overview, illustration taken from [21]

Table 2: Spartan-7 FPGA Feature Summary by Device, illustration taken from [21]

Electronics [22] kit for under USD100.

The Xilinx Zynq UltraScale+ series MPSoC, which is based on a 16 nm-process [23], was chosen
as the primary FPGA target in this project. It provides a host of applications and real-time Arm
core processors as well as several memory and connectivity options.

Figure 3: Xilinx Zynq UltraScale+, illustration taken from [23]

Table 3, Zync UltraScale+ MPSoC: CG Device Feature Summary for a presentation of the capab-
ilities of the series, comparable to those of 7-Series in table 1 and of Spartan-7 in table 2.

Xilinx offers development kits based on Zynq UltraScale+ as well, such as the Zcu106 [24].

It may be worthwhile to note that the UltraScale+ series fans out at 600K system logic cells; while
the 7-series goes on to 1955K.

10

Table 3: Xilinx Zynq UltraScale+ series overview, illustration taken from [23]

2.3.3 Briefly about thermal considerations

FPGA-related thermal design issues have not been taken into consideration in this project, due to
time and project constraints. This can however be an important issue when designing applications
for FPGAs. Agne & al [25] present an interesting discussion on the impact of different FPGA
elements on power consumption, demonstrated by using the Xilinx S7 and other FPGAs. Certain
uses can easily overheat the chip and/or create challenges for the power budget.

Apart from design changes to avoid some of the most notorious power guzzlers in the FPGA port
logic design, some relief can be found by using processes with smaller feature sizes, such as 20 nm,
16 nm or below. One example is the Zynq Ultrascale+ [23] series based on 16 nm, providing 2–5X
greater system-level performance/watt over 28nm devices [26].

In addition to smaller feature size, other design choices can lower the power consumption in the
logic gate functions, with enhanced logic blocks for a target of 90% utilization for the UltraScale+
[26]. If on-chip elements such as processing cores can be used in a sensible manner, reducing the
use of off-chip (MPSoC) functions, further power savings can be achieved. Note that this will not
necessarily lower related chip heating issues per se since even more power consumption is crammed
into a small space by using other functions on the MPSoC. But if for instance the CPU cores
of the UltraScale+ can be used together with the logic gates on-chip, real power savings can be
achieved compared to the total power consumption of a system forced to intensive I/O activity for
intermediate result data transport passed via the power-wise expensive external lines of the chips
involved.

11

2.3.4 Timing: Setup and hold slack

Signal propagation through high speed/high-frequency circuitry such as FPGA or ASIC does pose
some challenges. Looking into a propagation path, one will either experience that signal propaga-
tion is well timed with data in place before being clocked (and locked) in place, or that it fails to
do so.

There are two variants of setup and hold slack: Setup slack, and hold slack.

The difference between desired time (clock propagation) and achieved time (data propagation) for
a timing path is called the setup slack. It may either be: positive, zero or negative. Negative
simply means that the signals fail to propagate within the given time frame, while zero means that
it does succeed but without any margin. Zero or positive means that the data has propagated
successfully, and in time [27]. Please refer to figure 4 of [28] for an example of setup timing.

Figure 4: Signal setup timing

The difference between the achieved and desired time for locking the data is called hold slack. It
simply means that if data are in place too early, and not stable during the hold, locking will fail.
Please refer to figure 5 of [28] for an example of hold timing.

Figure 5: Signal hold timing

The libraries of the synthesis and verification tools know the different signal propagat́ıon data of
the elements used. Proper design will minimize the probability of zero and negative setup and
hold slack, and verification will minimize the chance of not finding any timing errors that might
slip through.

2.3.5 The Ready-Valid data interfacing design pattern

One of the challenges of electronic design is proper handshaking when transferring data from a
source to a sink. The handshake is used for the sink to signal that it is ready for data, and the

12

source to signal that it will transmit data.

Simple solution patterns such as the ReadyValid data interfacing design patterns, have been with
us for a while as exemplified by [29] and illustrated in figure 6.

Figure 6: Ready/Valid interfacing design pattern principle with one source and one sink

This pattern relies on two handshake signals: Valid from source to sink, signalling that the data
presented are to be consumed, and ready from sink to the source, signalling that the sink is indeed
ready to consume. Both will have to be true in order to facilitate a successful data transfer, locking
in (and holding) data on the sink. Note that the original design pattern relies on the rising edge
of the clock to hold (lock) the data on the sink as the receiving end, as illustrated in figure 7.

Figure 7: Ready/Valid signals vs. transfer on rising edge, one clock cycle data transfer

This pattern is not limited to the simple stop-and-go timing as shown here; but can string a number
of transfers, as long as both Valid and Ready er true, as shown in figure 8.

Referring to the discussion of section 2.3.4, special caution must be exercised to avoid negative
setup and hold slack.

13

Figure 8: Ready/Valid signals vs. transfer on rising edge, two clock cycle data transfer

2.3.6 FPGA divide library

The different FPGAs are delivered with a wide array of functionalities as defined by the FPGA
itself, and the standard libraries of synthesizable functions of the different vendors and third parties.

The fixed-point division is not available out-of-the-box with Verilog with FPGAs. ANS type
compression requires division; and luckily, additional libraries are available.

One of the open libraries, licensed under an open-source MIT licence, is Project F: FPGA Dev
[30]. This library for the fixed point division of binary integers requires one clock cycle per bit
involved, up to 32 bits (depending on design parameters). The run-time compares favourably with
a modern CPU such as Intel Skylake, requiring 42-95 cycles for a 64-bit signed integer division.

Traditional long division per K-9 elementary school recipe is used. A long division algorithm is
shown in figure 9, according to [31]:

14

Figure 9: Binary division per long division method

2.3.7 FPGAs and fixed point numbers

In need of decimals, simple fixed point maths can often be a good alternative to computationally
expensive floating point numbers, as long as the number range is relatively limited. Fixed point
math is definable in Verilog, reaping the advantage of DSP blocks for fast multiplications and
additions. Such libraries exist from third parties for example from Project F: FPGA Dev [32].

The bits in a FP integer are divided in two: The integer part, and the fractional part, as illustrated
in figure 10:

Figure 10: An example fixed point number 0100.11002 equalling 4.7510

Range in fixed point math can be improved by adding digits in the integer part of the number,

15

and precision by adding digits in the fractional part.

Extending range can also be achieved, by adding a scaling factor. This would have to be stored
and taken into account whenever calculus is performed, but does go a long way towards floating
point accuracy and range.

Implementing libraries for fixed point should also handle cases of over- and underflow, that is when
the sign changes contrary to the operation, such as two positive fixed point numbers being added,
ersulting in a negative

2.4 Using SystemVerilog for synthesis

SystemVerilog is a IEEE standard for both circuitry synthesis (design) and verification, existing
side-by side with VHDL serving the same purposes, but doing so slightly differently [33]. One of
the primary goals of the original Verilog, and of the later incarnation dubbed SystemVerilog has
indeed been to facilitate implementations of complex hardware designs with better accuracy and
fewer code lines. Synthesis has thus been a part of the standard from the start, with a steady
evolution of mechanisms since the very inception in 1984, through the first standardisation in 1995
(known as Verilog-1995) up to the more recent SystemVerilogs (2005/2009/2012/2017).

There was a name change from Verilog to SystemVerilog in 2005, as a merge of the different
developments, resulting in a host of new concepts for both design and verification. Versions 2009
and 2012 followed in the same trait, with the 2017 standard primarily as a roll-up with fixes and
more firm and unambiguous definitions.

Todays SystemVerilog in it’s different implementations offer a more hand-in-hand integrated design-
and verification cycle than ever, as illustrated in figure 11.

Figure 11: System Verilog ancestry for design and verification, versions 2005-2017. The illustration
is taken from [34]

There exist several tools with SystemVerilog support, such as the suite of synthesis (design) and
verification tools from Synopsis, highly praised by Sutherland and Mills [34]. The company Accel-
era, originator of many of the concepts behind Verilog and SystemVerilog, still resides firmly at the
center of much of the developments and standardisation activity, donating this basis to IEEE as
one of the key organizers. There is a comprehensive (although somewhat outdated) list of vendors

16

by EEtimes [35].

2.5 State machines

Since so much of the design work is directly or indirectly related to state machines, it may be in
order to briefly sum up some vital and relevant state machine concepts; avoiding the more formal
notations here, and focusing on the more computer/electronics related terms.

A very brief, but hopefully sufficiently firm definition is that a state machine is a concept (or
abstraction) with a (normally limited [finite] set of) states S it may enter, starting with a state s0
[36]. The state machine can receive responses to events (signals) based on rules associated with
the states and transitions between them. It can either remain in the same state (after making
some processing) and either return to the same state. There are a number of responses that may
come from the state machine, such as whether the events were understood (valid/interpretative),
outcomes, state information and so on.

There are several models for detailing state machines that are typically used when dealing with
electronics and programming; each with its advantages, such as Moore and Mealy. Mealy was
chosen, due to advantages such as allowing output to depend directly on the present state as well
as present input (and hence saving cycles and providing faster reaction to input on transitions),
allowing for a smaller number of states, but potentially at the expense of more design challenges
[37].

The illustration of a Mealy state machine in figure 12, courtesy of a Verilog doc page, illustrates
these concepts nicely [38]:

Figure 12: Example of a simple Mealy state machine [38]

The state machine will transition from state ”zero” to ”one” when the signals ”level” and ”tick”
are both 1, while entering state ”zero” if both are 0. The reader will notice that level = 0 and
tick = 0 will only loop back to ”zero” when already there, possibly returning an output to the
surroundings in the transition back to where it were, and likewise return to state ”one” if level =
1 and tick = 0.

Other signal input combinations are undefined, and must be ignored during processing, and are
often referred to as ”don´t-cares”.

Using SystemVerilog to define a state machine, verification can be planned and enforced in a
coherent manner, please see chapter 2.6 for more details.

When finally on silicon, test vectors with all possible combinations of test signals (inputs) and
outputs may be used to check hat the state machine is behaving as planned, ignoring the ”don´t
cares” mentioned above.

17

2.6 UVM

Universal Verification Methodology (UVM) is standardised by the IEEE in 1800.1, and is a class-
based verification library with support for reuse methodology for SystemVerilog [39]. UVM has
a feature rich class library providing basic bulding blocks for creating verification data and com-
ponents [40]. A typical workflow defines data stimulus with help from building blocks of the UVM
class library, creating configurable (and reusable) UVM Verification Components (UVCs) for stim-
uli to device under test (DUT). Multiple UVCs can be combined in the verification environment,
with scoreboards and register models. UVM contains a transaction library model (TLM) and
configuration database, and enables faster development and more rapid verification [39].

UVM is primarily derived from Open Verification Methodology (OVM) [41]. It has seen widespread
support by industry leading EDA vendors such as Aldec, Cadence, Mentor and Synopsis. An
advantage with UVM has is its layer of abstraction where each distinct component int he verification
environment has it’s specific purpose. Such as where the driver class object only drives the signals
to the Device Under Test (DUT). On the other hand the monitor has the role of monitoring the
design interface. This division into classes with specific purposes makes the process of configuring
and using UVM intuitive and well defined.

2.6.1 Standard UVM testbench architecture

The standard testbench architecture is seen in 13. This architecture follows the terminology
recommended by standards organization Accellera. Their standards are widely adopted in the
industry and a trusted reference [39].

Figure 13: Standard UVM Testbench Architecture

2.6.2 UVM testbench

One of the most important roles of the UVM Testbench is to instantiate the DUT module and the
UVM Test class [41]. It also configures the connection there between. Other verification modules
may also be instantiated in the testbench as well. The UVM Testbench is instantiated dynamically
during run-time. This feature allows the UVM Testbench to be compiled once and ran with any
number of different tests. Lastly in some architectures the UVM testbench is used to refer to a
special module encapsulating verification collaterals only, which are in turn integrated up with the
DUT.

18

2.6.3 UVM test

The top-level UVM component in the UVM Testbench is the UVM Test [41]. Typically the UVM
Test is tasked with performing three main functions. It instantiates the top-level environment, con-
figures the environment and applies stimulus. The configuration may include factory overrides or
configuration of database, and the invocation of UVM sequences are done through the environment
to the DUT.

A standard approach is to utilise one base UVM Test with the UVM Environment instantiations
including other common items. Following are individual tests extending the base test (e.g. extend-
ing the base class). This may be done to for instance configure the environment differently, select
different sequences or change constraints.

2.6.4 UVM environment

In order to group together other interrelated verification components, the hierarchical component
UVM Environment is required [41]. Some UVM components which are typically instantiated inside
the UVM Environment are UVM Agents, UVM Scoreboards as well as other UVM Environments.
As a rule of thumb, the top-level UVM Environment is desired to encapsulate the verification
components targeting the DUT.

A typical application of UVM Environment for a SoC will entail one UVM Environment per IP. This
could be for instance a PCIe Environment,USB Environment or a Memory Controller Environment.
The usage of Cluster Environments is done in order to group together IP Environments. This could
for instance take shape as an IO Environment or a Processor Environment, where a grouping of
UVM Environments would be satisfactory.

2.6.5 UVM scoreboard

Behaviour of targeted DUTs are mainly checked by the UVM Scoareboard [41]. Usually the UVM
Scoreboard receives transactions containing inputs and outputs of the DUT via UVM Agents
analysis ports. While running the input transactions through a predictor, which is a reference
model. Thereby producing expected transactions which compare the expected output to that of
the actual output.

Different methodologies are employed for scoreboard implementation. In the industry, there are
various approaches on how the reference model should work and how the communication should
take place between the scoreboard and the testbench.

2.6.6 UVM agent

The UVM Agent works as a hierarchical component which groups other verification components
together [41]. Being components that deal with a specific DUT interface. It operates both in active
and passive mode. It is is capable of generating stimulus in active mode and could for instance
in passive mode monitor the interface without actually controlling it. The typical UVM Agent
includes the following components as seen in this list:

1. UVM Sequencer for stimulus flow management.

2. UVM Driver to drive the stimulus to the DUT interface.

3. UVM Monitor for monitoring the DUT interface.

Some less common yet important components may be seen in this list:

1. Coverage collectors

19

2. Protocol checkers

3. TLM model

2.6.7 UVM sequencer

The UVM Sequencer controls the flow of the UVM Sequence Item transactions, which are generated
by one or more UVM sequences [41]. It is thus seen that transaction flow from multiple stimulus
sequences is handled by the UVM Sequencer, where it may serve as an arbiter.

2.6.8 UVM sequence

Stimulus generation behavior is found within the UVM Sequence object, where the UVM Sequences
are not seen as part of the component hierarchy [41]. The UVM Sequences can be persistent or
transient. Where a UVM Sequence instance may exist for any given duration. It may be short-lived
for a single transaction or be used to drive stimulus for the entirety of a simulation. The UVM
Sequences may themselves be seen hierarchically. In this case, there may be a parent sequence
which invokes a child sequence.

Each UVM sequence has to be at some point bound to a UVM sequencer during operation if it
is intended for usage. Whereas several UVM Sequence instances may be bound to the very same
UVM Sequencer.

2.6.9 UVM driver

Individual UVM Sequence item transactions from the UVM Sequencer are received by the UVM
Driver [41]. The UVM Sequences are then driven to the DUT Interface. The UVM Driver thereby
spans through the abstraction levels as it is converting transaction-level stimulus to pin-level stim-
ulus. The Driver is also equipped with Transaction Level Modelling (TLM) ports to receive trans-
actions from the Sequencer, and in order to gain access to the DUT interface to drive the signals.

2.6.10 UVM monitor

Samples from the DUT interface are collected by the UVM Monitor [41]. This information of the
transactions are then relayed to the rest of the UVM Testbench for further analysis. In similar
fashion to the UVM Driver the UVM Monitor may be seen to span several abstraction levels since
it converts pin-level activity to transactions. Therefore the UVM Monitor is generally granted
access to the DUT interface while still yielding a TLM analysis port to broadcast the created
transactions.

UVM Monitors is able to perform some processing internally for the transactions. This could for
instance include coverage collection, checking, logging or recording. These processes may also be
delegated to dedicated components that are connected to the monitor’s analysis port.

2.6.11 UVM phases

All testbench components derive from the uvm component class, and all such unified verification
classes (UVCs) must be able to respond to virtual functions (tasks) as defined per UVM Phases,
[42] in figure 14, see also figure 14 slightly adapted from [43]. Rooted in the uvm component class,
all objects will be instantiated and ready to respond to the different phases of the simulation, see
figure 14. Build phases create and connect testbench objects, before being connected. The actual
time-consuming simulation then follows, in one or several ”run” UVM phases, that will be executed
in parallel if there are more than one. After simulation, data are extracted, before being checked
versus expected values from design, and reported.

20

Figure 14: UVM phases

3 Implementation

The implementation chapter delves into the processes involved towards successful implementation,
developing software- and hardware simulations and deliveries.

3.1 Introduction to implementation

Few if any hardware implementation of the uABS variant of ANS have yet been publicly made
available, therefore a significant amount of development time of this project has been invested in
experimentation and breaking new ground. This process has been carried out using already proven
design concepts such as Finite state machines and combinatorial design practices. Throughout the
incremental design process a set of metrics and criterias were employed to distinguish success from
failure. The checklist below was developed to aid the designer on whether to revert to an earlier
build of the design and rethink the introduced changes, or use as is.

• Is the design able to perform lossless compression without error rates?

Is the Decoder able to reproduce the stimuli driven to the encoder?

• Does a new build of the compressor produce similar or better compression rates than former
builds?

• Is the design faster, cheaper or smaller (e.g. Power, Performance and Area) than former
builds?

• Does the new build implicate potential bugs or challenges which may prove problematic in
the future?

21

In total, two software models and two hardware implementations are proposed. These instances
serve an important role in the exploration and analysis of ANS compression. A strong argument
for discovering the feasibility of hardware implementation through an incremental design process,
with multiple software models and hardware implementations, is that it adds a wast amount of
experience and data for future analysis. The experience can lead to optimizations and better under-
standing of ANS, as the systems grow increasingly complex with increasing abstraction levels. It is
for example easier to understand a C++ software model, and make subsequently add algorithmic
improvements to it, whereas a hardware implementation in SystemVerilog may grow increasingly
difficult to improve algorithmically as the designer works at the RTL level. Conversely the RTL
designer may also find potential improvements on the RTL level, that may be tested for validity
in the software model. If the optimization or improvement works in both the software model and
the hardware implementation, then the RTL designer may proceed with confidence. This method
became crucial in the implementation of the ANS compressor, and was a key driving factor.

The following list illustrates a simplified work breakdown structure of the development process.

1. ANS C++ software model

Verification

2. ANS SystemVerilog software model

Verification

3. Unoptimized ANS hardware implementation

Verification

4. Optimized ANS hardware implementation

Verification

While verification is listed as a sub-task, it is recommended to create a proper test environment
(e.g. UVM or a simple testbench) early in the development process. Testing is crucial during the
development of compressors as small changes might lead to faulty compression behavior. These
could be corner cases that are hard to track, and later down the development process might prove
difficult to bug hunt as the systems grow increasingly complex. Therefore it is highly recommended
to eliminate bugs and unintended behavior as soon as possible after their introduction.

Both the software models and hardware implementations stem from the uABS variant of the ANS
algorithm, and will therefore inherently have many similarities as illustrated in the list below, and
with requirements as shown:

• The design instance contains one Encoder and one Decoder. The Decoder should for any
legally encoded state be able to decode the state and retrieve the original representation.
Likewise the Encoder must be able to unambiguously encode a given legal stimuli, meaning
if given an input the decoder must always produce the same output for a given probability.

• For every single encoding and decoding operation one unambiguous probability must be made
available to the encoder and decoder.

• In these designs accurate probability modelling will be used, therefore probability distribution
must be as accurate as possible in order to produce high compression ratios. The end result
is dependent on as accurate as possible probability modelling. The desired solution was to
tally the total number of 1’s in the data set and divide it by the total number of bits in the
stimuli.

• The probabilities are per definition in the range of greater than 0% and within 100%.

• Implementation must have high enough decimal precision to handle probabilities with suffi-
cient precisions. For software models, this is handled by using floats (or preferred double)
datatypes. For hardware implementation the desired solution was using fixed precision (e.g.

22

Q(48.8) format), parameterization is highly recommended as it offers re-usability and con-
figurability. Lastly, it is important that the encoder and decoder use the same precision and
handle fractions similarly during the majority of processing, it is highly recommended to use
the same precision strategy for the encoder and decoder.

• The encoder and decoder pair must be able to operate separately and concurrently. For
instance the decoder may decode one message, while the encoder may encode another distinct
message simultaneously. This does however not mean that they must decode and encode the
same message at the same time, which is neither useful nor currently feasible.

3.2 Systems overview

As briefly outlined in section 3.1, the standard ANS compressor is required to have at least one
Encoder and Decoder module. This basic structure may be illustrated as in illustration 15. Both
the software models and hardware implementations follows this structure, and are named according
further visualized in illustration 16. The overview is in line with the work breakdown structure
presented in section 3.1.

Figure 15: The standard ANS compressor unit, it features at least one Encoder and Decoder entity.

Figure 16: An overview of two software models and two hardware implementations. They are all
uABS variants of the ANS algorithms and are the four compressors that were created.

The ANS c++ Model and ANS SV Model were named after the language they are implemented
with, respectively C++ and SV (SystemVerilog). The Unoptimized- and Optimized ANS Com-
pressors are implemented in Hardware using the hardware description language of SystemVerilog.
This differentiates them from the SV Model as it is designed as a higher abstraction level sim-
ulation oriented model. It therefore serves the purpose of bridging the gap between the C++
software model and the Hardware implementations, and is only purposed for verification, not for
synthesis. A more detailed overview of the software models is seen at illustration 16, and will be

23

further detailed in section 3.3. Both software models has at least one testbench each, which drives
the design with stimuli and examines the outputs, by methods such as equality (e.g. does the
encoding/decoding produce a result which equates the expected result). Lastly the Encoder also
produces two output files with the encoded and decoded representations.

Figure 17: An overview of the software models and their interfacing. The ANS models interface
with a verification environment. External files are deliberately created for the C++ Software Model
which takes the form of Encoded.txt and Decoded.txt, these holds the encoded and decoded states
as well as decoded bits

The hardware implementations are structured in largely the same manner as the software models.
They are interface with a testbench and exports simulation data through external files. They differ
in the sense that the testbenches for the hardware implementations also offers newer metrics such
as the actual data and clock signals, and their corresponding waveforms. These waveforms may
for instance be analyzed in timing analysis, as presented in section 4.3.1.2. Furthermore, many
properties of the simulation are exported to .csv files. These makes external statistical analysis
(e.g. Jupyter Notebook) easier to interface with. It is recommended to continuously analyze
the performance of the compressor as development progresses. The illustration 18 displays these
properties.

Figure 18: An overview of the hardware compressor implementations. The ANS compressors
interfaces with a verification environment. External files are deliberately created for waveform and
result exports. These are exported in order to interface directly with timing analysis and analysis
entities.

24

3.3 Software models

The software models has been created based on the strategies and methodology presented in 3.1
and 3.2. Furthermore, the theoretical background presented in section 2.2 explains in detail the
uABS variant of the ANS algorithm that is being modelled.

Both the ANS C++ Software model and the ANS SystemVerilog Software models contains much
of the same classes, methods and overall functionality. A summarizing class diagram 19 presents
essential classes common within both the models.

Figure 19: Simplified class diagram of the essential classes inside a ANS software model.

There are no necessary attributes for the classes as probabilities and states are calculated for
every compression cycle. For the C++ implementation however some attributes are declared.
Furthermore there are only a handful of essential methods. The encode and decode methods
performs their respective compression operations, and the compression base class contains two
helper methods. The reverse array method is needed to reverse the output of the decoder. This
encoder and decoder iterates from MSB to LSB, producing the decoded bits from LSB to MSB.
For correct endianness this order must be reversed, this could also be directly implemented into the
Decoder. This revere bit order is due to the for loop structure and cannot be easily circumvented.
Lastly the probability is calculated by the calculate probability method.

3.3.1 ANS C++ software Model

The software model takes the basic class diagram 19 and adds some new classes needed for testing
and exportation of data. Otherwise, it remains faithful to the basic overview. The software models
has the purpose of testing the algorithm and specific aspects of its algorithmic properties. Therefore
it adds a Simulator class as well as the C++ specific main.cpp file to execute the tests.

3.3.1.1 Creating the ANS C++ software Model

The Encode and Decoder classes are summarized in C++ pseudo code 1 and 2 respectively. The
software implementations are identical to those presented in theory, and are relatively trivial arith-
metic operations. The Encoder uses division, addition and subtraction operations whereas the
Decoder uses multiplication as opposed to division. Following the uABS variants algorithmic steps
in section 2.2.2 these may be directly coded into the model, and should not lead to any challenges.
Lastly the correct rounding is handled by the floor and ceiling functions, and the code is wrapped

25

inside the conditional for statement. The length of the for loop is determined by the number of
bits to be compressed.

1 Encoder :: encode_uabs(binary_sequence) {

2 probability_of_one = get_probability_of_one ();

3 state = get_starting_number ();

4 string_length = length(binary_sequence);

5

6 for (ii = string_length - 1; ii >= 0; --ii) {

7 if (binary_sequence[ii]) {

8 state = floor(state / probability_of_one);

9 }

10 else {

11 state = ceil((state + 1) / (1 - probability_of_one)) - 1;

12 }

13 }

14 return state;

15 }

Listing 1: uABS encoder c++ style pseudo code

1 Decoder :: decode_uabs(state , probability_of_one) {

2 string_length = length(state);

3 decoded_binary_sequence (0);;

4

5 for (ii = string_length - 1; ii >= 0; --ii) {

6 decoded_binary_sequence[ii] = ceil(state * probability_of_one) - ceil (((double)

state + 1) * probability_of_one);

7 if (decoded_binary_sequence[ii]) {

8 state = ceil(state * probability_of_one);

9 }

10

11 else {

12 state = (state - ceil(state * probability_of_one));

13 }

14 }

15 return binary_reverse(decoded_binary_sequence);

16 }

Listing 2: uABS decoder c++ style pseudo code

The encoder produces a state, whereas the decoder produces a state and an encoded bit, the state
is returned by reference. The state however, is not returned from the Decoder as the compressor
configured to loop over the entire BIT WIDTH. The encoder will always start at the initial state
which is commonly set to ’1’ 2.2. The decoder’s State should similarly be found to be ’1’ as the
decoding concludes. The usage of initial state may be seen as a checksum, as both the encoder
starts at the check sum and and decoder ends up at the check sum. If the decoder does not have
the correct state value at the end of decoding, then the compression has been nugatory and is
considered wrong.

The base class inherits from both classes inherits for binary reverse method. The pseudo code for
the base class is not shown in it’s entirety. Only the binary reverse method is shown as it serves
and important illustrational purpose.The pseudo in listing code3 shows how the binary vector is
reversed iteratively throughout the for loop. It is then returned with the option of offsetting the
end result, which is needed if there are leading or trailing 0’s in the data holding the result. For
instance if the stimuli is 110011 and it is held in an array with greater width (i.e. not a dynamically
allocated array), then leading 0’s are introduced during the compression process. If these 0’s are
to be filtered out, then the offset should be adjusted accordingly. If the leading 0’s are to be
maintained then the offset should be set to 0.

1 Compression_base :: binary_reverse(binary_number , offset) {

2 for (ii = 0; ii < (BIT_WIDTH / 2); ++ii) {

3 temp = binary_number[ii];

4 binary_number[ii] = binary_number[BIT_WIDTH - ii - 1];

5 binary_number[BIT_WIDTH - ii - 1] = temp;

6 }

7 return (binary_number >> offset);

8 }

Listing 3: uABS base class inherited by encoder and decoder

26

The rest of the base class contains methods related to data management, analysis and interfacing
with files/printing to monitor and are merely listed. They may be created in a multitude of ways
based on personal preference, and are relatively trivial in nature.

• print_compression_data(data, line_terminator, end_line, file_name) - Print com-
pression results to an external file. This is useful in order to analyze large datasets at a later
stage. Here the raw data from the encoder/decoder may be adjusted to add formatting, such
as formatting the data to a csv file. The line_terminator and end_line arguments should
thus be chosen based on the target file format.

• clear_file(filename) - A method to clear external output or input files.

The modeller may make a set of decisions that will affect how the algorithm performs. The
correctness of the implementation may be determined by comparing the stimuli provided to the
encoder to the reproduced representation by the decoder. It is recommended that the designer
performs these comparisons frequently during the design process.

The encoder and decoder are reliant on using the same probability. If the probability of ’1’s or ’0’s
is not the same for both encoder and decoder, then the decoder will not be able to reproduce the
original stimuli correctly. Furthermore, how accurate the probability is modelled will affect how
well the encoder compresses the data. The compression ratio will deteriorate as the probability
becomes less accurate. Therefore the designer should strive to keep the probability as precise as
possible if strong compression ratios are prioritized.

The algorithm will only be able to compress consistently when the initial state is known by the
encoder and decoder. The lowest possible recommended starting state is ’1’, however could in
theory be any positive integer. Alternatively, this may requirement may be bypassed by requiring
the user of the encoder to always apply stimuli (e.g. a dataset) which includes a leading one (high
bit). In this case, then the encoders initial state may also be ’0’. The advantage of the starting
state being ’0’ is that the overall state becomes less in value, and may lead to greater compression
ratios. If this scheme is selected, and the encoder uses a leading ’1’, then this information must be
made available to the decoder. In this case the Decoder should end up on the state of ’0’ during
its last decoding cycle. If this rule is not maintained, the decoder will lose leading ’0’s prior to
the first ’1’ in the decoding process. This issue is not present in the hardware implementation as
presented in section 3.4.

When introducing a for loop in the encoder and decoder structure, the code repeats the encode/de-
code function a set number of times. This setup is not strictly needed. However, it introduces some
convenience when observing its performance in software. An alternative arrangement is having the
encode and decode functions perform on a single bit at a time. Both configurations will provide the
same results and are only different in execution. The hardware implementation presented in section
3.4 performs encode and decode operations on a per-bit basis, as opposed to the software models
which operates on binary vectors. The vector reversal method is not required for the hardware
implementation, as the decoded bit is merely one binary value.

The algorithm uses floating number arithmetic, which introduces issues related to rounding. As
defined for the uABS variant of ANS 2.2, most of these issues are handled using ceil() and floor()
at the specific algorithm steps. These functions provides predictability and accuracy. Failure to
solve these rounding issues would induce wrongly encoded and or decoded representations at a
high rate. Alternative rounding schemes are possible, however not explored in this thesis.

The software implementation may need to adjust for an offset on the decoded representation of the
stimuli. This depends on how the algorithm has been implemented. Suppose the implementation
has a static bit width on the decoded representation’s data element. The result may need to be
padded with an offset since the bits are calculated from LSB to MSB before the vector-reverse
function. Consider the case where the encoder encodes 8 bits while the data element holds 12 bits.
Then, the decoder would have to pad the decoded representation by 4 bits to make the decoded
representation and original representation equivalent. The designer may ignore the offset issue if
the implementation does not contain the for-loop structure, as only one bit is produced at once
and naturally would not need to be reversed. This is similarly handled in pseudo code 3.

27

3.3.1.2 ANS C++ software model testbench

The testbench should be set up early during the development process to catch errors in com-
pression behaviour, it is here known as the Simulator class. There are many useful metrics that
should be taken into account when performing testing, such as compression ratio, probability and
rate of faulty compression results (e.g. if decoded representation deviates from stimuli given to
encoder). Helper methods may be employed to extract these metrics from the compressor. Some
of these helper functions are already written as methods in the compression base class, as seen in
pseudo code 3. After driving stimuli to the design and collecting and analyzing data, the design
should write the test results to the terminal and external files, for instance with a .tx. or .CSV
format.

The algorithm may be tested with pseudo-random or non-random stimuli. Both have their useful
use-cases. Beyond stimuli selection, there are some useful methods which should be defined in the
testbench class.

• select_line_in_file(filename, line_number) - This method is used to select lines in a
targeted file, it may be seen as a helper method to be used in conjunction with other methods.

• extract_data_from_file(filename) - A method used to extract data from a file. This
method uses the select_line_in_file() method. It returns the data in the desired formats
(as designated by the designer). In this application relevant formats are vectors for extraction
of states, strings or a binary data types for extraction of decoded representations (i.e. the
results after decoding).

• batch_run_and_print_to_file() - This method encompasses all the aforementioned meth-
ods and executes both the testing as well as the compression itself. It must thus have access
to properties such as starting state, stimuli, encoders results, decoders results and probability.

The last step of the design process is to set up a main file. This file should instantiate the simulator
class and execute the batch_run_and_print_to_file() method. This main file may be short and
easy to use. See pseudocode 4.

1 int main() {

2 start = start_state;

3 Simulator simulator(start , "../../ stimuli.txt", "../../ encode.txt", "../.. decode.

txt");

4 simulator.batch_run_and_print_to_file ();

5 }

Listing 4: main file for the uABS software model

The main file concludes the software model. It is recommended to use this software model as a
reference when working through the following sections, as the software model is made at a higher
abstraction level. This aids the designer in keeping track during low level implementation, as well
as a means of comparison. The designer may for instance apply the same stimuli to the software
model and the hardware implementation, and compare the results from both encoder and decoder.
If both the software model and the hardware implementation produces the same results, then the
confidence in the work should rise. Lastly it may also be recommended to compare the outputs
of the encoder and decoder to the calculated examples in the theory section 2. This may act as a
third reference.

3.3.2 ANS SystemVerilog software Model

The SystemVerilog model presented in this thesis is essentially a simplified ported implementation
of the C++ model, as the SystemVerilog language reaps advantage of features that are not present
in the C++ language. The sole purpose of the SystemVerilog software model is thus to bridge the
gap between the software C++ model and a hardware implementation created with SystemVerilog,
as described in section 3.4. It is enough to prove that a given stimuli encoded in the C++ model
is correctly decoded in the SV model and conversely.

28

3.3.2.1 Creating the ANS SystemVerilog software model

Taking inspiration from pseudocodes of the Encoder 1, Decoder 2 and Base class 3, the designer
may use the equivalent strategies in SystemVerilog. This design step does not require many changes
to the C++ code, as the sole purpose of the simulation only model is to adapt the software im-
plementation from a high-level language (i.e. C++) to a low-level language (i.e. SystemVerilog).
In essence, this model is merely used to quickly verify that the algorithm behaves similarly after
changing the programming language.

On this stage, the designer will mostly make the design synchronous and add clock edge-sensitive
blocks. The designer may quickly achieve sufficient granularity of synchronous logic by using enable
flags in unison with the clock-edge triggered logic. Given the pseudocode provided in 5, a positive
clock edge-triggered logic is combined with an enable signal. This process ensures that the encoder
and decoder are only engaged when chosen, and only at the clock edge for easier compatibility
with an interface, such as when interfacing with a testbench.

1 module uabs_compressor (...)

