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Abstract

Part I (project thesis): Preliminaries to Compact Stars

General relativity and quantum field theory are necessary tools for studying compact stars
that are composed of subatomic particles with high density. In this project, we solve the
Tolman-Oppenheimer-Volkoff equation for a degenerate Fermi gas composed of free neutrons,
producing a mass-radius curve for ideal neutron stars parametrized by central pressure, then
finally analyze their stability. First, we derive the Tolman-Oppenheimer-Volkoff equation from
the Einstein field equations in a radially symmetric metric for a perfect fluid in equilibrium.
Second, we present thermal field theory and use it to express the partition function of a free
Fermi gas as a path integral. Next, we combine these two results by numerically integrating
the Tolman-Oppenheimer-Volkoff equation with the equation of state that follows from the
partition function, yielding the mass-radius curve. Finally, we apply perturbation theory to
the initial equilibrium analysis of general relativity to find a Sturm-Liouville problem that
determines normal vibration modes for small radial oscillations of stars, then solve it with the
shooting method to analyze the stability of the stars. Our mass-radius curve reproduces the
upper mass limit of 0.71 solar masses for neutron stars originally calculated by Oppenheimer
and Volkoff in 1939. Likewise, our quantitative stability analysis reproduces a set of qualitative
rules based on curvature and extrema in the mass-radius diagram. Many observations have
been made of neutron stars around 2 solar masses, so the model is too simple for describing
them. Nevertheless, this project establishes a broad base platform from which one can continue
to study more advanced models for compact stars.

Part II (master thesis): Quark and Hybrid Stars with the Quark-Meson Model

According to quantum chromodynamics, hadron-confined quarks break free into a state of
deconfined quark matter at high density. Recent observations of the massive 2M�-pulsars PSR
J1614−2230, PSR J0348+0432 and PSR J0740+6620 suggest that the density in neutron stars
could reach sufficiently high levels for formation of small cores of deconfined quark matter in
what is then referred to as hybrid stars. If the strange matter hypothesis is true and strange
quark matter is stable, even pure strange quark stars consisting only of deconfined strange
quark matter could exist. After reviewing the MIT bag model, we model quark stars with the
effective quark-meson model of quantum chromodynamics, calculating its grand potential to
one fermion loop in the mean-field approximation for bosons, which is consistent in the large-Nc

limit. We find maximum masses M ≤ 2.0M� and M ≤ 1.8M� with two and three flavors,
respectively, but fail to model strange quark stars consistently. In particular, we struggle to
fit measured masses of the σ meson to the grand potential at tree-level, but resolve this using
recent work of Adhikari and others who consistently fit parameters in the one-loop large-Nc

limit. Finally, we assemble hybrid stars by joining the quark-meson model with the hadronic
Akmal-Pandharipande-Ravenhall equation of state. This generates short branches of stable
hybrid stars with plausible maximum masses 1.9M� ≤ M ≤ 2.1M� and small two-flavor
and three-flavor quark cores up to 0.12M� and 0.02M�, respectively. A discontinuous phase
transition destabilizes stars with heavier quark cores. The results agree with other work that
uses variations of the quark-meson model and the Nambu-Jona-Lasinio model.
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Sammendrag

Del I (prosjektoppgave): Grunnelementer innen kompakte stjerner

Generell relativitetsteori og kvantefeltteori er nødvendige verktøy for å studere kompakte
stjerner som består av subatomære partikler med høy tetthet. I dette prosjektet løser vi Tolman-
Oppenheimer-Volkoff-ligningen for en degenerert Fermigass som består av frie nøytroner, noe som
produserer en masse-radius kurve for ideelle nøytronstjerner parametrisert med sentraltrykk, og
til slutt analyserer vi stabiliteten deres. Først utleder vi Tolman-Oppenheimer-Volkoff-ligningen
fra Einsteins feltlikninger i en kulesymmetrisk metrikk for en perfekt væske i likevekt. Deretter
presenterer vi termisk feltteori og bruker det til å uttrykke partisjonsfunksjonen for en fri
Fermigass som et veiintegral. Så kombinerer vi disse to resultatene ved å numerisk integrere
Tolman-Oppenheimer-Volkoff-ligningen med tilstandsligningen som følger fra partisjonsfunksjo-
nen, og genererer slik masse-radius-kurven. Til slutt bruker vi perturbasjonsteori på den
innledende likevektsanalysen av generell relativitetsteori for å finne et Sturm-Liouville-problem
som bestemmer normale vibrasjonsmoder for små radielle oscillasjoner av stjerner, og løser det
med skytemetoden for å analysere stabilitet deres. Vår masse-radius-kurve reproduserer den
øvre massegrensen på 0.71 solmasser for nøytronstjerner opprinnelig beregnet av Oppenheimer
og Volkoff i 1939. På samme måte reproduserer vår kvantitative stabilitetsanalyse et sett med
kvalitative regler basert på krumning og ekstremalpunkter i masse-radius-diagrammet. Mange
nøytronstjerner rundt 2 solmasser har blitt observert, så modellen er for enkel for å beskrive
dem. Uansett etablerer dette prosjektet en bred grunnplattform som man kan studere mer
avanserte modeller for kompakte stjerner fra.

Del II (masteroppgave): Kvark- og hybridstjerner med kvark-meson-modellen

Ifølge kvantekromodynamikk bryter innesperrede kvarker fri fra hadroner til en tilstand av
uavgrenset kvarkmaterie ved høy tetthet. Nylige observasjoner av de massive 2M�-pulsarene
PSR J1614−2230, PSR J0348+0432 og PSR J0740+6620 antyder at tettheten i nøytronstjerner
kan bli høy nok til at små kjerner med uavgrenset kvarkmaterie dannes i det som da kalles
en hybridstjerne. Hvis hypotesen om at sær-kvarkmaterie er stabilt stemmer, kan til og
med rene sær-kvarkstjerner bestående kun av uavgrenset sær-kvarkmaterie eksistere. Etter en
gjennomgang av MIT-pose-modellen, modellerer vi kvarkstjerner med den effektive kvark-meson-
modellen for kvantekromodynamikk, der vi beregner den frie energien med én fermionløkke i
middelfelt-tilnærmingen for bosoner, noe som er konsistent i grensen der Nc er stor. Vi finner
maksimumsmasser M ≤ 2.0M� og M ≤ 1.8M� med to og tre kvarktyper, henholdsvis, men
klarer ikke modellere sær-kvarkstjerner på en konsistent måte. Spesielt sliter vi med å tilpasse
målte masser av σ-mesonet til den frie energien på trenivå, men løser opp i dette med nylig
arbeid av Adhikari og andre som konsistent tilpasser parameterene med én løkke i grensen der
Nc er stor. Til slutt setter vi sammen hybridstjerner ved å koble kvark-meson-modellen sammen
med den hadronske tilstandsligningen fra Akmal, Pandharipande og Ravenhall. Dette genererer
korte grener av stabile hybridstjerner med rimelige maksimumsmasser 1.9M� ≤M ≤ 2.1M� og
små kjerner med to og tre kvarktyper opptil 0.12M� og 0.02M�, henholdsvis. En diskontinuerlig
faseovergang destabiliserer stjerner med tyngre kvarkkjerner. Resultatene samsvarer godt med
annet arbeid som bruker variasjoner av kvark-meson-modellen og Nambu-Jona-Lasinio-modellen.
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Notation and Conventions

Units
In part I we use arbitrary units with explicit factors h̄, c, G and kB everywhere.

In part II we use natural units in which h̄/[h̄] = 1 and c/[c] = 1 when discussing particle physics,
but restore SI units when we carry the results over to gravitational physics and discuss stars.

Metric signature

We use the (+,−,−,−) metric signature.

Summation convention
We use the Einstein summation convention, in which an index that appears once as a superscript
and again as a subscript in the same term is to be summed over. If the index is Latin, the sum
runs from 1 to 3, and if it is Greek, it also runs over 0. For example,

Tµµ =
3∑

µ=0

Tµµ and T ii =
3∑
i=1

T ii .
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Chapter1
Introduction

Ever since the dawn of mankind, humans have gazed upon the night sky with great curiosity
of what lies beyond our immediate reach. Not until the Copernican Revolution in the 16th
century did we begin to draw a correct picture of how it really looks and where we fit into it.
Nicolaus Copernicus correctly claimed that the Earth revolves around the Sun at the center
of a solar system, leading to a number of important discoveries by Tycho Brahe, Johannes
Kepler, Galileo Galilei, and culminated in the 17th century as Isaac Newton’s described
his theory of gravity and motion. With Newton’s theory, humans gained a first scientific
understanding of the motion and structure of planets and stars. During the following scientific
revolution, technological advancements in optics and observational techniques made possible
not only observation of a number of new stars and planets, but also measurements of their
temperature and distance from Earth. In the 20th century, physicists developed two theories
whose application gives unprecedented new insight into stars. First, Albert Einstein’s theory of
general relativity accurately describes macroscopic aspects of stars where Newton’s theory breaks
down. Second, quantum theory developed by physicists like Niels Bohr, Erwin Schrödinger,
Werner Heisenberg, Paul Dirac, Enrico Fermi and many others gives us a new understanding
of the microscopic properties of stars and their structure. In this thesis, we will review the
fundamental gravitational and quantum theory for studying neutron stars, the smallest and
most massive type of star we know of that has not collapsed to a black hole.

This chapter is inspired by references [Gle00], [Pot10], [Lov+21] and [Wiki21c].

1.1 Life, death and structure of stars

The mother of any star is an enormous accumulation of light elements called a giant molecular
cloud. Such clouds consist predominantly of hydrogen and some helium produced in the
nucleosynthesis that followed the Big Bang. In addition, there are trace amounts of heavier
elements from the ashes of dying stars at the end of the life cycle we have just begun to describe.
They can contain millions of solar masses distributed over a huge region measuring hundreds of
lightyears across with a relatively low average density. Internally, the dynamics of a molecular
cloud is chiefly governed by a balance between the attractive force of gravity between particles
and the repulsive thermal pressure from their motion and collisions.

Due to the force of gravity, parts of the cloud can clump together in regions of greater density. As
more mass accumulates, the force of gravity attracting the surrounding material only increases,
causing a snowball effect that amplifies the growth of the clump. Initially, the clump is not
so dense, and thermal radiation can escape to the outside, resulting in low temperatures and
pressure and allowing the clump to contract with little resistance. However, once the density
reaches a sufficiently high level, the clump becomes opaque and traps the thermal radiation
inside. When this happens, the temperature rises, in turn causing the outward pressure to

3
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Figure 1.1: Simplified life cycle of stars and their main structure at every stage (not to scale).
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Section 1.1: Life, death and structure of stars

increase, ultimately counteracting and slowing down the inwards gravitational collapse. During
this stage, as the child “clump” grows by sucking up material from its parent cloud, it receives
the honorable name protostar (figure 1.1a).

Sooner or later, the protostar has depleted the cloud of its available mass and is promoted to a
pre-main-sequence star. Whatever total mass M has been gathered by now will determine
the fate of the star for the rest of its life. The contraction continues until the temperature and
pressure have increased sufficiently for the star to reach a state of equilibrium. Provided that
the protostar has accumulated at least M & 0.08M�, the temperature will reach T & 107 K –
sufficient for the fusion of hydrogen into helium to take place. The ignition of hydrogen marks
the transition into a main sequence star (figure 1.1b). For billions of years, the star supports
itself in this state by burning hydrogen into helium. As time goes on, the hydrogen in the
central region is depleted, leaving behind a helium core surrounded by a hydrogen envelope.
Stars smaller than M . 0.08M� never reach high enough temperatures for fusing hydrogen
and are classified as brown dwarfs (not depicted in figure 1.1). Brown dwarfs slowly cool and
fade away over hundreds of millions of years without undergoing any further major transitions.

What happens once there is no more hydrogen that can burn depends heavily on the mass
of the star. Stars up to M . 8M� evolve into red giants (figure 1.1c). As the hydrogen is
exhausted, the pressure falls and fails to support the star, so the core begins to contract again,
in turn causing another increase in temperature. For heavier red giants, the temperature can
increase to T & 108 K, activating both fusion of helium to carbon and carbon to oxygen, but not
of heavier elements. As these processes take place and the burning of each element successively
finishes, the core develops shells with elements of increasing mass towards the center as shown
in the figure, from hydrogen to helium, carbon or oxygen, depending on the exact mass of the
star. Due to the sudden increase in temperature, much energy is transported into the envelope,
where it reignites leftover hydrogen and inflates the envelope up to 200 solar radii, motivating
the term giant.

Eventually, explosions in the envelope of a red giant trigger unstable pulsations of the hydrogen
envelope. This causes a planetary nebula (figure 1.1d) – an ejection of the outer shells of the
red giant into new clouds from which new stars are born. The remaining inert core that is left
intact from the nebula forms a white dwarf (figure 1.1e). Since no further reactions occur in
the core, it is supported against collapse solely by the degeneracy pressure of a sea of electrons
that have been ripped away from their parent atoms due to the high density, forced to occupy
different states by the Pauli exclusion principle. White dwarfs can be as hot as T ≈ 107 K
upon formation, but gradually cool down as they radiate away their energy. Importantly,
Chandrasekhar showed that white dwarfs can only support masses up to M . 1.47M�. [Cha35]
He modeled the interior as a relativistic Fermi gas of protons, neutrons and electrons and found
that virtually all the pressure that prevents collapse comes from the degeneracy of the electrons,
while the protons and neutrons contribute most of the energy density due to their much greater
mass. In his honor, the true upper mass limit of white dwarfs is named the Chandrasekhar
limit and is currently believed to be closer to M . 1.44M�. [Gle00]

If the mass of a main sequence star exceeds M & 8M�, it first becomes a larger and more
intense red giant – a red supergiant (figure 1.1f). The increased mass sends the temperature
soaring well above T & 108 K, activating not only fusion from hydrogen to helium, carbon and
oxygen, but even to heavier elements such as neon and iron. When the reactions reach iron,
something dramatic happens. As shown in figure 1.2, fusion from elements lighter than iron
release energy, while fusion from heavier elements require energy, causing the burning to stop at
iron. At this point, due to the heavy elements, the core of a red supergiant is so massive that
it exceeds the Chandrasekhar limit. Inevitably, the core collapses and produces an extremely
powerful explosion called a supernova (figure 1.1g).

For supergiants lighter than M . 40M�, the supernova leaves behind an inert core called
a neutron star (figure 1.1h). The core is then so massive that it is compressed past the
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Chapter 1: Introduction

Figure 1.2: The binding energy per nucleon displays a peak near iron. Credit: “Fastfission”
(https://commons.wikimedia.org/wiki/File:Binding_energy_curve_-_common_isotope
s.svg).

Chandrasekhar limit for white dwarfs. The resulting extreme density and Fermi energy makes
it energetically favorable for electrons and protons to combine into neutrons in inverse beta
decay. In general, the outer core of a neutron star can consist of a neutron (n) superfluid mixed
with superconducting protons (p), electrons (e−) and muons (µ−). The precise composition of
the inner core is an open question, but it is believed that it may contain λ and Σ− baryons,
π and K mesons and deconfined quark matter. [Pot10] Thus, compact stars are not only
important for astrophysics as an isolated field, but also serve as a test bed for nuclear and
particle physics. Outside the core, there is an envelope consisting of more “ordinary” matter
with isolated atomic nuclei, such as iron. Despite their differences, all the particles group up for
a last stand against gravity, reaching a new equilibrium configuration that is known as a neutron
star. As with white dwarfs, there is a limit for the gravitational force that their degeneracy
pressure can withstand. Assuming a neutron star consists of an ideal Fermi gas of pure neutrons,
Oppenheimer and Volkoff computed the mass bound M . 0.7M� in 1939, building upon earlier
work by Tolman. [Opp+39; Tol34] More advanced theories and observations place the so named
Tolman-Oppenheimer-Volkoff limit for the maximum mass of real neutron stars somewhere
between 2M� and 3M�. Like white dwarfs, neutron stars only cool down by radiating their
stored energy, from initial core temperatures T ≈ 1010 K to T ≈ 108 K in a month, then to
T ≈ 106 K in less than a million years. [Gle00]

Finally, for supergiants more massive than M & 40M�, the Tolman-Oppenheimer-Volkoff limit
is exceeded, and not even the degeneracy pressure of neutrons can resist gravity. Beyond this
limit, no known star has escaped the collapse to a black hole (figure 1.1i). However, it is
an open question whether there can be other types of stars that fall between the Tolman-
Oppenheimer-Volkoff limit and the lightest observed black holes. No such star has been observed
yet, and they are therefore referred to as exotic stars, of which quark stars is one example.

This marks the last possible path of evolution in the somewhat simplified diagram in figure 1.1.

1.2 Proposition and observation of neutron stars

Only two years after James Chadwick discovered the neutron in 1932, [Cha32] Walter Baade
and Fritz Zwicky proposed the existence of stars composed of them. At the time, physicists
had only recently begun to study supernovas and the origin of cosmic rays. In developing an
explanation of the detailed mechanisms involved in a supernova, they suggested – with great
accuracy – that [Baa+34, page 263]
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Section 1.3: Outline of this thesis

(...) a super-nova represents the transition of an ordinary star into a neutron star,
consisting mainly of neutrons. Such a star may possess a very small radius and an
extremely high density. As neutrons can be packed much more closely than ordinary
nuclei and electrons, the “gravitational packing” energy in a cold neutron star may
become very large, and, under certain circumstances, may far exceed the ordinary
nuclear packing fractions. A neutron star would therefore represent the most stable
configuration of matter as such.

Up until the late 1960s, the existence of neutron stars was only considered a theoretical
possibility. How on Earth would one ever detect such an object, given their assumed small size,
rarity and faint thermal radiation? It was first in 1968 that Jocelyn Bell, a PhD student of
Antony Hewish, recorded an unusual pulsating radio signal from an extraterrestrial source, now
referred to as a pulsar. [Hew+68] The signal consisted of short, Gaussian pulses lasting about
0.3 s each, repeating themselves with extreme accuracy with a period of 1.337 s. At first, it
was speculated that the source could be a white dwarf oscillating radially at the corresponding
frequency. Thomas Gold provided an alternative explanation, suggesting the signal arose from
a rotating neutron star with a strong magnetic field. [Gol68] He imagined the star’s magnetic
field to be reminiscent of a dipole and that a directional signal was emitted from localized
spots on the star corresponding to the magnetic poles. This picture naturally explained the
Gaussian shape of the short pulses, as one would detect a similar pattern by measuring the
intensity of a directed, rotating lighthouse beam from a fixed position. In contrast, radial
pulsations did not explain the shape nor the extreme regularity of the signal. Not long after,
Richard Lovelace and others measured a similar signal from the pulsar NP 0532 in the Crab
Nebula – also referred to as the Crab Pulsar – with a period of only 33 ms, which was even more
challenging to explain by radial oscillations. [Com+69] Moreover, David Richards discovered
that the period slightly increased with time in the way that it should for a rotating object that
radiates away its energy. This evidence convinced physicists that the signals were indeed from
real, rotating and pulsating neutron stars. Controversially, Bell’s supervisor and first author
Hewish later got the Nobel Prize for the discovery of the neutron star, although it was Jocelyn
who made the actual measurements and in hindsight is credited first.

1.3 Outline of this thesis

In this thesis, we first develop the fundamental theoretical tools that are necessary to study
neutron stars, then apply them to calculate their masses and radii and study their stability.

In chapter 1, you already know that we have presented the life cycle of stars and the history
of the proposition and discovery of neutron stars.

In chapter 2, we derive the Tolman-Oppenheimer-Volkoff equation

dP
dr

= −Gmε
r2c2

(
1 +

P

ε

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

,

dm
dr

=
4πr2ε

c2
,

from the Einstein field equations of general relativity. It is a system of two differential equations
for the unknown pressure P (r), mass m(r) and energy density ε(r) at radius r from the center
of a star composed of a perfect fluid in equilibrium. An additional equation of state ε = ε(P )
that allows computation of the energy density corresponding to a given pressure is needed
to solve the system. This is outside the scope of general relativity and belongs to the field
of quantum theory and statistical mechanics. Given the equation of state, however, one may
impose the boundary condition m(0) = 0 and any central pressure P (0) = Pc and solve the
system for the pressure profile P (r) and mass profile m(r) in the star. By defining the surface
r = R of the star where the pressure P (R) = 0 vanishes, one can obtain the radius R and mass
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Chapter 1: Introduction

M = m(R) of the star. In particular, we will solve the system analytically for a star of constant
energy density ε(P ) = ε0 to derive the Buchdal limit M/R < 4c2/9G on the mass-radius ratio
of any star.

In chapter 3, we will study thermal field theory – the formalism needed to find the effects
of quantum fields at nonzero temperature. We will show how to write the quantum partition
function

Z = tr
[
e−β(Ĥ−µiN̂i)

]
as a path integral. First, we use the path integral to find the partition function of a gas of free
bosons. Next, we introduce Grassmann numbers and fermionic coherent states to derive a path
integral that is valid for fermions, and calculate it for a free Fermi gas. From this partition
function, we can calculate the energy density and pressure and hence the equation of state.

In chapter 4, we put together the pieces of chapter 2 and chapter 3 and study ideal neutron
stars made of a cold free Fermi gas. From the partition function Z of chapter 3, we find the
equation of state

ε = ε(P )

for the Fermi gas at zero temperature. We then solve the Tolman-Oppenheimer-Volkoff equation
numerically for this equation of state to find a mass-radius curve [R(Pc), M(Pc)] for such stars
parametrized by their central pressure. Finally, we study whether stars on the curve are in
stable or unstable equilibrium. We begin by establishing a set of necessary criteria from simple
physical considerations. Then we derive a necessary and sufficient criterion for stability by
using perturbation theory on the treatment in chapter 2, studying the behavior of the perfect
fluid as it is disturbed from equilibrium. This results in a Sturm-Liouville problem for radial
vibration modes Un(r) of fluid elements with corresponding squared eigenfrequencies ω2

n that
will determine whether the star is in a stable or unstable state of equilibrium.

In chapter 5, we conclude by discussing our results in light of observations and presenting
an outlook on more advanced theories of neutron stars.

In appendix A, we give a comprehensive review of the theory of general relativity. Here,
we derive the Einstein field equations from the principle of least action and cover all aspects of
general relativity that we require for chapter 2 and chapter 4, including a detailed discussion of
the Newtonian limit.

In appendix B, we briefly summarize relativistic fluid mechanics for a perfect fluid. Here,
we derive relativistic generalizations of results from ordinary fluid mechanics, such as the Euler
equation and the equation of energy conservation. These results are needed to understand the
behavior of fluids out of equilibrium in the stability analysis in chapter 4.

In appendix C, we describe the technique of Matsubara frequency summation. This
is an elegant mathematical tool that allows us to compute a general class of infinite sums
we encounter in chapter 3. Despite their purely mathematical foundation, the results of
this appendix naturally give rise to the Bose-Einstein and Fermi-Dirac distributions, and are
therefore of great physical interest, too.

In appendix F, we give concise derivations of all integrals used throughout this thesis.
Whenever we encounter difficult integrals in the main text, we will always write the result
directly and refer back to this appendix for readers who wish to investigate them in more detail.

In appendix G, we describe implementations of numerical methods and algorithms. Here,
we present dimensionless forms of the Tolman-Oppenheimer-Volkoff equation from chapter 2
and the equations of stellar instability in chapter 4, and solve them with Runge-Kutta methods
and the shooting method, respectively.
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Chapter2
The Tolman-Oppenheimer-Volkoff

Equation

In 1687, Sir Isaac Newton sparked a revolution in the field of physics when he described motion
of bodies with the concept of forces and modeled gravity as an attractive force [New87]

F = −Gm1m2

r2
r̂.

For a long time, his three laws of motion and law of gravity seemed to accurately explain all
observable macroscopic motion. In particular, his laws provided an explanation for the three
laws of planetary motion that Johannes Kepler found by empirical observation many years
earlier in 1609 and 1619. [Kep09; Kep19]

However, in 1859, Urbain Le Verrier observed that Mercury’s orbit deviates from the one
predicted by Kepler’s and Newton’s laws. [Le 59] The resolution came half a century later, when
Albert Einstein proposed his theory of special relativity in 1905 and ten years later incorporated
gravity into this framework with the theory of general relativity. [Ein05; Ein16] While Newton
thought gravity disturbs a body from moving straight through spacetime, Einstein explained
gravity as curvature of spacetime that instead reshapes the straight paths along which a body
moves. Such a “curved straight path” is called a geodesic. Spacetime is curved according to the
Einstein field equations

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν ,

expressing how energy and momentum on the rightmost side – such as mass and light –
determine the geometry of spacetime on the left side.

The most important result of this chapter will be the Tolman-Oppenheimer-Volkoff equation

dP (r)
dr

= −Gm(r)ε(r)

r2c2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

m(r)c2

] [
1− 2Gm(r)

rc2

]−1

,

which we will derive from the Einstein field equations. With this equation, we can find the
pressure profile and radius of a star once we have an equation of state that relates the pressure
and energy of the material inside. This will be an essential tool for our following analysis of
different equations of state. The equation was originally derived in 1939 by Robert Oppenheimer
and George Volkoff, building on earlier work of Richard Tolman. [Opp+39; Tol34]

We will also examine the general consequences of this equation applied to the extreme case of
an incompressible star. To make sense of our results, we also investigate the Newtonian limit of
the Tolman-Oppenheimer-Volkoff equation.

We make heavy use of the results from our review of general relativity in appendix A.

This chapter is inspired by references [Car19], [MTW73] and [Kac20].
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Chapter 2: The Tolman-Oppenheimer-Volkoff Equation

2.1 Derivation from the Einstein field equations

To analyze astrophysical objects like stars, it is of considerable interest to relate the pressure
P (x) and energy density ε(x) or mass density ρ(x) at every position x inside the object. We
will derive the relativistic relation between these quantities from the Einstein field equations

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (2.1)

It describes how the geometry of spacetime, expressed by the Ricci tensor Rµν and Ricci scalar
R and encapsulated in the Einstein tensor Gµν , responds to the presence of energy-momentum
in the energy-momentum tensor Tµν . In appendix A.1, we review how one begins with the
metric (A.10) to successively construct the Christoffel symbols (A.24), Riemann tensor (A.30),
Ricci tensor (A.32) and Ricci scalar (A.33). Since these quantities ultimately depend on only
the metric and nothing else, the metric alone encodes all information about the geometry of
spacetime. In appendix A.2, we show how the Einstein field equations arises from the least-action
principle of a classical field theory involving a Lagrangian density built from the Ricci scalar.
Here, G is the gravitational constant and c is the speed of light.

As we will later compare our findings to those of Newtonian gravity, it will be useful to connect
the energy density ε to the mass density ρ by the mass-energy equivalence relation

ε = ρc2. (2.2)

Unless rotating very fast, stars are well approximated by spheres. For our purposes, we therefore
use the coordinates

xµ = (ct, r, θ, φ) with −∞ < t <∞, 0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, (2.3)

and consider the most general form of a spherically symmetric metric, [Car19, equation 5.11]

ds2 = e2α(r)c2 dt2 − e2β(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
. (2.4)

We model the interior of the star as a perfect fluid in equilibrium. In appendix B, we show that
a perfect fluid with four-velocity field uµ has the energy-momentum tensor

Tµν =
uµuν
c2

(ε+ P )− gµνP. (2.5)

Due to the combination of equilibrium and spherical symmetry, we assume that ε = ε(r) and
P = P (r) only depend on the radial coordinate r, and not on time nor angles. In the rest
frame of the fluid, the four-velocity is uµ = (u0,0), and the normalization condition uµuµ = c2

requires u0 = ±eαc. As we are interested in the evolution of the star, we choose the positive
sign so the four-velocity lies in the future light cone. The energy-momentum tensor then takes
the diagonal form

Tµν =


εe2α 0 0 0
0 Pe2β 0 0
0 0 Pr2 0
0 0 0 Pr2 sin2 θ

 or Tµν =


ε 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

 . (2.6)

Starting with the metric (2.4), it is now straightforward, although tedious, to compute the left
side of the Einstein field equations (2.1) from the Christoffel symbols (A.24), Riemann tensor
(A.30), Ricci tensor (A.32) and Ricci scalar (A.33). For the details, inspect the algebra script in
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Section 2.1: Derivation from the Einstein field equations

appendix A.4 or refer to [Car19, equation 5.11-5.15]. After also inserting the energy-momentum
tensor on the right and simplifying, we find the three independent equations

1

r2
e−2β

(
2rβ′ − 1 + e2β

)
=

8πG

c4
ε

(
G00 =

8πG

c4
T00

)
, (2.7a)

1

r2
e−2β

(
2rα′ + 1− e2β

)
=

8πG

c4
P

(
G11 =

8πG

c4
T11

)
, (2.7b)

e−2β

(
α′′ + (α′)2 − α′β′ +

1

r
(α′ − β′)

)
=

8πG

c4
P

(
G22 =

8πG

c4
T22

)
. (2.7c)

The fourth equation G33 = (8πG/c4)T33 turns out proportional to the third.

Exterior solution

First, let us quickly review the Schwarzschild solution outside the star, where there is no
pressure nor energy density and all right sides vanish. Adding equation (2.7a) and (2.7b) then
yields (α+ β)′ = 0, so α+ β = C for some constant C. The constant can be found by noting
that far away from the star, as r → ∞, the metric should reduce to the spherical Minkowski
metric with e2α = e2β = 1, so we must have α+ β = 0. Inserting β′ = −α′ into equation (2.7c)
then gives a differential equation for α whose solution is α = log (1−D/r) /2 for some constant
D. To determine it, we use that in the Newtonian limit (A.68), the temporal metric element
should reduce to e2α = 1+ 2V /c2 where V = −GM/r is the Newtonian gravitational potential
of the star and M is the Newtonian mass of the star. Thus, D = 2GM/c2 so the metric outside
the star is the well-known Schwarzschild metric

ds2 =
(
1− 2GM

rc2

)
c2 dt2 −

(
1− 2GM

rc2

)−1

dr2 − r2
(
dθ2 + sin2 θ dφ2

)
. (2.8)

In particular, this metric is singular at the Schwarzschild radius

RS = 2GM/c2. (2.9)

This is an event horizon. No event occurring inside r < RS can ever affect an event occurring
outside r > RS . [Car19, section 5.6] In other words, nothing that crosses into the horizon can
ever come back out – not even light! If a star is so small and massive that its Schwarzschild
radius RS > R lies outside the surface, it is invisible from the outside, and we say the star has
collapsed to a black hole.

Interior solution

We now return to the analysis inside the star. To imitate the Schwarzschild metric element g11,
let us define the function m(r) by

e2β(r) =

[
1− 2Gm(r)

rc2

]−1

. (2.10)

Using this definition to eliminate β(r) in favor of m(r) in equation (2.7a), it becomes

dm(r)

dr
=

1

c2
4πr2ε(r), (2.11)

directly relating m(r) and ε(r). If we set m(0) = 0, we can integrate to get

m(r) =
1

c2

∫ r

0
dr′ 4πr′2ε(r′). (2.12)

In [MTW73, page 602] it is shown that setting m(0) 6= 0 creates a singularity at the origin,
which is not physically acceptable. Meanwhile, definition (2.10) turns equation (2.7b) into

dα(r)
dr

=
G

r2c4
m(r)c2 + 4πr3P (r)

1− 2Gm(r)/rc2
. (2.13)
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Chapter 2: The Tolman-Oppenheimer-Volkoff Equation

To finally eliminate α, we can replace all occurrences of α′ and β in the remaining equation (2.7c)
with the expressions (2.13) and (2.10). Doing so is straightforward, but cumbersome and most
easily done by a computer algebra system – this is the approach we take in appendix A.4. A
more elegant, but less straightforward argument is to use local energy-momentum conservation
∇µT

µν = 0, which is both physically reasonable and in fact possible to prove directly from the
Einstein field equations (2.1). For two different proofs, see [Wiki21b] and [Kac20, section 8.3.2].
Calculating the necessary Christoffel symbols and taking the covariant derivative (A.18), the
component ν = 1 gives

0 = ∇µT
µ
1

= ∂1T
1
1 + Γσ1σT

1
1 − Γσ1µT

µ
σ

= ∂1T
1
1 + Γ0

10T
1
1 +

3∑
i=1

Γi1iT
1
1 − Γ0

10T
0
0 −

3∑
i=1

Γi1iT
i
i .

(2.14)

Using T 0
0 = ε and T 1

1 = T 2
2 = T 3

3 = −P from equation (2.6), the explicit sums cancel. With
Γ0
10 =

1
2g

00∂1g00 = dα/dr, we are left with only

dα
dr

=
−1

ε+ P

dP
dr
. (2.15)

Now α is easily eliminated by equating (2.13) and (2.15). Whichever approach we follow, we
end up with the Tolman-Oppenheimer-Volkoff equation (TOV equation)

dP (r)
dr

= −Gm(r)ε(r)

r2c2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

m(r)c2

] [
1− 2Gm(r)

rc2

]−1

. (2.16)

It expresses the pressure gradient dP/dr at radius r from the center of a spherical star composed
of a perfect fluid in equilibrium. Equations (2.11) and (2.16) constitute two equations for the
three unknowns P (r), ε(r) and m(r). To determine them, an additional equation of state

ε = ε(P ) (2.17)

that relates the thermodynamic variables is required, typically obtained from statistical physics.

Note that the Tolman-Oppenheimer-Volkoff equation states that dP/dr < 0, provided that the
last factor is positive. Indeed, we should have 1− 2Gm(r)/c2r > 0 for all r, for otherwise the
region inside r would be a black hole. Near the center r → 0, we can explicitly see that this
holds by using the boundary condition m(0) = 0 and the mass gradient (2.11) to Taylor expand
1− 2Gm(r)/rc2 ' 1− 2Gm′(r)c2 = 1− 8πGε(0)r2/c4 → 1. Moreover, in section 4.3.1 we will
see that an equation of state ε = ε(P ) must satisfy dP/dε > 0 to be stable and exhibit a non-
imaginary speed of sound. Since ε = ε(P ) = ε(P (r)), this implies that (dP/dr) / (dε/dr) > 0
too, so we must also have dε/dr < 0. In summary, we have shown that both the pressure and
energy density strictly decreases away from the center of a star.

Given all three equations (2.11), (2.16) and (2.17), the initial mass m(0) = 0 and some central
pressure P (0) = Pc or energy density ε(0) = εc, we can integrate them to find the pressure
P (r), mass m(r) and energy density ε(r) everywhere inside the star. We define the surface of
the star to be the radius r = R at which the pressure P (r) = 0 vanishes, and the star’s mass as
the corresponding value m(R) =M . After obtaining these functions, we can even calculate the
full metric functions α(r) and β(r) from definition (2.10) and by integrating equation (2.15)
subject to matching the Schwarzschild metric (2.8) at r = R. Beyond the surface r > R, the
Schwarzschild metric (2.8) takes over. Solving these equations is therefore our ultimate goal.

Interpretation of mass

One matter that deserves comment is our definition of the star’s mass M = m(R). We should
be a little careful about this, since it is not obvious how to think of “mass” in relativistic terms.
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Section 2.2: Solution for an incompressible star

At the surface r = R of the star, the radial metric element (2.10) matches the Schwarzschild
metric (2.8) with the mass

M = m(R) =
1

c2

∫ R

0
dr 4πr2ε(r) =

∫ R

0
dr 4πr2ρ(r). (2.18)

We defined this mass in the Schwarzschild metric to be the Newtonian mass of the star.

However, the mass-energy equivalence (2.2) suggests that we should think of mass proportional
to the volume integral of the energy density. The proper volume integral contains the factor√

− |gij | = eβ(r)4πr2 from the full spatial metric, with an extra factor eβ(r) compared to the
Newtonian mass (2.18). With this interpretation, the “mass” is instead

M̄ =
1

c2

∫ R

0
dr 4πr2eβ(r)ε(r) =

∫ R

0
dr 4πr2eβ(r)ρ(r). (2.19)

What is the difference between the two masses (2.18) and (2.19)? In fact, we can show that

M̄c2 −Mc2 =

∫ R

0
dr 4πr2ε(r)

[(
1− 2Gm(r)

rc2

)−1/2

− 1

]
> 0 (2.20)

is the binding energy that arises due to the gravitational attraction between the individual
fluid elements in the star. To see this, let us take the Newtonian limit (A.62). From definition
(2.10), we then have

g11 = −1 +
2Gm(r)

rc2
with Gm(r)

rc2
� 1. (2.21)

Using the Taylor expansion (1− x)−1/2 = 1 + x/2, we get

M̄c2 −Mc2 '
∫ R

0
dr 4πr2 ε(r)

c2
Gm(r)

r
=

∫ R

0
dr 4πr2ρ(r)Gm(r)

r
. (2.22)

As shown in [MTW73, exercise 23.7], this is precisely the energy required to construct the star
by sequentially placing thin shells of mass dm = ρ(r)4πr2 dr on top of each other, each subject
to the gravitational attraction of the shells already placed below it. This is indeed the binding
energy that would be required to disperse all the matter in the star to infinity.

The moral of this story is that the mass M = m(R) in the Tolman-Oppenheimer-Volkoff
equation should be interpreted as the Newtonian mass of the star. But Mc2 is not the total
energy of the star, as we saw above that it differs by the binding energy. Experimentally, this
implies that we can measure masses of distant stars using Newtonian results like Kepler’s third
law that rely only on simple observations. Moreover, it makes it meaningful to compare masses
obtained from general relativity to those found using Newtonian gravity.

2.2 Solution for an incompressible star

Although meaningful equations of state must generally come from quantum theory, statistical
physics, thermodynamics and the likes, we can imagine a semi-realistic one that is very simple
and special from our gravitational mindset. Namely, suppose that the energy density

ε(P ) = ε0 = constant (2.23)

is independent of pressure, and thus constant throughout an incompressible star. For example,
this means the speed of sound (B.36) takes the completely unrealistic value v = c

√
dP/dε =
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Chapter 2: The Tolman-Oppenheimer-Volkoff Equation

c
√
1/(dε/dP ) = c

√
1/0 = ∞. Anyway, let us press on and see what we get. Integrating the

masses (2.12) and (2.18) yield

m(r)c2 =
4

3
πr3ε0 and Mc2 =

4

3
πR3ε0. (2.24)

Inserting the energy density (2.23) and mass (2.24) into the Tolman-Oppenheimer-Volkoff
equation (2.16), P and r separate to∫

dP
(ε0 + P )(ε0 + 3P )

= −
∫

4πGr dr
3c4 − 8πGr2ε0

. (2.25)

The left side can now be split by the partial fraction decomposition

1

(ε0 + P )(ε0 + 3P )
=

1

2P

(
1

ε0 + P
− 1

ε0 + 3P

)
. (2.26)

Applying integral (F.1) and (F.2) and imposing the boundary condition P (R) = 0, we eventually
find the pressure

P (r) = ε0

√
1− 2GMr2

R3c2
−
√
1− 2GM

Rc2

3
√
1− 2GM

Rc2
−
√

1− 2GMr2

R3c2

. (2.27)

In particular, the central pressure is

P (0) = ε0
1−

√
1− 2GM

Rc2

3
√
1− 2GM

Rc2
− 1

. (2.28)

It is interesting to note that the pressure is positive for GM/Rc2 < 4/9, but explodes at
GM/Rc2 = 4/9 and becomes negative for GM/Rc2 > 4/9. The pressure profile for stars
approaching this limit is shown in figure 2.1b. Physically, this means that a star compressed
to this limit could only be supported by an infinite central pressure. Nothing can provide
such a pressure, so the star would have no other choice than to collapse. In fact, Buchdal’s
theorem states that for an arbitrary energy density profile ε(r) that decreases outwards, any
static spherical star composed of a perfect fluid must satisfy [Buc59]

M

R
<

4c2

9G
. (2.29)

We have already shown that the energy density must decrease away from the center for stable
stars. His original proof requires careful work, but we can still understand the result intuitively.
If there is a maximum density that is supported by nature, then the most massive object we can
make should necessarily have that density everywhere. Thus, the bound we have found in our
computation with constant energy density should be the most extreme bound. In figure 2.1a,
we compare the mass-radius relation (2.24) for incompressible stars to this maximum supported
mass.

Another way of looking at the Buchdal’s theorem is that the radius of a star must satisfy

R >
9

4

GM

c2
=

9

8
RS , (2.30)

where RS is the Schwarzschild radius (2.9). Since R > 9RS/8 > RS , we see that a stable star
that satisfies the Buchdal bound R > 9GM/4c2 is guaranteed to not be a black hole. If we
somehow do manage to compress a star to the radius R = 9RS/8, we expect it would become
unstable, implode and collapse further until its surface is inside the Schwarzschild radius, hence
becoming a black hole.

We will shortly see that Buchdal’s theorem is a relativistic result and that no such bound arises
from Newtonian gravity.
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Figure 2.1: (a) Mass-radius relation M = 4πR3ε0/3c
2 for stars of constant energy density ε0

compared to the Buchdal bound M < 4c2R/9G =Mmax. (b) Pressure profile P (r) for stars of
radius R = R0 and masses M approaching the Buchdal bound. The constants R0 =

√
c4/Gε0

and M0 = 4πR3
0ε0/3c

2 are two scales of mass and radius.

2.3 Newtonian limit

In appendix A.3, we thoroughly discuss the conditions under which one should expect general
relativity to reduce to Newtonian gravity. Let us derive the pressure gradient in a star using
Newtonian gravity and show that the Tolman-Oppenheimer-Volkoff equation (2.16) reduces to
it in the Newtonian limit.

Following figure 2.2, consider the mass element dm = ρ(r) dA dr at distance r from the center
of a Newtonian star. By Gauss’ law it is attracted to the mass m(r) inside the radius r as if it
were concentrated at the center, but experiences no attraction whatsoever from the remaining
mass outside r due to symmetry. By Newton’s law of gravity it is therefore pulled upon by the
force

dF1 = −Gm(r)dm
r2

r̂. (2.31)

If the star is in hydrostatic equilibrium, this force must be exactly canceled by the force

dF2 = −
[
P (r + dr)− P (r)

]
dA r̂ = −dP dA r̂ (2.32)

that arises from the pressure difference above and below the element. Setting dF1 + dF2 = 0
then gives the Newtonian pressure gradient

dP (r)
dr

= −Gm(r)ρ(r)

r2
. (2.33)

For example, solving this differential equation for a star of constant mass density ρ(r) = ρ0
and mass m(r) = 4πr3ρ0/3, like we solved the Tolman-Oppenheimer-Volkoff equation (2.16)
for constant energy density ε(r) = ε0 in section 2.2, we get the pressures

P (r) =
ρ0
2

GM

R

(
1 +

r

R

)(
1− r

R

)
and P (0) =

ρ0
2

GM

R
. (2.34)

In this case, the pressure is well-behaved for all r. This shows that Buchdal’s theorem (2.29) is
a purely relativistic result.
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dF1

dF2

dm

r
R

Figure 2.2: When a star of radius R is in hydrostatic equilibrium, the gravitational force dF1

acting on a mass element dm at distance r from the center must exactly cancel the pressure
gradient force dF2.

We expect that the Newtonian gradient (2.33) follows from the relativistic gradient (2.16) in
the Newtonian limit. Comparing the two, we see that the latter indeed reduces to the former if
all the corrections to 1 in the three parentheses vanish. Let us verify that this is the case.

First, note that we already invoked the Newtonian limit in equation (2.21), showing that the
rightmost parenthesis in the Tolman-Oppenheimer-Volkoff equation (2.16) can be neglected.
Second, condition (A.60c) of the Newtonian limit ensures that we can neglect the pressure-energy
density ratio

P

ε
� 1 (2.35)

in the leftmost parenthesis. Third, we have already argued that stable stars should have
non-increasing energy density ε(r) away from the center r = 0. We can then pull the minimum
density min ε(0 ≤ r′ ≤ r) = ε(r) outside the integral (2.12) to bound m(r)c2 ≥ 4πr3ε(r)/3.
From this and equation (2.35), it follows that

4πr3P (r)

m(r)c2
≤ 4πr3P (r)

4
3πr

3ε(r)
=

3P (r)

ε(r)
� 1. (2.36)

Thus, all three corrections in the Tolman-Oppenheimer-Volkoff equation (2.16) vanish, so we
do indeed recover the Newtonian pressure gradient (2.33) in the Newtonian limit!

In fact, there is an alternative way to see it that requires much less work. After replacing the
energy density ε with the mass density ρ = ε/c2, the Tolman-Oppenheimer-Volkoff equation
takes the form

dP (r)
dr

= −Gm(r)ρ(r)

r2

[
1 +

P (r)

ρ(r)c2

] [
1 +

4πr3P (r)

m(r)c2

] [
1− 2Gm(r)

rc2

]−1

. (2.37)

The Newtonian limit corresponds to sending c→ ∞, as this reduces the Lorentz transformations
of relativity to the Galilei transformations of Newtonian physics. But sending c→ ∞ kills all
corrections in the three parentheses of equation (2.37), which restores the Newtonian pressure
gradient (2.33)!
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Section 2.4: Summary

2.4 Summary

The most important result of this chapter is the Tolman-Oppenheimer-Volkoff equation (2.16).
Together with the mass gradient (2.11) and an assumed known equation of state ε = ε(P ), they
are best viewed as the system of two differential equations

dP
dr

= −Gmε(P )
r2c2

(
1 +

P

ε(P )

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

, (2.38a)

dm
dr

=
4πr2ε(P )

c2
, (2.38b)

for the two unknown functions P (r) and m(r), to be integrated from m(0) = 0 and some central
pressure P (0) = Pc or energy density ε(0) = εc. We defined the surface of the star as the radius
r = R with zero pressure P (r) = 0, and the corresponding mass m(R) =M as the Newtonian
mass of the star. After solving the system, we can also calculate the full metric functions α(r)
and β(r) from definition (2.10) and by integrating equation (2.15) subject to matching the
Schwarzschild metric (2.8) at r = R. Outside the star, the Schwarzschild metric takes over
and can be calculated from the mass M , if desired. Thus, solving this system gives us the full
spacetime geometry both inside and outside the star! In appendix G.2, we present a program
that integrates the system numerically for an arbitrary equation of state.

By solving this system for an incompressible star with constant energy density ε0, we derived the
Buchdal limit M < 4c2R/9G. Finally, we saw that the Tolman-Oppenheimer-Volkoff equation
reduced to the Newtonian pressure gradient (2.33) in the Newtonian limit.
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Chapter3
Thermal Field Theory

In this chapter, we will develop the theory for studying quantum fields at finite temperature T .
We will see that there is an elegant mathematical analogy between the path integral for the
transition amplitude of a process and the partition function Z of statistical mechanics, allowing
us to express the latter in terms of the former.

In a quantum system in the grand canonical ensemble, the partition function is [Alt+10,
equation 4.23]

Z = tr
[
e−β(Ĥ−µiN̂i)

]
= e−βΩ, (3.1)

where Ĥ is the Hamiltonian operator, β = 1/kBT is the inverse temperature, µi are chemical
potentials with corresponding number operators N̂i, and kB is the Boltzmann constant. The
trace can be evaluated in any basis. If we find logZ, then we have established the link to
thermodynamics with the grand potential Ω = −kBT logZ, and can obtain thermodynamic
observables such as [And12, chapter 5]

the average number of particles 〈Ni〉 = kBT
∂ logZ
∂µi

, (3.2a)

the average energy 〈E〉 = µi 〈Ni〉 −
∂ logZ
∂β

, (3.2b)

the pressure P =
kBT

V
logZ. (3.2c)

In the Tolman-Oppenheimer-Volkoff equation (2.16), it is precisely the energy density ε =
〈E〉 /V expressed in terms of the pressure P that we want to insert. As all relevant information
about a system can be derived from the partition function, we say that we have “solved the
system completely” once we have found Z.

First, we will review how the transition amplitude for a process can be expressed as a path
integral. Then we will show how the bosonic partition function Z can be expressed as a path
integral by Wick rotating the transition amplitude. By introducing anti-commuting Grassmann
numbers, we will see that the partition function for a fermionic field looks quite similar to the
bosonic one, although their mathematical foundation is very different. Finally, we will explicitly
calculate the partition function for a bosonic and fermionic gas.

This chapter is inspired by references [Kap+06], [Alt+10], [Lai16] and [Sch13].

3.1 Path integral for the bosonic partition function

In this section, we will find a path integral representation of the partition function (3.1) for
bosons. First, we will review some elementary properties of the bosonic field φ(x) and the
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Chapter 3: Thermal Field Theory

conjugate momentum field π(x). Then we will review how the transition amplitude between
two states can be written as a path integral. Finally, we will show that we can connect the
transition amplitude to the partition function and thereby obtain a path integral representation
of it.

Consider a quantum field theory for some field φ with Lagrangian density L. The conjugate
momentum field is defined as

π =
δL
δφ̇
. (3.3)

In the Schrödinger picture, the quantized fields have field operators φ̂(x) and π̂(x), and the
Hamiltonian operator is

Ĥ =

∫
d3xH

(
π̂(x), φ̂(x)

)
, (3.4)

where H = πφ̇− L is the Hamiltonian density obtained from a Legendre transformation of the
Lagrangian density. In analogy with a set of generalized coordinates qi and momenta pi in
classical mechanics and their corresponding operators q̂i and p̂i in quantum mechanics labeled
by a discrete index i, we can think of φ̂(x) and π̂(x) as operators in “position-space” and
“momentum-space” labeled by a continuous index x.

The field operators φ̂(x) and π̂(x) have eigenstates |φ〉 and |π〉 with corresponding eigenvalues
φ(x) and π(x) at every point x, as expressed by the eigenvalue equations

φ̂(x) |φ〉 = φ(x) |φ〉 and  π̂(x) |π〉 = π(x) |π〉 . (3.5)

By assumption, the field and the momentum satisfy the bosonic commutation relations

[φ̂(x), π̂(y)] = ih̄δ(x− y) and [φ̂(x), φ̂(y)] = [π̂(x), π̂(y)] = 0. (3.6)

We take the position-space eigenstates to be orthogonal and complete in the sense

〈φ|φ′〉 =
∏
x

δ
(
φ(x)− φ′(x)

)
and

∫
dφ |φ〉 〈φ| = 1. (3.7)

If we find the inner product 〈φ|π〉, we can use it together with the completeness relation (3.7)
to express position-space states and momentum-space states in terms of each other through

|π〉 =
∫

dφ |φ〉 〈φ|π〉 and |φ〉 =
∫

dπ |π〉 〈π|φ〉 . (3.8)

To do so, let us use the position-space representation π̂ = (h̄/i) δ/δφ (like p̂ = (h̄/i) ∂/∂x) of
the momentum operator. This gives us a first-order differential equation

〈φ|π̂|π〉 = π(x) 〈φ|π〉 = h̄

i

δ

δφ
〈φ|π〉 (3.9)

for the inner product 〈φ|π〉. Choosing the solution with prefactor 1, we obtain

〈φ|π〉 = exp
[
i

h̄

∫
d3xπ(x)φ(x)

]
. (3.10)

The momentum states are also orthogonal and complete, but with slightly different factors.
Using the Fourier transformation convention

f(x) =

∫
dk
2π

e−ikxf̂(k) =

∫
dx′
∫

dk
2π

eik(x
′−x)︸ ︷︷ ︸

δ(x′−x)

f(x′), (3.11)
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we have the Delta function δ(x′ − x) =
∫
(dk/2π) eik(x′−x), so orthogonality takes the form

〈π|π′〉 =
∫

dφ 〈π|φ〉 〈φ|π′〉

=

∫
dφ exp

{
i

h̄

∫
d3x

[
π′(x)− π(x)

]
φ(x)

}
= 2πh̄ δ

(
π(x)− π′(x)

)
.

(3.12)

To find the completeness relation for π̂(x), we postulate it up to a constant B. Consider

1 =

∫
dπ(x)
B

|π〉 〈π|

=

∫
dπ(x)
B

|π〉
∫

dπ′(x)
B

∫
dφ(x) 〈π|φ〉 〈φ|π′〉 〈π′|

=

∫
dπ(x)
B

|π〉
∫

dπ′(x)
B

∫
dφ(x) exp

{
i

h̄

∫
d3x

[
π′(x)− π(x)

]
φ(x)

}
︸ ︷︷ ︸

2πh̄ δ(π′(x)−π(x))

〈π′|

=
2πh̄

B

∫
dπ(x)
B

|π〉 〈π|︸ ︷︷ ︸
1

.

(3.13)

This would be inconsistent unless B = 2πh̄, so completeness in momentum-space is∫
dπ(x)
2πh̄

|π〉 〈π| = 1. (3.14)

Let us use these properties to demonstrate how a transition amplitude between two states can
be written as a path integral. When the Hamiltonian Ĥ is independent of time, a quantum
system evolves from an initial state |φA〉 to the state e−iĤT/h̄ |φA〉 during the time T . [Sak+21,
equation 2.28] Later we will study statistical mechanics for a star in thermal equilibrium –
then the Hamiltonian is always independent of time, otherwise the system would not be in
equilibrium. The transition amplitude for going from the state |φA〉 to a different state |φB〉 in
the time T is therefore 〈

φB

∣∣∣ e−iĤT/h̄ ∣∣∣φA〉 (A→ B). (3.15)

Now split the time interval T into N intervals ∆t = T/N , and decompose the evolution operator
e−iĤT/h̄ into equally many products of e−iĤ∆t/h̄ to write〈

φB

∣∣∣ e−iĤT/h̄ ∣∣∣φA〉 =
〈
φB

∣∣∣ e−iĤ∆t/h̄ · · · e−iĤ∆t/h̄ · · · e−iĤ∆t/h̄
∣∣∣φA〉 . (3.16)

We will take the limit N → ∞ in the end, so we assume that each interval ∆t is small. Now
comes the most important trick – take a deep breath and do the following:

• Insert N complete sets of momentum states 1 =
∫

dπn/(2πh̄) |πn〉 〈πn| to the left of every
exponential, including the rightmost one, with n increasing from right to left.

• Insert N − 1 complete sets of position states 1 =
∫

dφn |φn〉 〈φn| to the right of every
exponential, excluding the rightmost one, with n increasing from right to left.

Now exhale. With this trick, the transition amplitude can be written as the product

〈
φB

∣∣∣ e−iĤT/h̄ ∣∣∣φA〉 =

N∏
n=0

∫
dφn

∫
dπn
2πh̄

〈
φn+1

∣∣∣πn〉〈πn ∣∣∣ e−iĤ∆t/h̄
∣∣∣φn〉 , (3.17)

where we have defined the first and last states

|φ0〉 = |φA〉 and |φN+1〉 = |φB〉 . (3.18)
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φA(x)

φB(x)

π(x)
φ(x)

t

Figure 3.1: A quantum system that evolves from the initial field φA(x) to the final field φB(x)
can take all possible paths through phase space, but some are more likely than others. The
conjugate momentum field π(x) does not need to be the same at the start and the end.

The inner products 〈φn+1|πn〉 can simply be replaced by the exponential (3.10), so let us turn
our attention to the matrix elements 〈πn|e−iĤ∆t/h̄|φn〉. Since the time step ∆t is assumed to
be small, we can expand the exponential e−iĤ∆t/h̄ ' 1− iĤ∆t/h̄ to first order in time. Under
the assumption that the Hamiltonian Ĥ is a sum of terms with all position-space operators φ̂
on the right and all momentum-space operators π̂ on the left, we can pull it out of the product
at the additional benefit of replacing its operators by their eigenvalues. We then obtain〈

πn

∣∣∣ e−iĤ∆t/h̄
∣∣∣φn〉 '

〈
πn

∣∣∣ (1− iĤ∆t/h̄
) ∣∣∣φn〉

=
〈
πn

∣∣∣φn〉(1− iHn∆t/h̄
)

'
〈
πn

∣∣∣φn〉 e−iHn∆t/h̄,

(3.19)

where we have no more operators, but only the Hamiltonian eigenvalue at the n-th timestep,

Hn =

∫
d3xH (πn(x), φn(x)) . (3.20)

Since Ĥ = Ĥ† is Hermitian, this should still be valid if π̂ and φ̂ are ordered right-to-left instead
of left-to-right. The left-right ordering was only assumed for pedagogical reasons to match
the left 〈πn| and right |φn〉 in equation (3.19). We will only study Hamiltonians that is fully
left-right or right-left ordered, for which these steps are valid. Note the importance of expanding
the exponential to first order in time only. If the Hamiltonian contained any mixed sequence of
operators such as H ∝ π̂φ̂, then higher powers like Ĥ2 ∝ π̂φ̂π̂φ̂ in the power series expansion
of the time evolution operator would not be in the assumed left-right or right-left order.