2

3 // At clock edge and decoder enable

4 decode ()

5

6 // At clock edge and encoder enable

7 calculate_probability ()

8 encode ()

9

10 endmodule : uabs_compressor

Listing 5: SystemVerilog pseudocode with the uabs compressor module. This module is intended
for simulation purposes only

It is worth noticing that the probability in pseudocode 5 is calculated during encoding, and must
be stored and subsequently be used in the decoder for properly decoding of the data.

3.3.2.2 ANS SV model testbench

Lastly a testbench must be created in order to drive the design under test (DUT) with stim-
uli, print and analyse the results as well as to create a dumpfile for waveform creation. This may
be achieved by using a standard testbench. In comparison, the Hardware Implementations is veri-
fied with a UVM and a more complex testbench, as seen in section 3.4.3. Pseudo-code 6 shows
how a simple test may be carried out.

1 module uabs_decoder_tb

2 generate_clock ()

3

4 // Begin

5 create_dumpfile ()

6 reset_signals ()

7

8 // Start compression

9 drive_stimuli ()

10 enable_encoding ()

11 // wait one cycle

12 enable_decoding ()

13 // wait one cycle

14

15 // Check results

16 check_compression;

17

18 endmodule : uabs_decoder_tb

Listing 6: SystemVerilog pseudocode with the uABS compressor testbench. It drives the DUT
with stimuli and performs one encoding and decoding operation.

The designer should print the results to monitor and manually inspect the output waveforms, check
for equallity or correctness. The resulting waveforms should match those presented in illustration

29

64. This bench carries out a single compression cycle, with WIDTH number of bits. The clock
uses two cycles from positive edge to transition to the next positive edge, meaning there is one
cycle between the negative and positive edge. The encoder is enable for one clock cycle and the
decoder is enable at the following cycle, whereas the decoder is driven stimuli by the encoder.

3.4 Hardware implementations

The hardware implementation is at a lower level of abstraction, and in some areas substantially
more complex than the software models. Nevertheless they still inherit the properties of ANS
similarly, and the same algorithm requirements still applies. This section will therefore assume
that the reader has familiarized itself with the software models prior to reading it. Basic concepts
of the uABS variant, and the implications of working with it will therefore not be discussed as it
has already been analyzed in the software model section 3.3.

There are many aspects that must be taken into account when assessing hardware implementation
of an algorithm. Examples are algorithmic complexity, synthesis implications of code and PPA
(power, performance and area). A convenient way of managing these challenges is to continuously
synthesize the design during development. The algorithm is quite light, and does not require a lot
of time to synthesize in popular EDAs. The designs was developed, synthesized and implemented
using Vivado (2022.1), however was also tested verified with Cadence Xcelium (20.09) and Aldec
Rivera Pro (2020.04). No vendor specific design features or IP blocks were used. This means
that in theory the design should be compatible with most EDAs and remain highly re-usable and
modular. The key takeaway is that synthesis and implementation results largely dictated design
decisions, and the implementation strategies that were used. The principles of section 3.2 still
applies.

Two iterations of the ANS compressor were created, one with hardware specific optimizations and
one with a more straight forward implementation. The circuitries are modularized and based on a
synchronous FSM controlling the flow in an arithmetic module with the compression logic. Both
modules are instantiated within a top module which handles the I/O and facilitates the interfacing
between the arithmetic and the FSM.

Both the encoder and decoder are designed to be convenient for integration into larger systems.
This is accentuated by the largely parameterized modules, enumerated states and a Ready/Valid
interface, as further evaluated in 5.8. The Ready/Valid strategy remains prevalent throughout the
entire design process, and is described in section 2.3.5. The Ready/Valid interface is chosen as it is
convenient to implement, interface with and thus less time consuming to verify. It is not only used
at the I/O, but also employed internally within the circuitry. The Encoder and Decoder modules
are, in their final form, implemented separately into their own top modules. This is highly advised,
as they may be used, implemented and analyzed separately. The designer should thus end up with
two top modules, one for the encoder and decoder respectively. For verification however, in some
configurations the encoder and decoder are instantiated in one top module for convenience.

An open source fixed point division module was used with light modifications, the original code
may be found at [32]. The module is re-usable for developers with the MIT licence and was created
by Will Green. This module is passable and functional, however not highly performant. It became
the main bottleneck of the Encoder circuitry, as further displayed in section 4.3.5 and discussed
in section 5.3. The module requires n clock cycles to perform fixed point division due to it’s
synchronous operation, which contrasts with what is otherwise lightweight synchronous or (largely
asynchronous) combinatorial logic.

3.4.1 Unoptimized ANS compressor

3.4.1.1 Overview

The unoptimized ANS Compressor was the original build of the ANS hardware implementation.
It is a more straightforward implementation than its newer counterpart, the optimized ANS com-

30

pressor. The design presented is instantiated in a single top module, encompassing both the
encoder and decoder. This is convenient for testing and is not an issue as the unoptimized ANS
compressor was not intended for rollout.

The modules are instantiated within the design.sv module, as seen in the list below. It shows a hier-
archical overview. In addition there are two packages uabs encoder fsm pkg.sv and uabs decoder fsm pkg.sv.
These packages contains enumeration literals, which makes the FSM cleaner to design and easier
to understand.

• design.sv

– uabs decoder.sv

– uabs decoder fsm.sv

– uabs encoder.sv

∗ div.sv

– uabs encoder fsm.sv

3.4.1.2 Interface

The interface of the unoptimized ANS Compressor is displayed in table 4. These signals are
the I/O of the top module design.sv. These ports are a combination of flags and signals intended
for carrying data. The resulting interface is presented in section as shown in the RTL analysis.

Table 4: Unoptimized encoder and decoder interface using a Ready/Valid strategy

Port Direction Type Description
start dec, start enc Input Logic Start encoding flag
vin dec, vin enc Input Logic Valid input flag
rout dec, rout enc Input Logic Ready for output flag
clk Input Logic Clock
rst n dec, rst n enc Input Logic Negative reset
to decode Input Logic [WIDTH-1:0] A state to decode
to encode Input Logic A bit to encode
probability Input Logic [WIDTH-1:0] Probability of ones
decoder en, encoder en Input Logic Enable flag
state in enc Input Logic [WIDTH-1:0] ANS state input
state out dec Output Logic [WIDTH-1:0] ANS state output
idle dec, idle enc Output Logic Idle flag
ready dec, ready enc Output Logic Ready for compression flag
vout dec, vout enc Output Logic Valid out flag
decoded bit Output Logic A decoded bit (result of decoding)
encoded Output Logic [WIDTH-1:0] Encoded result (result of encoding)
div dbz Output Logic Division module’s divide by zero flag
div ovf Output Logic Division module’s overflow flag

There is also an internal interface between the FSM and the arithmetic logic, as seen in table 5.
These signals are internal to the top module design.sv and are exclusively flags.

3.4.1.3 Finite State Machine

The Finite State Machine (FSM) is the control logic of the implementation (e.g. uabs decoder fsm.sv,
and directs the arithmetic modules flow (e.g. uabs decoder.sv). The state machines for the En-
coder and Decoder are largely similar, the major difference being declaration names. This is not
the case for the Optimized counterpart, as presented in section 3.4.2. The Encoder FSM diagram
is presented in illustration 30

31

Table 5: Unoptimized encoder and decoder, internal interface between the FSM and the Arithmetic
modules, Using a Ready/Valid strategy

Port Direction Type Description
check dec, check enc internal Logic Check arithmetic unit flag
checked dec, checked enc internal Logic Check has been performed flag
bit is one dec, bit is one enc internal Logic Bit is one flag
comp one done dec, comp one done enc internal Logic Compression of type one done flag
comp zero done dec,comp zero done enc internal Logic Compression of type zero done flag
decode internal Logic (start) Decode arithmetic flag
encode internal Logic (start) Encode arithmetic flag
comp ready dec, comp ready enc internal Logic Arithmetic unit ready flag
comp busy dec, comp busy enc internal Logic Arithmetic unit busy flag
comp init dec, comp init enc internal Logic Initialize arithmetic unit flag

The state machine has several states and is of the Mealy type, as the next state is affected by
its current state and it’s inputs. The state machine contains eight states. Some states are quite
similar, such as the COMP ONE INIT and COMP ZERO INIT states. The main difference being
their state transition, which are prompted based on whether the encoder is encoding ’1’ or ’0’.
Likewise, the COMP ONE BUSY and COMP ZERO BUSY states are almost identical. They
are seen merged into one state in the optimized implementation, as presented in section 3.4.2.5.

The initial state is the IDLE state, which the state machine will remain in until the start signal
has been asserted. This will prompt the READ state which is used to begin the interfacing
process for reading stimuli, and asserts the ready in flag as. Upon receiving a valid in signal
the CHECK ENC state commences. This state will remain until the arithmetic module has both
analysed it’s inputs (i.e. checked) and determined whether the incoming bit is zero or one, prior
to transitioning the state flags the encode, and comp init flags. The next state is the initial
compression state known as COMP ONE INIT or alternatively COMP ZERO INIT if bit is one
was low. This state triggers the comp busy flag and transitions to the DONE ENC state upon
receiving the comp ready flag. Upon receiving the comp one done the FSM transitions through
COMP ONE BUSY and DONE ENC while flagging their respective flags and returning to the
IDLE state and remains there until the next compression cycle commences. The requirements
for interfacing to and from the FSM is summarized in sequence diagram 21, which the FSM is
responsible for.

The decoder FSM has the same state transitions and conditions as the encoder FSM 20, and is
therefore not drawn up separately. The effeciency of the FSMs is evaluated in 5.6. The FSM RTL
was modelled based on the FSM state Diagram.

32

Figure 20: Unoptimized ANS Encoder State Machine Diagram. Designed UML style

33

Figure 21: Illustration of the Ready/Valid requirements for the FSM. It visualizes how the test-
bench interfaces with the compressor, which is realized by the FSM

The hardware implementation follows the STM diagram 20 faithfully and is kept compact, as less
code often leads to fewer bugs. Designs that are compact are furthermore easier for the designer to
visualize, which is very important when modelling finite state machines. The logic datatype is used
deliberately throughout the RTL as it does not allow the designer to mistakenly make multiple
assignments to the same signal. The compiler will not allow this occurrence and throws an error
or warning during simulation and synthesis, and thus saves time in bug fixing.

Combinations of flip-flop and arithmetic based logic is exclusively used in the FSM RTL to infer
clocked and combinatorial logic. The SystemVerilog always ff and always comb procedures includes
built-in analysis during synthesis. It will for instance display a warning should combinatorial logic
not be inferrable. Secondly, for the circuit to be truly combinatorial all branches of a MUX must
contain assigned outputs for the respective logic signals (e.g. flags in the FSM). The mux is
represented by the CASE statement in the SystemVerilog code. This design strategy is reflected in
the code, see appendix section G, and as is seen in section 4.3.6 during RTL analysis. As indicated,
every possible branch that might be taken in the case statement drives a value to all flags, so that
all possible paths are covered. If this was not true, then for instance latches might have been
inferred and could have lead to unintended behavior. The entire list of flags are set to low at the
top of the sequential always comb statement, as this ensures high readability of the code and less
chance of humanly induced errors, as opposed to placing all of them inside every States directly.

Furthermore, the state register is inferred from three short lines of code. The state transition is
positive edge triggered with a negative edge triggered active low asynchronous reset. It is placed
at the top of the design to make it clear to the reader how the FSM behaves prior to reading all
the states. If the design was aimed at ASIC, then the flip-flops might be unwanted, as flip-flop
adds to the blocks of clocked logic and does consume space. On the other hand for FPGA’s flip-
flops are cheap, whereas combinatorial logic is more costly. Nonetheless as the design is relatively
lightweight this is not any issue for this FPGA implementation, observing that the majority of
logic is combinatorial. Lastly OneHot encoding is chosen for the states as it requires smaller
combinatorial logic (at the cost of more Flip Flops), which is also preferred by most synthesis tools
(such as in Vivado).

34

Table 6: Unoptimized ANS Compressor primary clock constraints

Primary Clock Preiod (ns) Frequency [MHz]

clk 10.0 100.00

Table 7: Unoptimized ANS Compressor Input delays

Interface Clock Alignement Data Rate and Edge Min Delay [ns] Max Delay[ns]

start dec, start enc clk Edge Single Rise 2.000 3.000
vin dec, vin enc clk Edge Single Rise 2.000 3.000
rout dec, rout enc clk Edge Single Rise 2.000 3.000
rst n dec, rst n enc clk Edge Single Rise 2.000 3.000
to decode clk Edge Single Rise 2.000 3.000
to encode clk Edge Single Rise 2.000 3.000
probability clk Edge Single Rise 2.000 3.000
deocder en encoder en clk Edge Single Rise 2.000 3.000

3.4.1.4 Arithmetic

The arithmetic unit follows much of the same design principles (for good RTL) as the FSM,
as explained thoroughly in section 3.4.1.3. The task of the arithmetic modules is to perform the
actual encoding and decoding. They are controlled by the FSM flags and the most critical design
decisions were to ensure correct flow. Therefore many internal flags have been employed inside
always positive edge triggered blocks, resulting in sequential synchronous logic. The setup used in
the arithmetic modules of the unoptimized implementation was aimed to be accurate, bug free and
easy to understand and verify. A detailed rundown of the module will therefore not be showcased,
please refer to section 3.4.2.6 which contains a more deliberate and meticulous solution.

3.4.1.5 Preparations for Synthesis and Implementations

As the unoptimized implementation of the ANS compressor is largely a proof of concept, and
not a product ready for roll out little to no preparations was necessary for synthesis and imple-
mentation. The only criteria for the circuitry was to be synthesizable without any significant
warnings. Timing constraints was created based on the recommendations displayed in the EDA
Vivado and is summarized in tables 6, 7 and 8. The constraints are neither strict nor relaxed,
and are mostly aimed at giving an indication on how well the design performs. Most important is
the clock constraint as it clearly indicates how light the sequential logic is. The highest achievable
clock frequency also decreases as the input and output delays grows, which is why they are kept at
an average level. Lastly these delays are also affected by the technology employed, better or worse
FPGAs and EDAs might need required tighter or more relaxed constraints for realistic reports.

Table 8: Unoptimized ANS Compressor Output delays

Interface Clock Alignement Data Rate and Edge Delay min [ns] Delay max [ns]

state out dec clk Edge Single Rise 0.000 1.100
idle dec, idle enc clk Edge Single Rise 0.000 1.100
ready dec, ready enc clk Edge Single Rise 0.000 1.100
vout dec, vout enc clk Edge Single Rise 0.000 1.100
decoded bit clk Edge Single Rise 0.000 1.100
encoded clk Edge Single Rise 0.000 1.100
div dbz clk Edge Single Rise 0.000 1.100
div ovf clk Edge Single Rise 0.000 1.100

35

3.4.2 Optimized ANS compressor

The optimized ANS Compressor builds on the foundation of the unoptimized ANS Compressor, as
presented in section 3.4. Only the differences between the two ANS hardware implementations will
be highlighted here, as much of the design features are common between the two implementations.
The main task the optimized ANS compressor seeks to solve is minimizing resource utilization,
increasing performance and decreasing power consumption (i.e. achieving a better PPA). The
implementation does not change or improve any algorithmic properties and uses synthesis and
implementation reports as a measure of achieved improvements. The optimized ANS compressor
does not add or remove already existing modules or drastically alter the design philosophy of
the unoptimized ANS compressor. The advantage of having the two hardware implementations is
found in verification, as the RTL itself has drastically changed especially in the arithmetic modules.
Finding optimizations and executing them while also simultaneously implementing them based on
a software model is a daunting task, it is therefore of high value to have both the optimized and
the original (unoptimized) model available.

3.4.2.1 Overview

The most significant new design features are summarized in the list below. These optimizations
were carried out on an individual basis one by one and compared during synthesis. It is difficult
to gauge the efficiency of an implemented optimization if multiple changes are carried out at once.
Therefore the best way to ensure that every change contributes to a better design is by introducing
them one by one, running synthesis and comparing reports before and after. Some optimization
techniques may work well in some modules (such as parallelization), while bringing no optimization
or even slowing down other modules. This might occur due to the synthesis tool itself perform-
ing optimizations that the designer had either not intended or been aware of. Furthermore, it
is also important to be aware that the synthesis tool might significantly improve a design des-
pite it employing sub-optimal design practices. This does not indicate that poor design practices
are recommended, but that the synthesis tool might solve many of the designers’ mistakes. And
conversely, improving a design might not yield any real life benefits if the synthesis tool does an
excellent job at ironing out poor design decisions. Lastly, it is worth noticing that Synthesis is
highly technology specific, and having better tools will in most cases yield better results with little
effort on the part of the designer. It is therefore crucial to work with the synthesis tool, and not
against it. Make a few changes at a time and analyse how the changes improved or depreciated
the performance of the design. At some point, all the low hanging fruits are collected, and only
complex and intricate time consuming improvements are left.

• Less I/O and fewer internal signals and registers.

• Fewer states with fewer state transition conditions.

• Shorter blocks of sequential logic, that may execute in parallel as opposed to fewer and longer
sequential blocks.

• Only always ff and always comb procedures with one exception, as opposed to generic always
Verilog procedures.

• Reduction of synchronous logic (e.g. Decoder arithmetic which became asynchronous and
combinatorial).

3.4.2.2 Interface

The interfaces follow the same strategies and conventions as presented for the unoptimized im-
plementation in section 3.4.1.2. The main difference is a reduction in unnecessary I/O. With the
notable exclusion of the divide by zero and division module overflow flags. They were crucial for
development and debugging, however not essential for normal operation. They are still accessible
inside the Encoder arithmetic module itself, and may easily be added if the designer desires them.

36

They were removed to decrease the overall resource utilization and increase timing slack due to
lessened complexity. Furthermore, the probability ports were made narrower as they only need to
allow inputs of FBITS width, meaning they only accept floating point precision numbers that are
understood as less than one (i.e. probabilities of 0-100%). The new interfaces are presented in
table 9 and 10. The internal interfaces between the FSMs and the Arithmetic modules are affected
similarly, as there are fewer signals.

3.4.2.3 Decoder

Table 9: Optimized Decoder interface using a Ready/Valid strategy

Port Direction Type Description
start Input Logic Start encoding flag
vin Input Logic Valid input flag
rout Input Logic Ready for output flag
clk Input Logic Clock
rst n Input Logic Negative reset
to decode Input Logic [WIDTH-1:0] A state to decode
probability Input Logic [FBITS:0] Probability used in decoding
state out Output Logic [WIDTH-1:0] Decoded state (result of decoding)
decoded bit Output Logic A decoded bit (result of decoding)
ready Output Logic Ready flag
vout Output Logic Valid output flag

3.4.2.4 Encoder

Table 10: Optimized Encoder interface using a Ready/Valid strategy

Port Direction Type Description

start Input Logic Start encoding flag
vin Input Logic Valid input flag
rout Input Logic Ready for output flag
clk Input Logic Clock
rst n Input Logic Negative reset
to encode Input Logic One bit to decode
probability Input Logic [FBITS:0] Probability used in encoding
state in Input Logic [WIDTH-1:0] A state used in encoding
idle Output Logic Idle flag
ready Output Logic Ready flag
vout Output Logic Valid output flag
encoded Output Logic [WIDTH-1:0] The encoded state (result of encoding)

3.4.2.5 FSM

The FSMs has been significantly improved and trimmed down. They contain less states, has
less control logic, and overall reads and drives less flags. The decoder is shown in diagram 22 and
diagram 23.

37

Figure 22: Optimized ANS decoder finite state machine diagram. Designed UML style

Figure 23: Optimized ANS encoder finite state machine diagram. Designed UML style

38

3.4.2.6 Arithmetic

The decoder arithmetic module was specifically more heavily optimized as it yielded the highest
potential for optimizations. One challenge during optimization was the encoder module’s reliance
on div.sv (i.e. the fixed division module), which remained a bottleneck in the system. It is further
discussed in section 5.3, whereas a proposed solution is presented in section 6. The code of the
decoder arithmetic module is seen in appendix at section A.

3.4.2.7 Preparations for synthesis and implementations

The optimized hardware implementation was prepared for synthesis and implementation simil-
arly as for the unoptimized implementation, as presented in section 3.4.1.5. The only difference
was different signal names and higher clock frequencies reflected in the constraints. For the full
code see for instance listing 16 in the Appendix.

3.4.3 Verification of Hardware Implementations

A multitude of testbenches have been made during development. They are crucial to understanding
and correctly shaping the designs, and should ideally be made for every single module. The two
most important verification additions were the master testbench and the UVM testbench. These
testbenches were used to create large quantities of constrained pseudo random stimuli. Such
large amounts of stimuli allows the developer to thoroughly analyze the performance in terms of
compressor stability, exactness, speed, power consumption and architectural robustness, and get
a better general understanding of the compression behavior and what affects it. Testbenches are
crucial in finding bugs, both early and late into the design. Verification may even take more time
to properly perform than the design process itself, and was at the core of the development strategy.
The configuration of the ANS compressors during verification may be illustrated in illustration 24.

Figure 24: Third iteration of the encoder Finite State Machine diagram.

39

3.4.3.1 Master testbench

The master testbench’s role is to generate large amounts of stimuli to drive the device under
test (DUT), here being the ANS compressor. It must also be able to evaluate whether the com-
pression succeeded and subsequently export data from the testbench for external analysis. The
testbench relies on a set of helper functions and tasks to be able to function correctly:

• tb reset() - Resets all variables within the testbench and drives a reset to the DUT

• calculate probability() - Calculates the probability of the dataset (stimuli). The probability
is converted from a floating number to a fixed precision format. Furthermore, the function
accepts a probability deviation factor, which offsets the probability by an amount n. This is
important to gauge the effect of inaccurate probability modelling on the DUTs compression
performance.

• encode decode() - Drives the stimuli generated by the testbench to the DUT at appropriate
timings. It also performs performance analysis, and records metrics such as compression
ratio and the number of failed compression cycles.

– single run() - Is used to interface correctly with the DUT, and drives the flags for the
Ready/Valid interface.

– decode one bit() - Uses the single run task to drive the appropriate flags at the appro-
priate timings to the Decoder.

– encode one bit() - Uses the single run task to drive the appropriate flags at the appro-
priate timings to the Decoder.

The SystemVerilog style pseudo-code in 7 demonstrates the functionality of the master testbench.

1 module master_tb #(...) (...);

2

3 // Instantiate the DUT

4 design_top #(...) design_top (.*);

5

6 generate_clock ();

7

8 /* Stimuli */

9 initial begin

10

11 tb_reset;

12 open_file_and_export_data ();

13

14 // Test 1 Pseudo Random A

15 for (ii = 0; ii <= RANDOM_ITERATIONS - 1; ++ii) begin

16 generate_random_stimuli ();

17 for(jj = 0; jj < random_constant; ++jj) begin

18 position = random_position ();

19 compression_stimuli[position] = 1;

20 end

21 calculate_probility (...);

22 encode_decode (...);

23 export_results (...));

24 end

25

26 // Test 2 Random Stimuli B(not shown)

27 // Test 3 Bit shifts (not shown)

28

29 endmodule : master_tb

Listing 7: SystemVerilog style pseudo code for the Master testbench

3.4.3.2 UVM testbench

40

The UVM testbench was built up from the ground up based on industry advice and experience.
The testbench was based on strategies and methodology proposed by Cadence in their course
”SystemVerilog Accelerated Verification with UVM” [1] (completed while working with ARM).
The verification phase represents a vast amount of development time, where the development was
influenced by having worked with cadence verification products prior to starting this master thesis
(such as accelerated UVM). As opposed to the master testbench, the UVM testbench contains a
handful of classes, functionalities and follows industry standards where applicable, as well as con-
ventions and expectations for how a testbench performs as presented in section 2.6. Furthermore,
debugging and ensuring the correct functionality is a major design hurdle when creating UVM test-
benches. There are few open-source well documented setups freely available online, which comes
in handy due to their complexity and often intricate setups that are either not well documented or
hard to make from scratch. That is not to say that UVM is a bad standard, quite the opposite. It
is a very agile industry standard, however complex and with few high quality and well documented
open source full-blown examples.

The UVM testbench designed for the verification of the ANS compressor is rather intricate. It
contains over 20 classes and more than two thousand lines of dense object oriented code (not
counting the inherited UVM base classes). Some features are straight forward to understand, such
as packet structure containing some features such as virtual interfaces and internal ports are far
more complex. Fully outlining all design steps in an understandable manner is beyond the scope of
this master thesis, as it either requires the reader to already have an understanding of how UVM
works, or fully outline all the details that must be understood, probably with the same granularity
as a commercial UVM course. Therefore, only an overview is provided, with the most notable
design decisions and crucial features. The UVM in it’s entirety is available in the appendix D.

The UVM testbench consists of the following core modules:

1. uabs

(a) uabs env.sv

(b) uabs if.sv

(c) uabs packet.sv

(d) uabs pkg.sv

(e) uabs scoreboard.sv

(f) uabs tx agent.sv

(g) uabs tx driver.sv

(h) uabs tx monitor.sv

(i) uabs tx seqs.sv

(j) uabs tx sequencer.sv

2. tb

(a) clkgen.sv

(b) hw top.sv

(c) testbench.sv

(d) uabs tb.sv

(e) uabs test lib.sv

3. channel

(a) channel env.sv

(b) channel if.sv

(c) channel packet.sv

(d) channel pkg.sv

(e) channel channel resp.sv

41

(f) channel rx agent.sv

(g) channel rx driver.sv

(h) channel rx monitor.sv

(i) channel rx seqs.sv

(j) channel rx sequencer.sv

An overview of the UVM Testbench is seen in figure 25.

Figure 25: Overview of the UVM Testbench. Showing both the main model (uABS) and a channel,
which may be used by a reference model.

The channels are configured, however not fully utilized in the current iteration of the UVM test-
bench. As channels they are set up to interface with a reference model, such as the SystemVerilog
software model described in section 3.3.

The stimuli being driven to the systems are defined in the uabs packet.sv. This is where the
variables must be declared, the utility field macros must be set up and stimuli constrained. All the
variables were defined as packed integral properties using the ‘uvm field int macro. It is crucial
that the constraints applied to the variables is correct, and neither too wide nor too narrow. For
instance, the probability constraints is defined between 1 and (1 ¡¡ FBITS) - 1. This essentially
translates to probabilities higher than 0 and less than 100%. It is important to have a good
understanding of the behavior and properties of the DUT when creating packets. SystemVerilog
style pseudocode is supplied in illustration in listing 8.

1 class uabs_packet extends uvm_sequence_item;

2 parameters

3 declarations

4

5 uvm_component_macro

6

7 class_constructor ();

8

9 // Some examples of constraints

10 constraint to_encode_range {0 <= to_encode; to_encode <= 1;}

11 ...

12 constraint probability_range {1 <= probability; probability <= (1 << FBITS) - 1;}

13 ...

14 constraint start_enc_delay_range {MIN_INTERFACE_DELAY <= start_enc_delay;

start_enc_delay

15 endclass : uabs_packet

Listing 8: SystemVerilog style pseudo code for uabs packet in the UVM testbench

42

The uabs packet is seen in it’s entirety in the appendix, at section D.

Two important modules are the drivers and the monitors. Both modules are configured relatively
similarly, with the purposes of driving and monitoring the DUT, using the virtual interface (vif,
as declared in uabs if) to connect with the DUT. As for most classes they are extensions of the
UVM base classes of the same types (the same goes for e.g. the packet), and it is important that
they conform with the conventions of UVM. One example is the connect phase where it is good
practice to check whether the Interface is correctly configured, and during the run phase when the
packets must be driven to and monitored from the DUT. Lastly during the report phase where
the modules should report how many packets they have driven and/or monitored. This number
should be equal for both the driver and monitor. Otherwise packets could have either been missed,
dropped or driven at wrong times. Lastly, it is important to notice that it is good practice for the
stimuli to be driven during the negative clock edge, assuming that the design operates on positive
edge.

Cover points have been defined inside the uabs monitor. These cover points are used to measure
how well a packet attribute (stimuli) has been covered during the pseudo random directed stimuli
generation, as seen inside the uabs packet. These coverpoints are defined inside covergroups and
are instantiated inside the class constructor, however if and only if coverage is enabled. Lastly,
the coverage reports are presented during the report phase where a percentage between 0 and
100 represents how well the attributes are covered. For attributes with more than two values,
buckets must be defined. The buckets were defined precicely to create a coverage report with high
granularity, which makes the data highly detailed. This comes at a trade off of longer processing
times. The coverage could alternatively have been defined within it’s own module, which would
have been well advised for verification of large systems. The SystemVerilog style pseudo code 9
visualizes the core components of the monitor.

1 class uabs_tx_monitor extends uvm_monitor;

2

3 declare_analysis_port ();

4 virtual interface uabs_if vif;

5

6 uvm_component_macro

7

8 covergroup cover_packet;

9 covergroup cover_packet_states;

10 covergroup cover_packet_flags;

11

12 class_constructor ();

13

14 connect_phase ();

15

16 // Run_phase is the most important phase for monitor

17 // Here packets are detected , collected , transactions handled and coverage

performed.

18 run_phase(uvm_phase phase);

19

20 report_phase ();

21

22 endclass : uabs_tx_monitor

Listing 9: SystemVerilog style pseudo code for uabs monitor in the UVM testbench

The uABS if supplies the driver and monitor with methods to facilitate the transaction with the
DUT. It may be implemented in a multitude of ways and is modelled here with three methods
named collect packet, send to dut and uabs reset. Notably the collect and send methods use wait()
statements to ensure proper interfacing when the DUT. It may require a number of clock cycles
before receiving some signals, depending on where it is in its flow. For instance, under proper
operation the Valid in signal should only arise from the testbench after the Ready-in flag has been
raised by the DUT. Using wait() statements effectively ensures that the attributes of the packets
(stimuli) are delivered at the correct timings. These functions are unfortunately sufficiently flexible
to deliberately deliver stimuli at the incorrect timings. One example is to drive the input lines of
the state or to encode before the valid in flag is high. It is important to test how fragile or robust
the circuit is with respect of missing timed flags or early/late stimuli arrival, given that the ANS
compressor is configured with a Ready/Valid interface. Some timings are however made strict. For

43

instance, the monitor will only sample the encoded and decoded representations upon receiving
the Valid Output flag from the DUT. It will however not wait for the DUT to be ready before
flagging valid in, and vice versa, since it is decided by the random delay attributes of the packets.

Lastly, the scoreboard clones the packets collected by the monitor and evaluates whether they
were successful or failed. It could alternatively also report other metrics such as whether the
packages were supposed to fail, and failed successfully, or compare them to the performance of
a reference model. For this build of the uabs scoreboard the inputs and outputs prior to and
after compression were compared for equality. Essentially, the scoreboard will fail the packet if
the reproduced representation of the stimuli does not match the original stimuli, meaning the
compression had failed. It ensures that both the input bit and state were correct. Other factors
may also be monitored such as correct interfacing, which here was solved through assertions in the
uabs if.

The expected output of the UVM Testbench is a summary made by the scoreboard, and its form
factor is largely up to the designers preferences. A simple and effective layout is recommended,
where the scoreboard should at least contain printouts as displayed in listing 10.

1 # Scoreboard: Packet Statistics

2 # Packets in 50000 Packets Dropped: 0

3 # Channel 0 Total: 0 Pass: 50000 Miscompare 0 Dropped 0

4 #

5 # Simulation Passed

6 #

Listing 10: An example of how the scoreboard printout should like like upon a successful simulation

4 Results

4.1 Introduction to results

A modular and configurable hardware implementation of the uABS variant of the ANS compres-
sion algorithm has been created. It has been synthesized and implemented successfully using the
EDA Vivado, and verified using an industry standard for verification, UVM, as well as more novel
testbenches with detailed analysis and some coverage. The verification reports imply that under
normal circumstances and with proper interfacing no bugs are to be expected. The compressor
is able to achieve compression ratios approaching the theoretical limit. There are two hardware
implementations available, one with and one without hardware-specific optimizations. Only the
optimized synthesizable will be presented in its entirety with exhaustive testing and analysis. The
unoptimized synthesizable ANS compressor is largely inferior to the optimized counterpart and
is in essence presented as its concept, and therefore valuable as a basis for discussion and future
work. Both hardware implementations have undergone much of the same verification testbenches
and passed their criteria, however, the optimized implementation has undergone some additional
tests. The result section will focus on the Optimized hardware implementation for discussions and
conclusions, largely ignoring the unoptimized hardware implementation. Furthermore, two accom-
panying software models have been developed. These software models are intended as reference
models, used for research, experimentation and to display the properties of the ANS algorithm.
Their value is tied to their ability to bridge the gap between high and low abstraction levels as
the developer works from the algorithms as equations to the hardware implementation as a circuit.
The code for all four designs and their verification environments are found in the Appendix at 7.
The illustration in figure 26 gives an overview of the four designs.

44

Figure 26: An overview of the four designs. Two hardware implementations and two software
models.

4.2 Parameters

The designs are deliberately and thoroughly parameterized, this allows for high configurability and
adds to their re-use factor. It also majorly affects at which conditions they are able to operate.
For instance at greater WIDTHs they may allow greater inputs (stimuli) without overflowing and
producing the wrong outputs. Unless otherwise stated the default parameters are as displayed in
table 11:

Table 11: WIDTH is the default width of the Encoder/Decoder input output and intermediate
result data types(reg/wire/logic), whereas FBITS is the fixed floating point decimal precision
width.

Name Synthesis and Implementation Verification

WIDTH 24 180
FBITS 4 8

It is worth noting that the verification utilizes larger WIDTH and FBITS. This is employed in
order to run more wide-covering exhaustive testing with a greater range of stimuli. The Synthesis
and Implementation parameters are more in line with a realistic use case where re-normalization
is employed (keeping the input state low). 4 bits FBIT was found to be low if accurate probability
modelling is employed, while 8 was on the high side, and 6 worked well under all circumstances.
Furthermore some additional parameters are required for the optimized encoder circuit:

Table 12: Bit sizes of all the input/output and intermediate result data types, see explanation
below table.

Name Synthesis and Implementation Verification

WIDTH 24 180
FBITS 4 8
CLK DIVISOR 4 4
DUTY DIVISOR 4 4

Width signifies default width of Encoder/Decoder, input/output and intermediate result data
types: reg, wire and logic. FBITS is fixed point decimal precision width. CLK DIVISOR is
frequency f/ CLK DIVISOR for Encoder FSM operations. DUTY DIVISOR is the divisor of the

45

duty cycle, becoming (1/DUTY DIVISOR)*100%. For default parameters clock is slowed down
by a divisor of 4 with a duty cycle of 25%

4.3 Optimized ANS compressor hardware implementation

The following section presents the final results of the ANS compressors hardware implementation.
The first section 4.3.1 presents the verification of the top module (i.e. both Encoder and Decoder).
The following section 4.3.2 presents the synthesis and implementation reports for the two target
FPGA. Thereafter results from the performance analyses are presented, and lastly the RTL analysis
is shown in section 4.3.6.

4.3.1 Waveforms and verification

A multitude of methods were employed for verification of the ANS compressor. Multiple test-
benches were configured as presented in section 3.4, both with and without Universal Verification
Methodology (UVM). These testbenches produced a set of verification reports alongside waveforms,
terminal printouts, and data points for analysis. All verification environments were constrained to
perform within the allowed operational range of the ANS compressor, whereas all the simulations
passed within these frames. When combining all simulations, roughly 40 million encoding and
decoding operations have been recorded (totalling 80 million). These results were captured using
several commercial simulators such as Vivado, Cadenxe Xcelium, Aldec Rivera Pro and Synop-
sis VCS (courtesy of EDA Playground). Roughly 80% of these samples were stored for analysis,
whereas the latter 20% could not be extracted as they were performed in the cloud at EDA Play-
ground (with heavily restricted terminal printout limits). In total the combined run time of all the
simulations lands at 100 hours. This estimate excludes the samples created during development,
and only account for the verification done on the final build of the ANS compressor.

4.3.1.1 UVM environment reports

The UVM testbench was run with two different configurations, with and without interface delays
and coverage. The environment was restricted to one minute of run time due to EDA vendor
specific restrictions. The two configurations were able to run 50 000 and 140 000 encode and de-
code cycles respectively before being cut off. While not a very large sample pool, it is sufficient to
draw some conclusions on the accuracy of the hardware implementation of the ANS compressor.
Because of the runtime limitations of one minute, the circuit was tested at the standard synthesis
parameters, as they are narrower. For verification with greater sample size see 4.3.1.2 which ran
without run time restrictions. The standard uABS packet was used as described in section 3.4.3.2.

As may be observed in the table 13 all the packets sent from the driver in the UVM Testbench
resulted in passes at the scoreboard, and the test was thus unambiguously passed. No packets
neither failed nor were dropped. Furthermore the table 14 confirms that all bit and probability
combinations were present in the simulations. This means that all input bits (i.e. 1’s or 0’s) has
been combined with all the computed optimal probabilities as well as those subjected to deviations
to analyze less than optimal probabilities. The flag delays were also fully covered, defined in our
case as tested with independent interfacing flag delays of up to 100 clock cycles. For instance
,one run the start flag may be prompted at the tenth clock cycle and the valid input flag at the
hundredth clock cycle. Lastly ,the coverage of all possible legal input states is 93.75% at 50 000
packets, although deemed probable that this number would approximate 100% if the run time
limitation of 1 minute was not present, EDA vendor specific restrictions prevented the testbench
from reaching this last percentage of coverage. Nonetheless ,a high degree of coverage was achieved
which bring confidence in the ANS compressors’ ability to compress correctly. It is guaranteed to
perform correctly for 100% of the probabilities and bit combinations as long as deviations around
the optimal probability does not approach 20%, and for most, and probably all of the possible
state input combinations. It is also guaranteed to operate correctly with any combination of any
legal flag behavior at its interface, within 100 clock cycles of imitating the compression operation

46

Table 13: UVM Scoreboard report from 140 000 samples in the UVM testbench. With WIDTH =
24 and FBITS = 4

Packets sent Packets passed Packs failed Packets dropped

140 000 140 000 0 0

Table 14: Coverage from 50 000 packets in the UVM testbench. With WIDTH = 24 and FBITS
= 4

Coverage name Coverage

Probabilities and encoded/decoded bit 100%
Flag delays 100%
States as stimuli (of all possible states) 93.75%

for both the encoder and decoder (if chained in total 100 + 100 clock cycles). Note that standard
synthesis parameters for WIDTH and FBITS have been used.

4.3.1.2 Master testbench reports

The master testbench is the source of the majority of samples, as it was run locally without
any runtime restrictions, it however was not run with UVM due to issues with Vivado and UVM,
for further discussion see section 5.12 for more details. While a hurdle, this was not a roadblock as
large quantities of constrained pseudo random stimuli could still be generated without UVM, that
is with the Master testbench. Table 15 shows the tests that were run, their configurations and
the results from them. The 224.683 bit-strings that were generated were 150 bits wide, and thus
resulted in 33.702.450 encode and decode operations (for a total of 67 404 900). The tests were
carried out with probability deviations divided into buckets spanning up to -20% to +20%, added
to or subtracted from the ideal computed probability. For instance for the bit string 1000 the
accurate probability of 1’s is 25%, given a probability deviation of 10% the resulting probability
becomes 35%. Of all the probability deviations, only samples with 20% probability deviation res-
ulted in some failed compression (due to internal overflow). These tests are however not considered
important for the ANS compressor itself, as the probabilities are heavily modified on purpose to
gauge how inaccurate the probability may be modelled before it negatively alter the compressors
accuracy and behavior. It was thus observed that the ANS compressor is able to safely encode and
decode datasets with up to 10% inaccuracy in the probability modelling.

It is important to note the value of having different tests and the diversity they bring. The
UVM testbench drives seemingly random states, random probabilities and a random bit into the
Encoder. On the other hand, the master testbench drives carefully crafted stimuli with the purpose
of leading to data driven external analysis. Here the stimuli are carefully crafted to explore and
challenge various properties of the ANS compressor, which may better be analyzed in analysis tools
externally, as presented in section 4.3.5. Following this strategy, both testbenches complements
one another with different purposes, properties and test cases. The Master testbench adds to the
results from the UVM Testbench and brings high confidence in the correct behavior of the ANS
compressor, and it’s ability to also compress stimuli with moderately sub-optimal probability (+/-
10%) correctly.

47

Table 15: Verification report from the Master testbench.

Test name Parameters Forced P offset E+D cycles B Strings Failed Fail reason

Pseudo Random A Max WIDTH 0% 3 747 000 24980 0 N/A
Pseudo Random A Max WIDTH 1% 3 708 000 24720 0 N/A
Pseudo Random A Max WIDTH 5% 3 827 700 25518 0 N/A
Pseudo Random A Max WIDTH 10% 3 752 400 25016 0 N/A
Pseudo Random A Max WIDTH 20% 3 710 700 24738 4.17% Overflow
Pseudo Random A Max WIDTH -1% 3 766 800 25112 0 N/A
Pseudo Random A Max WIDTH -5% 3 744 450 24963 0 N/A
Pseudo Random A Max WIDTH -10% 3 727 950 24853 0 N/A
Pseudo Random A Max WIDTH -20% 3 717 450 24783 12.42% Overflow
Bit shifts Max WIDTH 0% 22 650 151 0 N/A
Bit shifts Max WIDTH 1% 22 650 151 0 N/A
Bit shifts Max WIDTH 5% 22 650 151 0 N/A
Bit shifts Max WIDTH 10% 22 650 151 0 N/A
Bit shifts Max WIDTH 20% 22 650 151 4.67% Overflow
Bit shifts Max WIDTH -1% 22 650 151 0 N/A
Bit shifts Max WIDTH -5% 22 650 151 0 N/A
Bit shifts Max WIDTH -10% 22 650 151 0 N/A
Bit shifts Max WIDTH -20% 22 650 151 5.3% Overflow

4.3.1.3 Decoder waveforms

The waveforms are created using Vivado simulation dump files. They have been cleaned up and
highlighted using the standalone tool Timing Analyzer. The stimulus used is the binary string
11001100. This string is firstly encoded using the decoder, and then the encoded state is used to
recreate the original representation by the decoder. The compression process is carried out using
the probability p = 0.5. As there are 8 bits of stimuli with a uniform probability distribution, both
the encoder and the decoder are required to carry out 8 encode/decode cycles each. As may be
observed, the encoding and decoding process was carried out successfully as the decoder was able
to successfully reproduce the original representation 11001100. The Ready/Valid interfacing is seen
taking place as presented in section 3.4. The importance of visually inspecting that the interfacing
is functioning correctly is not to be underestimated and constitutes a vital part of the qualitative
verification preceding the quantitative, mass generated testing, or even as a final assessment.

48

Figure 27: Waveforms showing eight decode cycles. The decoder is given an input state (to decode)
and a probability, and is able to correctly reproduce the original representations (result).

Figure 28: Waveforms showing eight decode cycles. Labels are placed on the positive edge of the
clock cycles, revealing that one decode operation required five clock cycles.

4.3.1.4 Encoder waveforms

49

Figure 29: Waveforms showing four encode cycles. The encoder is given an input state (state in),
a bit to encode (to encode) and a probability. It is able to correctly encode all bits, as seen in
figure 30.

Figure 30: Waveforms showing four encode cycles, which continues from illustration 29. The
encoder is given an input state (state in), a bit to encode (to encode) and a probability. It is able
to correctly encode all bits.

50

Figure 31: Waveforms showing one encode cycles. Labels are placed on the positive edge of the
clock cycles, revealing that one encode operation required 76 clock cycles.

4.3.2 Synthesis and implementation reports

Synthesis and implementation was carried out using the Vivado toolset. The synthesis was done
using the standard synthesis parameters as presented in section 4.2. Overall the results are very
promising in terms of utilization, timings and power consumption. Furthermore it is observable
that the decoder uses slightly less resources than the encoder, however only marginally. Further-
more the opposite is true for power consumption, where the Decoder uses more energy due to it’s
dominantly combinatorial logic (for instance it uses a DSP). Based on the findings of the syn-
thesis and implementation reports it is fair to conclude that the implementation is inherently very
lightweight, and operates at respectable frequencies.

The ANS Compressor was simulated for two FPGA development cards, the Xilinx Zynq UltraS-
cale+ ZCU106 and the Xilinx Spartan-7-SP701. There is a significant performance difference
between them, as the Zynq UltraScale outperforms the Spartan-7-SP701 in every category except
on power consumption, and is equipped as a MPSoC with general and real-time processing cores,
among others. This discrepancy in performance is largely caused by two different technologies
being employed in the FPGAs, where the Zynq UltraScale platform is better suited for better per-
formance at a higher price (3-4 times more expensive) and carrying already mentioned additional
circuitry, adding to the static power consumption. For more information on the cards see section
2.3.2.

4.3.3 FPGA Zynq UltraScale+ ZCU106

The Xilinx Zynq UltraScale ZCU106 passed synthesis and implementation without any errors or
severe warnings. The following sections present the results for both the Encoder and the Decoder.
The RTL was largely translated into configurable logic blocks (CLBs), whereas most of the CLBs
are synthesized as lookup tables (LUTS). There are also 4 DSPs and the mandatory Bonded Input
output Buffers for interfacing with I/O. All the utilization reports are well within the margins
of what the FPGA has available of resources. If you exclude the Bonded IoBs consumes, then
resource consumption of every category is less than 1% of the resources available. Furthermore, it
is observable that the FSM resulted in a very lightweight implementation, as seen in for instance
table 16.

The dominant factor of resource consumption comes from the arithmetic module, which has the
most complex logic. Notice that CARRY8 blocks are synthesized. These are eight MUXes and
eight XORs which are connected to the LUTs. It is also somewhat noticeable in the visualization
of the RTL analysis of section 4.3.6, as separate XOR gates and MUXes. Lastly, there’s one global

51

clock buffer used by the main clock.

As seen in the timing table after synthesis 18, as opposed to that after implementation 19, there
appears to be some negative hold slack. This negative hold slack (see section 2.3.4) surfacing
after synthesis but prior to implementation, and is a known hurdle to handle according to Xilinx
(creator of the FPGAs and Vivado)30, and can largely be ignored if it is not prevalent during
implementation [44]. As observed, this was not an issue and was fixed during implementation as
seen in table 19.

4.3.3.1 Decoder

The synthesis of the Decoder ran successfully and yielded promising results, as seen from table 16
to 20. The power consumption is displayed in figure 32.

Table 16: Utilization report for synthesis of the optimized decoder circuit for Zynq UltraScale+
ZCU106

Name CLB LUTs CLB Registers CARRY8 DSP Bonded IOB Global Clock Buffers

top 105 5 12 4 113 1
encoder fsm 5 4 0 0 0 0
encoder 100 1 12 4 0 0

Table 17: Utilization report for implementation of the optimized decoder circuit for Zynq UltraS-
cale+ ZCU106

Name
CLB
LUTs

CLB
Registers

CARRY8 CLB
LUT as
Logic

DSP
Bonded
IOB

Global
Clock Buffers

top 104 6 12 26 104 4 113 1
encoder fsm 4 4 0 3 4 0 0 0
encoder 100 2 12 23 100 4 0 0

Table 18: Synthesis timing report of the optimized decoder circuit for Zynq UltraScale+ ZCU106

Setup Hold Pulse Width

WNS0.013ns WHS-0.064ns WPWS 2.700ns
TNS 0.000ns THS-0.229ns TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 0 Failing Endpoints 0
Endpoints 10 Endpoints 10 Endpoints 5

Table 19: Implementation timing report of the optimized decoder circuit for Zynq UltraScale+
ZCU106

Setup Hold Pulse Width

WNS0.150ns WHS0.047ns WPWS 2.700ns
TNS 0.000ns THS0 TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 0 Failing Endpoints 0
Endpoints 10 Endpoints 10 Endpoints 5

Table 20: Clock summary report of the optimized decoder circuit for Zynq UltraScale+ ZCU106

Name Waveform Period(ns) Frequency (MHz)

clk {0.000 2.975} 5.950 168.067

52

Figure 32: Implementation and synthesis power report of the optimized decoder circuit for Zynq
UltraScale+ ZCU106

4.3.3.2 Encoder

The encoder exhibits many of the same features as those found in the decoder. Some notable
differences are found in the inclusion of numerous more registers, and those are almost exclus-
ively due to the fixed division module. One area where the Encoder beats the decoder is in the
number of Bonded IoBs, only requiring 65 I/O ports. This leads to a significant saving in power
consumption, as the I/O is the major power sink, as seen in figure 33 compared to 32. While the
power consumption is largely static, which is a drawback of having a large MPSoC with FPGA
functionality, reducing the I/O has significantly reduced the dynamic consumption from 142mW
to 33mW. What the Decoder loses to the Encoder in speed and utilization, it makes up for in
power consumption.

Table 21: Utilization report for synthesis of the optimized encoder circuit for Zynq UltraScale+
ZCU106

Name CLB LUTs CLB Registers CARRY8 Bonded IOB Global Clock Buffers

top 170 94 11 65 1
encoder 137 89 8 0 0
encoder.div 129 89 5 0 0
encoder fsm 29 2 0 0 0
slow clk 3 3 0 0 0

Table 22: Utilization report for implementation of the optimized encoder circuit for Zynq UltraS-
cale+ ZCU106

Name
CLB
LUTs

CLB
Registers

CARRY8 CLB
LUT as
logic

Bonde
IOB

Global
Clock Buffers

top 168 94 11 53 168 65 1
encoder 137 89 8 49 137 0 0
encoder.div 128 89 5 45 128 0 0
encoder fsm 28 2 0 11 28 0 0
slow clk 2 3 0 1 2 0 0

53

Table 23: Synthesis timing report of the optimized encoder circuit for Zynq UltraScale+ ZCU106

Setup Hold Pulse Width

WNS2.471ns WHS-0.072 WPWS 4.625ns
TNS 0.000ns THS-4.697ns TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 108 Failing Endpoints 0
Endpoints 266 Endpoints 266 Endpoints 115

Table 24: Implementation timing report of the optimized encoder circuit for Zynq UltraScale+
ZCU106

Setup Hold Pulse Width

WNS0.003ns WHS0.053 WPWS 4.625ns
TNS 0.000ns THS 0 TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 0 Failing Endpoints 0
Endpoints 266 Endpoints 266 Endpoints 115

Table 25: Clock summary report of the optimized encoder circuit for Zynq UltraScale+ ZCU106

Name Waveform Period(ns) Frequency (MHz)

clk {0.000 4.925} 9.850 101.523

Figure 33: Implementation and synthesis power report of the optimized encoder circuit for Zynq
UltraScale+ ZCU106

4.3.4 Porting the solution to the FPGA Devboard Spartan-7-SP701

One important difference between the Spartan-7 and the Zynq UltraScale is the naming conventions
and architecture. The Spartan-7 utilizes the splices, whereas a slice contains LUTs, flip-flops and
multiplexers. They are still stated as LUTs or Registers as seen in for instance table 27.

4.3.4.1 Decoder

The Spartan-7 decoder is fairly comparable to the Zynq UltraScale decoder, with differences
only in board specific optimizations and architecture. It operates at a significantly slower clock
speed as seen in table 34.

54

Table 26: Utilization report for synthesis of the optimized decoder circuit for Spartan-7-SP701

Name Slice LUTs Slice Registers DSP Bonded IOB BUFGCTRL

top 105 5 4 113 1
encoder fsm 4 4 0 0 0
encoder 101 1 4 0 0

Table 27: Utilization report for implementation of the optimized decoder circuit for Spartan-7-
SP701

Name Slice LUTs Slice Registers Slice LUT as Logic DSP Bonded IOB BUFGCTRL

top 105 6 45 105 4 113 1
encoder fsm 4 4 4 4 0 0 0
encoder 101 2 41 101 4 0 0

Table 28: Synthesis timing report of the optimized decoder circuit for Spartan-7-SP701

Setup Hold Pulse Width

WNS 2.814ns WHS 0.117ns WPWS 4.325ns
TNS 0.000ns THS 0.00ns TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 0 Failing Endpoints 0
Endpoints 10 Endpoints 10 Endpoints 5

Table 29: Implementation timing report of the o/ptimized decoder circuit for Spartan-7-SP701

Setup Hold Pulse Width

WNS 0.002ns WHS 0.212ns WPWS 4.325ns
TNS 0.000ns THS 0.000ns TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 0 Failing Endpoints 0
Endpoints 10 Endpoints 10 Endpoints 5

Table 30: Clock summary report of the optimized decoder circuit for Spartan-7-SP701

Name Waveform Period(ns) Frequency (MHz)

clk {0.000 4.825} 9.650 103.627

Figure 34: Implementation and synthesis power report of the optimized decoder circuit for Spartan-
7-SP701

4.3.4.2 Encoder

55

Although fairly comparable to the Zynq UltraScale encoder as previously noted in some tech-
nologies and board-specific optimizations, note that it does not utilize CARRY-8s, has fewer LUTs
but a similar number of registers, as seen in table 32. It is observable that the Spartan-7 while
slower, has some advantages over the larger and more powerful Zynq UltraScale.

Table 31: Utilization report for synthesis of the optimized encoder circuit for Spartan-7-SP701

Name CLB LUTs Slice Registers Bonded IOB Global Clock Buffers

top 147 94 65 1
encoder 115 89 0 0
encoder.div 114 89 0 0
encoder fsm 29 2 0 0
slow clk 2 3 0 0

Table 32: Utilization report for synthesis of the optimized encoder circuit for Spartan-7-SP701

Name Slice LUTs Slice Registers Slice LUT as Logic Bonded IOB BUFGCTRL

top 146 94 55 146 65 1
encoder 115 89 49 115 0 0
encoder.div 114 89 44 114 0 0
encoder fsm 29 2 13 29 0 0
slow clk 2 3 1 2 0 0

Table 33: Synthesis timing report of the optimized encoder circuit for Spartan-7-SP701

Setup Hold Pulse Width

WNS3.198ns WHS0.127ns WPWS 6.450ns
TNS 0.000ns THS 0 TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 151 Failing Endpoints 0
Endpoints 220 Endpoints 220 Endpoints 93

Table 34: Implementation timing report of the optimized encoder circuit for Spartan-7-SP701

Setup Hold Pulse Width

WNS0.011ns WHS0.055 WPWS 6.450ns
TNS 0.000ns THS 0.000ns TPWS 0.000ns
Failing Endpoints 0 Failing endpoints 151 Failing Endpoints 0
Endpoints 220 Endpoints 220 Endpoints 93

Table 35: Clock summary report of the optimized encoder circuit for Spartan-7-SP701

Name Waveform Period(ns) Frequency (MHz)

clk {0.000 6.950} 13.900 71.942

56

Figure 35: Implementation and synthesis power report of the optimized encoder circuit for Spartan-
7-SP701

4.3.5 Performance analysis

Various analyses have been performed based on the data gathered from simulation, synthesis and
implementation. These analyses helped gain an understanding of how the circuit behaves, and
metrics such as speed, accuracy and compression ratio may be estimated.

4.3.5.1 Encoding and decoding speeds

Based on the wave forms 30, 31 and 28, presented in section 4.3.1.4 encoding and decoding speed
may be calculated. By using the clock frequencies found during synthesis and implementation in
section 4.3.2 the maximum number of Mb/s (Mega bits per second) may be calculated. As seen in
table 36

Table 36: Peak Decoding Speed for optimized compressor

Board Cycles per bit [b] Clock Frequncy [MHz] Peak Decoding speed [Mb/s]

Zynq UltraScale+ ZCU106 5.00 168.067 33.613
Spartan-7-SP701 5.00 103.627 20.725

If the circuit interfacing the encoder is able to both start the next encoding operation and receive
the valid output during the same clock cycle, then the encoder may operate at increased decoding
speed. This is achieved by reducing the required cycles per bit from 5 to 4, as seen in table 37.

Table 37: Peak Decoding Speed for optimized compressor assuming better interfacing

Board Cycles per bit [b] Clock Frequncy [MHz] Peak Decoding speed [Mb/s]

Zynq UltraScale+ ZCU106 4.00 168.067 42.016
Spartan-7-SP701 4.00 103.627 25.906

The encoder operates at a significantly slower speed due to the lengthy fixed division calculations,
which is the main bottleneck of the compressor. This is displayed in waveform 30 and 31. The
processing time of the encoding arithmetic logic is 56 cycles, at clock cycles 8 through 64 (see
the markers at CLK) for WIDTH = 24 and FBITS = 4. Higher WIDTH yields vastly longer
processing time, and the opposite is also true for shorter WIDTH, this is because how the division
module has to work through all the bits through synchronous operation (i.e. dependent on clk).
The Decoder does not have the same problem as its fixed multiplication is solved in combinatorial
blocks (which could be synchronous or asynchronous). The decoder is able to perform the encoding
within one or two clock cycles as opposed to the encoders 56. The main bottleneck for the decoder

57

is the FSM’s synchronous operation. It is worth noting that in its basic form it only transitions
from state to state on the positive clock edge.

Table 38: Peak Encoding speed for optimized compressor

Board Cycles per bit [b] Clock Frequency [MHz] Peak Encoding speed [Mb/s]

Spartan-7-SP701 76.000 71.942 0.946
Zynq UltraScale+ ZCU106 76.000 101.523 1.335

4.3.5.2 Compression behavior

Data analysis has been carried out based on the data extracted from the master testbench, as
presented in section 15. Table 39 visualizes key findings from the data analysis. A total of 24980
runs, of 150 bits each, were encoded and decoded. The average compression ratio achieved was
0.725. This means that the data were compressed from 150 bits to 109 bits on average, whereas
the lowest compression ratio achieved was 0.7% This means that the data was compressed from
150 bits to 1 bit. On the other hand, the highest compression ratio was 101.3%, which means that
the data was increased in size from 150 bits to 155 bits. Another important observation is that
the average ANS compression ratio of 72.5% was only slightly higher than the average Shannon
entropy of 71.8%. Note that lower compression ratios are considered better, as they reduce the
number of bits in the encoded state by a greater number. See 2.1.1 for clarifications. This indicates
that the compressor approaches the theoretical limit for entropy-based compression, and obviously
cannot surpass it on average. These compression ratio calculations do not take into consideration
the cost of transmitting metadata together with the encoded state, in particular in a real-life com-
pression scenario the probability used by the decoder that needs to be transmitted to the decoder.
This has not been accounted for in these compression ratio metrics. For larger datasets, however,
these additional approximately 4-8 bits holding the probabilities will only marginally worsen the
compression ratios.

Table 39: Statistics of properties in testbench set, including number of samples, mean, min and
max value. Note that lower compression ratios are better. Compression ratios greater than 100%
increases the size of the data, and ratios less than 100% reduces the data size.

Count Mean Min Max

ANS compression ratio 24980 72.50 % 0.70% 101.30 %
Shannon entropy 24980 71.80 % 1.10 % 100.00%
Probability of ones 24980 42.80 % 3.30 % 100.00 %
Encoded 24980 1.993e+44 1.000e+00 3.920e+45
Stimuli 24980 6.124e+44 3.382e+15 1.427e+45

The probabilities present in the data set span from 3.30% to 100%, and the mean probability
was 42.8%. This indicates that the dataset had slightly more samples with probabilities lower
than 50%, as is confirmed in figure 37. All of the encoding and decoding operations operated
with accurate probability modelling, where the only inaccuracy was the conversion from floating-
point probabilities to 8-bit fixed point fractions Q(180.8). Figure 37 illustrates the distribution
of ANS compression ratios plotted with the Shannon entropies for the dataset. As is observed
there are slightly more ANS compression ratio samples with worse compression ratios than the
Shannon entropy. There are also numerous cases where the ANS Compressor outperforms the
given Shannon entropy, as the Shannon entropy only defines the average theoretical limit. This
is also confirmed in table 39 as the lowest compression ratio is significantly lower than the lowest
Shannon entropy for the dataset.

Table 40 summarizes the number of samples which failed and number of samples which produced
compression ratios lower than the Shannon Entropy. None of the 24980 samples of 150 bits failed
during compression, and 4441 of them produced compression ratio lower (and hence better) than
the Shannon entropy. This indicates that 17.78% of the runs compressed the data better than the

58

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Figure 36: Histogram of distribution of probability of ones in testbench

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

ANS compression ratio
Shannon entropy

Figure 37: Histogram of compression ratios and Shannon entropy in testbench

average theoretical limit, whereas 82.22% of the runs compressed the data worse than the average
Shannon entropy.

Table 40: Number of samples with failed compression and compression ratio less than Sharon
entropy

Compression Status Compression ratio less than Shannon Entropy

True 24980 20539
False 0 4441

Histograms 38 and 39 illustrates which samples compression ratios are lower than the Shannon
entropy. It is thus seen that there is a relation between how large the encoded states are, and how
well the compressor had compressed the samples (larger encoded states are worse). This is due to
lower values of the encoded state taking fewer bits to store, and thus having better compression
ratios, sometimes surpassing that of the average theoretical limit. Similarly, it is observed that the
compressor performed well where there were large stimuli, that was encoded into small states, as
this results in strong compression.

Figure 40 compares the achieved ANS compression ratio to that of the Shannon entropy. As can be
observed, and previously indicated, the ANS compression ratio approaches that of the theoretical
limit for entropy based compressors. The ANS Compressor has thus achieved a highly satisfactory

59

0 2 4 6

Encoded 1e44

0

2500

5000

7500

10000

12500

15000

17500

Fr
eq

ue
nc

y

Compression ratio
 less than Shannon entropy

0 1 2 3 4

Encoded 1e45

Compression ratio
 higher or equal than Shannon entropy

Figure 38: Histogram of encode values for compression failed or not

0.
6

0.
8

1.
0

1.
2

1.
4

Stimuli 1e45

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Compression ratio
 less than Shannon entropy

0.
0

0.
5

1.
0

Stimuli 1e45

Compression ratio
 higher or equal than Shannon entropy

Figure 39: Histogram of stimuli values for compression failed or not

compression performance.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0.0

0.2

0.4

0.6

0.8

1.0

ANS compression ratio
Shannon entropy

Figure 40: Plot of mean compression ratio and Shannon entropy as function of probability of ones
of the testbench

60

Figure 41 displays both min, max and mean compression ratios of the dataset. The 17.78%
of the cases where ANs compressor surpassed the Shannon entropy is seen as the orange curve
occasionally undercutting the Shannon entropy. Interestingly, the cases where the ANS compressor
outperformed the Shannon entropy are most notable in the region where the probability is greater
than 50%. The absolute distance between the Shannon entropy and the ANS compressors’ best
performing samples also decreases in relation to the increase of the probability. The relative
distance, however, is largely unaltered until the extremes of the probability are reached (i.e. under
10% and over 90% probability). This relationship is seen in figure 42.

0.0 0.2 0.4 0.6 0.8 1.0
probability_of_ones

0.0

0.2

0.4

0.6

0.8

1.0

Property,Type
(ANS_compression_ratio, max)
(ANS_compression_ratio, min)
(ANS_compression_ratio, mean)
(shannon_entropy,)

Figure 41: Plot of mean, max and min compression ratio as function of probability of ones of the
testbench

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

2

0

2

4

6

8

10

M
ea

n
pe

rc
en

ta
ge

 d
iff

er
en

ce
 b

et
w

ee
n

 A
N

S
co

m
pr

es
si

on
 r

at
io

 a

nd
 S

ha
nn

on
 e

nt
ro

py

Figure 42: Mean percentage difference between compression ration and Shannon entropy per prob-
ability of ones

4.3.5.3 Compression behavior with probability deviations

The master testbench also generated a multitude of samples with forced probability deviations.
These deviations are seen as increased or decreased probabilities, which purposefully decreases
the accuracy of the probability modelling by +-20%, as presented in section 15. In total, the
sample pool is based on 224.683 samples, which translates into 33.702.450 encode and decode op-
erations (for a total of 67.404.900). The value of forcefully offsetting the probability of a sample is

61

that it explores how inaccurate the probability modelling may be. The criteria are that the ANS
compressor must still be able to produce an accurate and unambiguous state which is correctly
decodable. The challenge with compressing samples with highly inaccurate probability modelling
is that the state grows more rapidly, and if the state grows too wide for the ANS compressor
to handle, then it results in a failed compression process. Table 41 visualizes the total number
of samples at their respective probability deviation. Some samples with probability deviations of
±20%fail and are filtered out from further analysis. This indicates that based on this analysis, the
compressor may safely encode and decode states with probability deviations of up to ±10%. This
conclusion coincides with that of section 15. These results are also visualized in figure 43.

Table 41: Number of samples with successful and faulty compression and/or compression ratio
higher or lower the Sharon entropy per deviation of probability of ones

Deviation Value Successful compression Compression ratio > Shannon Entropy

-0.20 True 21705 21726
False 3078 3057

-0.10 True 24853 24680
False 0 173

-0.05 True 24963 23766
False 0 1197

-0.01 True 25112 22281
False 0 2831

0.00 True 24980 22067
False 0 2913

0.01 True 24720 22198
False 0 2522

0.05 True 25518 25075
False 0 443

0.10 True 25016 24983
False 0 33

0.20 True 23704 23798
False 1034 940

-0
.2

-0
.1

-0
.0

5

-0
.0

1

0.
0

0.
01

0.
05 0.
1

0.
2

Deviation in probability of ones

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

status
False
True

Figure 43: Number of samples per deviation where compression ratio higher (true) or lower (false)
than Sharon entropy per deviation of probability of ones

62

Table 42: Number of samples after removing samples with faulty compression

Deviation in probability of ones Count

-20% 21705
-10% 24853
-5% 24963
-1% 25112
0% 24980
1% 24720
5% 25518
10% 25016
20% 23704

Table 42 visualizes the number of samples that are left after purging the failed compressions at
probabilities ±20% from the dataset.

Figure 44 shows the frequency of the samples of their given probability. It is seen that the samples
are roughly equally distributed as for the tests without probability deviations, as seen in figure 36.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
eq

ue
nc

y

Figure 44: Histogram of probabilities of ones

Figure 45 illustrates the relationship between mean compression ratio and the deviation of prob-
ability. It is directly observable that inaccurate probability modelling leads to worse compression
ratios and therefore worse compression performance. The compression ratios increase significantly
(worsens) as the accuracy of the probability modelling decreases. The compression performance at
+-20% is significantly worse. The relationship is further accentuated in figure 46 which shows the
mean compression ratio difference to the Shannon Entropy. These ratios appear rather steep as
they include the very edges of the probability spectrum (e.g. ratios of less than 99% and more than
1%). It becomes increasingly difficult to compress data with ANS as these extreme probabilities
of the one percentile are encountered.

Figure 47 confirms that the sample set was given roughly equally sized stimuli on average.

Figure 48 plots the average compression ratios of the dataset against their probabilities. The graph
visualizes the probability deviations which are especially significant around the probabilities of 25-
75%. In these ranges, size increases of up to 18% are seen. Given a 150 bit sample, this translates
to an encoded state consuming 177 bits, which is a significant size increase and completely defeats
the purpose of data compression. It is however also noticeable how probability deviations of ±1-5%

63

-0
.2

-0
.1

-0
.0

5

-0
.0

1

0.
0

0.
01

0.
05 0.
1

0.
2

Deviation in probability of ones

0.0

0.2

0.4

0.6

0.8

M
ea

n
co

m
pr

es
si

on
 r

at
io

Figure 45: Mean compression ratio per deviation of probability

-0
.2

-0
.1

-0
.0

5

-0
.0

1

0.
0

0.
01

0.
05 0.
1

0.
2

Deviation in probability of ones

0

10

20

30

40

50

M
ea

n
pe

rc
en

ta
ge

 d
iff

er
en

ce
 b

et
w

ee
n

 A
N

S
co

m
pr

es
si

on
 r

at
io

 a

nd
 S

ha
nn

on
 e

nt
ro

py

Figure 46: Mean compression ratio difference to Shannon entropy per deviation of probability

results in almost insignificant deterioration of the compression ratios, whereas ±10% results in a
marginal deterioration of compression ratios. All these findings indicate that the compressor is able
to comfortably handle data sets with probability modelling inaccuracies of ±1-5%, and may handle
datasets with up to ±10% inaccuracy in probability modelling safely, although with deteriorated
performance.

Figure 49 visualizes how samples with probability deviation still are able to outperform the average
theoretical limit at select samples.

An overview of the compression ratios distance to the Shannon entropy is found in figure 50.
Different perspectives are offered in figure 51 and 52. Lastly, figure 53 visualizes how the stimuli
relates to the probability at which it was modeled including the forced deviations of probability of

64

-0
.2

-0
.1

-0
.0

5

-0
.0

1

0.
0

0.
01

0.
05 0.
1

0.
2

Deviation in probability of ones

0

1

2

3

4

5

6

M
ea

n
st

im
ul

i

1e44

Figure 47: Mean stimuli per deviation of probability

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
co

m
pr

es
si

on
 r

at
io

deviation=0.0
Shannon entropy
deviation=-0.2
deviation=-0.1
deviation=-0.05
deviation=-0.01
deviation=0.01
deviation=0.05
deviation=0.1
deviation=0.2

Figure 48: Mean compression ration as function of deviation of probability and probability of ones

ones.