Substituting equations (3.10), (3.19) and (3.20), the transition amplitude (3.17) becomes〈
φB

∣∣∣ e−iĤT/h̄ ∣∣∣φA〉 =

(
N∏
n=1

∫
dφn

∫
dπn
2πh̄

)

× exp

{
i∆t

h̄

N∑
n=1

∫
d3x

[
πn(x)

φn+1(x)− φn(x)

∆t
−H (πn(x), φn(x))

]}
.

(3.21)

Finally, we take the continuum limit by sending N → ∞. It is then natural to define
φ(x, tn) = φn(x, tn) and π(x, tn) = πn(x, tn) to be the spatial fields at each timestep tn. Both
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Section 3.1: Path integral for the bosonic partition function

become continuous functions of time in the continuum limit. We also use the finite difference
definition of the derivative to turn the fraction in the exponential into a partial derivative
φ̇(x, t) = ∂φ(x, t)/∂t. Similarly, we use the Riemann sum definition of the integral to turn the
sum ∆t

∑
into an integral

∫
dt. We also define the functional integrals

∫
Dφ = lim

N→∞

N∏
n=1

∫
dφn and 

∫
Dπ = lim

N→∞

N∏
n=1

∫
dπn
2πh̄

. (3.22)

With all of these steps, the transition amplitude takes the form of the path integral〈
φB

∣∣∣ e−iĤT/h̄ ∣∣∣φA〉 =

∫
Dπ
∫ φ(x,T )=φB(x)

φ(x,0)=φA(x)
Dφ

× exp
{
i

h̄

∫ T

0
dt
∫

d3x
[
π(x, t)φ̇(x, t)−H (π(x, t), φ(x, t))

]}
.

(3.23)

It is tempting to recognize πφ̇−H as the Legendre transformation that converts to the Lagrangian
density and write L in its place. But we should be careful – the Legendre transformation
converts the independent variable φ̇ in L(φ, φ̇,∇φ) to π in H(φ, π,∇φ). We are integrating
over π and should therefore not lose track of it by writing L = L(φ, φ̇,∇φ). Thus, we do not
modify the integral further.

The path integral expresses the transition amplitude for the process A→ B as a sum over all
possible paths through phase space, each weighted by the value on the unit circle with phase
corresponding to the action of the path. This interpretation is illustrated in figure 3.1. Note
that the position-space integral

∫
Dφ is constrained to start and end in the initial and final

states due to the leftmost and rightmost products with the edge states 〈φB| and |φA〉 in the
transition amplitude, but the momentum integral

∫
Dπ has no such constraint.

Why have we spent so much time on this transition amplitude, when we really are only interested
in the partition function (3.1)? If we evaluate the trace in the basis of fields |φ0〉, we obtain

Z =

∫
dφ0

〈
φ0

∣∣∣ e−β(Ĥ−µiN̂i)
∣∣∣φ0〉 . (3.24)

This is precisely an integral over transition amplitudes (3.23), but now with

• equal start and end states |φA〉 = |φB〉 = |φ0〉,

• the Hamiltonian Ĥ − µiN̂i and

• a purely imaginary time variable t = −iτ with τ running from 0 to βh̄.

Thus, we can express the partition function (3.24) as path integrals (3.23) with these simple
substitutions! We redefine the field φ(x, t) → φ(x, τ) to be functions of the new “inverse
temperature time” τ . Therefore, we substitute i

∫
dt →

∫
dτ and φ̇(x, t) = ∂φ(x, t)/∂t →

∂φ(x, τ)/∂(−iτ) = iφ̇(x, τ). Omitting the arguments of the fields from now, we obtain the
bosonic partition function

Z =

∫
Dπ
∮
+
Dφ exp

[
1

h̄

∫ βh̄

0
dτ
∫

d3x
(
iπφ̇−H+ µN

)]
(3.25)

where we have absorbed
∫

dφ0 into the path integral
∫
Dφ and write

∮
+ to indicate that we

integrate over all fields φ(x, τ) = φ(x, τ + βh̄) that are periodic in τ , due to the equal start and
end states φA(x) = φB(x) in equation (3.24). Thus, thermal field theory – statistical mechanics
for quantum fields at finite temperature – is essentially equivalent to ordinary quantum field
theory with temperature-dependent time and periodic fields, and the partition function is
obtained by integrating along closed paths in phase space!
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Chapter 3: Thermal Field Theory

The only ingredients in the path integral we have not yet discussed are the chemical potential
µ and the number density N . In statistical mechanics, we can associate a chemical potential µ
with any conserved quantity N of the system in the “shifted Hamiltonian” H ′ = H − µN . How
can we connect this to the field theory under study? Suppose that the field theory admits a
conserved current

jν(x) with ∂νj
ν(x) = 0 and conserved charge Q =

∫
d3x j0(x) with dQ

dt
= 0. (3.26)

In the corresponding quantized quantum field theory, this is equivalent to the commutation
[Ĥ, Q̂] = 0 between the Hamiltonian operator and charge operator, for then d 〈Q〉/dt =〈
[Ĥ, Q̂]

〉
= 0 by the Ehrenfest theorem. The conserved current jν(x) can be coupled to a gauge

field Aν(x) by adding the term Aν(x)j
ν(x) to the Lagrangian density L, or −Aν(x)jν(x) to

the Hamiltonian density H. Under a standard, Abelian gauge transformation

Aν(x) → A′
ν(x) = Aν(x) + ∂νλ(x), (3.27)

we can apply the product rule backwards to show that the Lagrangian density changes as

L = L0 +Aνj
ν → L′ = L0 +A′

νj
ν = L+ (∂νλ)j

ν = L+ ∂ν(λj
ν)− λ∂νj

ν . (3.28)

Thus, the Lagrangian is invariant up to the surface term ∂ν(λj
ν), provided that the current is

conserved according to ∂νjν = 0, so the equations of motion are unchanged. To make contact
between the field theory and the grand canonical ensemble where H′ = H− µN , we see that
the chemical potential µ is equivalent to the temporal component of a constant gauge field

Aν(x) = µδ0ν coupled to the conserved current N (x) = j0(x)! (3.29)

In conclusion, the so far unspecified density N in the partition function is identified with the
charge density j0 corresponding to a conserved charge Q =

∫
d3x j0(x).

To what extent is this coupling physical? In other words, is it possible to remove the gauge
field Aν with a gauge transformation (3.27) such that A′

ν = 0? To achieve this, we would have
to choose λ(x) = −ctµ up to a constant, because then A′

ν = δ0νµ+ δ0ν∂0λ = µ− µ = 0. But
the gauge function λ(t,x) 6= λ(t+ βh̄,x) is not single-valued on the periodic manifold of fields
we are considering. We therefore conclude that the gauge transformation is ill-defined, and
that the coupling between the chemical potential and conserved current is truly physical.

Later, we will see examples of theories both with and without conserved charges. When studying
Dirac fermions, we will see that the conserved charge corresponds to the difference between the
number of particles and antiparticles. The associated chemical potential essentially functions
as a knob with which we can regulate the balance between particles and antiparticles in the
system.

3.2 Path integral for the fermionic partition function
We will now develop a path integral for a fermionic field described by a four-spinor ψ =
[ψ0, ψ1, ψ2, ψ3], For example, the Dirac Lagrangian is L = ψ̄(ih̄c /∂ − mc2)ψ with conjugate
momentum π = δL

/
δψ̇ = ih̄ψ†, so we are instructed to treat the field and its conjugate

independently in the path integral. This is not a peculiarity of fermionic fields only – for a
complex scalar field φ, for example, we would also be instructed to treat φ and φ∗ separately.

Why do we need to derive the path integral for fermions separately – can we not just use the
bosonic path integral (3.25) with the appropriate conjugate momentum? By assumption, the
fermion field operators obey the fermionic anti-commutation relations

{ψ̂α(x), ψ̂β(y)} = {ψ̂†
α(x), ψ̂

†
β(y)} = 0, (3.30a)

{ψ̂α(x), ψ̂†
β(y)} = {ψ̂†

α(x), ψ̂β(y)} = δαβδ(x− y), (3.30b)
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Section 3.2: Path integral for the fermionic partition function

in contrast to the bosonic commutators (3.6). In the derivation of the bosonic path integral
(3.25), we treated the eigenvalues φ and π of the operators φ̂ and π̂ as ordinary numbers.
However, the anti-commutators (3.30) of the fermionic field operators in fact requires their
eigenvalues to anti-commute! For example,

if ψ̂ |ψ〉 = ψ |ψ〉 and 〈ψ| ψ̂† = 〈ψ|ψ∗,

then 〈ψ|ψ̂†ψ̂|ψ〉 = 〈ψ|ψ∗ψ|ψ〉 = −〈ψ|ψψ∗|ψ〉 = −〈ψ|ψ̂ψ̂†|ψ〉 by (3.30),
so {ψ,ψ∗} = 0.

(3.31)

By replacing only one operator with its eigenvalue in the second line, we can also deduce
the requirements {ψ, ψ̂†} = {ψ, ψ̂} = 0 between operators and eigenvalues. The bosonic path
integral (3.25) and its derivation is therefore not valid for fermions.

Grassmann numbers

To develop the fermionic path integral, we therefore replace the algebra of ordinary commuting
numbers in the bosonic case with anti-commuting Grassmann numbers. We will need only a
few basic properties of Grassmann numbers, so let us quickly review them here.

The algebra of a set of N Grassmann numbers ψi and their conjugates ψ∗
i is defined by the

anti-commutators
{ψi, ψj} = {ψi, ψ∗

j } = {ψ∗
i , ψ

∗
j } = 0. (3.32)

In particular, this implies that ψ2
i = 0, so ψni = 0 for any n ≥ 2. Functions of Grassmann

numbers are defined by their Taylor expansion, but the property ψ2
i = 0 will always terminate

the Taylor series after a finite number of terms. Thus, the most general function of N Grassmann
numbers and their conjugates can be written

f(ψ) = A+
∑
i

Aiψi +
∑
i

Biψ
∗
i +

∑
i,j

Aijψiψj +
∑
i,j

Bijψiψ
∗
j +

∑
i,j

Cijψ
∗
i ψ

∗
j

+ . . .+ Z1···Nψ1ψ
∗
1 · · ·ψNψ∗

N .

(3.33)

For example, for the exponential function of one Grassmann number ψ, only the first two terms
survive the Taylor series

exp(ψ) =
∞∑
n=0

ψn

n!
= 1 + ψ. (3.34)

Integration over Grassmann numbers is defined by∫
dψi 1 = 0, (3.35a)∫

dψi ψj = δij . (3.35b)

These are the Grassmann number properties that we will need.

Fermionic coherent states

In the derivation of the bosonic path integral (3.25), we relied heavily on using eigenstates of
the system to take the trace in (3.1), insert completeness relations and take inner products
between eigenstates. To find analogous ways of doing this with fermionic fields, we will introduce
fermionic coherent states.

Let us get to work. Suppose we have a finite number N of Grassmann numbers ψi with
conjugates ψ∗

i and as many creation and annihilation operators ψ̂†
i and ψ̂i. Right after
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Chapter 3: Thermal Field Theory

equation (3.31), we argued that Grassmann numbers anti-commute not only with each other,
but also with the operators. By assumption, we therefore start with all the anti-commutators

{ψ̂i, ψ̂j} = {ψ̂†
i , ψ̂

†
j} = 0 (similar operators), (3.36a)

{ψ̂i, ψ̂†
j} = {ψ̂†

i , ψ̂j} = δij (different operators), (3.36b)
{ψi, ψj} = {ψi, ψ∗

j } = {ψ∗
i , ψ

∗
j } = 0 (numbers), (3.36c)

{ψi, ψ̂j} = {ψi, ψ̂†
j} = {ψ∗

i , ψ̂j} = {ψ∗
i , ψ̂

†
j} = 0 (numbers and operators). (3.36d)

In other words, all field operators and all Grassmann numbers anti-commute with themselves
and each other. The anti-commutators (3.36a) and (3.36b) are the discrete analogues of the
continuous anti-commutators (3.30a) and (3.30b). It will be more comfortable to carry out the
formalism of fermionic coherent states in the discrete case and then take the continuum limit
ψi → ψ(x) in the end.

The Fock space of the fermionic field has a ground state or vacuum state

|0, 0, . . . , 0〉 = |0〉 . (3.37)

If we apply any annihilation operator to the ground state, we get

ψ̂i |0〉 = 0, because ψ̂iψ̂i |0〉 = −ψ̂iψ̂i |0〉 = 0 by equation (3.36a). (3.38)

On the other hand, we can apply a creation operator to build a one-particle state

|1i〉 = |(n1 = 0), . . . , (ni = 1), . . . , (nN = 0)〉 = ψ̂†
i |0〉 . (3.39)

If we apply the same creation operator again, we get

ψ̂†
i |1i〉 = 0, because ψ̂†

i ψ̂
†
i |0〉 = −ψ̂†

i ψ̂
†
i |0〉 = 0 by equation (3.36a). (3.40)

Applying the corresponding annihilation operator instead, we return to the vacuum

ψ̂i |1i〉 = ψ̂iψ̂
†
i |0〉 = (1− ψ̂†

i ψ̂i) |0〉 = |0〉 . (3.41)

More generally, we can apply any sequence of n =
∑

i ni different creation operators to the
vacuum state to build an n-particle state

|n1, n2, . . . , nN 〉 =
(
ψ̂†
1

)n1

· · ·
(
ψ̂†
N

)nN

|0〉 . (3.42)

This results in a nonzero state only if all ni ∈ {0, 1}, because (ψ̂†
i )

2 |0〉 = −(ψ̂†
i )

2 |0〉 = 0 by the
anti-commutator (3.36a). Note that shuffling the sequence of operators in equation (3.42) can
change the sign of the state. To avoid ambiguity in our definition, we simply adopt any ordering
convention, such as defining the n-particle state to have operators whose indices increase from
left to right, as in the equation above.

The interpretation of this analysis is that the creation operator ψ̂†
i adds a particle in the

state i, while the annihilation operator ψ̂i removes a particle from the same state. The
restriction that ni ∈ {0, 1} implies that there can be at most one particle in every state and is
called the Pauli exclusion principle. Note that the Fock space has a total of 2N distinct states

|n1, n2, . . . , nN 〉 where ni ∈ {0, 1} for all i = 1, . . . , N. (3.43)

Next, define the coherent state

|ψ〉 = exp

(
−
∑
i

ψiψ̂
†
i

)
|0〉

=
∏
i

exp
(
−ψiψ̂†

i

)
|0〉

=
∏
i

(
1− ψiψ̂

†
i

)
|0〉

(
by Taylor expansion (3.34)

)
.

(3.44)
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Section 3.2: Path integral for the fermionic partition function

Applying an annihilation operator to this state gives

ψ̂j |ψ〉 = ψ̂j
∏
i

(
1− ψiψ̂

†
i

)
|0〉

(
by (3.44)

)
=

∏
i 6=j

(
1− ψiψ̂

†
i

)
ψ̂j

(
1− ψjψ̂

†
j

)
|0〉

(
by (3.36b) and (3.36d)

)
=

∏
i 6=j

(
1− ψiψ̂

†
i

)
ψj |0〉

(
by (3.36d), (3.38) and (3.41)

)
=

∏
i 6=j

(
1− ψiψ̂

†
i

)
ψj

(
1− ψjψ̂

†
j

)
|0〉

(
by (3.36c)

)
= ψj

∏
i

(
1− ψiψ̂

†
i

)
|0〉

(
by (3.36c) and (3.36d)

)
= ψj |ψ〉

(
by (3.44)

)
.

(3.45)

In other words, the coherent state |ψ〉 is an eigenstate of every annihilation operator ψ̂j with
eigenvalue ψj ! This is analogous to the bosonic eigenvalue equation (3.5). It is the coherent
states that we wish to use when taking the trace, inner product and inserting identity operators
in the path integral.

First, let us find the inner product between two coherent states. It is

〈ψ|ψ′〉 = 〈ψ|
∏
i

(1 + ψ∗
i ψ

′
i)|0〉

(
by (3.44), (3.36d) and (3.45)

)
= 〈0|

∏
i

(1 + ψ∗
i ψ

′
i)|0〉

(
by orthogonality

)
= exp

(∑
i

ψ∗
i ψ

′
i

) (
by 〈0|0〉 = 1 and (3.34)

)
.

(3.46)

Next, we can work out that the unit operator 1 can be represented by the integral∫
dψ∗

∫
dψ exp

(
−
∑
i

ψ∗
i ψi

)
|ψ〉 〈ψ|

=

∫
dψ∗

∫
dψ
∏
i

(
1 + ψiψ

∗
i

)∏
j

(
1− ψjψ̂

†
j

)
|0〉 〈0|

∏
k

(
1− ψ̂kψ

∗
k

)

=
1∑

n1=0

1∑
n2=0

· · ·
1∑

nN=0

|n1, n2, . . . , nN 〉 〈n1, n2, . . . , nN | = 1.

(3.47)

To make the big leap across the second equality sign, stare intensely at the middle line while
following the next argument. To get a nonzero contribution from the integral, the parentheses
must be multiplied out in a way such that one gets terms with the particular combination∫

dψ∗
∫

dψ ψ1ψ
∗
1 · · ·ψNψ∗

N = 1. (3.48)

Why? Any term with duplicate fields ψ2
i = −ψ2

i = 0 will yield zero. Similarly, if a term has
a product that does not contain all the factors ψ1, ψ

∗
1, . . . , ψN , ψ

∗
N , then after integrating

out the present factors with integral (3.35b), there will always be left behind a vanishing
constant integral in the form (3.35a) over the absent factors, causing the whole integral to
vanish. Based on this, we can derive three rules for what combinations of factors we can choose
when multiplying out the three parentheses.

1. For any i in the first parenthesis: Given that we follow the two next rules, we are
free to choose either the factor 1 or ψiψ∗

i .
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2. For j = i in the second parenthesis: If we choose ψiψ∗
i in the first parenthesis, we

must choose 1 in the second to avoid a duplicate factor ψ2
i = 0. Conversely, if we choose

1 in the first, we must choose −ψjψ̂†
j in the second to “saturate” the product (3.48).

3. For k = j = i in the third parenthesis: If we choose −ψjψ̂†
j in the second, we must

choose −ψkψ̂†
k in the third to get ψjψ∗

j in the field product. Conversely, if we choose 1
in the second, then we have already included ψiψ

∗
i in the first by rule 2, and we must

choose 1 in the third to avoid a duplicate factor (ψ∗
i )

2 = 0.

Following these rules, the first parenthesis expands to all possible 2N terms. For every one of
these terms, there is precisely one combination of factors in the second and third parentheses
that yields a nonzero contribution. This evaluates to 2N terms with all possible combinations
of Nj = Nk creation and annihilation operators and Ni = N −Nj Grassmann numbers. These
2N terms are therefore precisely all the 2N states (3.43) in the Fock space! The sign ambiguity
following different orderings of operators in the n-particle states (3.42) does not cause any
problems with signs in the sum over all the states, either. To understand why, note that rule 3
forces us to apply the same sequence of operators to both |0〉 and 〈0| in equation (3.47), and
any ordering that does not follow definition (3.42) can be made to do so by anti-commuting
the same operators in both sequences, introducing an even number of minus signs that cancel.
This explains the transition to the final line.

With the same reasoning, we can work out that the trace of an operator Â can be written∫
dψ∗

∫
dψ exp

(
−
∑
i

ψ∗
i ψi

)
〈−ψ|Â|ψ〉

=

∫
dψ∗

∫
dψ
∏
i

(
1 + ψiψ

∗
i

)
〈0|
∏
j

(
1 + ψ̂jψ

∗
j

)
Â
∏
k

(
1− ψkψ̂

†
k

)
|0〉

=

1∑
n1=0

1∑
n2=0

· · ·
1∑

nN=0

〈n1, n2, . . . , nN |Â|n1, n2, . . . , nN 〉 = tr Â.

(3.49)

The rules for multiplying out the parentheses are virtually identical to those in equation (3.47).
Schematically, the two last parentheses give contributions in the form 〈0|(ψ̂jψ∗

j )Â(−ψkψ̂
†
k)|0〉 =

+ψkψ
∗
j 〈0|ψ̂jÂψ̂

†
k|0〉 and all its multi-particle generalizations, where we must set j = k to get

a nonzero contribution. In addition, we have assumed that Â is a “bosonic” operator that
commutes with the Grassmann numbers, allowing us to move the Grassmann numbers out of
the inner product in this way. For example, the Dirac Hamiltonian (3.89) that we will work
with later is such an Â, as it contains two field operators. Pay special attention to the minus
sign in 〈−ψ| = 〈0|

∏
j [1− ψ̂j(−ψ∗

j )] = 〈0|
∏
j [1 + ψ̂jψ

∗
j ] in the first line! Without it, we would

not obtain the trace when multiplying out the parentheses. We will soon see that this minus
sign is perhaps the most important result of this whole chapter, yet surely the least visible one!

As we remarked at the start, this analysis was for discrete fields that satisfy the discrete
anti-commutators (3.36). We are studying fields ψ(x) and ψ∗(x) with an infinite number of
field operators ψ̂†(x) and ψ̂(x) that satisfy the continuum generalization (3.30). Our results
carry over with the substitutions ψi → ψ(x), as if every Grassmann number corresponds to the
field at one position, and

∑
i →

∫
d3x. The continuum version of the coherent state is therefore

|ψ〉 = exp
[
−
∫

d3xψ(x)ψ̂†(x)

]
|0〉 . (3.50)

The inner product (3.46) between two coherent states is then

〈ψ|ψ′〉 = exp
[∫

d3xψ∗(x)ψ′(x)

]
, (3.51a)
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and the identity operator (3.47) becomes∫
dψ∗

∫
dψ exp

[
−
∫

d3xψ∗(x)ψ(x)

]
|ψ〉 〈ψ| = 1, (3.51b)

while the trace (3.49) is modified to∫
dψ∗

∫
dψ exp

[
−
∫

d3xψ∗(x)ψ(x)

]〈
−ψ

∣∣∣ Â ∣∣∣ψ〉 = tr Â. (3.51c)

The most important thing to note is the necessity of the minus sign in 〈−ψ| of the trace (3.51c)
– we will see that this requires fermionic fields to be anti-periodic in imaginary time, in contrast
to the periodic bosonic fields.

Partition function

Using equations (3.51a), (3.51b) and (3.51c) as our toolbox, let us now construct the path
integral for the fermionic partition function. We now revert from the above notation with single
fermion fields ψ and ψ∗ back to the four-component spinors ψ and ψ†. Accordingly, we write∏3
α=0 dψα = dψ and

∏3
α=0 dψ∗

α = dψ† to indicate integration over all four components. The
partition function (3.1) follows from the trace (3.51c) with Â = e−β(Ĥ−µN̂) as

Z =

∫
dψ†

0

∫
dψ0 e

−
∫

d3xψ†
0(x)ψ0(x)

〈
−ψ0

∣∣∣ e−β(Ĥ−µN̂)
∣∣∣ψ0

〉
. (3.52)

Breaking up the operator e−β(Ĥ−µN̂) as in equation (3.16) with small times ∆τ = βh̄/N and
inserting one Grassmann completeness relation (3.51b) between every factor, the partition
function becomes

Z =
∏
n

∫
dψ†

n

∫
dψn e−

∫
d3xψ†

n+1(x)ψn+1(x)
〈
ψn+1

∣∣∣ e−(Ĥ−µN̂)∆τ/h̄
∣∣∣ψn〉 , (3.53)

where we defined the left end state

〈ψN+1| = 〈−ψ0|
(
note the minus sign!

)
. (3.54)

We are hiding the minus sign to be able to write the expression in compact product notation.
Do not forget it! Next, expand the Hamiltonian to first order as in equation (3.19). Then we
obtain

Z =
∏
n

∫
dψ†

n

∫
dψn e−

∫
d3xψ†

n+1(x)ψn+1(x) 〈ψn+1|ψn〉 e−(Hn−µN)∆τ/h̄. (3.55)

Now use the Grassmann inner product (3.51a) on 〈ψn+1|ψn〉 to write

Z =
∏
n

∫
dψ†

n

∫
dψn exp

[
∆τ

h̄

∑
n

∫
d3x

(
−h̄ψ†

n+1

ψn+1 − ψn
∆τ

ψn −H+ µN
)]

. (3.56)

Finally, take the continuum limit and introduce the functional integrals Dψ =
∏∞
n=1 dψn and

Dψ† =
∏∞
n=1 dψ†. We then obtain the fermionic partition function

Z =

∮
−
Dψ†

∮
−
Dψ exp

[
1

h̄

∫ βh̄

0
dτ
∫

d3x
(
−h̄ψ†ψ̇ −H

(
ψ†, ψ

)
+ µN

)]
, (3.57)

where
∮
− means to integrate over anti-periodic fields ψ(x, 0) = −ψ(x, βh̄), naturally extending

the symbol
∮
+ we introduced for bosonic fields that were periodic. Here, anti-periodicity

follows from the negative sign in 〈−ψ| in the trace (3.51c) that we hid in the end state (3.54).
Remarkably, this result looks identical to the bosonic partition function (3.25) with canonical
momentum π = ih̄ψ†, despite the very different machinery with anti-periodic Grassmann fields.
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3.3 Matsubara frequencies and box quantization
We have just seen that the partition function for bosons and fermions can be expressed by path
integrals over fields that are periodic and anti-periodic on the time interval βh̄, respectively. In
other words, a bosonic or fermionic field φ(x, τ) satisfies the (anti-)periodicity

φ(x, τ) =

{
+φ(x, τ + βh̄) for bosons
−φ(x, τ + βh̄) for fermions.

(3.58)

Accordingly, we can expand either field in a Fourier series

φ(x, τ) =
∑
n

φn(x)e
iωnτ (3.59)

with Matsubara frequencies

ωn =

{
2πn/βh̄ for bosons
2π(n+ 1

2)/βh̄ for fermions.
(3.60)

The field is not periodic in space, but let us for a moment pretend that it is by putting it in a
fictitious box of volume V = L3 and impose periodic boundary conditions. Then the spatial
part of the field can also be represented by a Fourier series

φn(x) =
∑
k

φn(k)e
ik·x, (3.61)

where the sum runs over all wavevectors k with components ki = 2πni/L for integers ni, each
separated by the distance ∆k = 2π/L in k-space. Since the field is not really periodic, we
should take the continuum limit V → ∞ at the end. Then ∆k → 0, so the sum is replaced by
the integral ∑

k

=
∑
k

(∆k)3

(2π/L)3
→

∫
d3k

(2π/L)3
= V

∫
d3k

(2π)3
. (3.62)

This mathematical trick is known as box quantization. In the following sections, we will
therefore proceed through a calculation with a finite Fourier series expansion

φ(x, τ) =
∑
n

∑
k

φn(k)e
i(k·x+ωnτ) (3.63)

of the field, then take the continuum limit (3.62) at the end of the calculation to make it
physically correct.

The infinite volume factor V will come in handy when calculating thermodynamic observables.
To obtain the pressure (3.2c), we are instructed to divide by volume. Similarly, we will need to
divide by volume to convert extensive observables like the energy (3.2b) into intensive observables
like the energy density ε = 〈E〉 /V that we need in the Tolman-Oppenheimer-Volkoff equation
(2.16).

The wave number k and the Matsubara frequency ωn here arose due to geometrical considerations
of the periodicity of the field. We will soon see that they have important physical consequences,
too. In anticipation of this, we define the corresponding momentum and Matsubara energy

p = h̄k, En = h̄ωn and
∑
p

=
∑
k

= V

∫
d3p

(2πh̄)3
. (3.64)

Note that some authors adopt the four-momentum p = (En/c,p) and write the Fourier
amplitude as φ(p). Due to the difference between the discrete nature of the Matsubara energies
and the continuous nature of the momenta, we wish to maintain some “separation” between
time and space and therefore choose to write φn(p).
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3.4 The partition function for free real scalar bosons
As a first example, we apply the path integral formalism to find the partition function for a
free real scalar field representing spin-zero bosons. Its Lagrangian density is

L =
1

2
(∂µφ)(∂

µφ)− 1

2

m2c2

h̄2
φ2 =

1

2c2
φ̇2 − 1

2
(∇φ)2 − 1

2

m2c2

h̄2
φ2. (3.65)

To be clear, we now denote time by τ , regard the field as a function φ(x, τ) and denote the
time derivative by ˙ = ∂/∂τ . There is no t anymore, only the τ of the path integral (3.25).
The conjugate momentum (3.3) is

π =
∂L
∂φ̇

=
1

c2
φ̇. (3.66)

The Hamiltonian density is therefore

H = πφ̇− L =
1

2
c2π2 +

1

2
(∇φ)2 + 1

2

m2c2

h̄2
φ2. (3.67)

We now calculate the partition function (3.25). To do so, we need the combination

iπφ̇−H = iπφ̇− 1

2
c2π2 − 1

2
(∇φ)2 − 1

2

m2c2

h̄2
φ2

= −1

2
c2
(
π − i

c2
φ̇

)2

− 1

2c2
φ̇2 − 1

2
(∇φ)2 − 1

2

m2c2

h̄2
φ2

= −1

2
c2π̃2 + LE .

(3.68)

We completed the square by defining the shifted field π̃ = π − iφ̇/c2, for reasons that soon will
be apparent. Remember that the Legendre transformation (3.67) exchanges the independent
variable φ̇ in L = L(φ, φ̇,∇φ) to π in H = H(φ, π,∇φ). Thus, the shift can be regarded as a
shift by a constant. We also defined the remaining terms as the Lagrangian density LE . It is
exactly the original Lagrangian density (3.65), only with τ → iτ . This can be interpreted as
a change from Minkowski space to Euclidean space, and we therefore call LE(τ) = L(iτ) the
Euclidean Lagrangian density. There is no conserved current, so the path integral (3.25) is now

Z =

∫
Dπ
∮
+
Dφ exp

{
1

h̄

∫ βh̄

0
dτ
∫
V

d3x

[
−1

2
c2π̃2 + LE

]}
. (3.69)

Since π̃ can be regarded as a constant shift of the field π, we can now use the Gaussian
integral (F.3) to integrate out the momentum. We do not bother keeping track of the resulting
constant or any other constants in front of the partition function. Physical quantities like the
energy (3.2b) only involve derivatives of logZ and would be unaffected by such constants. The
pressure (3.2c), however, contains logZ without derivatives and would really be shifted by an
infinite constant, due to the infinite number of integrals in the functional integral (3.22). It is
most correct, therefore, to disregard constants in Z with the attitude that we would have to
renormalize the physical quantities in the end anyway, in order to get rid of infinities.

Thus, it only remains to tackle the φ-integral

Z =

∮
+
Dφ exp

(
SE
h̄

)
, (3.70)

with the Euclidean action

SE =

∫ βh̄

0
dτ
∫
V

d3xLE

=

∫ βh̄

0
dτ
∫
V

d3x

[
− 1

2c2
∂φ

∂τ

∣∣∣∣2 − 1

2
(∇φ)2 − 1

2

m2c2

h̄2
φ2

]
.

(3.71)
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By assumption, the action has no variation on the boundaries, so we can integrate by parts to
convert (∂φ/∂τ)2 into −φ∂2φ

/
∂τ2 and forget the boundary term. It then becomes

SE =
1

2

∫ βh̄

0
dτ
∫
V

d3x

[
φ

(
1

c2
∂2

∂τ2
+∇2 − m2c2

h̄2

)
φ

]
. (3.72)

At this point it is useful to introduce the Fourier series (3.63) of the field with bosonic Matsubara
frequencies (3.60). However, we also include a prefactor and write

φ(x, τ) = h̄c

√
β

V

+∞∑
n=−∞

∑
k

φn(k)e
i(k·x+ωnτ). (3.73)

The prefactor h̄c
√
β/V is chosen to have the same dimension as the field φ(x, τ), so the

Fourier amplitudes φn(k) are dimensionless. Without it, the Gaussian integral that we will
calculate down in equation (3.77) would make the partition function Z dimensionful, which
would formally make it meaningless to take its logarithm. A fully equivalent approach would
be to skip the prefactor for now, but instead restore whichever factors of h̄, c, β and V that is
needed to make Z dimensionless before taking the logarithm down in equation (3.79). Note
that the reality φ(x, τ) = φ∗(x, τ) requires Fourier amplitudes with φ∗n(k) = φ−n(−k).

We now rewrite the Euclidean action (3.72) by inserting the Fourier expansion (3.73). Exploiting
the reality φ(x, τ) = φ∗(x, τ), we insert one Fourier expansion for the rightmost field and another
with all quantities complex conjugated for the leftmost field. The action then becomes

SE = −1

2

h̄2c2β

V

∑
n,n′

∑
k,k′

φ∗n′(k′)

(
ω2
n

c2
+ k2 +

m2c2

h̄2

)
φn(k)

∫
V

d3x ei(k−k′)·x︸ ︷︷ ︸
δ(k−k′)V

∫ βh̄

0
dτ ei(ωn−ωn′ )τ︸ ︷︷ ︸
δn,n′βh̄

= −1

2
h̄β2

∑
n

∑
p

(
E2
n + E2(p)

)
|φn(p)|2 ,

(3.74)

where En are the Matsubara energies we defined in equation (3.64), and

E(p) =
√
p2c2 +m2c4 (3.75)

is the relativistic dispersion relation. Ignoring the prefactor, the change of variables (3.73)
is a unitary transformation with Jacobian 1, so the integral measure becomes

Dφ(x) =
∏
i

dφ(xi) =
∏
n

∏
p

dφn(p). (3.76)

Integrating over the new variables (3.76) and inserting the action (3.74) into the path integral
(3.70), it factors into the Gaussian integrals

Z =
∏
n

∏
p

∫
dφn(p) exp

{
−1

2
β2
[
E2
n + E2(p)

]
|φn(p)|2

}
. (3.77)

The integrand depends only on the magnitude of φn(p) = |φn(p)| eiθn(p). The reality of the field
φ(x, τ) = φ∗(x, τ) implies that φ∗n(p) = φ−n(−p) and consequently that θ−n(−p) = −θn(p),
so all phases in the measures dφn(p) cancel after taking the product over all n and p. Thus,
we can carry out the integral using the Gaussian integral (F.3) to obtain

Z =
∏
n

∏
p

{
β2
[
E2
n + E2(p)

]}−1/2
. (3.78)
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We only need logZ to compute the thermodynamic observables, and now is an excellent time
to take the logarithm. The product is then converted into the sum

logZ = −1

2

∑
n

∑
p

log
{
β2
[
E2
n + E2(p)

]}
. (3.79)

To evaluate the sum over n, it actually turns out to be easier to differentiate every term in the
sum, sum the derivatives and then integrate back to undo the differentiation. More precisely,
we have that

logZ = −1

2

∑
p

∫
dE2(p)

∑
n

∂

∂E2(p)
log
{
β2
[
E2
n + E2(p)

]}
= −1

2

∑
p

∫
dE2(p)

∑
n

1

E2
n + E2(p)

.

(3.80)

We need to evaluate the Matsubara energy sum over n. Later we will in fact encounter the
same sum over fermionic Matsubara energies. In appendix C, we devise a powerful and general
method for computing such sums by contour integration in the complex plane. We even kill two
birds with one stone, as the exact same procedure enables us to compute bosonic and fermionic
Matsubara energy sums simultaneously! In fact, it turns out that the Bose-Einstein distribution
emerges naturally from the bosonic sums, while the Fermi-Dirac distribution drops out as a
byproduct of fermionic sums. Again, all of this is demonstrated in appendix C. Applying the
method to the sum above yields the result (C.17). We insert this back into our expression for
logZ above to find

logZ = −β
2

∑
p

∫
dE2(p)

1

2E(p)

[
1 +

2

eβE(p) − 1

] (
by equation (C.17)

)
. (3.81)

The integral can be evaluated by using dE2(p) = 2E(p)dE(p). We then find

logZ = −β
2

∑
p

∫
dE(p)

[
1 +

2

eβE(p) − 1

]
= −β

2

∑
p

{
E(p) +

2

β
log
[
1− e−βE(p)

]}
.

(3.82)

Finally, take the continuum limit (3.62) to obtain the partition function for a real scalar
field

logZ = V

∫
d3p

(2πh̄)3

{
−1

2
βE(p)− log

[
1− e−βE(p)

]}
. (3.83)

3.5 The partition function for free Dirac fermions

Let us now find the partition function (3.57) for free Dirac fermions with half-spin and
Lagrangian density

L = ψ̄
(
ih̄c /∂ −mc2

)
ψ = ψ̄

(
ih̄γ0

∂

∂τ
+ ih̄cγ · ∇ −mc2

)
ψ. (3.84)

Here, the four-component Dirac spinor ψ = [ψ0, ψ1, ψ2, ψ3] is the basic field and ψ† is its
conjugate, while ψ̄ = ψ†γ0 and /∂ = γµ∂µ = γ0∂0 + γ · ∇, where γµ are the 4 × 4 Gamma
matrices defined by the Clifford algebra

{γµ, γν} = 2ηµν . (3.85)

There are multiple possible explicit representations of the Gamma matrices. We will use the
Dirac basis

γ0 =

[
I2 0
0 −I2

]
and γi =

[
0 τ i

−τ i 0

]
, (3.86)
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where τ i are the Pauli matrices

τ1 =

[
0 1
1 0

]
, τ2 =

[
0 −i
i 0

]
and τ3 =

[
1 0
0 −1

]
. (3.87)

The conjugate momentum (3.3) of the field ψ is

π =
∂L
∂ψ̇

= ih̄ψ†, (3.88)

so the Hamiltonian density is

H = πψ̇ − L = ψ̄
(
−ih̄cγ ·∇+mc2

)
ψ. (3.89)

In addition, the Dirac Lagrangian is invariant under the symmetry transformation ψα →
ψαe

iθ ' ψα + iθψα = ψα + δψα. By Noether’s theorem [Kac18, equation 5.7], there is a
corresponding conserved current

jµ ∝ δL
δ∂µψα

δψα = ψ̄βih̄c (γ
µ)βαiθψα = −h̄c ψ̄γµψ. (3.90)

Ignoring the constant factors, we take the conserved current to be

jµ = ψ̄γµψ. (3.91)

Let us now find the fermionic partition function (3.57). We need the combination

− h̄ψ†ψ̇ −H = ψ̄

(
−h̄γ0 ∂

∂τ
+ ih̄cγ ·∇−mc2

)
ψ = LE , (3.92)

which we define as the Euclidean Lagrangian density LE for reasons similar to the bosonic case
that we will soon discuss. According to equation (3.29), we should also include the conserved
current (3.91). Inserting this into the partition function (3.57), it becomes

Z =

∮
−
Dψ†

∮
−
Dψ exp

(
SE
h̄

)
(3.93)

with the Euclidean action

SE =

∫ βh̄

0
dτ
∫
V

d3x
(
LE + µj0

)
=

∫ βh̄

0
dτ
∫
V

d3x ψ̄

(
−h̄γ0 ∂

∂τ
+ ih̄cγ ·∇−mc2 + µγ0

)
ψ.

(3.94)

Comparing the combination (3.92) to the original Lagrangian (3.84), we see that it is exactly the
original Lagrangian, only with τ → iτ , and we therefore call it the Euclidean Lagrangian density
LE(τ) = L(iτ). We encountered a similar situation in the bosonic case in equation (3.68), but
with an additional contribution from a shifted momentum that we integrated out from the path
integral (3.69). This time, however, the correspondence to the Euclidean Lagrangian occurs
immediately without need of integrating out any fields. Notice in particular the similarity of
the fermionic path integral (3.93) to the bosonic path integral (3.70).

As in the bosonic case, we now Fourier expand the field. The fermionic anti-periodicity (3.58)
enables us to expand the Dirac field and its conjugate in the Fourier series

ψ(x, τ) =
1√
V

∑
n

∑
k

ei(k·x+ωnτ)ψn(k), (3.95a)

ψ†(x, τ) =
1√
V

∑
n

∑
k

e−i(k·x+ωnτ)ψ†
n(k), (3.95b)
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with fermionic Matsubara frequencies (3.60). As with the bosonic field, we have made the
Fourier amplitudes ψn(k) dimensionless by pulling out a factor 1/

√
V . The factor differs from

the one in the bosonic Fourier series (3.73) due to the different dimension of the fermionic
field ψ(x, τ) and the bosonic field φ(x, τ). Note that we are expanding each component of the
four-component Dirac spinor ψ(x, τ), so the Fourier amplitudes ψn(k) are also vectors with
four components. With the Fourier series, the Euclidean action (3.94) can be rewritten

S =
1

V

∑
n,n′

∑
k,k′

ψ†
n′(k

′)γ0
(
−h̄γ0iωn + ih̄cγ · ik −mc2 + µγ0

)
ψn(k)

×
∫ βh̄

0
dτ ei(ωn−ωn′ )τ︸ ︷︷ ︸
δn,n′βh̄

∫
V

d3x ei(k−k′)·x︸ ︷︷ ︸
δ(k−k′)V

= iβh̄
∑
n

∑
p

ψ†
n(p)

(
−En + ic γ0γ · p+ imc2γ0 − iµ

)
ψn(p).

(3.96)

We now change variables from ψ(x, τ) and ψ†(x, τ) to ψn(k) and ψ†
n(k) as in the bosonic case

(3.76). To be consistent with treating the field and its conjugate as independent variables, we
continue to treat the Fourier amplitudes and their conjugates independently. The partition
function (3.93) now becomes

Z =
∏
n

∏
p

∫
dψ†

n(p)

∫
dψn(p) exp

{
ψ†
n(p)

[
iβ(−En + icγ0γ · p+ imc2γ0 − iµ)

]
ψn(p)

}
,

(3.97)
analogous to the bosonic Gaussian integral (3.77). Do not forget that ψ†

n(p) and ψn(p) are
four-vectors, sandwiching the matrix in the square brackets to create a scalar action in the
exponent! Using the Grassmann exponential integral (F.5), we obtain

Z =
∏
n

∏
p

det
(
iβDn(p)

)
with Dn(p) = −En + icγ0γ · p+ imc2γ0 − iµ. (3.98)

Let us calculate the determinant of the 4× 4 matrices Dn(p) explicitly. First, let us use the
Dirac basis representation (3.86) of the Gamma matrices to write the 4× 4 matrix as a block
matrix of 2× 2 matrices. This gives the block matrix

Dn(p) =

[
−En − iµ+ imc2 ic τ · p

ic τ · p −En − iµ− imc2

]
. (3.99)

Calculating the determinant becomes easier by applying the formula [Sil00, theorem 3]

det
[
A B
C D

]
= det (AD −BC), (3.100)

which is familiar for a non-block 2 × 2 matrix, but in fact also valid for a block matrix if
CD = DC. This is applicable in our situation, where D is diagonal. Matching the block
matrices A, B, C and D with those in equation (3.99), we then have AD = (En+ iµ)

2+(mc2)2

and BC = −(τ · p)2c2. From the Pauli matrices (3.87), it is straightforward to verify the
property (τ · p)2 = p2. Introducing the relativistic dispersion relation (3.75) again, we then
get the simple diagonal 2× 2 matrix AD −BC = (En + iµ)2 + E2(p). The determinant then
becomes

det
(
iβDn(p)

)
= β4

[
(En + iµ)2 + E2(p)

]2
. (3.101)

The logarithm of the partition function (3.98) is now the sum

logZ =
∑
n

∑
p

det
(
iβDn(p)

)
=
∑
n

∑
p

log
{
β4
[
(En + iµ)2 + E2(p)

]2}
.

(3.102)

35



Chapter 3: Thermal Field Theory

The i in front of µ is awkward and can certainly not appear in the physical quantities that
are derived from logZ. Let us see if we can make it disappear. The logarithm involves a sum∑

n s(En) of some function s(En) over all Matsubara energies En. Because the Matsubara
energies satisfy En = −E−n by definitions (3.60) and (3.64), we have

∑
n s(En) =

∑
n s(E−n) =∑

n s(−En) for any function s(En) of the energies. We can then split up the logarithm of the
square into two logarithms and exchange En → −En in one sum without changing the value:

logZ =
∑
n

∑
p

log
{
β4
[
(En + iµ)2 + E2(p)

]2 }
=
∑
n

∑
p

log
{
β2
[
(En + iµ)2 + E2(p)

] }
+
∑
n

∑
p

log
{
β2
[
(+En + iµ)2 + E2(p)

] }
=
∑
n

∑
p

log
{
β2
[
(En + iµ)2 + E2(p)

] }
+
∑
n

∑
p

log
{
β2
[
(−En + iµ)2 + E2(p)

] }
=
∑
n

∑
p

log
{
β4
[
(En + iµ)2 + E2(p)

] [
(−En + iµ)2 + E2(p)

] }
.

(3.103)

By multiplying out all parentheses, it is straightforward to verify that[
(±En + iµ)2 + E2(p)

]
= [En ± i(E(p) + µ)] [En ∓ i(E(p)− µ)] . (3.104)

We can use this to rewrite the product in the partition function (3.103) as[
(En + iµ)2 + E2(p)

] [
(−En + iµ)2 + E2(p)

]
= [En + i(E(p) + µ)] [En + i(E(p)− µ)] [En − i(E(p) + µ)] [En − i(E(p)− µ)]

=
[
E2
n + (E(p)− µ)2

] [
E2
n + (E(p) + µ)2

]
.

(3.105)

Inserting this back into the partition function (3.103), we find that it can be written

logZ =
∑
n

∑
p

log
{
β4
[
E2
n + (E(p)− µ)2

] [
E2
n + (E(p) + µ)2

]}
=
∑
n

∑
p

log
{
β2
[
E2
n + (E(p)− µ)2

]}
+
∑
n

∑
p

log
{
β2
[
E2
n + (E(p) + µ)2

]} (3.106)

We have accomplished our mission of removing the awkward i from the partition function
(3.102), manifesting it as a real quantity. Moreover, the two sums over n are now in the same
form as the bosonic sum (3.80), but this time over fermionic Matsubara energies. Defining the
energies Ẽ±(p) = E(p)± µ relative to the chemical potential, we can use the same method as
we did back there to rewrite it as the two integrals

logZ =
∑
p

[∫
dẼ2

+(p)
∑
n

1

E2
n + Ẽ2

+(p)
+

∫
dẼ2

−(p)
∑
n

1

E2
n + Ẽ2

−(p)

]
. (3.107)

Like in (3.80), the sums over n can be performed using the Matsubara energy sum (C.17), but
this time over the fermionic energies. Then the integrals become

logZ = β
∑
p

{∫ dẼ2
+(p)

2Ẽ+(p)

[
1− 2

eβẼ+(p) + 1

]
+

∫ dẼ2
−(p)

2Ẽ−(p)

[
1− 2

eβẼ−(p) + 1

]} (
by (C.17)

)
= β

∑
p

{∫
dẼ+(p)

[
1− 2

eβẼ+(p) + 1

]
+

∫
dẼ−(p)

[
1− 2

eβẼ−(p) + 1

]}
= β

∑
p

{
E+(p) +

2

β
log
[
1 + e−βE+(p)

]
+ E−(p) +

2

β
log
[
1 + e−βE−(p)

]}
= 2

∑
p

{
βE(p) + log

[
1 + e−βE+(p)

]
+ log

[
1 + e−βE−(p)

]}
.

(3.108)
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Taking the continuum limit (3.62), we finally obtain the partition function for Dirac
fermions

logZ = 2V

∫
d3p

(2πh̄)3

{
βE(p) + log

[
e−β(E(p)−µ) + 1

]
+ log

[
e−β(E(p)+µ) + 1

]}
. (3.109)

3.6 Summary
Having evaluated logZ for both a real scalar field and Dirac fermions, it is insightful to conclude
this chapter by comparing some similarities and differences of the two cases:

• The bosonic and fermionic path integrals (3.25) and (3.57) that we started with look very
similar on the outside, yet are very different on the inside due to the algebra of commuting
complex numbers in the bosonic case being replaced by anti-commuting Grassmann
numbers for fermions.

• The periodicity of the bosonic field and the anti-periodicity of the fermionic field allowed
us to expand both as Fourier series, but with different Matsubara frequencies (3.60).

• Only the Dirac field has a conserved charge that let us introduce a chemical potential µ.
The real scalar field that we considered has no conserved current, unlike a complex scalar
field, for example.

• In the bosonic case, we could integrate out the momentum π, leaving the Gaussian
integrals (3.77) over one variable that we tackled using

∫
dx e−ax2 ∝ a−1/2. In the

fermionic case, we could not integrate out the momentum π = ih̄ψ†. This resulted in
the Gaussian integrals (3.97) over pairs of Grassmann numbers that we handled with∫

dψ† ∫ dψ e−ψ†Aψ = detA. The integrals effectively differ by the power −1/2.

• We managed to bring logZ into the similar sums (3.79) and (3.106) over the Matsubara
energies En in both cases. In appendix C we described a general framework for computing
both sums, with the Bose-Einstein and Fermi-Dirac distributions 1/[eβE(p) ∓ 1] arising
naturally in the bosonic and fermionic case, respectively.

• The results (3.83) and (3.109) for logZ have very similar structure. In particular, the
first terms essentially differ by the factor −4. Physically, we can attribute the factor 4 to
from four separate contributions from particles, antiparticles, spin up and spin down for
the fermions, compared to the bosons with only one value of spin and no antiparticles.

Now that we have logZ for free Dirac fermions, we can move on to calculate the particle number
density, energy density and pressure in the next chapter.
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Chapter4
Ideal Neutron Stars

In chapter 3, we found the partition function Z = Z(T, µ, V ) for two sample systems, and in
particular a gas of free Dirac fermions, referred to as an ideal Fermi gas. From the partition
function, we can derive the pressure P = P (T, µ) and energy density ε = 〈E〉 /V = ε(T, µ) as
functions of the temperature and chemical potential using equation (3.2a), (3.2b) and (3.2c),
eliminating the volume dependence as P and ε are turned into intensive quantities by division.
At some fixed temperature T , we can therefore eliminate µ to express ε in terms of P . This
gives us an equation of state ε = ε(T, P ) for the energy density. In this chapter, we will see that
inside neutron stars it is valid to consider the zero-temperature limit T = 0, making the Fermi
gas completely degenerate and directly relating pressure to energy density in the resulting
temperature-independent equation of state ε = ε(P ). With this equation of state, we can finally
solve the Tolman-Oppenheimer-Volkoff system (2.38) for some central pressure P (0) = Pc. By
doing so for a range of central pressures, we will parametrize a mass-radius curve of ideal
neutron stars modeled by degenerate ideal Fermi gases of neutrons.

In the second part of this chapter, we investigate whether the stars on the mass-radius curve
we find are stable or unstable. By applying perturbation theory to the equilibrium analysis
of general relativity in chapter 2, we will derive a differential equation for radial pulsations of
stars slightly outside equilibrium. We will find a general solution of this equation expressed
as a sum over infinitely many normal pulsation modes and corresponding eigenfrequencies,
each of which solve a Sturm-Liouville problem. From this, we will see that we can conclude
whether a star is stable or not by checking the sign of the eigenvalue of one Sturm-Liouville
problem. To conclude our stability analysis, we therefore use the shooting method to solve a
Sturm-Liouville problem for every star on our mass-radius curve to determine their stability.

This chapter is inspired by references [And12], [Gle00], [MTW73] and [Bar+66].

4.1 Equation of state for a degenerate ideal Fermi gas

For ease of reference, the logarithm of the free Dirac fermion partition function (3.109) is

logZ = 2V

∫
d3p

(2πh̄)3

{
βE(p) + log

[
e−β(E(p)−µ) + 1

]
+ log

[
e−β(E(p)+µ) + 1

]}
, (4.1)

and the Fermi-Dirac distribution is

n(E − µ) =
1

eβ(E−µ) + 1
. (4.2)

First, the particle number density n = 〈N〉 /V follows from the derivative (3.2a) and is

n =
1

βV

∂ logZ
∂µ

= 2

∫
d3p

(2πh̄)3

{
n
(
E(p)− µ

)
− n

(
E(p) + µ

)}
. (4.3a)
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Do not confuse the particle density n on the left with the Fermi-Dirac distributions n
(
E(p)∓µ

)
on the right! We will soon perform the integral over p and get rid of n

(
E(p) ∓ µ

)
, anyway.

From the density (4.3a), we see that n = n(µ, T ) is a function of the chemical potential µ
and temperature T , so that at some fixed temperature, the value of µ determines the particle
density n.

Second, we calculate the energy density ε = 〈E〉 /V from equation (3.2b). Inserting the particle
number density (4.3a) and taking the derivative of logZ, we get

ε = µn− 1

V

∂ logZ
∂β

= 2

∫
d3p

(2πh̄)3

{
−E(p) +E(p)n

(
E(p)− µ

)
+E(p)n

(
E(p) + µ

)}
. (4.3b)

Third, we find that the pressure (3.2c) is

P =
logZ
βV

= 2

∫
d3p

(2πh̄)3

{
E(p) +

1

β
log
[
e−β(E(p)−µ) + 1

]
+

1

β
log
[
e−β(E(p)+µ) + 1

]}
. (4.3c)

An interpretation of the terms contributing to the particle number density, energy density and
pressure is in order.

1. From the particle density (4.3a) at constant temperature T , we see that the sign of n
is determined by the sign of µ. The total density n is expressed as a balance between
particles living relative to the chemical potential +µ and antiparticles living relative to the
chemical potential −µ. Thus, the chemical potential µ determines the balance between
particles and antiparticles in the system. Similarly, the two last terms in the energy
density (4.3b) and pressure (4.3c) can be interpreted as contributions from particles
and antiparticles, respectively. We choose a large positive value of µ > 0, so that the
presence of particles dominate, while antiparticles are more or less absent. With this
choice, n

(
E(p)− µ

)
� n

(
E(p) + µ

)
, and we drop the last terms of the particle density

(4.3a), energy density (4.3b) and pressure (4.3c).

2. The first term of the energy density (4.3b) is infinite, as the integrand increases unbounded
like d3pE(p) = 4πp2

√
p2c2 +m2c4 ∝ p3 for large p. It is like a sum over the ground state

energies of an infinite number of fermionic harmonic oscillators Ĥ = h̄ω
(
a†a− 1

2

)
– two

for spin up and down and two more for both particles and antiparticles. Therefore, it can
be interpreted as an infinite shift of the vacuum energy. We will make the assumption
that there is no vacuum energy, or equivalently redefine the infinite contribution as a new
zero-point energy. For example, in the vacuum outside a star there should be no mass
density ρ = ε/c2, and hence no energy density ε. Do note, however, that the possible
presence of vacuum energy is really an unresolved problem in physics – we will briefly
discuss this in a moment. Either way, we will drop the first term of the energy density
(4.3b).

3. Like the energy density, the first term of the pressure (4.3c) is also infinite. It is reasonable
that if we drop the infinite contribution to the energy density, then we should drop it
in the pressure, too. As we remarked on page 31, the pressure that we obtain directly
from logZ is really undetermined up to the shift of a constant, anyway, justifying that
we do indeed have the freedom to remove such an infinite contribution here as well. We
will therefore drop the first term of the pressure (4.3c). Physically, the pressure should
vanish when the energy density vanishes. For example, outside the surface of a star the
pressure vanishes by definition, and we assume we are in vacuum with no energy or mass
density. We will see below that dropping the term does indeed ensure that this condition
is satisfied. If you wish, peek ahead and note that both the energy density (4.10b) and
pressure (4.10c) both vanish when xF = 0.

Our ad-hoc removal of the vacuum energy has no doubt sparked the curiosity of the educated
reader. The cosmological constant problem is an unresolved problem in physics concerning
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Section 4.1: Equation of state for a degenerate ideal Fermi gas

the disagreement between small observed values of the vacuum energy density and large –
here infinite – values predicted by quantum field theory. The presence of a nonzero vacuum
energy density is related to the appearance of the cosmological constant Λ in the Einstein field
equations. However, we have used the field equations with Λ = 0 throughout. We “resolve
the problem” by simply discarding the infinite contribution to the vacuum energy density, but
make no attempt to conceal the deep theoretical questions underlying this ad-hoc resolution.
For the interested reader, the Wikipedia article [Wiki21a] is a good starting point to learn more
about the cosmological constant problem.

Before completely losing track of what we were doing, let us get back to calculating the equation
of state. After dropping terms as described above, only the penultimate terms are left in the
number density (4.3a), energy density (4.3b) and pressure (4.3c). Noting that all integrals only
depend on the magnitude |p| = p of the momentum, we rebaptize E(p) = E(p) and are left
with

particle density n = 2

∫ ∞

0

dp 4πp2

(2πh̄)3
n
(
E(p)− µ

)
, (4.4a)

energy density ε = 2

∫ ∞

0

dp 4πp2

(2πh̄)3
E(p)n

(
E(p)− µ

)
, (4.4b)

pressure P =
2

β

∫ ∞

0

dp 4πp2

(2πh̄)3
log
[
e−β(E(p)−µ) + 1

]
. (4.4c)

The logarithm in the third integral looks annoyingly similar to the Fermi-Dirac distribution
in the two first. Let us make one partial integration on the pressure with u′ = p2 and v =
log
[
e−β(E(p)−µ) + 1

]
. The boundary term uv ∝ p3 log

[
e−β(E(p)−µ) + 1

]
then vanishes at p = 0

because p3 = 0 there, and also at p = ∞ where log
[
e−β(E(p)−µ) + 1

]
= log [e−∞ + 1] = log 1 = 0.

After the partial integration, the three integrals take the satisfyingly similar forms

particle density n = 2

∫ ∞

0

dp 4πp2

(2πh̄)3
n
(
E(p)− µ

)
, (4.5a)

energy density ε = 2

∫ ∞

0

dp 4πp2

(2πh̄)3
E(p)n

(
E(p)− µ

)
, (4.5b)

pressure P = 2

∫ ∞

0

dp 4πp3

3(2πh̄)3
E′(p)n

(
E(p)− µ

)
. (4.5c)

The integrals become quite complicated after plugging in the relativistic dispersion relation
(3.75) and the Fermi-Dirac distribution (4.2). In order to calculate them analytically, we will
make one more approximation.

At absolute zero temperature T = 0, the Fermi-Dirac distribution

n(E − µ) =
1

eβ(E−µ) + 1
= Θ(µ− E) =

{
0 (E > µ)

1 (E < µ)
(4.6)

behaves like a step function. To see this, observe that T = 0 corresponds to β = 1/kBT = ∞,
and that the sign of E−µ then determines whether the exponential eβ(E−µ) in the denominator
blows up or vanishes, and hence whether the fraction survives. Physically, this means that the
system is completely degenerate, filling momentum states with E(p) < µ only. The occupied
states with the greatest momentum pF make up a so-called Fermi surface |p| = pF in momentum
space, and the corresponding maximum energy EF =

√
p2F c

2 +m2c4 is called the Fermi energy,
and is equal to the chemical potential when T = 0.

Typical neutron star core temperatures linger around T0 ≈ 106 K, [Gle00] so how is this relevant
for our purposes? In the grand canonical ensemble, the temperature T and chemical potential
µ are formally independent variables. However, we require that the total number of particles N ,
and thus the density n(µ, T ), is fixed, so that if we change the temperature, we must also change
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Figure 4.1: As βµ → ∞, the Fermi-Dirac distribution n(E − µ) =
[
eβµ(E/µ−1) + 1

]−1

increasingly resembles the step function Θ(µ− E).

the chemical potential to compensate. This creates an implicit dependence between µ and T .
Under this constraint, it is possible to use a Sommerfeld expansion to show mathematically
that the chemical potential

µ(T ) = EF +O

((
T

TF

)2
)

(4.7)

is corrected from the Fermi energy by contributions of second or higher order in T/TF , where
TF = EF /kB is the Fermi temperature. For a more detailed discussion of the Sommerfeld
expansion and the inter-dependence between T and µ, we recommend [Ton12, section 3.6].

In other words, if T � TF , then µ ≈ EF . Neutrons have mass m = 1.67 · 10−27 kg, so the Fermi
temperature is at least TF =

√
p2F c

2 +m2c4/kB > mc2/kB ≈ 1013 K. Thus, we do indeed have
T/TF ≈ 10−7 � 1 for a neutron star. This is equivalent to βEF � 1, and since this implies
that EF ≈ µ, then it is also an excellent approximation to take the degenerate limit

βµ� 1. (4.8)

Let us now rewrite the Fermi-Dirac distribution as

n(E − µ) =
1

eβµ(E/µ−1) + 1
. (4.9)

As shown in figure 4.1, this distribution again resembles the step function Θ(µ − E) in the
degenerate limit (4.8). Thus, the zero-temperature behavior of the Fermi-Dirac distribution is
restored in this limit. Although the core temperature is far from zero in everyday terms, it is
small compared to the Fermi temperature, and this approximation is therefore also referred to
as the zero-temperature limit.

In hindsight, since the chemical potential is an independent variable in the partition function,
we do have the freedom to simply assume the degenerate limit (4.8) from the beginning, at the
point where we said we chose a “large positive value” for the chemical potential.

With the zero-temperature approximation, the particle density (4.5a) is simply

n = 2

∫ ∞

0

dp 4πp2

(2πh̄)3
Θ
(
µ− E(p)

)
= 2

∫ pF

0

dp 4πp2

(2πh̄)3
=

p3F
3π2h̄3

. (4.10a)
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The energy density (4.5b) becomes

ε = 2

∫ ∞

0

dp 4πp2

(2πh̄)3
E(p)Θ

(
µ− E(p)

)
= 2

∫ pF

0

dp 4πp2

(2πh̄)3

√
p2c2 +m2c4

=
m4c5

π2h̄3

∫ xF

0
dxx2

√
x2 + 1

(
x = p/mc

)
=

m4c5

8π2h̄3

[(
2x3F + xF

)√
x2F + 1− log

(
xF +

√
x2F + 1

)] (
by (F.6)

)
.

(4.10b)

Finally, the pressure (4.5c) is

P = 2

∫ ∞

0

dp 4πp3

3(2πh̄)3
E′(p)Θ

(
µ− E(p)

)
= 2

∫ pF

0

dp 4πp3

3(2πh̄)3
pc2√

p2c2 +m2c4

=
m4c5

3π2h̄3

∫ xF

0

dxx4√
x2 + 1

(
x = p/mc

)
=

m4c5

24π2h̄3

[(
2x3F − 3xF

)√
x2F + 1 + 3 log

(
xF +

√
x2F + 1

)] (
by (F.7)

)
.

(4.10c)

At this point, let us justify the act of dropping the infinite contribution to the pressure (4.3c).
Outside a star, for example, we required that the pressure should vanish when the energy
density vanishes. Indeed, now we see that ε(xF ) = 0 only if xF = 0, and P (xF = 0) = 0.

The equation of state ε = ε(P ) follows by eliminating xF from the energy density (4.10b) and
pressure (4.10c). Due to their complicated dependence on xF , we will do so in three cases of
increasing difficulty.

4.1.1 Ultra-relativistic limit

First, consider the ultra-relativistic limit

xF � 1, (4.11)

where the Fermi energy EF =
√
p2F c

2 +m2c4 ' pF c is dominated by the contribution from the
Fermi momentum. Since log

(
xF +

√
x2F + 1

)
' log 2xF diverges only logarithmically, we see

that both the energy density (4.10b) and pressure (4.10c) are dominated by their first terms
with 2x3F

√
x2F + 1 ' 2x4F . In the ultra-relativistic limit, then,

ε '
m4c5x4F
4π2h̄3

and P '
m4c5x4F
12π2h̄3

, (4.12)

and xF is easily eliminated, yielding the very simple equation of state

ε = 3P. (4.13)

4.1.2 Non-relativistic limit

Next, let us consider the non-relativistic limit

xF � 1, (4.14)
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where the Fermi energy EF =
√
p2F c

2 +m2c4 ' mc2 is dominated by the rest energy of the
fermions. Taylor expanding the energy density (4.10b) and pressure (4.10c) around xF = 0 to
lowest order, we find

ε '
mc2p3F
3π2h̄3

and P '
p5F

15π2h̄3m
. (4.15)

Note that with the density (4.10a), the energy density can be written ε = nmc2, as if all
fermions have broken free from the Pauli exclusion principle and possess the same energy mc2.
This is only a mathematical feature of the non-relativistic limit – the fermions still occupy
different states with different momentum, but the momenta are so small that the differences
are negligible compared to the rest energy mc2. Again, it is straightforward to eliminate xF to
find the equation of state, only this time there is some extra bookkeeping due to the different
exponents of pF . We find

ε =

(
53m8c10

32π4h̄6

) 1
5

P
3
5 . (4.16)

4.1.3 General Fermi momenta

How can we find the energy density

ε =
m4c5

8π2h̄3

[(
2x3F + xF

)√
x2F + 1− log

(
xF +

√
x2F + 1

)]
(4.17a)

that corresponds to a given pressure

P =
m4c5

24π2h̄3

[(
2x3F − 3xF

)√
x2F + 1 + 3 log

(
xF +

√
x2F + 1

)]
(4.17b)

for general xF ? Since we will solve the Tolman-Oppenheimer-Volkoff equation on a computer
anyway, we can do so by numerical root finding. Given the pressure P , we use a root finding
algorithm to find the root xF of the function

f(xF ) = P (xF )− P = 0, (4.18)

where P (xF ) is the pressure (4.17b) as a function of xF . Having found the root, we can simply
calculate the corresponding energy density ε(xF ) from equation (4.17a). In appendix G.4, we
encapsulate this whole procedure into one numerical equation of state ε(P ).

All three equations of state (4.13), (4.16) and (4.17) are shown in figure 4.2.

4.2 Mass-radius relation for ideal neutron stars

Having obtained equations of state ε = ε(P ), we are finally in a position to solve the Tolman-
Oppenheimer-Volkoff system (2.38). We will do so for all three equations of state that we found
in section 4.1.

4.2.1 Ultra-relativistic equation of state

With the ultra-relativistic equation of state (4.13), the Tolman-Oppenheimer-Volkoff equation
can be solved analytically with the polynomial trial solution

P (r) = Arn. (4.19)

With ε = 3P = 3Arn, the mass gradient (2.38b) reads

dm
dr

=
12πA

c2
rn+2, so m(r) =

12πA

(n+ 3)c2
rn+3 (n 6= −3). (4.20)
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Figure 4.2: Equations of state ε(P ) for a degenerate Fermi gas for general Fermi momenta
pF = mcxF , non-relativistic pF � mc and ultra-relativistic pF � mc. Here M� is the solar
mass and R0 = 10 km.

Inserting the mass, pressure and energy density into the Tolman-Oppenheimer-Volkoff equation
(2.38a), it becomes

nArn−1 = −48πGA2r2n+1

(n+ 3)c4

[
2 +

n

3

] [
1− 24πGArn+2

(n+ 3)c4

]−1

. (4.21)

We can attain equality for all r if we choose n = −2. Then the rightmost factor no longer
depends on r, and both sides have the same r−3-dependence

− 2Ar−3 = −64πGA2r−3

c4

[
1− 24πGA

c4

]−1

. (4.22)

Equality is established if we match the constant factors by choosing A = c4/56πG. Then the
solutions for the pressure and mass are

P (r) =
c4

56πGr2
and m(r) =

3c2r

14G
. (4.23)

This is a highly unphysical result. The pressure diverges at the center, so gravity cannot hold
such a star together. In addition, p(r) > 0 for all r, so the star has no surface, and accordingly
its mass M = m(∞) = ∞ is infinite.

4.2.2 Non-relativistic equation of state

With the power dependence of the non-relativistic equation of state (4.16), it is not easy,
if even possible, to solve the Tolman-Oppenheimer-Volkoff equation analytically. The trial
solution (4.19) we employed in section 4.1.1 fails miserably, as we do not get the same fortu-
nate cancellations of r. We therefore resort to the numerical solution method described in
appendix G.2, parametrizing different stars by their central pressure Pc and integrating the
Tolman-Oppenheimer-Volkoff equation until the pressure p(R) vanishes, using the corresponding
radius R to establish the mass M = m(R) of the star. This results in the mass-radius curve
shown in figure 4.3. Notably, the curve peaks at the maximum mass M = 0.96M� around
R = 8.11 km when using the full Tolman-Oppenheimer-Volkoff pressure gradient (2.38a), but
not when using its Newtonian limit (2.33).
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4.2.3 General equation of state

For general Fermi momenta, the equation of state ε = ε(P ) is calculated numerically as described
in section 4.1.3, and the Tolman-Oppenheimer-Volkoff equation is again integrated numerically
as described in section 4.2.2. The resulting mass-radius curve is also shown in figure 4.3. Again,
the curve peaks at a maximum mass M = 0.71M� only for the relativistic pressure gradient.
This is the most accurate equation of state, and it is therefore the bottom curve in figure 4.3
that we should pay most attention to. In addition, we show the pressure profiles for some stars
on this curve in figure 4.4. Notice that the normalized profiles are quite similar for central
pressures below that corresponding to the maximum mass, but begin to change dramatically
once it is exceeded!

4.3 Stability analysis
The mass-radius curves in figure 4.3 display some interesting behavior. In particular, the curves
obtained with the relativistic pressure gradient enter spirals for central pressures greater than
those corresponding to their maximum masses. As we derived the Tolman-Oppenheimer-Volkoff
equation, we assumed the star to be in hydrostatic equilibrium. Our use of statistical mechanics
in the grand canonical ensemble to obtain the equation of state is consistent with this, as
it describes a system in thermal and chemical equilibrium. So all stars on the mass-radius
curve are in equilibrium, but just like a pendulum can be in a stable or unstable equilibrium,
the equilibrium state of a star can also be either stable or unstable with respect to small
perturbations. Let us investigate the stability of the sequences of stars in figure 4.3.

4.3.1 Necessary conditions for stability

We will start by presenting a few necessary conditions for stability from simple physical
considerations. However, neither of the conditions are sufficient for a star to be stable, so we
can only use them to identify unstable stars.

The Buchdal limit

We have already discussed one such condition – the Buchdal limit (2.29). In fact, we have
plotted the line M = 4c2R/9G in figure 4.3 – it is just so steep that it coincides with the
vertical axis and is completely invisible. Only stars above this line would be unstable, and it
therefore does not rule out any stars on our mass-radius curve.

Causality

However exotic life inside a star may be, it cannot break causality. In particular, the speed of
sound v =

√
dP/dρ = c

√
dP/dε, as derived in appendix B.5, should not exceed the speed of

light c. The equation of state ε = ε(P ) must therefore satisfy
dP
dε

< 1 (necessary condition). (4.24)

How does the equation of state for a free Fermi gas hold up in this regard? Recall that the
equation of state for general Fermi momenta pF followed by eliminating xF from the energy
density (4.10b) to express it in terms of the pressure (4.10c). It is straightforward to calculate
the derivatives

dP
dxF

=
m4c5

3π2h̄3
x4F√
x2F + 1

and dε
dxF

=
m4c5

π2h̄3
x2F

√
x2F + 1. (4.25)

Then we can apply the chain rule and the rule of inverse derivatives to obtain
dP
dε

=
dP
dxF

dxF
dε

=
dP/dxF
dε/dxF

=
1

3

1

1 + 1/x2F
. (4.26)
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Figure 4.3: Mass-radius curve for ideal neutron stars parametrized by their central pressure
Pc. The curve is obtained by numerically integrating the Tolman-Oppenheimer-Volkoff equation
(2.38) with both the relativistic pressure gradient (2.38a) (“relativistic dP/dr”) and its Newto-
nian limit (2.33) (“Newtonian dP/dr”) from the center r = 0 with pressure P (0) = Pc until
the pressure P (r) = 0 vanishes at the surface r = R. The numerical integration is carried out
using both the explicit non-relativistic equation of state (4.16) (“non-relativistic ε(P )”), and
using a root-finding algorithm to calculate the general equation of state (4.17) (“general ε(P )”).
Consult appendix G for the implementation of the computer program. Stars are parametrized
by central pressures 4.27 · 1028 Pa ≤ Pc ≤ 4.27 · 1041 Pa, and M� is the mass of the sun.
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Figure 4.4: Normalized pressure profiles P (r)/P (0) for the 14 neutron stars with central pres-
sures Pc = P (0) = 4.27 · 1028 Pa, 4.27 · 1029 Pa, . . . , 4.27 · 1041 Pa along the bottom sequence
in figure 4.3. Where there is sufficient space, the central pressure is written above the pressure
profile of the star it corresponds to.
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BOOM

Figure 4.5: A slight decrease dε < 0 in energy density weakens the gravitational force pulling
a star in. If the equation of state ε = ε(P ) in a star satisfies dP/dε < 0, such a change in energy
density would cause an increase dP > 0 in the pressure pushing the star out. The greater
pressure then causes the star to expand, which in turn causes another decrease in energy density.
Repeated application of the same argument shows that the star continues to expand while the
pressure grows indefinitely, so the star ultimately explodes.

We see that dP/dε < 1 for all xF and approaches 1/3 in the ultra-relativistic limit xF → ∞,
as we should expect from the corresponding equation of state (4.13). Alternatively, this can be
seen by inspecting the slopes dε/dP > 1 of the equations of state in figure 4.2. Hence, all the
stars in figure 4.3 satisfy this condition, so it does not rule out any of them.

Real speed of sound

From the expression v = c
√

dP/dε of the speed of sound, it also seems reasonable to require
that

dP
dε

> 0 (necessary condition) (4.27)

for it to be a real quantity. Violation of this condition would in fact have dramatic consequences.
First, note that an increase in energy density dε > 0 is always accompanied by an increase
in the gravitational force attempting to pull the star inwards. If such an increase implied a
decrease dP < 0 in the pressure that pushes the star outwards, then the gravitational force
would automatically “win”, causing the star to contract, and hence the energy density to
increase further. Repeating the argument, we understand that the star collapses. This process
is illustrated in figure 4.5. Likewise, if a decrease dε < 0 caused an increase dP > 0, the same
argument shows that the pressure wins and the star explodes. However, if the changes dε
and dP are of the same sign, then the pressure and gravitational force will at the very least
counteract each other instead of driving apart. In this case the star can be stable, but the
precise balance between the forces would have to be investigated in detail to conclude if it really
is. In our case, the derivative (4.26) is already positive, so this criterion does not let us rule out
any of our stars, either. However, this result is not completely useless, as it will be useful to
assert that condition (4.27) is satisfied as we continue our stability analysis.

Mass increase for rising central pressure

A fourth necessary condition for stars parametrized by their central pressure Pc is

dM(Pc)

dPc
> 0 (necessary condition). (4.28)

To understand it, consider a star E+
1 in equilibrium on the increasing part of the mass-pressure

curve in figure 4.6, where condition (4.28) is satisfied. Now compress this star to the non-
equilibrium star C+ with the same mass, and let E+

2 be the star in equilibrium with the same
central pressure as C+. Then C+ has less mass than E+

2 , and hence weaker gravitational forces
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E+
1

E+
2

C+ E−
2

E−
1 C−

Pc

M

Figure 4.6: Suppose an equilibrium star E+
1 on an increasing part of the mass-pressure curve

M(Pc) is compressed to a non-equilibrium star C+ with the same mass. Compared to the more
massive equilibrium star E+

2 with the increased central pressure, it experiences less gravitational
attraction, causing it to expand back towards the original equilibrium configuration E+

1 . In
contrast, suppose an equilibrium star E−

1 on a decreasing part of the mass-pressure curve is
compressed to a non-equilibrium star C− with the same mass. Compared to the less massive
equilibrium star E−

2 with the increased central pressure, it experiences more gravitational
attraction, causing it to compress even more and ultimately implode.

but the same central pressure as E+
2 . As a result, C+ will expand and hence relieve the central

pressure, causing it to return towards the equilibrium star E+
1 .

Let us repeat the argument on the decreasing part of the curve, where condition (4.28) does
not hold. After compressing E−

1 to C−, we see that C− has more mass, and hence stronger
gravitational forces but the same central pressure as E−

2 . As a result, C+ contracts, and
repeating the argument then shows that it drifts away from the equilibrium curve in figure 4.6
and collapses.

Criterion (4.28) shows that the stars located between the maximum mass and the bottom of
the spiral in figure 4.3 are unstable! Moreover, it suggests that there is a change in character
of stability across a stationary point dM(Pc)/dPc = 0 on the mass-radius curve. We will now
investigate this further.

4.3.2 General stability analysis

The arguments presented above were necessary, but not sufficient for stellar stability. Let us
analyze the stability of the stars in a more rigorous way by finding a necessary and sufficient
criterion for stability. We will follow the path of Chandrasekhar [Cha64] and [MTW73, §26].

Perturbation theory for the fluid displacement

In section 2.1, we showed that in the spherically symmetric metric

ds2 = e2α0(r)c2 dt2 − e2β0(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (4.29)

for a perfect fluid with energy-momentum

Tµν =
1

c2
uµuν(ε0 + P0)− gµνP0 where P0 = P0(r) and ε0 = ε0(r) (4.30)

that is in equilibrium with four-velocity

uµ = (u0, 0, 0, 0), (4.31)
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the Einstein field equations (2.1) reduce to
1

r2
e−2β0

(
2rβ′0 − 1 + e2β0

)
=

8πG

c4
ε0

(
G00 =

8πG

c4
T00

)
, (4.32a)

1

r2
e−2β0

(
2rα′

0 + 1− e2β0
)
=

8πG

c4
P0

(
G11 =

8πG

c4
T11

)
, (4.32b)

α′
0 =

−1

ε0 + P0
P ′
0

(
∇µT

µ
1 = 0

)
, (4.32c)

where ′ = ∂/∂r.

Now we suppose that the fluid is no longer in equilibrium, but rather allow for a small radial
velocity component u1 in the four-velocity

uµ = (u0, u1, 0, 0). (4.33)

By the spherical symmetry, we still assume that there is only radial motion of fluid elements. In
a rotating neutron star – a pulsar – for example, the situation would be more complicated. The
metric should therefore still be spherically symmetric, but α0(r) → α(r, t) and β0(r) → β(r, t)
are now promoted to time-dependent functions, and therefore so are the pressure P0(r) → P (r, t)
and energy density ε0(r) → ε(r, t). We therefore have the new metric

ds2 = e2α(t,r)c2 dt2 − e2β(t,r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
. (4.34)

To make calculations tractable, we assume that the fluid is only slightly perturbed from
equilibrium. Following [Cha64], let us use perturbation theory and express the new functions

α(t, r) = α0(r) + δα(t, r), P (t, r) = P0(r) + δP (t, r),

β(t, r) = β0(r) + δβ(t, r), ε(t, r) = ε0(r) + δε(t, r),
(4.35)

with small perturbations δα, δβ, δP and δε around their equilibrium values. We will now
perform all calculations only to first order in these quantities.

We want to determine how these variations displace fluid elements from the unperturbed star to
the perturbed star. Evolution of this quantity should give us insight into how the star responds
to perturbations. Let us therefore define ξ(t, r) so that if we attach a tracker to some fixed
fluid element in the star, then

in the unperturbed star, the fluid element is at
(
ct, r, θ, φ

)
,

while in the perturbed star, the fluid element is at
(
ct, r + ξ(r, t), θ, φ

)
.

(4.36)

Like δα, δβ, δP and δε, we treat ξ as a small quantity. We have chosen to name the displacement
ξ instead of, say, δr, to avoid some confusion that can arise with the radial coordinate r, hoping
to increase readability at the cost of some consistency.

What is the relation between the fluid element displacement ξ(r, t) and the fluid’s four-velocity?
By our definition, ∂ξ/∂t = dr/dt, where the right side is to be interpreted as the derivative
of the fluid element’s radial coordinate taken along its worldline – or streamline – x(τ). The
chain rule then gives

ξ̇ =
∂ξ

∂t
=

dr
dt

=
dr/dτ
dt/dτ

= c
u1

u0
. (4.37)

We can now express u0 and u1 in terms of ξ̇ by combining this equation with the normalization
condition uµu

µ = e2α
(
u0
)2 − e2β

(
u1
)2

= c2. To first order in ξ̇ and δα, we then find

u0 =
c e−α√

1−
(
eβ−αξ̇/c

)2 ' c e−α0 (1− δα), (4.38a)

u1 =
ξ̇ e−α√

1−
(
eβ−αξ̇/c

)2 ' ξ̇ e−α0 . (4.38b)
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In the perturbed system, the field equations (4.32) also change and must be rederived from the
Einstein equations (2.1) in the new metric (4.34) subject to the energy-momentum (4.30) with
the non-equilibrium velocity (4.38). As always, the field equations follow from the machinery
of equations (A.24), (A.30), (A.32) and (A.33). This time we calculate the field equations only
to first order in the small quantities and subtract the equilibrium equations (4.32) to simplify
them. This calculation is easy in principle, but definitely harder in practice. We therefore
borrow the results obtained by [MTW73, §26.4d], who find that two of the new field equations
are

2

r
e−(β0+α0) ˙δβ = −8πG

c4
(ε0 + P0)e

β0−α0 ξ̇

(
G01 =

8πG

c4
T01

)
, (4.39a)

2

r
e−2β0

(
δα′ − α′

0 −
δβ

r

)
=

8πG

c4
δP

(
G11 =

8πG

c4
T11

)
. (4.39b)

We can erase the two dots in the first equation by performing a time integration, forgetting
about the integration constant because we should have δβ = 0 when we are back in equilibrium
with ξ = 0. The simplest form of the field equations is therefore

1

r
e−2β0δβ = −4πG

c4
(ε0 + P0)ξ, (4.40a)

1

r
e−2β0

(
δα′ − α′

0 −
δβ

r

)
=

4πG

c4
δP. (4.40b)

The non-equilibrium equations (4.40a) and (4.40b) are analogous to the equilibrium equations
(4.32a) and (4.32b). What is the third equation corresponding to equation (4.32c), which we
found from conservation of energy-momentum ∇µT

µν = 0 back in section 2.1? In appendix B,
we study relativistic fluid mechanics and start from ∇µT

µν = 0 to derive the relativistic
generalization of the Euler equation,

1

c2

(
ε+ P

)
uµ∇µu

α = ∇αP − 1

c2
uαuµ∇νP

(
∇µT

µν = 0

)
.

By inserting the new four-velocity components (4.38) and the perturbation expansions (4.35)
into the relativistic Euler equation and performing calculations in the new metric (4.34) to first
order, [MTW73, §26.5] finds[

ε0 + P0

]
e2β0−2α0 ξ̈ = −c2

[
δP ′ − (δε+ δP )α′

0 − (ε0 + P0) δα
′
]
. (4.40c)

The non-equilibrium system (4.40) is analogous to equilibrium system (4.32) and consists of
three equations for the five unknowns ξ, δP , δε, δα and δβ. To complete the set, we will make
use of two further results of our study of relativistic fluid mechanics in appendix B.

In order to make use of the results of appendix B in our context, we must first learn to
distinguish between Eulerian and Lagrangian changes in fluids. The quantities

δf(t, r) = f(t, r)− f0(r) (4.41a)

that we defined in equation (4.35) are Eulerian changes in the quantities f , measured by an
observer who is sitting duck at some fixed position xµ = (ct, r, θ, φ). In contrast, we define the
Lagrangian changes

∆f(r, t) = f(r + ξ(r, t), t)− f0(r) (4.41b)
as the changes in the same quantities, but measured by an observer who is moving with the
fluid element as it flows from r to r + ξ(r, t). One type of change can always be converted into
the other through the Taylor expansion

∆f(r, t) ' f(r, t) + ξ(r, t) f ′(r, t)− f0(r)

= δf(r, t) + ξ(r, t) f ′(r, t).
(4.42)
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In words, δ measures changes at a fixed position but of different fluid elements, while ∆ measures
changes of fixed fluid elements but at different positions. The former stems from our use of
perturbation theory, while the latter is a natural tool in fluid mechanics.

In our study of relativistic fluid mechanics in appendix B, we also derive the relativistic
generalization of conservation of energy in the flow of a fluid,

dε
dτ

= uµ∇µε = −(ε+ P )∇µu
µ. (4.43)

On the left side, note that because the equilibrium energy density ε0(r) is independent of time,
we have dε/dτ = d∆ε/dτ . At first sight, it may sound more correct to write dδε/dτ instead of
d∆ε/dτ . However, since the derivative d/dτ is along the streamline of the fluid element, it is
more accurate to use a Lagrangian change over an Eulerian change to first order in perturbation
theory. Since the radial velocity component (4.38b) is already a first-order quantity, only the
time component (4.38a) contributes to

dε
dτ

=
d∆ε
dτ

= uµ∇µ∆ε = u0∇0∆ε+ u1∇1∆ε ' u0
∂∆ε

∂t
= u0∆̇ε = e−α0∆̇ε. (4.44)

The right side of equation (4.43) can be calculated with the identity [Car19, equation 3.34]

∇µu
µ =

1√
− |g|

∂µ
(√

−g uµ
)
= e−α0

[
˙δβ +

e−β0

r2

(
eβ0r2ξ̇

)′]
. (4.45)

To first order in the small quantities, equation (4.43) then says

∆̇ε = − (ε0 + P0)

[
˙δβ +

e−β0

r2

(
eβ0r2ξ̇

)′]
. (4.46)

Again, integrate with respect to time to get rid of the dots and set the integration constant to
zero, so ∆ε = 0 when δβ = 0 and ξ = 0. We then find our fourth main equation

∆ε = − (ε0 + P0)

[
δβ +

e−β0

r2

(
eβ0r2ξ

)′]
. (4.47)

We have four equations down, and only one to go. The last result of appendix B that we make
use of is adiabaticity of the flow. In appendix B.4, we show that the flow of a perfect fluid is
adiabatic with the adiabatic index

γ =
ε+ P

P

(
dP
dε

)
s

, (4.48)

where the derivative should be taken at constant specific entropy s, that is along the flow. The
above expression can be calculated entirely from the fluid’s equation of state ε = ε(P ), although
in its current form, it is the unknown perturbed quantities ε and P that enter – not the known
equilibrium quantities ε0 and P0. However, since the derivative should be taken along the flow,
we can rewrite it as the ratio of Lagrangian changes, so the adiabatic index becomes

γ =
ε+ P

P

∆P

∆ε
, or ∆P =

P

ε+ P
γ∆ε. (4.49)

The latter is a relation between two first-order quantities, and so for the purpose of perturbation
theory, the only relevant part of γ is the known zeroth-order part

γ0 =
ε0 + P0

P0

dP0

dε0
=
ε0 + P0

P0

∆P

∆ε
. (4.50)

The two forms in equation (4.50) are very similar, but serve distinct uses. The first version
allows us to calculate γ0 from the equation of state ε0(P0) in equilibrium, while the latter gives
us our fifth and final main equation

∆P =
P0

ε0 + P0
γ0∆ε =

dP0

dε0
∆ε. (4.51)
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Final system of perturbation equations

We have made quite a big mess by now, but we finally have all the information we need, and it
remains only to clean up after ourselves. Together, equations (4.40a), (4.40b), (4.40c), (4.47)
and (4.51) constitute the system of five equations

1

r
e−2β0δβ = −4πG

c4

[
ε0 + P0

]
ξ, (4.52a)

1

r
e−2β0

[
δα′ − α′

0 −
δβ

r

]
=

4πG

c4
δP, (4.52b)[

ε0 + P0

]
e2β0−2α0 ξ̈ = −c2

[
δP ′ − (δε+ δP )α′

0 − (ε0 + P0) δα
′
]
, (4.52c)

∆ε = − (ε0 + P0)

[
δβ +

e−β0

r2

(
r2eβ0ξ

)′]
, (4.52d)

∆P =
P0

ε0 + P0
γ0∆ε, (4.52e)

for the five unknowns ξ, δα, δβ, δP and δε. Remember that any occurrence of ∆P and ∆ε can
be traded for δP and δε by the Taylor expansion (4.42). Except for the independent variables t
and r, the only other quantities are the equilibrium values α0, β0, P0 and ε0 and derivatives
thereof, all of which are obtained by solving the Tolman-Oppenheimer-Volkoff equation (2.38)!

It is the displacement ξ(t, r) we want to calculate, so let us reduce the system (4.52) to a
differential equation involving it as the only dependent variable. Along the way, it is convenient
to define

ζ(t, r) = r2eβ0(r)ξ(t, r), (4.53)

because the only spatial derivative of ξ in the system (4.52) appears through this combination
in equation (4.52d). Never forget that we are doing perturbation theory, so we can still neglect
any product of two small quantities, and we can simplify expressions using any equilibrium
equation from above. Again, the work before us is easy in principle and hard in practice. In
the end, [MTW73, equation 26.19] find that ζ obeys the differential equation

W (r)ζ̈(r, t) =
[
Π(r)ζ ′(r)

]′
+Q(r)ζ(r), (4.54)

where the coefficient functions are

Π =
1

r2
eβ0+3α0γ0P0, (4.55a)

Q = − 4

r3
eβ0+3α0P ′

0 −
8πG

c4
1

r2
e3β0+3α0P (ε0 + P0) +

eβ0+3α0

r2(ε0 + P0)

(
P ′
0

)2
, (4.55b)

W =
1

c2r2
e3β0+α0(ε0 + P0). (4.55c)

This differential equation governs the displacement ξ(t, r) through definition (4.53).

General Sturm-Liouville solution for the fluid displacement

We can find a solution to the differential equation (4.54) using separation of variables. Let us
assume a solution of the form

ζ(t, r) = T (t)U(r). (4.56)

Substituting the trial solution (4.56) into the differential equation (4.54) and dividing by WUT ,
we see that

T̈ (t)

T (t)
=

[Π(r)U ′(r)]′ +Q(r)U(r)

W (r)U(r)
= −ω2 (4.57)

54



Section 4.3: Stability analysis

must be a constant −ω2, which can be any complex number at this stage. We then find the
temporal solutions T (t) = e±iωt, while the spatial function U(r) and ω2 must solve

d
dr

[
Π(r)

dU(r)

dr

]
+

[
Q(r) + ω2W (r)

]
U(r) = 0. (4.58)

What are the boundary equations for U(r)? At the center r = 0, spherical symmetry implies
that there can be no flow, so the physical boundary condition there is

ξ(t, 0) = 0. (4.59)

In addition, [Bar+66] argues that ξ′(t, 0) > 0 must be finite at the center. From definitions
(4.53) and (4.56), we see that these two requirements are satisfied only if

U(r) ∝ r3 near r = 0. (4.60)

At the surface r = R, there can be no change in pressure as one follows a fluid element, just
like at the interface between water and air down on Earth. Here, the boundary condition is
therefore the vanishing of the Lagrangian pressure change

∆P = 0 at r = R. (4.61)

From equation (4.51), we see that this is equivalent to

∆P =
dP0

dε0
∆ε =

(v0
c

)2
∆ε, (4.62)

where we recognize the speed of sound v0 = c
√

dP0/dε0. The surface r = R is defined by
P0(r) = 0, and where there is no pressure, there can be no sound, so we should have v0 = 0.
This can be confirmed from the equation of state. Close to the surface, the density (4.10a) is
small, so xF is small, and dP0/dε0 → 0 as xF → 0 by equation (4.26). Hence, the first factor
dP0/dε0 of the product (4.62) is zero, and the whole product will vanish provided that the
second factor ∆ε is finite. Glancing back at expression (4.52e) for ∆ε, it then follows that the
boundary condition (4.61) is automatically satisfied provided that

∆ε = − (ε0 + P0)

[
δβ +

e−β0

r2
dU
dr
eiωt
]

is finite at r = R. (4.63)

By definition, P0 = 0 and ε0 = 0 at the surface. By assumption, δβ is a small and thus finite
quantity, and e−β0(R) =

(
1− 2GM/Rc2

)−1/2 is also finite at the surface. The translation of
the boundary condition (4.61) at the surface into a criterion on U(r) is therefore only that

dU(r)

dr
is finite at r = R. (4.64)

This may sound unnecessarily picky at this point, but we will soon see that the finiteness of U
plays a very important role when solving the differential equation.

The differential equation (4.58) subject to the boundary conditions (4.60) and (4.64) is a
Sturm-Liouville problem for multiple eigenfunctions U(r) = Un(r) with corresponding
eigenvalues ω2 = ω2

n. It is best viewed as the eigenvalue equation

d
dr

[
Π(r)

dUn(r)
dr

]
+Q(r)Un(r) = −ω2

nW (r)Un(r) for 0 ≤ r ≤ R, (4.65a)

subject to Un(r) ∝ r3 near r = 0, (4.65b)

and dUn(r)
dr

<∞ at r = R. (4.65c)
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We will always take Un(r) to be a real solution – for if Un is a complex solution, then so is Un∗
and thus also ReUn = (Un + Un

∗)/2, by linearity. Let us show that in the form above, the
Sturm-Liouville equation is expressed in a self-adjoint form with respect to the inner product

〈f |g〉 =
∫ R

0
dr f(r)g(r). (4.66)

Denoting the left side of equation (4.65a) by L̂Un = L̂(r)Un(r), we can integrate by parts twice
to show that for two solutions Um(r) and Un(r),〈

L̂Um

∣∣∣Un〉 =

∫ R

0
dr
[(
ΠU ′

m

)′
Un +QUmUn

]
=
[
ΠU ′

m Un

]r=R
r=0

+

∫ R

0
dr
[
−ΠU ′

mU
′
n +QUmUn

]
=
[
ΠU ′

m Un

]r=R
r=0

−
[
ΠUm U

′
n

]r=R
r=0

+

∫ R

0
dr
[ (

ΠU ′
n

)′
Um +QUmUn

]
=
[
ΠU ′

m Un

]r=R
r=0

−
[
ΠUm U

′
n

]r=R
r=0

+
〈
Um

∣∣∣ L̂Un〉
=
〈
Um

∣∣∣ L̂Un〉 .

(4.67)

The surface terms at r = 0 vanish because Un(0) = Um(0) = 0 there by boundary condition
(4.60), while the surface terms at r = R vanish because P0(R) = 0 there, causing Π(R) = 0 from
its definition (4.55a). Using the inner product (4.66) and property (4.67), one can dive into the
field of Sturm-Liouville theory, where one will discover the following important properties:

1. The eigenvalues ω2
n are real and form an infinite, discrete sequence

ω2
0 < ω2

1 < ω2
2 < · · · (4.68a)

that is bounded from below, but not from above.

2. The eigenfunction Un(r) corresponding to the eigenvalue ω2
n has exactly

n zeros Un(r) = 0 for 0 < r < R. (4.68b)

3. Eigenfunctions Un(r) corresponding to different eigenvalues ω2
n are different, and constitute

an orthonormal basis for the Hilbert space of real, square integrable functions on [0, R]
under the W -weighted inner product

〈Um|Un〉W = 〈WUm|Un〉 = δmn. (4.68c)

The property that the eigenvalues are real is possible for us to prove, and we should, because we
will take it as an assumption when we solve the Sturm-Liouville problem numerically. Applying
property (4.67) with Um = Un, we have 〈L̂Un|Un〉 = 〈L̂Un|Un〉

∗. Exchanging the left side of
L̂Un = −ω2

nWUn with the right and noting that 〈WUn|Un〉 is real because W and |Un|2 are
real, this is equivalent to −ω2

n 〈WUn|Un〉 =
(
−ω2

n

)∗ 〈WUn|Un〉, so ω2
n is real.

We can also understand intuitively why the number of zeros must increase with ω2
n. By rewriting

the Sturm-Liouville equation as (ΠU ′
n)

′ /Un = −
(
Q+ ω2

nW
)

and noting that W > 0 by its
definition (4.55c), it is apparent that as ω2

n increases, so does the curvature of Un towards 0,
and hence the number of zeros.

For a greater overview of Sturm-Liouville theory and proofs of the other properties, we
recommend [Mor+99]. Perhaps, it can also be comforting to think of a more familiar ex-
ample of applied Sturm-Liouville theory, namely the time-independent Schrödinger equation[(
−h̄2/2m

)
d2
/

dx2 + V (x)
]
ψn(x) = Enψn(x). Here, the energies En play the role of the eigen-

values ω2
n and the wave functions ψn(x) are analogous to the eigenfunctions Un(r). In one

dimension, normalizable solutions to the Schrödinger equation possess precisely the same three
properties as above.
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Necessary and sufficient criterion for stellar stability

At long last, we are now in position to state a rigorous mathematical criterion of stellar stability.
Property 3 implies that any physically reasonable displacement ξ(t, r) can be written as a linear
combination

ξ(t, r) =
e−β0(r)

r2

∑
n

cnUn(r)e
iωnt (4.69)

for some constants cn. The superposition will still satisfy the physical boundary conditions
(4.59) and (4.61), provided that each Un(r) separately satisfies the boundary conditions (4.60)
and (4.64). Property 1 ensures all ω2

n are real, but there is no restriction on the sign of ω2
n.

• If ω2
0 > 0, then all vibration modes have real frequencies ωn > 0. Then all terms in the

displacement (4.69) merely oscillate back and forth like ξ ∝ eiωnt, so the star attempts to
return to equilibrium, and it is stable.

• If ω2
0 < 0, then one or more vibration modes have imaginary frequencies ωn = ±i |ωn|.

Then some term in the displacement (4.69) takes off exponentially like ξ ∝ e±|ωn|t, so the
star either implodes or explodes, and it is unstable.

A prerequisite for the above criterion is that it is sufficient for one mode in the displacement
(4.69) to be unstable for the star as a whole to be unstable. To understand this, suppose a star
is exposed to some external perturbation ξ(t, r). Whatever the source of this perturbation –
be it the touch of a finger, an imperfection in the star’s material or the blast from a nearby
supernova explosion – it is the initial state ξ(t, r) of this external perturbation that determines
the contribution cn from each mode in the sum (4.69), and subsequently the response of the star
to the perturbation. In the real world, we expect that any external perturbation will activate
all modes Un(r) to some extent – for one would need remarkable finger precision to perturb
the star in an exact superposition of only a finite selection of modes. Given that all modes
have even the slightest nonzero contribution cn 6= 0, the presence of any exponential term is
sufficient for the whole sum to collapse or grow unbounded towards 0 or ∞.

A clever and perhaps slightly nitpicky objection to our criterion, is that the perturbative
exponential growth should not be valid once the perturbation has grown outside the domain
where it is valid. Either way, we would still say that the star is locally unstable in the immediate
vicinity of the equilibrium. If a star were to reach another state of equilibrium once it has
grown outside this domain of validity, then that new state must necessarily also be either
stable or unstable. If it is stable, then it is either a neutron star on a different part of the
mass-radius curve we have found, or it has evolved to a completely different type of star on a
mass-radius curve that we do not know about. If it is unstable, then we would recursively enter
the beginning of this argument again. Ultimately, what is physically interesting to us are the
(locally) stable configurations, as any unstable star will either explode, collapse, evolve to one
of the stable configurations or transition to a completely different type of star.

Numerical solution of the Sturm-Liouville problem with the shooting method

Multiple methods for determining the stability of stars through the criterion above are catalogued
by [Bar+66]. The shooting method is a particularly fun numerical technique for finding the
eigenfunctions Un(r) and eigenvalues ω2

n of the Sturm-Liouville problem (4.65). Let us put it
to use, so we can determine the stability of the stars along the curve in figure 4.3.

We describe the shooting method and our implementation of it in detail in appendix G.3. It is
also possible to understand the gist of it from figure 4.7, where we show how it establishes the
fundamental vibration mode U0(r) and ω2

0 for some star by an intelligent form of “trial and
error”. In figure 4.8, we display the eight lowest modes obtained with the shooting method for
one particular star. It is meant to demonstrate the boundary conditions (4.65b) and (4.65c),
and that the eigenfunction Un(r) has exactly n nodes.
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Figure 4.7: The shooting method finds the eigenvalue ω2
n and corresponding eigenfunction

Un(r) with n = 0 of a Sturm-Liouville problem (4.65). It guesses the eigenvalue ω2, imposes
the boundary condition (4.65b) near r = 0, “shoots” across to r = R by integrating the
differential equation (4.65a) and checks whether U(r) “hits” boundary condition (4.65c) there.
By comparing the number of nodes n(ω2) of U(r) to n, the guess is intelligently improved
and the process repeated, arriving ever closer to the true eigenvalue ω2

n. First, the algorithm
establishes two bounds ω̂2

− = −16 and ω̂2
+ = 0 whose corresponding solutions have n(ω2

−) ≤ n
and n(ω2

+) > n nodes. The exact squared frequency is then guaranteed to lie in ω2
− < ω2

n < ω2
+.

Next, the algorithm finds the number of nodes corresponding to ω̂2 = (ω̂2
− + ω̂2

+)/2 = −8. Here,
it is found to have n(ω2) > n nodes, so the process is repeated with the tighter upper bound
ω̂2
+ = −8. In the opposite case n(ω2) ≤ n, −8 would rather be a better lower bound ω̂2

−. The
algorithm continues to split the [ω2

−, ω
2
+] in this fashion until the bounds are so close that any

value in the interval is satisfactory. In the plot, blue lines correspond to lower bounds ω2
−, red

lines to upper bounds ω2
+, and increasingly mixed colors to later guesses.
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Figure 4.8: Eight lowest vibration modes Un(r) and squared eigenfrequencies ω2
n for an

unstable ideal neutron star with central pressure P = 1.28 · 1037 Pa. In (a), eigenfunctions are
normalized to their own maxima, making their shape throughout the star and the boundary
condition Un(R) <∞ clear. In (b), they are instead normalized to a common scale, highlighting
the boundary condition Un(r → 0) ∝ r3 and their number of nodes. We have cut away the
divergent parts as r → R from the final iteration of the shooting method.

59



Chapter 4: Ideal Neutron Stars

29 30 31 32 33 34 35 36 37 38 39 40 41

−20,000

−10,000

0

10,000

20,000

log10 (Pc /Pa)

ω
2 n
/

kH
z2

ω2
0

ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

Figure 4.9: Squared eigenfrequencies ω2
n of the six lowest vibration modes for all stars on the

bottom sequence in figure 4.3 obtained with the shooting method. As the central pressure rises,
numerical difficulties of integrating the Sturm-Liouville equation makes the curves shaky.

Finally, we use the shooting method to examine the stability of every star along the curve in
figure 4.3. In figure 4.9, we show the six lowest squared eigenvalues ω2

n for all stars on the curve.
As the central pressure increases, we see that more squared eigenvalues become negative. We
then simply count the number of unstable modes with ω2

n < 0 for every star, and display this
number in figure 4.10. The results are very interesting.

1. Starting from the lowest central pressure, and hence lowest central energy and mass
densities, all stars are stable up until the maximum mass. The part on this segment with
the lowest central energy density is the territory of Newtonian theory, where we should
already expect stars to be stable, but that the situation remains so as relativistic effects
take over is not necessarily obvious.

2. At the point of maximum mass, stars gain one unstable mode, and the number stays
constant as we follow the curve down to the point of the spiral with minimal mass. From
the necessary stability condition (4.28), we already know that stars on this segment should
indeed be unstable.

3. Beyond the spiral’s point of minimal mass, stars acquire a second unstable mode.

4. In the innermost parts of the spiral after the next local mass maximum, there even seems
to be some stars with a third unstable mode. The effect is not as crystal clear as it is with
the previous segments, however.

Our computations suggest that at every local mass extremum point where dM(Pc)/dPc = 0,
stars acquire one additional unstable vibration mode, starting with zero unstable modes for the
lowest pressures Pc → 0. In fact, [Bar+66] presents a method for determining stability of stars
based on this principle! For a sequence of cold stars – like ours – in a mass-radius diagram like
figure 4.3, they claim that:
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• For the lowermost central energy densities ε(Pc), we know from classical theory that stars
are stable.

• At every local mass extremum dM(Pc)/dPc = 0 where the curve bends counterclockwise
as the central pressure increases, one stable mode becomes unstable.

• At every local mass extremum dM(Pc)/dPc = 0 where the curve bends clockwise as the
central pressure increases, one unstable mode becomes stable.

Our curve only includes a spiral turning counterclockwise and seem consistent with the first
two rules. A detailed discussion and proofs of these three rules is given by [Tho66]. As we
speculated when we derived the necessary stability criterion (4.28), stability does indeed change
of character at the mass extrema of the mass-radius curve. Thus, the maximum mass is not
only a limit on massiveness, but also on stability.
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Figure 4.10: Stability analysis of the relativistic neutron star sequence with the general
equation of state in figure 4.3. For each star, squared eigenfrequencies ω2

n of the Sturm-Liouville
problem (4.65) are computed numerically with shooting method, and the number of unstable
modes n with ω2

n < 0 displayed. For n ≥ 1 unstable modes, it is theoretically possible for a
star to vibrate in a greater-than-n-th stable normal mode. However, in practice any real-world
vibration should activate all vibration modes to some extent. Therefore, we say that a star is
stable only if it has n = 0 unstable modes.
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Chapter 4: Ideal Neutron Stars

4.4 Summary
The main result of this chapter is the bottom sequence of ideal neutron stars in figure 4.3
that we obtained by numerically integrating the Tolman-Oppenheimer-Volkoff equation (2.38)
with the general equation of state (4.17). Unlike the Newtonian curves, general relativity
produces an upper mass limit M ≈ 0.71M�. Finally, we used the shooting method to solve
a Sturm-Liouville problem describing stars perturbed from equilibrium, yielding the number
of unstable normal pulsation modes for all stars on the sequence. Figure 4.10 showed that
the only stable neutron stars are those with central pressure below that corresponding to the
maximum mass.
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Chapter5
Conclusions and Outlook

5.1 Conclusions

In this thesis, we have laid a solid foundation for continued study of neutron stars and other
kinds of compact stars, starting from first principles of general relativity and quantum field
theory. We have derived the Tolman-Oppenheimer-Volkoff equation from general relativity, and
shown how the partition function for a quantum field theory with some specified Lagrangian
can be expressed as a path integral in the framework of thermal field theory. In particular, we
calculated the partition function for a cold Fermi gas composed of free Dirac neutrons and
solved the Tolman-Oppenheimer-Volkoff equation with the resulting equation of state. Finally,
we applied perturbation theory to general relativity and performed a detailed analysis of stellar
stability. Equipped with our numerical “machine” that solves the Tolman-Oppenheimer-Volkoff
equation for arbitrary equations of state and even analyzes the stability of the solutions, we are
ready to take on new stellar models!

Our main results are the computed mass-radius curve in figure 4.3 and the computed stability
analysis in figure 4.10. Together, they show that neutron stars are stable up to the maximum
central pressure Pc ≈ 1035 Pa with a corresponding maximum mass M = 0.71M� and minimum
radius R = 9.1 km, but become unstable for greater central pressures. In comparison, [Opp+39],
building upon the work of [Tol34], studied the same model in 1939 and obtained the same
limit MTOV = 0.71M� with the slightly different radius R = 9.5 km by approximate analytical
techniques. Our computational stability analysis is also consistent with a set of qualitative
rules established by [Bar+66] based on curvature and extrema in the mass-radius diagram.

However, most observed neutron stars exceed the mass limit we have found. Even slowly rotating
pulsars, for whom our results are comparable, [Pot10, section 2.1] are typically observed with
masses in the range 1.0M� < M < 2.2M�. [Öze+16, figure 2 and 3] The recent observation of
the gravitational wave GW170817 from the merging of two neutron stars even suggests that
the true value of the upper mass limit MTOV for neutron stars, named in honor of Tolman,
Oppenheimer and Volkoff, is at least MTOV & 2.3M�. [Shi+19]

Observations of massive neutron stars give a lower bound onMTOV, and hence impose constraints
on stellar equations of state. Viewed the other way around, equations of state are benchmarked
by the maximum masses they produce. Although our model performs poorly in this regard, it
can in hindsight still be viewed as an interesting result because it should be close to a lower
bound on MTOV. Why? Due to the zero-temperature approximation, all resistance against
gravitational collapse in our model is provided by the degeneracy pressure of neutrons. As
the density increases, repulsive nuclear effects become more important and provides additional
pressure and hence greater resistance against collapse in a real neutron star. [Gle00, section
3.9.8] Nevertheless, it is impressive that a model of a neutron star as a simple sphere of
non-interacting neutrons give estimates within the right order of magnitude!
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5.2 Outlook

From the mismatch between our results and observations, it is clear that we should seek
improvements to our model. Instead of going further in the same direction, it is also possible
to turn around and pursue a different path by studying other types of stars, for example. Let
us take a look at some options available to us at the current crossroads.

More advanced models with additional particles

There is little doubt that the greatest simplification in our free Fermi gas model is that a
neutron star consists only of neutrons. This is not true, and we should expect different results
by accounting for a greater variety of particles with more advanced models. In order to keep
the model simple enough for accurate calculations, it is of practical importance to include only
the particles that are most relevant. When adding several types of charged particles, one must
impose additional constraints of chemical equilibrium and charge neutrality, neither of which
we have needed to worry about for the neutral neutron. For example, [Gle00, chapter 4] studies
relativistic nuclear field theory and outlines a series of successive improvements to our model:

0. Our original model includes only neutrons n with the free Dirac Lagrangian

Lψ = ψ̄ (iγµ∂µ −m)ψ
(
with h̄ = c = 1 from here on

)
.

1. One improvement is to account for inverse beta decay n→ e− + p+ ν̄e of neutrons into
electrons, protons and (anti)neutrinos. It can be shown that (anti)neutrinos will diffuse
out of the star, so a simple extension is then to make the Lagrangian a sum

Lψn + Lψp + Lψn

of three Dirac Lagrangians of the form (0), with one independent field and mass corre-
sponding to neutrons, protons and electrons. The partition function then separates into a
product of three factors, and the energy density and pressure accordingly becomes a sum
of three terms of the form that we have found here. Numerical results show that this only
gives a softer equation of state with a slightly lower maximum mass MTOV = 0.70M�,
and although it is a more accurate description, it really takes us in the wrong direction.
[Gle00, section 3.9.8]

2. Yet another improvement is made by appending the σ − ω model, also referred to as the
Walecka model. It consists of a scalar meson ω and a vector meson ωµ with

free scalar meson Lagrangian Lσ =
1

2

[
(∂µσ) (∂

µσ)−m2
σσ

2
]
, (5.1a)

free vector meson Lagrangian Lω = −1

4
ωµνω

µν +
1

2
m2
ωωµω

µ, (5.1b)

scalar meson-nucleon interaction Lσψ = gσσψ̄ψ, (5.1c)

vector meson-nucleon interaction Lωψ = gωω
µψ̄γµψ, (5.1d)

scalar self-interactions Lσσ = −1

3
bm (gσσ)

3 − 1

4
c (gσσ)

4 . (5.1e)

3. The σ − ω model is extended to the σ − ω − ρ model by including a ρ meson with

free Lagrangian Lρ = −1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ, (5.1f)

isospin force Lρψ = −1

2
gργµρ

µ · τψ. (5.1g)
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4. Finally, the presence of neutrons, protons and electrons is generalized to that of other
baryons and leptons. Protons and neutrons are generalized to the full baryon octet

(n, p) →
(
n, p, Λ, Σ+, Σ−, Σ0, Ξ−, Ξ0

)
,

while a muon is added to the lepton range(
e−
)

→
(
e−, µ−

)
.