65

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

in
 c

om
pr

es
si

on
 r

at
io

deviation=0.0
Shannon entropy
deviation=-0.2
deviation=-0.1
deviation=-0.05
deviation=-0.01
deviation=0.01
deviation=0.05
deviation=0.1
deviation=0.2

Figure 49: Min compression ration as function of deviation of probability and probability of ones

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0

20

40

60

80

100

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 b
et

w
ee

n
 A

N
S

co
m

pr
es

si
on

 r
at

io

 a
nd

 S
ha

nn
on

 e
nt

ro
py

deviation=0.0
deviation=-0.2
deviation=-0.1
deviation=-0.05
deviation=-0.01
deviation=0.01
deviation=0.05
deviation=0.1
deviation=0.2

Figure 50: Mean percentage difference between compression ratio and Shannon entropy as a func-
tion of probability of ones and deviation in probability of ones

66

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0

1

2

3

4

5
M

ea
n

en
co

de
d

1e51

deviation=0.0
deviation=-0.2
deviation=-0.1
deviation=-0.05
deviation=-0.01
deviation=0.01
deviation=0.05
deviation=0.1
deviation=0.2

Figure 51: Mean encoded value as a function of probability of ones and deviation in probability of
ones

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0

1

2

3

4

5

M
ea

n
en

co
de

d

1e46

deviation=0.0
deviation=-0.2
deviation=-0.1
deviation=-0.05
deviation=-0.01
deviation=0.01
deviation=0.05
deviation=0.1
deviation=0.2

Figure 52: Mean encoded value as a function of probability of ones and deviation in probability of
ones removing encoded values larger than 0.56 ∗ 1047

67

0.0 0.2 0.4 0.6 0.8 1.0
Probability of ones

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ea

n
st

im
ul

i

1e45

deviation=0.0
deviation=-0.2
deviation=-0.1
deviation=-0.05
deviation=-0.01
deviation=0.01
deviation=0.05
deviation=0.1
deviation=0.2

Figure 53: Mean stimuli value as a function of probability of ones and deviation in probability of
ones

68

4.3.6 RTL analysis schematics

The RTL diagrams are created using the RTL Analysis tool in vivado. Firstly a top-level diagram
is shown, following more detailed diagrams. The diagrams are generated with the default synthesis
and implementation parameters.

4.3.6.1 Decoder

Figure 54: Top level Schematic from RTL Analysis of the optimized decoder circuit

Figure 55: Finite State Machine Schematic from RTL Analysis of the optimized decoder circuit

Figure 56: Encoder arithmetic Schematic from RTL Analysis of the optimized decoder circuit

4.3.6.2 Encoder

69

Figure 57: Top level Schematic from RTL Analysis of the optimized encoder circuit

Figure 58: Encoder arithmetic Schematic from RTL Analysis of the optimized encoder circuit with
clock divider circuit

Figure 59: Finite State Machine Schematic from RTL Analysis of the optimized encoder circuit

70

Figure 60: Encoder arithmetic Schematic from RTL Analysis of the optimized encoder circuit

Figure 61: Encoder Slow Clock Schematic from RTL Analysis of the optimized encoder circuit.
Given clock division of frequency/4 and duty cycle of 1/4. These are parameters in the module
instantiation and could easily be tweaked by the designer.

71

4.4 Unoptimized ANS compressor hardware implementation

The unoptimized ANS compressor performs similarly to the optimized ANS compressor when
correctness and compression ratios are estimated. It does however perform inferior to the optimized
implementation when synthesis and implementation is estimated. Due to similar or inferior results
being reported, it is deemed undesirable for neither rollout nor further analysis. It is therefore kept
as a reference model and archived as a previous build. It does however hold value as a research
object, as it has some features that are convenient for testing and prototyping. Examples are an
abundance of I/O, which are convenient for prototyping and experimental development. It is also
closer to the software model’s structure and easier to understand for developers picking up the
project. As compared to the optimized implementation, the RTL is of a higher abstraction level.
The logic behind the optimized implementations RTL is obscure, as it to a lesser extent resembles
the original algorithm’s structure.

4.4.1 RTL Analysis schematics

An overview of the unoptimized implementation is supplied by the RTL analysis. It is noticeable
how the unoptimized circuitry of for instance the decoder in figure 62 is using much more I/O than
the optimized Decoder at figure 54. Much of the I/O was deemed unnecessary or unimportant
and was optimized away. Less I/O leads to less interfacing, less code and circuitry to verify and
less power consumption. However, it may come at the trade-off of less features and insight from
interfacing modules, such as the encoder’s previous overflow and divide by zero flags, which might
be desired by designers.

4.4.1.1 Decoder

Figure 62: Top level Schematic from RTL Analysis of the decoder circuit

4.4.1.2 Encoder

72

Figure 63: Top level Schematic from RTL Analysis of the encoder circuit

4.5 Software models

Similarly to the role the unoptimized Hardware implementation plays, the software models are
dominantly seen as resources for the designer, and not products for rollout. This is further discussed
in section 5.15. Their performance is in essence unimportant, beyond being functionally correct in
behavior. And their most important contribution to the results is largely bridging the gap between
algorithm and hardware circuit. They are verified to function for a handful of stimuli, which
have been manually confirmed using for instance the calculated examples provided in section 2.2.
They are thus lightly verified, however proven to work for the few test cases they are exposed to
through development. The result section will therefore not obsessively present their performance
and formally prove their correctness, as it is beyond the scope of this thesis.

4.5.1 C++ software model

Table 43 displays a set of decode and encode operations that were run. The tests results showcases
successful compression behavior, as all encode and decode operations succeeded. More tests was
ran during development, however was not stored.

Table 43: C++ software model example of test runs and their status

Stimuli.txt Decoder.txt Compression status

10000010 10000010 Success
11001100 11001100 Success
10101010 10101010 Success
11001100 11001100 Success
10000000 10000000 Success
00110011 00110011 Success
11000000 11000000 Success
11111111 11111111 Success
10000000 10000000 Success

4.5.2 SystemVerilog software model

Table 44 displays similar results to those of table 43. Both software models were able to decode
and encode successfully the same stimuli. While it is not a thorough verification setup, it does
bring some confidence in their correct behavior and modelling.

73

Table 44: C++ software model example of test runs and their status

Stimuli Decoded Compression status

10000010 10000010 Success
11001100 11001100 Success
10101010 10101010 Success
11001100 11001100 Success
10000000 10000000 Success
00110011 00110011 Success
11000000 11000000 Success
11111111 11111111 Success
10000000 10000000 Success

Waveform 64 displays one encoding and decoding operation. The compressor encodes the 8-bit
string 10000000, which is shown as 128 in decimal in the simulation at to encode. The encoding
takes place using probability 0.125, which results in the encoded binary representation 11001, which
is denoted as the decimal number 27. The original representation is reproduced at the following
clock cycle, displaying how the compression process was carried out successfully. The process took
two clock cycles, one for encoding and one for decoding (which is only obtained in simulation and
is not realistic in hardware). This software model does not translate into actual hardware and is
purely illustrational for modelling purposes.

Figure 64: Top level Schematic from RTL Analysis of the encoder circuit

5 Discussion

5.1 Overall evaluation

One of the most challenging aspects of developing a hardware implementation of the uABS variant
of the ANS algorithm is the lack of similar works readily available online. This forces the designer
to start from scratch, and results in a lot of development time invested in experimentation. This
forces the designer to create and compare multiple builds of the compressors against each other, as
there is not necessarily initially a clear understanding of how the development process should take
place, in order to make a respectably performing circuit. This is not to say that there is a total
lack of references to other compressors already implemented in hardware from other algorithms, or
of literature outlining how good hardware is made. It just means that the process becomes more
tedious and time consuming.

Nevertheless, a well performing hardware implementation has been proposed in this project, namely
the optimized uABS variant of the ANS compressor. Alongside it are a less optimized, but still
operational unoptimized compressor and two software models. The synthesis data appears to be
valid, and both timing analysis and a rather thorough verification processes has passed with good
results. More measures could have been added to the analysis, larger data sets that could have
been produced, and more corner cases could have been verified. Nonetheless, based on the present
reports, it should be within fair reason to confidently propose the uABS variant of ANS as a potent

74

algorithm of choice for hardware implementation.

5.2 Evaluation of the compression behavior

The compression behavior presents a highly satisfactory compression ratio, with a relatively high
tolerance for inaccuracy in the probability modeling. It is of course bound by the theoretical limit
set by the Shannon entropy on average, still approaching this closely and of course occasionally
better than this as well.

No clear rule of thumb was found for which cases would lead to compression ratios exceeding the
theoretical average limit. However, it appears intriguing to try to identify and characterize these
cases. This could conceivably be used to aid algorithmic modifications to improve the compression
ratio, or at the very least bring a better understanding of the nature of such cases.

Is is also possible to combine the ANS compressor with other compressor in a compression chain.
This way a compressor, such as the pattern driven LZ77 could find low hanging fruits in the dataset,
and then allow the ANS compressor to further compress the dataset. This could pose a potent
combination of compressors, as the former compresses based on properties such as pattern and
repetition, whereas the ANS compressor compresses based on frequencies of occurrence. In terms
of redundancy in the dataset, these two compressors contribute based on two different strategies.
An example of a common combination of other compression schemes, is using Huffman and LZ77
together, with Huffman coding as a common entropy coding technique, with much familiarity to
the ANS compression scheme.

5.3 Evaluation of compression rates

The encoder operates at a significantly slower rate due to it’s fixed division module, compared to
the decoder, as seen in table 36 compared to table 38. The speed at which it operates is almost
exclusively proportional to the number of bits (WIDTH + FBITS) the circuit is configured to, as
the division module consumes the majority of clock cycles of the total run time for any reasonable
bit widths.

Because of this property, the module was given a slow and fast clock, since the control logic itself
made up only a handful of clock cycles of the overall runtime. This does also marginally increases
the runtime, and could be removed if peak performance is desired. This is conveniently achieved
by changing the parameters in the code of the module instantiating.

5.4 Cases of errors in compression

There are no cases of compression errors within the defined limitations of the compressor, however
outside of these limitations faulty compression is to be expected. Circuitry could potentially have
been designed to prevent these cases, or alert the user. The ANS compressor might raise a flag if
an internal error is detected. This could be implemented as a few extra signals and some peripheral
logic, most likely with not noticeable decrease in the performance of the compressor. The division
module has already a divide by zero and overflow flag, which is internal to the Encoder module.
These flags are not properly represented in the modules I/O, and could be placed at the ports if
the designer has spare ports on it’s target FPGA. Alternatively, if the ANS compressor is part of a
larger system, it would come at almost no cost to include these warning flags internally. Having a
flag indicate to the control logic that a faulty compression has occurred, would often prove useful
in the case of the compressor being connected to a stream of continuous data.

75

5.5 Effect of BIT WIDTH and FBITS

The WIDTH and FBITS parameters have a very direct impact on the circuitry as a whole. Larger
parameter sizes enables it to accept larger stimuli, utilize probabilities with finer granularity as
well as to generate a larger circuit. It is also worth to note that the WIDTH of many of the
internal decoder are defined as WIDTH * 2. These are thus twice as wide as the general circuitry
width. This was carried out as a convenience to reduce the number of overflow incidents at high
probability deviations (i.e. highly inaccurately modelled probability).

It is furthermore important that the designer adjusts these parameters when the circuit is used
in a larger system. A rule of thumb is that the WIDTH parameter of the circuit must be around
20-25% greater than the number of bits the circuit shall encode prior to renormalization of the
state. Aggressive renormalization of the states will allow the circuit to operate with a low WIDTH.
This was evident in the the UVM testbench, where random states were combined with random
probabilities and random input bits without issues using a WIDTH of only 24 and FBITS merely 4.
A WIDTH of 180 was used for the majority of the simulations, but was deemed largely unnecessary
for a real world implementation, and only used for research such as assessment into precision and
similar factors.

Lastly it is important to understand the effect of the number of FBITS on assessing the accuracy of
the probabilities being captured. It may serve as a simple illustration to point out that whereas a 4-
bit implementation basically allows 16 distinct probabilities to be captured, a 8-bit implementation
allows 256. The difference between allowing 16 and 256 different probabilities heavily affects the
compressors ability to produce competitive compression ratios, as was presented in section 4.3.5.3,
and thus illustrating that a decent probability resolution is confirmed to be necessary.

5.6 Evaluation of FSMs

The FSMs are well performant and is deemed as having broadly speaking, little potential for
optimizations, when seen as an isolated system. It is certainly, however, heavily optimizable if
seen as part of a larger system. At the moment, the optimized hardware implementation are based
around a four or five state FSM. These states each require at least one clock cycle to transition
through, and there are bottlenecks especially for the Decoder. If these states were reduced from for
instance 4, to 2 then there would be a speedup of 100%, bringing even more convincing decoding
speeds. As seen in table 45. Being able to decode 82.032 Mb/s puts the decoder at a decent rate
even with the at 168Mhz.

Theoretically speaking, if a more modern technology was employed, and the Decoder was optimized
for it, decoding speeds could easily reach 100-200Mb/s if a two state FSM was employed. If
combined with the FIFO on the Decoder/Encoders outputs it should still be able to comfortably
interface with other modules if part of a larger system. Lastly, it could also be possible to implement
a stateless control logic, this however has not been further researched and remains a topic of
conversation for the future.

Table 45: Theoretical peak decoding speed for optimized compressor assuming a 2-state FSM

Board Cycles per bit [b] Clock Frequncy [MHz] Peak Decoding speed [Mb/s]

Zynq UltraScale+ ZCU106 2.00 168.067 82.032
Spartan-7-SP701 2.00 103.627 51.812

5.7 Interface

The interfaces of the optimized ANS compressor and unoptimized ANS compressor represent two
different design philosophies. The optimized ANS compressor uses resources sparingly, as few
I/O ports as was deemed suitable, while the unoptimized ANS compressor has a more generous

76

interface. During the development however, it was quickly seen that some I/O should have been
kept in the optimized Encoder. Not only the previously mentioned divide by zero and overflow
flags in inside the Encoder as mentioned in section 5.4, but also more enable signals on the top
modules input. These enable signals would be handy for completely turning off the compression
modules when desired, to save power.

It is observable during for instance verification, how some outputs will switch when new stimuli are
applied, despite the compression process not being started. This is not technically an issue, as the
output of the compressors is only regarded correct during the valid out flag. This is only visible
during inspection of waveforms, but does however lead to unnecessary noise inside the circuitry and
wasted energy. The unoptimized ANS compressor have enable signals remedying this issue, and
it appears to be a needed feature in the optimized ANS compressor. It was however removed to
push some extra marginal performance out of the system, which turned out to be an improvement
which was negligible at best.

5.8 Evaluation of the Ready/Valid interface

The Read/Valid interface performed largely according to expectation, and proved a valuable design
inclusion. It generally well regarded in the industry, and complemented the light ANS compressor.
Other interfacing strategies might have tested, however there are other areas of improvements that
might be more worthwhile to explore.

One common usage of the Ready/Valid interface is to use it with a FIFO. In this case the com-
pression result are stored inside a FIFO, used in conjunction with the Ready/Valid interface. This
would be a welcome design addition to the ANS Compressor, since the interface can be regarded
as a FIFO interface.

5.9 Clock gating and further power saving

There might also be sections of the circuit that could be gated off during periods of time where
operation is not required. Power consumption has in general not been an issue, as the circuitry
is relatively lightweight, but is anyhow an area of interest always looking for improvements. Des-
pite no signals being toggled, both digital and analog logic do consume static power. The static
consumption is generally speaking more difficult to reduce. Factors such as subthreshold leakage
and gate direct-tunneling can be dominant, depending on the technology employed. The static
consumption is of course reducible on a hardware level, but is outside the scope of this thesis. The
dynamic power is on the other hand more easily affected by the RTL design.

The arithmetic units could for instance have been completely gated off when not in use. The
decoder is somewhat wasteful in terms of activity factor as the combinatorial logic is very responsive
and always ready, at the cost of calculating temporary constants even when the compressor is not
prompted to compress (i.e. receiving start and input valid). There should be multiple solutions
available maintaining the high performance of the decoder (such as one or multiple enable signals)
gating off the arithmetic, while not deteriorating it’s performance. The only real trade off would
be a higher utilization of FPGA resources (area), which are already respectably low and could
easily be expanded. It is seen that the dominantly combinatorial circuitry of the decoder in figure
32 is more expensive than the more power friendly encoder 33. Lastly it is worth to mention that
both the Zynq UltraScale and the Spartan-7 are both more than well equipped to handle the ANS
compressor. They might be seen as overqualified, and the circuit could easily be implemented on
much cheaper FPGA, unless using those resources (such as the ARM cores) giving an advantage
to the total application of the compressor.

77

5.10 Effect of chosen FPGA on performance, utilization and power res-
ults

The choice of FPGA greatly affects the performance results, utilization and power consumption.
New technology enables higher clock frequencies, more optimized circuitry and new techniques for
reduced power consumption. It is also worth to notice that better synthesis tools enables better
insight and greedier synthesis specific optimizations.

5.11 Evaluation of testbench

A lot of time was spent on verification, which also appears to be the trend in the industry at
the moment. The verification gap is hard to close, especially for a one man development team.
Nonetheless, a handful of testbenches was developed and used as part of the verification strategy.
Testbenches have the convenient feature of allowing the designer to peak inside the designs, both
to better understand them, but also to eliminate bugs as early as possible in the development
cycles.

Testbenches were made for every individual module during development, as it can be difficult to
verify all properties of a system purely from a top module of a larger system. There are states
unreachable during a top level simulation, that might not be noticeable under normal operation.
They could however, be present in corner cases and leave bugs in the system which are difficult
to track down, as discovering the entire state space is difficult. Likewise, there will always be real
possibilities of bugs in the system. However, what can be said with confidence, is that the current
verification reports indicates that under normal operation, the ANS compressor appears to per-
form without compression/decompression errors, and with high compression ratios and acceptable
performance.

As was apparent in graph 44, producing perfectly balanced, truly random samples for simulation
is difficult. The sample set contained almost 225.000 samples of 150 bits, and still could not cover
all possible input states. Exhaustive verification, in the sense of testing all possible inputs and
producing all possible outputs at high design WIDTHs seems to be nearly impossible without a
sufficiently large team of verification engineers and top of the line highly automated commercial
simulators. What is possible however, and was performed is adjusting the design parameters to be
sufficiently limited, yet sufficient for the purpose at hand. This allowed the design to cover most
possible input combinations and produce the most important of the possible output combinations,
as presented in section 14.

There are many aspects that could have been added to the UVM testbench, as well as the master
testbench. For instance, the SystemVerilog reference model could have been added using the
already pre-configured channels in the UVM testbench. It could thus be invoked in the scoreboard
and used as yet another criteria for a packet to pass. Furthermore assertions could have been used
more frequently inside the UVM testbench, as well as in the design itself. It is commonly regarded
a good design practice for the RTL designer to declare assertions directly inside the design code, or
inside external files, during development. This way some of the verification work is done early in
the design process, and it also adds more confidence overall in the proper behavior of the design.

Furthermore different packets could have been declared, in combination with different sequences.
Almost all terminal printouts were commented, and thus effectively removed from the code due to
the restrictions on EDA playground, but certainly much of this could (and should) be brought back.
It is a verification environment after all, and should provide useful information to the verification
engineer. Lastly more could have been done in testing the interface, more randomness could have
created interesting corner cases potentially finding unexplored areas of the statespace that has not
yet been considered, which might still exist.

As an alternative or complement to UVM testbenches, formal verification could also have been
utilized. Formal verification has some advantages over UVM testbench for certain use cases. Formal
verification is a form of functional verification and uses static analysis to prove design functionality.
The verification engineer is for instance not required to create stimuli as it is handled by the tool

78

itself (e.g. JasperGold). The designer may however still constrain it. The utilization of assertions
in tools such as JasperGold allows the designer to confidently carry out equivalence checking.
Conversely, it is important to acknowledge that the formal verification tool might struggle with
producing large amounts of stimuli, at times even more so than the the UVM testbench does.
Discovering sequentially deep and large state spaces with formal verification could turn into a
daunting task. The best solution would be to combine UVM testbenches and formal verification
and play to their respective advantages.

5.12 Issues during simulation

There were some major challenges during simulation, which if solved, would have allowed even
greater sample sets to be produced. Whether that would be necessary and would lead to other
conclusions is another question.

Vivado was used as the EDA of choice with a local installation. Vivado has some convenient
features, but does however produce a decent amount of dump during long simulations, with the
longest run at roughly 15 hours. At that point dump files exceeded 100GB of storage, and was
not only placed inside the work folder but probably also stored and or recycled in other places
inside Windows. Nonetheless, this lead to many simulations crashing due to limited storage space
on the development computer. This led to many overnight simulations crashing, and also due to
other unknown unexpected issues. It is believed that the sample set could have been anywhere
from 50-200% larger if not for these issues.

Another limitation was the run-time limit of one minute at EDA Playground. Sadly, the final
build of the UVM Testbench had issues running on Vivado, due to unknown issues. Some error
messages were produced, however could not be identified. Such as ERROR: [VRFC 10-2984]. It
is of course possible to identify these issues without using the error messages, however, it proved
tedious and after some hours of debugging, the hunt for a solution was abandoned. A temporary
solution was to run the testbench on EDA Playground, which has commercial simulators (such as
Cadence Xcelium and Aldec Riviera-PRO). These simulators successfully ran the UVM testbench
and did not reveal any underlying errors which might have resulted in the failure of simulation
in Vivado. Due to these unfortunate circumstances, the UVM testbench was restricted to 5000
terminal printouts and 1 minute of run-time per simulation execution.

5.13 Analysis of RTL views

The RTL views of the ANS compressor, as presented in section 4.3.6 revealed how the RTL was
interpreted by Vivado. It is largely unsurprising and brings a convenient visual perspective of
the RTL. The circuits contain the expected logic blocks, and neatly brings the circuit into a
schematic. The inferred logic appears to be present as intended when designing the RTL, which
brings confidence to the design process. It furthermore brings confidence in the uABS variant of
ANS as a suitable hardware implementable algorithm, as it clearly displays how well the algorithm
is suited for hardware.

5.14 The ANS compressor as part of a larger system.

The ANS compressor could be employed in a multitude of systems. It has a compact implement-
ation, which allows it to fit in small IoT or even IoTT systems. The compressor is also boasting
compression rates approaching the theoretical limit for entropy based compressors and is therefore
also useful where chip size is not an issue, or where it can be embedded MPSoC- or even ASCIC-
wise. The decoder and encoder both operate in the Mb/s range, whereas the decoder is potentially
fast enough to decode video, and could be used for instance as a link from action cameras or
security systems. The restrictive factor is how large the required data rates are, as the decoder
must be able to output enough pixels to fill the monitors with sufficient frames per second. As
a reference full HD video can have a bitstream of roughly 3,5Mb/s to 5,000 Mb/s, however it is

79

important to note that video in real world use cases often is heavily compressed to lossy formats.
However, still could be gaining an extra compression factor as experienced by the large companies
adding ANS on top of existing solutions such as LZ compression (Apple etc.).

The most important issue to solve for the systems designer when implementing the ANS compressor
as part of a larger system is good probability modelling. An example of the control logic of the
encoder and decoder compressing video data is shown in figure 65 and 66 encoding and decoding
video data. The control logic must handle data streams, estimate the probability and transmit the
data from the encoder to the decoder. Examples exist in areas such as real time transmission of
video from a drone, where there must be transmitters, receivers and so on. A challenge however
with implementing the ANS compressor in a real time system, would be probability modelling,
which must be handled quickly and carefully in order to not introduce too much latency. The
decoder in today’s implementation is positioned to handle decoding of some streams of data at
42Mb/s, however the encoder would struggle at 1.34Mb/s and probably bottleneck the system, due
to the long division employed. A Newton-Raphson method fixed point division implementation
could provide significant improvement. Improving the encoder, as discussed in section 5.3 can as
noted be combined with other compression algorithms as discussed in section 5.2.

Figure 65: Suggested implementation of Ans encoder as seen part of a larger system.

80

Figure 66: Suggested implementation of Ans decoder as seen part of a larger system.1

5.15 Experimental software Models

The software models are made at a higher level of abstraction than the hardware implementations,
as discussed in section 3.4. This higher level of abstraction is desirable as it brings more value
to the designs as reference models, and the software models should not aim to initially optimize
the algorithms. However, later design iterations of the software models could lead to experimental
algorithmic optimizations and other interesting discoveries. It could for instance lead to discoveries
of more efficient handling or calculation of state. Further experiments could be carried out with
taking a multitude of bits at once and encoding them simultaneously, which at the moment is
restricted due to data dependencies.

6 Further work

A list of further work is presented based on the discussion of 5.

• Replacing the fixed division module with a more suitable one for high speed performance
(div.sv). The module may be optimized, such as in the cases where there are a large amount
of leading 0’s or trailing 0’s on both the divisor and dividend. In this case the module may
quickly iterate through these and shift the result (pad it) by an appropriate to make up
for it. Alternatively the module could be replaced completely with solutions based on other
approaches for division, such as Newton Rhapson. One reference to a promising Fixed-Point
Divider Using Newton Raphson Division module can be found here [45].

• Experiment with the fast and slow clock in the Encoder module. It does lead to some
slow down, however is promising for low power and IoT applications. Furthermore it also
allows the developer to change it’s duty cycle, which further limits the activity factor of the
circuitry and might lead to further power saving, at the cost of performance that should be
further investigated. Such issues could even differ between target systems, and be used for
optimizations based on performance, power and area (resources).

• Renormalization and probability modelling has not been implemented in the ANS com-
pressor. This is strictly not needed to be performed by the compressor, however it could
prove useful for designers desiring to use the ANS compressor in their own systems. Espe-
cially, good probability modeling might quickly become quite complex, however there are also

81

solutions for this already in available open source. Nonetheless it would make the compressor
module more of a complete offering and contribution to the hardware design community.

• More trials should be carried out to estimate where the ideal balance can be found for WIDTH
and FBITS, with the possibility of suggesting a method for balancing these factors. Such
methods should make it simple and safe to get to a point where the circuit is wide enough
to prevent overflows, has large enough probability resolution while being as performant and
small as possible.

• The ANS Compressor should be tested in combination with other algorithms, such as LZ77.
Alternatively it is also imaginable to fuse their algorithms, rather than having them in a
chain. More trials must be carried out, estimating the competiveness with existing solutions.

• More research should be done to rate the hardware implementation against existing solutions.
This will both aid in understanding how good the performance actually is, as well as to
identify the areas where the ANS compressor should be employed.

• The hardware implementation is based on estimates, synthesis and simulations carried out
inside the EDA. The hardware implementation has not been tested on an actual FPGA, and
this is a step that should be carried out to ensure that the synthesis and implementation has
been conducted correctly. It would furthermore allow for real world testing, which should be
performed in order to truly guarantee that it operates bug-free. Alternatively it could result
in more development.

• Some new flags might be desired at the output of the ANS compressor, as discussed in section
5.4. These flags are welcome if the circuit is implemented as part of a larger system, and
therefore would be connected to the control logic unit. Furthermore, enable flags should be
added back to the optimized ANS compressor as it is a low cost measure with little deteriora-
tion effect on performance, and could save power. It was a design feature in the unoptimized
ANS compressor which should be brought back to the optimized implementation.

• A FIFO could be added to the output of the Encoder and Decoder in conjunction with
the Ready/Valid interface, as discussed in section 5.8. This would free up the FSM from
blocking and awaiting for a Ready Out signal. Using the Ready/Valid interface with a FIFO
as a temporary memory is a common design technique and improve throughput. It would
seamlessly fit the already present signal flow and design strategy. In conclusion, it would
allow the ANS compressor to interface more easily with other circuits, and act more flexibly
as part of a larger system. The downside is added circuitry and overall complexity along
with increased power consumption.

• A 2-state implementation of the FSM should be investigated, as suggested in section 30.

• Verification could be improved, both in terms of expanding and improving the UVM testbench
as well as the other testbenches, but also to include formal verification, as discussed in section
5.11.

• The gate-level descriptions and netlists should be further investigated for the ANS com-
pressors hardware implementation, as it has not been a focus during development due to
time limitations.

7 Conclusion

This thesis proposed a hardware implementation of the compression algorithm Uniform Binary
Variant (uABS) of ANS, representing a step toward the next generation line of compressors. The
hardware implementation was implemented in an iterative approach, starting with creating high
level and low level software models. Preceding steps were based on each other.

The ANS compressor circuit was designed to be modular, configurable and plug-and-play. It was
implemented using Finite State Machine (FSM) control logic and fixed point arithmetic logic. The
design was successfully synthesized for Zynq UltraScale+ ZCU106 and Spartan-7-SP701 with low

82

power consumption and resource utilization. The implementation succeeded for both the optimized
and unoptimized ANS compressors. Implementation reports concluded that the encoders and
decoders utilized less than 1% of the target FPGAs resources. Namely, the encoder required less
than 200 configurable logic blocks (CLB) and 11 CARRY-8s, and the decoder substituted some
CLBs for Digital Signal Processors (DSPs). The designs reached clock frequencies of up to 168
MHz with conservative constraints. The clocks, DSP, internal logic and signals required 3-5mW for
the encoder and 12mW for the decoder. The peak decoding speed was estimated to be 42.02Mb/s,
and the peak Encoding speed was found to be 1.34Mb/s.

A testbench was created to analyze the hardware implementations’ robustness and performance.
The testbench consisted of 234 683 bit-strings of pseudo-random samples, where each bit-string was
150 bits wide. Making the design perform 33 702 450 encode and decode operations (in total 67 404
900). Analysis revealed that the compressor produced average compression ratios of only 1% worse
than the dataset’s theoretical limit (Shannon Entropy). The robustness was checked by inserting
noise in the probability modelling. These results showed that one achieved comparable compression
ratios with ±1 to ±5% deviation added to the actual probability of ’1’s. The breaking point of
the inaccuracies in probability modelling was at inaccuracies ±20%, where the compressor could
no longer correctly encode and decode. The Ready/Valid interface was also verified with random
interfacing delays, which brings confidence in the robustness of the hardware implementation.

The software models were first implemented in C++ and thereafter in SystemVerilog. The compres-
sion behaviour of the software models was verified using similar techniques as with the testbench
of the hardware implementations. Additionally, the software model’s compatibility was confirmed
by exchanging encoded and decoded messages between the two software models. These models
proved essential as reference models during the development of the hardware implementation.

This thesis shows that the uniform binary variant (uABS) of Asymmetric Numeral Systems (ANS)
proves well suited for hardware implementation. The provided hardware implementation is proven
to produce compression ratios close to that of the theoretical limit for entropy-based compressors.
Furthermore, it is also shown that the compressor is agile enough to be performant even with
inaccurate probability modelling, satisfying both the timing and behaviour requirements of a full-
fledged ANS compressor. The proposed hardware implementation is thus a valuable addition to
the line of next-generation compressors. It boasts lossless decoding speeds sufficient to support the
real-time decoding of video. It is a valuable addition to the line of hardware compressors, as it is
both performant and lightweight in terms of power and FPGA area.