This extension is straightforward to apply to the Lagrangians above. For each baryon
B, a free Dirac Lagrangian LψB

and additional interaction Lagrangians with distinct
couplings gB from above are added. For each lepton L, only a free Dirac Lagrangian LψL

is added – their most important job is only to meet the charge neutrality constraint.

Several fields are treated approximately in a relativistic mean field approach. Throwing all
these particles into the mix, one ends up with the quite complicated Lagrangian

L =
∑
B

(LψB
+ LσψB

+ LωψB
+ LρψB

) + Lσ + Lω + Lσσ + Lρ +
∑
L

LψL
.

With all these effects, numerical results give a maximum mass in the range 1.42M� < MTOV <
2.02M� depending on the values chosen for the coupling constants. [Jia+02, table 1] This is
much more in line with observations. For a gradual, step-by-step exposure to these successive
improvements, see also the theses [Bra17; Pog17].

Rotating neutron stars

Since observed neutron stars are pulsars, another relevant path of study is that of rotating
neutron stars. A rotating neutron star breaks spherical symmetry, but retains axial symmetry
about its rotation axis. This requires a more advanced treatment of general relativity, where
the spherically symmetric metric (2.4) must be replaced with the axially symmetric metric
[Gle00, section 6]

ds2 = e2ν(r,θ)c2 dt2 − e2λ(r,θ) dr2 − r2e2µ(r,θ)
{

dθ2 + sin2 θ [dθ − ω(r, θ)dt]2
}
,

and the fluid’s four-velocity uµ = (u0, 0, 0, u3) gains an angular component u3 = dφ/dτ in
equilibrium. The star is then no longer governed by the familiar Tolman-Oppenheimer-Volkoff
equation, which were derived under the assumption of no rotation. Study of rotating neutron
stars is useful because it is directly comparable to observations of pulsars.

Hybrid stars and quark stars

Neutrons are composed of quarks, and quarks are described by quantum chromodynamics.
This theory features asymptotic freedom. At extreme density, it causes quarks to become free
of interactions, resulting in a new state of matter known as quark matter. As illustrated in
figure 5.1, neutrons lose their individuality, and it is instead free quarks that make up the
fundamental degrees of freedom. It is speculated that the conditions in the cores of neutron
stars are so extreme that it allows for the presence of quark matter. If this is true, some or
all neutron stars may really be hybrid stars with a phase transition between a central quark
matter core surrounded by a nuclear matter envelope. Quark stars refer to such hypothetical
stars composed of pure quark matter only, with no nuclear envelope. [Gle00, chapter 8]

Indeed, there have been observed objects of unknown nature whose mass exceeds the currently
accepted value of Tolman-Oppenheimer-Volkoff limit, but falls short of the least massive known
black holes. [Wiki21d] These objects may turn out to be neutron stars or black holes after all,
but they are also candidates for hybrid stars and quark stars – both of which are hypothetical
objects yet to be observed.
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Figure 5.1: In a neutron star, quarks are confined in neutrons. In a hypothetical quark star,
the density is so extreme that quarks are deconfined from neutrons. Credit: Chandra X-ray
Observatory / M. Weiss (https://chandra.harvard.edu/photo/2002/0211/more.html).

Unfortunately, it is notoriously difficult to make practical computations of quantum chromo-
dynamics. Therefore, alternative and more practical models such as the MIT bag model have
been developed to study quark stars.

It is this path that I aim to study in my master thesis following this specialization project.
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Chapter6
Introduction

In chapter 1 and figure 1.1 we reviewed how the currently known life cycle of a star is more or less
predetermined by the initial mass M0 of the embryonic protostar that is born from its parent
giant molecular cloud. Provided that M0 & 0.08M�, the temperature in a protostar reaches
the point necessary to ignite fusion of hydrogen, and the star becomes a main-sequence
star – otherwise it retires early as a brown dwarf. First, if 0.08M� . M0 . 8M�, the
main-sequence star eventually explodes in a planetary nebula and leaves behind a core that
collapses under gravity until it stabilizes as a white dwarf (figure 6.1a) supported by the
electron degeneracy pressure. Second, if 8M� .M0 . 40M�, the main-sequence star instead
explodes in a supernova and becomes a neutron star (figure 6.1b) that is squeezed by gravity
beyond the maximum supported pressure of white dwarfs, reaching a new equilibrium mainly
supported by the degeneracy pressure of baryons. Third, if M0 & 40M�, the supernova remnant
cannot support itself and collapses under gravity to a black hole (figure 6.1d).

As proposed by [Iva+67; Iva+69], the density in the cores of the heaviest neutron stars on
brink of collapse to black holes could be so high that baryons break up into deconfined quark
matter. Neutron stars with such quark cores are called hybrid (neutron) stars (figure 6.1b).
Moreover, (strange) quark stars (figure 6.1c) consisting only of (strange) quark matter could
exist. While two-flavor quark matter decays to hadronic matter and cannot be realized in pure
quark stars, the strange matter hypothesis of [Bod71; Wit84] suggests that hadronic matter
could be only a long-lived metastable state and that its true ground state is three-flavor quark
matter, which could make up stable pure quark stars with extremely sharp surfaces. [Gle00]

As explained in section 1.2, observed neutron stars are identified by radiation emitted from
rapidly spinning pulsating radio (pulsar or PSR) sources. However, it is hard to conclude
whether they are hybrid stars with quark cores, and some could even be mistaken for strange

H He

C O

0.08M� . M0 . 8M�

(a) White dwarf

H
· · ·

Fe
n

p e −

u, d, s

8M� . M0 . 40M�

(b) (Hybrid) neutron star

u, d, s

???

(c) (Strange) quark star

M0 & 40M�

(d) Black hole

Figure 6.1: Final stages of a star’s life depending on its birth mass M0. Quark matter can
exist in pure (strange) quark stars or in the cores of the heaviest (hybrid) neutron stars.
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quark stars. The recent observations [Ant+13; Arz+18; Fon+21] of the heavy pulsars PSR
J0348+0432, PSR J1614−2230 and PSR J0740+6620 with masses M = {2.01 ± 0.04, 1.91 ±
0.02, 2.08± 0.07}M� suggest that neutron stars could indeed reach sufficient densities for the
formation of quark cores and be hybrid stars. Candidates for strange quark stars include RX
J185635−3754 [Trü+04], 3C58 [Pra+03], ASASSN−15lh [Dai+16], PSR B0943+10 [Yue+06]
and the yet unseen SN1987A remnant [Cha+09; Liu+12]. In particular, if a pulsar with a
sub-millisecond rotation period is observed, it would break the theoretical speed limit for
neutron star rotation, but could be naturally explained if it is a strange quark star. [Gle00]

Quarks and the mediators of the strong force between them – gluons – are described by
the theory of quantum chromodynamics. Very roughly speaking, it predicts that quarks
are confined in hadrons at low temperatures and densities due to a property called color
confinement, but deconfined and free of all interactions at high temperatures or densities
because of another property called asymptotic freedom. In addition to the confinement
transition, quantum chromodynamics exhibits a chiral transition. Unfortunately, it is very
hard to work analytically with the general theory of quantum chromodynamics, so one must turn
to approximations and models. We will model quark and hybrid stars using the quark-meson
model; elaborating, complementing and building upon earlier work by [Ber13].

This chapter is inspired by part I and references [Gle00] and [Sch14].

6.1 The Tolman-Oppenheimer-Volkoff equation and stellar stability
The structure of a spherically symmetric star is governed by the Tolman-Oppenheimer-Volkoff
equation

dP
dr

= −Gmε(P )
r2c2

(
1 +

P

ε(P )

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

, (6.1a)

dm
dr

=
4πr2ε(P )

c2
. (6.1b)

It is a system of two differential equations for the energy density ε(r), pressure P (r) and
cumulative mass m(r) as functions of the radius r from the center of the star assumed to be
composed of a perfect fluid in hydrostatic equilibrium. We derived it from the Einstein field
equations (2.1) and studied it in detail in chapter 2. It therefore includes relativistic corrections,
which is particularly important for compact stars with high density.

To solve it, one must know the equation of state ε(P ) that connects the fluid’s pressure
and energy density, thereby closing the system of three equations and three unknowns. It can
then be integrated from the center r = 0 with zero initial mass m(0) = 0 and some central
pressure P (0) = Pc until reaching the surface r = R defined by a vanishing pressure P (R) = 0.
This yields the radial profiles ε(r), P (r) and m(r), and the total mass M = m(R) can then be
calculated. Thus, one chosen central pressure Pc corresponds to one star with a resulting mass
M and radius R. As the central pressure is unknown, it is common to parametrize a sequence
of stars with a range of central pressures, solve the Tolman-Oppenheimer-Volkoff equation for
each of them and draw a curve connecting their masses and radii in a mass-radius diagram.

In appendix G.2 we wrote a program that integrates the Tolman-Oppenheimer-Volkoff equation
for an arbitrary equation of state and generates a smooth mass-radius curve between two given
central pressures. We will feed this machine with all equations of state that we encounter.

We drew a mass-radius curve for ideal neutron stars in figure 4.3. As the central pressure
increases, the mass also increases up to some maximum, and then decreases as the curve enters
a counterclockwise spiral. In section 4.3.2 we studied the stability of stars along this curve in
detail, and found that only the stars on the mass-increasing segment up to the maximum are
stable and realized in nature. This common property of mass-radius curves is the reason that
we will focus our attention on the maximum mass and the part of the curve leading up to it.
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6.2 Thermal field theory in compact stars
To derive equations of state for quark matter, we will study quantum field theories whose
dynamics is described by some Lagrangian density L. In chapter 3 we showed that the partition
function in the grand canonical ensemble corresponding to a Lagrangian including both a
fermionic Grassmann field ψ and a bosonic scalar field φ is given by the path integral

Z(V, T, µi) =

∮
−
Dψ̄

∮
−
Dψ

∮
+
Dφ exp

{∫ β

0
dτ
∫
V

d3x
(
LE
[
ψ̄, ψ, φ

]
+
∑
i

µij
0
i

)}
. (6.2)

Here it is the Euclidean Lagrangian density LE that enters, obtained from the original Lagrangian
L in Minkowski space by substituting an imaginary time variable t = −iτ into all the fields and
then treating τ as the new “time” variable. The volume of the system is V , while its “temporal”
extent is the system’s inverse temperature β = 1/T . Sign subscripts are placed on closed path
integral signs to remind us of an important property that we showed: bosonic fields must be
periodic in inverse temperature time, while fermionic fields must be anti-periodic. We also saw
that we could couple any conserved Noether charge densities j0i arising from symmetries of the
Lagrangian to chemical potentials µi.

After computing (the logarithm of) the partition function, it is straightforward to find the
grand potential (density)

Ω(T, µi) = − logZ
βV

from Z = e−βV Ω. (6.3)

The volume dependence of the partition function is eliminated by division, turning the extensive
quantity logZ into the intensive quantity Ω. From the grand potential density, we can calculate
the relevant thermodynamic quantities: [Kar07, section 4.9]

pressure P (T, µi) = −Ω, (6.4a)

number densities ni(T, µi) = − ∂Ω

∂µi
, (6.4b)

entropy density s(T, µi) = −∂Ω
∂T

= β2
∂Ω

∂β
, (6.4c)

energy density ε(T, µi) =
∑
i

µini +
∂(βΩ)

∂β
=
∑
i

µini − P + Ts. (6.4d)

Our goal is to connect a given pressure P to some energy density ε, so we can solve the
Tolman-Oppenheimer-Volkoff equation (6.1). This is greatly simplified in compact stars, where
it is common to employ the zero-temperature approximation T = 0. We justified this
approximation for neutron stars in section 4.1 due to the temperature being far lower than the
Fermi temperature Tf . With T = 0, only the dependence on the chemical potentials remains in

P (µi) = −Ω and ε(µi) =
∑
i

µini − P. (6.5)

If there is only one chemical potential µi = µ, the equation of state ε(P ) follows by simply
eliminating µ from P (µ) and ε(µ), either numerically or analytically. This was the case for the
neutron star equation of state (4.17). In contrast, the stars we will study now will be composed
of up quarks, down quarks, strange quarks and electrons, each associated with a chemical
potential. We then need three additional relations to constrain the four chemical potentials to
one independent one, which can then be eliminated to give the equation of state.

Chemical equilibrium of weak interaction processes

We can find two relations between the chemical potentials by assuming that the nuclear processes
in the star are in chemical equilibrium. According to [Lug16], quark stars may be formed as
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hadronic matter in a neutron star decays to quark matter through Urca processes1 like

u+ e− → d+ νe and u+ e− → s+ νe. (6.6)

Over time, neutrinos are emitted from the star, thereby cooling it. Setting µνe = 0, chemical
equilibrium of these two processes implies the two independent β-equilibrium relations

µu + µe = µd = µs. (6.7)

Electric charge neutrality

The third and last relation between the four chemical potentials is provided by electric charge
neutrality. By comparing Newton’s law of gravity and Coulomb’s law of electrostatics, we can
make a simple classical argument for why there can be no global net electric charge in stars.

Suppose a test particle with mass m and electric charge q is placed on the surface R of a star
with total mass M and electric charge Q. In an idealized situation where the test particle is
affected only by the gravitational and electrostatic forces, the total outwards force on it is

Fout = −GMm

R2
+ ke

Qq

R2
. (6.8)

If the star and test particle have opposite charges, Fout < 0 and the star binds the particle and
picks up any other particles with opposite charge, seeking to neutralize itself. However, if they
have like charges, Fout > 0 provided that

Q

M
>
G

ke

m

q
. (6.9)

In other words, particles leave and neutralize the star until the left side has descended to the
constant right side. Even for a heavy baryon like a proton with mass m = 1.67 · 10−27 kg and
charge q = +e in a common compact star of about one solar mass M ≈ M�, the star emits
particles until it has practically zero net electric charge

Q . 10−10e. (6.10)

In a star that consists of different particle species with charges qi, we could implement global
neutrality by constraining the chemical potentials µi(r) at every radius r such that the charge
density ∑

i

qi ni(µi(r)) = ρ(r) (6.11)

fits some profile ρ(r) that integrates to a vanishing total charge Q =
∫ R
0 ρ(r)4πr2 dr = 0. This

approach would make the equation of state ε(P ) at one radius r dependent on its value at
all radii, and it is not obvious how one should single out one of the infinitely many possible
charge density profiles ρ(r). We will avoid this problem altogether by rather assuming that
charge neutrality holds locally with ρ(r) = 0, eliminating the chemical potentials at any radius
according to ∑

i

qi ni(µi) = 0 (6.12)

As shown in [dCar+14], for example, the stronger assumption of local charge neutrality can in
fact modify masses and radii of stars within an order of magnitude of solar masses, but the
differences become smaller as one approaches the maximum mass star. Our choice ρ(r) = 0 is
therefore the simplest choice, but not necessarily the most accurate and physical one.

The three relations (6.7) and (6.12) constrain the four chemical potentials µu, µd, µs and µe to
a single one that is eliminated from P (µi) and ε(µi) to yield the equation of state ε(P ).

1Urca processes are a general class of processes that emit neutrinos and cool neutron stars. Their discoverers
George Gamow and Mário Schenberg met at the famous Casino de Urca in Rio de Janeiro in Brazil, where they
“called it the Urca Process, partially to commemorate the casino in which we first met, and partially because the
Urca Process results in a rapid disappearance of thermal energy from the interior of a star, similar to the rapid
disappearance of money from the pockets of the gamblers on the Casino da Urca.” [Gam70]
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Section 6.3: Quantum chromodynamics

Figure 6.2: The µB-T -slice of the phase diagram of quantum chromodynamics, where there is
no isospin µI = 0 or strangeness µS = 0. Credit: R. S. Bhalerao (https://commons.wikime
dia.org/wiki/File:PhasDiagQGP.png).

6.3 Quantum chromodynamics

The theory of the strong interaction force is called quantum chromodynamics (QCD). It
describes the interaction between quarks mediated by gluons through the Lagrangian density

L = q̄(iγµDµ −m)q − 1

4
GaµνG

µν
a with Gaµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . (6.13)

In general, the quark fields q = qf,c,α(x) are indexed by the Nf = 6 flavors f ∈ {u, d, s, c, b, t},
the Nc = 3 colors c ∈ {r, g, b} and 4 Dirac spinor indices α ∈ {0, 1, 2, 3}. We will take a flavor
index with the shorthand f = qf,c,α(x). The gamma matrices (3.86) (in the Dirac basis) act
in spinor space, the mass matrix m = diag(mu,md,ms,mc,mb,mt) in flavor space, and there
are suppressed identity matrices in spinor, flavor and color space wherever needed for the
Lagrangian to be a scalar. The covariant derivative is Dµ = ∂µ− igAaµT

a and couples the gluon
gauge fields Aaµ to the quarks with strength g. Finally, T a are the N2

f − 1 generators of the
symmetry group SU(Nf ). They are conventionally normalized to tr[T aT b] = δab/2, and their
structure constants fabc can be determined from the commutators [T a, T b] = ifabcT c.

QCD can be viewed as a generalization of quantum electrodynamics (QED), where there is
a single electron in place of multiple quarks and photons play the role of gluons. QED is a
simpler Abelian gauge theory with symmetry group U(1), whereas QCD is a non-Abelian gauge
theory with symmetry group SU(Nf ) and an example of a Yang-Mills theory.

The heaviest charm, bottom and top quarks only appear at extreme energies. In “practical
applications” only the Nf = 3 lightest up, down and strange flavors are needed. Their SU(3)
generators T a are the Gell-Mann matrices, and their main properties are listed in table 6.1.

Table 6.1: Properties of the up, down and strange quarks. The lone mass is the mass of a
quark by itself excluding any gluons, while the constituent mass refers to the effective mass of a
quark in a hadron including the surrounding gluon fields. [PDG20; Gle00]

Quark Electrical charge Lone mass Constituent mass

up (u) +2
3e 5 MeV ≈ 300 MeV

down (d) −1
3e 7 MeV ≈ 300 MeV

strange (s) −1
3e 150 MeV ≈ 500 MeV
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Phase diagram and calculation methods

The phase diagram of quantum chromodynamics describes the phase of quark matter as a
function of temperature T and the common quark, isospin and strangeness chemical potentials

µ =
1

2

(
µu + µd

)
, µI =

1

2

(
µu − µd

)
, µS =

1

2

(
µu − µd

)
− µs. (6.14)

Inverting these relations for the individual quark chemical potentials give

µu = µ+ µI , µd = µ− µI , µs = µ− µS . (6.15)

By applying the chain rule to the density (6.4b), we can derive that the suitably named common
quark chemical potential µ = µ(µu, µd, µs) corresponds to the total quark density

n = −∂Ω
∂µ

= − ∂Ω

∂µu

∂µu
∂µ

− ∂Ω

∂µd

∂µd
∂µ

− ∂Ω

∂µs

∂µs
∂µ

= nu + nd + ns. (6.16)

Some authors rather prefer to talk about the baryon chemical potential µB = 3µ and the baryon
density nB = n/3. Although mapping out the phase diagram is an active area of research, a
rough qualitative picture is known, and the µB-T -slice with µI = µS = 0 is shown in figure 6.2.
In compact stars we have already argued that it is a good approximation to set T = 0, and we
will later see that the chemical potential constraints (6.7) and (6.12) parametrizes a curve for
the state of charge-neutral quark matter in β-equilibrium that lies close to the µ-axis. We will
shortly discuss the most important qualitative properties of quantum chromodynamics and
relate them to this phase diagram.

The general theory of quantum chromodynamics is notorious for being very difficult to work
with, and its elegance and practicality stops not long after writing down its Lagrangian (6.13).
To explore the phase diagram, one must therefore turn to alternative techniques:

• Perturbation theory can be used to study quantum chromodynamics analytically at
high energy, perhaps contrary to what one might expect. As we will soon discuss in more
detail, this is due to an unintuitive property called asymptotic freedom that causes the
interaction strength to decrease with increasing energy, or decreasing distances.

• Lattice QCD consists of discretizing spacetime to a lattice and making numerical
field calculations on it. This method has proved very useful for studying quantum
chromodynamics under quite general circumstances, but in the regime of high baryon
density and low temperature it is plagued by the sign problem, referring to the difficulty
of calculating integrals of highly oscillatory functions. This is precisely the region of the
phase diagram that is relevant for compact stars.

• The Nc expansion is a systematic scheme in which one makes expansions in the assumed
small parameter 1/Nc. Although there are only Nc = 3 colors in nature, this scheme is
indeed widely used to gain insight into quantum chromodynamics and make predictions.
[Luc+13] Specifically, sending Nc → ∞ is referred to as the large Nc-limit. We will
refer to it to justify some of our later calculations.

• Effective theories and models can be used to study quantum chromodynamics in some
regimes of interest. The most important requirements of such a theory or model is that
it includes the correct degrees of freedom (particles) and exhibits the same symmetries
and symmetry breaking patterns as the theory it aims to describe in the targeted regime.
Due to [Wei21], the philosophy is then to “write down the most general possible theory
involving fields for these particles, including all possible interactions consistent with the
symmetries”. Chiral perturbation theory (χPT) is an example of an effective low-energy
theory obtained systematically in this way, and the Nambu-Jona-Lasinio (NJL) model
and the quark-extended linear sigma model (LSM), also known as the quark-meson (QM)
model, are effective models in the same regime. This approach is applicable along the
µ-axis and hence in compact stars, and is the one we will take.

74



Section 6.3: Quantum chromodynamics

Figure 6.3: A color-charged “white” meson composed of a red quark and an antired antiquark,
and a color-charged “white” baryon composed of red, blue and green quarks.

Color confinement and asymptotic freedom

One fundamental feature of quantum chromodynamics is color confinement. Quarks can be
color-charged red, green and blue, while antiquarks can have the complementary anticolors
antired, antigreen and antiblue. At low temperature and density, experiments and lattice
simulations show that colored quarks never appear alone, but are always confined in “white”
hadrons with no overall color. As the distance between color-charged quarks increases, the strong
force between them remains constant – the quarks are effectively “glued” together by mediating
gluons. For example, a meson consists of one quark of any color and one antiquark of its
complementary color, making the meson itself colorless or “white”. Similarly, a(n) (anti)baryon
consists of one (anti)red, one (anti)green and one (anti)blue quark and is also “white”. Such
“white” bound states illustrated in figure 6.3 are also referred to as color singlets.

What if you are even stronger than the strong force and attempt to forcibly separate the
colorless quarks in a hadron to colorful groups of quarks? Then nature will simply create new
quark–antiquark pairs so that the new groups of quarks both become new colorless hadrons,
shrug back at you and ask what your next trick is. At low temperatures and densities in the
lower left of figure 6.2, quarks are therefore confined in nuclei that make up the present world
around us.

In the opposite extreme of high temperature or density in figure 6.2, quantum chromodynamics
exhibits the property of asymptotic freedom. As the energy scale of quark interactions
increases, or equivalently its length scale decreases, the interaction strength decreases and quarks
become deconfined. With high temperature, experiments and calculations have shown that the
deconfined phase is a quark-gluon plasma of free color charges and gluons. It is believed that
the universe passed through this phase during the first 20 µs after the Big Bang, after which it
transitioned to the present phase of hadronic matter. The situation with low temperature and
high density is more uncertain: no human-made laboratory can recreate the extreme densities
required for quark matter to form and be studied experimentally. On the theoretical side,
calculations are difficult and done with separate models that suggest qualitatively different
features. Only in the extreme limit of infinite baryon density where perturbation theory
applies, it is known that the deconfined phase turns into a color-flavor-locked phase of
superconducting color charges. [Fuk+11] Asymptotic freedom was first discovered by [Gro+73;
Pol73], who were recognized with the Nobel Prize in 2004.

The Polyakov loop is an approximate order parameter of confinement in quantum chromody-
namics. We will model quark stars that consist of deconfined quark matter, but there also exist
effective models that take the Polyakov loop and confinement into account – see for example
[Fol18] for an introduction.
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Vector, axial and chiral symmetries and chiral symmetry breaking

The Lagrangian (6.13) has some interesting global symmetries, each of which gives rise to a
conserved classical current by Noether’s theorem. The simplest symmetry is the U(1)V vector
symmetry q → eiθq, giving rise to the conserved vector current jµ = q̄γµq representing quark
number densities. In the grand canonical ensemble, we will later couple one such conserved
current to a chemical potential for each quark flavor. In the massless case m = 0, the Lagrangian
also has the U(1)A axial symmetry q → eiθγ

5
q with the conserved axial current jµ = q̄γµγ5q.

As its proof assumes the action to be extremized, Noether’s theorem is inherently classical.
Unlike the vector current, the axial current is in fact no longer conserved as one takes quantum
effects into account, and it is therefore said to be anomalous. [Sch14, equation (28.20)]

Using the projection operator P± = 1
2(1 ± γ5), we can introduce the left-handed (−) and

right-handed (+) chiral fields q± = P±q. One can then show that q = q− + q+, q̄±q± = 0 and
q̄±γ

µDµq∓ = 0, so that the Lagrangian (6.13) can be written

L = q̄−iγ
µDµq− + q̄+iγ

µDµq+ − q̄−mq+ − q̄+mq− − 1

4
GaµνG

µν
a . (6.17)

In the massless case m = 0, it is invariant under the SU(Nf )L × SU(Nf )R chiral symmetry
transformation q± → U±q± where both U± ∈ SU(Nf ). Moreover, it is known that the ground
state of quantum chromodynamics admits a nonzero quark condensate [Sch14, chapter 28]

〈q̄q〉 = 〈q̄−q+〉+ 〈q̄+q−〉, (6.18)

but this is generally not invariant under the chiral transformation. The fact that the ground
state does not carry the same symmetry as its governing Lagrangian is the signature of
spontaneous symmetry breaking. Only if U− = U+ is the condensate (6.18) invariant
– this is an SU(Nf )V vector symmetry where both left-handed and right-handed fields are
transformed in the same way. This is also a symmetry of the massive Lagrangian (6.17) if all
quark masses are set equal so that the mass matrix m is proportional to the identity matrix.
We therefore say that quantum chromodynamics exhibits chiral symmetry breaking

SU(Nf )L × SU(Nf )R (m = 0) −→ SU(Nf )V (m 6= 0). (6.19)

Goldstone’s theorem then predicts that one massless Goldstone boson arises from every broken
symmetry generator. Hence, chiral symmetry breaking gives rise to 2× (N2

f − 1)− (N2
f − 1) =

N2
f − 1 Goldstone bosons. With Nf = 2 and Nf = 3 flavors, these are the three pions and the

eight pseudoscalar mesons.

In the real world, however, the quarks have different masses and chiral symmetry is only
approximately broken. We say that the different quark masses cause explicit symmetry
breaking, in the sense that the Lagrangian changes by a small amount under the chiral
transformation. The physical consequence of this is that there are no massless Goldstone
bosons, but rather very light pseudo-Goldstone bosons.

The breaking of chiral symmetry leads to the chiral phase transition shown in figure 6.2.
It is analogous to the phase transition and spontaneous symmetry breaking in a paramagnet
described with the Ising model, where an external magnetic field B explicitly breaks the
symmetry of spin orientations encapsulated in the order parameter of the magnetization M , just
like the quark masses m explicitly breaks chiral symmetry encapsulated in the order parameter
of the quark condensate 〈q̄q〉.
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Chapter7
The MIT Bag Model

To illustrate some of the concepts in chapter 6 and gently familiarize ourselves with additional
ones, let us first model quark stars consisting of a free Fermi gas of quarks with the MIT
bag model. Originally introduced by [Cho+74] at MIT, this simple phenomenological model
accounts for confinement of quarks in hadrons by adding a bag constant B on top of a normal
deconfined ideal Fermi gas. We will see how B can be interpreted as an external pressure that
effectively describes an enclosed bag that resists stretching and groups quarks, as if they are
trapped in a balloon that represents a hadron. However, we will also see that this confinement
effect is suppressed in the modeled quark stars, which then consist only of deconfined quark
matter, as if the balloon has burst and the quarks have escaped. Moreover, we will discuss
instability of two-flavor quark matter compared to hadronic matter and the strange matter
hypothesis of three-flavor quark matter being its absolute ground state, and see how this can
be used to determine a bag window of acceptable values for B.

This chapter is inspired by references [Gle00] and [Has+78].

7.1 Lagrangian, grand potential and equation of state
We will start by simply ignoring the gluon fields Aaµ in the quantum chromodynamics Lagrangian
(6.13) with the three lightest quark flavors f = {u, d, s}. In addition, we couple the conserved
vector current jµf = q̄fγ

µqf to a chemical potential µf for each flavor, allowing us to tune the
densities (6.4b) of quarks. With these modifications, the Lagrangian becomes

L = q̄(i/∂ + µγ0 −m)q =

Nc∑
c=1

Nf∑
f=1

q̄f,c(i/∂ + µfγ
0 −mf )qf,c. (7.1)

In this model the two-flavor and three-flavor analyses are very similar, so we consider them
in parallel. Unless Nf is specified explicitly, we perform the general analysis with Nf = 3, or
f = {u, d, s}, and simply drop terms or factors indexed by the strange quark s to get expressions
for Nf = 2, or f = {u, d}. As we have simply omitted the gluons, we set the quark masses mf

to the lone quark masses in table 6.1.

With the Euclidean version LE of the Lagrangian (7.1), the partition function (6.2) reads

Z =

∮
−
Dq̄
∮
−
Dq exp

{∫ β

0
dτ
∫
V

d3x q̄
(
i/∂ + µfγ

0 −mf )q

}
=

Nc∏
c=1

Nf∏
f=1

∮
−
Dq̄f,c

∮
−
Dqf,c exp

{∫ β

0
dτ
∫
V

d3x q̄f,c
(
i/∂ + µfγ

0 −mf )qf,c

} (7.2)

It decouples into a product of Nc×Nf path integrals (3.93) that we encountered back in chapter 3
and simplified to the form (3.109) for arbitrary temperature. In chapter 4 we neglected the
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divergent vacuum contribution from the first term and calculated the path integral explicitly at
zero temperature, arriving at the pressure (4.10c) that is related to the grand potential density
Ω by the simple sign flip (6.4a). The path integrals differ only by the unique chemical potentials
µf associated with each quark flavor. Adding a background of free electrons and reinstating
xf = pf/mf =

√
µ2f −m2

f/mf for each particle species, the grand potential becomes

Ω(µ) =−
Nf∑
f=1

Nc

24π2

[(
2µ2f − 5m2

f

)
µf

√
µ2f −m2

f + 3m4
f asinh

(√
µ2f
m2
f

− 1

)]

− 1

24π2

[(
2µ2e − 5m2

e

)
µe
√
µ2e −m2

e + 3m4
e asinh

(√
µ2e
m2
e

− 1

)]
.

(7.3)

This expression is only valid when µi ≥ mi, as we assumed so when we calculated the pressure
integral (4.10c) with the step function Θ(µi −

√
m2
i − p2). In the opposite case µi < mi, this

step function would be turned off for all p and make the integral vanish. Equivalently, we can
consider the grand potential above valid for all µi if we implicitly take its real part. Adopting
this convention, the corresponding quark and electron densities (6.4b) are

nf = − ∂Ω

∂µf
=

Nc

3π2

(
µ2f −m2

f

) 3
2 and ne = − ∂Ω

∂µe
=

1

3π2

(
µ2e −m2

e

) 3
2
, (7.4)

and the pressure (6.4a) and energy density (6.4d) easily follow with T = 0.

We now see explicitly that Ω and hence P and ε are functions of the four chemical potentials
µu, µd, µs and µe. As explained in section 6.2, we reduce them to a single independent chemical
potential with the three constraints (6.7) and (6.12), and take it to be the quark chemical
potential µ defined in equation (6.14). Inserting Nc = 3, the charges in table 6.1 and the
densities (7.4), the system that constrains the chemical potentials is

0 = 2
(
µ2u −m2

u

) 3
2 −

(
µ2d −m2

d

) 3
2 −

(
µ2s −m2

s

) 3
2 −

(
µ2e −m2

e

) 3
2 , (7.5a)

µd = µu + µe, (7.5b)
µs = µd. (7.5c)

It is a system of three equations for four unknowns. To solve it for a given value of µ =
(µu + µd)/2, we vary µe with a root-finding algorithm until we have found the solution.
Repeating this procedure for a range of µ, we parametrize the pressure P (µ) and energy density
ε(µ) as functions of µ. We then invert P (µ) to µ(P ) and insert it into ε(µ) to obtain the
equation of state ε(P ).

Ultra-relativistic limit

Before tackling the general solution numerically, it is instructive and in fact not far from
accurate to solve this problem analytically in the ultra-relativistic limit mi = 0. The grand
potential (7.3) then reduces to

Ω(µ) = −Ncµ
4
u

12π2
−
Ncµ

4
d

12π2
− Ncµ

4
s

12π2
− µ4e

12π2
, (7.6)

while the densities (7.4) become

nf =
Ncµ

3
f

3π2
and ne =

µ3e
3π2

. (7.7)

Regardless of the relations between the chemical potentials, the equation of state is then simply

ε =x
by (6.4d)

−P+
∑
i

µini =x
by (7.7)

−P+
1

3π2

(
Ncµ

4
u+Ncµ

4
d+Ncµ

4
s+µ

4
e

)
=x

by (7.6)

−P−4Ω =x
by (6.4a)

−P+4P = 3P ! (7.8)
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Figure 7.1: Properties of charge-neutral two-flavor (weak lines) and three-flavor (strong lines)
quark matter in β-equilibrium in the MIT bag model. Upper panel (a) shows the relations
between chemical potentials due to the constraints (7.5), middle panel (b) the particle number
densities (7.4) and lower panel (c) the equation of state ε(P ).
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Although they are not needed for the equation of state, we can also find approximate analytical
relations between the chemical potentials in the ultra-relativistic limit. They will be useful to
compare with the general numerical solution, for which the equation of state does depend on
these relations. To do so, we assume that the electron density in the charge neutrality condition
(7.5a) can be neglected. This assumption is subject to a self-consistency check down the line.

In the two-flavor case, this simplifies the charge neutrality condition (7.5a) to µ3d = 2µ3u, or
nd = 2nu, with the solution µd = 21/3µu. According to the β-equilibrium condition (7.5b) the
chemical potential of the electrons is then µe = µd − µu ≈ (21/3 − 1)µu, and the corresponding
electron density (7.7) is ne = (21/3 − 1)3nu/Nc = 0.006nu � nu < nd, so neglecting it is a
self-consistent approximation! Expressing the chemical potentials in terms of the quark chemical
potential (6.14), we then have

µu =
2

1 + 21/3︸ ︷︷ ︸
0.88

µ, µd =
2

1 + 2−1/3︸ ︷︷ ︸
1.12

µ and µe =
2
(
21/3 − 2−1/3

)
2 + 21/3 + 2−1/3︸ ︷︷ ︸

0.23

µ (Nf = 2). (7.9a)

With three flavors, the charge neutrality condition (7.5a) becomes 2nu − nd − ns = 0 after
neglecting electrons. It has the very simple solution nu = nd = ns with

µu = µd = µs = µ and µe = 0 (Nf = 3). (7.9b)

As µe = µd − µu = 0, neglecting the electron contribution is exact in this case.

General solution

We now calculate the general solution with massive quarks using the program in appendix G.5,
solving equation (7.5) numerically for different quark chemical potentials µ. We obtain the
chemical potentials, densities and equation of state shown in figure 7.1. Note that the electron
density is very small, but nonzero. Indeed, the results are very close to the straight-line ultra-
relativistic relations (7.7)-(7.9b) as µi � mi, thereby supporting our numerical calculations.

7.2 Bag constant and the strange matter hypothesis

For chemical potentials µi < mi the (real part of the) densities (7.4) vanish, so we refer to this
region of the phase diagram as the vacuum phase. So far we have modeled the quarks as a
free Fermi gas of deconfined quarks. We know, however, that quarks are confined in hadrons at
low energies. Let us see how the MIT bag model attempts to incorporate confinement with the
so-called bag constant.

The pressure P = −Ω due to the grand potential density (7.3) is normalized to P = 0 in the
vacuum. Suppose that we shift Ω → Ω+B by a vacuum constant B. This in turn shifts the
pressure (6.4a) and energy density (6.4d) to

P (µ) → P (µ)−B and ε(µ) → ε(µ) +B, (7.10)

effectively moving the equation of state in figure 7.1c north-west in P -ε-space. The vacuum
constant is hence a phenomenological parameter that adjusts the normalization of the grand
potential in vacuum, and hence the zero-point energy and pressure, and the equation of state.

As illustrated in figure 7.2, a positive vacuum constant B creates a negative pressure P = −B in
the vacuum. This is commonly interpreted as an external pressure or mechanism that confines
quarks to bags or balloons that resemble hadrons, so B is often called the bag constant. With
rising density, the quarks in the bag exert a counteracting outwards pressure that stabilizes the
hadron at P = 0, like a balloon that has reached equilibrium with its surroundings. With large
positive pressures P → ∞, the balloon inflates and merges with nearby balloons, effectively
bursting as the quarks escape to take part in a phase of deconfined quark matter.
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Figure 7.2: The bag constant B allows for negative pressure and is often interpreted as
a confinement mechanism. A negative internal pressure is equivalent to a positive external
pressure that effectively traps quarks in a hadron-resembling bag or balloon in the confined
phase (a). At large positive pressure, the balloon inflates and merges with adjacent balloons,
effectively bursting as the quarks escape to take part in the deconfined quark matter phase (b).

As another analogy, imagine a swimming pool full of water representing the gray quark-forbidden
medium. It would cost an amount BV of energy to expel water from a volume V and create a
confined vacuum in the pool, and a plastic bag enclosing this volume would have to generate
some internal pressure to survive against the pressure from the surrounding water.

Despite the common interpretation of B as a confinement mechanism, it is very important to
note that the quark stars we will model will be integrated from a positive central pressure to a
vanishing pressure at the surface, and therefore have non-negative pressure everywhere and
more or less only contain deconfined quark matter. As explained in section 6.1, the integration
of the Tolman-Oppenheimer-Volkoff equation stops when it reaches the surface defined by
P = 0, so the confinement-interpretable part of the equation of state with negative pressure
that arises due to the shift (7.10) is unused in a quark star! We should therefore not take the
confinement interpretation too literally in our case. Nevertheless, the bag shift (7.10) affects
the equation of state even in the deconfined regime, so it is perhaps better to think of B only
as a phenomenological parameter that we can vary to adjust the normalization of the grand
potential and – as we will see shortly – a parameter that determines the stability of quark
matter compared to hadronic matter.

What values can the bag constant take? Let us perform a heuristic calculation where we picture
quarks to be confined in a spherical bag of radius R, as depicted in figure 7.2a. The vacuum
energy associated with the mere existence of this bag is EV = 4πR3B/3. By Heisenberg’s
uncertainty principle ∆p∆x ≥ h̄/2, a quark confined to a region extending ∆x = 2R in one
dimension with mean momentum 〈p〉 = 0 has momentum p . h̄/4R ∝ 1/R. In the ultra-
relativistic regime where we can neglect the particles’ masses, the kinetic energy inside the
bag is therefore EK = pc = C/R for some constant C. As a function of R, the total energy
E = EV + EK = 4πR3B/3 + C/R has a minimum at R = (C/4πB)1/4 for which the bag is
stable. Eliminating C, the energy of this stable configuration is E = 16πR3B/3. Assuming a
neutron with total energy E = mc2 = 900 MeV and radius R ≈ 1 fm = 1/197 MeV in natural
units, the “optimal” bag constant is

B =
3E

16πR3
= (142.4 MeV)4. (7.11)
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Chapter 7: The MIT Bag Model

Another approach lets us determine a range of values for the bag constant. In the early days
with high density and temperature, the universe likely passed through a phase of deconfined
quark-gluon plasma. [Gle00] Today, two-flavor quark matter is accreting in nuclei through
fusion towards iron-56 in stars, which seemingly represent the ground state of nuclear matter.
However, the strange matter hypothesis of [Bod71; Wit84] conjectures that this state is only
metastable and could decay further to the hypothesized absolute ground state of three-flavor
quark matter consisting of up, down and strange quarks. If true, the universe could turn into a
very strange place some day.

Iron-56 is the most stable nuclide with an energy of E/NB = ε/nB = 930 MeV per baryon.
[Gle00] If we denote the energy densities of two-flavor and three-flavor quark matter by ε2 and
ε3, then the instability of two-flavor quark matter and hypothesized stability of three-flavor
quark matter at zero pressure P = 0, which characterizes equilibrium of a system, imply the
double inequality

ε3(P = 0)

nB
≤ 930 MeV ≤ ε2(P = 0)

nB
. (7.12)

We will now see that this yields a range of bag constants that we call a bag window.

Ultra-relativistic bag window

Let us first examine how the ultra-relativistic equation of state is affected by the addition of a
bag constant, and how inequality (7.12) generates a corresponding bag window. The bag shift
(7.10) changes the equation of state (7.8) to ε = 3P +4B. Neglecting electrons again, the baryon
density is always nB = (nu + nd + ns)/3 = nu = µ3u/π

2, since nd = 2nu and ns = 0 in the two-
flavor case and nu = nd = ns in the three-flavor case. With two flavors we also had µd = 21/3µu,
so the grand potential density (7.6) yields the pressure P = −Ω−B = (1 + 24/3)µ4u/4π

2 −B
after “bagging”. With three flavors we had µs = µd = µu and instead find P = 3µ4u/4π

2 −B.
Setting P = 0, eliminating µu in favor of B and inserting these relations into inequality (7.12),
it becomes exactly solvable and gives the bag window

144.4 MeV =
930 MeV[

4π2 ·
(
1 + 24/3

)3] 1
4

≤ B
1
4 ≤ 930 MeV[

4π2 ·33
] 1

4

= 162.8 MeV. (7.13)

General bag window

Returning to the general case with nonzero masses, the program in appendix G.5 solves
inequality (7.12) numerically. It calculates the baryon density nB = (nu + nd + ns)/3 and
performs the shift (7.10) of the pressure and energy density for different bag constants B until
it finds the one for which the inequality is barely satisfied. For the two-flavor and three-flavor
equations of state in figure 7.1c, the program reports the bag window

144.3 MeV ≤ B
1
4 ≤ 154.9 MeV. (7.14)

Note that whereas inequality (7.12) has three and two flavors on its far left and right, the lower
and upper bounds in all bag windows come from two and three flavors, respectively. This
reverse-ordering of flavors can be understood by noting that ε ∼ B and nB ∼ µ3u ∼ B3/4, so
ε/nB ∼ B1/4 on each side of the double inequality (7.12).

Also note that the lower bounds in the analytical and numerical bag windows (7.13) and (7.14)
agree not only with each other, but also with the “optimal” bag constant (7.11). In contrast,
the upper bounds disagree due to the massless approximation being worse with the addition of
the heavy strange quark.
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Figure 7.3: Mass-radius solutions of the Tolman-Oppenheimer-Volkoff equation (6.1)
parametrized by the central pressure Pc, using the two-flavor and three-flavor MIT bag model
equations of state from figure 7.1c modified by the bag shift (7.10) with bag constants B
covering the bag window (7.14). Lower bag constants correspond to greater maximum masses.

7.3 Quark star solutions

Different equations of state are now finally available to us by making the shift (7.10) of the
“unbagged” equation of state in figure 7.1c with multiple bag constants inside the established
bag window (7.14). From the numerical implementation in appendix G.5, we then integrate the
Tolman-Oppenheimer-Volkoff equation numerically by calling upon the program in appendix G.2
as described in section 6.1, obtaining the quark stars in figure 7.3:

• As mentioned in section 6.1 and studied in section 4.3, stars with central pressure exceeding
that of the maximum mass star are unstable against radial perturbations, so we cut off
the curve not long after the mass peak.

• The smaller the bag constant, the larger and more massive the star. The bag shift (7.10)
lifts the equation of state in the P -ε-diagram up and to the left so that a given (energy)
density corresponds to a lower pressure. This makes the star easier to compress, so
we say that the equation of state is softened. Conversely, an equation of state where a
given (energy) density corresponds to a higher pressure describes material that is harder
to compress and is said to be stiffer. In other words, lower bag constants yield stiffer
equations of state, which in turn generate more massive stars, so we pay most attention
to the lowest B here and onward.

The increase in size due to the stiffening is easy to understand: integrating the Tolman-
Oppenheimer-Volkoff equation (6.1) from a fixed central pressure Pc, a stiffer equation
of state yields a strictly smaller mass gradient dm/dr and pressure gradient magnitude
|dP/dr|, so the surface P (R) = 0 is reached at a greater radius. The increase in mass
can then only be explained by the effects of the greater radius outweighing those of the
smaller mass gradient.
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Chapter 7: The MIT Bag Model

• Notice the qualitatively similar shapes of mass-radius curves corresponding to different
bag constants. As mentioned in [Gle00, equation 8.29], it is in fact possible to show
that with the bagged ultra-relativistic equation of state ε = 3P + 4B, the Tolman-
Oppenheimer-Volkoff equation (6.1) admits scaling solutions where the masses M(B)
and radii R(B) corresponding to two different bag constants B = {B1, B2} are related
by M(B2) =

√
B1/B2M(B1) and R(B2) =

√
B1/B2R(B1). These relations hold only

approximately in our massive case.

• Using bag constants inside the bag window (7.14), the MIT bag model realizes quark stars
with maximum masses 1.7M� ≤ M ≤ 2.0M� with Nf = 2 flavors and 1.6M� ≤ M ≤
1.9M� with Nf = 3 flavors, in both cases with corresponding radii 9 km ≤ R ≤ 11 km.
The two-flavor stars are more massive due to their stiffer equation of state in figure 7.1c.

7.4 Summary
In this chapter we have reviewed the simplest and most well-known model of quark stars as a
free Fermi gas of deconfined quarks featuring a phenomenological bag constant B. We described
a method for determining a window of acceptable bag constants by assuming that at zero
pressure, two-flavor quark matter is unstable and can decay to hadronic matter, which in turn
can decay to three-flavor quark matter if the strange matter hypothesis of it being the ground
state of nuclear matter is true. By constraining the chemical potentials associated with each
particle species, we saw how to determine the equation of state ε(P ), which in turn was used to
integrate the Tolman-Oppenheimer-Volkoff equation (6.1), yielding solutions corresponding to
quark stars with given masses and radii. We obtained maximum masses 1.7M� ≤M ≤ 2.0M�
with Nf = 2 flavors and 1.6M� ≤ M ≤ 1.9M� with Nf = 3 flavors. This concludes our
introduction to the basic concepts to be used in the remainder of this thesis.
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Chapter8
The Two-Flavor Quark-Meson Model

At low energy the effective degrees of freedom of quantum chromodynamics are not individual
quarks, but baryons composed of up and down quarks and the three pions that we saw arose
from the spontaneous chiral symmetry breaking pattern (6.19). The MIT bag model that we
discussed in chapter 7 modeled quark stars as a deconfined Fermi gas of quarks with a bag
constant B. We will now crank up the difficulty and investigate the linear sigma model, which
also takes chiral symmetry breaking and the pions into account by introducing an “ad–hoc” σ
particle. The linear sigma model was originally introduced by [Gel+60] as an effective model for
nucleons interacting with pions and scalar mesons, but the fermions have since been interpreted
as quarks in what is commonly referred to as a quark-meson model.

We will take the quark-meson model as granted. As it combines independent quarks and
mesons, the latter of which are fundamentally bound quark states, it may appear strange. A
hypothetical first-principles approach from quantum chromodynamics would naturally give
rise to hadrons by binding quarks with gluons. We cannot expect this from an effective model
that excludes the gluons, in a sense trading the binding mechanism with the bound product. It
is not our primary concern here to give a full physical justification of the model, but we will
justify it to some extent by seeing how it gives rise to chiral symmetry breaking. To better
understand its theoretical origin, we recommend studying [Res16; Fol18; Eic20].

Quark stars consisting only of two-flavor quark matter are unlikely to be found in nature, as
two-flavor quark matter is observed to be unstable compared to hadronic matter. Nevertheless,
they are a natural stepping stone for modeling possibly stable strange quark stars and dense
hybrid neutron stars whose core could contain two-flavor quark matter.

This chapter is inspired by references [Sch+07b], [Eic20] and [Adh+17b].

8.1 Lagrangian, vacuum and symmetries

The Lagrangian density for the linear sigma model coupled to quarks is [Sch+07b]

L = q̄
[
i/∂ + µγ0 − g

(
σ + iγ5τ · π

)]
q +

1

2

[(
∂µσ

)(
∂µσ

)
+
(
∂µπ

)(
∂µπ

)]
− V(σ,π) (8.1)

with the meson potential

V(σ,π) = m2

2

(
σ2 + π2

)
+
λ

4!

(
σ2 + π2

)2 − hσ. (8.2)

The quarks q behave as in the QCD Lagrangian (6.13) with Nf = 2 flavor indices {u, d}, Nc = 3
color indices and four Dirac spinor indices. They are coupled to two quark chemical potentials
µ = diag(µu, µd) in flavor space, but are now seemingly massless and coupled to a σ meson and
three pions π = [π+, π−, π0]T with a Yukawa coupling g and the Pauli matrices (3.87). The
meson potential features three couplings m2 < 0, λ > 0 and h > 0.
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σ π

V (σ,π)

Figure 8.1: A two-dimensional realization of the meson potential (8.2) with m2 < 0, λ > 0
and h ≥ 0 looks like a Mexican hat, tilted along the σ-axis by the explicit symmetry breaking
parameter h. If h = 0, the hat is upright with a continuous range of minima around the brim
σ2 + π2 = −6m2/λ; while if h 6= 0, the hat is respectfully tipped towards a unique global
minimum determined by equation (8.6).

Like quantum chromodynamics, the quark-meson model Lagrangian (8.1) has the vector U(1)V
and the axial U(1)A symmetry shown in section 6.3. But how does the quark-meson model
give rise to the chiral symmetry breaking of quantum chromodynamics?

First, express the Yukawa coupling with right-handed and left-handed chiral fields q± = P±q:

q̄
[
σ + iγ5τ · π

]
q = q̄

[
(P+ + P−)σ + (P+ − P−)iτ · π

]
q

(
P± = 1

2(1± γ5)
)

= q̄
[
P+φ+ P−φ

†]q (
define φ = σ + iτ · π

)
= q̄
[
P+φ+ P−φ

†][P+ + P−
]
q

(
P+ + P− = 1

)
= q̄
[
P+φP+ + P−φ

†P−
]
q

(
P±P∓ = 0

)
= q̄−φ q+ + q̄+φ

†q−
(
P±q = q±, q̄P± = q̄∓

)
.

(8.3)

Second, note that the meson potential (8.2) with h = 0 only depends on the flavor-space trace
1
2 tr

[
φ†φ
]
= 1

2

(
tr
[
1
]︸ ︷︷ ︸

2

σ2 − i2 tr
[
τaτb

]︸ ︷︷ ︸
2δab

πaπb
)
= σ2 + π2. (8.4)

Under the SU(2)L × SU(2)R transformation

q± → U±q± and φ→ U−φU
†
+, (8.5)

the Yukawa interaction (8.3), the meson potential argument (8.4) and hence the Lagrangian
(8.1) are invariant when U− = U+, similarly to quantum chromodynamics. This shows that in
the absence of the parameter h, the quark-meson model has SU(2)L × SU(2)R symmetry in
the vacuum.

Since the group SU(2)L × SU(2)R is isomorphic to O(4), the symmetry can equivalently be
understood by considering the meson fields as a four-vector [σ,π]T and noting that the meson
potential (8.2) with h = 0 is invariant under rotation of this vector in four-space.
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Is this symmetry also spontaneously broken in the vacuum, like in quantum chromodynamics?
In the vacuum, the fermions do not contribute to the grand potential, and the ground state
values σ = 〈σ〉 and π = 〈π〉 are given by minima of the meson potential V(〈σ〉, 〈π〉) illustrated
in figure 8.1. From its definition (8.2), we see that they are given by

∂V
∂πa

= 〈πa〉
[
m2+

λ

6

(
〈σ〉2+ 〈π〉2

)]
= 0 and ∂V

∂σ
= 〈σ〉

[
m2+

λ

6

(
〈σ〉2+ 〈π〉2

)]
−h = 0. (8.6)

The qualitative nature of the solutions depends on whether h vanishes:

• In the chiral limit h = 0, the ground state solutions are a degenerate range of minima
along the circle 〈σ〉2 + 〈π〉2 = −6m2/λ, sometimes referred to as a vacuum manifold.
Without any loss of generality, we pick the one at 〈σ〉 =

√
−6m2/λ > 0 and 〈π〉 = 0.

• At the physical point h 6= 0, the ground state of the potential is a unique global
minimum at 〈σ〉 6= 0 and 〈π〉 = 0 determined implicitly by equation (8.6).

Note how the oppositely signed parameters m2 < 0 and λ > 0 are needed for the minimum
〈σ〉 =

√
−6m2/λ 6= 0 to exist, and that 〈π〉 = 0 in both cases. To account for quantum

fluctuations σ̃ and π̃ of σ and π around the ground states 〈σ〉 and 〈π〉, let us write

σ = 〈σ〉+ σ̃ and π = 〈π〉+ π̃. (8.7)

Up to second order in the quantum fluctuations, the Lagrangian (8.1) becomes

L '
Nf∑
f=1

Nc∑
c=1

q̄
[
i/∂ + µγ0 −mq

]
q +

1

2

[(
∂µσ̃

)(
∂µσ̃

)
+
(
∂µπ̃

)(
∂µπ̃

)]
− V(σ,π), (8.8)

where the meson potential (8.2) to the same order is

V(σ,π) = V(〈σ〉, 〈π〉) + hσ̃ +
1

2
m2
σσ̃

2 +
1

2
m2
ππ̃

2. (8.9)

Here the quark and meson fields have acquired the effective masses

mq = g〈σ〉, (8.10a)

m2
σ =

∂2V
∂σ2

= m2 +
λ

2
〈σ〉2

by (8.6) with 〈π〉 = 0y
=

3h

〈σ〉
− 2m2, (8.10b)

m2
π =

∂2V
∂π2

= m2 +
λ

6
〈σ〉2 =x

by (8.6) with 〈π〉 = 0

h

〈σ〉
. (8.10c)

Note that the up and down quarks share the degenerate mass mu = md = mq. In nature
isospin symmetry is only slightly broken, and the up and down quark masses are indeed almost
equal. The meson masses mσ and mπ are called curvature masses due to their relation with the
second derivative of the potential. They coincide with the physical pole masses of the particles’
propagators only at tree level, where loop effects are neglected.

The qualitative nature of the pions depends on whether h vanishes:

• In the chiral limit h = 0, the SU(2)L × SU(2)R symmetry under the transformation
(8.5) is exact, and we saw that there is a manifold of ground states. Upon committing to
the minimum 〈σ〉 =

√
−6m2/λ 6= 0 and 〈π〉 = 0, the O(4) rotation symmetry of the four

original meson fields [σ,π]T is spontaneously broken to rotation of only the three pion
quantum fluctuations π = π̃ in O(3). Correspondingly, the pions are Goldstone bosons
with vanishing masses (8.10c) associated with spontaneous symmetry breaking.

• At the physical point h 6= 0, the SU(2)L × SU(2)R symmetry under the transforma-
tion (8.5) is explicitly broken, and we saw above that there is a unique ground state.
Correspondingly, the pions are pseudo-Goldstone bosons with small masses (8.10c).
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Unlike the resulting massless pions, the σ particle is the cause of the symmetry breaking, and
there is no reason for its mass (8.10b) to vanish. Speaking brutally to get our point across, the
σ meson is merely a means to an end to generate the chiral symmetry breaking and the pions,
which are our three favorite spoiled children in this group of four meson siblings.

To summarize: although the linear sigma model symmetry breaking pattern

SU(2)× SU(2) ' O(4) −→ O(3) (8.11)

is different from the quantum chromodynamics symmetry breaking pattern (6.19) “under the
hood”, they qualitatively give rise to the same spontaneous chiral symmetry breaking and pion
degrees of freedom “on the outside”. Practically speaking, the patterns are indistinguishable and
equivalent. According to Weinberg’s philosophy presented in section 6.3, the quark-meson model
is thus an appropriate effective model of quantum chromodynamics at low energy. The explicit
symmetry breaker h 6= 0 only turns the exact symmetry into an approximate one, just like the
different quark masses explicitly break the chiral symmetry of quantum chromodynamics. This
is our physical justification of the quark-meson model.

8.2 Grand potential
With our recently gained faith in the quark-meson model, we set out to calculate its grand
potential (6.3). With the quark fields q, the meson fields σ and π and the coupling of conserved
currents jµf = q̄fγ

µqf to chemical potentials µ already baked into the Lagrangian (8.1), the
partition function (6.2) is

Z =

∮
−
Dq̄
∮
−
Dq
∮
+
Dσ
∮
+
Dπ exp

{∫ β

0
dτ
∫
V

d3xLE [q̄, q, σ,π]
}
. (8.12)

To calculate it we will use the mean-field approximation for the bosonic fields, replacing
them by their yet unknown expectation values 〈σ〉 and 〈π〉 in the classical ground state and
simply ignoring their quantum fluctuations σ̃ and π̃. In contrast we will give the fermions full
treatment, motivated by their more dramatic behavior at zero temperature. After calculating
the grand potential with unknown mean fields, their precise values are found self-consistently
with the original assumption of them being minima of the grand potential by solving

∂Ω

∂〈σ〉
=

∂Ω

∂〈π〉
= 0. (8.13)

We call this the self-consistency equation for the mean fields. For example, the mean-field
approximation is also famously used in the Bardeen-Cooper-Schrieffer theory of superconduc-
tivity to determine an energy gap. There it is called the gap equation, and many authors
continue to use this name as a relic even in other applications, such as this model.

In our treatment we will also neglect pion condensation and assume that 〈π〉 = 0 always
vanishes. As shown by [And+19; And+18], for example, this is known to be true at T = 0
when the isospin chemical potential (6.14) does not exceed half the pion mass. This assumption
is subject to a self-consistency check later. It is then only 〈σ〉 that needs to be determined by
the self-consistency equation (8.13).

With bosonic mean fields, the partition function (8.12) with the Lagrangian (8.1) reads

Z =

∮
−
Dq̄
∮
−
Dq exp

{∫ β

0
dτ
∫
V

d3x
[
q̄
(
i/∂ + µγ0 −mq

)
q − V(〈σ〉,0)

]}
. (8.14)

The meson potential is independent of the fields and can be pulled out of the integrals, while
the fermionic contribution decouples into a product of identical integrals. We therefore have

logZ = −βV V(〈σ〉,0) +
Nf∑
f=1

Nc∑
c=1

log
∮
−
Dq̄f,c

∮
−
Dqf,c exp

{∫ β

0
dτ
∫
V
d3x q̄f,c

(
i/∂+µfγ

0−mf

)
qf,c

}
.

(8.15)
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We have already calculated the path integral in the last term from equation (3.93) to equation
(3.109). As qf,c is integrated over, the color sum gives an additional factor

∑Nc
c=1 = Nc because

its summand is independent of c, while the flavor sum
∑Nf

f=1 yields Nf terms that differ only
by the chemical potential µf associated with each flavor. Thus, the grand potential (6.3) is

Ω = V(〈σ〉,0)− 2Nc

β

Nf∑
f=1

∫
d3p

(2π)3

{
βE(p) + log

[
e−β(E(p)−µf ) + 1

]
+ log

[
e−β(E(p)+µf ) + 1

]}
,

(8.16)

with the dispersion relation E(p) =
√
p2 +m2

q . We work in the zero-temperature approximation
T = 0 and choose positive chemical potentials, so the anti-particle contribution from the third
term in {. . .} vanishes. The integral of the second term in {. . .} was calculated in the zero-
temperature pressure P = −Ω in equation (4.10c). This time we also include and renormalize
the infinite vacuum contribution from the integral of the first term in {. . .}. It is called the
Dirac sea, and we renormalize it in the modified minimal subtraction scheme in appendix D,
arriving at expression (D.5b). We also reinstate xf = pf/mq =

√
µ2f −m2

q/mq into expression
(4.10c). Pulling all this together, the divergent grand potential (8.16) becomes

Ω = V(〈σ〉,0) +NcNf

m4
q

16π2

[
1

ε
+

3

2
+ log

(
Λ2

m2
q

)]

−
Nf∑
f=1

Nc

24π2

[(
2µ2f − 5m2

q

)
µf

√
µ2f −m2

q + 3m4
q asinh

(√
µ2f
m2
q

− 1

)]
.

(8.17)

The renormalization has introduced a renormalization scale Λ that we will determine later. It
also exposes the Dirac sea vacuum divergence in the ε-pole NcNfm

4
q/16π

2ε. Recalling that
mq = g〈σ〉 and glancing back at the meson potential (8.2), we also see that this divergence can
be removed by the term λ〈σ〉4/24 in V(〈σ〉,0) if the quartic coupling is shifted to

λ→ λ+ δλ with the counterterm δλ = −NcNf
3g4

2π2ε
. (8.18)

Then NcNfm
4
q/16π

2ε+δλ〈σ〉4/24 = 0, demonstrating that the theory is renormalizable. Adding
free electrons to the mix, the finite and renormalized grand potential is finally

Ω(〈σ〉,µ) = V(〈σ〉,0) +NcNf

m4
q

16π2

[
3

2
+ log

(
Λ2

m2
q

)]

−
Nf∑
f=1

Nc

24π2

[(
2µ2f − 5m2

q

)
µf

√
µ2f −m2

q + 3m4
q asinh

(√
µ2f
m2
q

− 1

)]

− 1

24π2

[(
2µ2e − 5m2

e

)
µe
√
µ2e −m2

e + 3m4
e asinh

(√
µ2e
m2
e

− 1

)]
.

(8.19)

As in the MIT bag model, the particle densities (6.4b) are

nf = − ∂Ω

∂µf
=

Nc

3π2

(
µ2f −m2

q

) 3
2 and ne = − ∂Ω

∂µe
=

1

3π2

(
µ2e −m2

e

) 3
2
, (8.20)

and the pressure (6.4a) and energy density (6.4d) follow at T = 0.

On one side, it can be argued that treating bosons and fermions to zero and one loops is
inconsistent. However, note that the fermionic contribution to the grand potential (8.19) is of
order O(N1

c ), while any bosonic contribution with one loop would only be of order O(N0
c ). On

the other side, then, we can argue that our approach is consistent in the one-loop large-Nc

limit. The number of loops must be restricted to one, for with two loops, for example, the
O(N1

c ) Feynman diagram due to the q̄σq Yukawa interaction should also be included. Despite
there only being Nc = 3 colors in nature, we briefly mentioned the success of the large-Nc

approximation in section 6.3. We will come back to this matter of consistency later.
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8.3 Parameter fit at tree-level

To determine the four parameters g, m2, λ and h in the grand potential (8.19), we use measured
values of 〈σ〉 and the curvature masses mσ, mπ and mq in vacuum. Inverting equations (8.6)
and (8.10), we can express the parameters entirely in terms of these variables as

g =
mq

〈σ〉
, m2 =

3m2
π −m2

σ

2
, λ =

3m2
σ − 3m2

π

〈σ〉2
and h = m2

π〈σ〉. (8.21)

According to [PDG20], in vacuum the mean field is the pion decay constant 〈σ〉 = fπ = 93 MeV,
the average mass of the three pions is mπ = 138 MeV and the up and down quarks have almost
equal masses mu ≈ md ≈ 300 MeV. All these quantities have low uncertainty.

On the other hand, the mass mσ is very uncertain and hard to choose. Even in 2002, according
to the σ meson status update [Pel14], it was only known to lie in the huge uncertainty range
400 MeV ≤ mσ ≤ 1200 MeV. Today [PDG20] places it in the tighter range 400 MeV ≤ mσ ≤
550 MeV. Ideally we would like to use a value within this range, but there are several problems.
First, the vacuum potential V(〈σ〉,0) plotted in figure 8.2 does not have a minimum and is
therefore useless for mσ ≤ 500 MeV, and the same happens with the three-flavor model in
chapter 9. We therefore operate with the three common values mσ = {600, 700, 800}MeV in
both of the two models. This is the best we can do and must be regarded as a shortcoming of
the model. Since the σ particle was introduced in an ad-hoc manner as a mere means to an
end for the pions anyway, we argue that it is the most legitimate candidate for discrimination.

Table 8.1 summarizes the chosen input values for 〈σ〉 = fπ, mπ, mσ and mq = mu = md in
vacuum and the corresponding output parameters m2, λ, g and h.

The renormalization procedure also introduced an undetermined renormalization scale Λ. To
determine it, we require that the minimum of the grand potential (8.19) in vacuum, where
µ = 0, remains at the minimum 〈σ〉 = fπ of the vacuum potential V(〈σ〉,0). Since ∂V/∂〈σ〉 = 0
at 〈σ〉 = fπ already by assumption, we only need

∂Ω

∂〈σ〉
=

∂

∂〈σ〉

[
NcNf

m4
q

16π2

(
3

2
+ log Λ2

m2
q

)]
= 0, yielding Λ =

mq√
e
=
gfπ√
e
= 182.0 MeV.

(8.22)

As mentioned at the end of section 8.2, our calculation of the grand potential can only be viewed
as fully consistent in the one-loop large-Nc limit, so it is really inconsistent to fit parameters
at tree-level using the curvature masses (8.10). The physical pole masses would really receive
radiative loop corrections. In section 8.6 we will fit parameters consistently in the one-loop
large-Nc limit and see that this resolves the large discrepancy in mσ.

Table 8.1: The variables in the left table are used as input to determine the model parameters
in the right table from equation (8.21). Three values are used for mσ, generating three parameter
sets with different m2 and λ. Experimental measurements are taken from [PDG20].

Physical variables Model parameters

Variable
Modeled

Measured Parameter
Modeled

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

fπ /MeV 93 93 93 92-93 g 3.23 3.23 3.23
mu /MeV 300 300 300 ≈ 300 m2 / (MeV)2 −3892 −4652 −5402
md /MeV 300 300 300 ≈ 300 λ 118 163 215
mσ /MeV 600 700 800 400-550 h / (MeV)3 1213 1213 1213
mπ /MeV 138 138 138 138

90



Section 8.4: Equation of state

−500 −400 −300 −200 −100 0 100 200 300 400 500

−10

−5

0

5

no minimum!
minimum

minimum

minimum

mq /MeV

Ω
(µ

=
0
)
/
f
4 π

mσ = 500 MeV mσ = 600 MeV mσ = 700 MeV mσ = 800 MeV

Figure 8.2: The two-flavor grand potential (8.19) admits minima for the quark mass mq = g〈σ〉
in vacuum, where µ = 0, only when fit to mσ ≥ 600 MeV at tree-level.

8.4 Equation of state

Before finding the general charge neutral equation of state, it is easier and instructive to solve
the special problem with imposed zero isospin µI = 0, or µu = µd = µ. This will give us
some intuition for the shape of the grand potential in the charge-neutral case. The chemical
equilibrium constraint (6.7) then says µe = 0, so electrons are absent and only the two first lines
in the grand potential (8.19) contribute. It is now a function Ω(〈σ〉, µ) of only two variables
that is easy to visualize, as done in figure 8.3. Although we defined Ω as a function of 〈σ〉, we
will discuss the following results in terms of mq = g〈σ〉 instead, as it is easier to compare to the
chemical potentials µf . We see that:

• For µ < 300 MeV = mq(fπ), the grand potential is independent of µ, and we are in vacuum
where only the first line of the grand potential (8.19) contributes. By construction, the
minimum lies at 〈σ〉 = fπ = 93 MeV. The feature that a range of chemical potentials
characterizes the vacuum is sometimes called the Silver Blaze property. Chiral symmetry
is spontaneously broken in vacuum, as demonstrated in section 8.1.

• For 300 MeV ≤ µ . 400 MeV, the quarks in the second line of the grand potential (8.19)
begin to contribute as we leave the vacuum during the chiral transition. For mσ < 800 MeV
the minimum jumps discontinuously, corresponding to a first-order phase transition. For
mσ ≥ 800 MeV its value changes fast and furiously but nevertheless continuously, and
there is no phase transition, only what is referred to as a rapid crossover.

• For µ & 400 MeV, the minimum approaches the ultra-relativistic or massless limit 〈σ〉 → 0
asymptotically, but never quite reaches it, as chiral symmetry is gradually restored.

Our objective, however, is to determine the equation of state ε(P ) when the chemical potentials
are constrained by the charge neutrality condition (6.12) in addition to the β-equilibrium
condition (6.7). This means that we must not solve only the self-consistency equation (8.13),
but the system of equations

0 =
∂Ω

∂〈σ〉
, (8.23a)

0 = 2
(
µ2u −m2

q

) 3
2 −

(
µ2d −m2

q

) 3
2 −

(
µ2e −m2

e

) 3
2 , (8.23b)

µd = µu + µe. (8.23c)
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Figure 8.3: The minimum and its projection mq(µ) = g〈σ〉(µ) of the grand potential (8.19)
with zero isospin, or µu = µd = µ and µe = 0, determined from the self-consistency equation
(8.13). For (a) mσ < 800 MeV it jumps in a discontinuous phase transition, while for (b)
mσ ≥ 800 MeV it moves quickly and continuously in a crossover and there is no phase transition.

This is a system of three equations for the four unknowns 〈σ〉, µu, µd and µe. Do not forget
that mq = g〈σ〉. We parametrize solutions with one free variable, and calculate the pressure
(6.4a), densities (6.4b), energy density (6.4d) and the equation of state ε(P ) like in chapter 7.

In particular, we now use 〈σ〉 as the free variable instead of µ. As revealed by peeking ahead at
the results in figure 8.4a, the possible presence of a phase transition implies that one µ can
correspond to multiple 〈σ〉, while all 〈σ〉 correspond to only one µ (except in the vacuum). It is
therefore only the parametrization with 〈σ〉 that captures the multiple solutions.

How should we normalize the pressure this time? With the grand potential (8.19), the pressure
P = −Ω will be nonzero in the vacuum because V(fπ,0) 6= 0. First, we therefore compute the
pressure relative to vacuum by shifting

P → P − P (µ ≤ 300 MeV) = P + V(fπ,0). (8.24)

Second, and like with the MIT bag model in chapter 7, we allow for a bag constant B by making
the shift (7.10). After both shifts, the pressure in the vacuum is P (µ ≤ 300 MeV) = −B and
the non-quark contribution to the general pressure is

−B(〈σ〉) = −
[
B + V(〈σ〉,0)− V(fπ,0)

]
(8.25)

from the first line of the grand potential (8.19). Unlike the constant B in the MIT bag model,
we can interpret B(〈σ〉) as a dynamic bag pressure that ranges from −B(fπ) = −B in the
vacuum to −B(0) = −

[
B − V(fπ,0)

]
in the ultra-relativistic limit. We will come back to

allowed values of the bag constant after we have found the equation of state with B = 0.
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Figure 8.4: Properties of charge neutral quark matter in β-equilibrium in the two-flavor
quark-meson model. Upper panel (a) shows solutions to equation (8.23), middle panel (b) the
particle number densities (8.20) and lower panel (c) the equation of state ε(P ) before and
after the Maxwell construction. Parameter sets with mσ = {600, 700, 800}MeV from table 8.1
are used. The weak lines show the solutions (7.7), (7.8) and (7.9a) in the massless limit m = 0.
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The numerical implementation in appendix G.5 gives the equation of state in figure 8.4:

• The phase transition or crossover behaves similarly to how it did in figure 8.3: the grand
potential (8.19) and its minimum 〈σ〉 = mq/g is independent of µ = (µu + µd)/2 in
vacuum where µ < 300 MeV; undergoes a crossover (with mσ ≥ 800 MeV) or a first-order
phase transition (with mσ < 800 MeV) for 300 MeV < µ . 400 MeV; and approaches the
ultra-relativistic limit 〈σ〉 → 0 for µ & 400 MeV.

• The isospin chemical potential µI = (µu−µd)/2 increases with no bound as µu and µd grow
apart, and its magnitude exceeds the half pion mass mπ/2 = 69 MeV for µ ≥ 575 MeV.
This means that our assumption of neglecting pion condensation is inconsistent! A more
detailed study should therefore take it into account, but this is outside our scope.

• With mσ < 800 MeV and the resulting phase transition, the parametrized P -ε-curve
corresponds to an ambiguous equation of state where a low pressure corresponds to
multiple energy densities. In this case we use the Maxwell construction to produce a
well-defined invertible equation of state, as described in [Pog17, equation (4.69)]. With
mσ ≥ 800 MeV and the crossover we do not need to think about this.

• The ultra-relativistic solution obtained in section 7.1 is restored as 〈σ〉 → 0. In particular,
the slopes dε/dP = 3 of the equations of state there and here agree, while their different
relative offsets are accounted for by the bag shift (7.10).

• The equation of state always satisfies the causality condition (4.24) and the microscopic
stability criterion (4.27).

• Although the electrons have an appreciable chemical potential µe, their density ne is
several orders of magnitude below the quark densities nu and nd and is hardly noticeable,
like in chapter 7. Their main job is to ensure that the charge neutrality condition (8.23b)
is met. Coupled with the β-equilibrium condition (8.23c), it is what causes the isospin
imbalance as µu and µd grow apart.

Moreover, the program in appendix G.5 solves the two-flavor inequality (7.12) numerically and
reports the lower bag bounds

B ≥ (110.6 MeV)4
(

or B − V(fπ,0) ≥ (145.4 MeV)4
) (

mσ = 600 MeV
)
, (8.26a)

B ≥ (67.7 MeV)4
(

or B − V(fπ,0) ≥ (146.3 MeV)4
) (

mσ = 700 MeV
)
, (8.26b)

B ≥ (27.0 MeV)4
(

or B − V(fπ,0) ≥ (156.5 MeV)4
) (

mσ = 800 MeV
)
. (8.26c)

In the next chapter we study the three-flavor generalization of this model and find the com-
plementing upper bounds (9.29) due to the strange matter hypothesis. Note that these upper
bounds almost coincide with the lower bounds, so the inequalities can practically speaking be
squeezed into equalities if the strange matter hypothesis is true. On the other hand, the lower
bounds are based on instability of two-flavor quark matter and are certain. We focus on the
bag constants that lie at the lower bounds (8.26), as we saw in chapter 7 that they generate
stiffer equations of state and hence greater maximum masses, and greater bag constants would
be forbidden anyway if the strange matter hypothesis holds. The main takeaway is that B can
violate the upper bounds (9.29), but certainly not the lower bounds (8.26).

Also note that it is the bounds of B − V(fπ,0), not B, that are comparable to the MIT bag
model bound (7.14). This is because we have seen that the quark-meson model approaches
the MIT bag model only in the ultra-relativistic limit 〈σ〉 → 0. Hence the same goes for the
dynamic bag pressure (8.25), which evaluates to −B(0) = −[B − V(fπ,0)] in this limit.
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8.5 Quark star solutions
Having found the minimum allowed bag constants, we now modify the equation of state with
the shift (7.10) using bag constants at and above the lower bounds (8.26) and solve the corre-
sponding Tolman-Oppenheimer-Volkoff equations (6.1). From the numerical implementation in
appendix G.5, we find the mass-radius relations in figure 8.5:

• For bag constants that just satisfy the lower bounds (8.26) for 600 MeV ≤ mσ ≤ 800 MeV,
stars have maximum masses 1.7M� ≤M ≤ 2.0M� and corresponding radii R ≈ 11 km.
The heaviest star has an average mass density of ρ =M/(4πR3/3) = 7 · 1014 kg/L!

• For greater bag constants, the strange matter hypothesis and corresponding upper bounds
(9.29) are violated. We pay special attention to the lowest bag constants that respect
both the lower and upper bounds, as the stellar masses and radii decrease with increasing
bag constants anyway.

• As mσ increases, the maximum mass decreases and becomes more resilient to changes in
B, and stars tend to inflate up to larger sizes for low pressures.

• The results are generally comparable to the MIT bag model solutions in figure 7.3.

Let us also examine the radial profiles of interesting quantities in a star. The solution of the
Tolman-Oppenheimer-Volkoff equation (6.1) yields P (r) and m(r) directly, and ε(r) is then
easily computed from the equation of state ε(P ). Meanwhile, µ(r) can be obtained from P (r)
after inverting P (µ) to µ(P ), and ni(r) and other properties can then be looked up in figure 8.4.
In figure 8.6 we take an in-depth look at the maximum mass star without a phase transition:

• By definition, the pressure P (R) = 0 vanishes at the surface R = 11.3 km, and the
corresponding cumulative mass m(R) =M = 1.77M� evaluates to the total mass.

• The quark chemical potential µ(R) at the surface exceeds the vacuum value 300 MeV
because of the bag shift (7.10). Fortunately, the central value µ(0) = 490 MeV does not
exceed 575 MeV, beyond which neglecting pion condensation was inconsistent.

• The kink around µ ≈ 320 MeV corresponds to the chiral crossover and takes place very
close to the surface of the star, and the star has a thin crust in which the particle densities
rapidly drops to near-vanishing values and the cumulative mass flattens out.

8.6 Consistent parameter fit in the one-loop large-Nc limit
As explained at the end of section 8.3, fitting parameters at tree-level is inconsistent because
our calculation of the grand potential (8.19) can only be considered consistent in the one-loop
large-Nc limit. In a fully consistent treatment, the parameters should be fit at the same level to
which the grand potential is calculated. The inconsistent method is, however, the conventional
approach taken in the literature. [Zsc+07; Sch+07b; Sch+09; Zac+15].

To conclude this chapter we examine the effects of using such a consistent approach. In the
chiral limit h = 0, [Adh+17a] has consistently matched the parameters in the one-loop large-Nc

limit by relating the physical masses to the pion decay constant and running couplings with
the minimal subtraction renormalization scheme. Their work is generalized to the physical
point h 6= 0 that we consider here in [Adh+17b], where their generalized inhomogeneous chiral
condensate q can simply be set to q = 0 to recover our homogeneous condensate. They find the
grand potential

Ω =
1

2

m2
R(λ)

g2R(λ)
∆2 +

λR(λ)

24gR(λ)4
∆4 − hR(λ)

gR(λ)
∆ +

NcNf

16π2
∆4

[
3

2
+ log Λ2

∆2

]
+Ωq +Ωe, (8.27)

where Ωq +Ωe is the same contribution from quarks and electrons as in the two last lines of
our grand potential (8.19). Here all the couplings m2

R(Λ), λR(Λ), gR(Λ) and hR(Λ) run with
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Figure 8.7: Compared to the inconsistently fit grand potential in figure 8.2, the consistently
fit two-flavor grand potential (8.28) admits minima for mσ ≥ 400 MeV in vacuum, where µ = 0.

the renormalization scale Λ. After solving their renormalization group equations and inserting
their solutions into the above expression, they find the following explicit grand potential in
equation (7):

Ω =
3m2

πf
2
π

4
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1−
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(4π)2f2π
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πF
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(8.28)

where they have defined

F (p2) = 2− 2r atan
(1
r

)
, F ′(p2) =

4m2
q

p4r
atan

(1
r

)
− 1

p2
, r =

√
4m2

q

p2
− 1. (8.29)

Note that in contrast to our dynamic masses (8.10), their mq, mπ and mσ refer exclusively to
vacuum masses, and the dynamic quark mass is denoted ∆, equivalent to our mq = g〈σ〉. In
our opinion, it is easiest to simply adopt their convention temporarily in this section, as any
attempt to reconcile it with our convention would only clutter the already cluttered expression
(8.28). Also note that the renormalization scale Λ has coincidentally disappeared from the
original expression (8.27) upon substitution of the renormalized couplings!

Like before, we will fix mq, mπ and fπ to the vacuum values in table 8.1, but vary mσ. Whereas
figure 8.2 shows that our original inconsistently fit grand potential only had stable minima
for mσ ≥ 600 MeV in vacuum, figure 8.7 shows that it appears for mσ ≥ 400 MeV with the
consistently fit grand potential. This allows us to set mσ to values within its measured range
400 MeV ≤ mσ ≤ 550 MeV without breaking the model!
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Figure 8.8: Results like those in figure 8.4, but with the consistently fit one-loop and large-Nc

grand potential (8.28) and mσ = {400, 500, 600}MeV.
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Figure 8.9: Results like those in figure 8.5, but with the equations of state in figure 8.4c from
the consistently fit one-loop and large-Nc grand potential (8.28) and mσ = {400, 500, 600}MeV.

Repeating our earlier calculations with the new grand potential (8.28) for lower values of mσ,
we find the equation of state in figure 8.8, the lower bag constant bounds

B ≥ (107.3 MeV)4
(

or B − V(fπ,0) ≥ (145.4 MeV)4
) (

mσ = 400 MeV
)
, (8.30a)

B ≥ (83.9 MeV)4
(

or B − V(fπ,0) ≥ (145.9 MeV)4
) (

mσ = 500 MeV
)
, (8.30b)

B ≥ (27.2 MeV)4
(

or B − V(fπ,0) ≥ (155.3 MeV)4
) (

mσ = 600 MeV
)
, (8.30c)

and the mass-radius solutions in figure 8.9.

The “consistent” results with mσ = {400, 500, 600}MeV are virtually identical to the “inconsis-
tent” results with mσ = {600, 700, 800}MeV. This can be seen by comparing the individual
features in figures 8.8 and 8.9 to those in figures 8.4 and 8.5, or more easily by noting that the
vacuum potentials in figure 8.7, which is the only difference between the two approaches, more
or less coincide with those in figure 8.2 that have about 200 MeV larger values of mσ.

This approach shows the importance of fitting the parameters of the model consistently in
order to achieve correspondence between experimental and model parameters. In our original
inconsistent approach we had no other choice but to use too large values of mσ to avoid breaking
the model and generate any results at all, leaving us with a doubtful and unsatisfactory feeling.
However, comparison with the consistent approach restores our trust in these results and tells
us that we should not be too worried about fitting values of mσ at tree-level that are about
200 MeV too large.

8.7 Summary
In this chapter we have modeled pure quark stars consisting of deconfined up and down quarks
with the two-flavor quark-meson model. Our main results were the equation of state in figure 8.4,
mass-radius solutions in figure 8.5 and the radial profile of a representative maximum mass star
in figure 8.6. For 600 MeV ≤ mσ ≤ 800 MeV and the corresponding lowest bag constants that
respect the lower bounds (8.26) and hence instability of two-flavor quark matter, we obtained
quark stars with maximum masses 1.7M� ≤M ≤ 2.0M� and corresponding radii R ≈ 11 km.
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Chiral symmetry was restored in a crossover for mσ ≥ 800 MeV and in a discontinuous
phase transition for mσ < 800 MeV. Our heart rates increased momentarily when we saw
that neglecting pion condensation was an inconsistent approximation for µ ≥ 575 MeV, but
stabilized when we saw that the chemical potential in the inspected maximum mass star did
not exceed this. We found it difficult to fit measured values 400 MeV ≤ mσ ≤ 550 MeV for the
σ meson without breaking the model and had to make do with larger values, but later regained
trust in our results when we explained this with the inconsistency of fitting parameters at
tree-level to a grand potential that is calculated to one fermion loop.

Due to the previously discussed instability of two-flavor quark matter with respect to hadronic
matter, pure two-flavor quark stars are unlikely to be realized in nature. Nevertheless, their
analysis is a natural stepping stone for discussing possibly stable strange quark stars and hybrid
stars with quark matter in the core.
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Chapter9
The Three-Flavor Quark-Meson Model

With three flavors, the effective low-energy degrees of freedom of quantum chromodynamics
are the scalar and pseudoscalar mesons. In this chapter we will study the generalization of the
quark-meson model in chapter 8 to three flavors, thereby throwing the strange quark into the
mix. Most features of this model behave as natural and somewhat more complex generalizations
of those in the two-flavor model. For example, we will handle the strange quark condensate in
parallel with the common up and down quark condensate. Whereas there is a unique way of
fixing the parameters in the two-flavor model, however, we will see that the three-flavor model
presents us with a multitude of ways of doing it, so that some experimental values must be
predicted rather than fitted.

Three-flavor models are particularly interesting for quark stars. While two-flavor quark matter
is unstable with respect to hadronic matter, pure quark stars consisting only of strange quark
matter would be stable and more likely to exist if the strange matter hypothesis is true. Due
to the heavier mass of the strange quark, we expect its effects to become important in the
mass-radius diagram only for stars that have a high central pressure and thus large chemical
potentials.

This chapter is inspired by references [Sch+09] and [Len+00].

9.1 Lagrangian, vacuum and symmetries

The Lagrangian density of the three-flavor quark-meson model is [Sch+09; Len+00]

L = q̄
[
i/∂ + µγ0 − g

(
σa + iγ5πa

)
Ta

]
q + tr

[
(∂µφ)

†(∂µφ)
]
− V(σ, π) (9.1)

with the meson potential

V(σ, π) = m2 tr
[
φ†φ
]
+ λ1

[
tr(φ†φ)

]2
+ λ2 tr

[
(φ†φ)2

]
− tr

[
H(φ+ φ†)

]
. (9.2)

The quark fields q and chemical potential matrix µ = diag(µu, µd, µs) now have the Nf = 3
flavors {u, d, s}, while σa and πa are members of the scalar (JP = 0+) and pseudoscalar
(JP = 0−) meson nonets, packed into the Nf × Nf meson matrix φ = φaTa = (σa + iπa)Ta.
The eight SU(3) generators Ta = λa/2 in flavor space are extended with the identity in the
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common normalization tr[TaTb] = δab/2 of the Gell-Mann matrices

λ0 =


√

2
3 0 0

0
√

2
3 0

0 0
√

2
3

, λ1 =


0 1 0

1 0 0

0 0 0

, λ2 =


0 −i 0

i 0 0

0 0 0

,

λ3 =


1 0 0

0 −1 0

0 0 0

, λ4 =


0 0 1

0 0 0

1 0 0

, λ5 =


0 0 −i
0 0 0

i 0 0

,

λ6 =


0 0 0

0 0 1

0 1 0

, λ7 =


0 0 0

0 0 −i
0 i 0

, λ8 =


1√
3

0 0

0 1√
3

0

0 0 − 2√
3

.

(9.3)

Like before, the Lagrangian has U(1)V ×U(1)A×SU(Nf )L×SU(Nf )R symmetry in the absence
of the explicit symmetry breakers ha in the matrix H = haTa. Moreover, there are now two
quartic couplings λ1 and λ2, not to be confused with the Gell-Mann matrices (9.3). This can be
understood from the Cayley-Hamilton theorem [Hon+08, equation (1) and (2)], which links the
N traces trA, . . . , trAN of any N ×N matrix A. With three flavors we can therefore form two
independent coupling terms λ1 tr[(φ†φ)]2 and λ2 tr[(φ†φ)2] up to quadratic order1 in the fields,
while only one can be constructed with two flavors. Every other feature of the Lagrangian is
identical to or a natural generalization of that in the corresponding two-flavor Lagrangian (8.1).

This general form of the model has thirteen undetermined parameters g, m2, λ1, λ2 and
{h0, . . . , h8}. We continue to neglect pion condensation by setting 〈πa〉 = 0, so a nonzero
symmetry breaker ha creates a non-vanishing vacuum expectation value of the corresponding
scalar field 〈σa〉, which in turn creates a nonzero quark condensate 〈q̄ Taq〉 in vacuum through
the Yukawa interaction in the Lagrangian (9.1). In particular, this vacuum expectation value
should have the same vanishing electrical charge as the vacuum. We therefore only allow for
flavor-like charge-neutral condensates such as 〈ūu〉 in the vacuum, and no mixed-flavor charged
condensates like 〈ūd〉. To accomplish this, we set all symmetry breakers to zero except those
that correspond to diagonal flavor-space matrices (9.3), or Ta, namely {h0, h3, h8} 6= 0.

Using different combinations of the three remaining nonzero symmetry breakers {h0, h3, h8},
one can study different symmetry breaking patterns among the u, d and s quarks. By setting
only h0 6= 0, we see that the first Gell-Mann matrix λ0 weighs all three quarks equally with
common mass mu = md = ms. If we also unlock h8 6= 0, the last matrix λ8 separates the
strange and non-strange quarks with mu = md 6= ms. Including all three symmetry breakers
with h3 6= 0, too, the fourth matrix λ3 also distinguishes the non-strange quarks and treats
all flavors with separate masses mu 6= md 6= ms. These different symmetry breaking patterns
are discussed in more detail in [Len+00, section III]. Since we treated up and down quarks
with degenerate mass in chapter 8, we will set h3 = 0 and keep {h0, h8} 6= 0 to account for the
heavier strange quark separately from the non-strange quarks. This leaves the six unknown
parameters g, m2, λ1, λ2, h0 and h8 that will later be fit to as many experimental values.

The explicit symmetry breakers {h0, h8} 6= 0 dig a global minimum for the vacuum at

σa = 〈σa〉 and πa = 〈πa〉 = 0, where only 〈σ0〉 6= 0 and 〈σ8〉 6= 0 are nonzero. (9.4)

Like before, we jump down into the hole (9.4) and study the quantum fluctuations σ̃a and π̃a
of the meson fields by writing

σa = 〈σa〉+ σ̃a and πa = 〈πa〉+ π̃a. (9.5)
1That precisely fourth order is the target implies that the theory is renormalizable, in the sense that divergences

can be removed by shifting the couplings already in the Lagrangian with counterterms. Divergences from, say,
sixth-order terms in the Lagrangian could only have been removed by counterterms in higher-order terms and
would make the theory non-renormalizable.
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We will shortly come back to the precise location of the vacuum, but first examine how it
couples to the quarks. Coupled to the nonzero expectation values (9.4), the Yukawa term in
the Lagrangian (9.1) reads

− gq̄
(
〈σ0〉T0 + 〈σ8〉T8

)
q

=− g

2


u†γ0

d†γ0

s†γ0


T
√

2
3〈σ0〉+

1√
3
〈σ8〉 0 0

0
√

2
3〈σ0〉+

1√
3
〈σ8〉 0

0 0
√

2
3〈σ0〉 −

2√
3
〈σ8〉



u

d

s

. (9.6)

In particular, it mixes σ0 and σ8 interactions with all three quarks. For conceptual cleanliness,
we seek a transformation from the mixed σ0-σ8-basis to a strangeness-separated σx-σy-basis in
which the up and down quarks couple only to σx and the strange quark only to σy. This is
accomplished by[

σx
σy

]
=M

[
σ0
σ8

]
, where M =M−1 =MT =

1√
3

[√
2 1

1 −
√
2

]
. (9.7)

We also define the transformed symmetry breakers [hx, hy]
T = M [h0, h8]

T using the same
transformation. In the new basis (9.7), the Yukawa coupling (9.6) takes our sought-after form

−
∑

f={u,d,s}

mf q̄fqf with quark masses mu = md = mx =
g〈σx〉
2

and ms = my =
g〈σy〉√

2
.

(9.8)

Finally, we examine how the meson potential (9.2) behaves in and around the minimum (9.4)
by looking for its mass-generating expansion

V(σ, π) ' V(〈σ〉, 〈π〉) + 1

2

(
m2
σσ

)
ab
σ̃aσ̃b +

1

2

(
m2
ππ

)
ab
π̃aπ̃b. (9.9)

Like in chapter 8, we will use V(〈σ〉, 〈π〉) in the grand potential, relate ∂V/∂σx = ∂V/∂σy = 0
to the minima {〈σx〉, 〈σy〉} and {hx, hy}, and fit the (squared) curvature masses ∂2V

/
∂σa ∂σb =(

m2
σσ

)
ab

and ∂2V
/
∂πa ∂πb =

(
m2
ππ

)
ab

to particle masses. To do so, we need the flavor-space
traces

tr
[
φ†φ
]
= (σa − iπa)(σb + iπb) tr

[
TaTb

]
=

1

2

(
σ2a + π2a

)
, (9.10a)

tr
[
(φ†φ)2

]
= (σa − iπa)(σb + iπb)(σa − iπc)(σb + iπd) tr

[
TaTbTcTd

]
, (9.10b)

tr
[
H(φ+ φ†)

]
= 2haσb tr

[
TaTb

]
= haσa. (9.10c)

The quadruple product traces tr[TaTbTcTd] are more challenging than the double product
traces tr[TaTb] = δab/2. If one figures out the structure constants fabc and dabc defined by the
commutators [Ta, Tb] = ifabcTc and anti-commutators {Ta, Tb} = dabcTc, these traces can be
done with pen, paper and painkillers by bootstrapping traces of the Gell-Mann matrices like

tr
[
TaTb

]
=

1

2
δab, (9.11a)

tr
[
TaTbTc

]
=

1

2
tr
[
Ta

( ifbcdTd︷ ︸︸ ︷
[Tb, Tc] +

dbcdTd︷ ︸︸ ︷
{Tb, Tc}

)]use (9.11a)y
=

1

22

(
ifbca + dbca

)
, (9.11b)

tr
[
TaTbTcTd

]
=

1

2
tr
[
TaTb

(
[Tc, Td]︸ ︷︷ ︸
ifcdeTe

+ {Tc, Td}︸ ︷︷ ︸
dcdeTe

)]
=x

use (9.11b)

1

23

(
ifcde + dcde

)(
ifbea + dbea

)
. (9.11c)

However, with our explicit knowledge (9.3) of the matrices, it is easier and less error-prone to
simply calculate all the traces by brute force with a symbolic computer program. Using the
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program in appendix E, we create a long explicit representation of V(σ, π). Evaluated in the
minimum (9.4), its value is

V(〈σ〉, 〈π〉) = m2

2

[
〈σx〉2+ 〈σy〉2

]
+
λ1
4

[
〈σx〉2+ 〈σy〉2

]2
+
λ2
8

[
〈σx〉4+2〈σy〉4

]
−hx〈σx〉−hy〈σy〉.

(9.12)
The locations of the nonzero minima 〈σx〉 and 〈σy〉 are determined by taking first derivatives
of the explicit representation before evaluating it in the minimum (9.4). We find that all
∂V/∂πa = 0 and ∂V/∂σa = −ha = 0 for a 6= {0, 8} vanish by themselves, while we demand

0 =
∂V
∂σx

= 〈σx〉
[
m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+
λ2
2
〈σx〉2

]
− hx, (9.13a)

0 =
∂V
∂σy

= 〈σy〉
[
m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+ λ2〈σy〉2

]
− hy. (9.13b)

Things get messier and our computational approach really comes in handy when evaluating the
mass-generating second derivatives(

m2
σσ

)
ab

=
∂2V

∂σa ∂σb
and

(
m2
ππ

)
ab

=
∂2V

∂πa ∂πb
(9.14)

in the minimum (9.4). All mixed derivatives ∂2V
/
∂σa ∂πb = 0 automatically vanish. Grouped

by common values, the nonzero entries of the scalar mass matrix are(
m2
σσ

)
00

}
= m2 +

λ1
3

(
4
√
2〈σx〉〈σy〉+ 7〈σx〉2 + 5〈σy〉2

)
+ λ2

(
〈σx〉2 + 〈σy〉2

)
,(

m2
σσ

)
11(

m2
σσ

)
22(

m2
σσ

)
33

= m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+

3

2
λ2〈σx〉2,

(
m2
σσ

)
44(

m2
σσ

)
55(

m2
σσ

)
66(

m2
σσ

)
77

= m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+
λ2
2

(√
2〈σx〉〈σy〉+ 〈σx〉2 + 2〈σy〉2

)
,

(
m2
σσ

)
88

}
= m2 − λ1

3

(
4
√
2〈σx〉〈σy〉 − 5〈σx〉2 − 7〈σy〉2

)
+
λ2
2

(
〈σx〉2 + 4〈σy〉2

)
,(

m2
σσ

)
08(

m2
σσ

)
80

}
=

2

3
λ1

(√
2〈σx〉2 −

√
2〈σy〉2 − 〈σx〉〈σy〉

)
+
λ2√
2

(
〈σx〉2 − 2〈σy〉2

)
.

(9.15a)

The nonzero entries of the pseudoscalar mass matrix are(
m2
ππ

)
00

}
= m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+
λ2
3

(
〈σx〉2 + 〈σy〉2

)
,(

m2
ππ

)
11(

m2
ππ

)
22(

m2
ππ

)
33

= m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+
λ2
2
〈σx〉2,

(
m2
ππ

)
44(

m2
ππ

)
55(

m2
ππ

)
66(

m2
ππ

)
77

= m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
− λ2

2

(√
2〈σx〉〈σy〉 − 〈σx〉2 − 2〈σy〉2

)
,

(
m2
ππ

)
88

}
= m2 + λ1

(
〈σx〉2 + 〈σy〉2

)
+
λ2
6

(
〈σx〉2 + 4〈σy〉2

)
,(

m2
ππ

)
08(

m2
ππ

)
80

}
=
λ2
6

(√
2〈σx〉2 − 2

√
2〈σy〉2

)
.

(9.15b)

Notice that both matrices are non-diagonal due to the nonzero {08, 80} corner entries. However,
it is only fields corresponding to diagonal masses that represent true mass eigenstates of
physically propagating particles: [Len+00]
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• The three diagonal masses
(
m2
σσ

)
11

=
(
m2
σσ

)
22

=
(
m2
σσ

)
33

= m2
a0 correspond to one de-

generate mass of the charged a±0 = (σ1 ± iσ2)/
√
2 and neutral a00 = σ3 mesons.

• The three diagonal masses
(
m2
ππ

)
11

=
(
m2
ππ

)
22

=
(
m2
ππ

)
33

= m2
π correspond to one de-

generate mass of the charged π± = (π1 ± iπ2)/
√
2 and neutral π0 = π3 mesons.

• The four diagonal masses
(
m2
σσ

)
44

=
(
m2
σσ

)
55

=
(
m2
σσ

)
66

=
(
m2
σσ

)
77

= m2
κ correspond to

one degenerate mass of the charged κ± = (σ4 ± iσ5)/
√
2 and neutral κ0 = (σ6 + iσ7)/

√
2

and κ̄0 = (σ6 − iσ7)/
√
2 mesons.

• The four diagonal masses
(
m2
ππ

)
44

=
(
m2
ππ

)
55

=
(
m2
ππ

)
66

=
(
m2
ππ

)
77

= m2
K correspond to

one degenerate mass of the charged K± = (π4± iπ5)/
√
2 and neutral K0 = (π6+ iπ7)/

√
2

and K̄0 = (π6 − iπ7)/
√
2 mesons.

• The diagonalization
{
m2
σ,m

2
f0

}
of the non-diagonal matrix sector

{(
m2
σσ

)
00
,
(
m2
σσ

)
88
,(

m2
σσ

)
08
,
(
m2
σσ

)
80

}
corresponds to two different masses of the f0 and σ mesons.

• The diagonalization
{
m2
η,m

2
η′
}

of the non-diagonal matrix sector
{(
m2
ππ

)
00
,
(
m2
ππ

)
88
,(

m2
ππ

)
08
,
(
m2
ππ

)
80

}
corresponds to two different masses of the η and η′ mesons.

The two diagonalizations are achieved by two rotations

[
f0
σ

]
=

[
cos θσ − sin θσ
sin θσ cos θσ

] [
σ8
σ0

]
and

[
η
η′

]
=

[
cos θπ − sin θπ
sin θπ cos θπ

] [
π8
π0

]
(9.16)

of the {σ0, σ8} and {π0, π8} fields parametrized by two mixing angles {θσ, θπ}. To find the
pseudoscalar angle θπ, for example, we invert transformation (9.16) and use the trigonometric
identities cos2 θπ − sin2 θπ = cos 2θπ and 2 sin θπ cos θπ = sin 2θπ to expand

∑
a={0,8}
b={0,8}

(
m2
ππ

)
ab
π̃aπ̃b =

{(
m2
ππ

)
00

sin2 θπ +
(
m2
ππ

)
88

cos2 θπ +
(
m2
ππ

)
08

sin 2θπ

}
η̃2

+
{(
m2
ππ

)
00

cos2 θπ +
(
m2
ππ

)
88

sin2 θπ −
(
m2
ππ

)
08

sin 2θπ

}
η̃′2

+
{
2
[(
m2
ππ

)
00

−
(
m2
ππ

)
88

]
sin 2θπ + 2

(
m2
ππ

)
08

cos 2θπ
}

︸ ︷︷ ︸
0 by demand!

η̃η̃′,

(9.17)

and then require the indicated coefficient of η̃η̃′ to vanish. The scalar angle θσ is found in the
same way, only with {m2

ππ, η, η
′} → {m2

σσ, f0, σ}. Thus, the third line gives the mixing angles

θσ =
1

2
arctan

[
2
(
m2
σσ

)
08(

m2
σσ

)
88

−
(
m2
σσ

)
00

]
and θπ =

1

2
arctan

[
2
(
m2
ππ

)
08(

m2
ππ

)
88

−
(
m2
ππ

)
00

]
. (9.18)

This in turn fixes the curvature masses of the pseudoscalar {η, η′} mesons as their coefficients
on the two first lines in the sum (9.17), and analogously for the scalar {f0, σ} mesons. To be
very clear, the diagonalized mass-generating meson potential (9.9) can now be explicitly written

V(σ, π) ' V(〈σ〉, 〈π〉) + 1

2
m2
f0 f̃0

2
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1

2
m2
σσ̃

2 +
1
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∑
a0={a+0 ,a
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0 ,a

0
0}
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2
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2
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2
m2
η′ η̃
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2
m2
π

∑
π={π+,π−,π0}

π̃2 +
1

2
m2
K

∑
K={K+,K−,K0,K̄0}

K̃2.

(9.19)

This shows very elaborately how the three couplings {m2, λ1, λ2}, through the mass matrices
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(9.15) and the mixing angles (9.18), generate the eight scalar and pseudoscalar particle masses
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These relations will come in handy when we fit the parameters of the model in section 9.3.

9.2 Grand potential
Let us calculate the grand potential Ω in the same way as we did with two flavors in section 8.2,
integrating over one fermion loop and neglecting pion condensation by setting 〈π〉 = 0 while using
the mean-field approximation for 〈σx〉 and 〈σy〉, determining them retrospectively according to
the self-consistency equations

∂Ω

∂〈σx〉
=

∂Ω

∂〈σy〉
= 0. (9.21)

As explained in chapter 8, this is inconsistent in terms of the number of loops considered for
the fermionic and bosonic fields, but consistent in the one-loop large-Nc limit.

The calculation proceeds more or less identically up to the non-renormalized grand potential
(8.17), only with a different vacuum potential V(〈σ〉, 0), Nf = 3 flavors and mu = md = mx 6=
my = ms. In addition, instead of using one common renormalization scale Λ, we operate with
two separate scales Λx and Λy for the non-strange and strange quarks. We comment on this in
the next section. This gives the divergent grand potential
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(9.22)

The divergence Nc(2m
4
x +m2

y)/16π
2ε = Ncg

4(〈σx〉4 + 2〈σy〉4)/128ε from the pole in ε can again
be absorbed by λ2(〈σx〉4 + 2〈σy〉4)/8 in the meson potential (9.12) if we shift

λ2 → λ2 + δλ2 with the counterterm δλ2 = − Ncg
4

16π2ε
. (9.23)

Then Nc(2m
4
x +m2

y)/16π
2ε + δλ2(〈σx〉4 + 2〈σy〉4) = 0, so this theory is also renormalizable.

Adding electrons, we obtain the natural three-flavor generalization of the renormalized and
finite grand potential (8.19),
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(9.24)
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9.3 Parameter fit at tree-level

We are now in position to fit the six parameters g, m2, λ1, λ2, hx and hy. In vacuum, the pion
and kaon decay constants fπ and fK are related to the nonzero expectation values [Len+00]

〈σx〉 = fπ and 〈σy〉 =
√
2fK − fπ√

2
. (9.25)

With vacuum measurements of the two decay constants and one of the quark masses (9.8),
we determine the parameter g, then use it to predict the other quark masses. Likewise, we
use vacuum measurements of three of the eight meson masses (9.20) to determine the three
parameters {m2, λ1, λ2}, then use them to predict the five remaining meson masses. With 〈σx〉,
〈σy〉, m2, λ1 and λ2 in hand, the two symmetry breakers hx and hy follow from equation (9.13).

Table 9.1 shows values for the fitted and predicted particle masses. In general there are
8!/3!5! = 56 ways of selecting three of the eight meson masses (9.20), each returning different
values for {m2, λ1, λ2}. We keep using mσ and mπ for continuity from chapter 8 and include
mK as the third mass, thereby obtaining the unique selection of mesons with the lowest masses
and energies. This is the same selection used by [Sch+09] and [Len+00], for example.

Note the particularly large discrepancy between the modeled and experimental η′ mass. This
can be improved by including a term c (detφ + detφ†) in the Lagrangian that models the
anomalous axial U(1)A current of quantum chromodynamics discussed in section 6.3. How to
do so is also shown in [Sch+09] and [Len+00], but we leave it out in order to keep the two-flavor
and three-flavor models as similar and comparable as possible. In particular, they find that it
drives the chiral transition closer to a discontinuous phase transition than a crossover.

Like in section 8.3, we keep all parameters fixed except mσ, due to its large experimental
uncertainty. As shown in the lasagna of different vacuum potentials in figure 9.1, they still
admit minima only for mσ ≥ 600 MeV, so we continue to use mσ = {600, 700, 800}MeV.

With two flavors we determined the renormalization scale (8.22) by requiring the minimum to
remain at 〈σ〉 = fπ in vacuum. The natural generalization of this procedure to three flavors is
to determine Λx and Λy so the minimum remains at (9.25) in vacuum. This is accomplished by

∂Ω

∂〈σx〉
=

∂Ω

∂〈σy〉
= 0, so Λx =

mx√
e
= 182.0 MeV and Λy =

my√
e
= 260.2 MeV. (9.26)

This is not the only way to do it. Like [Ber13], we could rather operate with one common
scale Λ = Λx = Λy in the grand potential, for example chosen as the flavor-weighted average
Λ = (2 · 182.0 MeV + 260.2 MeV)/3 = 208.0 MeV of the two we have found. In particular, this
means that the minimum of Ω in vacuum is no longer at the minimum of V . This is unsatisfying
and has surprising consequences. For example, if Ω is fit to some quark mass mx = gfπ/2, its
minimum 〈σx〉 6= fπ moves away from fπ because ∂Ω/∂〈σx〉 6= 0 at fπ, in turn generating a
different vacuum quark mass g〈σx〉/2 6= gfπ/2 than the one that was fitted! Of course, our
approach also has its caveats, as it is not apparent how to interpret the presence of two different
renormalization scales, let alone one. But it does not behave in this unpredictable way, and it
permits using the same masses mσ ≥ 600 MeV as in chapter 8 without breaking the potential.
Ideally, a more consistent calculation such as the one in section 8.6 should be done anyway,
where one preferable renormalization scale appears, and we even saw that it dropped out in
that specific case. It is hard to say whether our or [Ber13]’s approach is better, but this is only
another argument to at the very least take the unexplored path over an already paved way.

Recall from the consistently fit two-flavor model in section 8.6 that our way of fitting parameters
at tree-level to a grand potential calculated in the one-loop large-Nc limit is really inconsistent.
However, we know of no consistent calculation with three flavors like the one presented there.
The lesson we learned back there was that inconsistently fit 600 MeV ≤ mσ ≤ 800 MeV is
representative of physically measured masses 400 MeV ≤ mσ ≤ 600 MeV, so we can only hope
that the same is true with three flavors.
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Table 9.1: Variables in the left table are used as input to determine the six model parameters
in the right table from equations (9.8), (9.13) and (9.20), which in turn are used to predict
the remaining non-bold masses in the left table with the same equations. Three values are
used for mσ, generating three parameter sets with different m2, λ1 and mf0 . Experimental
measurements are taken from [PDG20].

Physical variables Model parameters

Variable
Modeled

Measured Parameter
Modeled

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

fπ /MeV 93 93 93 92-93 g 6.45 6.45 6.45
fK /MeV 113 113 113 113 m2 / (MeV)2 −1782 −3512 −4922
mu /MeV 300 300 300 ≈ 300 λ1 −18.2 −13.0 −6.2
md /MeV 300 300 300 ≈ 300 λ2 85.3 85.3 85.3
ms /MeV 429 429 429 ≈ 500 hx / (MeV)3 1213 1213 1213
mf0 /MeV 1294 1315 1347 1200-1500 hy / (MeV)3 3363 3363 3363
mσ /MeV 600 700 800 400-550
ma0 /MeV 870 870 870 980
mκ /MeV 1141 1141 1141 1414
mη /MeV 636 636 636 548
mη′ /MeV 138 138 138 958
mπ /MeV 138 138 138 138
mK /MeV 496 496 496 496
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Figure 9.1: The three-flavor grand potential (9.24), here offset by constants into a human-
digestible lasagna, admits minima for the quark masses mx = g〈σx〉/2 and my = g〈σy〉/

√
2 in

vacuum, where µ = 0, only when fit to mσ ≥ 600 MeV at tree-level.
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9.4 Equation of state
To find the equation of state we will follow the same procedure as in chapter 8. The generalization
of the system of equations (8.23) with strange quarks that we need to solve, subject to the
constraints of chemical equilibrium (6.7) and charge neutrality (6.12), is

0 =
∂Ω

∂〈σx〉
, (9.27a)

0 =
∂Ω

∂〈σy〉
, (9.27b)

0 = 2
(
µ2u −m2

u

) 3
2 −

(
µ2d −m2

d

) 3
2 −

(
µ2s −m2

s

) 3
2 −

(
µ2e −m2

e

) 3
2 , (9.27c)

µd = µu + µe, (9.27d)
µs = µd. (9.27e)

This is a system of five equations for the six unknowns 〈σx〉, 〈σy〉, µu, µd, µs and µe. Like in
chapter 8, we parametrize solutions with 〈σx〉, evaluate the particle densities (6.4b) as

nf = − ∂Ω

∂µf
=

Nc

3π2

(
µ2f −m2

f

) 3
2 and ne = − ∂Ω

∂µe
=

1

3π2

(
µ2e −m2

e

) 3
2
, (9.28)

then calculate them, the pressure (6.4a) and the energy density (6.4d), and finally eliminate the
free variable to get the equation of state ε(P ). The numerical implementation in appendix G.5
yields the solutions, particle densities and equation of state shown in figure 9.2:

• There is a non-strange crossover (for mσ ≥ 800 MeV) or discontinuous phase transition
(for mσ < 800 MeV) after µ = 300 MeV, as in the two-flavor case in figure 8.4. Even
the strange minimum 〈σy〉 moves a bit during this transition due to the cross term
λ1〈σx〉2〈σy〉2/2 in the meson potential (9.12) changing. Accordingly, the equations of
state for the two-flavor and three-flavors models are quite similar up to P ≤ 0.05 GeV/fm3.

• There is a strange crossover after the non-strange crossover or phase transition. For
example, for mσ = 800 MeV, it starts at µ ≈ 370 MeV or µs = my ≈ 410 MeV. This is
below the fitted vacuum mass ms = 429 MeV because both mx and my drop during the
non-strange transition, as explained above. Moreover, it is always a crossover and never
a phase transition, is significantly slower than the non-strange transition, and the strange
quark retains a noticeable mass when the non-strange quarks have lost theirs. During
this crossover, the equation of state gently ramps up from the two-flavor level towards a
second plateau and softens compared to the two-flavor equation of state.