83

References

1. Cadence. SystemVerilog Accelerated Verification with UVM. Available from: https://cadence.
com/en US/home/training/all-courses/86070.html [Accessed on: 2022 Jul 11]

2. Duda J. Asymmetric numeral systems: entropy coding combining speed of Huffman coding
with compression rate of arithmetic coding. 2014. arXiv: 1311.2540 [cs.IT]. [Accessed on:
2021 Dec 12]

3. Design and Reuse. Design and Reuse, Search for Silicon IP, Hevc/h.265 IP Listing. Available
from: https://www.design-reuse.com/sip/?q=hevc%5C%2Fh.265 [Accessed on: 2022 Jul 10]

4. Hsieh PA and Wu JL. A Review of the Asymmetric Numeral System and Its Applications to
Digital Images. eng. Entropy (Basel, Switzerland) 2022; 24:375

5. Design and Reuse. Design and Reuse, Search for Silicon IP, UABS IP Listing. Available from:
https://www.design-reuse.com/sip/?q=uABS [Accessed on: 2022 Jul 10]

6. Rørvik KBH. Next generation compression algorithm. 2021

7. P. C and Sliwa C. Data compression. Available from: https://searchstorage.techtarget.com/
definition/compression [Accessed on: 2021 Sep 27]

8. Jayasankar U, Thirumal V and Ponnurangam D. A survey on data compression techniques:
From the perspective of data quality, coding schemes, data type and applications. eng. Journal
of King Saud University. Computer and information sciences 2021; 33:119–40

9. Anup A, Ashok R and Raundale P. Comparative Study of Data Compression Techniques. In-
ternational Journal of Computer Applications 2019 Jun; 178:15–9. doi: 10.5120/ijca2019919104

10. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal
1948; 27:623–56. doi: 10.1002/j.1538-7305.1948.tb00917.x

11. Wade G. Signal Coding and Processing 2nd Edition. Cambridge University Press, 1994

12. Poynton C. Digital Video and HD: Algorithms and Interfaces 2nd Edition. Morgan Kaufmann
Publishers, 2012

13. Keng B. Lossless Compression with Asymmetric Numeral Systems. Available from: https :
//bjlkeng.github.io/posts/lossless-compression-with-asymmetric-numeral-systems/ [Accessed
on: 2021 Oct 20]

14. Roberts E. Lossy Compression. Available from: https ://cs . stanford .edu/people/eroberts/
courses/soco/projects/data-compression/lossy/index.htm [Accessed on: 2021 Oct 4]

15. Roberts E. Lossless Compression: An Overview. Available from: https ://cs . stanford .edu/
people/eroberts/courses/soco/projects/data- compression/lossless/index.htm [Accessed on:
2021 Oct 4]

16. Duda J. Asymmetric numeral systems. CoRR 2009; abs/0902.0271. arXiv: 0902.0271. Avail-
able from: http://arxiv.org/abs/0902.0271 [Accessed on: 2021 Dec 11]

17. Alonso T, Sutter G and López de Vergara JE. An FPGA-Based LOCO-ANS Implementation
for Lossless and Near-Lossless Image Compression Using High-Level Synthesis. Electronics
2021; 10. doi: 10.3390/electronics10232934. Available from: https://www.mdpi.com/2079-
9292/10/23/2934 [Accessed on: 2021 Dec 11]

18. Semiconductor N. Introduction to FPGA Resources. Available from: https://www.ni.com/
docs/en-US/bundle/labview-nxg-fpga-targets/page/intro-fpga-resources.html [Accessed on:
2022 Mar 22]

19. FPGAKey. FPGA Slices. Available from: https://www.fpgakey.com/wiki/details/52 [Accessed
on: 2022 Jul 8]

20. FPGAKey. FPGA IOB. Available from: https://www.fpgakey.com/wiki/details/50 [Accessed
on: 2022 Mar 22]

21. Inc X. Spartan-7 SP701 FPGA Evaluation Kit. Available from: https ://www.xilinx .com/
products/boards-and-kits/sp701.html [Accessed on: 2022 Jul 6]

84

https://cadence.com/en_US/home/training/all-courses/86070.html
https://cadence.com/en_US/home/training/all-courses/86070.html
https://arxiv.org/abs/1311.2540
https://www.design-reuse.com/sip/?q=hevc%5C%2Fh.265
https://www.design-reuse.com/sip/?q=uABS
https://searchstorage.techtarget.com/definition/compression
https://searchstorage.techtarget.com/definition/compression
https://doi.org/10.5120/ijca2019919104
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://bjlkeng.github.io/posts/lossless-compression-with-asymmetric-numeral-systems/
https://bjlkeng.github.io/posts/lossless-compression-with-asymmetric-numeral-systems/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossy/index.htm
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossy/index.htm
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/index.htm
https://cs.stanford.edu/people/eroberts/courses/soco/projects/data-compression/lossless/index.htm
https://arxiv.org/abs/0902.0271
http://arxiv.org/abs/0902.0271
https://doi.org/10.3390/electronics10232934
https://www.mdpi.com/2079-9292/10/23/2934
https://www.mdpi.com/2079-9292/10/23/2934
https://www.ni.com/docs/en-US/bundle/labview-nxg-fpga-targets/page/intro-fpga-resources.html
https://www.ni.com/docs/en-US/bundle/labview-nxg-fpga-targets/page/intro-fpga-resources.html
https://www.fpgakey.com/wiki/details/52
https://www.fpgakey.com/wiki/details/50
https://www.xilinx.com/products/boards-and-kits/sp701.html
https://www.xilinx.com/products/boards-and-kits/sp701.html

22. IAMElectronics. Small form factor FPGA module with Xilinx Spartan-7. Available from: http:
//www.iamelectronic.com/products/T0006 Spartan-7 FPGA Module/datasheet/ [Accessed on:
2022 Jul 8]

23. Inc X. UltraScale Architecture - Staying a Generation Ahead with an Extra Node of Value.
Available from: https://www.xilinx.com/products/technology/ultrascale.html [Accessed on:
2022 Jul 7]

24. Inc X. Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit. Available from: https ://www.
xilinx.com/products/boards-and-kits/zcu106.html#specifications [Accessed on: 2022 Jul 6]

25. Agne A, Hangmann H, Happe M, Platzner M and Plessl C. Seven recipes for setting your
FPGA on fire – A cookbook on heat generators. eng. Microprocessors and microsystems 2014;
38:911–9

26. Xilinx. Xilinx 16nm UltraScale+ Devices Yield 2-5X Performance/Watt Advantage. Available
from: https://www.xilinx.com/content/dam/xilinx/publications/archives/xcell/Xcell90.pdf
[Accessed on: 2022 Jul 8]

27. Sadrusham NJ. Setup and hold slack. Available from: https://asic-soc.blogspot.com/2013/
08/setup-and-hold-slack.html [Accessed on: 2022 Jul 8]

28. ICDesignTips. Setup and hold time. Available from: https://www.icdesigntips.com/2020/10/
setup-and-hold-time-explained.html [Accessed on: 2020 Jan 1]

29. Fletcher CW. EECS150: Interfaces: “FIFO” (a.k.a. Ready/Valid). Available from: https://
inst.eecs.berkeley.edu/∼cs150/Documents/Interfaces.pdf [Accessed on: 2009 Feb 24]

30. Green W. Division in Verilog. Available from: https://projectf.io/posts/division- in-verilog/
[Accessed on: 2020 Jul 1]

31. Electrical4u. Binary Division. Available from: https://www.electrical4u.com/binary-division/
[Accessed on: 2021 Jan 31]

32. Green W. Fixed Point Numbers in Verilog. Available from: https://projectf.io/posts/fixed-
point-numbers-in-verilog/ [Accessed on: 2020 May 26]

33. EmLogic. Digital Design and Verification services. Available from: https://emlogic.no/fpga/
[Accessed on: 2022 Jul 7]

34. Sutherland. Synthesizing SystemVerilog-Busting the Myth that SystemVerilog is only for
Verification. Available from: https://sutherland-hdl.com/papers/2013-SNUG-SV Synthesizable-
SystemVerilog paper.pdf [Accessed on: 2022 Jul 7]

35. EEtimes. EDA vendors reveal plans for SystemVerilog. Available from: https://www.eetimes.
com/eda-vendors-reveal-plans-for-systemverilog/ [Accessed on: 2022 Jul 7]

36. Myers A. State machines. Available from: https://www.cs.cornell.edu/courses/cs211/2006sp/
Lectures/L26-MoreGraphs/state mach.html [Accessed on: 2022 Jul 7]

37. Warya A. Difference between Mealy machine and Moore machine. Available from: https :
//www.geeksforgeeks.org/difference-between-mealy-machine-and-moore-machine/ [Accessed
on: 2022 Jul 7]

38. Patel MK. Figure 7.2: State diagrams for Edge detector : Mealy Design. Available from:
https://verilogguide.readthedocs.io/en/latest/verilog/fsm.html/ [Accessed on: 2022 Jul 7]

39. Accellera. UVM users guide 1.2. Available from: https://www.accellera.org/images/downloads/
standards/uvm/uvm users guide 1.2.pdf [Accessed on: 2022 Feb 2]

40. Inc C. SystemVerilog Accelerated Verification with UVM. Available from: https : / /www .
cadence.com/en US/home/training/all-courses/86070.html [Accessed on: 2022 Jul 10]

41. Chipverify. uvm-tutorial. Available from: https : //www. chipverify. com/uvm/uvm- tutorial
[Accessed on: 2022 Feb 4]

42. Vora Y. UVM phases. Available from: https://semiconreferrals.com/uvm-phases/ [Accessed
on: 2021 Mar 14]

43. ChipVerify. What are UVM phases? Available from: https://www.chipverify.com/uvm/uvm-
phases [Accessed on: 2022 Jul 11]

85

http://www.iamelectronic.com/products/T0006_Spartan-7_FPGA_Module/datasheet/
http://www.iamelectronic.com/products/T0006_Spartan-7_FPGA_Module/datasheet/
https://www.xilinx.com/products/technology/ultrascale.html
https://www.xilinx.com/products/boards-and-kits/zcu106.html#specifications
https://www.xilinx.com/products/boards-and-kits/zcu106.html#specifications
https://www.xilinx.com/content/dam/xilinx/publications/archives/xcell/Xcell90.pdf
https://asic-soc.blogspot.com/2013/08/setup-and-hold-slack.html
https://asic-soc.blogspot.com/2013/08/setup-and-hold-slack.html
https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html
https://www.icdesigntips.com/2020/10/setup-and-hold-time-explained.html
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://projectf.io/posts/division-in-verilog/
https://www.electrical4u.com/binary-division/
https://projectf.io/posts/fixed-point-numbers-in-verilog/
https://projectf.io/posts/fixed-point-numbers-in-verilog/
https://emlogic.no/fpga/
https://sutherland-hdl.com/papers/2013-SNUG-SV_Synthesizable-SystemVerilog_paper.pdf
https://sutherland-hdl.com/papers/2013-SNUG-SV_Synthesizable-SystemVerilog_paper.pdf
https://www.eetimes.com/eda-vendors-reveal-plans-for-systemverilog/
https://www.eetimes.com/eda-vendors-reveal-plans-for-systemverilog/
https://www.cs.cornell.edu/courses/cs211/2006sp/Lectures/L26-MoreGraphs/state_mach.html
https://www.cs.cornell.edu/courses/cs211/2006sp/Lectures/L26-MoreGraphs/state_mach.html
https://www.geeksforgeeks.org/difference-between-mealy-machine-and-moore-machine/
https://www.geeksforgeeks.org/difference-between-mealy-machine-and-moore-machine/
https://verilogguide.readthedocs.io/en/latest/verilog/fsm.html/
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.cadence.com/en_US/home/training/all-courses/86070.html
https://www.cadence.com/en_US/home/training/all-courses/86070.html
https://www.chipverify.com/uvm/uvm-tutorial
https://semiconreferrals.com/uvm-phases/
https://www.chipverify.com/uvm/uvm-phases
https://www.chipverify.com/uvm/uvm-phases

44. Xilinx. Vivado Design Suite Tutorial: Using Constraints. Available from: %7Bhttps://docs.
xilinx.com/r/2021.1-English/ug945-vivado-using-constraints-tutorial/Step-3-Creating-Timing-
Constraints%7D [Accessed on: 2022 Mar 4]

45. Pandey PK. Fixed-Point Divider Using Newton Raphson Division Algorithm. Available from:
https://link.springer.com/chapter/10.1007/978-981-16-0275-7 19#citeas [Accessed on: 2022
Jul 11]

86

%7Bhttps://docs.xilinx.com/r/2021.1-English/ug945-vivado-using-constraints-tutorial/Step-3-Creating-Timing-Constraints%7D
%7Bhttps://docs.xilinx.com/r/2021.1-English/ug945-vivado-using-constraints-tutorial/Step-3-Creating-Timing-Constraints%7D
%7Bhttps://docs.xilinx.com/r/2021.1-English/ug945-vivado-using-constraints-tutorial/Step-3-Creating-Timing-Constraints%7D
https://link.springer.com/chapter/10.1007/978-981-16-0275-7_19#citeas

Appendix A Optimized ANS compressor - decoder

1 // `include "uabs_decoder_fsm.sv"

2 // `include "uabs_decoder.sv"

3 // import uabs_decoder_fsm_pkg ::*;

4

5 module top #(int WIDTH = 48, int FBITS = 8)(

6 input logic start_dec ,

7 input logic vin_dec ,

8 input logic rout_dec ,

9 input logic clk ,

10 input logic rst_n_dec ,

11 input logic [WIDTH -1:0] to_decode ,

12 input logic [FBITS :0] probability ,

13 output logic [WIDTH -1:0] comp_state_out_dec ,

14 output logic ready_dec ,

15 output logic vout_dec ,

16 output logic decoded_bit

17);

18 logic comp_busy_dec;

19

20 // STM

21 uabs_decoder_fsm decoder_fsm(

22 .rin(ready_dec),

23 .vout(vout_dec),

24 .start(start_dec),

25 .vin(vin_dec),

26 .rout(rout_dec),

27 .clk(clk),

28 .rst_n(rst_n_dec),

29 .comp_busy(comp_busy_dec)

30);

31

32 // Decoder

33 uabs_decoder #(WIDTH , FBITS) decoder(

34 .to_decode(to_decode),

35 .probability(probability),

36 .result(decoded_bit),

37 .comp_state_out(comp_state_out_dec),

38 .start(comp_busy_dec)

39);

40 endmodule

41

42

Listing 11: Optimized hardware implementation of decoder, top module

1 module uabs_decoder #(int WIDTH = 24, int FBITS = 8)(

2 input logic [WIDTH -1:0] to_decode ,

3 input logic [FBITS :0] probability ,

4 input logic start ,

5 output logic result ,

6 output logic [WIDTH -1:0] comp_state_out

7);

8

9 // Variables

10 logic bit_is_one;

11 logic [WIDTH*INTERNAL_EXPANSION -1:0] temp_a;

12 logic [WIDTH*INTERNAL_EXPANSION -1:0] temp_b;

13 logic [WIDTH*INTERNAL_EXPANSION -1:0] temp_d;

14 logic [WIDTH*INTERNAL_EXPANSION -1:0] temp_e;

15 logic [WIDTH*INTERNAL_EXPANSION -1:0] temp_g;

16

17 // Calculate variables asap to speed up the rest of the processes.

18 always_comb begin

19 temp_d = to_decode * probability;

20 temp_e = temp_d >> FBITS;

21 temp_g = (temp_e[WIDTH -1: FBITS] << FBITS) + (1 << FBITS);

22 end

23

24 // calculate temp_a for determening which bit it is...

25 always_comb begin

87

26 // Only adjusts for ceil if there are FBITS.

27 if(temp_e[FBITS -1:0]) begin

28 // Removing FBITS and adding + 1 if decimals are detected.

29 temp_a = (temp_e[WIDTH -1: FBITS] << FBITS) + (1 << FBITS);

30 end

31 else begin

32 temp_a = temp_e;

33 end

34 end

35

36 // calculate temp_b for determening which bit it is...

37 always_comb begin

38 temp_b = (to_decode + (1 << FBITS));

39 temp_b = ((temp_b * probability) >> FBITS);

40 // Only adjusts for ceil if there are FBITS.

41 if(temp_b[FBITS -1:0]) begin

42 // Removing FBITS and adding + 1 if decimals are detected.

43 temp_b = (temp_b[WIDTH -1: FBITS] << FBITS) + (1 << FBITS);

44 end

45 end

46

47 // use temp_a and temp_b for determening which bit it is...

48 always @(posedge start) begin

49 logic [WIDTH -1:0] bit_is_one_temp;

50 bit_is_one_temp = /* ceiled */ temp_b - /* ceiled */ temp_a; //

51 bit_is_one = bit_is_one_temp[FBITS]; // We do this to get a '1' or '0'
in 1's position.

52 result = bit_is_one;

53 end

54

55 // Check stage

56 always_comb begin

57 // Calculate the new state

58 if (bit_is_one) begin

59 // Only adjusts for ceil if there are FBITS.

60 if(temp_e[FBITS -1:0]) begin

61 // Removing FBITS and adding + 1 if decimals are detected.

62 comp_state_out = temp_g;

63 end

64 else begin

65 comp_state_out = temp_e;

66 end

67 end

68 else begin

69 // Only adjusts for ceil if there are FBITS.

70 if(temp_e[FBITS -1:0]) begin

71 // Removing FBITS and adding + 1 if decimals are detected.

72 comp_state_out = to_decode - temp_g;

73 end

74 else begin

75 comp_state_out = to_decode - temp_e;

76 end

77 end

78 end

79 endmodule : uabs_decoder

80

Listing 12: Optimized hardware implementation of decoder, arithmetic logic

1 // `include "uabs_decoder_fsm_pkg.sv"

2 import uabs_decoder_fsm_pkg ::*;

3

4 module uabs_decoder_fsm(

5 input logic start ,

6 input logic vin ,

7 input logic rout ,

8 input logic clk ,

9 input logic rst_n ,

10 output logic rin ,

11 output logic vout ,

12 output logic comp_busy

13);

14

88

15 state_dec state , next;

16

17 always_ff @(posedge clk , negedge rst_n)

18 if (!rst_n)

19 state <= IDLE_DEC;

20 else

21 state <= next;

22

23 always_comb begin

24 case (state)

25 IDLE_DEC : begin

26 rin <= 1'b0;
27 vout <= 1'b0;
28 comp_busy <= 1'b0;
29 if (start)

30 next = READ_DEC;

31 else

32 next = IDLE_DEC;

33 end

34 READ_DEC : begin

35 rin <= 1'b1;
36 vout <= 1'b0;
37 comp_busy <= 1'b0;
38 if (vin)

39 next = COMP_BUSY_DEC;

40 else

41 next = READ_DEC;

42 end

43 COMP_BUSY_DEC: begin

44 rin <= 1'b0;
45 vout <= 1'b0;
46 comp_busy <= 1'b1;
47 next = DONE_DEC;

48 end

49 DONE_DEC : begin

50 rin <= 1'b0;
51 vout <= 1'b1;
52 comp_busy <= 1'b0;
53 if (rout)

54 next = IDLE_DEC;

55 else

56 next = DONE_DEC;

57 end

58 default:begin

59 rin <= 'x;
60 vout <= 'x;
61 comp_busy <= 'x;
62 next = XXX_DEC;

63 end

64 endcase

65 end

66 endmodule : uabs_decoder_fsm

67

Listing 13: Optimized hardware implementation of decoder, FSM

1 package uabs_decoder_fsm_pkg;

2 typedef enum logic [2:0] {

3 IDLE_DEC = 3'b000 ,
4 READ_DEC = 3'b001 ,
5 COMP_BUSY_DEC = 3'b010 ,
6 DONE_DEC = 3'b100 ,
7 XXX_DEC = 'x } state_dec;

8 endpackage

9

Listing 14: Optimized hardware implementation of decoder, package

1 // `timescale 10ns/100ps

2 // `include "fsm1_pkg_b.sv"

3 module uabs_fsm_tb #(int WIDTH = 48, int FBITS = 8);

4 // import uabs_decoder_fsm_pkg ::*;

5 logic [WIDTH -1:0] comp_state_out_dec;

89

6 logic start_dec;

7 logic vin_dec;

8 logic rout_dec;

9 logic clk;

10 logic rst_n_dec;

11 logic [WIDTH -1:0] to_decode;

12 logic ready_dec;

13 logic vout_dec;

14 logic decoded_bit;

15 logic [2:0] current_state_dec;

16 logic comp_done_dec;

17

18 parameter SF = 2.0**- FBITS;

19 parameter COMPRESSION_BITS = 8;

20

21 logic [WIDTH :0] probability;

22 logic [7:0] compression_result;

23

24 top #(WIDTH , FBITS) top (.*);

25

26 /* Clock */

27 initial forever

28 #1 clk = ~clk;

29

30 /* Stimuli */

31 initial begin

32 /* Start clock */

33 tb_reset;

34 #100; // Warmup delay

35

36 probability = (1 << (FBITS -1)); // static probability here it is (1/2) =

0.5

37 to_decode = 316 << (FBITS); // decoded should be 1100 _0011

38 for(int i = COMPRESSION_BITS; i > 0; i--) begin

39 decode_one_bit(to_decode , probability);

40 compression_result[COMPRESSION_BITS - i] = decoded_bit;

41 end

42 $display("\t%d:\t Result %b", $time , compression_result);

43

44

45 probability = (1 << (FBITS -1)); // static probability here it is (1/2) =

0.5

46 to_decode = 307 << (FBITS); // decoded should be 1100 _1100

47 for(int i = COMPRESSION_BITS; i > 0; i--) begin

48 decode_one_bit(to_decode , probability);

49 compression_result[COMPRESSION_BITS - i] = decoded_bit;

50 end

51 $display("\t%d:\t Result %b", $time , compression_result);

52

53

54 #100; // Wait for waveform

55 $finish;
56 end

57

58 initial begin

59 $dumpfile("dump.vcd");
60 $dumpvars (1);
61 end

62

63 function void tb_reset;

64 start_dec = 0;

65 vin_dec = 0;

66 rout_dec = 0;

67 rst_n_dec = 0;

68 // decoder_en = 0;

69 clk = 0;

70 endfunction : tb_reset

71

72 task single_run (__start , __vin , __ack , __rst_n , nothing , __decoder_en , mode = 1)

;

73

74 /* Decoder mode */

75 if(mode == 1) begin

90

76 #1

77 start_dec = __start; vin_dec = !__vin /*ok...*/; rout_dec = __ack; rst_n_dec

= __rst_n;

78 // decoder_en = __decoder_en;

79

80 // print_compression_data;

81 // print_state(current_state_dec);

82 // print_data(start_dec , vin_dec , rout_dec , rst_n_dec , ready_dec , decode ,

vout_dec , "decoder ");

83 #1;

84 end

85 endtask : single_run

86

87 task decode_one_bit(logic __to_decode , logic [WIDTH -1:0] probability);

88 /* Process stage

89 * DECODING

90 */

91 begin

92 // integer __to_decode;

93

94 /* First round */

95 single_run (0, 0, 0, 0, 0, 0, 1);

96 single_run (0, 0, 0, 1, 0, 0, 1);

97 single_run (0, 0, 0, 0, 0, 0, 1);

98

99 /* READ */

100 // to_decode = __to_decode; // Not necesarry ...

101 // comp_state_in_dec = state;

102 // probability = probability;

103 single_run (1, 0, 0, 1, 0, 0, 1);

104 single_run (0, 0, 0, 1, 0, 0, 1);

105 /* COMP */

106 single_run (0, 1, 0, 1, 0, 1, 1);

107 //#2;

108 //#400;

109 /* DONE */

110 single_run (0, 0, 0, 1, 0, 0, 1);

111 // $display (" to_decode = %b and comp_state_out_dec %b", to_decode ,

comp_state_out_dec);

112 to_decode = comp_state_out_dec;

113 // $display (" to_decode = %b and comp_state_out_dec %b", to_decode ,

comp_state_out_dec);

114 /* IDLE */

115 single_run (0, 0, 1, 1, 0, 0, 1);

116 single_run (0, 0, 0, 1, 0, 0, 1);

117 // single_run (0, 0, 0, 1, 0, 0, 1);

118 // single_run (0, 0, 0, 1, 0, 0, 1);

119 end

120

121 endtask : decode_one_bit

122

123

124 endmodule

125

Listing 15: Optimized hardware implementation of decoder, testbench

1 create_clock -period 5.950 -name clk -waveform {0.000 2.975} [get_ports clk]

2 set_input_delay -clock [get_clocks clk] -min -add_delay 2.000 [get_ports {

probability [*]}]

3 set_input_delay -clock [get_clocks clk] -max -add_delay 3.000 [get_ports {

probability [*]}]

4 set_input_delay -clock [get_clocks clk] -min -add_delay 2.000 [get_ports {

to_decode [*]}]

5 set_input_delay -clock [get_clocks clk] -max -add_delay 3.000 [get_ports {

to_decode [*]}]

6 set_input_delay -clock [get_clocks clk] -min -add_delay 2.750 [get_ports

rout_dec]

7 set_input_delay -clock [get_clocks clk] -max -add_delay 3.000 [get_ports

rout_dec]

8 set_input_delay -clock [get_clocks clk] -min -add_delay 2.600 [get_ports

rst_n_dec]

91

9 set_input_delay -clock [get_clocks clk] -max -add_delay 3.000 [get_ports

rst_n_dec]

10 set_input_delay -clock [get_clocks clk] -min -add_delay 2.750 [get_ports

start_dec]

11 set_input_delay -clock [get_clocks clk] -max -add_delay 3.000 [get_ports

start_dec]

12 set_input_delay -clock [get_clocks clk] -min -add_delay 2.750 [get_ports

vin_dec]

13 set_input_delay -clock [get_clocks clk] -max -add_delay 3.000 [get_ports

vin_dec]

14 set_output_delay -clock [get_clocks clk] -min -add_delay 0.100 [get_ports

decoded_bit]

15 set_output_delay -clock [get_clocks clk] -max -add_delay 1.000 [get_ports

decoded_bit]

16 set_output_delay -clock [get_clocks clk] -min -add_delay 0.100 [get_ports

ready_dec]

17 set_output_delay -clock [get_clocks clk] -max -add_delay 1.000 [get_ports

ready_dec]

18 set_output_delay -clock [get_clocks clk] -min -add_delay 0.100 [get_ports

vout_dec]

19 set_output_delay -clock [get_clocks clk] -max -add_delay 1.000 [get_ports

vout_dec]

20

Listing 16: Optimized hardware implementation of encoder, timing constraints

Appendix B Optimized ANS compressor - encoder

1 // `include "uabs_encoder_fsm.sv"

2 // `include "uabs_encoder.sv"

3 import uabs_encoder_fsm_pkg ::*;

4

5 module top #(int WIDTH = 24, int FBITS = 8)(// If FBITS are too large causes

error.

6 input logic start_enc ,

7 input logic vin_enc ,

8 input logic rout_enc ,

9 input logic clk ,

10 input logic div_clk ,

11 input logic rst_n_enc ,

12 input logic to_encode ,

13 input logic [FBITS -1:0] probability ,

14 input logic [WIDTH -1:0] comp_state_in_enc ,

15 output logic idle ,

16 output logic ready_enc ,

17 output logic vout_enc ,

18 output logic [WIDTH -1:0] encoded

19);

20

21 logic check_enc;

22 logic encode;

23 logic comp_init_enc;

24 logic comp_done_enc;

25

26 uabs_encoder_fsm encoder_fsm(

27 .rin(ready_enc),

28 .vout(vout_enc),

29 .idle(idle),

30 .start(start_enc),

31 .vin(vin_enc),

32 .comp_done(comp_done_enc),

33 .rout(rout_enc),

34 .clk(clk),

35 .rst_n(rst_n_enc),

36 .comp_init(comp_init_enc)

37);

38

39 // Encoder

40 uabs_encoder #(WIDTH , FBITS) encoder(

41 .to_encode(to_encode),

92

42 .probability(probability),

43 .clk(clk),

44 .result(encoded),

45 .comp_state_in(comp_state_in_enc),

46 .comp_done(comp_done_enc),

47 .comp_init(comp_init_enc)

48);

49

50 endmodule

51

Listing 17: Optimized hardware implementation of encoder, top module

1 // `include "div.sv"

2 module uabs_encoder #(int WIDTH = 24, int FBITS = 8)(

3 input logic to_encode ,

4 input logic [FBITS -1:0] probability ,

5 input logic clk ,

6 input logic comp_init ,

7 input logic [WIDTH -1:0] comp_state_in ,

8 output logic comp_done , // quotient and remainder are valid

9 output logic [WIDTH -1:0] result

10);

11

12 logic div_busy; // calculation in progress

13 logic div_dbz; // divide by zero flag

14 logic div_ovf; // overflow flag (fixed -point)

15 logic [WIDTH -1:0] div_x; // dividend

16 logic [WIDTH -1:0] div_y; // divisor

17 logic [WIDTH -1:0] div_q; // quotient

18 logic [WIDTH -1:0] div_r; // remainder

19

20 logic [WIDTH -1:0] state;

21

22 div #(. WIDTH(WIDTH), .FBITS(FBITS)) div_inst (

23 .clk(clk),

24 .start(comp_init),

25 .busy(div_busy),

26 .valid(comp_done),

27 .dbz(div_dbz),

28 .rst_n(! comp_init),

29 .ovf(div_ovf),

30 .x(div_x),

31 .y(div_y),

32 .q(div_q),

33 .r(div_r));

34

35

36 // Encoder preparations

37 always_comb begin

38 if(comp_init) begin

39 if(to_encode)

40 div_y <= probability;

41 else

42 div_y <= (1 << (FBITS)) - probability;

43 end

44 else

45 div_y <= 'x;
46 end

47

48 always_comb begin

49 if(comp_init)

50 div_x <= comp_state_in + (! to_encode << (FBITS));

51 else

52 div_x <= 'x;
53 end

54

55 always_comb begin

56 if(div_busy)

57 state = 'x;
58 else begin

59 if (to_encode) begin

60 state = div_q;

93

61 // Adjust for floor

62 state[FBITS -1:0] = '0;
63 // result = state;

64 end

65 else begin

66 state = div_q - (1 << (FBITS));

67 // Removing FBITS and adding + 1 if decimals are detected.

68 if(state[FBITS -1:0]) begin

69 state = (state[WIDTH -1: FBITS] << FBITS) + (1 << FBITS);

70 end

71 // result = state;

72 end

73 end

74 end

75

76 always_comb begin

77 result <= state;

78 end

79 endmodule : uabs_encoder

80

Listing 18: Synthesizable optimized hardware implementation of encoder, arithmetic logic

1 // `include "uabs_encoder_fsm_pkg.sv"

2 import uabs_encoder_fsm_pkg ::*;

3

4 module uabs_encoder_fsm (

5 input logic start ,

6 input logic vin ,

7 input logic comp_done ,

8 input logic rout ,

9 input logic clk ,

10 input logic rst_n ,

11 output logic rin ,

12 output logic vout ,

13 output logic idle ,

14 output logic comp_init);

15

16 state_encoder state , next;

17

18 always_ff @(posedge clk , negedge rst_n)

19 if (!rst_n)

20 state <= IDLE_ENC;

21 else

22 state <= next;

23

24 always_comb begin

25 case (state)

26 IDLE_ENC : begin

27 rin <= 1'b0;
28 vout <= 1'b0;
29 idle <= 1'b1;
30 comp_init <= 1'b0;
31 if (start)

32 next = READ_ENC;

33 else

34 next = IDLE_ENC;

35 end

36 READ_ENC : begin

37 rin <= 1'b1;
38 vout <= 1'b0;
39 idle <= 1'b1;
40 comp_init <= 1'b1;
41 if (vin)

42 next = COMP_BUSY;

43 else

44 next = READ_ENC;

45 end

46 COMP_BUSY : begin

47 rin <= 1'b0;
48 vout <= 1'b0;
49 idle <= 1'b0;
50 comp_init <= 1'b0;

94

51 if (comp_done)

52 next = DONE_ENC;

53 else

54 next = COMP_BUSY;

55 end

56 DONE_ENC : begin

57 rin <= 1'b0;
58 vout <= 1'b1;
59 idle <= 1'b0;
60 comp_init <= 1'b0;
61 if (rout)

62 next = IDLE_ENC;

63 else

64 next = DONE_ENC;

65 end

66 default:begin

67 rin <= 'x;
68 vout <= 'x;
69 idle <= 'x;
70 comp_init <= 'x;
71 next = XXX_ENC;

72 end

73 endcase

74 end

75 endmodule : uabs_encoder_fsm

76

Listing 19: Synthesizable optimized hardware implementation of encoder, FSM

1 /*

2 * Original author

3 * link: https :// projectf.io/posts/division -in-verilog/

4 * Edited by: Kare -Benjamin H. Rorvik

5 *

6 */

7 module div #(

8 parameter WIDTH=4, // width of numbers in bits

9 parameter FBITS =0 // fractional bits (for fixed point)

10) (

11 input wire logic clk ,

12 input wire logic rst_n , // Added for reset (added by KB)

13 input wire logic start , // start signal

14 output logic busy , // calculation in progress

15 output logic valid , // quotient and remainder are valid

16 output logic dbz , // divide by zero flag

17 output logic ovf , // overflow flag (fixed -point)

18 input wire logic [WIDTH -1:0] x, // dividend

19 input wire logic [WIDTH -1:0] y, // divisor

20 output logic [WIDTH -1:0] q, // quotient

21 output logic [WIDTH -1:0] r // remainder

22);

23

24 // avoid negative vector width when fractional bits are not used

25 localparam FBITSW = (FBITS) ? FBITS : 1;

26

27 logic [WIDTH -1:0] y1; // copy of divisor

28 logic [WIDTH -1:0] q1, q1_next; // intermediate quotient

29 logic [WIDTH :0] ac, ac_next; // accumulator (1 bit wider)

30

31 localparam ITER = WIDTH+FBITS; // iterations are dividend width +

fractional bits

32 logic [$clog2(ITER) -1:0] i; // iteration counter

33

34 always_comb begin

35 if (ac >= {1'b0,y1}) begin

36 ac_next = ac - y1;

37 {ac_next , q1_next} = {ac_next[WIDTH -1:0], q1 , 1'b1};
38 end else begin

39 {ac_next , q1_next} = {ac, q1} << 1;

40 end

41 end

42

43 always_ff @(posedge clk) begin

95

44 /* Added by KB */

45 if (!rst_n) begin

46 busy <= 0;

47 valid <= 0;

48 dbz <= 0;

49 ovf <= 0;

50 q <= '0;
51 r <= '0;
52 end

53 if (start) begin

54 // $display ("\t%d:\t We got started!",$time);
55 valid <= 0;

56 ovf <= 0;

57 i <= 0;

58 if (y == 0) begin // catch divide by zero

59 busy <= 0;

60 dbz <= 1;

61 end else begin

62 busy <= 1;

63 dbz <= 0;

64 y1 <= y;

65 {ac , q1} <= {{WIDTH{1'b0}}, x, 1'b0};
66 end

67 end else if (busy) begin

68 if (i == ITER -1) begin // done

69 busy <= 0;

70 valid <= 1;

71 q <= q1_next;

72 r <= ac_next[WIDTH :1]; // undo final shift

73 end else if (i == WIDTH -1 && q1_next[WIDTH -1:WIDTH -FBITSW]) begin

// overflow?

74 busy <= 0;

75 ovf <= 1;

76 q <= 0;

77 r <= 0;

78 end else begin // next iteration

79 i <= i + 1;

80 ac <= ac_next;

81 q1 <= q1_next;

82 end

83 end

84 end

85 endmodule

86

Listing 20: Synthesizable optimized hardware implementation of encoder, fixed point division
module

1 package uabs_decoder_fsm_pkg;

2 typedef enum logic [2:0] {

3 IDLE_DEC = 3'b000 ,
4 READ_DEC = 3'b001 ,
5 COMP_BUSY_DEC = 3'b010 ,
6 DONE_DEC = 3'b100 ,
7 XXX_DEC = 'x } state_dec;

8 endpackage

9

Listing 21: Synthesizable optimized hardware implementation of encoder, package

1 // `include "fsm1_pkg_b.sv"

2 module uabs_fsm_tb #(int WIDTH = 48, int FBITS = 4);

3 import uabs_encoder_fsm_pkg ::*;

4

5 logic [WIDTH -1:0] comp_state_in_enc;

6 logic [WIDTH -1:0] comp_state_out_enc;

7 logic start_enc;

8 logic vin_enc;

9 logic rout_enc;

10 logic clk;

11 logic rst_n_enc;

12 logic to_encode;

96

13 logic check_enc;

14 logic comp_one_done_enc;

15 logic comp_zero_done_enc;

16 logic ready_enc;

17 logic vout_enc;

18 logic encode;

19 logic idle;

20 logic [WIDTH -1:0] encoded;

21 logic div_clk;

22 logic comp_ready_enc_temp;

23 logic comp_init_enc_temp;

24 logic div_busy;

25 logic div_valid;

26 logic div_dbz;

27 logic div_ovf;

28 logic [WIDTH -1:0] div_x; // parameterise

29 logic [WIDTH -1:0] div_y; // parameterise

30 logic [WIDTH -1:0] div_q; // parameterise

31 logic [WIDTH -1:0] div_r; // parameterise

32

33 parameter SF = 2.0**- FBITS;

34 parameter COMPRESSION_BITS = 8;

35

36

37 logic [2:0] current_state_encoder;

38 logic [WIDTH -1:0] probability;

39 logic [WIDTH -1:0] temp_encoded;

40 logic [COMPRESSION_BITS -1:0] compression_result;

41 logic [COMPRESSION_BITS -1:0] compression_stimuli = 8'b1100_1100;
42 top #(WIDTH , FBITS) top (.*);

43

44 /* Clock */

45 initial forever begin

46 #1 clk = ~clk;

47 div_clk = ~div_clk;

48 end

49

50 /* Stimuli */

51 initial begin

52 /* Start clock */

53 tb_reset;

54

55 #200;

56

57 comp_state_in_enc = (1 << (FBITS)); // starting state , here it 's 1.

58 probability = (1 << (FBITS -1)); // static probability here it is

(1/2) = 0.5

59 encode_one_bit(compression_stimuli[COMPRESSION_BITS -1], comp_state_in_enc);

// First round to insert +1

60 for(int ii = COMPRESSION_BITS - 2; ii >= 0; ii --) begin

61 encode_one_bit(compression_stimuli[ii], temp_encoded);

62 end

63

64 $display("\t%d:\t Result %d", $time , $itor(encoded*SF));
65

66 compression_stimuli = 8'b1100_0011;
67 comp_state_in_enc = (1 << (FBITS)); // starting state , here it 's 1.

68 probability = (1 << (FBITS -1)); // static probability here it is

(1/2) = 0.5

69 encode_one_bit(compression_stimuli[COMPRESSION_BITS -1], comp_state_in_enc);

// First round to insert +1

70 for(int ii = COMPRESSION_BITS - 2; ii >= 0; ii --) begin

71 encode_one_bit(compression_stimuli[ii], temp_encoded);

72 end

73 $display("\t%d:\t Result %d", $time , $itor(encoded*SF));
74

75 compression_stimuli = 8'b1111_0000;
76 comp_state_in_enc = (1 << (FBITS)); // starting state , here it 's 1.