• Before the strange crossover, the up and down quark chemical potentials µu and µd
spread in order to ensure charge neutrality together with the electrons. After the strange
crossover, however, the strange quark kicks out the electron and provides charge neutrality
together with the up and down quarks, as the quark chemical potentials find back to
each other in the ultra-relativistic limit µu → µd = µs → µ. In contrast to the two-flavor
case, the isospin chemical potential µI = (µu − µd)/2 never exceeds half the pion mass,
so neglecting pion condensation is a consistent assumption for all µ with three flavors.

• As shown in figure 9.3, each quark density converges towards a third of the total quark
density n = 3nB as it increases. At low density the strange quark is absent and there are
twice as many down quarks as up quarks, like in chapter 8, and the strange quark enters
for nB ≥ 4nsat. The fraction of up quarks is the same at all densities.

• The ultra-relativistic solution in section 7.1 is recovered as 〈σx〉 → 〈σy〉 → 0,

• The equation of state satisfies the criteria of causality (4.24) and stability (4.27).

• Like in chapter 8, we use the Maxwell construction to correct the ambiguous equations of
state with phase transitions as described in [Pog17, equation (4.69)].
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(b) Particle number densities
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Figure 9.2: Properties of charge-neutral quark matter in β-equilibrium in the three-flavor
quark meson model. Upper panel (a) shows solutions to equation (9.27), middle panel (b) the
particle number densities (9.28) and lower panel (c) the equation of state ε(P ) before and
after the Maxwell construction. Parameter sets with mσ = {600, 700, 800}MeV from table 9.1
are used. The weak lines show the solutions (7.7), (7.8) and (7.9b) in the massless limit m = 0.
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Figure 9.3: Fractions of each particle density ni to the baryon density nB = (nu + nd + ns)/3
as a function of nB for the charge-neutral three-flavor quark matter in figure 9.2. The nuclear
saturation density is nsat = 0.165/fm3.

We again modify the equation of state with bag constants B with the shift (7.10) and determine
their upper bounds by solving the three-flavor inequality (7.12), owing to the strange matter
hypothesis. This yields the upper bag constant bounds

B ≤ (112.0 MeV)4
(

or B − V0 ≤ (226.4 MeV)4
) (

mσ = 600 MeV
)
, (9.29a)

B ≤ (68.2 MeV)4
(

or B − V0 ≤ (231.4 MeV)4
) (

mσ = 700 MeV
)
, (9.29b)

B ≤ (27.0 MeV)4
(

or B − V0 ≤ (241.3 MeV)4
) (

mσ = 800 MeV
)
. (9.29c)

These are so close to the lower bounds (8.26) that the inequalities practically become equalities,
and the bag constant is more or less fixed for a given mσ if the strange matter hypothesis holds,
but can take greater values if it does not. Like before, we focus on the lowest bag constants
since they generate stiffer equations of state and greater maximum masses.

Note that if one uses a single renormalization scale Λ and let the vacuum quark masses move
from their fit values, like [Ber13] and as discussed in section 9.3, one obtains the rather different
bounds B

1
4 ≤ {6.3, 48.2}MeV for mσ = {700, 800}MeV, whereas the potential is broken for

mσ = 600 MeV. These results are impossible to reconcile with the lower bag bounds (8.26) and
is one of the reasons for why we choose to go with two separate renormalization scales here.

9.5 Quark star solutions
With the numerical implementation in appendix G.5, we now modify the equations of state in
figure 9.2c with the bag shift (7.10) using bag constants above the lower bounds (8.26) and solve
the corresponding Tolman-Oppenheimer-Volkoff equations (6.1). This produces the mass-radius
solutions in figure 9.4:

• For stars with low central pressure, the quark chemical potential µ does not reach large
enough levels to activate the strange quark. Then the three-flavor equation of state and
mass-radius curve track their two-flavor siblings almost perfectly. As the two models use
different vacuum potentials, it is somewhat surprising that the correspondence is so good.

• For stars with greater central pressure, µ reaches sufficient levels and the strange quark is
present in the core. Exactly at the threshold, we see that the mass-radius curve grows
apart from the two-flavor curve into a new branch. This branch has lower masses because
of the softening of the equation of state as it ramps up during the strange crossover.

• The masses and radii are comparable to the two-flavor results in section 8.5, except that
the mass is lowered for stars with strange quarks. For stars that just satisfy the lower
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Figure 9.4: Mass-radius solutions of the Tolman-Oppenheimer-Volkoff equation (6.1)
parametrized by the central pressure Pc, using equations of state for three-flavor quark matter
in figure 9.2c modified by the bag shift (7.10) with bag constants at and above the bounds
(8.26).
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Figure 9.5: Radial profiles for the pressure P , energy density ε, cumulative mass m, quark
chemical potential µ, particle densities ni and baryon density nB = (nu + nd + ns)/3 for the
maximum mass three-flavor quark star H in figure 9.4. The nuclear saturation density is
nsat = 0.165/fm3.
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bag bounds (8.26) and hence respect instability of two-flavor quark matter with respect
to hadronic matter, we find maximum masses 1.6M� ≤M ≤ 1.8M� and corresponding
radii 11 km ≤ R ≤ 12 km depending on the precise mass mσ. Greater bag constants
violate the strange matter hypothesis and result in only lighter and smaller stars.

In figure 9.5 we take a more detailed look at the maximum mass star that has no phase
transition and respects the strange matter hypothesis:

• Apart from the presence of strange quarks, many features are similar to that of the
two-flavor star we discussed on page 96.

• The star is composed of three-flavor quark matter including strange quarks for r ≤ 6.5 km
and two-flavor quark matter for r ≥ 6.5 km out to the surface R = 11.6 km.

• With a maximum chemical potential µ = 465 MeV, the strange quark is much heavier
than the up and down quarks at the center, as seen from figure 9.2a. Thus, the star is far
from realizing ultra-relativistic three-flavor quark matter.

• The maximum central chemical potential is comparable in the two-flavor and three-flavor
models. If we assert that this carries over to a four-flavor model that also includes the
charm quark with constituent mass mc > 1 GeV [PDG20], it would only be present for
extreme central pressures far beyond that of the maximum mass star. This is why we
only need to include the three lightest {u, d, s} quarks when modeling stable quark stars.

Since these pure quark stars consist of three-flavor quark matter only in the core and two-flavor
quark matter out to the surface, and the latter is unstable with respect to hadronic matter,
they are unlikely to be found in nature. The only hope of realizing pure three-flavor quark stars
is if the strange matter hypothesis is true and they consist of strange quark matter everywhere.
Looking back at figure 9.2b, the strange quark is present for all mσ only when µ ≥ 350 MeV.
The only way of creating a strange quark star with our model is to increase B so much that
after the bag shift (7.10), we have µ ≥ 350 MeV at the surface defined by P = 0. Now look
at P (µ) in figure 9.6; in order for P (µ ≥ 350 MeV) ≤ 0, we need to shift P (µ) → P (µ) − B
with B1/4 ≥ 120 MeV. This is the minimum required bag constant for the strange quark to
appear out to the surface for all mσ. Unfortunately, this exceeds even the greatest upper bound
(9.29a), which was calculated precisely by assuming the strange matter hypothesis. This means
that it is not possible to self-consistently describe pure strange quark stars with this model!

250 275 300 325 350 375 400 425 450 475 500

−50

0

50

100

150

200

250

µ /MeV

sig
n(
P
)
·|
P
|1 4

/
M

eV

mσ = 600 MeV
mσ = 700 MeV
mσ = 800 MeV

Figure 9.6: Signed fourth root of the pressure P (µ) as a function of the quark chemical
potential µ for the equations of state in figure 9.2c, before the Maxwell construction and the
bag shift (7.10). The funny behavior in the lower left is caused by the phase transition, and is
corrected with a boring straight line after the Maxwell construction.
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9.6 Summary
In this chapter we have modeled quark stars with the three-flavor quark-meson model. We
found that the addition of the strange quark lowered the maximum masses of pure quark stars
to 1.6M� ≤ M ≤ 1.8M� with corresponding radii 11 km ≤ R ≤ 12 km, using 600 MeV ≤
mσ ≤ 800 MeV and the lowest instability-respecting bag constants (8.26). If the strange matter
hypothesis is violated, one can use greater bag constants and produce smaller and less massive
stars. The three-flavor stars are less massive than their two-flavor counterparts due to their
softer equations of state. Only close to the maximum mass star does the pressure and density
become sufficiently high to activate the presence of the strange quark.

As with the two-flavor model, chiral symmetry restoration happens in a crossover for mσ ≥
800 MeV, but a first-order phase transition for mσ < 800 MeV. The non-strange transition is
followed by a much slower strange crossover for all mσ.

At tree-level, it was again impossible to fit measured masses 400 MeV ≤ mσ ≤ 550 MeV
without breaking the grand potential. Ideally, a fully consistent calculation in the one-loop
large-Nc limit like the one presented in section 8.6 should be carried out also for the three-flavor
model, where loop effects are taken into account when fitting the parameters. Unfortunately,
no such calculation has been done yet, and we rely on the lesson learned back there: that
inconsistently fit 600 MeV ≤ mσ ≤ 800 MeV are representative of consistently fit masses
400 MeV ≤ mσ ≤ 600 MeV that are compatible with measurements.

Unfortunately, we fail to model pure strange quark stars consistently with this model. The
stars we found consisted of unstable two-flavor quark matter out to the surface. For them to
be stable, the strange matter hypothesis must be true and the strange quark must exist out
to the surface. This could only be achieved by increasing the bag constant beyond its upper
bound (9.29) that was calculated precisely by assuming the strange matter hypothesis.
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hadronic phase
(n, p, . . .)

quark phase
(u, d, s)

Figure 10.1: A hybrid star with a strange quark core surrounded by a hadronic envelope.
Compared to the hadronic phase, quark cores are thought to be much smaller than shown here.

In the preceding chapters we modeled pure quark stars consisting of deconfined quark matter
out to the surface. These models accounted for the chiral symmetry breaking of quantum
chromodynamics. They also featured a bag constant that generally allowed for negative pressure
in the equation of state, therefore often interpreted as a confinement mechanism. However, the
pressure in the stars were restricted to non-negative values, so they contained only deconfined
quarks. According to quantum chromodynamics, quarks are confined in hadrons at low density
and temperature, so with the possible exception of pure strange quark stars, they are unlikely
to be seen in nature.

More realistically, quark matter can be found in high-density cores of hybrid (neutron) stars
surrounded by envelopes of low-density hadronic matter. The recent observations [Ant+13;
Arz+18; Fon+21] of the heavy pulsars PSR J0348+0432, PSR J1614−2230 and PSR J0740+6620
with masses M = {2.01 ± 0.04, 1.91 ± 0.02, 2.08 ± 0.07}M� suggest that real neutron stars
could indeed reach sufficient densities for deconfined quark matter to form in the core. Due to
these observations, hybrid star models are benchmarked by their ability to pass the 2M�-limit.

In our final undertaking, we assemble hybrid stars with the quark-meson models from
chapters 8 and 9 in the core, surrounded by a phase governed by the representative Akmal-
Pandharipande-Ravenhall (APR) hadronic equation of state from [APR98]. All equations
of state are found at zero temperature, in β-equilibrium and subject to local charge neutrality.

This chapter is inspired by reference [Bay+18].
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10.1 Construction of hybrid equations of state
The individual equations of state for the quark and hadronic phases are available to us from two
different sources: the two-flavor and three-flavor quark-meson models from chapters 8 and 9,
and the APR equation of state from data points at [APR15]. Both sources give us the baryon
chemical potential µB, baryon density nB, pressure P and energy density ε.

To join the two equations of state for the hadronic phase H and quark phase Q into one hybrid
version, we apply the coarsest procedure outlined in [Bay+18, section V-C]:

1. Plot the pressures PH(µB) and PQ(µB) as functions of the baryon chemical potential µB .

2. Find the chemical potential µ0B at which the curves PQ(µ0B) = PH(µ
0
B) intersect. It

typically corresponds to baryon densities n0B = nB(µ
0
B) in the range 2nsat . n0B . 5nsat.

3. Compute the hybrid pressures and energy densities

P (µB) =

{
PH(µB) (µB ≤ µ0B)

PQ(µB) (µB > µ0B)
and ε(µB) =

{
εH(µB) (µB ≤ µ0B)

εQ(µB) (µB > µ0B)
. (10.1)

4. Eliminate µB from P (µB) and ε(µB) to obtain the hybrid equation of state ε(P ).

By definition, different phases have greater pressure before and after the intersection point.
The philosophy behind the method is that at any baryon chemical potential µB, nature prefers
the phase with lower grand potential Ω = −P . Effectively, εH(P ≤ P 0) and εQ(P > P 0) are
concatenated into one common equation of state ε(P ).

Figure 10.2 shows an example of the step-by-step construction of a hybrid equation of state
that joins the three-flavor quark-meson model with the hadronic APR equation of state. The
pressures intersect at µB ≈ 1300 MeV, which corresponds to the density n0BH ≈ 4nsat in
the hadronic phase and n0BQ ≈ 5.5nsat in the quark phase. The energy density drops by
∆ε = ε0Q − ε0H = 0.3 GeV/fm3 in a discontinuous phase transition at P = 0.2 GeV/fm3. The
transition takes the form of a line of constant vapor pressure, like in a Maxwell construction.
The construction is virtually identical with the two-flavor quark-meson model, only with a
lower drop ∆ε.

The biggest problem with this rough splicing method is that it assumes the equations of state
for both phases to be valid near the intersection point. In reality, it is unreliable to compare
them across the entire range of densities from hadronic to quark matter. A more sophisticated
approach described in [Bay+18, section V-F] is to restrict each equation of state to its domain
of validity, and then smoothly interpolate between them in a clever way in the intermediate
range where neither of them are trustworthy. We restrict ourselves to the simpler method above,
aiming only to investigate the mere possibility of using the quark-meson model in a hybrid star.

In our case, the issue of comparing the two phases is emphasized by the presence of a second
intersection point at a lower baryon chemical potential µB ≈ 1100 MeV. This means that
the hadronic phase does not have the greatest pressure for all chemical potentials below the
first intersection point! Assuming that the quark equation of state is unreliable in this regime
anyway, we simply gloss over this small inconsistency. It would be utterly insane to go back to
the quark phase near the surface.

In figure 10.3 we gather six equations of state constructed in this way for Nf = {2, 3} and
mσ = {600, 700, 800}MeV with the corresponding lowest bag constants satisfying the lower
bounds (8.26). These are the same parameters we considered in chapters 8 and 9 that generated
the most massive quark stars. Note that the phase transition generally becomes more severe
with three quark flavors and increasing mσ, which are accompanied by decreasing lowermost
instability-respecting B above the lower bounds (8.26).

The detailed numerical implementation can be found in appendix G.5.
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Figure 10.2: A hybrid equation of state built with steps 1–4 in section 10.1, joining the
three-flavor quark-meson model in chapter 9 with mσ = 600 MeV and B

1
4 = 111 MeV to the

hadronic Akmal-Pandharipande-Ravenhall equation of state from [APR98; APR15].
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Figure 10.3: Six hybrid equations of state constructed like the one in figure 10.2 using the
three parameter sets that generated the most massive quark stars with the two-flavor and
three-flavor quark-meson models in chapters 8 and 9.

10.2 Hybrid star solutions
With the numerical implementation in appendix G.5, we solve the Tolman-Oppenheimer-Volkoff
equation (6.1) with the hybrid equations of state in figure 10.3, obtaining the mass-radius
relations in figure 10.4:

• For low central pressures the quark phase is never activated, so the stars are neutron
stars modeled only with the hadronic APR equation of state.

• After onset of the quark phase, the mass-radius curve develops hybrid star branches below
the neutron stars. They have maximum masses 2.00M� ≤M ≤ 2.09M� with two flavors
in the core and 1.90M� ≤M ≤ 2.07M� with three flavors.

• At first glance, the hybrid branches in the left panels seem to plummet in mass immediately
after diverging from the mass-increasing hadronic curve. As discussed in section 4.3 and
particularly criterion (4.28), this indicates that all the hybrid stars are unstable. However,
close inspection of the right panels shows that the dives are preceded by small segments
of mass-increasing and thus stable hybrid stars! Such a stable segment is visible on all six
branches, if only a very tiny one, and they are longer with two flavors and smaller mσ.
This supports the claim in [Bay+18] that quark cores are very small, if they exist at all.

• In fact, [Ran+16, equation 15] and references within show that under general circumstances
and no matter how small the quark core is, the energy density drop ∆ε = ε0Q − ε0H in the
phase transition immediately destabilizes the hybrid branch if and only if

∆ε >
1

2
ε0H +

3

2
P 0. (10.2)

It is straightforward to verify that none of the six equations of state in figure 10.3 satisfy
this criterion, although the three-flavor equation of state with mσ = 800 MeV comes close.
Relatively to the energy densities, the transition pressures P 0 are similar with two and
three flavors, so the higher drop ∆ε in the three-flavor model explains its shorter stable
hybrid segments. Our findings are indeed consistent with the general criterion (10.2).

• Like before, we focus on the lowest bag constants respecting the lower bounds (8.26)
because they generate more interesting results with longer branches of stable hybrid stars.
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Figure 10.4: Mass-radius solutions of the Tolman-Oppenheimer-Volkoff equation (6.1)
parametrized by the central pressure Pc, using the hybrid equations of state in figure 10.3. The
colored bands show measured masses of three heavy pulsars from [Ant+13; Arz+18; Fon+21].

For a fixed value of mσ, a greater B in the bag shift (7.10) would lower the quark pressure
curve in the upper panel of figure 10.2, moving its intersection with the hadronic curve to
a greater baryon chemical potential µ0B and pressure P 0. The hybrid mass-radius curve
would then branch off the hadronic curve for higher central pressures and closer to the
maximum mass, where the stable hybrid segment shortens. This effect is shown clearly in
[Zac+16, figure 14], for example.

• The modeled maximum mass hybrid stars are certainly compatible with observations of
the heavy pulsars PSR J0348+0432, PSR J1614−2230 and PSR J0740+6620.
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Figure 10.5: Radial profiles for the pressure P , energy density ε, cumulative mass m, baryon
chemical potential µB, particle densities ni and baryon density nB = (nu + nd + ns)/3 for the
maximum mass hybrid stars H in figure 10.4.
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Figure 10.6: Hybrid equations of state like in figure 10.3, but with the consistently fit
two-flavor quark-meson model from section 8.6.

We inspect maximum mass stars on hybrid branches with both two and three flavors in the
core in figure 10.5:

• With both Nf = {2, 3}, the quark core has a central baryon density nB = 6nsat. It
extends R′ = {3.1, 1.6} km and has masses Mcore = {0.12, 0.02}M�. Like the pure quark
stars in chapters 7 to 9, hybrid star quark cores with two flavors are generally larger and
heavier than those with three flavors due to their stiffer equations of state.

• The hadronic phase dominates with both Nf = {2, 3}, making up {98.0, 99.7}% of the
stars’ volumes and {94, 99}% of their masses.

For completeness and to round everything off, we pay one last visit to our consistently fit two-
flavor quark-meson model in section 8.6. Recall that the quark star results with inconsistently
fit 600 MeV ≤ mσ ≤ 800 MeV practically speaking coincided with those from consistently fit
400 MeV ≤ mσ ≤ 600 MeV, so we should expect nothing different when using this model for
the quark core in a hybrid star. Using the slightly modified lower bag constant bounds (8.30)
that we found with the consistently fit model, we repeat our calculations and find the results in
figures 10.6 to 10.8. Indeed, we see that they agree very well with the results using inconsistently
fit 600 MeV ≤ mσ ≤ 800 MeV, and we only hope the same is true in the three-flavor situation.

10.3 Summary
In this chapter we have constructed hybrid stars modeled with the two-flavor and three-flavor
quark-meson models in the core, and the hadronic Akmal-Pandharipande-Ravenhall equation
of state in the outer region. Using σ meson masses 600 MeV ≤ mσ ≤ 800 MeV in the quark-
meson models, we saw that the hadronic mass-radius relation developed short branches of
hybrid stars up to maximum masses 2.00M� ≤M ≤ 2.09M� with two flavors in the core and
1.90M� ≤ M ≤ 2.07M� with three flavors. In general, the two-flavor cores are both more
massive and stable than three-flavor cores due to their stiffer equations of state. The maximum
masses overlap with recent mass measurements of the heavy pulsars PSR J0348+0432, PSR
J1614−2230 and PSR J0740+6620 around and above the 2M�-limit. For central pressures
beyond that of the maximum mass star, the discontinuous transition between the quark and
hadronic phases becomes so severe that it destabilizes the hybrid stars. This transition is
generally more dramatic with three flavors, so the stable segments are longer with two flavors.

121



Chapter 10: A Hybrid Quark-Hadron Model

5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

mσ = 600 MeV, B
1
4 = 27 MeV

mσ = 500 MeV, B
1
4 = 84 MeV

mσ = 400 MeV, B
1
4 = 107 MeV

H

R / km

M
/
M

�

PSR J0748+6620
PSR J0348+0432
PSR J1614−2230

neutron stars
hybrid stars

33 34 35 36

log10(Pc /Pa)

11 12

1.9

2

2.1

mσ = 600 MeV, B
1
4 = 27 MeV

mσ = 500 MeV, B
1
4 = 84 MeV

mσ = 400 MeV, B
1
4 = 107 MeV

H

R / km

Consistently fit two-flavor hybrid star mass-radius solutions

Figure 10.7: Mass-radius solutions like in figure 10.4, but with the consistently fit two-flavor
hybrid equations of state from figure 10.6.

0

0.5

1

1.5

{ε
,P

}/
(G

eV
/f

m
3 )

ε
P

0

0.5

1

1.5

2

m
/
M

�

0 1 2 3 4 5 6 7 8 9 10 11
0.9

1

1.1

1.2

1.3

1.4

1.5

r / km

µ
B
/

G
eV

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

r / km

n
i
/
n

sa
t

nu
nd
nB

H Consistently fit two-flavor maximum mass star
(mσ = 400 MeV, B

1
4 = 107 MeV, Pc = 1034.59 Pa)

Figure 10.8: Radial profiles like in figure 10.5, but for the maximum mass star H in figure 10.7.
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Chapter11
Conclusions and Outlook

11.1 Conclusions

In this thesis we have modeled quark stars using the MIT bag model and the quark-meson model
with two and three flavors, and finally hybrid stars by joining the quark-meson models with
the hadronic Akmal-Pandharipande-Ravenhall equation of state from [APR98; APR15]. All
resulting mass-radius relations, their maximum masses and corresponding radii are summarized
in figure 11.1 and table 11.1.

With the quark-meson model we could create pure quark stars with two flavors up toM ≤ 2.0M�
and with three flavors up to M ≤ 1.8M�. Due to their softer equations of state, we saw that
three-flavor stars are generally less massive than two-flavor stars. As two-flavor quark matter is
unstable compared to hadronic matter, pure two-flavor quark stars are unlikely to be found in
nature. However, if the strange matter hypothesis of [Bod71; Wit84] is true, strange quark
stars consisting of three-flavor quark matter out to the surface would be stable and could exist.
We fail to model strange quark stars self-consistently with the three-flavor quark-meson model,
as the bag constant must exceed its upper bound calculated precisely by assuming the strange
matter hypothesis if the strange quark is to exist out to surface.

We calculated the grand potential of the quark-meson models to tree-level in bosons and
one-loop in fermions. This is inconsistent in terms of the number of loops, but can be regarded
consistent in the one-loop large-Nc limit. The equations of state were then found at zero
temperature, in β-equilibrium and subject to local electrical charge neutrality.

In particular, the parameter space of the quark-meson model is plagued by the “ad-hoc” σ meson,
whose mass is only known to lie in 400 MeV ≤ mσ ≤ 550 MeV. [PDG20] Depending on its
value, we saw that chiral symmetry restoration occurred in a rapid crossover for mσ ≥ 800 MeV,
but a discontinuous phase transition for mσ < 800 MeV. Moreover, we could only fit masses
mσ ≥ 600 MeV that exceed the measurements to prevent the minimum of the grand potential
from disappearing in the vacuum phase. With two flavors, we nailed this problem down to the
inconsistency of fitting parameters at tree-level to a potential that is calculated in the one-loop
large-Nc limit. Repeating our calculation with a consistently fit potential in this limit found by
[Adh+17a; Adh+17b], we learned that we could still trust our original results, as if inconsistently
fit 600 MeV ≤ mσ ≤ 800 MeV correspond to consistently fit 400 MeV ≤ mσ ≤ 600 MeV.

Using the quark-meson models in the core, we could also form short ranges of stable hybrid stars
up to M ≤ 2.1M� with both two and three flavors, where the two-flavor stars are generally
somewhat heavier due to their stiffer equations of state. The hybrid stars contained very small
quark cores no more massive than 0.12M� and 0.02M� with two and three flavors, respectively.
This resonates with the claim in [Bay+18] that hybrid star quark cores are very small, if they
exist at all. Beyond the maximum mass star, the discontinuous phase transition between the
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Figure 11.1: Summary of all mass-radius relations obtained in this thesis: neutron stars with
the hadronic Akmal-Pandharipande-Ravenhall equation of state (APR); quark stars with the
two-flavor and three-flavor MIT bag models (MIT2 and MIT3) and quark-meson models (QM2

and QM3); and hybrid stars joining QM2 + APR and QM3 + APR. In the MIT2 and MIT3

models, we have used bag constants covering the bag window (7.14). In the QM2 and QM3

models, we vary 600 MeV ≤ mσ ≤ 800 MeV and use the corresponding lowest bag constants at
the lower bounds (8.26), as greater bag constants only generate less massive stars. The colored
bands show measured masses of the heavy pulsars PSR J0348+0432, PSR J1614−2230 and
PSR J0740+6620 from [Ant+13; Arz+18; Fon+21]. For clearer presentations of the results
with each model, please consult figures 7.3, 8.5, 9.4 and 10.4.

Table 11.1: Maximum masses and corresponding radii of the stellar sequences in figure 11.1.

Flavors Chapter Model Maximum masses Corresponding radii

Nf = 2 Chapter 7 MIT bag model 1.7M� ≤M ≤ 2.0M� 9.6 km ≤ R ≤ 11.0 km
Nf = 2 Chapter 8 Quark-meson model 1.8M� ≤M ≤ 2.0M� 10.9 km ≤ R ≤ 11.2 km
Nf = 2 Chapter 10 Hybrid model 2.0M� ≤M ≤ 2.1M� 11.2 km ≤ R ≤ 11.2 km

Nf = 3 Chapter 7 MIT bag model 1.6M� ≤M ≤ 1.9M� 9.0 km ≤ R ≤ 10.3 km
Nf = 3 Chapter 9 Quark-meson model 1.6M� ≤M ≤ 1.8M� 11.0 km ≤ R ≤ 11.6 km
Nf = 3 Chapter 10 Hybrid model 1.9M� ≤M ≤ 2.1M� 11.2 km ≤ R ≤ 11.5 km
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quark and hadronic phases becomes so severe that it destabilizes stars with larger quark cores
against radial perturbations. We succeed in modeling hybrid stars with small quark cores
around the recent mass observations [Ant+13; Arz+18; Fon+21] of the heavy pulsars PSR
J1614−2230, PSR J0348+0432 and PSR J0748+6620 around and above 2M�.

The indication that hybrid stars can have only small quark cores suggests that they are hard
to observe decisively in nature. With future advances in our theoretical understanding and
observational techniques, such as the Neutron Star Interior Composition Explorer (NICER)
mission [NICER17], heavy observed neutron stars could one day turn out to have quark cores.

In earlier work, [Zac+15] have modeled pure quark stars with a vector meson-extended three-
flavor quark-meson model, and this was incorporated into hybrid stars in [Zac+16]. With the
vector meson interaction turned off and using parameters comparable to ours, they find hybrid
stars with similar maximum masses M ≤ 1.9M�, and greater masses can be reached if this
interaction is enabled. Quark stars have also been modeled with the Nambu-Jona-Lasinio model
in [Li+20] and generalized to hybrid stars in [Con+17], for example. They also find maximum
hybrid star masses 1.9M� ≤M ≤ 2.1M� with reasonable parameter choices. Even [Ott+20]
find hybrid stars in the band 2.0M� ≤ M ≤ 2.1M� using a non-perturbative functional
renormalization group approach with the quark-meson model. Despite using different models
for both the quark and hadronic phases, our results are in good agreement with these works.

11.2 Outlook
A natural extension of our work would be to explore the parameter space of the quark-meson
model more thoroughly. Our philosophy has been to keep almost all parameters fixed, but vary
the most uncertain parameter mσ and focus on the corresponding lowest instability-respecting
bag constants B because it generates stiffer equations of state and thus greater maximum
masses. A more detailed treatment could also vary the quark masses, other meson masses and
use larger bag constants. For example, [Zac+15] find that the maximum mass increases with the
quark masses mu = md in the variation of our model mentioned above. One can also include
more parameters by adding terms describing the axial anomaly of quantum chromodynamics
and studying more complex symmetry breaking patterns, as described at length in [Len+00].

A consistent parameter fitting method in the one-loop large-Nc limit is only available for the
two-flavor quark-meson model. It would be interesting to generalize it to the three-flavor model
and see if the ability to fit experimental values of mσ carries over from the two-flavor case.

It is natural to expect that our greatest source of error lies neither in the calculation of the
grand potential nor its parameter fitting, but in the quark-meson model itself. First-principle
approaches of studying quark matter from quantum chromodynamics remains difficult, as the
sign problem plagues lattice calculations at finite baryon chemical potentials and perturbation
theory is applicable only at high energies. Of course, other and more sophisticated effective
models could be examined. For example, confinement could be incorporated with Polyakov-loop
extended quark-meson models (PQM models, see for example [Sch+07a; Sch+10; Fol18]) and
NJL models (PNJL models, see for example [Fuk04; Fu+08; Mat+21]). One could also examine
the effects of modeling the color-superconducting phase of the phase diagram in figure 6.2.

More effort could also be put into handling the phase transition in hybrid stars more carefully.
For example, the interpolation techniques described in [Bay+18] can be used near the intersection
point of the transition, where both the quark and hadronic equations of state are unreliable.
This method constructs a unified equation of state that bridges the gap between the two phases,
constrained by physical requirements like retaining a causal speed of sound.

One can also refine calculations to nonzero temperature and beyond mean fields, investigate
effects of non-local charge neutrality, and solve the axially symmetric generalization of the
spherically symmetric Tolman-Oppenheimer-Volkoff to model realistic spinning pulsars.
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AppendixA
General Relativity

This appendix is inspired by references [Car19], [MTW73] and [Kac20].

A.1 The geometry of curved spacetime
In this section, we review the geometrical aspects of general relativity. We make no attempt
to be mathematically rigorous, but rather focus on listing important quantities and equations
and the intuitive connections between them. For more details, we refer to the references listed
above which this summary is based on.

A.1.1 Coordinates and tensors

In general relativity, 3-dimensional space and 1-dimensional time are no longer regarded
separate as they are in Newtonian mechanics. They are rather intertwined into spacetime – a
(3 + 1)-dimensional construct with coordinates

xµ = (x0, x1, x2, x3). (A.1)

In flat Minkowski space, the coordinates can be taken as xµ = (ct, x, y, z). Mathematically, the
geometry of spacetime is described by a Riemannian manifold that generalizes flat Minkowski
space to curved space. At every point on such a manifold, spacetime locally resembles Minkowski
space in the tangent space located at that point, and all such tangent spaces vary smoothly
from point to point. For example, figure A.1 pictures the tangent space at a point of the
2-sphere manifold. Familiar concepts like angles, lengths, area and volume apply locally in the
tangent space at each point in infinitesimal form, and one can generalize such concepts to the
full manifold by integrating the local contributions from one point on the manifold to another.

We will place vector fields V µ(xν), and later tensor fields, that associate a vector V µ to every
point xν on a manifold. As explained in figure A.1, such a vector lies in the tangent vector
space at every point on the manifold. To motivate the transformation properties of tensors on
a manifold, we can use the fact that the set of directional derivatives constitute a vector space
with basis vectors given by the partial derivatives. Suppose φ(x) is a scalar function and x(τ)
and x(λ) are two paths on the manifold with directional derivatives given by the chain rule as

dφ
dτ

=
dxµ

dτ
∂φ

∂xµ
=

dxµ

dτ
∂µφ and dφ

dλ
=

dxµ

dλ
∂φ

∂xµ
=

dxµ

dλ
∂µφ. (A.2)

Like d/dτ and d/dλ, the linear combination (ad/dτ + bd/dλ) is a perfectly good derivative
operator, as it is both linear and satisfies the product rule(

a
d
dτ

+ b
d

dλ

)
(fg) =

(
a

df
dτ

+ b
df
dλ

)
g +

(
a

dg
dτ

+ b
dg
dλ

)
f. (A.3)
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Figure A.1: The tangent space at a point on the 2-sphere manifold can be pictured as
the tangent plane at that point. If a vector field is placed on the manifold, then one vector
would lie in such a tangent space at every point on the manifold. Credit: “BenFrantzDale”
(https://commons.wikimedia.org/wiki/File:Image_Tangent-plane.svg).

One can verify that the set of all differential operators, implicitly assumed to work on some
scalar function, satisfy all criteria for being a vector space. Thus, like one can regard V = V µeµ
as a vector with components V µ and basis vectors eµ, one can regard

d
dλ

=
dxµ

dλ
∂µ (A.4)

as a vector with components dxµ/dλ and basis vectors ∂µ = ∂/∂xµ. To see this clearly, make a
coordinate transformation

x→ x′(x) with inverse x′ → x(x′). (A.5)

The product of the Jacobian matrices for a transformation and its inverse is the identity

∂x′α

∂xγ
∂xγ

∂x′β
= δαβ . (A.6)

Using the chain rule and the Jacobian property, the directional derivative transforms as

d
dλ

=
dxµ′

dλ
∂µ′ =

(
dxα

dλ
∂xµ

′

∂xα

)
︸ ︷︷ ︸

components

(
∂xβ

∂xµ′
∂β

)
︸ ︷︷ ︸

basis

=
dxµ

dλ
∂µ. (A.7)

We see that the transformation of the components and the basis vectors exactly cancel each
other, so the directional derivative is unchanged – consistent with it being a vector.

Note that we almost always use the convention xµ
′
= x′µ of placing the prime on the index

rather than the underlying object, but defined to mean the same. This makes it easy to see
which indices are associated with transformed quantities. This is a matter of taste. For example,
we find it easier to read, remember and reason about the index operations in the left version of
the transformation

xµ
′
=
∂xµ

′

∂xµ
xµ compared to x′µ =

∂x′µ

∂xν
xν . (A.8)

We define an n-dimensional covariant vector as an n-tuple Vµ that transforms with the same
matrix ∂xµ

/
∂xµ

′ as the change of basis in transformation (A.7) as

Vµ′ =
∂xµ

∂xµ′
Vµ. (A.9a)
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Oppositely, we define an n-dimensional contravariant vector as an n-tuple V µ that transforms
with the inverse matrix ∂xµ′

/
∂xµ as

V µ′ =
∂xµ

′

∂xµ
Vµ. (A.9b)

More generally, we define an n-dimensional tensor of rank (r, s) as an array composed of r
n-dimensional contravariant indices and s n-dimensional covariant indices that transforms as

T
µ′1...µ

′
r

ν′1...ν
′
s

=
∂xµ

′
1

∂xµ1
· · · ∂x

µ′r

∂xµr
∂xν1

∂xν
′
1
· · · ∂x

νs

∂xν′s
Tµ1...µrν1...νs (A.9c)

under the coordinate transformation (A.5).

A.1.2 Metric tensor

The metric tensor
gµν (x) = eµ(x) · eν(x) (A.10)

is defined as the inner products between basis vectors eµ that span the tangent spaces at each
point x on the manifold. It thus encodes lengths of the basis vectors and angles between them,
and is therefore a fundamental object that describes the geometry of the manifold. For example,
in Minkowski space with coordinates xµ = (ct, x, y, z), the metric is ηµν = diag(+1,−1,−1,−1).

In addition, we define the inverse metric tensor gµν as the inverse matrix satisfying

gµνgνσ = δµσ . (A.11)

Using the metric and its inverse, we can raise and lower indices on tensors. For example,
the object gµνV ν , according to definition (A.9c), transforms as a covariant vector

gµ′ν′V
ν′ =

(
∂xα

∂xµ′
∂xβ

∂xν′
gαβ

)(
∂xν

′

∂xν
V ν

)
=
∂xα

∂xµ′

(
gανV

ν

)
, (A.12)

so it is meaningful to label it as a covariant vector with a lower index Vµ = gµνV
ν . Similarly,

we can use the inverse metric gµν to raise indices.

A.1.3 Line and volume elements

From the metric tensor, one defines the line element

ds =
√
gµν dxµ dxν (A.13a)

that extends the concept of distance locally to every point on the manifold. By integrating the
line element from one point on the manifold to another, one can compute the total distance

s =

∫ 2

1
ds =

∫ 2

1

√
gµν dxµ dxν (A.13b)

between two points 1 and 2. Similarly, one can compute the volume of a region

V =

∫
dV =

∫ √
− |γ|dx1 dx2 dx3, (A.13c)

where γ is the induced metric on the surface and |γ| < 0 its determinant. The factor
√

− |γ|
arises to make the volume element dnx

√
− |γ| invariant under coordinate transformations.
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A.1.4 Covariant derivative and connection coefficients

Knowing how vectors and general tensors transform, let us generalize the concept of derivatives
to curved space. By the transformation rules we have found so far and the product rule, the
normal partial derivative of a vector transforms like

∂µ′V
ν′ =

(
∂xµ

∂xµ′
∂µ

)(
∂xν

′

∂xν
V ν

)
=
∂xµ

∂xµ′
∂xν

′

∂xν
∂µV

ν +
∂xµ

∂xµ′
∂2xν

′

∂xµ ∂xν
V ν . (A.14)

The first term respects the tensor transformation law (A.9c), but the second does not, so ∂µV ν

is not a tensor. We define a tensorial derivative ∇µ by demanding that it adheres to the
tensorial transformation

∇µ′V
ν′ =

∂xµ

∂xµ′
∂xν

′

∂xν
∇µV

ν . (A.15)

It turns out that our requirements can be met if we define the covariant derivative as

∇µV
ν = ∂µV

ν + ΓνσµV
σ. (A.16)

[Car19, equation 3.6-3.10] shows that it obeys the tensorial transformation (A.15) if the so-called
connection coefficients Γνσµ transform according to

Γν
′
µ′λ′ =

∂xµ

∂xµ′
∂xλ

∂xλ′
∂xν

′

∂xν
Γνµλ +

∂xµ

∂xµ′
∂xλ

∂xλ′
∂2xν

′

∂xµ ∂xλ
. (A.17)

It is possible to generalize the covariant derivative to an arbitrary tensor Tα1...αr
β1...βs

of rank (r, s)
by adding more terms with connection coefficients. [Car19, equation 3.11-3.16] shows that the
general covariant derivative that respects the tensorial transformation law (A.9c) is

∇µT
α1...αr
β1...βs

= ∂µT
α1...αr
β1...βs

+ Γα1
σµT

σα2...αr
β1...βs

+ · · ·+ Γαr
σµT

α1...αr−1σ
β1...βs

− Γσβ1µT
α1...αr
σβ2...βs

− · · · − ΓσβsµT
α1...αr
β1...βs−1σ

.

(A.18)

That is, for each upper index αi, add +Γαi
σµT

α1...αi−1σαi+1...αr

β1...βs
, and for each lower index βi,

subtract ΓσβiµT
α1...αr
β1...βi−1σβi+1...βs

.

Note that the connection coefficients (A.17) do not transform like tensors – the whole point
is to stash the non-tensorial behavior into the connection coefficients so that the covariant
derivative (A.18) transforms as a tensor. However, since ∇µV

ν and ∇̂µV
ν for two different

connection coefficients Γαβµ and Γ̂αβµ are tensors by definition, subtracting them shows that the
difference

Sαβγ = Γαβγ − Γ̂αβγ (A.19)

between two connection coefficients does transform like a tensor.

There are many possible choices of the connection coefficients that satisfy equation (A.17).
However, it turns out that we can find a set of unique connection coefficients from the metric if
we impose two additional requirements. First, we demand that the torsion tensor

Tαβγ = Γαβγ − Γαγβ = 0 (A.20)

vanishes. Equivalently, the connection coefficients Γαβγ = Γαβγ are symmetric in the lower indices.
Second, we require metric compatibility

∇ρgµν = 0, (A.21)

expressing that the metric is covariantly constant. One can show that this guarantees that
lengths of vectors and angles between them are preserved under parallel transport, which we
will study in the next section, making this a reasonable demand. [Heh+76, equation 2.10] The

132



Section A.1: The geometry of curved spacetime

covariantly constant nature of the metric implies that we can view spacetime as a continuum
of flat Minkowski spacetimes, “sewn together” by the connection Γαβγ . Metric compatibility
implies that

gµλ∇ρV
λ = ∇ρ(gµλV

λ) = ∇ρVµ, (A.22)

so we can raise and lower indices inside covariant derivatives, even if the metric is outside.
Using both of these assumptions, we can write out the metric compatibility requirement (A.21)
for three permutations of the indices:

∇ρgµν = ∂ρgµν − Γλρµgλν − Γλρνgµλ = 0, (A.23a)
∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ = 0, (A.23b)
∇νgρµ = ∂νgρµ − Γλνρgλµ − Γλνµgρλ = 0. (A.23c)

By subtracting the second and third equation from the first and solving the resulting equation
for the connection, we find the Christoffel symbols or metric connection

Γσµν =
1

2
gσρ

(
∂µgνρ + ∂ν gρµ − ∂ρgµν

)
. (A.24)

In general relativity, we will always use this unique representation of the connection coefficients
given in terms of the metric only. With this choice, the metric single-handedly determines
the geometry of spacetime, as it is the only fundamental object that all the other geometric
quantities we have looked at depends on. In fact, the requirements of zero torsion and metric
compatibility that led to this metric can be viewed as defining features of general relativity. By
relaxing either of these requirements, one can come up with various generalizations of general
relativity. For example, by allowing for nonzero torsion (A.20), one obtains the Einstein-Cartan
theory of gravitation. According to [Heh+76], the inclusion of torsion is equivalent to accounting
for the spin of the microscopic particles that make up the macroscopic matter. However, general
relativity is concerned with describing macroscopic objects, which justifies our demand of zero
torsion.

A.1.5 Parallel transport and the geodesic equation

Now that we know how to take proper derivatives of vector fields and general tensor fields on
manifolds, we can discuss how to parallel transport vectors on the manifold. In flat space, we
can move a vector around, and it will keep pointing in the same direction. But on a curved
2-sphere, a vector that is parallel transported will end up different depending on the route
taken, as illustrated in figure A.2. Generalizing the directional derivative d/dτ = (dxµ/dτ)∂µ
from calculus, we define the directional covariant derivative along a path x(τ) as

D

dτ
=

dxµ

dτ
∇µ, (A.25)

where ∇µ is the covariant derivative (A.18). We say that a tensor is parallel transported if
its components are kept constant during transport, as expressed by

D

dτ
Tµ1...µmν1...νn = 0. (A.26)

For the special case of a vector V µ we get the equation of parallel transport

dV µ

dτ
+ Γµσρ

dxσ

dτ
V ρ = 0. (A.27)

The solution of this first-order differential equation is the continuation V µ(τ) from an initial
vector V µ(0) along the path such that its components are constant.

In Euclidean space, a straight line is the shortest path between two points. In curved space, we
call the shortest path between two points on a manifold a geodesic. An equivalent definition
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N

S

A B

�

Figure A.2: When a vector is parallel transported around the closed loop A→ N → B → A
on the 2-sphere, its final direction depends on the path taken. Credit: “Fred the Oyster”
(https://commons.wikimedia.org/wiki/File:Parallel_Transport.svg).

of both a straight line and a geodesic is that it is the path x(τ) that parallel transports its own
tangent vector dxµ/dτ . Inserting this vector into the equation of parallel transport (A.27), we
find the geodesic equation

d2xµ

dτ2
+ Γµρσ

dxρ

dτ
 dxσ

dτ
= 0. (A.28)

In flat spacetime, it reduces to the equation of a straight line d2xµ
/

dτ2 = 0. One of Einstein’s
profound insights of general relativity was that gravity does not simply alter the path of a freely
falling particle away from the straight line it would follow in Euclidean space in the absence
of gravity. Instead, gravity presents itself in the geometry of spacetime, as the presence of
energy-momentum curves spacetime and lays geodesic “tracks” according to equation (A.28)
that any freely falling particle is destined to follow. Gravity is geometry.

A.1.6 Riemann curvature tensor, Ricci tensor and Ricci scalar

So far we have used the term “curvature” quite informally – let us now formalize this. We
already saw that parallel transporting a vector along different paths on a curved manifold like
the 2-sphere yield different results. We have also seen that the covariant derivative measures the
rate of change of a vector along some direction compared to what it would have been if it was
parallel transported. Thus, the commutator [∇µ,∇ν ]V

ρ = ∇µ∇νV
ρ −∇ν∇µV

ρ measures the
difference of parallel transporting a vector along two different directions. Explicitly inserting
the covariant derivative (A.18), this commutator can be written

[∇µ,∇ν ]V
ρ = RρσµνV

σ − T λµν∇λV
ρ, (A.29)

where T λµν is the torsion tensor (A.20) that we assume to vanish, and we define the Riemann
curvature tensor

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (A.30)

We expect that if space is flat, then a parallel transported vector should not depend on the path
taken, so the commutator (A.29) and thus the Riemann tensor (A.30) should vanish. If there
exists any choice of coordinates in which the curvature tensor vanishes, then it vanishes in all
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coordinates by its tensorial nature, and this is our ultimate definition of flat space. In fact, it
turns out that at any point x0 we can find normal coordinates xµ in which the metric locally
resembles Minkowski space with gµν = ηµν and ∂σgµν = 0 to first order in the displacement.
To second order in the displacement, [KKK12] shows that the metric can be written

gµν(x) = ηµν −
1

2
Rαµβν(x

α − xα0 )(x
β − xβ0 ). (A.31)

This shows that the Riemann tensor is a very appropriate measure of curvature. Moreover,
Einstein’s equivalence principle and the related principle of general covariance states
that a physical law that is expressed by a tensor equation in Minkowski space also holds in any
reference frame in the presence of gravity. [Wei72, chapter 4]

From the curvature tensor, we can form tensors of lower rank by contracting some of its indices.
With the Christoffel connection (A.24), the only independent contraction we can make is the
Ricci tensor

Rµν = Rλµλν . (A.32)

The two other possible contractions either vanish or are related to the Ricci tensor. Thus, the
simplest scalar quantity we can form that says something about curvature is the Ricci scalar

R = Rµµ. (A.33)

In the next section, we will use the Ricci scalar to derive the Einstein field equations.

A.2 Least-action derivation of the Einstein field equations

Following [Car19, section 4.3], we will derive the Einstein field equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν (A.34)

from the principle of least action. We will postulate the action

S[gµν ,∇σgµν ] =

∫
dnxL(gµν ,∇σgµν) =

∫
dnx

√
− |g|L̂(gµν ,∇σgµν) (A.35)

that, when varied with respect to the metric gµν and subject to the principle of least action
δS = 0, yields the Einstein field equations. Here L and L̂ are Lagrangian densities with and
without the metric determinant |g| < 0. As the strategy simply involves guessing the correct
action that produces the desired equations, this derivation is not based on any physical first
principles, so its consequences would ultimately have to be experimentally verified. Nevertheless,
[Car19, page 160-161] explains how one can at the very least narrow down the choice of action
based on scalar quantities that are relevant for describing curved space.

We postulate the Hilbert action

SH =
c3

16πG

∫
dnx

√
− |g|R. (A.36)

It is not an unreasonable guess, for the Lagrangian is a scalar quantity, and we showed that the
simplest scalar quantity we could create that somehow describes curvature is the Ricci scalar
(A.33). The factor

√
− |g| ensures that the volume element is invariant. The prefactor has been

conveniently chosen to yield correct result (A.57) in the end, which we will see in appendix A.3.2
leads to Newtonian gravity in the Newtonian limit. From an ignorant point of view, we could
instead regard the prefactor as an arbitrary constant at this point, and eventually replace it
with whichever combination of constants that reproduces Newtonian gravity in the Newtonian
limit.
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We could get the corresponding equations of motion by plugging the Lagrangian density
L̂ = Rc3/16πG into the Euler-Lagrange equations

∂L̂
∂φ

−∇µ

(
∂L̂

∂ (∇µφ)

)
= 0. (A.37)

In fact Hilbert himself did this, [Hil24] but doing so requires a great deal of effort. Instead, we
will vary the action with respect to the metric and express the variation in the form

δSH =

∫
dnx

√
− |g| F (gµν ,∇σgµν) δg

µν = 0. (A.38)

Then we can conclude that the equations of motion are F (gµν ,∇σgµν) = 0.

It may sound more natural to express the variation in terms of the ordinary metric gµν instead
of its inverse gµν , like we did above. But since gµλgλν = δµν , varying both sides with the product
rule relates the two by

δgµν = −gµρgνσδgρσ. (A.39)

Thus, the stationary points are the same regardless of which one we vary with respect to. We
vary with respect to the inverse metric, as it makes the derivation flow more naturally.

Using R = Rµµ = gµνRµν and varying the action (A.36) with the product rule, we obtain

δSH =
c3

16πG

[ ∫
dnx

√
− |g| gµνδRµν︸ ︷︷ ︸
δS1

+

∫
dnx

√
− |g|Rµνδgµν︸ ︷︷ ︸
δS2

+

∫
dnxR δ

√
− |g|︸ ︷︷ ︸

δS3

]
. (A.40)

The second term δS2 is already in the desired form (A.38), but we must do some work to bring
δS1 and δS3 to the same form.

First, let us take care of δS1 by reexpressing δRµν in terms of metric variations in a top-down
manner. The Ricci tensor Rµν = Rλµλν is the contraction of the Riemann tensor (A.30).
Varying it, we get

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓ

ρ
µσ +

(
δΓρµλ

)
Γλνσ + Γρµλ

(
δΓλνσ

)
−
(
δΓρνλ

)
Γλµσ − Γρνλ

(
δΓλµσ

)
. (A.41)

Now reexpress the variations of the Christoffel symbols. Instead of hammering straight through
their definition (A.24), we observe that while single Christoffel symbols do not transform
as a tensor, their variation is the difference between two Christoffel symbols and do, as in
equation (A.19). It is therefore meaningful to use equation (A.18) to take its covariant derivative

∇λδΓ
ρ
νµ = ∂λδΓ

ρ
νµ + ΓρλσδΓ

σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ. (A.42)

Flipping this equation around for ∂λδΓρνµ and substituting the result into the variation of the
Riemann tensor (A.41), we witness an avalanche of cancellations, leaving only the terms

δRρµλν = ∇λδΓ
ρ
νµ −∇νδΓ

ρ
λµ. (A.43)

The variation of the Ricci tensor follows by contracting ρ and λ. Then the first term in the
variation of the action becomes

δS1 =

∫
dnx

√
− |g| gµν

(
∇λδΓ

λ
µν −∇νδΓ

λ
λµ

)
=

∫
dnx

√
− |g|∇σ

(
gµνδΓσµν − gµσδΓλλµ

)
. (A.44)
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We still have not brought the variation to the form (A.38), but it does not matter. By Stokes
theorem [Car19, equation 3.35]∫

M
dnx

√
|g|∇µV

µ =

∫
∂M

dn−1
√
|γ|nµV µ, (A.45)

our integral for δS1 over n-space can be converted into a boundary integral over (n− 1)-space
at infinity. But the variational method that we have used here asserts that there is no variation
on the boundary, so

δS1 = 0. (A.46)

Let us now express δS3 in terms of δgµν . We will need the matrix identity

log |M | = tr logM
(
where |M | = detM

)
. (A.47)

This is trivial for diagonal matrices M . By using the property |AB| = |A| |B|, we can easily
extend it to diagonalizable matrices M = PDP−1. Varying both sides of equation (A.47), we
obtain

δ |M |
|M |

= tr
(
M−1δM

)
. (A.48)

For details on variations of matrix functions, we recommend working through [Bla09]. Taking
M to be the metric gµν and M−1 its inverse gµν , we find

δ |g| = |g| gµνδgµν = − |g| gµνδgµν , (A.49)

where we used equation (A.39) to convert δgµν to δgµν . Now the chain rule gives

δ
√
− |g| = −1

2

δ |g|√
− |g|

= −1

2

√
− |g|gµνδgµν , (A.50)

so the third contribution to the variation of the action (A.40) is

δS3 =

∫
dnx

√
− |g|

(
−1

2
Rgµν

)
δgµν . (A.51)

At last, we have brought the variation of the action to the form (A.38) with

δSH =
c3

16πG

∫
dnx

√
− |g|

(
Rµν −

1

2
Rgµν

)
δgµν = 0. (A.52)

The variation of the integral can only vanish if the integrand vanishes, so we have found the
Einstein field equations in vacuum,

c3

16πG

1√
− |g|

δSH
δgµν

= Rµν −
1

2
Rgµν = 0. (A.53)

To unveil the Einstein field equations in the presence of matter, we add a contribution SM =∫
dnx

√
− |g| LM that represents matter to a new total action

S = SH + SM . (A.54)

Repeating the same procedure as above then yields the equations of motion

c3

16πG

1√
− |g|

δS

δgµν
=

(
Rµν −

1

2
Rgµν

)
+

c3

16πG

1√
− |g|

δSM
δgµν

= 0. (A.55)

If we now define the energy-momentum tensor Tµν by

c3

16πG

1√
− |g|

δSM
δgµν

= −8πG

c4
Tµν , (A.56)

we uncover the Einstein field equations in the presence of matter,

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (A.57)
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A.3 The Newtonian limit

In Newtonian gravity, the presence of mass density ρ(x) produces a gravitational field −∇V (x)
through the Poisson equation

∇2V (x) = 4πGρ(x). (A.58)

In turn, matter respond to the field as particles are accelerated by

d2x

dt2
= −∇V (x). (A.59)

Given the initial distribution and velocities of matter, these two coupled differential equations
determine its movement forever and thus contain all of Newtonian gravity. Here we will show
that general relativity is reducible to Newtonian gravity in the Newtonian limit characterized
by slow movement and a static and weak gravitational field. In particular, we will demonstrate
that the response of matter to the field (A.59) follows from the geodesic equation (A.28), and
similarly that the response of the field to matter (A.58) follows from the Einstein field equations
(A.57).

Before we set out, however, let us make the Newtonian limit mathematically precise. First, by
slow movement, we mean that all velocities v are much lower than the speed of light c, so

v

c
� 1. (A.60a)

In a potential V measured with respect to V (∞) = 0, freely falling particles are accelerated to
kinetic energies on the scale 1

2mv
2 = mV . Consequently, particles could reach velocities that

violate criterion (A.60a) unless the potential is bounded by

V

c2
� 1. (A.60b)

Motion is also generated by internal stresses in the system. For example, in appendix B we
study perfect fluids with energy-momentum (B.5). We show that sound waves propagate with
the velocity v = c

√
dP/dε on top of a fluid in equilibrium with T ν

µ = diag (ε,−P,−P,−P ). It
can therefore also be expressed as v = c

√
−dT i

i

/
dT 0

0 , where T i
i is any one diagonal element

and there is no sum over i. More generally, we therefore assume slow movement corresponds to
dTij/dT00 � 1, and by integration,

Tij
T00

� 1. (A.60c)

In other words, we can neglect pressure P in favor of energy density ε in the Newtonian limit.
This result can be understood physically – pressure is a result of randomized motion and
decreases with the velocities of the motion, while energy is equivalent to mass and its presence
is unaffected by the velocity of the mass. In summary, slow motion is achieved only if equations
(A.60a), (A.60b) and (A.60c) are all satisfied.