77 probability = (1 << (FBITS -1)); // static probability here it is

(1/2) = 0.5

78 encode_one_bit(compression_stimuli[COMPRESSION_BITS -1], comp_state_in_enc);

// First round to insert +1

79 for(int ii = COMPRESSION_BITS - 2; ii >= 0; ii --) begin

97

80 encode_one_bit(compression_stimuli[ii], temp_encoded);

81 end

82 $display("\t%d:\t Result %d", $time , $itor(encoded*SF));
83

84 $finish;
85 end

86

87 initial begin

88 $dumpfile("dump.vcd");
89 $dumpvars (1);
90 end

91

92 function void tb_reset;

93 start_enc = 0;

94 vin_enc = 0;

95 rout_enc = 0;

96 rst_n_enc = 0;

97 // encoder_en = 0;

98 clk = 0;

99 div_clk = 0;

100 endfunction : tb_reset

101

102 task single_run (__start , __vin , __ack , __rst_n , nothing , nothing_2 , mode =

1);

103

104 /* Encoder mode */

105 if(mode == 1) begin

106 #1

107 start_enc = __start; vin_enc = __vin; rout_enc = __ack; rst_n_enc =

__rst_n;

108 // encoder_en = __encoder_en;

109

110 // print_compression_data;

111 // print_state(current_state_encoder);

112 // print_data(start_enc , vin_enc , rout_enc , rst_n_enc , ready_enc , encode ,

vout_enc , "encoder ");

113 #1;

114 end

115 endtask : single_run

116

117 task encode_one_bit(logic __to_encode , logic [WIDTH -1:0] state);

118 /* Process stage

119 * ENCODING

120 */

121 begin

122 logic [WIDTH -1:0] __encoded;

123

124 /* First round */

125 single_run (0, 0, 0, 0, 0, 0, 1);

126 single_run (0, 0, 0, 1, 0, 0, 1);

127 single_run (0, 0, 0, 0, 0, 0, 1);

128 /* READ */

129 to_encode = __to_encode;

130 comp_state_in_enc = state;

131 single_run (1, 0, 0, 1, 0, 0, 1);

132 single_run (0, 0, 0, 1, 0, 0, 1);

133 /* COMP */

134 single_run (0, 1, 0, 1, 0, 1, 1);

135 #400;

136 /* DONE */

137 single_run (0, 0, 0, 1, 0, 0, 1);

138 temp_encoded = encoded;

139 /* IDLE */

140 single_run (0, 0, 1, 1, 0, 0, 1);

141 single_run (0, 0, 0, 1, 0, 0, 1);

142 single_run (0, 0, 0, 1, 0, 0, 1);

143 single_run (0, 0, 0, 1, 0, 0, 1);

144 end

145

146 endtask : encode_one_bit

147

148

149 endmodule

98

150

Listing 22: Synthesizable optimized hardware implementation of encoder, testbench

Appendix C Master testbench

1 // `include "fsm1_pkg_b.sv"

2 module uabs_fsm_tb #(parameter WIDTH = 180, parameter FBITS = 8, parameter

CLK_DIVISOR = 2, parameter DUTY_DIVISOR = 2, parameter CLK_DIVISOR_WIDTH =

$clog2(CLK_DIVISOR +1)); // Max recommended width 128 (vivado), largest tested

180 and 8 FBITS.

3 import uabs_decoder_fsm_pkg ::*;

4

5 // Decoder

6 logic [WIDTH -1:0] /* comp_state_in_dec , */ comp_state_in_enc;

7 logic [WIDTH -1:0] comp_state_out_dec /*, comp_state_out_enc */;

8 logic start_dec , start_enc;

9 logic vin_dec , vin_enc;

10 logic rout_dec , rout_enc;

11 logic clk;

12 logic rst_n_dec , rst_n_enc;

13 logic [WIDTH -1:0] to_decode;

14 logic to_encode;

15 //logic decoder_en , encoder_en;

16 //logic check_dec , check_enc;

17 //logic checked_dec , checked_enc;

18 //logic bit_is_one_dec , bit_is_one_enc;

19 //logic comp_one_done_dec , comp_one_done_enc;

20 //logic comp_zero_done_dec , comp_zero_done_enc;

21 logic ready_dec , ready_enc;

22 logic vout_dec , vout_enc;

23 //logic decode , encode;

24 logic /*idle_dec , */ idle_enc;

25 logic decoded_bit;

26 logic [WIDTH -1:0] encoded;

27 //logic comp_ready_dec_temp , comp_ready_enc_temp;

28 //logic comp_busy_dec_temp , comp_busy_enc_temp;

29 //logic comp_init_dec_temp , comp_init_enc_temp;

30 //logic div_busy;

31 //logic div_valid , div_valid_dec;

32 //logic div_dbz;

33 //logic div_ovf;

34 //logic [WIDTH -1:0] div_x; // parameterise

35 //logic [WIDTH -1:0] div_y; // parameterise

36 //logic [WIDTH -1:0] div_q; // parameterise

37 //logic [WIDTH -1:0] div_r; // parameterise

38 //logic [WIDTH -1:0] div_q_dec; // parameterise

39

40 parameter SF = 2.0**- FBITS;

41 parameter COMPRESSION_BITS = 150; // Max 150 given optimal probabilities , 80

for +- probability deviation of 20%

42 parameter RANDOM_ITERATIONS = 10;

43 parameter EXTRA_RUNS = 32;

44 parameter EXTRA_RUNS_DIVISOR = 64;

45 parameter DELAY = 1;

46 parameter DELAY_2 = 1;

47 parameter FAST_CLOCK_DELAY = 1;

48 parameter PROBABILITY_DEVIATION_OPTIONS = 9;

49 parameter ENCODER_VOUT_MAX_WAIT_LIMIT = 1000;

50

51 real probability_deviation_array[PROBABILITY_DEVIATION_OPTIONS] = {-0.2,-0.1,

-0.05, -0.01, 0, 0.01, 0.05, 0.1, 0.20};

52 integer probability_deviation_pointer = 0;

53

54 logic div_clk;

55 logic [WIDTH -1:0] probability;

56 logic [COMPRESSION_BITS :0] temp_decoded; // parameterize ...

57 logic [WIDTH -1:0] temp_encoded;

58 logic [COMPRESSION_BITS -1:0] compression_result;

59 logic [COMPRESSION_BITS -1:0] compression_stimuli;

99

60 uabs_decoder_fsm_pkg :: state_dec current_state_dec;

61 uabs_encoder_fsm_pkg :: state_encoder current_state_encoder;

62 real temp_encoded_bits;

63 logic [WIDTH -1:0] temp_temp_encoded_bits;

64 real temp_Encoded_bits_real;

65 real temp_temp_encoded_bits_real;

66 real stimuli_temp_bit;

67 real shannon;

68 real shannon_temp;

69 integer run_counter = 0;

70 integer success_counter = 0;

71 integer bit_value;

72 integer position;

73 integer number_of_ones;

74 real probability_real;

75 real probability_deviation = 0.20;

76 real probability_without_deviation;

77 logic compression_status;

78 real compression_ratio;

79 logic [WIDTH -1:0] encoded_copy;

80 integer fd;

81 real modifier_1 , modifier_2 , modifier_3 , modifier_4;

82

83 design_top #(WIDTH , FBITS , CLK_DIVISOR , DUTY_DIVISOR , CLK_DIVISOR_WIDTH)

design_top (.*);

84

85 /* Clock */

86 initial forever begin

87 #FAST_CLOCK_DELAY clk = ~clk;

88 end

89

90 /*

91 initial forever begin

92 #DELAY_2 div_clk = ~div_clk;

93 end

94 */

95 /* Stimuli */

96 initial begin

97

98 tb_reset;

99

100 /* Start clock */

101 fd = $fopen("./ simulation_result.csv", "w"); //"a" will amend , "w" will

overwrite ...

102 $fdisplay(fd ,"Compression Status;Number_of_ones;Compression ratio;

Actual_bits_for_stimuli;Ideal Probability;Actual Probability;Forced Probability

Deviation;Probability_with_deviation;Encoded;Stimuli");

103

104 // Test 1

105 for (int ii = 0; ii <= RANDOM_ITERATIONS - 1; ++ii) begin

106 // compression_stimuli = 1 << (WIDTH -1);

107 // compression_stimuli = 1 << COMPRESSION_BITS -1;

108 comp_state_in_enc = (1 << (FBITS));

109 compression_stimuli = 0;

110 modifier_1 = $urandom_range (1, EXTRA_RUNS);
111 modifier_2 = $urandom_range (1, EXTRA_RUNS_DIVISOR);
112 modifier_3 = COMPRESSION_BITS;

113 modifier_4 = modifier_3 * (modifier_1/modifier_2);

114 probability_deviation_pointer = $urandom_range (0,
PROBABILITY_DEVIATION_OPTIONS -1);

115 probability_deviation = probability_deviation_array[

probability_deviation_pointer];

116 // $display (" Random Modifier %0f", modifier_4);

117 for(int jj = 0; jj < modifier_4; ++jj) begin

118 // bit_value = 1;// $urandom_range (0,1);
119 position = $urandom_range (0,COMPRESSION_BITS -1);

120 // compression_stimuli[position] = bit_value;

121 // $display (" Compression stimuli = %b", compression_stimuli);

122 // bit_value = $urandom_range (0,1);
123 compression_stimuli[position] = 1;

124 end

125 calculate_probility(compression_stimuli , probability_deviation ,

probability , probability_real , number_of_ones , probability_without_deviation);

100

126 encode_decode(compression_stimuli , comp_state_in_enc , probability ,

compression_status , compression_ratio);

127 $fdisplay(fd ,"%0d;%0d;%0f;%0d;%0d;%0f;%0f;%0f;%0d;%0d",
compression_status , number_of_ones , compression_ratio , stimuli_temp_bit ,

probability , probability_without_deviation , probability_deviation ,

probability_real , encoded_copy , compression_stimuli);

128 end

129

130

131

132

133

134 // Test 2 (Not currently in use)

135 /*

136 for (int ii = 0; ii <= RANDOM_ITERATIONS - 1; ++ii) begin

137 // compression_stimuli = 1 << (WIDTH -1);

138 // compression_stimuli = 1 << COMPRESSION_BITS -1;

139 comp_state_in_enc = (1 << (FBITS));

140 compression_stimuli = 0;

141 for(int jj = 0; jj < (COMPRESSION_BITS * EXTRA_RUNS) + 1; ++jj) begin

142 bit_value = $urandom_range (0,1);
143 position = $urandom_range(COMPRESSION_BITS -1);

144 compression_stimuli[position] = bit_value;

145 // $display (" Compression stimuli = %b", compression_stimuli);

146 end

147 calculate_probility(compression_stimuli , probability_deviation ,

probability , probability_real , number_of_ones , probability_without_deviation);

148 encode_decode(compression_stimuli , comp_state_in_enc , probability ,

compression_status , compression_ratio);

149 $fdisplay(fd ,"%0d;%0d;%0f;%0d;%0d;%0f;%0f;%0f,%0d;%0d",
compression_status , number_of_ones , compression_ratio , stimuli_temp_bit ,

probability , probability_without_deviation , probability_deviation ,

probability_real , encoded_copy , compression_stimuli);

150 end

151 */

152

153 // Test 3 (Not currently in use)

154 // 11000011 Stimuli used for waveform generation and illustration

155 //for (int ii = 0; ii <= RANDOM_ITERATIONS - 1; ++ii) begin

156 // compression_stimuli = 1 << (WIDTH -1);

157 // compression_stimuli = 1 << COMPRESSION_BITS -1;

158 comp_state_in_enc = (1 << (FBITS));

159 compression_stimuli = 8'b1111_1111;
160 probability = 1 << FBITS -1;

161 // calculate_probility(compression_stimuli , probability_deviation ,

probability , probability_real , number_of_ones , probability_without_deviation);

162 encode_decode(compression_stimuli , comp_state_in_enc , probability ,

compression_status , compression_ratio);

163 $fdisplay(fd ,"%0d;%0d;%0f;%0d;%0d;%0f;%0f;%0f,%0d;%0d",
compression_status , number_of_ones , compression_ratio , stimuli_temp_bit ,

probability , probability_without_deviation , probability_deviation ,

probability_real , encoded_copy , compression_stimuli);

164 */

165

166

167 // Test 4 Bit shift ones

168 comp_state_in_enc = (1 << (FBITS));

169 compression_stimuli = 0;

170 calculate_probility(compression_stimuli , probability_deviation , probability

, probability_real , number_of_ones , probability_without_deviation);

171 encode_decode(compression_stimuli , comp_state_in_enc , probability ,

compression_status , compression_ratio);

172 $fdisplay(fd ,"%0d;%0d;%0d;%0f;%0f;%0f;%0f", number_of_ones , encoded_copy ,

compression_status , compression_ratio , probability , probability_real ,

probability_deviation);

173 for (int ii = 0; ii <= COMPRESSION_BITS - 1; ++ii) begin

174 comp_state_in_enc = (1 << (FBITS));

175 compression_stimuli[ii] = 1;

176 calculate_probility(compression_stimuli , probability_deviation ,

probability , probability_real , number_of_ones , probability_without_deviation);

177 encode_decode(compression_stimuli , comp_state_in_enc , probability ,

compression_status , compression_ratio);

178 $fdisplay(fd ,"%0d;%0d;%0f;%0d;%0d;%0f;%0f;%0f,%0d;%0d",

101

compression_status , number_of_ones , compression_ratio , stimuli_temp_bit ,

probability , probability_without_deviation , probability_deviation ,

probability_real , encoded_copy , compression_stimuli);

179 end

180

181 $fclose(fd);
182 if(run_counter == success_counter)

183 $display("\t%d:\t All %d runs succeeded!", $time , run_counter);

184 else

185 $error("\t%d:\%d runs failed!", $time , run_counter -success_counter);

186

187 $finish;
188 end

189

190

191

192 task calculate_probility(input logic [WIDTH -1:0] data , input real inaccuracy ,

output logic [WIDTH -1:0] probability_fixed , output real

probability_float_rounded , output integer number_of_ones , output real

probability_accurate); begin

193 real counter = 0; // Counter as float to help division later

194 //logic [WIDTH -1:0] probability_fixed;

195 real probability_float;

196 number_of_ones = 0;

197 for (int ii = COMPRESSION_BITS - 1; ii >= 0; --ii) begin

198 // $display (" Iteration %b", ii);

199 if(data[ii])begin

200 // $display ("Found One");

201 counter ++;

202 end

203 end

204 number_of_ones = counter;

205 // $display (" Counted %b", counter);

206 // $display ("Inacc %f", inaccuracy);

207 probability_float = (counter / COMPRESSION_BITS);

208 probability_accurate = probability_float;

209 // $display (" probability is %f", probability_float);

210 if (probability_float >= (1.00 - inaccuracy)) begin

211 probability_float = probability_float - inaccuracy;

212 // $display ("New probability after fix with - %f is %f", inaccuracy ,

probability_float);

213 end

214 else if (probability_float + inaccuracy <= 0) begin

215 probability_float = probability_float - inaccuracy;

216 // $display ("We did it at probability %0f", probability_float);

217 end

218 else if (probability_float - inaccuracy <= 0) begin

219 probability_float = probability_float + inaccuracy;

220 // $display ("We did it at probability %0f", probability_float);

221 end

222 else begin

223 probability_float = probability_float + inaccuracy;

224 // $display ("New probability after fix with + %f is %f", inaccuracy ,

probability_float);

225 end

226 probability_fixed = probability_float * (1 << FBITS);

227 probability_float_rounded = probability_fixed * SF;

228 // $display ("\t%d:\t Probability: %f", $time , probability_float);

229 // $display (" Probability fixed: %b", probability_fixed);

230 // $display ("\t%d:\t Probability fixed as float %f", $time ,
probability_float_rounded);

231 // Convert from float to fixed

232 // Multiply input number by 2^F, F is fraction bits.'
233 counter = 0;

234 end

235 endtask : calculate_probility

236

237

238

239 task encode_decode(logic [COMPRESSION_BITS -1:0] __stimuli , logic [WIDTH -1:0]

__state_in , [COMPRESSION_BITS -1:0] __probability , output logic

__compression_status , output real __compression_ratio); begin

240 tb_reset;

102

241 run_counter ++;

242 /* Compression */

243 // The encoder encodes from MSB -> LSB.

244

245 compression_stimuli = __stimuli; //'
b1110_1110_1110_1110_1110_1110_1110_1110; //'
b1110_1110_1110_1110_1110_1110_1110_1110;

246 comp_state_in_enc = __state_in; // starting state , here it's 1.

247 probability = __probability; // static probability here it is (1/4) =

0.5

248 encode_one_bit(compression_stimuli[COMPRESSION_BITS -1], comp_state_in_enc);

// First round to insert +1

249 for(int ii = COMPRESSION_BITS - 2; ii >= 0; ii --) begin

250 encode_one_bit(compression_stimuli[ii], temp_encoded);

251 end

252

253 tb_reset;

254

255 /* Compression */

256 // comp_state_in_dec = (1 << (FBITS)); // starting state , here it 's 1.

257 // probability = (1 << (FBITS -1)); // static probability here it is

(1/2) = 0.5

258 // to_decode = 316 << (FBITS);

259 // $display (" to_decode = %d", encoded);

260 to_decode = encoded;

261 encoded_copy = SF*to_decode;

262 // $display (" to_decode = %d", encoded_copy);

263

264 for(int i = COMPRESSION_BITS; i > 0; i--) begin

265 decode_one_bit;

266 compression_result[COMPRESSION_BITS - i] = decoded_bit;

267 end

268 // $display ("\t%d:\t Result %b", $time , compression_result);

269 if(compression_result == compression_stimuli) begin

270 // $display ("\t%d:\t Compression succeeded! Stimuli %b == Reconstruction %

b", $time , compression_stimuli , compression_result);

271 success_counter ++;

272 __compression_status = 1'b1;
273 end

274 else

275 __compression_status = 1'b0;
276 // $error ("\t%d:\t Compression failed. Stimuli %b == Reconstruction %b",

$time , compression_stimuli , compression_result);

277

278 // $display ("\t%d:\t The encoded representation (state) was %d with p = %f",

$time , $itor(temp_encoded * SF), SF*probability);

279 temp_temp_encoded_bits = $ceil(SF*temp_encoded); // convert to an integer (

must round up to whole number (but should never be a decimal ...))

280 temp_encoded_bits = $ceil($clog2(temp_temp_encoded_bits + 1)); // Required

bits are log2(number) + 1.

281 stimuli_temp_bit = $ceil($clog2(__stimuli + 1)); // already ceiled by clog2

so not needed?

282 // $display ("given bits = %f, calculated bits = %f", temp_encoded_bits ,

stimuli_temp_bit);

283 // $display ("\t%d:\t Encoded bits: %f, Decoded bits %f", $time ,
temp_encoded_bits , stimuli_temp_bit);

284 temp_temp_encoded_bits_real = temp_encoded_bits;

285 temp_Encoded_bits_real = temp_temp_encoded_bits_real/COMPRESSION_BITS;

286 __compression_ratio = temp_Encoded_bits_real;

287 // $display ("\t%d:\t Compression ratio: %f", $time , temp_Encoded_bits_real);

288 end

289 endtask : encode_decode

290

291 // Dump simulation data

292 /*

293 initial begin

294 $dumpfile ("dump.vcd");
295 $dumpvars (1);
296 end

297 */

298

299 function void tb_reset;

300 // Decoder

103

301 start_dec = 0;

302 vin_dec = 0;

303 rout_dec = 0;

304 rst_n_dec = 0;

305 clk = 0;

306

307 // Encoder

308 start_enc = 0;

309 vin_enc = 0;

310 rout_enc = 0;

311 rst_n_enc = 0;

312 clk = 0;

313 endfunction : tb_reset

314

315 task single_run (__start , __vin , __ack , __rst_n , nothing , nothing_2 , mode =

1);

316

317 /* Encoder mode */

318 if(mode == 1) begin

319 #1

320 start_enc = __start; vin_enc = __vin; rout_enc = __ack; rst_n_enc =

__rst_n;

321

322 #1;

323 end

324 else begin

325 #1

326 start_dec = __start; vin_dec = __vin; rout_dec = __ack; rst_n_dec =

__rst_n;

327 #1;

328 end

329 endtask : single_run

330

331 task decode_one_bit ();

332 /* Process stage

333 * DECODING

334 */

335 begin

336 /* First round */

337 single_run (1, 0, 0, 1, 0, 0, 0);

338 single_run (0, 0, 0, 1, 0, 0, 0);

339 /* COMP */

340 single_run (0, 1, 0, 1, 0, 1, 0);

341 //#2;

342 //#400;

343 /* DONE */

344 single_run (0, 0, 0, 1, 0, 0, 0);

345 // $display (" to_decode = %b and comp_state_out_dec %b", to_decode ,

comp_state_out_dec);

346 to_decode = comp_state_out_dec;

347 // $display (" to_decode = %b and comp_state_out_dec %b", to_decode ,

comp_state_out_dec);

348 /* IDLE */

349 single_run (0, 0, 1, 1, 0, 0, 0);

350 // single_run (0, 0, 0, 1, 0, 0, 1);

351 // single_run (0, 0, 0, 1, 0, 0, 1);

352 // single_run (0, 0, 0, 1, 0, 0, 1);

353 end

354

355 endtask : decode_one_bit

356

357 task encode_one_bit(logic __to_encode , logic [WIDTH -1:0] state);

358 /* Process stage

359 * ENCODING

360 */

361 int stuck_in_while_protection = 0;

362 begin

363 logic [WIDTH -1:0] __encoded;

364

365 /* First round */

366 single_run (0, 0, 0, 0, 0, 0, 1);

367 single_run (0, 0, 0, 1, 0, 0, 1);

368 single_run (0, 0, 0, 0, 0, 0, 1);

104

369 /* READ */

370 to_encode = __to_encode;

371 comp_state_in_enc = state;

372 single_run (1, 0, 0, 1, 0, 0, 1);

373 single_run (0, 0, 0, 1, 0, 0, 1);

374 /* COMP */

375 single_run (0, 1, 0, 1, 0, 1, 1);

376 single_run (0, 0, 0, 1, 0, 1, 1);

377 stuck_in_while_protection = 0;

378 while(! vout_enc & (stuck_in_while_protection <

ENCODER_VOUT_MAX_WAIT_LIMIT)) begin

379 #FAST_CLOCK_DELAY;

380 #FAST_CLOCK_DELAY;

381 stuck_in_while_protection ++;

382 end

383 /* DONE */

384 single_run (0, 0, 0, 1, 0, 0, 1);

385 temp_encoded = encoded;

386 /* IDLE */

387 single_run (0, 0, 1, 1, 0, 0, 1);

388 single_run (0, 0, 0, 1, 0, 0, 1);

389 single_run (0, 0, 0, 1, 0, 0, 1);

390 single_run (0, 0, 0, 1, 0, 0, 1);

391 end

392

393 endtask : encode_one_bit

394

395

396 endmodule

397

Listing 23: Optimized ANS compressor, master testbench

Appendix D UVM testbench

The most important modules of the UVM testbench has been added to the appendix. The testbench
was based on strategies and methodology proposed by Cadence in their course ”SystemVerilog
Accelerated Verification with UVM” [1] (completed while working with ARM)

D.1 UVM uABS

1 class uabs_env extends uvm_env;

2

3 // Components of the environment

4 uabs_tx_agent agent;

5 bit checks_enable = 1;

6

7 bit coverage_enable = 1;

8

9 // Component macro

10 // `uvm_component_utils(uabs_env)
11

12 `uvm_component_utils_begin(uabs_env)
13 `uvm_field_int(checks_enable , UVM_ALL_ON)

14 `uvm_field_int(coverage_enable , UVM_ALL_ON)

15 `uvm_component_utils_end
16

17 // Component constructor

18 function new (string name , uvm_component parent);

19 super.new(name , parent);

20 endfunction : new

21

22 // UVM build phase ()

23 function void build_phase(uvm_phase phase);

24 super.build_phase(phase);

25 agent = uabs_tx_agent :: type_id :: create("tx_agent", this);

26 endfunction : build_phase

105

27

28 function void start_of_simulation_phase(uvm_phase phase);

29 `uvm_info(get_type_name (), {"start of simulation for ", get_full_name ()},

UVM_HIGH)

30 endfunction : start_of_simulation_phase

31

32 endclass : uabs_env

33

34

Listing 24: Optimized ANS compressor, UVM testbench, uabs env

1 interface uabs_if #(parameter WIDTH = 24, parameter FBITS = 4, parameter

CLK_DIVISOR = 4,

2 parameter DUTY_DIVISOR = 4, parameter CLK_DIVISOR_WIDTH =

$clog2(CLK_DIVISOR +1),
3 parameter MAX_ALLOWED_VOUT_WAIT_CYCLES = WIDTH *100)

4 (input clock , input reset , input [WIDTH -1:0] encoded , input vout_enc , input

idle_enc , input vout_dec , input decoded_bit , input [WIDTH -1:0] state_out_dec);

5 timeunit 1ns;

6 timeprecision 100ps;

7

8 import uvm_pkg ::*;

9 `include "uvm_macros.svh"

10

11 import uabs_pkg ::*;

12

13 // Actual signals

14 logic to_encode;

15 logic [WIDTH -1:0] to_decode;

16 logic [WIDTH -1:0] to_decode_temp;

17 //logic decoder_en;

18 //logic encoder_en;

19 logic start_enc;

20 logic start_dec;

21 logic vin_enc;

22 logic vin_dec;

23 logic rout_enc;

24 logic rout_dec;

25 logic [WIDTH -1:0] state_in_enc;

26 logic [FBITS :0] probability;

27 //input logic rst_n_enc

28 logic in_suspend = 0; // Temp

29 //logic [47:0] encoded;

30 // integer decoded;

31 logic encoder_done = 0;

32 logic decoder_done = 0;

33 logic rst_n_enc;

34 logic rst_n_dec;

35

36 integer start_enc_delay;

37 integer vin_enc_delay;

38 integer rout_enc_delay;

39 integer start_dec_delay;

40 integer vin_dec_delay;

41 integer rout_dec_delay;

42

43 int counter = 0;

44

45 // signals for transaction recording

46 bit monstart , drvstart;

47

48 // local storage for payload

49 logic [7:0] payload_mem [0:63];

50

51 // local flags for drive and monitor:

52 logic drive_done = 0;

53 logic monitor_done = 0;

54

55 // This number depends ont he WIDTH that is used ... this parameter is an

approximation , change if needed.

56

57 task uabs_reset ();

106

58 @(posedge reset);

59 to_encode <= 'hz;
60 to_decode <= 'hz;
61 // decoder_en <= 1'b0;
62 // encoder_en <= 1'b0;
63 start_enc <= 1'b0;
64 start_dec <= 1'b0;
65 vin_enc <= 1'b0;
66 vin_dec <= 1'b0;
67 rout_enc <= 1'b0;
68 rout_dec <= 1'b0;
69 rst_n_enc <= 1'b0;
70 rst_n_dec <= 1'b0;
71 // rst_n_enc <= 1'b0;
72 disable send_to_dut;

73 endtask : uabs_reset

74

75 task simple_reset ();

76 to_encode <= 'hz;
77 to_decode <= 'hz;
78 // decoder_en <= 1'b0;
79 // encoder_en <= 1'b0;
80 start_enc <= 1'b0;
81 start_dec <= 1'b0;
82 vin_enc <= 1'b0;
83 vin_dec <= 1'b0;
84 rout_enc <= 1'b0;
85 rout_dec <= 1'b0;
86 state_in_enc <= 'hz;
87 probability <= 'hz;
88 rst_n_enc <= 1'b0;
89 rst_n_dec <= 1'b0;
90 // rst_n_enc <= 1'b0;
91 endtask : simple_reset

92

93 // Gets a packet and drive it into the DUT

94 task send_to_dut(input bit to_encode_in ,

95 bit to_decode_in ,

96 //bit decoder_en_in ,

97 //bit encoder_en_in ,

98 bit start_enc_in ,

99 bit start_dec_in ,

100 bit vin_enc_in ,

101 bit vin_dec_in ,

102 bit rout_enc_in ,

103 bit rout_dec_in ,

104 logic [WIDTH -1:0] state_in_enc_in ,

105 logic [FBITS :0] probability_in ,

106 integer start_enc_delay_in ,

107 integer vin_enc_delay_in ,

108 integer rout_enc_delay_in ,

109 integer start_dec_delay_in ,

110 integer vin_dec_delay_in ,

111 integer rout_dec_delay_in);

112

113 // Start to send packet if not in_suspend signal:

114 @(negedge clock iff (! in_suspend));

115

116 // Trigger for transaction recording

117 drvstart = 1'b1;
118 drive_done = 1'b0;
119 rst_n_enc = 1'b1;
120 rst_n_dec = 1'b1;
121 start_enc_delay = start_enc_delay_in;

122 vin_enc_delay = vin_enc_delay_in;

123 rout_enc_delay = rout_enc_delay_in;

124 start_dec_delay = start_dec_delay_in;

125 vin_dec_delay = vin_dec_delay_in;

126 rout_dec_delay = rout_dec_delay_in;

127

128 `uvm_info("uabs_if", "sender is driving Encoder", UVM_HIGH)

129 // Drive Encoder with DUT

130 @(negedge clock iff (! in_suspend))begin

107

131 // to_encode = to_encode_in;

132 // probability = probability_in;

133 // state_in_enc = state_in_enc_in;

134 // decoder_en = decoder_en_in;

135 // encoder_en = encoder_en_in;

136 // start_enc = start_enc_in;

137 // start_dec = start_dec_in;

138 // vin_enc = vin_enc_in;

139 // vin_dec = vin_dec_in;

140 // rout_dec = rout_dec_in;

141 end

142

143 // Fork Join makes the encoder interfacing more random , as the

interfacing is executed in paralell.

144 fork

145

146 // Encoder Start Interfacing

147 begin

148 // Wait with delay then start encoder

149 repeat(start_enc_delay) begin

150 @(negedge clock iff (! in_suspend));

151 end

152 start_enc = start_enc_in;

153 end

154

155 // Encoder Valid Interfacing

156 begin

157 // Wait with delay then make valid input and drive stimuli to

encoder

158 repeat(vin_enc_delay) begin

159 @(negedge clock iff (! in_suspend));

160 end

161 vin_enc = vin_enc_in;

162 to_encode = to_encode_in;

163 probability = probability_in;

164 state_in_enc = state_in_enc_in;

165 end

166

167 // Encoder Ready Out Interfacing

168 begin

169 // Wait for Encoder to be done

170 `uvm_info("uabs_if", "sender is waiting for encoder to be done"

, UVM_HIGH)

171 while(! encoder_done) begin

172 @(negedge clock iff (! in_suspend));

173 end

174

175 // Now drive the Encoded message to Decoder and intputs

176

177 // Wait with delay and drive Decoder and release Encoder

178 repeat(rout_enc_delay) begin

179 @(negedge clock iff (! in_suspend));

180 end

181 rout_enc = rout_enc_in;

182 to_decode_temp = encoded;

183 // vin_dec = vin_dec_in;

184 // rout_dec = rout_dec_in;

185 end

186 join

187

188 fork

189

190 // Decoder Start Interfacing

191 begin

192 repeat(start_dec_delay) begin

193 @(negedge clock iff (! in_suspend));

194 end

195 `uvm_info("uabs_if", "sender is driving Decoder", UVM_HIGH)

196 // rout_enc = rout_enc_in;

197 start_dec = start_dec_in;

198 end

199

200 // Decoder Valid In Interfacing

108

201 begin

202 repeat(vin_dec_delay) begin

203 @(negedge clock iff (! in_suspend));

204 end

205 vin_dec = vin_dec_in;

206 to_decode = to_decode_temp;

207 end

208

209 // Decoder Ready Out Interfacing

210 begin

211 // Wait for Decoder to be done

212 `uvm_info("uabs_if", "sender is waiting for encoder to be done"

, UVM_HIGH)

213 while(! decoder_done) begin

214 @(negedge clock iff (! in_suspend));

215 end

216 repeat(rout_dec_delay) begin

217 @(negedge clock iff (! in_suspend));

218 end

219 rout_dec = rout_dec_in;

220 end

221 join

222

223

224 @(posedge clock iff (! in_suspend)) begin

225 drive_done = 1'b1;
226 end

227

228 `uvm_info("uabs_if", "sender waiting for monitor to be done", UVM_HIGH)

229 while (!(monitor_done & drive_done)) begin

230 @(posedge clock iff (! in_suspend));

231 end

232

233 simple_reset;

234

235 // Wait for monitor to catch up...

236 @(posedge clock iff (! in_suspend))

237

238 // reset trigger

239 `uvm_info("uabs_if", "sender ending and resetting!", UVM_HIGH)

240 drvstart = 1'b0;
241 endtask : send_to_dut

242

243 // Collect packets

244 task collect_packet(output bit to_encode_out ,

245 bit to_decode_out ,

246 bit start_enc_out ,

247 bit start_dec_out ,

248 bit vin_enc_out ,

249 bit vin_dec_out ,

250 bit rout_enc_out ,

251 bit rout_dec_out ,

252 logic [WIDTH -1:0] state_in_enc_out ,

253 logic [FBITS :0] probability_out ,

254 logic [WIDTH -1:0] encoded_out ,

255 logic decoded_bit_out ,

256 logic [WIDTH -1:0] state_out_dec_out ,

257 integer start_enc_delay_out ,

258 integer vin_enc_delay_out ,

259 integer rout_enc_delay_out ,

260 integer start_dec_delay_out ,

261 integer vin_dec_delay_out ,

262 integer rout_dec_delay_out);

263 // Monitor looks at the bus on posedge (Driver uses negedge)

264 //@(posedge in_data_vld);

265

266 @(posedge clock iff(! in_suspend /* & in_data_vld */))

267 // Trigger for transaction recording

268 monstart = 1'b1;
269 monitor_done = 1'b0;
270 encoder_done = 1'b0;
271 decoder_done = 1'b0;
272 start_enc_delay_out = start_enc_delay;

109

273 vin_enc_delay_out = vin_enc_delay;

274 rout_enc_delay_out = rout_enc_delay;

275 start_dec_delay_out = start_dec_delay;

276 vin_dec_delay_out = vin_dec_delay;

277 rout_dec_delay_out = rout_dec_delay;

278

279 `uvm_info("uabs_if", "collector collect_packets", UVM_HIGH)

280 // Collect Header {Length , Addr}

281

282 // `uvm_info (" uabs_if","ARE WE STUCK HERE?", UVM_HIGH) // Just for debug

remove later

283

284 // Wait one cycle ...

285 @(posedge clock iff (! in_suspend))

286

287 `uvm_info("uabs_if", "collector waiting for encoder vout ", UVM_HIGH)

288 // Wait for encoder to have a valid output

289 counter = 0;

290 while(! vout_enc && (counter < 200)) begin

291 @(posedge clock iff (! in_suspend));

292 // `uvm_info (" uabs_if", "still waiting for encoder vout ... ",

UVM_HIGH)

293 counter ++;

294 end

295

296 // Sample Encoder

297 @(posedge clock iff (! in_suspend)) begin

298 to_encode_out = to_encode;

299 start_enc_out = start_enc;

300 // start_dec_out = start_dec;

301 vin_enc_out = vin_enc;

302 // vin_dec_out = vin_dec;

303 rout_enc_out = rout_enc;

304 // rout_dec_out = rout_dec;

305 encoded_out = encoded;

306 probability_out = probability;

307 state_in_enc_out = state_in_enc;

308 // state_out_dec_out = state_out_dec;

309 end

310

311 /* rst_n_enc_out = rst_n_enc */

312

313 // Encoder is done , but not idle

314 encoder_done = 1'b1;
315

316 counter = 0;

317 while(! idle_enc && (counter < 200)) begin

318 @(posedge clock iff (! in_suspend));

319 // `uvm_info (" uabs_if", "still waiting for encoder idle ... ",

UVM_HIGH)

320 counter ++;

321 end

322

323 // Wait for decoder to have valid out

324 `uvm_info("uabs_if", "collector waiting for decoder vout", UVM_HIGH)

325 while(! vout_dec) begin

326 @(posedge clock iff (! in_suspend));

327 end

328

329 decoder_done = 1'b1;
330

331 // Sample decoded data

332 @(posedge clock iff (! in_suspend)) begin

333 // start_enc_out = start_enc;

334 start_dec_out = start_dec;

335 // vin_enc_out = vin_enc;

336 vin_dec_out = vin_dec;

337 // rout_enc_out = rout_enc;

338 rout_dec_out = rout_dec;

339 decoded_bit_out = decoded_bit;

340 state_out_dec_out = state_out_dec;

341 end

342

110

343 // Alert that monitor is done

344 @(posedge clock iff (! in_suspend)) begin

345 monitor_done = 1'b1;
346 end

347

348 // $display (" collector %b waiting for sender %b to be done",

monitor_done , drive_done);

349 // Check that driver and monitor both are done ...

350 while (!(monitor_done & drive_done)) begin

351 @(posedge clock iff (! in_suspend));

352 end

353 // $display (" collector %b waiting for sender %b to be done",

monitor_done , drive_done);

354

355 /*

356 * Do whatever else here with data from the DUT

357 */

358

359 // Wait for sender to catch up...

360 @(posedge clock iff (! in_suspend));

361 `uvm_info("uabs_if", "collection ending!", UVM_HIGH)

362 monstart = 1'b0;
363 // `uvm_info (" uabs_if","WE MADE IT OUT of collect_packet =)", UVM_HIGH)

// Just for debug remove later

364 endtask : collect_packet

365

366 // If the channel suspends ports are incorrectly connected/driver

367 // the uabs input will be suspended and the simulation could hang.

368 // This assertion checks for this and raises a (non -UVM) error message

369 property uabs_suspended;

370 @(posedge clock) !in_suspend ##1 in_suspend [*10] |=> !in_suspend;

371 endproperty

372

373 UABS_SUSPEND : assert property (uabs_suspended)

374 else

375 begin

376 $error("\n** Assertion Error - uabs interface is suspended: Check

channel suspend ports! \n ");

377 $finish;
378 end

379

380

381 property uabs_encoder_stuck;

382 @(posedge clock) !vout_enc & start_enc ##1 !vout_enc [*

MAX_ALLOWED_VOUT_WAIT_CYCLES] |=> vout_enc;

383 endproperty

384

385 UABS_ENC_VOUT_STUCK : assert property (uabs_encoder_stuck)

386 else

387 begin

388 $error("\n** Assertion Error - uabs encoder is stuck in waiting for

vout: Check Encoder design !\n ");

389 $finish;
390 end

391

392 property uabs_decoder_stuck;

393 @(posedge clock) !vout_dec & start_dec ##1 (! vout_dec & start_dec)[*

MAX_ALLOWED_VOUT_WAIT_CYCLES] |=> vout_dec;

394 endproperty

395

396 UABS_DEC_VOUT_STUCK : assert property (uabs_decoder_stuck)

397 else

398 begin

399 $error("\n** Assertion Error - uabs decoder is stuck in waiting for

vout: Check Decoder design !\n ");

400 $finish;
401 end

402

403

404 endinterface : uabs_if

405

Listing 25: Optimized ANS compressor, UVM testbench, uabs if

111

1 class uabs_packet extends uvm_sequence_item;

2

3 parameter WIDTH = 24;

4 parameter FBITS = 4;

5 parameter int SAFETY_HEADROOM = $ceil ((1.0 * WIDTH) * 0.20);

6 parameter CONSTRAINT_MIN = (1 << FBITS) - 1;

7 parameter CONSTRAINT_MAX = (1 << (WIDTH - SAFETY_HEADROOM)) - 1;

8 parameter MAX_INTERFACE_DELAY = 100;

9 parameter MIN_INTERFACE_DELAY = 0;

10

11 // Inputs

12 rand logic to_encode;

13 rand logic [WIDTH -1:0] state_in_enc;

14 rand logic [FBITS :0] probability;

15 // Outputs

16 logic [WIDTH -1:0] encoded;

17 logic decoded_bit;

18 logic [WIDTH -1:0] state_out_dec;

19 logic [WIDTH -1:0] to_decode; // Takes the encoded state , does not need stimuli.

20 // Less important inputs

21 rand logic start_enc;

22 rand logic vin_enc;

23 rand logic rout_enc;

24 rand logic start_dec;

25 rand logic vin_dec;

26 rand logic rout_dec;

27

28 rand integer start_enc_delay;

29 rand integer vin_enc_delay;

30 rand integer rout_enc_delay;

31 rand integer start_dec_delay;

32 rand integer vin_dec_delay;

33 rand integer rout_dec_delay;

34

35 /* rand logic rst_n_enc; */

36

37 `uvm_object_utils_begin(uabs_packet)
38 // `uvm_field_int(decoder_en , UVM_ALL_ON)

39 // `uvm_field_int(encoder_en , UVM_ALL_ON)

40 `uvm_field_int(to_encode , UVM_ALL_ON)

41 `uvm_field_int(start_enc , UVM_ALL_ON)

42 `uvm_field_int(vin_enc , UVM_ALL_ON)

43 `uvm_field_int(rout_enc , UVM_ALL_ON)

44 `uvm_field_int(start_dec , UVM_ALL_ON)

45 `uvm_field_int(vin_dec , UVM_ALL_ON)

46 `uvm_field_int(rout_dec , UVM_ALL_ON)

47

48 `uvm_field_int(start_enc_delay , UVM_ALL_ON)

49 `uvm_field_int(vin_enc_delay , UVM_ALL_ON)

50 `uvm_field_int(rout_enc_delay , UVM_ALL_ON)

51 `uvm_field_int(start_dec_delay , UVM_ALL_ON)

52 `uvm_field_int(vin_dec_delay , UVM_ALL_ON)

53 `uvm_field_int(rout_dec_delay , UVM_ALL_ON)

54

55 `uvm_field_int(encoded , UVM_ALL_ON)

56 `uvm_field_int(to_decode , UVM_ALL_ON)

57 `uvm_field_int(decoded_bit , UVM_ALL_ON)

58 `uvm_field_int(state_out_dec , UVM_ALL_ON)

59 `uvm_field_int(state_in_enc , UVM_ALL_ON)

60 `uvm_field_int(probability , UVM_ALL_ON)

61 /* `uvm_field_int(rst_n_enc , UVM_ALL_ON) */

62 `uvm_object_utils_end
63

64 function new (string name = "uabs_packet");

65 super.new(name);

66 endfunction: new

67

68 constraint to_encode_range {0 <= to_encode; to_encode <= 1;}

69 // constraint to_decode_range {CONSTRAINT_MIN < to_decode ;to_decode <=

CONSTRAINT_MAX ;}

70 // constraint decoder_always_on {decoder_en != 0;}

71 // constraint encoder_always_on {encoder_en != 0;}

72 constraint start_enc_range {1 <= start_enc; start_enc <= 1;}

112

73 constraint vin_enc_range {1 <= vin_enc; vin_enc <= 1;}

74 constraint rout_enc_range {1 <= rout_enc; rout_enc <= 1;}

75 constraint start_dec_range {1 <= start_dec; start_dec <= 1;}

76 constraint vin_dec_range {1 <= vin_dec; vin_dec <= 1;}

77 constraint rout_dec_range {1 <= rout_dec; rout_dec <= 1;}

78 constraint state_in_range {(1 << FBITS) <= state_in_enc; state_in_enc <=

CONSTRAINT_MAX; state_in_enc[FBITS :0] == 0;}

79 constraint probability_range {1 <= probability; probability <= (1 << FBITS) - 1;}

80

81 constraint start_enc_delay_range {MIN_INTERFACE_DELAY <= start_enc_delay;

start_enc_delay <= MAX_INTERFACE_DELAY ;}

82 constraint start_dec_delay_range {MIN_INTERFACE_DELAY <= start_dec_delay;

start_dec_delay <= MAX_INTERFACE_DELAY ;}

83 constraint vin_enc_delay_range {MIN_INTERFACE_DELAY <= vin_enc_delay;

vin_enc_delay <= MAX_INTERFACE_DELAY ;}

84 constraint vin_dec_delay_range {MIN_INTERFACE_DELAY <= vin_dec_delay;

vin_dec_delay <= MAX_INTERFACE_DELAY ;}

85 constraint rout_enc_delay_range {MIN_INTERFACE_DELAY <= rout_enc_delay;

rout_enc_delay <= MAX_INTERFACE_DELAY ;}

86 constraint rout_dec_delay_range {MIN_INTERFACE_DELAY <= rout_dec_delay;

rout_dec_delay <= MAX_INTERFACE_DELAY ;}

87

88

89 //rand logic [WIDTH -1:0] comp_state_in_enc;

90 //rand logic [FBITS :0] probability

91

92

93 // constraint decoded_range {0 < encoded; encoded <= 1;}

94 /* constraint to_encode_range {0 < rst_n_enc; rst_n_enc <= 1;} */

95

96 endclass : uabs_packet

97

Listing 26: Optimized ANS compressor, UVM testbench, uabs packet

1 package uabs_pkg;

2 import uvm_pkg ::*;

3 `include "uvm_macros.svh"

4

5 typedef uvm_config_db #(virtual uabs_if) uabs_vif_config;

6 `include "uabs_packet.sv"

7 `include "uabs_tx_monitor.sv"

8 `include "uabs_tx_sequencer.sv"

9 `include "uabs_tx_seqs.sv"

10 `include "uabs_tx_driver.sv"

11 `include "uabs_tx_agent.sv"

12 `include "uabs_env.sv"

13 endpackage : uabs_pkg

14

Listing 27: Optimized ANS compressor, UVM testbench, uabs pkg

1 typedef enum bit {EQUALITY , UVM} comp_t;

2 // import uvm_pkg ::*;

3 // `include "uvm_macros.svh"

4 // `include "uabs_pkg.sv"

5 // import uabs_pkg ::*;

6 // import channel_pkg ::*;

7 // `include "uabs_tb.sv"

8 // `include "uabs_test_lib.sv"

9

10 class uabs_scoreboard extends uvm_scoreboard;

11

12

13 // TLm Port Declarations

14 `uvm_analysis_imp_decl(_uabs)
15 // `uvm_analysis_imp_decl(_chan0)
16

17 uvm_analysis_imp_uabs #(uabs_packet , uabs_scoreboard) sb_uabs_in;

18 // uvm_analysis_imp_chan0 #(channel_packet , uabs_scoreboard) sb_chan0;

19

20 // Scoreboard Packet Queues

21 uabs_packet sb_queue0[$];

113

22 // channel_packet cp_queue0[$];
23

24

25 // Scoreboard Statistics

26 int packets_in , in_dropped;

27 int packets_ch0 , compare_ch0 , miscompare_ch0 , dropped_ch0;

28

29 // variable for comparer policy

30 comp_t compare_policy = UVM;

31

32 `uvm_component_utils_begin(uabs_scoreboard)
33 `uvm_field_enum(comp_t , compare_policy , UVM_ALL_ON)

34 `uvm_component_utils_end
35

36 // Constructor

37 function new(string name="", uvm_component parent=null);

38 super.new(name , parent);

39 sb_uabs_in = new("sb_uabs_in", this);

40 // sb_chan0 = new(" sb_chan0", this);

41 endfunction : new

42

43 /*

44 // custom packet compare function uysing inequality operators

45 function bit comp_equal (input uabs_packet ub , input channel_packet cp);

46 // returns first mismatch only

47 `uvm_info(get_type_name , "Inside compare UVM functions ...", UVM_LOW)

48 if(ub.encoder_en != cp.encoder_en) begin

49 `uvm_error (" PKT_COMPARE",$sformatf (" Encoder_en mismatch uABS %0d

Chan %0d",ub.encoder_en , cp.encoder_en))

50 return (0);

51 end

52 return (1);

53 endfunction : comp_equal

54 */

55

56

57 function bit comp_equal_2 (input uabs_packet ub);

58 // returns first mismatch only

59 `uvm_info(get_type_name , "Inside compare UVM functions ...", UVM_HIGH)

60

61 if(ub.to_encode != ub.decoded_bit) begin

62 `uvm_error("PKT_COMPARE",$sformatf("to_encode %0d mismatch with

decoded_bit %0d p %0b",ub.to_encode , ub.decoded_bit , ub.probability))

63 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s", ub.

sprint ()), UVM_LOW)

64 return (0);

65 end

66 if(ub.state_in_enc != ub.state_out_dec) begin

67 `uvm_error("PKT_COMPARE",$sformatf("state_in_enc %0b mismatch with

state_out_dec Chan %0b at p %0b",ub.state_in_enc , ub.state_out_dec , ub.

probability))

68 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s", ub.

sprint ()), UVM_LOW)

69 return (0);

70 end

71

72 /*

73 if(ub.start_enc != 1) begin

74 `uvm_error (" PKT_COMPARE",$sformatf (" Encoder_en mismatch uABS %0d

Chan %0d",ub.start_enc , 1))

75 return (0);

76 end

77 */

78 /*

79 *

80 * More compares

81 *

82 */

83 return (1);

84 endfunction : comp_equal_2

85

86

87 // custom packet compare function using uvm_comparer methods

114

88 function bit comp_uvm(input uabs_packet up/*, input channel_packet cp*/,

uvm_comparer comparer = null);

89 string str;

90 `uvm_info(get_type_name , "Inside compare UVM functions ...", UVM_HIGH)

91 /*

92 if (comparer == null)

93 comparer = new();

94 comp_uvm = comparer.compare_field (" encoder_en", up.encoder_en , cp.

encoder_en , 1);

95 */

96 endfunction : comp_uvm

97

98 virtual function void write_uabs(uabs_packet packet);

99 uabs_packet sb_packet;

100 logic test_result;

101 // Make a copy for storing in the scoreboard

102 $cast(sb_packet , packet.clone()); // Clone retunrs uvm_object type

103 packets_in ++;

104 // This will be odd with my implementation ...

105 // Is meant to be case ... (sb_packet.enable)

106 sb_queue0.push_back(sb_packet);

107 `uvm_info(get_type_name , "Added packet to Scoreboard Queue 0", UVM_HIGH

)

108

109 test_result = comp_equal_2(packet);

110 compare_ch0 += test_result;

111 miscompare_ch0 += !test_result;

112

113 void '(sb_queue0.pop_front ());
114 // `uvm_info(get_type_name (), $sformatf (" Scoreboard Compare Match:

Channel_0 Packet\n%s", packet.sprint ()), UVM_LOW)

115 ///compare_ch0 ++;

116 endfunction : write_uabs

117

118 // Channel 0 Packet Check (write) implementation

119 /*

120 virtual function void write_chan0(channel_packet packet);

121 bit pktcompare;

122 uabs_packet sb_packet;

123 packets_ch0 ++;

124 `uvm_info(get_type_name , "Inside write_chan0 UVM function ...", UVM_LOW)

125 if (sb_queue0.size() == 0) begin

126 `uvm_error(get_type_name (),
127 $sformatf (" Scoreboard Error [EMPTY]: Received Unexpected Channel_0

Packet !\n%s",packet.sprint ()))

128 dropped_ch0 ++;

129 return;

130 end;

131 if(compare_policy == UVM)

132 // use custom comparer with UVM methods

133 pktcompare = comp_uvm(sb_queue0 [0], packet);

134 else

135 // use customcomparer wtih equality operators

136 pktcompare = comp_equal(sb_queue0 [0], packet);

137

138 if(pktcompare) begin

139 void '(sb_queue0.pop_front ());
140 `uvm_info(get_type_name (), $sformatf (" Scoreboard Compare Match:

Channel_0 Packet\n%s", packet.sprint ()), UVM_LOW)

141 compare_ch0 ++;

142 end

143 else begin

144 sb_packet = sb_queue0 [0];

145 `uvm_warning(get_type_name (), $sformatf (" Scoreboard Error [

MISCOMPARE] : Received Channel_0 Packet :\n%s\nExpected Channel_0 Packet :\n%s",

packet.sprint (), sb_packet.sprint ()))

146 end

147 endfunction : write_chan0

148 */

149

150

151 // UVM check phase

152 function void check_phase(uvm_phase phase);

115

153 `uvm_info(get_type_name (), "Checking UABS Scoreboard", UVM_LOW)

154 // write_chan0(sb_chan0);

155 if (sb_queue0.size() /* can also add more channels here */)

156 `uvm_error(get_type_name (), $sformatf("Check:\n\n WARNING : uABS

Scoreboard Queue 's NOT Empty :\n chan0 %0d", sb_queue0.size()))

157 else

158 `uvm_info(get_type_name (),"Check\n\n uABS Scoreboard Empty!\n",

UVM_LOW)

159 endfunction : check_phase

160

161 // UVM report () phase

162 function void report_phase(uvm_phase phase);

163 `uvm_info(get_type_name (), $sformatf("Report :\n\n Scoreboard: Packet

Statistics \n Packets in %0d Packets Dropped: %0d \n Channel 0 Total:

%0d Pass: %0d Miscompare %0d Dropped %0d \n", packets_in , in_dropped ,

packets_ch0 , compare_ch0 , miscompare_ch0 , dropped_ch0), UVM_LOW)

164 if((miscompare_ch0 + dropped_ch0) > 0)

165 `uvm_error(get_type_name (),"Status :\n\nSimulation FAILED\n")

166 else

167 `uvm_info(get_type_name (),"Status :\n\nSimulation Passed\n", UVM_LOW)

168 endfunction : report_phase

169

170 endclass : uabs_scoreboard

171

Listing 28: Optimized ANS compressor, UVM testbench, uabs scoreboard

1 class uabs_tx_agent extends uvm_agent;

2

3 uabs_tx_monitor monitor;

4 uabs_tx_sequencer sequencer;

5 uabs_tx_driver driver;

6

7 // component macro

8 `uvm_component_utils_begin(uabs_tx_agent)
9 `uvm_field_enum(uvm_active_passive_enum , is_active , UVM_ALL_ON)

10 `uvm_component_utils_end
11

12 // constructor

13 function new (string name , uvm_component parent);

14 super.new(name , parent);

15 endfunction : new

16

17 // UVM build phase () method

18 function void build_phase(uvm_phase phase);

19 super.build_phase(phase);

20 // uvm_top.print_topology ();

21 monitor = uabs_tx_monitor :: type_id :: create("monitor", this);

22 if(is_active == UVM_ACTIVE) begin

23 sequencer = uabs_tx_sequencer :: type_id :: create("sequencer", this);

24 driver = uabs_tx_driver :: type_id :: create("driver", this);

25 end

26 endfunction : build_phase

27

28 // UVM connect phase() method

29 function void connect_phase(uvm_phase phase);

30 if(is_active == UVM_ACTIVE)

31 // Connect the driver and the sequencer

32 driver.seq_item_port.connect(sequencer.seq_item_export);

33 endfunction : connect_phase

34

35 function void start_of_simulation_phase(uvm_phase phase);

36 `uvm_info(get_type_name (), {"start of simulation for ", get_full_name ()},

UVM_HIGH);

37 endfunction : start_of_simulation_phase

38

39 // Assign the vertiual interfaces of the agent 's children

40 function void assign_vi(virtual interface uabs_if vif);

41 monitor.vif = vif;

42 if (is_active == UVM_ACTIVE)

43 driver.vif = vif;

44 endfunction : assign_vi

45

116

46 endclass : uabs_tx_agent

47

Listing 29: Optimized ANS compressor, UVM testbench, uabs tx agent

1 class uabs_tx_driver extends uvm_driver #(uabs_packet);

2

3 // Declare this property to count packages sent

4 int num_sent;

5

6 virtual interface uabs_if vif;

7

8 // component macro

9 `uvm_component_utils_begin(uabs_tx_driver)
10 `uvm_field_int(num_sent , UVM_ALL_ON)

11 `uvm_component_utils_end
12

13 // constructor - required syntax for UVM automation and utilities

14 function new(string name , uvm_component parent);

15 super.new(name , parent);

16 endfunction : new

17

18 function void connect_phase(uvm_phase phase);

19 // uvm_top.print_topology ();

20 if(! uabs_vif_config ::get(this ,"","vif", vif))

21 `uvm_error("NOVIF", {"virtual interface must be set for: ",

get_full_name (), ".vif"})

22 endfunction : connect_phase

23

24 // Start of simulation

25 function void start_of_simulation_phase(uvm_phase phase);

26 `uvm_info(get_type_name (), {"start of simulation for ", get_full_name ()},

UVM_HIGH)

27 endfunction : start_of_simulation_phase

28

29 // UVM run phase

30 task run_phase (uvm_phase phase);

31 fork

32 get_and_drive ();

33 reset_signals ();

34 join

35 endtask : run_phase

36

37 // Gets packets from the sequencer and passes them to the driver.

38 task get_and_drive ();

39 @(posedge vif.reset);

40 @(negedge vif.reset);

41 `uvm_info(get_type_name (), "Reset dropped", UVM_HIGH)

42 forever begin

43 // Get new item fro mthe sequencer

44 seq_item_port.get_next_item(req);

45

46 `uvm_info(get_type_name (), $sformatf("Sending Packet :\n%s", req.sprint

()), UVM_FULL)

47

48 fork

49 // Send packet

50 begin

51 // Needed?

52 //vif.to_encode = req.to_encode;

53 //vif.encoder_en = req.encoder_en;

54 //vif.decoder_en = req.decoder_en;

55 // `uvm_info(get_type_name (), $sformatf ("We are stuck here"),

UVM_LOW)

56 vif.send_to_dut(req.to_encode ,

57 req.to_decode ,

58 req.start_enc ,

59 req.start_dec ,

60 req.vin_enc ,

61 req.vin_dec ,

62 req.rout_enc ,

63 req.rout_dec ,

64 req.state_in_enc ,

117

65 req.probability ,

66 req.start_enc_delay ,

67 req.vin_enc_delay ,

68 req.rout_enc_delay ,

69 req.start_dec_delay ,

70 req.vin_dec_delay ,

71 req.rout_dec_delay);

72 end

73

74 // Trigger transaction at start of packet (trigger signal from

itnerface)

75 @(posedge vif.drvstart) void '(begin_tr(req , "Driver_UABS_Packet"));

76 join

77

78 // End transaction recording

79 end_tr(req);

80 num_sent ++;

81 // Communicate item done to the sequencer

82 seq_item_port.item_done ();

83 end

84 endtask : get_and_drive

85

86 task reset_signals ();

87 forever

88 vif.uabs_reset ();

89 endtask : reset_signals

90

91 // UVM report_phase

92 function void report_phase(uvm_phase phase);

93 `uvm_info(get_type_name (), $sformatf("Report: uabs driver sent %0d packets"

, num_sent), UVM_FULL)

94 endfunction : report_phase

95

96 endclass : uabs_tx_driver

97

98

Listing 30: Optimized ANS compressor, UVM testbench, uabs tx driver

1 class uabs_tx_monitor extends uvm_monitor;

2

3 parameter WIDTH = 24;

4 parameter FBITS = 4;

5 parameter int MAX_PROBABILITY = $pow(2,FBITS) -1;
6 parameter int MAX_STATE = $pow(2, SAFETY_HEADROOM) - 1;

7 parameter int SAFETY_HEADROOM = $ceil ((1.0 * WIDTH) * 0.20);

8 parameter CONSTRAINT_MAX = (1 << (WIDTH - SAFETY_HEADROOM)) - 1;

9 parameter SAFE_WIDTH = WIDTH - SAFETY_HEADROOM - FBITS;

10 parameter MAX_INTERFACE_DELAY = 100;

11 parameter MIN_INTERFACE_DELAY = 0;

12

13 // Collected Data Handle

14 uabs_packet pkt;

15

16 // Count packets collected

17 int num_pkt_col;

18

19 // analysis port for lab09*

20 uvm_analysis_port #(uabs_packet) item_collected_port;

21

22 virtual interface uabs_if vif;

23

24 bit checks_enable = 1;

25 bit coverage_enable = 1;

26 bit local_coverage_enable = 1;

27

28 // component macro

29 `uvm_component_utils_begin(uabs_tx_monitor)
30 `uvm_field_int(num_pkt_col , UVM_ALL_ON)

31 `uvm_field_int(checks_enable , UVM_ALL_ON)

32 `uvm_field_int(coverage_enable , UVM_ALL_ON)

33 `uvm_component_utils_end
34

118

35 covergroup cover_packet;

36 option.per_instance = 1;

37 packet_to_encode : coverpoint pkt.to_encode;

38 packet_decoded : coverpoint pkt.decoded_bit;

39 packet_probability : coverpoint pkt.probability {

40 bins range[] = {[MAX_PROBABILITY :1]};

41 }

42 endgroup : cover_packet

43

44

45 covergroup cover_packet_states;

46 option.per_instance = 1;

47 packet_state_in_enc : coverpoint pkt.state_in_enc[WIDTH -SAFETY_HEADROOM:

FBITS +1] {

48 bins range[] = {[(1 << FBITS):MAX_STATE]};

49 }

50

51 packet_state_out_dec : coverpoint pkt.state_out_dec[WIDTH -SAFETY_HEADROOM:

FBITS +1] {

52 bins range[] = {[(1 << FBITS):MAX_STATE]};

53 }

54 endgroup : cover_packet_states

55

56 covergroup cover_packet_flags;

57 option.per_instance = 1;

58 packet_start_enc_delay : coverpoint pkt.start_enc_delay{

59 bins range[] = {[MIN_INTERFACE_DELAY:MAX_INTERFACE_DELAY]};

60 }

61

62 packet_start_dec_delay : coverpoint pkt.start_dec_delay{

63 bins range[] = {[MIN_INTERFACE_DELAY:MAX_INTERFACE_DELAY]};

64 }

65

66 packet_vin_enc_delay : coverpoint pkt.vin_enc_delay{

67 bins range[] = {[MIN_INTERFACE_DELAY:MAX_INTERFACE_DELAY]};

68 }

69

70 packet_vin_dec_delay : coverpoint pkt.vin_dec_delay{

71 bins range[] = {[MIN_INTERFACE_DELAY:MAX_INTERFACE_DELAY]};

72 }

73

74 packet_rout_enc_delay : coverpoint pkt.rout_enc_delay{

75 bins range[] = {[MIN_INTERFACE_DELAY:MAX_INTERFACE_DELAY]};

76 }

77

78 packet_rout_dec_delay : coverpoint pkt.rout_dec_delay{

79 bins range[] = {[MIN_INTERFACE_DELAY:MAX_INTERFACE_DELAY]};

80 }

81 endgroup : cover_packet_flags

82

83 // component constructor - required syntax for UVM automation and utilities

84 function new(string name , uvm_component parent);

85 super.new(name , parent);

86 if (! uvm_config_int ::get(this ,"","coverage_enable",coverage_enable))

87 `uvm_info("NOCOV" ,{"Coverage not enabled for: ",get_full_name ()},

UVM_LOW)

88 if(local_coverage_enable) begin

89 cover_packet = new();

90 cover_packet.start ();

91 cover_packet.set_inst_name ({ get_full_name (), ".cover_packet"});

92 `uvm_info("NOCOV" ,{"Coverage started for: ",get_full_name ()}, UVM_LOW)

93

94 cover_packet_states = new();

95 cover_packet_states.start();

96 cover_packet_states.set_inst_name ({ get_full_name (), ".

cover_packet_states"});

97 `uvm_info("NOCOV" ,{"Coverage started for: ",get_full_name ()}, UVM_LOW)

98

99 cover_packet_flags = new();

100 cover_packet_flags.start();

101 cover_packet_flags.set_inst_name ({ get_full_name (), ".cover_packet_flags

"});

102 `uvm_info("NOCOV" ,{"Coverage started for: ",get_full_name ()}, UVM_LOW)

119

103 end

104 item_collected_port = new("item_collected_port",this);

105 endfunction : new

106

107 function void connect_phase(uvm_phase phase);

108 if(! uabs_vif_config ::get(this , get_full_name (),"vif", vif))

109 `uvm_error("NOVIF", {"virtual interface must be set for: ",

get_full_name (), ".vif"})

110 endfunction : connect_phase

111

112 // UVM run() phase

113 task run_phase(uvm_phase phase);

114 // Look for packets after reset

115 @(posedge vif.reset)

116 @(negedge vif.reset)

117 `uvm_info(get_type_name (), "Detected Reset Done", UVM_HIGH)

118 forever begin

119 // Create collected packet instance

120 pkt = uabs_packet :: type_id :: create("pkt", this);

121

122 fork

123 // Collect packet

124 vif.collect_packet(

125 pkt.to_encode ,

126 pkt.to_decode ,

127 pkt.start_enc ,

128 pkt.start_dec ,

129 pkt.vin_enc ,

130 pkt.vin_dec ,

131 pkt.rout_enc ,

132 pkt.rout_dec ,

133 pkt.state_in_enc ,

134 pkt.probability ,

135 pkt.encoded ,

136 pkt.decoded_bit ,

137 pkt.state_out_dec ,

138 pkt.start_enc_delay ,

139 pkt.vin_enc_delay ,

140 pkt.rout_enc_delay ,

141 pkt.start_dec_delay ,

142 pkt.vin_dec_delay ,

143 pkt.rout_dec_delay);

144 // `uvm_info(get_type_name (), "Made it out of fork/join", UVM_LOW)

// Just for debug remove later

145 // Trigger transactio nat start of packet

146 @(posedge vif.monstart) void '(begin_tr(pkt , "Monitor_uabs_packet"))

;

147 join

148

149 end_tr(pkt);

150 `uvm_info(get_type_name (), $sformatf("Packet Collected :\n%s", pkt.

sprint ()), UVM_FULL);

151 item_collected_port.write(pkt);

152 num_pkt_col ++;

153 `uvm_info(get_type_name (), $sformatf("We have this many packets :\n%0d"

, num_pkt_col), UVM_FULL);

154 // perform_coverage ();

155 cover_packet.sample ();

156 cover_packet_states.sample ();

157 cover_packet_flags.sample ();

158

159

160 end

161 endtask : run_phase

162

163 // Triggers corverage events

164 /*

165 function void perform_coverage ();

166

167 cover_packet.get_inst_coverage ());

168

169 endfunction : perform_coverage

170 */

120

171

172 // UVM report phase

173 function void report_phase(uvm_phase phase);

174 `uvm_info(get_type_name (), $sformatf("Report: uabs Monitor Collected %0d

Packets", num_pkt_col), UVM_FULL)

175 `uvm_info(get_type_name (), $sformatf("%3.2f%% coverage achieved for stimuli

packet.", cover_packet.get_inst_coverage ()), UVM_LOW);

176 `uvm_info(get_type_name (), $sformatf("%3.2f%% coverage achieved for flags."

, cover_packet_flags.get_inst_coverage ()), UVM_LOW);

177 `uvm_info(get_type_name (), $sformatf("%3.2f%% coverage achieved for states.

", cover_packet_states.get_inst_coverage ()), UVM_LOW);

178 endfunction: report_phase

179

180 endclass : uabs_tx_monitor

181

Listing 31: Optimized ANS compressor, UVM testbench, uabs tx monitor

1 class uabs_base_seq extends uvm_sequence #(uabs_packet);

2

3 // Required macro for sequences automation

4 `uvm_object_utils(uabs_base_seq)
5

6 // Constructor

7 function new(string name = "uabs_base_seq");

8 super.new(name);

9 endfunction : new

10

11 task pre_body ();

12 uvm_phase phase;

13 `ifdef UVM_VERSION_1_2

14 // In UVM 1.2, get starting phase from method

15 phase = get_starting_phase ();

16 `else
17 phase = starting_phase;

18 `endif
19 if (phase != null) begin

20 phase.raise_objection(this , get_type_name ());

21 `uvm_info(get_type_name (), "raise objection", UVM_HIGH)

22 end

23 endtask : pre_body

24

25 task post_body ();

26 uvm_phase phase;

27 `ifdef UVM_VERSION_1_2

28 // In UVM 1.2, get starting phase from method

29 phase = get_starting_phase ();

30 `else
31 phase = starting_phase;

32 `endif
33 if (phase != null) begin

34 phase.drop_objection(this , get_type_name ());

35 `uvm_info(get_type_name (), "drop objection", UVM_HIGH)

36 end

37 endtask : post_body

38

39 endclass : uabs_base_seq

40

41 class uabs_5_packets extends uabs_base_seq;

42 // Should have been renamed to uabs_35000_packet.