The second assumption of a static gravitational field means that all time derivatives of the
metric vanish like

∂0gµν = 0. (A.61)

Third, a weak field corresponds to a metric that can be written as a perturbation

gµν = ηµν + hµν with
∣∣hµν∣∣� 1 (A.62a)

on top of flat Minkowski space ηµν = diag(+1,−1,−1,−1). The inverse metric gµν should
satisfy gµνgνσ = δµσ , so to first order in h we must have

gµν = ηµν − hµν , (A.62b)

where we raise indices of the perturbation hµν = ηµρηνσhρσ with the Minkowski metric ηµν .
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A.3.1 Matter’s response to the field

In general relativity, matter responds to the gravitational field by moving along geodesics x(τ)
that satisfy the geodesic equation

d2xµ

dτ2
+ Γµρσ

dxρ

dτ
dxσ

dτ
= 0. (A.63)

Let us now show that we recover Newton’s second law (A.59) in the Newtonian limit.

The criterion of slow movement equation (A.60a) implies that a particle with four-velocity
dxµ/dτ has spatial components dxi

/
dt� c, so it must be dominated by the temporal component

cdt/dτ ≈ c. Then dxi
/

dτ � dx0
/

dτ and the geodesic equation can be approximated by

d2xµ

dτ2
+ Γµ00 c

2

(
dt
dτ

)2

= 0. (A.64)

In a static field, the vanishing time derivatives (A.61) simplifies the Christoffel symbols (A.24)
to Γµ00 = −1

2g
µλ∂λg00. Inserting the weak-field metric (A.62a) and its inverse (A.62b) and

calculating to first order in h, we then find the Christoffel symbols

Γµ00 = −1

2
ηµλ∂λh00. (A.65)

In particular, the static metric (A.61) implies that Γ0
00 = 0, so d2t

/
dτ2 = 0 by the approximated

geodesic equation (A.64). As we have neglected dxi
/

dτ � c, we can now regard the geodesic
x(τ) = x(τ(t)) as a function of only t and apply the chain rule and the product rule to get

d2x

dτ2
=

d
dτ

(
dx
dt

dt
dτ

)
=

(
d
dτ

dx
dt

)(
dt
dτ

)
+

(
dx
dt

)(
d2t

dτ2

)
=

(
d2x

dt2

)(
dt
dτ

)2

. (A.66)

Upon insertion into the equation (A.64), we can cancel the common factor (dt/dτ)2 and write
the geodesic equation purely in terms of time t as

d2xµ

dt2
=

1

2
c2ηµλ∂λh00. (A.67)

The spatial components of this equation is precisely Newton’s second law (A.59) if h00 = 2V /c2.
In conclusion, we have showed that a weak relativistic gravitational field with

g00 = 1 + h00 = 1 +
2V

c2
(A.68)

describes Newtonian motion in the gravitational potential V !

A.3.2 The field’s response to matter

In general relativity, the gravitational field is produced by matter that enter the Einstein field
equations (A.57) on the right. Let us show that they fall back the Poisson equation (A.58) to
first nonzero order in the metric perturbation h of the Newtonian limit.

Suppose we are in the stationary reference frame of a perfect fluid with energy-momentum
(B.5) and velocity uµ = (u0,0). To first order in h00, the normalization condition uµuµ = c2

then fixes the time component

u0 =
c

√
g00

=
c√

1 + h00
' c

(
1− 1

2
h00

)
. (A.69)

To lowest order, the energy-momentum (B.5) then simplifies to that of pure dust with

T00 = ρu0u0 ' ε and trace T = Tµµ = g00T00 ' ε, (A.70)
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where we have neglected the pressure components in accordance with criterion (A.60c). Now
rewrite the Einstein field equations (A.57) by taking the trace of both sides. Using gµµ = δµµ = 4,
we find that the Ricci scalar can be expressed as R = −8πGT/c4, so the field equations are
equivalent to

Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
. (A.71)

Inserting the energy-momentum (A.70) and setting ρ = ε/c2, we then find the Ricci tensor
element

R00 =
4πGρ

c2
. (A.72)

Instead of calculating the Ricci tensor from the energy-momentum of matter, we can attack
the problem from the geometric point of view and find it from the Riemann curvature tensor

Rρ0µ0 = ∂µΓ
ρ
00 − ∂0Γ

ρ
µ0 + ΓρµλΓ

λ
00 − Γρ0λΓ

λ
µ0. (A.73)

Each Christoffel symbol is of order O(h), so the two last terms are of order O(h2). Additionally,
the time derivative vanishes for our stationary metric (A.61), so we are left with only Rρ0µ0 =
∂µΓ

ρ
00 to first order. Using the Christoffel symbols (A.65), the Ricci tensor is then

R00 = Rµ0µ0 = ∂µΓ
µ
00 = −1

2
ηµλ∂µ∂λh00 '

1

2
δij∂i∂jh00 =

1

2
∇2h00. (A.74)

Inserting h00 = 2V /c2 from equation (A.68) and comparing the result to equation (A.72), we
see that the Einstein field equations yield the Poisson equation (A.58) in the Newtonian limit!

A.4 CAS derivation of the Tolman-Oppenheimer-Volkoff equa-
tion

When we derived the Tolman-Oppenheimer-Volkoff equation (2.16) analytically, we made
use of energy-momentum conservation ∇µT

µν = 0 instead of using the last Einstein field
equation equation (2.7c). Inspired by [Sag18], we present a small program that derives the
Tolman-Oppenheimer-Volkoff equation algebraically from the full system (2.7) without using
energy-momentum conservation in the computer algebra system SAGE.

tov.sage

#!/usr/bin/sage

c = var("c") # speed of light
γ = var("γ", latex_name="\\gamma") # gravitational constant
α(r) = function("α", latex_name="\\alpha")(r)
m(r) = function("m")(r)
#β(r) = function("β", latex_name="\\beta")(r) # uncomment to derive symbolic (α, β) eqs.
β(r) = -1/2 * log(1 - 2*γ*m(r)/(r*c^2)) # uncomment to derive explicit mass equation
P(r) = function("P")(r)
ϵ(r) = function("ϵ", latex_name="\\epsilon")(r)

M = Manifold(4, "M", structure="Lorentzian")
X.<ct,r,θ,ϕ> = M.chart(r"ct r:(0,+oo) θ:(0,pi):\theta ϕ:(0,2*pi):\phi")

g = M.metric(name="g")
g[0,0] = +exp(2*α(r))
g[1,1] = -exp(2*β(r))
g[2,2] = -r^2
g[3,3] = -r^2*sin(θ)^2

G = g.ricci() - 1/2*g.ricci_scalar()*g
G.set_name("G")

u = M.vector_field("u")
u[0] = exp(-α(r)) * c
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Section A.4: CAS derivation of the Tolman-Oppenheimer-Volkoff equation

u = u.down(g)
u.set_name("u")

T = (ϵ(r)+P(r)) * (u*u) / c^2 - P(r) * g
T.set_name("T")

t = var("t") # substitute ct=c*t later when simplifying equations
eq1 = G[0,0].expr().substitute(ct=c*t) == 8*pi*γ/c^4*T[0,0].expr()
eq2 = G[1,1].expr().substitute(ct=c*t) == 8*pi*γ/c^4*T[1,1].expr()
eq3 = G[2,2].expr().substitute(ct=c*t) == 8*pi*γ/c^4*T[2,2].expr()

eqm = eq1.solve(diff(m,r)(r))[0]
eqα = eq2.solve(diff(α,r)(r))[0]

dαdr(r) = eqα.rhs()

eq3 = eq3.substitute(eqα, diff(α(r),r,r) == diff(dαdr(r),r))
eqP = eq3.solve(diff(P(r),r))[0]
eqP = eqP.substitute(eqm) # eliminate dm/dr term

dPdr(r) = eqP.rhs().factor()
dmdr(r) = eqm.rhs().factor()
print(f"dm/dr = {dmdr(r)}")
print(f"dP/dr) = {dPdr(r)}")

The output of the program precisely matches equation (2.11) and (2.16)!
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AppendixB
Relativistic Fluid Dynamics

In this appendix, we will derive a number of important results from relativistic fluid mechanics
needed for stability analysis of stars. We will look at the flow of fluid elements along streamlines
x(τ) in a perfect fluid characterized by its pressure P = P (x) and energy density ε = ε(x).

This appendix is inspired by references [MTW73] and [Wei72].

B.1 Energy-momentum tensor

The definition of a perfect fluid is that the surrounding fluid appears isotropic from the rest
frame that follows a given fluid element. In this frame, the energy-momentum tensor must take
the standard, diagonal form

T 00 = ε, T 0i = T i0 = 0, T ij = Pδij . (B.1)

In Minkowski space, the transformation matrix ∂xµ/∂xν in the tensorial transformation law
(A.9c) is the Lorentz transformation Λµν given in [Kac20], for example. If we are rather viewing
the fluid element from the laboratory frame and it is moving with velocity v relative to us, we
can therefore find the energy-momentum tensor by making the two Lorentz boosts

Tµν → Λµα(v)Λ
ν
β(v)T

αβ. (B.2)

Explicitly carrying out the Lorentz transformations, we obtain the nonzero components

T 00 =
ε+ Pv2/c2

1− v2/c2
, (B.3a)

T 0i = T i0 =
(ε+ P )vi/c

1− v2/c2
, (B.3b)

T ij = Pδij +
(P + ε)vivj/c2

1− v2/c2
. (B.3c)

With the four-velocity uµ = (u0,v) and normalization uµu
µ = c2, all these sixteen elements

can be written collectively as the single tensor expression

Tµν =
1

c2
uµuν(ε+ P )− ηµνP. (B.4)

By the equivalence principle, the energy-momentum tensor for a perfect fluid in a general
metric gµν is therefore

Tµν =
1

c2
uµuν(ε+ P )− gµνP. (B.5)
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B.2 Conservation of baryon number

Due to both the geometry of spacetime and spatial change of velocities, the volume V (x(τ))
of a fluid element changes as it moves along a streamline. Let us derive the rate of change of
this volume element in Minkowski space, then generalize the result to curved space using the
equivalence principle. In a flat spacetime frame that follows the fluid element, the four-velocity
is uµ(x) ' (c,v(x)), where v(x) is a small velocity field in the vicinity of the fluid element. As
the fluid element flows from one place to the next in a short time dt = dτ , the length Li of the
fluid element along a spatial dimension i changes by

dLi =
[
vi(x+ Li)− vi(x)

]
dτ =

∂vi(x)

∂xi
Li dτ

(
no sum

)
. (B.6)

The volume of the fluid element then changes by

dV = d
(
L1L2L3

)
=
(
dL1

)
L2L3 + L1

(
dL2

)
L3 + L1L2

(
dL3

)
= V

(
dL1

L1
+

dL2

L2
+

dL3

L3

)
= V

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
dτ.

(B.7)

Since u0 = c in our reference frame, we make no mistake by including ∂u0
/
∂x0 = 0 in this sum.

The rate of change is then given by the tensorial law

dV
dτ

= V
∂uµ

∂xµ
= V∇µu

µ, (B.8)

where ∇µ = ∂µ because the Christoffel symbols vanish in Minkowski space. By the equivalence
principle, this law then holds in any spacetime and reference frame.

Like the volume element, the baryon number density n(x(τ)) can change along a streamline.
But the total baryon number N = nV must be conserved, as expressed by

d
dτ

(nV ) = 0. (B.9)

It will be very useful to rewrite this law in multiple different ways. First, let us differentiate it
and insert the volume element rate of change (B.8). Then it is equivalent to

0 =
1

V

d
dτ

(nV )
(
by (B.9)

)
=

dn
dτ

+
n

V

dV
dτ

(
by forward product rule

)
= uµ∇µn+ n∇µu

µ
(
by chain rule and (B.8)

)
= ∇µ (nu

µ)
(
by backwards product rule

)
, (B.10)

with the elegant interpretation that there is no flux of the baryon number density current nuµ
out of the volume element. From equation (B.10), we can rewrite the conservation law in the
alternative form

dn
dτ

= uµ∇µn = −n∇µu
µ, (B.11)

expressing the rate of change of the density along a streamline.

In the Newtonian limit, uµ = (c,v) and the vanishing divergence equation (B.10) can be
rewritten as a familiar continuity equation for the baryon number density,

∂n

∂t
−∇ · (nv) = 0. (B.12)
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B.3 Conservation of energy and the Euler equation
The conservation of energy-momentum ∇µT

µν = 0 implies

0 = ∇µT
µν

= ∇µ

[
1

c2
uµuν(ε+ P )− gµνP

]
=

1

c2

[(
ε+ P

)(
uν∇µu

µ + uµ∇µu
ν
)
+ uµuν∇µ

(
ε+ P

)]
−∇νP. (B.13)

It is convenient to rewrite this as one scalar equation and another vector equation. To do so,
we can project out the part of the vector ∇µT

µν that is parallel and orthogonal to uµ. If we
have two vectors u and v, then we define the parallel and orthogonal projection of v on u by

v‖ = (û · v) û =
u · v
u · u

u and v⊥ = v − v‖. (B.14)

With index notation, this can be written

vα‖ =
(
P‖
)α
β
vβ and vα⊥ = (P⊥)

α
β v

β, (B.15)

where we define the parallel and orthogonal projection tensors(
P‖
)α
β
=
uαuβ
uµuµ

and (P⊥)
α
β =

(
δαβ −

uαuβ
uµuµ

)
. (B.16)

These projectors are valid for any normalization uµuµ, but with our conventions and choice of
units we can always replace uµuµ = c2. It is straightforward to verify that both projectors have
the characteristic property (Pαβ )

2 = Pαγ P
γ
β = Pαβ , expressing the geometrically intuitive

fact that a projection does not alter a vector that has already been projected.

B.3.1 Energy conservation

First, let us see what the parallel part of ∇µT
µν = 0 gives us. Multiplying equation (B.13)

with the parallel projector (B.16), we obtain

0 =
uαuν
c2

∇µT
µν

=
uα

c2

{
1

c2

[(
ε+ P

)(
uνu

ν∇µu
µ + uµuν∇µu

ν
)
+ uµuνu

ν∇µ

(
ε+ P

)]
− uν∇νP

}
.

(B.17)

We can simplify this equation by using the normalization

uνuν = c2 and its implication ∇µ (u
νuν) = 2uν∇µu

ν = 0. (B.18)

The first property multiplies two terms by c2, while the second kills one term in the square
brackets. Since the right side of equation (B.17) must vanish for arbitrary uα, the whole
expression inside the curly parenthesis must vanish. This leaves

0 =
(
ε+ P

)
∇µu

µ + uµ∇µ

(
ε+ P

)
− uν∇νP

= ∇µ

[
uµ
(
ε+ p

)]
− uµ∇µP (by backward product rule)

= ∇µ

(
ε uµ

)
+ P ∇µu

µ (by forward product rule) (B.19a)

= uµ∇µε+ (ε+ P )∇µu
µ (by forward product rule) (B.19b)

=
dε
dτ

+ (ε+ P )∇µu
µ (by chain rule). (B.19c)
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This is the announced scalar equation that follows from conservation of energy-momentum.
Either of the equivalent forms is known as the relativistic equation of energy conservation.
In the Newtonian limit (A.60c), the pressure term in the form (B.19a) is negligible, so it reduces
to the familiar continuity equation for mass density ρ = ε/c2 from fluid mechanics, [Bre16,
equation 7.1]

0 = ∇µ

(
ρ uµ

)
=
∂ρ

∂t
−∇ ·

(
ρv
)
. (B.20)

B.3.2 The Euler equation

Second, let us inspect the component of ∇µT
µν orthogonal to uµ. Multiplying equation (B.13) by

the orthogonal projection tensor (B.16), a straightforward calculation using the same properties
(B.18) gives

0 = (P⊥)
α
ν ∇µT

µν

=

{
δαν −

uαuν
c2

}
×

{
1

c2

[(
ε+ P

)(
uν∇µu

µ + uµ∇µu
ν
)
+ uµuν∇µ

(
ε+ P

)]
−∇νP

}

=
1

c2

[(
ε+ P

)(
uα∇µu

µ + uµ∇µu
α
)
+ uµuα∇µ

(
ε+ P

)]
−∇αP

− 1

c2

[(
ε+ P

)
uα∇µu

µ + uαuµ∇µ

(
ε+ P

)
− uαuν∇νP

]
=

1

c2

(
ε+ P

)
uµ∇µu

α −∇αP +
1

c2
uαuµ∇µP. (B.21)

This is the relativistic Euler equation. In the Newtonian limit uµ = (c,v) with small velocity
(A.60a) and pressure (A.60c), the rightmost term is negligible because it contains the product of
two velocities, and so is the pressure contribution in the leftmost term. Then the three spatial
indices α = a = {1, 2, 3} reduce to ρuµ∇µu

a −∇aP = 0, where ρ = ε/c2 by the mass-energy
equivalence (2.2). Another way to find this is to substitute ε = ρc2 into equation (B.21) and
send c→ ∞, where the Lorentz transformations reduce to the Galilei transformations. In the
first term, uµ∇µu

a ' uµ∂µu
a+u0Γa00u

0 and Γa00 = −ηµλ∂λh00/2 = −ηµλ∂λV /c2, as we found in
equations (A.65) and (A.68) in appendix A.3. The second term can be rewritten ∇aP = −∇aP
in the Minkowski metric. We therefore recover the Euler equation [Bre16, equation 4.3]

∂v

∂t
+ (v ·∇)v = −1

ρ
∇P + g, where g = −∇V, (B.22)

from fluid mechanics, expressing the acceleration of fluid elements on the left in terms of the
gravitational field g and the pressure gradient ∇P .

B.4 Adiabaticity
The flow of a perfect fluid is adiabatic, meaning there is no transfer of heat between fluid
elements. One way to understand this is that the energy-momentum tensor is diagonal, and
that any exchange of heat would have to come from off-diagonal energy flux terms. A more
verbose way to understand it is to consider the first law of thermodynamics,

dE = dQ+ dW = T dS − P dV. (B.23)

Consider a fluid element with volume V , internal energy E = V ε, fixed number of particles
N = nV and entropy s = S/N per particle. Then the first law can be rewritten

d
(
ε
N

n

)
= NT ds− P d

(
N

n

)
. (B.24)
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Explicitly writing out the differentials and canceling the constant N , we find

dε = ε+ P

n
dn+ nT ds. (B.25)

To relate this to our flow, combine conservation of energy and baryon number into

0 = uµ∇µε+
ε+ P

n
n∇µu

µ (by conservation of energy (B.19b))

= uµ∇µε−
ε+ P

n
uµ∇µn (by baryon number conservation (B.10))

=
dε
dτ

− ε+ P

n

dn
dτ

(by chain rule). (B.26)

This is precisely the first law of thermodynamics (B.25) with dQ = nT ds = 0, showing that the
flow is adiabatic!

A useful consequence of adiabaticity is that it enables us to define the adiabatic index

γ =

(
∂ log(P/P0)

∂ log(n/n0)

)
s

, (B.27)

relative to some arbitrary pressure and number density scales P0 and n0. The derivative must
be taken at constant specific entropy s, or equivalently along the flow. In our case, we can take
the derivative and rewrite the adiabatic index by eliminating the baryon number density with
equation (B.26). It then takes the practical form

γ =
n

P

(
∂P

∂n

)
s

=
n

P

dP/dτ
dn/dτ

=
ε+ P

P

dP/dτ
dε/dτ

=
ε+ P

P

(
∂P

∂ε

)
s

. (B.28)

The last expression is possible to calculate from the equation of state ε = ε(P ).

B.5 Speed of sound
We can derive a simple expression for the speed of sound in a perfect fluid. Suppose we are in
Minkowski space, and consider a background equilibrium fluid with four-velocity uµ = (u0,0),
density n0, pressure P0 and energy density ε0 that are all constant in both time and space. On
top of this background, place small variations δn(x), δP (x), δε(x) and v(x) in the total density
n = n0 + δn, pressure P = P0 + δP , energy density ε = ε0 + δε and four-velocity uµ = (u0,v).
How do sound waves result from these variations?

To first order in all the small quantities, the Euler equation (B.21) reads

∂v

∂t
= −c2 ∇(δP )

ε0 + P0
. (B.29)

Likewise, the adiabaticity equation (B.26) gives

∂(δε)

∂t
=
ε0 + P0

n0

∂(δn)

∂t
, or δε =

ε0 + P0

n0
δn (B.30)

after integration, where we forget the integration constant, so δε = 0 when we are back in
equilibrium with δn = 0. Using equation (B.30) to eliminate ε0+P0 in equation (B.29), we find

∂v

∂t
= −c2∇(δP )

δε

δn

n0
. (B.31)

Intuitively, the pressure and density gradients ∇P and ∇n should be parallel. Mathematically,
this can be expressed by the two equal unit vectors

∇(δP )

δP
=

∇(δn)

δn
. (B.32a)
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A more rigorous way to see this is to note that the pressure at a point x depends on the density
at that point through an equation of state P = P (n(t,x)). For example, the pressure (4.10c) is
a function of xF = pF /mc, which in turn is determined by the density (4.10a). By the chain
rule, then,

∇P =
dP
dn

∇n =
δP

δn
∇n, (B.32b)

where we have interpreted the derivative dP/dn as the ratio δP/δn between the two small
changes. Using either equation (B.32a) or (B.32b), we can reexpress equation (B.31) as

∂v

∂t
= −c2 δP

δε

∇(δn)

n0
= −c2dP0

dε0
∇(δn)

n0
. (B.33)

Again, we have interpreted δP/δε as the derivative dP0/dε0, because δP = P−P0 and δε = ε−ε0
are both changes from the equilibrium values. Next, to first order in the small quantities, the
baryon number equation (B.11) says

∂(δn)

∂t
+ n0∇ · v = 0. (B.34)

Finally, differentiate this equation with respect to time and then substitute expression (B.33)
for ∂v/∂t to obtain (

∂2

∂t2
− c2

dP0

dε0
∇2

)
δn = 0. (B.35)

This is a wave equation for density waves δn = δn(x∓ vst) traveling at the speed of sound

vs = c

√
dP0

dε0
. (B.36)
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AppendixC
Matsubara Energy Summation

This appendix is inspired by reference [Alt+10].

When doing thermal field theory, one often encounters sums

S =
+∞∑

n=−∞
s(En) (C.1)

of functions s(En) over all Matsubara energies

En =

{
2πn/β for bosons
2π
(
n+ 1

2

)
/β for fermions.

(C.2)

For example, we encountered the sum

S =

+∞∑
n=−∞

1

E2
n + E2

(C.3)

for bosons in equation (3.80), and again for fermions (3.107). In this appendix we will
demonstrate an elegant general method for computing such sums by contour integration in the
complex plane.

First, we define the complex functions

n±(z) =
1

eβz ∓ 1
=


1

eβz − 1
for bosons

1

eβz + 1
for fermions.

(C.4)

Here and below, the upper and lower signs correspond to bosons and fermions, respectively.
This is the familiar Bose-Einstein distribution n+(z) for bosons and the Fermi-Dirac distribution
n−(z) for fermions. Importantly, they have simple poles at all imaginary Matsubara frequencies
z = iEn, as indicated by the crosses in figure C.1.

For reasons that will soon be clear, consider the contour integral∮
CA

N

dz s(−iz)n±(z) (C.5)

along the contour CAN drawn in figure C.1a that encircle the 2N + 1 poles of n±(z) that are
closest to the origin. To proceed in a mathematically well-defined way, we consider only a finite
number of poles for now, but will include all poles by taking the limit N → ∞ at the very end
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Re(z)

Im(z)

iEn

+E−E

(a) Contour CA
N .

Re(z)

Im(z)

iEn

+E−E

(b) Contour CB
N .

Re(z)

Im(z)

iEn

+E−E

(c) Contour CC
N .

Figure C.1: To evaluate a Matsubara energy sum SN =
∑N

n=−N s(En) in the limit N → ∞,
we can use the residue theorem to transform it into a complex integral

∮
dz s(−iz)n±(z) along

the contour CAN that encloses some of the infinitely many poles of n±(z). Then we add the
integral along the circular contour CBN , resulting in the equivalent contour CCN . If the integrand
vanishes on CBN as N → ∞, we can trade CAN for CCN to transform the infinite Matsubara sum
into a sum over the assumed finite number of residues of s(−iz) in the real half planes.

of this derivation. Otherwise, we would have to argue that CA∞ can be closed at infinity, if it
were to include all poles of n±(z). Our strategy will circumvent this difficulty.

How does this contour integral relate to the Matsubara sum (C.1)? First recall the residue
theorem ∮

C
dz f(z) = 2πi

∑
n

Res
z=zn

[f(z)], (C.6)

where the sum runs over all poles zn of f(z) inside the region enclosed by the contour C.
Second, recall that the residue of a quotient function f(z)/g(z) at a simple pole z = z0 where
g(z0) = 0, but g′(z0) 6= 0 is

Res
z=z0

[
f(z)

g(z)

]
=
f(z0)

g′(z0)
. (C.7)

Let us apply this to our integral (C.5) with f(z) = s(−iz) and g(z) = n±(z)
−1 = eβz ∓ 1. We

then find that the residues of the integrand in the contour integral (C.5) are

Res
z=iEn

[s(−iz)n±(z)] = ± 1

β
s(En), (C.8)

By the residue theorem (C.6), the contour integral (C.5) is then∮
CA

N

dz s(−iz)n±(z) = 2πi
N∑

n=−N
Res
z=iEn

[s(−iz)n±(z)] = ±2πi

β

N∑
n=−N

s(En). (C.9)

In other words, the contour integral gives the finite Matsubara sum

SN =

N∑
n=−N

s(En) = ± β

2πi

∮
CA

N

dz s(−iz)n±(z), (C.10)

and the full sum (C.1) is given by the limit S = S∞ = limN→∞ SN .

What is the use of transforming a simple sum into a complex (in both senses) contour integral?
Consider now the circular contour CBN in figure C.1b that touches CAN at the uppermost and
lowermost intersections with the imaginary axis. Now∮

CA
N

dz +
∮
CB

N

dz =
∮
CC

N

dz, (C.11)
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where CCN is the contour shown in figure C.1c. The overlapping circular parts of CAN run
opposite ways and cancel, producing the vertical parts of CCN . The clockwise circular contour
CBN cancels the top and bottom parts of CAN , and also closes the contour with semicircles in the
real half planes.

Finally, include all poles by taking the limit N → ∞. This sends the radii of the two semicircles
to infinity, inflating the contour CCN to the full real half planes, except the imaginary axis
Re z = 0. Assume now that s(−iz) – as in our motivating example (C.3) – satisfies

|s(−iz)n±(z)| <
1

|z|
as |z| → ∞. (C.12)

For general s(−iz), this assumption is not as restrictive as it may sound, since there must be
some bound on s(−iz) anyway if the sum (C.1) is to converge at all. With this assumption,∮
CB

dz s(−iz)n±(z) → 0 as N → ∞, and by equation (C.11) we can then trade CAN for CCN in
the contour integral (C.10)!

There is a big benefit to this change of contour. After sending N → ∞ and using the new
contour CC∞, we can apply the residue theorem again to the contour integral (C.10) to obtain

S =
±β
2πi

∮
CC

∞

dz s(−iz)n±(z) = ∓β
∑
n

Res
z=zn

[s(−iz)n±(z)]. (C.13)

The sum now runs over the poles of s(−iz) in the real half planes, and not the poles of n±(z)
like in equation (C.9). Note also that the sign change following the clockwise orientation of CC∞
compared to the counter-clockwise orientation of CA∞. Like in our example (C.3), most s(−iz)
will have a finite number of poles, in stark contrast to the infinite number of poles of n±(z).
We have thus transformed the Matsubara sum over an infinite number of residues of n±(z) to a
sum over a finite number of residues of s(−iz) – a much more manageable task! This is our
proclaimed elegant and general method of evaluating the Matsubara sum (C.1).

Example: Let us use now use this technique to evaluate the sum (C.3) with

S =

+∞∑
n=−∞

1

E2
n + E2

=

+∞∑
n=−∞

s(En) and s(−iz) = 1

−z2 + E2
. (C.14)

It has two poles at z = +E and z = −E. Using equation (C.7) with f(z) = n±(z) and
g(z) = s(−iz)−1 = −z2 + E2, we obtain the residues

Res
z=+E

[s(−iz)n±(z)] = −n±(+E)

2E
and Res

z=−E
[s(−iz)n±(z)] = +

n±(−E)

2E
. (C.15)

Using our main result (C.13), the Matsubara sum (C.14) is therefore

S =
+∞∑

n=−∞

1

E2
n + E2

= ∓β
∑
i

Res
z=zn

[s(−iz)n±(z)] = ∓ β

2E
[n±(−E)− n±(E)] . (C.16)

We can now evaluate the sum explicitly by inserting the Bose-Einstein distribution and the
Fermi-Dirac distribution (C.4). After some simplification, we obtain

S =

+∞∑
n=−∞

1

E2
n + E2

=
β

2E

[
1± 2

eβE ∓ 1

]
=

β

2E

[
1± 2n±(E)

]
. (C.17)

Recall that the upper and lower signs hold for bosons and fermions, respectively.
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AppendixD
Renormalization of the Dirac Sea

In the calculation of the grand potential (8.16) of the quark-meson model, we encountered (Nc

copies of) the ultraviolet-divergent Dirac sea vacuum contribution

Ω0 = −2

∫
d3p

(2π)3
E(p) = −2

∫
d3p

(2π)3

√
p2 +m2. (D.1)

This can be interpreted as an infinite contribution from all negative energy states. Here we
renormalize it with dimensional regularization in the (modified) minimal subtraction scheme.
In d = 3− 2ε spatial dimensions, it can be regularized as

Ω0 = −2Λ3−d
∫

ddp
(2π)d

√
p2 +m2 = −2Λ3−d 2πd/2

Γ(d/2)

∫ ∞

0

dp pd−1

(2π)d

√
p2 +m2. (D.2)

We have multiplied the integral by Λ3−d = Λ2ε where Λ is a renormalization scale with
[Λ] = [p] = MeV, so that [λ3−d ddp] = [d3p] and Ω0 is well-defined with the correct physical
dimension of a potential in all spatial dimensions d. The new integral (D.2) reduces to the old
integral (D.1) when we send ε→ 0. The d-dimensional momentum integral can be written as
an analytical continuation of the Beta function [NIST22]

B(x, y) =

∫ ∞

0
dt tx−1

(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)
(D.3)

if we substitute t = p2/m2 with dt = 2pdp/m2. We then find

Ω0 = − 2Λ3−dmd+1

(4π)d/2 Γ
(
d
2

) ∫ ∞

0
dt td/2−1

(1 + t)−1/2

= − 2Λ3−dmd+1

(4π)d/2 Γ
(
d
2

) Γ(d2)Γ(−d+1
2

)
Γ
(
−1

2

) .

(D.4)

We now cancel Γ
(
d
2

)
and replace Γ

(
−1

2

)
= −2

√
π. Then we restore d = 3 − 2ε and apply

the property Γ(z) = Γ(z + 1)/z twice to transport the argument of the gamma function
Γ
(
−d+1

2

)
= Γ

(
−2 + ε

)
infinitesimally close to its pole at 0, using its asymptotic expansion

Γ(ε) = 1/ε− γ +O(ε) upon arrival. Expanding everything to zeroth order in ε then leaves

Ω0 =
m4

8π2

(
4π

Λ2

m2

)ε
Γ(−2 + ε) ' m4

16π2

(
1

ε
+ log Λ2

m2
+

3

2
− γ + log 4π

) (
MS
)
. (D.5a)

The pole in ε exposes the ultraviolet divergence and can be removed by a counterterm in a
renormalizable theory. In the minimal subtraction (MS) scheme only this divergent term is
absorbed. In the modified minimal subtraction (MS) scheme, the terms −γ+ log 4π that always
arise in dimensional regularization calculations are also absorbed. This is equivalent to rescaling
Λ2 → Λ2eγ/4π, so in this scheme one finds

Ω0 '
m4

16π2

(
1

ε
+ log Λ2

m2
+

3

2

) (
MS
)
. (D.5b)
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AppendixE
Calculation of the Three-Flavor

Meson Potential

The following program, written in the SAGE computer algebra system, symbolically calculates
a long explicit representation of the meson potential (9.2) in the three-flavor quark-meson
model by brute-force calculation of the traces (9.10) from the identity-extended Gell-Mann
matrices (9.3). It then evaluates its value (9.12), first derivatives (9.13) and second derivatives
(9.15) in the minimum (9.4).

lsm3f_meson_potential.sage

#!/usr/bin/sage

λ0 = matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]])*sqrt(2/3)
λ1 = matrix([[0, 1, 0],[1, 0, 0],[0, 0, 0]])
λ2 = matrix([[0,-I, 0],[I, 0, 0],[0, 0, 0]])
λ3 = matrix([[1, 0, 0],[0,-1, 0],[0, 0, 0]])
λ4 = matrix([[0, 0, 1],[0, 0, 0],[1, 0, 0]])
λ5 = matrix([[0, 0,-I],[0, 0, 0],[I, 0, 0]])
λ6 = matrix([[0, 0, 0],[0, 0, 1],[0, 1, 0]])
λ7 = matrix([[0, 0, 0],[0, 0,-I],[0, I, 0]])
λ8 = matrix([[1, 0, 0],[0, 1, 0],[0, 0,-2]])*sqrt(1/3)
λ = [λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8]
T = [λ/2 for λ in λ]

m2 = var("m2", latex_name=r"m^2")
g = var("g")
λ1, λ2 = [var(f"λ{i}", latex_name=f"\\lambda_{i}") for i in range(1, 3)] # unpack
σ = [var(f"σ{a}", latex_name=f"\\sigma_{a}") for a in range(0, 9)]
π = [var(f"π{a}", latex_name=f"\\pi_{a}") for a in range(0, 9)]
h = [var(f"h{a}", latex_name=f"h_{a}") for a in range(0, 9)]
ϕ = [σ[a] + I*π[a] for a in range(0, 9)]

σx, σy = var("σx", latex_name=r"\sigma_x"), var("σy", latex_name=r"\sigma_y")
hx, hy = var("hx", latex_name=r"h_x"), var("hy", latex_name=r"h_y")
transf = matrix([[sqrt(2/3), sqrt(1/3)], [sqrt(1/3), -sqrt(2/3)]])
eqsxy = [

σ[0] == (transf.inverse() * vector([σx, σy]))[0],
σ[8] == (transf.inverse() * vector([σx, σy]))[1],
h[0] == (transf.inverse() * vector([hx, hy]))[0],
h[8] == (transf.inverse() * vector([hx, hy]))[1],

]
eqs08 = [

σx == (transf * vector([σ[0], σ[8]]))[0],
σy == (transf * vector([σ[0], σ[8]]))[1],
hx == (transf * vector([h[0], h[8]]))[0],
hy == (transf * vector([h[0], h[8]]))[1],

]
avgeqs = [σ[a]==0 for a in range(1, 8)] + [π[a]==0 for a in range(0, 9)]
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# Compute potential symbolically with brute force
trϕϕ, trϕϕϕϕ, trHϕ = 0, 0, 0
for a in range(0, 9):

for b in range(0, 9):
trϕϕ += conjugate(ϕ[a])*ϕ[b] * (T[a]*T[b]).trace()
trHϕ += h[a] * (conjugate(ϕ[b]) + ϕ[b]) * (T[a]*T[b]).trace()
for c in range(0, 9):

for d in range(0, 9):
trϕϕϕϕ += conjugate(ϕ[a]*ϕ[c])*ϕ[b]*ϕ[d] * (T[a]*T[b]*T[c]*T[d]).trace()

V = expand(simplify(m2 * trϕϕ + λ1 * trϕϕ^2 + λ2 * trϕϕϕϕ - trHϕ))
Vtree = V.substitute(avgeqs, eqsxy).expand().simplify().collect(λ1).collect(λ2)
print(f"V = {Vtree}")

dVxtree = diff(V.substitute(eqsxy),σx).substitute(avgeqs).simplify_full().collect(λ1)
dVytree = diff(V.substitute(eqsxy),σy).substitute(avgeqs).simplify_full().collect(λ1)
print(f"dVx = {dVxtree}")
print(f"dVy = {dVytree}")
for a in range(0, 9):

dVσa = diff(V,σ[a]).substitute(avgeqs)
print(f"dVσ{a} = {dVσa}")

for a in range(0, 9):
dVπa = diff(V,π[a]).substitute(avgeqs)
print(f"dVπ{a} = {dVπa}")

# mass matrices
m2σσ = matrix(9, 9, lambda a, b: diff(V,σ[a],σ[b]).subs(avgeqs).collect(λ1).collect(λ2))
m2σπ = matrix(9, 9, lambda a, b: diff(V,σ[a],π[b]).subs(avgeqs).collect(λ1).collect(λ2))
m2ππ = matrix(9, 9, lambda a, b: diff(V,π[a],π[b]).subs(avgeqs).collect(λ1).collect(λ2))
for a in range(0, 9):

for b in range(0, 9):
print(f"m2σσ[{a},{b}] = {m2σσ[a,b]}")

for a in range(0, 9):
for b in range(0, 9):

print(f"m2σπ[{a},{b}] = {m2σπ[a,b]}")
for a in range(0, 9):

for b in range(0, 9):
print(f"m2ππ[{a},{b}] = {m2ππ[a,b]}")
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Integrals

First rational integral for incompressible star:

∫
x dx
ax2 + b

=
1

2a
log
(
ax2 + b

)
+ C. (F.1)

Proof: Substitute y = ax2 + b with dy = 2axdx to obtain

∫
x dx
ax2 + b

=
1

2a

∫
dy
y

=
1

2a
log y + C =

1

2a
log
(
ax2 + b

)
+ C.

Second rational integral for incompressible star:

∫
dx

ax2 + bx
= −1

b
log
(
a+

b

x

)
+ C. (F.2)

Proof: Complete the square in the denominator to obtain

I =

∫
dx

ax2 + bx

=
1√
a

∫
dy

y2 − b2/4a

(
complete square with y =

√
ax+ b/2

√
a
)

=
2

b

∫
dz

z2 − 1

(
substitute z = 2

√
ay/b

)
=

1

b

(∫
dz
z − 1

−
∫

dz
z + 1

) (
partial fraction decomposition

)
=

1

b
log
(
z − 1

z + 1

)
+ C

= −1

b
log
(
a+

b

x

)
+ C +

log a
b

(
reexpress z in terms of x

)
.
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Gaussian integral over one real number:∫ +∞

−∞
dx e−ax2 =

√
π

a
. (F.3)

Proof: It is easier to calculate the square of the integral using polar coordinates:

[∫ +∞

−∞
dx e−ax2

]2
=

1

a

[∫ +∞

−∞
dx e−x2

]2 (
rescale x→

√
ax
)

=
1

a

∫ +∞

−∞
dx
∫ +∞

−∞
dy e−(x2+y2)

=
1

a

∫ 2π

0
dθ
∫ ∞

0
dr re−r2

(
convert to polar coordinates (r, θ)

)
=

2π

a

[
−1

2
e−r

2

]r=∞

r=0

=
π

a
.

Gaussian integral over one pair of Grassmann numbers:∫
dψ∗

∫
dψ e−ψ∗aψ = a for real a and Grassmann numbers (ψ,ψ∗). (F.4)

Proof: Using the Taylor expansion (3.34), and the Grassmann number integral definitions
(3.35a) and (3.35b) and the anti-commutator (3.32),∫

dψ∗
∫

dψ e−ψ∗aψ =

∫
dψ∗

∫
dψ (1− ψ∗aψ) = a

∫
dψ∗

∫
dψ ψψ∗ = a.

Gaussian integral over multiple pairs of Grassmann numbers:∫
dψ†

∫
dψ e−ψ†Aψ = detA for Hermitian A and Grassmann numbers (ψ,ψ†). (F.5)

Proof: The Hermitian matrix A can be diagonalized by a unitary transformation U as
A = U †DU , where D is a diagonal matrix with the eigenvalues of A on its diagonal. Thus,

ψ†Aψ = ψ†U †DUψ = (Uψ)†D(Uψ) = ψ̃†Dψ̃, where ψ̃ = Uψ.

The unitary transformation has |detU | = 1, so the integration measure dψ = dψ̃ is unchanged
upon changing variables from ψ to ψ̃. A Hermitian matrix has real eigenvalues, so we can use
integral (F.4) to show that∫

dψ†
∫

dψ e−ψ†Aψ =

∫
dψ̃†

∫
dψ̃ e−ψ̃†Dψ̃

=
∏
i

∫
dψ̃∗

i

∫
dψ̃i e−ψ̃

∗
i λiψ̃i

=
∏
i

λi = detA.
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Degenerate Fermi gas energy density integral:∫ xF

0
dxx2

√
x2 + 1 =

1

8

[(
2x3F + xF

)√
x2F + 1− log

(
xF +

√
x2F + 1

)]
. (F.6)

Proof: The appearance of
√
x2 + 1 makes it handy to change variables to x = sinh θ. Using a

number of hyperbolic identities, we then find

I =

∫ xF

0
dxx2

√
x2 + 1

=

∫ θF

0
dθ cosh2 θ sinh2 θ

(
use cosh2 θ − sinh2 θ = 1

)
=

1

4

∫ θF

0
dθ sinh2(2θ)

(
use sinh(2θ) = 2 sinh θ cosh θ

)
=

1

8

∫ θF

0
dθ [cosh(4θ)− 1]

(
use sinh2 θ =

1

2
[cosh(2θ)− 1]

)
=

1

8

[
1

4
sinh(4θF )− θF

]
.

Inserting θF = asinhxF , using the definitions sinh θ =
(
eθ − e−θ

)
/ 2 and asinhx = log

(
x +√

x2 + 1
)

and simplifying then eventually yields

I =
1

8

[(
2x3F + xF

)√
x2F + 1− log

(
xF +

√
x2F + 1

)]
.

Degenerate Fermi gas pressure integral:∫ xF

0

dxx4√
x2 + 1

=
1

8

[(
2x3F − 3xF

)√
x2F + 1 + 3 log

(
xF +

√
x2F + 1

)]
. (F.7)

Proof: The appearance of
√
x2 + 1 makes it handy to change variables to x = sinh θ. Using a

number of hyperbolic identities, we then find

I =

∫ xF

0

dxx4√
x2 + 1

=

∫ θF

0
dθ sinh4 θ

(
use cosh2 θ − sinh2 θ = 1

)
=

1

4

∫ θF

0
dθ
[
cosh2(2θ)− 2 cosh(2θ) + 1

] (
use sinh2 θ =

1

2
[cosh(2θ)− 1]

)
=

1

8

∫ θF

0
dθ [cosh(4θ)− 4 cosh(2θ) + 3]

(
use cosh2 θ =

1

2
[cosh(2θ) + 1]

)
=

1

8

[
1

4
sinh(4θF )− 2 sinh(2θF ) + 3θF

]
.

Inserting θF = asinhxF , using the definitions sinh θ =
(
eθ − e−θ

)
/ 2 and asinhx = log

(
x +√

x2 + 1
)

and simplifying then eventually yields

I =
1

8

[(
2x3F − 3xF

)√
x2F + 1 + 3 log

(
xF +

√
x2F + 1

)]
.
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AppendixG
Numerical Implementations

In this appendix, we explain and lay out all Python code used to produce the results of this
thesis. The code is also available online at https://github.com/hersle/master-thesis for
convenience, but could be taken down from there at any time.

G.1 Natural dimensionless quantities for compact stars
In order to avoid numerical instability when integrating the Tolman-Oppenheimer-Volkoff
equation (2.38), it is wise to eliminate physical scales from the problem, so floating-point
numbers can be kept as close to 1 as possible. To this end, we define the dimensionless

radius r̂ =
r

r0
, where r0 = 10 km, (G.1a)

mass m̂ =
m

m0
, where m0 =M� = 1.99 · 1030 kg, (G.1b)

energy density ε̂ =
ε

ε0
, where ε0 =

m0c
2

4πr30/3
, (G.1c)

pressure P̂ =
P

ε0
, (G.1d)

gravitational constant Ĝ =
G

G0
, where G0 =

r0c
2

m0
. (G.1e)

The precise values of r0 and m0 are chosen to be natural scales for radii and masses of compact
stars, and the values of the remaining quantities follow from these and fundamental physical
constants. In short, any variable in this appendix that wears a hat ˆ is the dimensionless version
of its hatless dimensionful sibling, obtained by dividing the latter by whichever constant in
equation (G.1) that has the same dimension. We define the constants in a separate file:

constants.py

import scipy.constants
π = scipy.constants.pi
ħ = scipy.constants.hbar
c = scipy.constants.c
mn = scipy.constants.neutron_mass

r0 = 1e3 # m
m0 = 1.98847e30 # kg, solar mass
b = 3
ϵ0 = m0*c**2 / (4*π*r0**3/b)
G = scipy.constants.G / (r0*c**2/m0) # dimensionless gravitational constant

fm = 1e-15
MeV = 1e6 * 1.6e-19
GeV = 1e9 * 1.6e-19
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G.2 Integration of the Tolman-Oppenheimer-Volkoff equation

In chapter 2, we derived the Tolman-Oppenheimer-Volkoff system (2.38) for the unknown
pressure and mass profiles P (r) and m(r), subject to the boundary conditions P (0) = Pc
and m(0) = 0. After solving the system, one can calculate the metric function β(r) from
definition (2.10), and α(r) by integrating equation (2.15) subject to matching the Schwarzschild
metric (2.8) at r = R. From a numerical perspective, it is more practical to integrate α(r)
simultaneously with the Tolman-Oppenheimer-Volkoff system. We therefore extend it with the
additional equation (2.15). Since it is only the derivative of α that enters it, we start with any
convenient value such as α(0) = 0 at the center, then simply shift all values of α(r) after the
integration to match the Schwarzschild metric at the surface. With this additional equation,
the system reads

dP
dr

= −Gmε(P )
r2c2

[
1 +

P

ε(P )

] [
1 +

4πr3P

mc2

] [
1− 2Gm

rc2

]−1

, (G.2a)

dm
dr

=
4πr2ε

c2
, (G.2b)

dα
dr

= − 1

ε(P ) + P

dP
dr
. (G.2c)

This is a system of three differential equations in the form dy/dt = f(t,y) with t = r and
y = [P, m, α] that is suitable for Runge-Kutta integration algorithms. With the dimensionless
variables (G.1), the Tolman-Oppenheimer-Volkoff system (G.2) is equivalent to

dP̂
dr̂

= −Ĝm̂ε̂(P̂ )
r̂2

[
1 +

P̂

ε̂(P̂ )

][
1 +

3r̂3P̂

m̂

][
1− 2Ĝm̂

r̂

]−1

, (G.3a)

dm̂
dr̂

= 3r̂2ε̂(P̂ ), (G.3b)

dα̂
dr̂

= − 1

ε̂(P̂ ) + P̂

dP̂
dr̂
, (G.3c)

which we wish to solve subject to the boundary conditions P̂ (0) = P̂c and m̂(0) = 0 for some
dimensionless central pressure P̂c, and α(R) = log(1− 2ĜM̂/R̂)/2 to match the Schwarzschild
metric (2.8) at the surface. As explained at the start of this chapter, we implement the latter
boundary condition by integrating from α(0) = 0, then finally shift all values of α(r) by

α(r) → α(r)− α(R̂) +
1

2
log

(
1− 2ĜM̂

R̂

)
. (G.4)

To find the mass and radius of some star with central pressure P̂c, we integrate the system
(G.3) until P̂ ≤ 0. We then terminate the integration algorithm and call the final radius
r̂ = R̂ the radius of the star, and the corresponding mass m̂(R̂) = M̂ the mass of the star. By
parametrizing multiple stars with a range of central pressures P̂c and performing this task for
each of them, we obtain a mass-radius curve for the stars.

Below is a small Python program that accomplishes all of this for an arbitrary equation of state
ε̂ = ε̂(P̂ ). The function massradiusplot can be run with the optional parameter visual=True
to show the mass-radius relation in real-time, updating it every time the mass and radius
of a new star is found. Typically, stars distributed uniformly between two central pressures
may be located very non-uniformly in the mass-radius space. To circumvent this difficulty
and make the mass-radius curve as smooth as possible, we take an adaptive approach by
recursively splitting an initial central pressure interval (P̂1, P̂2) until the Euclidean distance
[ (R̂2 − R̂1)

2 + (M̂2 − M̂1)
2 ]1/2 between all points in the mass-radius diagram is below some

given tolerance. Optionally, the program checks the stability of stars using the numerical
method described in the next section.
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tov.py

#!/usr/bin/python3

import numpy as np
import scipy.integrate
import matplotlib.pyplot as plt
import matplotlib.colors
import utils
from stability import eigenmode

from constants import *

def soltov(ϵ, P0, maxdr=1e-3, Psurf=0, progress=True, newtonian=False):
def printprogress(r, m, P, E, message="", end=""):

print(f"\r", end="") # reset line
print(f"Solving TOV: ", end="")
print(f"ϵ = {ϵ.__name__}, ", end="")
print(f"Newtonian={newtonian}, ", end="")
print(f"P0 = {P0:9.2e}, maxdr = {maxdr:9.2e}, ", end="")
print(f"r = {r:8.5f}, m = {m:8.5f}, P/P0 = {P/P0:.4f}", end="")
if message != "":

print(f", {message}", end="")
print("", end=end, flush=True) # flush without newline

def rhs(r, y):
m, P, α = y[0], y[1], y[2]
E = ϵ(P) # computation can be expensive, only do it once
if progress:

printprogress(r, m, P, E)
dmdr = b*r**2*E
if r == 0:

dPdr = 0 # avoid division by r = 0 (m = 0 implies dPdr = 0)
dαdr = 0

else:
if newtonian:

dPdr = -G*E*m/r**2
else:

dPdr = -G/r**2 * (E + P) * (m + b*r**3*P) / (1 - 2*G*m/r)
#dαdr = (m + 4*π*r**3*P) / (r*(r-2*m))
if newtonian:

dαdr = 0
else:

dαdr = -dPdr / (E + P)
return np.array([dmdr, dPdr, dαdr])

def terminator(r, y):
m, P, α = y[0], y[1], y[2]
return P - Psurf

terminator.terminal = True # stop integration when P == 0, use as last point

r1, r2 = 0, np.inf
res = scipy.integrate.solve_ivp(

rhs, (0, np.inf), (0, P0, 0), events=terminator, max_step=maxdr
)
assert res.success, "ERROR: " + res.message
rs, ms, Ps, αs = res.t, res.y[0,:], res.y[1,:], res.y[2,:]

# match α to the Schwarzschild metric at the surface Glendenning (2.226)
αs = αs - αs[-1] + 1/2 * np.log(1-2*G*ms[-1]/rs[-1])

ϵs = np.array([ϵ(P) for P in Ps]) # (can compute more efficiently than this)

if progress: # finish progress printer with newline
printprogress(rs[-1], ms[-1], Ps[-1], ϵs[-1], res.message, end="\n")

return rs, ms, Ps, αs, ϵs

# Bisect [P1, P2] to make points evenly
def massradiusplot(

ϵ, P1P2, tolD=1e-5, tolP=1e-6, maxdr=1e-3, Psurf=0, nmodes=0, newtonian=False,
outfile="", visual=False

):
def solvestar(P0):

rs, ms, Ps, αs, ϵs = soltov(ϵ, P0, maxdr=maxdr, Psurf=Psurf, newtonian=newtonian)
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R, M = rs[-1], ms[-1]

nunstable, ω2s = 0, []
for mode in range(0, nmodes):

ω2, _ = eigenmode(rs, ms, Ps, αs, ϵs, mode)
ω2s.append(ω2)
if ω2 < 0:

nunstable += 1 # count number of unstable modes with ω2 < 0
return R, M, ω2s, nunstable

P1, P2 = P1P2[0], P1P2[1]
R1, M1, ω2s1, nu1 = solvestar(P1)
R2, M2, ω2s2, nu2 = solvestar(P2)
Ps, Ms, Rs, ω2s, nus = [P1, P2], [M1, M2], [R1, R2], [ω2s1, ω2s2], [nu1, nu2]

if visual:
plt.ion() # automatically update open figure
if nmodes > 0: # check stability

graph, = plt.plot([], [], "k-", zorder=0) # modify graph data later
scatt = plt.scatter([], [], zorder=1) # modify graph data later
cbar = plt.colorbar()

else:
graph, = plt.plot([], [], "k-o") # modify graph data later

i = 0
while i < len(Ps) - 1:

P1, M1, R1, nu1 = Ps[i], Ms[i], Rs[i], nus[i]
P2, M2, R2, nu2 = Ps[i+1], Ms[i+1], Rs[i+1], nus[i+1]

# Split intervals based on Euclidean distance between (R, M)-points in plot
# But make sure P1, P2 do not get too close, otherwise algorithm gets stuck
D = np.sqrt((R1 - R2)**2 + (M1 - M2)**2)
if D > tolD and P2 - P1 > tolP:

# split [P1, P2] into [P1, (P1+P2)/2] and [(P1+P2)/2, P2]
P3 = (P1 + P2) / 2
R3, M3, ω2s3, nu3 = solvestar(P3)
Ps.insert(i+1, P3)
Ms.insert(i+1, M3)
Rs.insert(i+1, R3)
ω2s.insert(i+1, ω2s3)
nus.insert(i+1, nu3)

if visual:
# Animate plot in real-time for immediate feedback
# inspired by https://stackoverflow.com/a/10944967
graph.set_data(Rs, Ms)
if nmodes > 0: # check stability

scatt.set_offsets(np.transpose([Rs, Ms]))
scatt.set_array(np.array(nus))
scatt.set_cmap("jet")
scatt.set_clim(0, np.max(nus))

plt.gca().relim() # autoscale only works in animation after this
plt.autoscale()
plt.draw()
plt.pause(0.001)

else:
i += 1

if visual:
plt.ioff() # leave original state
plt.show() # leave final plot open

if outfile != "":
heads = ["P", "M", "R"] + [f"omega2{mode}" for mode in range(0, nmodes)] + ["nu"]
cols = [Ps, Ms, Rs]
for m in range(0, nmodes): # for all modes

cols.append([]) # append one column for this mode
for n in range(0, len(Ps)): # for all stars

cols[-1].append(ω2s[n][m]) # add frequencies for all stars
cols += [nus]
utils.writecols(cols, heads, outfile)

return Ps, Ms, Rs
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G.3 Stellar stability analysis with the shooting method
In section 4.3.2, we showed that the stability of a star could be determined by checking the
sign of the lowest squared eigenvalue of a Sturm-Liouville problem. Here, we describe how we
use the shooting method to determine the eigenvalues ω2

n and corresponding eigenfunctions
Un(r) of the Sturm-Liouville problem that we encountered in equation (4.65) in section 4.3.2,

d
dr

[
Π(r)

dUn(r)
dr

]
+Q(r)Un(r) = −ω2

nW (r)Un(r) for 0 ≤ r ≤ R, (G.5a)

subject to Un(r) ∝ r3 near r = 0, (G.5b)

and dUn(r)
dr

<∞ at r = R, (G.5c)

with the coefficient functions (4.55). We recommend reading this explanation in parallel with
figure 4.7, which illustrates how this method finds the mode n = 0 for such a Sturm-Liouville
problem.

Description

The shooting method finds any one eigenvalue ω2
n and its corresponding eigenfunction Un(r)

with the following strategy:

1. Guess any value ω2 for the eigenvalue ω2
n.

2. Impose the boundary condition (G.5b) by setting U(r) ∝ r3 near r = 0.

3. Shoot the corresponding guess U(r) for the eigenfunction Un(r) by numerically integrating
the Sturm-Liouville equation (G.5a) to r = R.