43 // Required macro for sequences automation

44 `uvm_object_utils(uabs_5_packets)
45

46 // Constructor

47 function new (string name = "uabs_5_packets");

48 super.new(name);

49 endfunction : new

50

51 // Sequence body definition

52 virtual task body();

53 `uvm_info(get_type_name (), "Executing uabs_5_packets sequence", UVM_LOW)

54 repeat (35 _000)

55 `uvm_do(req)

121

56 endtask

57

58 endclass : uabs_5_packets

59

Listing 32: Optimized ANS compressor, UVM testbench, uabs tx seqs

1 class uabs_tx_sequencer extends uvm_sequencer #(uabs_packet);

2

3 uabs_packet packet;

4

5 `uvm_component_utils(uabs_tx_sequencer)
6

7 function new(string name , uvm_component parent);

8 super.new(name , parent);

9 endfunction

10

11 function void start_of_simulation_phase(uvm_phase phase);

12 `uvm_info(get_type_name (), {"start of simulation for", get_full_name ()},

UVM_HIGH)

13 endfunction : start_of_simulation_phase

14

15 endclass : uabs_tx_sequencer

16

Listing 33: Optimized ANS compressor, UVM testbench, uabs tx sequencer

D.2 UVM testbench

1 // Clock generation , if necessary

2

Listing 34: Optimized ANS compressor, UVM testbench, clkgen

1 module hw_top #(parameter WIDTH = 24, parameter FBITS = 4, parameter

CLK_DIVISOR = 4, parameter DUTY_DIVISOR = 4, parameter CLK_DIVISOR_WIDTH =

$clog2(CLK_DIVISOR +1));
2

3 // import fsm1_pkg_b ::*;

4 // import uabs_enc_fsm_pkg ::*;

5

6 // Clock and reset signals

7 logic [31:0] clock_period;

8 logic clock;

9 logic reset;

10

11 /* Temp signals for waveform purposes */

12 logic start_enc_temp;

13 logic start_dec_temp;

14 logic vin_enc_temp;

15 logic vin_dec_temp;

16 logic rout_enc_temp;

17 logic rout_dec_temp;

18 //logic ack_dec_temp;

19 logic rst_n_enc_temp;

20 logic rst_n_dec_temp;

21 logic [WIDTH -1:0] to_decode_temp;

22 logic to_encode_temp;

23 //logic decoder_en_temp;

24 //logic encoder_en_temp;

25 //logic idle_temp;

26 //logic loop_done_enc_temp;

27 //logic check_enc_temp;

28 //logic checked_enc_temp;

29 //logic bit_is_one_enc_temp;

30 //logic comp_one_done_enc_temp;

31 //logic comp_zero_done_enc_temp;

32 // integer increment_temp;

33 logic ready_enc_temp;

34 //logic read_dec_temp;

122

35 logic vout_enc_temp;

36 logic vout_dec_temp;

37 //logic encode_temp;

38 //logic decode_temp;

39 //logic decoded_temp;

40 logic [WIDTH -1:0] encoded_temp;

41 // uabs_enc_fsm_pkg :: state_enc current_state_enc_temp;

42 // fsm1_pkg_b :: state_e_b current_state_dec_temp;

43 logic [FBITS :0] probability_temp;

44

45

46

47 // Added 6.7.2022

48 logic [WIDTH -1:0] state_out_dec_temp;

49 logic ready_dec_temp;

50 logic decoded_bit_temp;

51 logic [WIDTH -1:0] state_in_enc_temp;

52 logic idle_enc_temp;

53 logic div_clk_temp;

54

55

56

57

58 // uabs Interface to the DUT

59 uabs_if in0(

60 .clock(clock),

61 .reset(reset),

62 .encoded(encoded_temp),

63 .vout_enc(vout_enc_temp),

64 .idle_enc(idle_enc_temp),

65 .vout_dec(vout_dec_temp),

66 .decoded_bit(decoded_bit_temp),

67 .state_out_dec(state_out_dec_temp)

68);

69

70 // channel Interfaces to the DUT

71 // channel_if ch0(clock , reset);

72

73 // CLKGEN module generates clock

74 clkgen clkgen (

75 .clock(clock),

76 .run_clock (1'b1),
77 .clock_period (32'd10)
78);

79

80 design_top #(WIDTH , FBITS , CLK_DIVISOR , DUTY_DIVISOR , CLK_DIVISOR_WIDTH)

design_top (

81 .start_dec(start_dec_temp),

82 .vin_dec(vin_dec_temp),

83 .rout_dec(rout_dec_temp),

84 //input logic clk ,

85 .rst_n_dec(rst_n_dec_temp),

86 .to_decode(to_decode_temp),

87 //input logic [FBITS :0] probability ,

88 .comp_state_out_dec(state_out_dec_temp),

89 .ready_dec(ready_dec_temp),

90 .vout_dec(vout_dec_temp),

91 .decoded_bit(decoded_bit_temp),

92 .start_enc(start_enc_temp),

93 .vin_enc(vin_enc_temp),

94 .rout_enc(rout_enc_temp),

95 .clk(clock),

96 //input logic div_clk ,

97 .rst_n_enc(rst_n_enc_temp),

98 .to_encode(to_encode_temp),

99 .probability(probability_temp),

100 .comp_state_in_enc(state_in_enc_temp),

101 .idle_enc(idle_enc_temp),

102 .ready_enc(ready_enc_temp),

103 .vout_enc(vout_enc_temp),

104 .div_clk(div_clk_temp),

105 .encoded(encoded_temp)

106);

123

107

108

109

110

111

112

113

114

115

116

117

118 initial begin

119 reset <= 1'b0;
120 in0.in_suspend <= 1'b0;
121 @(negedge clock)

122 #1 reset <= 1'b1;
123 @(negedge clock)

124 #1 reset <= 1'b0;
125 end

126

127 /*

128 initial begin

129 rst_n_enc_temp <= 1'b1;
130 @(posedge clock)

131 #1 rst_n_enc_temp <= 1'b0;
132 rst_n_dec_temp <= 1'b0;
133 @(posedge clock)

134 #1 rst_n_enc_temp <= 1'b1;
135 rst_n_dec_temp <= 1'b1;
136 end

137 */

138

139 /*

140 initial begin

141 for(int i = 0; i < 100; i++) begin

142 @(negedge clock) begin

143 encoder_en_temp = in0.encoder_en;

144 decoder_en_temp = in0.decoder_en;

145 to_encode_temp = in0.to_encode;

146 end

147 end

148 end

149

150 */

151 always_comb begin

152 // encoder_en_temp = in0.encoder_en;

153 // decoder_en_temp = in0.decoder_en;

154 to_encode_temp = in0.to_encode;

155 to_decode_temp = in0.to_decode;

156 start_enc_temp = in0.start_enc;

157 start_dec_temp = in0.start_dec;

158 vin_enc_temp = in0.vin_enc;

159 vin_dec_temp = in0.vin_dec;

160 rout_enc_temp = in0.rout_enc;

161 rout_dec_temp = in0.rout_dec;

162 state_in_enc_temp = in0.state_in_enc;

163 probability_temp = in0.probability;

164 rst_n_dec_temp = in0.rst_n_dec;

165 rst_n_enc_temp = in0.rst_n_enc;

166

167 // decoded_temp = in0.decoded;

168 end

169 endmodule : hw_top

170

Listing 35: Optimized ANS compressor, UVM testbench, hw top no dut

1 // Code your testbench here

2 // or browse Examples

3

4 // `include "uabs_pkg.sv"

5 // `include "channel_pkg.sv"

6 // `include "uabs_if.sv"

124

7 // `include "channel_if.sv"

8 `include "clkgen.sv"

9 // `include "uabs_scoreboard.sv"

10 `include "hw_top_no_dut.sv"

11

12 module tb_top #(WIDTH = 24);

13

14 import uvm_pkg ::*;

15 `include "uvm_macros.svh"

16 // `include "uabs_pkg.sv"

17 import uabs_pkg ::*;

18 // import channel_pkg ::*;

19 // `include "uabs_scoreboard.sv"

20 `include "uabs_tb.sv"

21 `include "uabs_test_lib.sv"

22 `include "uabs_scoreboard.sv"

23 // `include "uabs_scoreboard.sv"

24 // `include "uabs_tb.sv"

25 // `include "uabs_test_lib.sv"

26

27 initial begin

28 // uvm_config_db #(virtual mem_if)::set(uvm_root ::get(), "*", "memif", memif);

29 uabs_vif_config ::set(null ,"*.tb.uabs.tx_agent .*","vif", hw_top.in0);

30 // channel_vif_config ::set(null ,"*.tb.chan0 .*","vif", hw_top.ch0);

31 // Possibly more channels here

32 run_test("base_test");

33 end

34

35 /*

36 initial begin

37 begin

38 clk = 0;

39 #1 clk = ~clk;

40 end end

41 */

42

43 initial begin

44 void '($urandom (1500));
45 $dumpfile("dump.vcd");
46 $dumpvars (1);
47 end

48

49 endmodule : tb_top

50

51

Listing 36: Optimized ANS compressor, UVM testbench, testbench

1 class uabs_tb extends uvm_env;

2

3 // Component makro

4 `uvm_component_utils(uabs_tb)
5

6 // uabs env

7 uabs_env uabs;

8

9 // Channel env

10 // channel_env chan0;

11

12 // uabs scoreboard

13 uabs_scoreboard uabs_sb;

14

15 // Constructor

16 function new (string name , uvm_component parent = null);

17 super.new(name , parent);

18 endfunction : new

19

20 // uvm build phase

21 function void build_phase (uvm_phase phase);

22 super.build_phase(phase);

23

24 // Uabs UVC

25 uabs = uabs_env :: type_id :: create("uabs", this);

125

26

27 // Channel UVC - RX ONLY

28 // uvm_config_int ::set(this , "chan0", "channel_id", 0);

29 //chan0 = channel_env :: type_id :: create ("chan0", this);

30

31 /* Possibly more channels here */

32

33 /*

34 * More stuff

35 */

36

37 // uabs scoreboard

38 uabs_sb = uabs_scoreboard :: type_id :: create("uabs_sb", this);

39 endfunction : build_phase

40

41

42 function void connect_phase(uvm_phase phase);

43

44 // Connect the TLM ports fro mthe uABS and Channel UVCs to the scoreboard

45 /* Remember to change the name from "agent" to "tx_agent" */

46 uabs.agent.monitor.item_collected_port.connect(uabs_sb.sb_uabs_in);

47 //chan0.rx_agent.monitor.item_collected_port.connect(uabs_sb.sb_chan0);

48

49 endfunction : connect_phase

50

51 endclass : uabs_tb

52

Listing 37: Optimized ANS compressor, UVM testbench, uabs tb

1 class base_test extends uvm_test;

2 // component macro

3 `uvm_component_utils(base_test)
4

5 uabs_tb tb;

6

7 // constructor

8 function new (string name , uvm_component parent = null);

9 super.new(name , parent);

10 endfunction : new

11

12 // UVM build() phase

13 function void build_phase(uvm_phase phase);

14 super.build_phase(phase);

15 uvm_config_wrapper ::set(this , "tb.uabs.tx_agent.sequencer.run_phase",

16 "default_sequence",

17 uabs_5_packets :: get_type ());

18 tb = new("tb", this);

19 endfunction : build_phase

20

21 // End of eloaboration phase

22 function void end_of_elaboration_phase(uvm_phase phase);

23 // uvm_top.print_topology ();

24 endfunction : end_of_elaboration_phase

25

26 function void start_of_simulation_phase(uvm_phase phase);

27 `uvm_info(get_type_name (), {"start of simulation for", get_full_name ()},

UVM_HIGH)

28 endfunction : start_of_simulation_phase

29

30 endclass : base_test

31

32 class test_2 extends base_test;

33

34 // component macro

35 `uvm_component_utils(test_2)
36

37 // constructor

38 function new (string name , uvm_component parent = null);

39 super.new(name , parent);

40 endfunction : new

41

42 endclass : test_2

126

43

Listing 38: Optimized ANS compressor, UVM testbench, uabs test lib

Appendix E SystemVerilog software model, both encoder
and decoder

1 class Decoder #(int BIT_WIDTH = 8) extends Compression_base #(BIT_WIDTH);

2 /** ANS Compressor Decoder

3 * Decodes an integer using the uABS variant of ANS.

4 * @param [in] to_decode is the integer (state) that is going to be decoded.

5 * @param [in] probability of ones in the dataset.

6 * @returns decoded which is the reproduced representation.

7 */

8 function logic [BIT_WIDTH - 1:0] decode_integer(int to_decode , real

probability);

9 integer state_part_a; // Part sum A of the state

10 integer state_part_b; // Part sum B of t he state

11 integer state = 0; // The state (the rest of the encoded message)

12 logic [BIT_WIDTH - 1:0] decoded; // The bits that have been decoded

13 begin

14 // Sequential logic due to dependences

15 state = to_decode;

16 // Loop until all bits are reproduced

17 for (int ii = BIT_WIDTH - 1; ii >= 0; --ii) begin

18 // Calculate part sums then the bit is found.

19 state_part_a = $ceil((state + 1) * probability);

20 state_part_b = $ceil(state * probability);

21 decoded[ii] = state_part_a - state_part_b;

22 // Determine the remaining state

23 if(decoded[ii]) begin

24 state = $ceil(state * probability);

25 end

26 else begin

27 state = state - $ceil(state * probability);

28 end

29 end

30 // Reverse the order of bits in the array , MSB becomes LSB.

31 decoded[BIT_WIDTH - 1:0] = reverse_array(decoded[BIT_WIDTH - 1:0]);

32 // All bits are found , return the decoded representation.

33 return decoded[BIT_WIDTH - 1:0];

34 end

35 endfunction

36 endclass

37

38

Listing 39: SystemVerilog software model, design

1 class Compression_base #(BIT_WIDTH = 8);

2 /** Reverses the array

3 * @param [in] data to be reversed.

4 * @returns data is the reversed data.

5 */

6 function int reverse_array(logic [BIT_WIDTH - 1:0] data);

7 begin

8 data = {<<{data }};

9 end

10 return data;

11 endfunction

12

13 /** Calculates the probability of ones.

14 * Uses the total BIT_WIDTH to calculate the probabilty

15 * @param [in] dataset to be analyzed.

16 * @returns probability of ones.

17 */

18 function real calculate_probability(logic [BIT_WIDTH - 1:0] dataset);

19 real probability = 0;

20 begin

127

21 for (int ii = 0; ii < BIT_WIDTH; ++ii)

22 probability = probability + dataset[ii];

23 probability /= BIT_WIDTH;

24 end

25 return probability;

26 endfunction

27

28 endclass

29

Listing 40: SystemVerilog software model, Compression base

1 class Decoder #(int BIT_WIDTH = 8) extends Compression_base #(BIT_WIDTH);

2 /** ANS Compressor Decoder

3 * Decodes an integer using the uABS variant of ANS.

4 * @param [in] to_decode is the integer (state) that is going to be decoded.

5 * @param [in] probability of ones in the dataset.

6 * @returns decoded which is the reproduced representation.

7 */

8 function logic [BIT_WIDTH - 1:0] decode_integer(int to_decode , real

probability);

9 integer state_part_a; // Part sum A of the state

10 integer state_part_b; // Part sum B of t he state

11 integer state = 0; // The state (the rest of the encoded message)

12 logic [BIT_WIDTH - 1:0] decoded; // The bits that have been decoded

13 begin

14 // Sequential logic due to dependences

15 state = to_decode;

16 // Loop until all bits are reproduced

17 for (int ii = BIT_WIDTH - 1; ii >= 0; --ii) begin

18 // Calculate part sums then the bit is found.

19 state_part_a = $ceil((state + 1) * probability);

20 state_part_b = $ceil(state * probability);

21 decoded[ii] = state_part_a - state_part_b;

22 // Determine the remaining state

23 if(decoded[ii]) begin

24 state = $ceil(state * probability);

25 end

26 else begin

27 state = state - $ceil(state * probability);

28 end

29 end

30 // Reverse the order of bits in the array , MSB becomes LSB.

31 decoded[BIT_WIDTH - 1:0] = reverse_array(decoded[BIT_WIDTH - 1:0]);

32 // All bits are found , return the decoded representation.

33 return decoded[BIT_WIDTH - 1:0];

34 end

35 endfunction

36 endclass

37

38

Listing 41: SystemVerilog software model, Decoder

1 class Encoder #(int BIT_WIDTH = 8) extends Compression_base #(BIT_WIDTH);

2 /** ANS Compressor Encoder

3 * Encodes a binary vector using the uABS variant of ANS.

4 * @param [in] to_encode is the binary vector that is going to be encoded.

5 * @param [in] probability of ones in the dataset.

6 * @returns state which is the encoded representation.

7 */

8 function int encode_binary(logic[BIT_WIDTH - 1:0] to_encode , real

probability);

9 integer state = 1; // The state is the (growing per iteration) encoded

representation

10 begin

11 // Sequential logic due to dependences

12 // Loop until all bits are reproduced

13 for (int ii = BIT_WIDTH - 1; ii >= 0; --ii)

14 begin

15 // Calculate the state

16 if(to_encode[ii])

17 begin

128

18 state = $floor(state / probability);

19 end

20 else

21 begin

22 state = $ceil((state + 1)/ (1- probability)) - 1;

23 end

24 end

25 return state;

26 end

27 endfunction

28 endclass

29

Listing 42: SystemVerilog software model, Encoder

1 module uabs_decoder_tb #(WIDTH = 8);

2 integer to_decode;

3 logic [WIDTH - 1:0] to_encode;

4 logic decoder_en;

5 logic encoder_en;

6 real probability;

7 logic clk;

8 logic [WIDTH - 1:0] decoded;

9 integer encoded;

10

11 uabs_compressor #(WIDTH) uabs_compressor (.*);

12

13 initial forever

14 #1 clk = ~clk;

15

16 initial begin

17 //void '($urandom (1500));
18 $dumpfile("dump.vcd");
19 $dumpvars (1);
20 clk = 0;

21

22 // Drive stimuli

23 to_encode = 8'b1000_0000;
24 decoder_en = 0; encoder_en = 0; #1

25 print_compression_data;

26

27 // Start encoding

28 decoder_en = 0; encoder_en = 1; #1

29 print_compression_data;

30

31 // Drive stimuli

32 to_decode = encoded;

33 decoder_en = 0; encoder_en = 0; #1

34 print_compression_data;

35

36 // Start decoding

37 decoder_en = 1; encoder_en = 0; #1

38 check_compression;

39

40 $finish;
41 // to_encode = 0; probability = 0.5;#1;

42 end

43

44

45 task print_compression_data;

46 $display("to_encode :%0b, to_decode :%0b, probability :%0f, decoder_en :%0b,

encoder_en :%0b", to_encode , to_decode , probability , decoder_en , encoder_en);

47 endtask

48

49 task check_compression;

50 if (to_encode == decoded)

51 $display("Compression successful");

52 else

53 $display("Compression failed");

54 endtask

55

56 endmodule

129

57

Listing 43: SystemVerilog software model, testbench

Appendix F C++ software model, both encoder and de-
coder

Note: Some sections of the software C++ implementation are based on work previously performed
in the project thesis. While this master thesis has developed a new Object oriented implementation,
some features such as the arithmetic is largely the same as in the project thesis, because of uABS
still being the same algorithm in both. See the function oriented implementation of ANS which
was previously developed at [6].

1 #include "header.h"

2 #include "Decoder.h"

3 #include "Encoder.h"

4 #include "Simulator.h"

5

6 int main() {

7

8 // Stimuli

9 bitset <BIT_WIDTH > original (136);

10 bitset <BIT_WIDTH > original_2 (243);

11 bitset <BIT_WIDTH > original_3 (31);

12 vector <std::bitset <BIT_WIDTH >> binary_vec;

13 int start = 1;

14

15 binary_vec.push_back (11000000);

16 binary_vec.push_back (10000000);

17 binary_vec.push_back (10000001);

18 binary_vec.push_back (10000010);

19

20 // Object

21 Simulator simulator(start , "../../ stimuli.txt", "../../ encode.txt", "../..

decode.txt");

22

23 // Run

24 simulator.batch_run_and_print_to_file ();

25

26 // End

27 return 0;

28 }

29

Listing 44: ANS software c++ model, main

1 #include "header.h"

2 #include "Compression_base.h"

3 #include "Decoder.h"

4

5 Decoder :: Decoder(int start) // Constructor with parameters

6 : Compression_base{ start }

7 {

8 }

9

10 /** Converts a natural number to a binary sequence.

11 * Decoding operation for a uABS.

12 *

13 * @param [in] state is the natural number that is going to be decoded.

14 * @param [in] increment is the number increments necesary for the main for body

.

15 * @param [in] probability_of_one is the probability for ones in the model.

16 * @param [in] starting number is the starting natural number of the conversion ,

'1' is the standard.

17 * @returns decoded_binary_sequence which is the decoded binary sequence.

18 */

19 std::bitset <BIT_WIDTH > Decoder :: decode_uabs(long state , double

probability_of_one) {

130

20 int string_length = BIT_WIDTH;

21 std::bitset <BIT_WIDTH > decoded_binary_sequence (0);;

22 std::clog << "String Length: " << string_length << std::endl;

23

24 for (int ii = string_length - 1; ii >= 0; --ii) {

25 /* Binary bit */

26 long part_1 = ceil (((double)state + 1) * probability_of_one);

27 long part_2 = ceil(state * probability_of_one);

28 decoded_binary_sequence[ii] = part_1 - part_2;

29 std::clog << "b_" << ii + 1 << " = (" << state << " + 1 * " <<

probability_of_one << ") - ("

30 << state << " * " << probability_of_one << ") = " << part_1 << " - " <<

part_2 << " = " << decoded_binary_sequence[ii] << std::endl;

31

32 /* Natural number */

33 if (decoded_binary_sequence[ii]) {

34 std::clog << "(x_" << ii << ") = " << state << " * " <<

probability_of_one << " = ";

35 state = ceil(state * probability_of_one);

36 std::clog << state << std::endl;

37 }

38

39 else {

40 state = (state - ceil(state * probability_of_one));

41 std::clog << "(x_" << ii << ") = " << state << " - (" << state << " * "

<< probability_of_one << ") = " << state << std::endl;

42 }

43 }

44 return binary_reverse(decoded_binary_sequence);

45 }

46

Listing 45: ANS software c++ model, decoder class

1 #ifndef DECODER_H

2 #define DECODER_H

3

4 #include "header.h"

5 #include "Compression_base.h"

6

7 class Decoder : public Compression_base {

8 public:

9 std::bitset <BIT_WIDTH > decode_uabs(long natural_number , double

probability_of_one);

10 Decoder(int start);

11 };

12

13 #endif

14

15

Listing 46: ANS software c++ model, header for the decoder class

1 #include "header.h"

2 #include "Compression_base.h"

3 #include "Encoder.h"

4

5

6 /** Converts a binary sequence to a natural number.

7 * Encoding operation for a uABS.

8 *

9 * @param [in] binary_sequence is the binary string that is going to be encoded

.

10 * @param [in] increment is the number increments necesary for the main for

body.

11 * @param [in] probability_of_one is the probability for ones in the model.

12 * @param [in] starting number is the starting natural number of the conversion

, '1' is the standard.

13 * @returns state which is the encoded natural number.

14 */

15 long Encoder :: encode_uabs(std::bitset <BIT_WIDTH > binary_sequence , double

probability_of_one) {

16

131

17 long state = get_starting_number ();

18 long string_length = BIT_WIDTH;

19

20

21 std::clog << "Probability of ones: " << probability_of_one << std::endl;

22

23 for (int ii = string_length - 1; ii >= 0; --ii) {

24

25 if (binary_sequence[ii]) {

26 std::clog << "x_" << string_length - ii << " = 2 * " << state << " / "

<< probability_of_one;

27 state = floor(state / probability_of_one);

28 }

29 else {

30 std::clog << "x_" << string_length - ii << " = (" << state << " + 1) / (

" << "1" << -probability_of_one << ") - 1";

31 state = ceil (((double)state + 1) / (1 - (double)(probability_of_one))) -

1;

32 }

33

34 std::clog << " = " << state << std::endl;

35

36 }

37 return state;

38 }

39

40 Encoder :: Encoder(int start) // Constructor with parameters

41 : Compression_base {start}

42 {

43 }

44

45

46

Listing 47: ANS software c++ model, encoder class

1 #ifndef ENCODER_H

2 #define ENCODER_H

3

4 #include "header.h"

5 #include "Compression_base.h"

6

7 class Encoder : public Compression_base {

8 public:

9 long encode_uabs(std::bitset <BIT_WIDTH > binary_sequence , double

probability_of_one);

10 Encoder(int start);

11 };

12

13 #endif

14

15

Listing 48: ANS software c++ model, header for the encoder class

1

2 #include "Compression_base.h"

3 #include "header.h"

4

5 Compression_base :: Compression_base(int start)

6 : starting_number {start}

7 {

8 }

9

10 /** Reverses (flips) a bit sequence.

11 * For instance MSB becomes LSB , and LSB becomes MSB.

12 * @param [in] binary_number is the number to be reversed.

13 * @returns binary_number which is the flipped bit sequence.

14 */

15 std::bitset <BIT_WIDTH > Compression_base :: binary_reverse(std::bitset <BIT_WIDTH >

binary_number , int offset) {

16 for (int ii = 0; ii < (BIT_WIDTH / 2); ++ii) {

17 bool temp = binary_number[ii];

132

18 binary_number[ii] = binary_number[BIT_WIDTH - ii - 1];

19 binary_number[BIT_WIDTH - ii - 1] = temp;

20 }

21 return (binary_number >> offset);

22 }

23

24 void Compression_base :: int_print_to_file(int integer , bool line_terminator ,

bool end_line , std:: string file_name) { // Method/function defined inside the

class

25 ofstream myfile;

26 /* Print integer */

27 myfile.open(file_name , fstream ::app);

28 myfile << integer;

29

30 /* Line termination */

31 if (line_terminator) {

32 myfile << LINE_TERMINATOR;

33 }

34

35 /* New Line */

36 if (end_line) {

37 myfile << NEW_LINE;

38 }

39

40 myfile.close();

41 }

42

43 void Compression_base :: binary_print_to_file(std::bitset <BIT_WIDTH > binary , bool

line_terminator , bool end_line , std:: string file_name) { // Method/function

defined inside the class

44 ofstream myfile;

45 // myfile.open(" example.txt");

46 myfile.open(file_name , fstream ::app);

47 myfile << binary;

48

49 /* Line termination */

50 if (line_terminator) {

51 myfile << LINE_TERMINATOR;

52 }

53

54 /* New Line */

55 if (end_line) {

56 myfile << NEW_LINE;

57 }

58

59 myfile.close();

60

61 }

62

63 void Compression_base :: string_print_to_file(std:: string text , bool

line_terminator , bool end_line , std:: string file_name) { // Method/function

defined inside the class

64 ofstream myfile;

65 // myfile.open(" example.txt");

66 myfile.open(file_name , fstream ::app);

67 myfile << text;

68

69 /* Line termination */

70 if (line_terminator) {

71 myfile << LINE_TERMINATOR;

72 }

73

74 /* New Line */

75 if (end_line) {

76 myfile << NEW_LINE;

77 }

78

79 myfile.close();

80 }

81

82

83 void Compression_base :: clear_file(std:: string filename) {

84 std:: ofstream ofs;

133

85 ofs.open(filename , std:: ofstream ::out | std:: ofstream :: trunc);

86 ofs.close();

87 }

88

89

90

91

92

Listing 49: ANS software c++ model, base compression class

1 #ifndef COMPRESSION_BASE_H

2 #define COMPRESSION_BASE_H

3 #include "header.h"

4

5 class Compression_base {

6 private:

7 int starting_number {};

8 public :

9 Compression_base(int start);

10 int get_starting_number () const { return starting_number; }

11 std::bitset <BIT_WIDTH > binary_reverse(std::bitset <BIT_WIDTH > binary_number ,

int offset = 0);

12 void int_print_to_file(int integer , bool line_terminator = false , bool

end_line = false , std:: string file_name = DEFAULT_ENCODER_FILENAME);

13 void binary_print_to_file(std::bitset <BIT_WIDTH > binary , bool line_terminator

= false , bool end_line = false , std:: string file_name =

DEFAULT_ENCODER_FILENAME);

14 void string_print_to_file(std:: string text , bool line_terminator = false ,

bool end_line = false , std:: string file_name = DEFAULT_ENCODER_FILENAME);

15 void clear_file(std:: string filename);

16 };

17

18 #endif

19

Listing 50: ANS software c++ model, header for the base compression class

1 #include <iostream >

2 #include <fstream >

3 #include <bitset >

4 #include <limits >

5 #include <sstream >

6 #include <vector >

7

8 using namespace std;

9

10 /* Compression related */

11 #define BIT_WIDTH 8

12 #define STARTING_NUMBER_DEFAULT 1

13

14 /* Print related */

15 #define DEFAULT_ENCODER_FILENAME "../../ encoder.txt"

16 #define LINE_TERMINATOR ";"

17 #define NEW_LINE "\n"

18

Listing 51: ANS software c++ model, header

1 #include"header.h"

2 #include"simulator.h"

3

4 Simulator :: Simulator(int start , std:: string stimuli_file , std:: string

encoder_file , std:: string decoder_file)

5 : Decoder{ start},

6 Encoder{ start}

7 {

8 }

9

10 /* Semi my function */

11 std:: fstream& select_line_in_file(std:: fstream& filename , int line_number) {

12 filename.seekg(std::ios::beg);

134

13 for (int ii = 0; ii < line_number - 1; ii++) {

14 filename.ignore(std:: numeric_limits <std::streamsize >:: max(), '\n');
15 }

16 return filename;

17 }

18

19 /* Not my function */

20 std:: string extract_string_until(std:: string const& s)

21 {

22 std:: string :: size_type pos = s.find(';');
23 if (pos != std:: string ::npos)

24 {

25 return s.substr(0, pos);

26 }

27 else

28 {

29 return s;

30 }

31 }

32

33 std::vector <int > extract_vector_from_file(std:: string filename) {

34 std:: fstream file(filename);

35

36 int ii = 1;

37 std:: vector <int > vect;

38 while (file.peek() != EOF)

39 {

40 int my_integer;

41 std:: string text;

42

43 /* Find and extract line */

44 select_line_in_file(file , ii);

45 file >> text;

46 text = extract_string_until(text);

47 std:: stringstream integer(text);

48 integer >> my_integer;

49

50 /* Insert into vector */

51 vect.push_back(my_integer);

52 std::cout << vect[ii - 1] << std::endl;

53 ii++;

54 }

55 std::cout << "End of file";

56 return vect;

57 }

58

59 std::vector <std::bitset <BIT_WIDTH >> extract_binary_vector_from_file(std:: string

filename) {

60 std:: fstream file(filename);

61

62 int ii = 1;

63 std:: vector <std::bitset <BIT_WIDTH >> vect;

64 while (file.peek() != EOF)

65 {

66 std::bitset <BIT_WIDTH > my_binary;

67 std:: string text;

68

69 /* Find and extract line */

70 select_line_in_file(file , ii);

71 file >> text;

72 text = extract_string_until(text);

73 std:: stringstream integer(text);

74 integer >> my_binary;

75

76 /* Insert into vector */

77 vect.push_back(my_binary);

78 std::cout << vect[ii - 1] << std::endl;

79 ii++;

80 }

81 std::cout << "End of file";

82 return vect;

83 }

84

135

85 int Simulator :: batch_run_and_print_to_file () {

86 /* Run Compresion */

87

88 vector <int > natural_vector;

89 vector <bitset <BIT_WIDTH >> binary_vector;

90 vector <int > natural_vector_2;

91

92 vector <bitset <BIT_WIDTH >> binary_input_vector_from_file;

93

94 Compression_base :: clear_file("../../ encoder.txt");

95 Compression_base :: clear_file("../../ decoder.txt");

96 binary_input_vector_from_file = extract_binary_vector_from_file("../../

stimuli.txt");

97

98 std::cout << "Inputs" << std::endl;

99 double probability = 0;

100 for (int ii = 0; ii < binary_input_vector_from_file.size(); ++ii) {

101 probability += binary_input_vector_from_file[ii].count ();

102 std::cout << "Binary: " << binary_input_vector_from_file[ii] << " ones:" <<

binary_input_vector_from_file[ii].count () << std::endl;

103 }

104

105 probability = probability / (binary_input_vector_from_file.size() *

BIT_WIDTH);

106

107 std::cout << std::endl << "Overal p of ones" << probability << std::endl;

108

109 for (int ii = 0; ii < binary_input_vector_from_file.size(); ++ii) {

110 natural_vector.push_back(encode_uabs(binary_input_vector_from_file[ii],

probability));

111 Compression_base :: int_print_to_file(natural_vector[ii], true , true , "../../

encoder.txt");

112 cout << "Encoded" << natural_vector[ii] << std::endl;

113 }

114

115 natural_vector_2 = extract_vector_from_file(".. / .. /encoder.txt");;

116

117 for (int ii = 0; ii < natural_vector.size(); ++ii) {

118 binary_vector.push_back(decode_uabs(natural_vector[ii], probability));

119 Compression_base :: binary_print_to_file(binary_vector[ii], true , true , "

../../ decoder.txt");

120 }

121

122 return 1;

123 }

124

125

126

Listing 52: ANS software c++ model, simulator class

1 #ifndef SIMULATOR_H

2 #define SIMULATOR_H

3 #include "header.h"

4 #include "Decoder.h"

5 #include "Encoder.h"

6

7 class Simulator : public Encoder , Decoder {

8 private:

9 std:: string encoder_file_name;

10 std:: string decoder_file_name;

11 public:

12 int batch_run_and_print_to_file ();

13 Simulator(int start , std:: string stimuli_file , std:: string encoder_file , std

:: string decoder_file);

14 };

15

16 #endif

17

Listing 53: ANS software c++ model, header for the simulator class

136

Appendix G Unoptimized ANS compressor

Only the decoder FSM is shown, as the Optimized ANS compressor is the preferred implementation.

1 // `include "uabs_decoder_fsm_pkg.sv"

2 import uabs_decoder_fsm_pkg ::*;

3

4 module uabs_decoder_fsm (

5 input logic start ,

6 input logic vin ,

7 input logic checked ,

8 input logic bit_is_one ,

9 input logic comp_one_done ,

10 input logic comp_zero_done ,

11 input logic rout ,

12 input logic clk ,

13 input logic rst_n ,

14 input logic comp_ready ,

15 output logic rin ,

16 output logic vout ,

17 output logic decode ,

18 output logic check ,

19 output logic comp_busy ,

20 output logic idle_dec ,

21 output logic comp_init);

22

23 state_dec state , next;

24

25 always_ff @(posedge clk , negedge rst_n)

26 if (!rst_n)

27 state <= IDLE_DEC;

28 else

29 state <= next;

30

31 always_comb begin

32 next = XXX_DEC; //@LB next = state;

33 rin = 1'b0;
34 vout = 1'b0;
35 decode = 1'b0;
36 check = 1'b0;
37 idle_dec = 1'b0;
38 comp_busy = 1'b0;
39 comp_init = 1'b0;
40 case (state)

41 IDLE_DEC : begin

42 idle_dec = 1'b1;
43 if (start)

44 next = READ_DEC;

45 else

46 next = IDLE_DEC;

47 end

48 READ_DEC : begin

49 rin = 1'b1;
50 if (vin)

51 next = CHECK_DEC;

52 else

53 next = READ_DEC;

54 end

55 CHECK_DEC : begin

56 check = 1'b1;
57 if (checked && !bit_is_one)

58 next = COMP_ZERO_INIT;

59 else if (checked && bit_is_one)

60 next = COMP_ONE_INIT;

61 else

62 next = CHECK_DEC;

63 end

64 COMP_ONE_INIT : begin

65 decode = 1'b1;
66 comp_init = 1'b1;
67 if (comp_ready)

68 next = COMP_ONE_BUSY;

137

69 else

70 next = COMP_ONE_INIT;

71 end

72 COMP_ONE_BUSY : begin

73 decode = 1'b1;
74 comp_busy = 1'b1;
75 if (comp_one_done)

76 next = DONE_DEC;

77 else

78 next = COMP_ONE_BUSY;

79 end

80 COMP_ZERO_INIT : begin

81 decode = 1'b1;
82 comp_init = 1'b1;
83 if (comp_ready)

84 next = COMP_ZERO_BUSY;

85 else

86 next = COMP_ZERO_INIT;

87 end

88 COMP_ZERO_BUSY : begin

89 decode = 1'b1;
90 comp_busy = 1'b1;
91 if (comp_zero_done)

92 next = DONE_DEC;

93 else

94 next = COMP_ZERO_BUSY;

95 end

96 DONE_DEC : begin

97 vout = 1'b1;
98 if (rout)

99 next = IDLE_DEC;

100 else

101 next = DONE_DEC;

102 end

103 default:begin

104 rin = 'x;
105 vout = 'x;
106 decode = 'x;
107 check = 'x;
108 next = XXX_DEC;

109 end

110 endcase

111 end

112 endmodule : uabs_decoder_fsm

113

114

Listing 54: Unoptimized ANS compressor, FSM

138