4. Count the number of nodes n(ω2) of U(r) corresponding to the guess ω2.

(a) If n(ω2) > n, then Sturm-Liouville property 2 on page 56 implies that ω2 > ω2
n, so

decrease the guess for ω2 and repeat this process.

(b) If n(ω2) ≤ n, then Sturm-Liouville property 2 on page 56 implies that ω2 < ω2
n, so

increase the guess for ω2 and repeat this process.

By repeating this process with increasingly better guesses ω2, we get ever closer to the true
eigenvalue ω2

n.

Figure 4.7 shows that every U(r) seems to diverge as r → R, breaking boundary condition
(G.5c). In theory, U(r) does not diverge and hence satisfies the boundary condition only if one
guesses the exact correct eigenvalue ω2

n. In practice, inaccuracy of the numerical integration will
prevent one from guessing the exact eigenvalue – it will only be possible to guess a value very
close to it. As our guess gets very close to the true eigenvalue, the function U(r) will diverge
towards +∞ or −∞ with n nodes for guesses ω2 < ω2

n slightly below the true eigenvalue. For
guesses ω2 > ω2

n slightly above the true eigenvalue, the function will have n + 1 nodes and
diverge towards the oppositely signed infinity. Essentially, we are looking for the precise value
of ω2 that causes the blowup of U(r) close to r = R to “tip over” from one infinity ±∞ to
other infinity ∓∞, as shown with the red and blue guesses in figure 4.7.

Rule 4b, that we should increase our guess not only if n(ω2) < n, but also if n(ω2) = n, is a
little technical and deserves an explanation. Suppose we are looking for the lowest mode n = 0
and have guessed a value of ω2 with n(ω2) = 0 zeros. Is the true eigenvalue ω2

n less than or
greater than the guess ω2? If the true eigenvalue ω2

n had been less than ω2, then any lower guess
of ω2 would also give n(ω2) = 0 zeros, for a function cannot have less than zero zeros! But then
we could repeat the same reasoning indefinitely and ultimately reach the conclusion that the
eigenvalue is ω2

0 = −∞, which is neither physically sound nor consistent with the mathematical
Sturm-Liouville property 1 on page 56. By contradiction, then, the eigenvalue must be greater
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than the initial guess, explaining why we should increase our guess also if n(ω2) = n with n = 0.
If instead n = 1 and we guess ω2 with n(ω2) = n = 1 zeros, then decreasing our guess would
eventually yield the incorrect eigenvalue ω2

0, and not the desired eigenvalue ω2
1. Thus, we have

to increase our guess if n = 1 too, and the rule now follows for all n by induction.

The efficiency of the shooting method hinges on the precise way in which it refines the guesses
for the eigenvalues in step 4 above. To make it fast, our actual implementation carries out the
search in the following way:

1. Establish a lower bound ω2
− and an upper bound ω2

+ for ω2
n that have n(ω2

−) ≤ n and
n(ω2

+) > n zeros. To do so, guess any eigenvalue, for example ω2 = 0, shoot U(r) and
count its number of nodes n(ω2).

• If n(ω2) ≤ n, set the lower bound to ω2
− = ω2. Find an upper bound by increasing

ω2 exponentially up from ω2
− and shooting U(r) with step 2 and 3 above until it has

n(ω2) > n nodes, then set the upper bound ω2
+ = ω2.

• If n(ω2) > n, set the upper bound to ω2
+ = ω2. Find a lower bound by decreasing

ω2 exponentially down from ω2
+ and shooting U(r) with step 2 and 3 above until it

has n(ω2) ≤ n nodes, then set the lower bound ω2
− = ω2.

2. Calculate the new guess ω2 = (ω2
− + ω2

+)/2, shoot U(r) with step 2 and 3 above and
count its number of nodes n(ω2).

• If n(ω2) ≤ n, then ω2 is a tighter lower bound than ω2
−, so set ω2

− = ω2.

• If n(ω2) > n, then ω2 is a tighter upper bound than ω2
−, so set ω2

+ = ω2.

3. Repeat step 2 until the bounds ω2
− and ω2

+ are so close that any value in the interval
[ω2

−, ω
2
+] is a satisfactory approximation to the true eigenvalue ω2

n.

4. Output ω2 = (ω2
− + ω2

+)/2 ≈ ω2
n as the final approximation of the true eigenvalue.

This algorithm runs logarithmically fast, because the interval [ω2
−, ω

2
+] is enlarged exponentially

in step 1 and halved at every iteration of step 2.

Implementation

The coefficient functions (4.55) of the Sturm-Liouville problem (G.5) are to be calculated from
the output of the program in appendix G.2. We therefore recast the problem to dimensionless
form by making use of the dimensionless quantities (G.1). It then takes the unchanged “hatted
form”

d
dr̂

[
Π̂(r̂)

dÛn(r̂)
dr̂

]
+ Q̂(r̂) Ûn(r̂) = −ω̂2

nŴ (r̂)Ûn(r̂) for 0 ≤ r̂ ≤ R̂, (G.6a)

subject to Ûn(r̂) ∝ r̂3 near r̂ = 0, (G.6b)

and dÛn(r̂)
dr̂

<∞ at r̂ = R̂, (G.6c)
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where we have defined the dimensionless quantities

Ûn =
Un
r30
, (G.7a)

ω̂ =
ωn
c/r0

, (G.7b)

Π̂ =
Π

ε0/r20
= eβ0+3α0

1

r̂2
γ0P̂0, (G.7c)

Q̂ =
Q

ε0/r40
= eβ0+3α0

−4
1

r̂3
dP̂0

dr̂
− 8πĜ

4π/3
P̂0

(
P̂0 + ε̂0

) e2β0
r̂2

+
1

r̂2

(
dP̂0

/
dr̂
)2

P̂0 + ε̂0

 , (G.7d)

Ŵ =
W

ε0/r20c
2
= e3β0+α0

1

r̂2

(
P̂0 + ε̂0

)
. (G.7e)

Note that there is a difference between the numerical prefactors in the second terms of Q̂ above
and its dimensionful counterpart (4.55b).

On top of this, we implement the shooting method as described in this appendix. Some further
remarks about our implementation are in order.

• To impose boundary condition (G.6b) in step 2 on page 165, we set Û(r̂) = r̂3 for all
discrete points with r̂ < 0.01R̂.

• To numerically integrate the Sturm-Liouville differential equation (G.6a) for r̂ ≥ 0.01R̂
in step 3 on page 165, we first use the product rule to rewrite it as

0 = Π̂Û ′′ + Π̂′Û ′ +
(
Q̂+ ω̂2Ŵ

)
Û . (G.8)

Denoting the discrete points by r̂i and values of functions there by f̂i = f̂(r̂i), we
approximate all derivatives with the central finite differences

f̂ ′′i ≈
f̂ ′i+1/2 − f̂ ′i−1/2

r̂i+1/2 − r̂i−1/2
and f̂ ′i ≈

f̂i+1 − f̂i−1

r̂i+1 − r̂i−1
. (G.9)

This lets us compute the next, unknown value

Ûi+1 =
1

C+
i

(
Ci · Ûi + C−

i · Ûi−1

)
(G.10)

from the two previous known values Ûi and Ûi−1 and the known coefficients

C−
i = − 2Π̂i

r̂i − r̂i−1
+ Π̂′

i, (G.11a)

Ci = +
2Π̂i

r̂i+1 − r̂i
+

2Π̂i
r̂i − r̂i−1

−
(
r̂i+1 − r̂i−1

)(
Q̂i + ω̂2Ŵi

)
, (G.11b)

C+
i = +

2Π̂i
r̂i+1 − r̂i

+ Π̂′
i. (G.11c)

• To prevent numerical integration from breaking down, we stop the numerical integration
at r̂ = 0.99R̂ and linearly interpolate

Ûi+1 = Ûi +
Ûi − Ûi−1

r̂i − r̂i−1

(
r̂i+1 − r̂i

)
(G.12)

for the remaining points r̂ > 0.99R̂. The point r = R is a singular point because
Q(R) = W (R) = 0, causing Û(r̂) to blow up there and making it very difficult for
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numerical integration to follow it. Our assumption is that at r̂ = 0.99R̂, the blowup
has already started, and the purpose of the linear interpolation is merely to capture the
blowup all the way out to r̂ = R̂ without care of the exact functional form of Û(r̂) there,
so we can check boundary condition (G.6c).

• It should also be noted that numerical errors may occur due to division by zero in the
coefficient functions in the regions r̂ < 0.01R̂ and r̂ > 0.99R̂, but not in the intermediate
region 0.01R̂ < r̂ < 0.99R̂. This is not an issue, because we enforce the form of Û(r̂) in
these two regions independently of the coefficient functions.

Here is our implementation of the shooting method in Python based on this description:

stability.py

from constants import *
import matplotlib.pyplot as plt
import numpy as np
from utils import *

def cut_divergence(u, r):
# find index where derivative becomes zero, and cut away divergence after it
du = np.gradient(u, r)
i = len(u) - 1
while i >= 0 and du[i] * du[i-1] >= 0:

i -= 1
return u[:i+1]

def shoot(r, Π, Q, W, ω2, p1, p2):
dΠdr = np.gradient(Π, r)
R = r[-1]

u = np.empty(np.shape(r))

# Start: set boundary condition u ∝ r^3
i = 0
while r[i] / R < p1:

u[i] = 1 * r[i]**3
i += 1

# Middle: integrate Sturm-Liouville equation
i -= 1 # i in next loop is shifted by -1
while r[i] / R < p2:

hp = r[i+1] - r[i]
hm = r[i] - r[i-1]
H = hp + hm
factorp = 2 * Π[i] / hp + dΠdr[i]
factor0 = 2 * Π[i] * (1/hp + 1/hm) - H * (Q[i] + ω2 * W[i])
factorm = dΠdr[i] - 2*Π[i]/hm
u[i+1] = 1/factorp * (u[i] * factor0 + u[i-1] * factorm)
i += 1

# End: linearly interpolate to capture divergence without numerical error
while i < len(r) - 1:

u[i+1] = u[i] + (u[i]-u[i-1]) * (r[i+1]-r[i]) / (r[i]-r[i-1])
i += 1

nodes = sum(u[1:] * u[:-1] < 0) # nodes where u[i] * u[i-1] < 0
return u, nodes

def search(r, Π, Q, W, N, p1, p2, plot=False, progress=False, outfile=""):
def increaseuntil(ω20, cond, sign=+1):

ω2 = ω20
u, n = shoot(r, Π, Q, W, ω2, p1, p2)
while not cond(u, n):

ω2 += sign*1 if ω2 == ω20 else (ω2 - ω20) # exponential increase
u, n = shoot(r, Π, Q, W, ω2, p1, p2)

return ω2

def decreaseuntil(ω20, cond):
return increaseuntil(ω20, cond, sign=-1)

def bisectuntil(ω21, ω22, tol=1e-8):
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u1, n1 = shoot(r, Π, Q, W, ω21, p1, p2)
u2, n2 = shoot(r, Π, Q, W, ω22, p1, p2)
i = 0
ω2s, us = [ω21, ω22], [u1, u2]
while ω22 - ω21 > tol:

ω23 = (ω21 + ω22) / 2
u3, n3 = shoot(r, Π, Q, W, ω23, p1, p2)
if progress:

print(f"\rShooting with ω2 = {ω23:.15f} -> {n3:3d} nodes", end="")
ω2s.append(ω23)
us.append(u3)
if n3 > N:

ω22, u2, n2 = ω23, u3, n3
else:

ω21, u1, n1 = ω23, u3, n3
i += 1

# always choose the one that inflects at the end,
# so its derivative looks like zero right before it diverges
ω2 = ω21 if N % 2 == 0 else ω22
u, n = shoot(r, Π, Q, W, ω2, p1, p2)

if progress:
print() # newline

if plot:
for i in range(0, len(us)):

plt.plot(r, us[i], color=(i/len(us), 0, 0))
ymax = np.max(np.abs(cut_divergence(u, r)))
plt.ylim(-2*ymax, +2*ymax)
plt.show()

if outfile:
cols = [ω2s, r] + us
headers = ["omega2", "r"] + [f"U{i}" for i in range(0, len(us))]
writecols(cols, headers, outfile)
print(f"Wrote shooting method to {outfile}")

return ω2, u, n

ω20 = 0
u, n = shoot(r, Π, Q, W, ω20, p1, p2)
if n > N:

# ω20 is an upper bound, search for a lower bound
ω22 = ω20
ω21 = decreaseuntil(ω20, lambda u, n: n <= N)

else:
# ω20 is a lower bound, search for an upper bound
ω21 = ω20
ω22 = increaseuntil(ω20, lambda u, n: n > N)

ω2, u, n = bisectuntil(ω21, ω22)
return ω2, u, n

def coeffs(r, m, P, α, ϵ):
dPdr = np.gradient(P, r)
dPdϵ = np.gradient(P, ϵ)
β = -1/2*np.log(1-2*G*m/r) # β(0) = 0, avoid division by 0, already dimensionless
Γ = (P + ϵ) / P * dPdϵ # already dimensionless
Π = np.exp(β+3*α)/r**2 * Γ * P
Q = -4*np.exp(β+3*α)/r**3*dPdr
Q -= (8*π*G/(4*π/3))*np.exp(3*β+3*α)/r**2*P*(ϵ+P)
Q += np.exp(β+3*α)*dPdr**2 / (r**2*(ϵ+P))
W = np.exp(3*β+α)*(ϵ+P)/r**2
return Π, Q, W

def eigenmode(
r, m, P, α, ϵ, Ns, p1=0.01, p2=0.99, plot=False, progress=True,
cut=False, normalize=False, outfile="", outfileshoot=""

):
if type(Ns) == type(0):

ω2s, us = eigenmode(
r, m, P, α, ϵ, [Ns], p1=p1, p2=p2, plot=plot, progress=progress,
cut=cut, normalize=normalize, outfile=outfile

)
ω2, u = ω2s[0], us[0]
return ω2, u

Π, Q, W = coeffs(r, m, P, α, ϵ)
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ω2s, us = [], []
for N in Ns:

ω2, u, n = search(
r, Π, Q, W, N, p1, p2, plot=plot, progress=progress, outfile=outfileshoot

)
if cut:

uc = cut_divergence(u, r)
u[:len(uc)] = uc
u[len(uc):] = np.nan

if normalize:
u = u / np.nanmax(np.abs(u))

ω2s.append(ω2)
us.append(u)

if outfile != "":
cols = [ω2s, r]
heads = ["omega2", "r"]
for u, N in zip(us, Ns):

cols.append(u)
heads.append(f"U{N}")

writecols(cols, heads, outfile)
print(f"Wrote (ω2, r, U) to {outfile}")

return ω2s, us

G.4 Equations of state for ideal neutron stars

Below, we use the general framework above to find the mass-radius relation for ideal neutron
stars. We make a total of four sweeps for the mass-radius diagram in figure 4.3, using both the
non-relativistic equation of state (4.16) and the general equation of state (4.17), and solving
both the relativistic Tolman-Oppenheimer-Volkoff equation (2.38) and its Newtonian limit with
the pressure gradient (2.33).

neutron_stars.py

#!/usr/bin/python3

from constants import *
from tov import *
from stability import *
from utils import *
import numpy as np
import scipy.optimize

def ϵUR(P): # ultra-relativistic equation of state
return 3 * P

def ϵNR(P): # non-relativistic equation of state
if P <= 0: return 0
prefactor = (5**3*4**2 / (3**2*π**2*b**2) * mn**8*c**6*r0**6 / (m0**2*ħ**6))**(1/5)
return prefactor * P**(3/5)

def ϵGR(P): # general equation of state
if P <= 0: return 0
prefactor = mn**4*c**3*r0**3 / (6*π*b*m0*ħ**3)
def f(x):

Px = prefactor * ((2*x**3 - 3*x) * np.sqrt(x**2 + 1) + 3*np.arcsinh(x))
return Px - P

sol = scipy.optimize.root_scalar(f, method="bisect", bracket=(0, 1e5))
assert sol.converged, "ERROR: equation of state root finder did not converge"
x = sol.root
ϵx = 3*prefactor * ((2*x**3+x) * np.sqrt(x**2 + 1) - np.arcsinh(x))
return ϵx

P = np.linspace(0, 20, 500)
ϵs = [[ϵ(P) for P in P] for ϵ in (ϵUR, ϵNR, ϵGR)]
writecols([P, *ϵs], ["P", "epsUR", "epsNR", "epsGR"], "data/eos.dat")

opts = { "tolD": 0.05, "tolP": 1e-5, "maxdr": 1e-3, "visual": True }
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massradiusplot(
ϵNR, (1e-6, 1e0), **opts, nmodes=0, newtonian=True, outfile="data/nrnewt.dat"

)
massradiusplot(

ϵGR, (1e-6, 1e0), **opts, nmodes=0, newtonian=True, outfile="data/grnewt.dat"
)
massradiusplot(

ϵNR, (1e-6, 1e7), **opts, nmodes=0, newtonian=False, outfile="data/nr.dat"
)
massradiusplot(

ϵGR, (1e-6, 1e7), **opts, nmodes=6, newtonian=False, outfile="data/gr.dat"
)

P0s = list(np.geomspace(1e-6, 1e7, 14))
xs, ps = [], []
for P0 in P0s:

r, m, P, α, ϵ = soltov(ϵGR, P0)
xs.append(list(r / r[-1]))
ps.append(list(P / P0))

P0head = ["P0"]
xheads = [f"x{i}" for i in range(0, len(P0s))]
pheads = [f"p{i}" for i in range(0, len(P0s))]
writecols([P0s] + xs + ps, P0head + xheads + pheads, "data/pressures.dat")

r, m, P, α, ϵ = soltov(ϵGR, 1e3)
ω2s, us = eigenmode(r, m, P, α, ϵ, [0], plot=True, outfileshoot="data/shoot.dat")

r, m, P, α, ϵ = soltov(ϵGR, 3e2)
ns = range(0, 12)
ω2s, us = eigenmode(

r, m, P, α, ϵ, ns, cut=True, normalize=False, outfile="data/nmodes.dat"
)
ω2s, us = eigenmode(

r, m, P, α, ϵ, ns, cut=True, normalize=True, outfile="data/nmodes_norm.dat"
)

G.5 Equations of state for quark stars and hybrid stars

These programs find all equations of state and stellar solutions in chapters 7, 8, 9 and 10. The
models are organized as classes according to the following diagram:

Model

MITModel
(chapter 7)

MIT2FlavorModel

MIT3FlavorModel

LSMModel
(chapter 8 and 9)

LSM2FlavorModel LSM2FlavorConsistentModel

LSM3FlavorModel

HybridModel
(chapter 10)

Hybrid2FlavorModel

Hybrid2FlavorConsistentModel

Hybrid3FlavorModel
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For all the models, the program performs the following tasks:

• It numerically fits parameters to the grand potential (7.3), (8.19), (8.28) or (9.24) and
evaluates it and its derivatives with respect to any mean fields that are present.

• It finds the equation of state ε(P ). First, from the grand potential (6.3), it parametrizes
pressures (6.4a), densities (6.4b) and energy densities (6.4d) at zero temperature with
one independent mean field or chemical potential. Simultaneously, the other mean fields
and chemical potentials are determined by solving the system of equations (7.5), (8.23) or
(9.27). Finally, the independent variable is eliminated numerically to yield the equation
of state ε(P ). Numerically, the function ε(P ) is implemented as a linearly interpolating
spline between the parametrized points. For the hybrid model, the equation of state is
constructed as described in section 10.1.

• If the equation of state exhibits a phase transition, it is corrected with the Maxwell
construction by establishing one vapor pressure at which the transition takes place, as
explained in [Pog17, equation (4.69)].

• It establishes upper or lower bounds for the bag constant B by making shifts (7.10) with
different bag constants and solving the side of inequality (7.12) that matches the number
of flavors in the model.

• It integrates the Tolman-Oppenheimer-Volkoff equation (6.1) using the program in ap-
pendix G.2, producing mass-radius relations for stellar sequences and radial profiles for
various quantities in individual stars.

Common code for all quark and hybrid star models (chapters 7 to 10)

quark_hybrid_stars_common.py

#!/usr/bin/python3

from constants import π, ħ, c, ϵ0, MeV, GeV, fm
from tov import massradiusplot, soltov
import utils

import numpy as np
import sympy as sp
import scipy.optimize
import scipy.interpolate
import matplotlib.pyplot as plt

Nc = 3
me = 0.5

tovopts = {"tolD": 0.01, "maxdr": 1e-2, "nmodes": 0}

def charge(mu, md, ms, μu, μd, μs, μe):
nu = Nc/(3*π**2) * np.real((μu**2-mu**2+0j)**(3/2))
nd = Nc/(3*π**2) * np.real((μd**2-md**2+0j)**(3/2))
ns = Nc/(3*π**2) * np.real((μs**2-ms**2+0j)**(3/2))
ne = 1/(3*π**2) * np.real((μe**2-me**2+0j)**(3/2))
return +2/3*nu - 1/3*nd - 1/3*ns - 1*ne

# solve μQ=(μu+μd)/2, μd=μu+μe, μs=μd for (μu,μd,μs)
def μelim(μQ, μe):

μu = μQ - μe/2
μd = μu + μe
μs = μd
return μu, μd, μs

class Model:
def __init__(self, name, mσ=0, mπ=0, mK=0):

self.name = name
self.mu, self.md, self.ms = self.vacuum_masses()
print(f"Meson masses: mσ = {mσ:.1f} MeV, mπ = {mπ:.1f}, mK = {mK:.1f}")
print(f"Quark masses: mu = md = {self.mu:.1f} MeV, ms = {self.ms:.1f} MeV")
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self.mσ = mσ
self.mπ = mπ
self.mK = mK

def eos(self, B=0, N=1000, plot=False, write=False, debugmaxwell=False):
mu, md, ms, μu, μd, μs, μe = self.eossolve(N=N) # model-dependent function

# extend solutions to μ = 0 to show Silver-Blaze property
μu = np.insert(μu, 0, 0)
μd = np.insert(μd, 0, 0)
μs = np.insert(μs, 0, 0)
μe = np.insert(μe, 0, 0)
mu = np.insert(mu, 0, mu[0])
md = np.insert(md, 0, md[0])
ms = np.insert(ms, 0, ms[0])

μQ = (μu + μd) / 2

Ω = self.Ω(mu, md, ms, μu+0j, μd+0j, μs+0j, μe+0j) # model-dependent
P, P0 = -Ω, -Ω[0]
P = P - P0

nu = Nc/(3*π**2) * np.real((μu**2-mu**2+0j)**(3/2))
nd = Nc/(3*π**2) * np.real((μd**2-md**2+0j)**(3/2))
ns = Nc/(3*π**2) * np.real((μs**2-ms**2+0j)**(3/2))
ne = 1/(3*π**2) * np.real((μe**2-me**2+0j)**(3/2))
ϵ = -P + μu*nu + μd*nd + μs*ns + μe*ne

# print bag constant bound (upper or lower, depending on circumstances)
nB = 1/3*(nu+nd+ns)
def EperB(B):

PB = P - B
ϵB = ϵ + B
return np.interp(0, PB, ϵB/nB) # at P=0

f = lambda B: EperB(B) - 930
Bs = np.linspace(0, 300, 10000)**4
if plot:

plt.plot(Bs**(1/4), [f(Bs) for Bs in Bs])
plt.ylim(-500, +500)
plt.show()

try:
# note: bracket lower bound is sensitive
sol = scipy.optimize.root_scalar(f, method="brentq", bracket=(1e5, 300**4))
assert sol.converged
Bbound = sol.root

except ValueError:
print("alternative bag bound method")
Bs = np.linspace(0, 300, 10000)**4
Bbound = Bs[np.argmin([f(B) for B in Bs])]

print(f"Bag constant bound: B^(1/4) = {Bbound**(1/4)} MeV", end=" ")
print(f"({(P0+Bbound)**(1/4)} MeV)")

P -= B
ϵ += B

if plot:
plt.plot(P, ϵ/nB, ".-k")
plt.axhline(930, color="red")
plt.show()

# plot bag pressure
if plot:

μvac = np.full_like(mu, 0+0j)
PB = -self.Ω(mu, md, ms, μvac, μvac, μvac, μvac) - P0 - B
PQ = P - PB
plt.plot((μu+μd)/2, np.sign(PB)*np.abs(PB)**(1/4), label="bag")
plt.plot((μu+μd)/2, np.sign(PQ)*np.abs(PQ)**(1/4), label="quark")
plt.plot((μu+μd)/2, np.sign(P)*np.abs(P)**(1/4), label="total")
plt.xlabel(r"$\mu$")
plt.ylabel(r"$P$")
plt.legend()
plt.show()

P1 = P[0]
i2 = np.argmax(np.gradient(P) < 0) # last index of increasing pressure
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P2 = P[i2]
have_phase_transition = (i2 != 0) and (P2 > 0)
print("Phase transition?", have_phase_transition)
Porg, ϵorg = np.copy(P), np.copy(ϵ) # save pre-Maxwell-construction P, ϵ
if have_phase_transition:

i3 = i2 + np.argmax(np.gradient(P[i2:]) > 0) - 1
P3 = P[i3]

# debug Maxwell construction
if debugmaxwell:

plt.plot(P[:i2+1], ϵ[:i2+1], marker=".", color="red")
plt.plot(P[i2:i3+1], ϵ[i2:i3+1], marker=".", color="green")
plt.plot(P[i3:], ϵ[i3:], marker=".", color="blue")
plt.show()

def gibbs_area(Pt):
j1 = np.argmax(P[:i2+1] >= Pt) # first pt on 1-curve with greater P
j2 = i3 + np.argmax(P[i3:] >= Pt) # first pt on 2-curve with greater P
ϵ1 = np.interp(Pt, P[:i2+1], ϵ[:i2+1])
ϵ2 = np.interp(Pt, P[i3:], ϵ[i3:])
P12 = np.concatenate([[Pt], P[j1:j2], [Pt]])
ϵ12 = np.concatenate([[ϵ1], ϵ[j1:j2], [ϵ2]])
ret = np.trapz(1/ϵ12, P12)
print(f"gibbs_area({Pt}) = {ret}")
return ret

# find P that gives zero Gibbs area
# (pray that P[0]+1e-3 works, since P[0] = 0 gives 0-div error
sol = scipy.optimize.root_scalar(gibbs_area, bracket=(P[0]+1e-3, P[i2]), \

method="brentq")
assert sol.converged
Pt = sol.root
print(f"Phase transition pressure: {Pt} MeV^4")

if debugmaxwell:
plt.plot(1/ϵ, P, color="gray")
plt.ylim(1.1*np.min(P), -1.1*np.min(P))

j1 = np.argmax(P[:i2+1] >= Pt) # first pt on 1-curve with greater P
j2 = i3 + np.argmax(P[i3:] >= Pt) # first pt on 2-curve with greater P
ϵ1 = np.interp(Pt, P[:i2+1], ϵ[:i2+1])
ϵ2 = np.interp(Pt, P[i3:], ϵ[i3:])

# fix array by only modifying EOS,
# but fill out with points in phase transition
ϵ1 = np.interp(Pt, P[:i2+1], ϵ[:i2+1])
ϵ2 = np.interp(Pt, P[i3:], ϵ[i3:])
Ntarget = len(mu)
Nnow = len(ϵ[:j1]) + len(ϵ[j2:])
Nadd = Ntarget - Nnow
ϵ = np.concatenate((ϵ[:j1], np.linspace(ϵ1, ϵ2, Nadd), ϵ[j2:]))
P = np.concatenate((P[:j1], np.linspace(Pt, Pt, Nadd), P[j2:]))

if debugmaxwell:
plt.plot(1/ϵ, P, color="black")
plt.show()

# convert interesting quantities to SI units
nu *= MeV**3 / (ħ*c)**3 * fm**3 # now in units 1/fm^3
nd *= MeV**3 / (ħ*c)**3 * fm**3 # now in units 1/fm^3
ns *= MeV**3 / (ħ*c)**3 * fm**3 # now in units 1/fm^3
ne *= MeV**3 / (ħ*c)**3 * fm**3 # now in units 1/fm^3
P0 *= MeV**4 / (ħ*c)**3 # now in units kg*m^2/s^2/m^3
P *= MeV**4 / (ħ*c)**3 # now in units kg*m^2/s^2/m^3
ϵ *= MeV**4 / (ħ*c)**3 # now in units kg*m^2/s^2/m^3
Porg *= MeV**4 / (ħ*c)**3 # now in units kg*m^2/s^2/m^3
ϵorg *= MeV**4 / (ħ*c)**3 # now in units kg*m^2/s^2/m^3

# convert interesting quantities to appropriate units
P0 *= fm**3 / GeV # now in units GeV/fm^3
P *= fm**3 / GeV # now in units GeV/fm^3
ϵ *= fm**3 / GeV # now in units GeV/fm^3
Porg *= fm**3 / GeV # now in units GeV/fm^3
ϵorg *= fm**3 / GeV # now in units GeV/fm^3
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print(f"P0 = {P0}")

if write:
cols = [mu, md, ms, μu, μd, μs, μe, nu, nd, ns, ne, ϵ, P, ϵorg, Porg]
heads = ["mu", "md", "ms", "muu", "mud", "mus", "mue", \

"nu", "nd", "ns", "ne", "epsilon", "P", "epsilonorg", "Porg"]
outfile = f"data/{self.name}/eos_sigma_{self.mσ}.dat"
utils.writecols(cols, heads, outfile)

if plot:
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(25, 5))

ax1.set_xlabel(r"$\mu_Q$")
ax1.plot(μQ, mu, ".-", color="orange", label=r"$m_u$")
ax1.plot(μQ, md, ".-", color="orange", label=r"$m_d$")
ax1.plot(μQ, ms, ".-", color="yellow", label=r"$m_s$")
ax1.plot(μQ, μu, ".-", color="red", label=r"$\mu_u$")
ax1.plot(μQ, μd, ".-", color="green", label=r"$\mu_d$")
ax1.plot(μQ, μs, ".-", color="purple", label=r"$\mu_s$")
ax1.plot(μQ, μe, ".-", color="blue", label=r"$\mu_e$")
ax1.legend()

ax2.set_xlabel(r"$\mu_Q$")
ax2.set_ylabel(r"$n$")
ax2.plot(μQ, nu, ".-", color="red", label=r"$n_u$")
ax2.plot(μQ, nd, ".-", color="green", label=r"$n_d$")
ax2.plot(μQ, ns, ".-", color="purple", label=r"$n_s$")
ax2.plot(μQ, ne, ".-", color="blue", label=r"$n_e$")
ax2.legend()

ax3.set_xlabel(r"$P$")
ax3.set_ylabel(r"$\epsilon$")
ax3.plot(Porg, ϵorg, ".-", color="gray") # compare
ax3.plot(P, ϵ, ".-", color="black")

ax4.plot(μQ, (P/(MeV**4 / (ħ*c)**3)/(fm**3 / GeV))**0.25)
#P0 *= (MeV**4 / (ħ*c)**3) # now in units kg*m^2/s^2/m^3
#P0 *= (fm**3 / GeV) # now in units GeV/fm^3
ax4.set_xlabel(r"$\mu / MeV$")
ax4.set_ylabel(r"$P^{\frac{1}{4}} / MeV$")
ax4.set_xlim(0, 1000)
ax4.set_ylim(0, 500)

plt.show()

# interpolate dimensionless EOS
P /= (fm**3/GeV) * ϵ0 # now in TOV-dimensionless units
ϵ /= (fm**3/GeV) * ϵ0 # now in TOV-dimensionless units
ϵ = np.concatenate(([0, np.interp(0, P, ϵ)], ϵ[P>0]))
nu = np.concatenate(([0, np.interp(0, P, nu)], nu[P>0]))
nd = np.concatenate(([0, np.interp(0, P, nd)], nd[P>0]))
ns = np.concatenate(([0, np.interp(0, P, ns)], ns[P>0]))
ne = np.concatenate(([0, np.interp(0, P, ne)], ne[P>0]))
μQ = np.concatenate(([0, np.interp(0, P, μQ)], μQ[P>0]))
P = np.concatenate(([P[0] - 10, 0], P[P>0])) # avoid interp errors w/ ϵ(P<Pmin)=0
print(f"interpolation range: {P[0]} < P < {P[-1]}")
ϵint = scipy.interpolate.interp1d(P, ϵ); ϵint.__name__ = self.name
nuint = scipy.interpolate.interp1d(P, nu)
ndint = scipy.interpolate.interp1d(P, nd)
nsint = scipy.interpolate.interp1d(P, ns)
neint = scipy.interpolate.interp1d(P, ne)
μQint = scipy.interpolate.interp1d(P, μQ)
return ϵint, nuint, ndint, nsint, neint, μQint

def star(self, Pc, B14, plot=False, write=False):
ϵ, nu, nd, ns, ne, μQ = self.eos(B=B14**4)
rs, ms, Ps, αs, ϵs = soltov(ϵ, Pc, maxdr=tovopts["maxdr"])
nus, nds, nss, nes, μQs = nu(Ps), nd(Ps), ns(Ps), ne(Ps), μQ(Ps)
xs = rs / rs[-1] # dimensionless radius [0, 1]

Ps *= (fm**3/GeV) * ϵ0 # now in GeV/fm^3
ϵs *= (fm**3/GeV) * ϵ0 # now in GeV/fm^3
nus /= 0.165 # now in units of n_sat
nds /= 0.165 # now in units of n_sat
nss /= 0.165 # now in units of n_sat
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nes /= 0.165 # now in units of n_sat

if plot:
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4)
ax1.set_xlabel(r"$r$")
ax2.set_xlabel(r"$r$")
ax3.set_xlabel(r"$r$")
ax4.set_xlabel(r"$r$")
ax1.plot(rs, Ps, label=r"$P$")
ax1.plot(rs, ϵs, label=r"$\epsilon$")
ax2.plot(rs, ms, label=r"$m$")
ax3.plot(rs, μQs, label=r"$\mu_Q$")
ax4.plot(rs, nus, label=r"$n_u$")
ax4.plot(rs, nds, label=r"$n_d$")
ax4.plot(rs, nss, label=r"$n_s$")
ax4.plot(rs, nes, label=r"$n_e$")
ax1.legend()
ax2.legend()
ax3.legend()
ax4.legend()
plt.show()

if write:
heads = ["r", "x", "m", "P", "epsilon", "nu", "nd", "ns", "ne", "muQ"]
cols = [rs, xs, ms, Ps, ϵs, nus, nds, nss, nes, μQs]
outfile = f"data/{self.name}/star_sigma_{self.mσ}_B14_{B14}_Pc_{Pc:.7f}.dat"
utils.writecols(cols, heads, outfile)

def stars(self, B14, P1P2, N=1000, plot=False, write=False):
if write:

outfile = f"data/{self.name}/stars_sigma_{self.mσ}_B14_{B14}.dat"
else:

outfile = ""
print(f"B = ({B14} MeV)^4, outfile = {outfile}")
ϵ, _, _, _, _, _ = self.eos(N=N, B=B14**4, plot=False)
massradiusplot(ϵ, P1P2, **tovopts, visual=plot, outfile=outfile)

MIT bag model (chapter 7)

quark_stars_mit.py

#!/usr/bin/python3

from quark_hybrid_stars_common import *

muf = 5 # current/lone/free masses (i.e. without gluons)
mdf = 7
msf = 150

class MITModel(Model):
pass # will only inherit

class MIT2FlavorModel(MITModel):
def __init__(self):

Model.__init__(self, "MIT2F")
self.Ω = lambda mu, md, ms, μu, μd, μs, μe: np.real(

-Nc/(24*π**2)*((2*μu**2-5*mu**2)*μu*np.sqrt(μu**2-mu**2+0j)+\
3*mu**4*np.arcsinh(np.sqrt(μu**2/mu**2-1+0j))) + \
-Nc/(24*π**2)*((2*μd**2-5*md**2)*μd*np.sqrt(μd**2-md**2+0j)+\
3*md**4*np.arcsinh(np.sqrt(μd**2/md**2-1+0j))) + \
-1/(24*π**2)*((2*μe**2-5*me**2)*μe*np.sqrt(μe**2-me**2+0j)+\
3*me**4*np.arcsinh(np.sqrt(μe**2/me**2-1+0j)))

)

def vacuum_masses(self):
return muf, mdf, 0

def solve(self, μQ):
def q(μe):

μu, μd, _ = μelim(μQ, μe)
return charge(muf, mdf, 0, μu, μd, 0, μe)

sol = scipy.optimize.root_scalar(q, method="bisect", bracket=(0, 1e5))
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assert sol.converged, f"{sol.flag} (μQ = {μQ})"
μe = sol.root
μu, μd, _ = μelim(μQ, μe)
return μu, μd, μe

def eossolve(self, N):
μQ = np.linspace(muf, 2000, N)
μu = np.empty_like(μQ)
μd = np.empty_like(μQ)
μe = np.empty_like(μQ)

for i in range(0, len(μQ)):
μu[i], μd[i], μe[i] = self.solve(μQ[i])
print(f"μQ = {μQ[i]:.2f}, μu = {μu[i]:.2f}, ", end="")
print(f"μd = {μd[i]:.2f}, μe = {μe[i]:.2f}")

mu = np.full_like(μQ, muf)
md = np.full_like(μQ, mdf)
ms = np.full_like(μQ, 0)
μs = np.full_like(μQ, 0)
return mu, md, ms, μu, μd, μs, μe

class MIT3FlavorModel(MITModel):
def __init__(self):

Model.__init__(self, "MIT3F")
self.Ω = lambda mu, md, ms, μu, μd, μs, μe: np.real(

-Nc/(24*π**2)*((2*μu**2-5*mu**2)*μu*np.sqrt(μu**2-mu**2)+\
3*mu**4*np.arcsinh(np.sqrt(μu**2/mu**2-1))) + \
-Nc/(24*π**2)*((2*μd**2-5*md**2)*μd*np.sqrt(μd**2-md**2)+\
3*md**4*np.arcsinh(np.sqrt(μd**2/md**2-1))) + \
-Nc/(24*π**2)*((2*μs**2-5*ms**2)*μs*np.sqrt(μs**2-ms**2)+\
3*ms**4*np.arcsinh(np.sqrt(μs**2/ms**2-1))) + \
-1/(24*π**2)*((2*μe**2-5*me**2)*μe*np.sqrt(μe**2-me**2)+\
3*me**4*np.arcsinh(np.sqrt(μe**2/me**2-1)))

)

def vacuum_masses(self):
return muf, mdf, msf

def solve(self, μQ):
def q(μe):

μu, μd, μs = μelim(μQ, μe)
return charge(muf, mdf, msf, μu, μd, μs, μe)

sol = scipy.optimize.root_scalar(q, method="bisect", bracket=(0, 1e5))
assert sol.converged, f"{sol.flag} (μQ = {μQ})"
μe = sol.root
μu, μd, μs = μelim(μQ, μe)
return μu, μd, μs, μe

def eossolve(self, N):
μQ = np.linspace(muf, 2000, N)
μu = np.empty_like(μQ)
μd = np.empty_like(μQ)
μs = np.empty_like(μQ)
μe = np.empty_like(μQ)

for i in range(0, len(μQ)):
μu[i], μd[i], μs[i], μe[i] = self.solve(μQ[i])
print(f"μQ = {μQ[i]:.2f}, μu = {μu[i]:.2f}, μd = {μd[i]:.2f}, ", end="")
print(f"μs = {μs[i]:.2f}, μe = {μe[i]:.2f}")

mu = np.full_like(μQ, muf)
md = np.full_like(μQ, mdf)
ms = np.full_like(μQ, msf)
return mu, md, ms, μu, μd, μs, μe

if __name__ == "__main__": # uncomment lines/blocks to run
"""
models = [MIT2FlavorModel, MIT3FlavorModel]
for model in models:

model = model()
model.eos(plot=False, write=True)
for B14 in (145, 150, 155):

model.stars(B14, (1e-7, 1e-2), write=True)
"""
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Quark-meson model (chapters 8 and 9)

quark_stars_lsm.py

#!/usr/bin/python3

from quark_hybrid_stars_common import *
import os; os.environ["XDG_SESSION_TYPE"] = "x11" # for mayavi to work
import mayavi.mlab as mlab

mu0 = 300 # constituent masses (i.e. with gluons)
md0 = mu0
ms0 = 429 # only used for root equation guess

fπ = 93
fK = 113
σx0 = fπ
σy0 = np.sqrt(2)*fK-fπ/np.sqrt(2)

mσ = 800
mπ = 138
mK = 496

class LSMModel(Model):
def eossolve(self, N):

Δx = np.linspace(self.mu, 0, N)[:-1] # shave off erronous 0
Δy = np.empty_like(Δx)
μQ, μu, μd, μs, μe = Δy, Δy, Δy, Δy, Δy # copy

for i in range(0, len(Δx)):
mu, md ,ms = self.vacuum_masses()
guess = (μQ[i-1], Δy[i-1], μe[i-1]) if i > 0 else (mu, ms, 0) # use prev sol
μQ[i], Δy[i], μu[i], μd[i], μs[i], μe[i] = self.solve(Δx[i], guess)
print(f"Δx = {Δx[i]:.2f}, Δy = {Δy[i]:.2f}, ", end="")
print(f"μu = {μu[i]:.2f}, μd = {μd[i]:.2f}, ", end="")
print(f"μs = {μs[i]:.2f}, μe = {μe[i]:.2f}")

return Δx, Δx, Δy, μu, μd, μs, μe

def vacuum_masses(self):
min = scipy.optimize.minimize(

lambda ΔxΔy: self.Ω(ΔxΔy[0], ΔxΔy[0], ΔxΔy[1], 0, 0, 0, 0),
x0=(mu0, ms0), method="Nelder-Mead"

)
if min.success:

Δx0, Δy0 = min.x
else:

Δx0, Δy0 = np.nan, np.nan
return Δx0, Δx0, Δy0

def vacuum_potential(self, Δx, Δy, write=False):
fig, axl = plt.subplots()
axr = axl.twinx()
ΔxΔx, ΔyΔy = np.meshgrid(Δx, Δy)

Ωf = lambda Δx, Δy: self.Ω(Δx, Δx, Δy, 0, 0, 0, 0) / fπ**4 # in vacuum

Ω = Ωf(ΔxΔx, ΔyΔy)
Ω0 = np.max(np.abs(Ω))
mlab.mesh(ΔxΔx / Δx[-1], ΔyΔy / Δy[-1], Ω / Ω0)
mlab.mesh(ΔxΔx / Δx[-1], ΔyΔy / Δy[-1], Ω / Ω0, representation="wireframe")
mlab.axes()

Δx0, _, Δy0 = self.vacuum_masses()
if not np.isnan(Δx0) and not np.isnan(Δy0):

print(f"mσ = {self.mσ} MeV: found minimum (Δx, Δy, Ω/fπ^4) = ", end="")
print(f"({Δx0:.0f} MeV, {Δy0:.0f} MeV, {Ωf(Δx0, Δy0)})")
Ωx0 = Ωf(Δx, Δy0)
Ωy0 = Ωf(Δx0, Δy)
mlab.plot3d(np.full(Δy.shape, Δx0) / Δx[-1], Δy / Δy[-1], Ωy0 / Ω0)
mlab.plot3d(Δx / Δx[-1], np.full(Δx.shape, Δy0) / Δy[-1], Ωx0 / Ω0)

else:
print(f"mσ = {self.mσ} MeV: no minimum!")

if write:
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cols = [ΔxΔx.flatten(), ΔyΔy.flatten(), Ω.flatten()]
heads = ["Deltax", "Deltay", "Omega"]
utils.writecols(

cols, heads, f"data/{self.name}/potential_vacuum_sigma{mσ}.dat",
skipevery=len(Δx)

)

mlab.show()

class LSM2FlavorModel(LSMModel):
def __init__(self, mσ=mσ, mπ=mπ, renormalize=True):

Nf = 2
m2 = 1/2*(3*mπ**2-mσ**2)
λ = 3/fπ**2 * (mσ**2-mπ**2)
h = fπ * mπ**2
g = mu0 / fπ
Λ2 = mu0**2 / np.e
print(f"m2 = {np.sign(m2)}*({np.sqrt(np.abs(m2))} MeV)^2 ")
print(f"λ = {λ}")
print(f"g = {g}")
print(f"h = {np.sign(h)}*({np.abs(h)**(1/3)} MeV)^3 ")
print(f"Λ = {np.sqrt(Λ2)} MeV")

Δ, μu, μd, μe = sp.symbols("Δ μ_u μ_d μ_e", complex=True)
σ = Δ / g
Ω0 = 1/2*m2*σ**2 + λ/24*σ**4 - h*σ
Ωr = Nc*Nf*Δ**4/(16*π**2)*(3/2+sp.log(Λ2/Δ**2)) if renormalize else 0
Ωu = -Nc/(24*π**2)*((2*μu**2-5*Δ**2)*μu*sp.sqrt(μu**2-Δ**2)+\

3*Δ**4*sp.asinh(sp.sqrt(μu**2/Δ**2-1)))
Ωd = -Nc/(24*π**2)*((2*μd**2-5*Δ**2)*μd*sp.sqrt(μd**2-Δ**2)+\

3*Δ**4*sp.asinh(sp.sqrt(μd**2/Δ**2-1)))
Ωe = -1/(24*π**2)*((2*μe**2-5*me**2)*μe*sp.sqrt(μe**2-me**2)+\

3*me**4*sp.asinh(sp.sqrt(μe**2/me**2-1)))
Ω = Ω0 + Ωr + Ωu + Ωd + Ωe
dΩ = sp.diff(Ω, Δ)

Ω = sp.lambdify((Δ, μu, μd, μe), Ω, "numpy")
dΩ = sp.lambdify((Δ, μu, μd, μe), dΩ, "numpy")
self.Ω = lambda mu,md,ms,μu,μd,μs,μe: np.real( Ω(mu+0j,μu+0j,μd+0j,μe+0j))
self.dΩ = lambda mu,md,ms,μu,μd,μs,μe: np.real(dΩ(mu+0j,μu+0j,μd+0j,μe+0j))

Model.__init__(self, "LSM2F", mσ=mσ, mπ=mπ)

def solve(self, Δx, guess):
def system(μQ_Δy_μe):

μQ, Δy, μe = μQ_Δy_μe # unpack variables
μu, μd, _ = μelim(μQ, μe)
μs = 0
return (self.dΩ(Δx, Δx, 0, μu, μd, 0, μe), Δy, # hack to give Δy = 0

charge(Δx, Δx, 0, μu, μd, 0, μe))
sol = scipy.optimize.root(system, guess, method="lm") # lm and krylov works
assert sol.success, f"{sol.message} (Δx = {Δx})"
μQ, Δy, μe = sol.x
μu, μd, _ = μelim(μQ, μe)
Δy, μs = 0, 0
return μQ, Δy, μu, μd, μs, μe

class LSM2FlavorConsistentModel(LSM2FlavorModel):
def __init__(self, mσ=mσ, mπ=mπ):

Δ, μu, μd, μe = sp.symbols("Δ μ_u μ_d μ_e", complex=True)
def r(p2): return sp.sqrt(4*mu0**2/p2-1)
def F(p2): return 2 - 2*r(p2)*sp.atan(1/r(p2))
def dF(p2): return 4*mu0**2*r(p2)/(p2*(4*mu0**2-p2))*sp.atan(1/r(p2))-1/p2
Ω = 3/4*mπ**2*fπ**2*(1-4*mu0**2*Nc/(4*π*fπ)**2*mπ**2*dF(mπ**2)) * (Δ/mu0)**2
Ω -= mσ**2*fπ**2/4*(1+4*mu0**2*Nc/(4*π*fπ)**2*((1-4*mu0**2/mσ**2)*F(mσ**2)+\

4*mu0**2/mσ**2-F(mπ**2)-mπ**2*dF(mπ**2))) * (Δ/mu0)**2
Ω += mσ**2*fπ**2/8*(1-4*mu0**2*Nc/(4*π*fπ)**2*(4*(mu0/mσ)**2*sp.log((Δ/mu0)**2)-\

(1-4*mu0**2/mσ**2)*F(mσ**2)+F(mπ**2)+mπ**2*dF(mπ**2))) * (Δ/mu0)**4
Ω -= mπ**2*fπ**2/8*(1-4*mu0**2*Nc/(4*π*fπ)**2*mπ**2*dF(mπ**2)) * (Δ/mu0)**4
Ω -= mπ**2*fπ**2*(1-4*mu0**2*Nc/(4*π*fπ)**2*mπ**2*dF(mπ**2)) * Δ/mu0
Ω += 3*Nc/(16*π**2) * Δ**4
Ω -= Nc/(24*π**2)*((2*μu**2-5*Δ**2)*μu*sp.sqrt(μu**2-Δ**2)+\

3*Δ**4*sp.asinh(sp.sqrt(μu**2/Δ**2-1)))
Ω -= Nc/(24*π**2)*((2*μd**2-5*Δ**2)*μd*sp.sqrt(μd**2-Δ**2)+\

3*Δ**4*sp.asinh(sp.sqrt(μd**2/Δ**2-1)))
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Ω -= 1/(24*π**2)*((2*μe**2-5*me**2)*μe*sp.sqrt(μe**2-me**2)+\
3*me**4*sp.asinh(sp.sqrt(μe**2/me**2-1)))

dΩ = sp.diff(Ω, Δ) # (numerical differentiation also works)
dΩ = sp.lambdify((Δ, μu, μd, μe), dΩ, "numpy")
self.dΩ = lambda mu, md, ms, μu, μd, μs, μe: np.real(dΩ(mu+0j,μu+0j,μd+0j,μe+0j))

Ω = sp.lambdify((Δ, μu, μd, μe), Ω, "numpy")
self.Ω = lambda mu, md, ms, μu, μd, μs, μe: np.real( Ω(mu+0j,μu+0j,μd+0j,μe+0j))

Model.__init__(self, "LSM2FC", mσ=mσ, mπ=mπ)

class LSM3FlavorModel(LSMModel):
def __init__(self, mσ=mσ, mπ=mπ, mK=mK):

def mesonmasses(m2, λ1, λ2):
rt2 = np.sqrt(2)

m2σσ00 = m2+λ1/3*(4*rt2*σx0*σy0+7*σx0**2+5*σy0**2)+λ2*(σx0**2+σy0**2)
m2σσ11 = m2+λ1*(σx0**2+σy0**2)+3/2*λ2*σx0**2
m2σσ44 = m2+λ1*(σx0**2+σy0**2)+λ2/2*(rt2*σx0*σy0+σx0**2+2*σy0**2)
m2σσ88 = m2-λ1/3*(4*rt2*σx0*σy0-5*σx0**2-7*σy0**2)+λ2/2*(σx0**2+4*σy0**2)
m2σσ08 = 2/3*λ1*(rt2*σx0**2-rt2*σy0**2-σx0*σy0)+λ2/rt2*(σx0**2-2*σy0**2)

m2ππ00 = m2+λ1*(σx0**2+σy0**2)+λ2/3*(σx0**2+σy0**2)
m2ππ11 = m2+λ1*(σx0**2+σy0**2)+λ2/2*σx0**2
m2ππ44 = m2+λ1*(σx0**2+σy0**2)-λ2/2*(rt2*σx0*σy0-σx0**2-2*σy0**2)
m2ππ88 = m2+λ1*(σx0**2+σy0**2)+λ2/6*(σx0**2+4*σy0**2)
m2ππ08 = λ2/6*(rt2*σx0**2-2*rt2*σy0**2)

θσ = np.arctan(2*m2σσ08 / (m2σσ88-m2σσ00)) / 2
θπ = np.arctan(2*m2ππ08 / (m2ππ88-m2ππ00)) / 2

m2f0 = m2σσ00*np.sin(θσ)**2 + m2σσ88*np.cos(θσ)**2 + m2σσ08*np.sin(2*θσ)
m2σ = m2σσ00*np.cos(θσ)**2 + m2σσ88*np.sin(θσ)**2 - m2σσ08*np.sin(2*θσ)
m2a0 = m2σσ11
m2κ = m2σσ44
m2η = m2ππ00*np.sin(θπ)**2 + m2ππ88*np.cos(θπ)**2 + m2ππ08*np.sin(2*θπ)
m2ηp = m2ππ00*np.cos(θπ)**2 + m2ππ88*np.sin(θπ)**2 - m2ππ08*np.sin(2*θπ)
m2π = m2ππ11
m2K = m2ππ44
return m2f0, m2σ, m2a0, m2κ, m2η, m2ηp, m2π, m2K

def system(m2_λ1_λ2):
m2, λ1, λ2 = m2_λ1_λ2
_, m2σ, _, _, _, _, m2π, m2K = mesonmasses(m2, λ1, λ2)
return (m2σ - mσ**2, m2π - mπ**2, m2K - mK**2)

sol = scipy.optimize.root(system, (-100, -10, +100), method="hybr")
m2, λ1, λ2 = sol.x
g = 2*mu0/σx0
hx = σx0 * (m2 + λ1*(σx0**2+σy0**2) + λ2/2*σx0**2)
hy = σy0 * (m2 + λ1*(σx0**2+σy0**2) + λ2*σy0**2)
Λx = g*σx0/(2*np.sqrt(np.e))
Λy = g*σy0/(np.sqrt(2*np.e))
common_renormalization_scale = False
if common_renormalization_scale:

Λ = (2*Λx+Λy)/3
Λx, Λy = Λ, Λ # set common, averaged renormalization scale

print(f"m2 = {np.sign(m2)}*({np.sqrt(np.abs(m2))} MeV)^2 ")
print(f"λ1 = {λ1}")
print(f"λ2 = {λ2}")
print(f"g = {g}")
print(f"hx = ({hx**(1/3)} MeV)^3")
print(f"hy = ({hy**(1/3)} MeV)^3")
print(f"Λx = {Λx} MeV")
print(f"Λy = {Λy} MeV")
print(f"mx = {g*σx0/2} MeV")
print(f"my = {g*σy0/np.sqrt(2)} MeV")

# predict (remaining) meson masses
m2f0, m2σ, m2a0, m2κ, m2η, m2ηp, m2π, m2K = mesonmasses(m2, λ1, λ2)
print(f"mf0 = {np.sqrt(m2f0):.0f} MeV")
print(f"mσ = {np.sqrt(m2σ):.0f} MeV")
print(f"ma0 = {np.sqrt(m2a0):.0f} MeV")
print(f"mκ = {np.sqrt(m2κ):.0f} MeV")
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print(f"mη = {np.sqrt(m2η):.0f} MeV")
print(f"mηp = {np.sqrt(m2ηp):.0f} MeV")
print(f"mπ = {np.sqrt(m2π):.0f} MeV")
print(f"mK = {np.sqrt(m2K):.0f} MeV")

Δx, Δy, μu, μd, μs, μe = sp.symbols("Δ_x Δ_y μ_u μ_d μ_s μ_e", complex=True)
σx = 2*Δx/g
σy = np.sqrt(2)*Δy/g
Ωb = m2/2*(σx**2+σy**2) + λ1/4*(σx**2+σy**2)**2 + λ2/8*(σx**4+2*σy**4) -\

hx*σx - hy*σy
Ωr = Nc/(16*π**2)*(Δx**4*(3/2+sp.log(Λx**2/Δx**2))+\

Δx**4*(3/2+sp.log(Λx**2/Δx**2))+Δy**4*(3/2+sp.log(Λy**2/Δy**2)))
Ωu = -Nc/(24*π**2)*((2*μu**2-5*Δx**2)*μu*sp.sqrt(μu**2-Δx**2)+\

3*Δx**4*sp.asinh(sp.sqrt(μu**2/Δx**2-1)))
Ωd = -Nc/(24*π**2)*((2*μd**2-5*Δx**2)*μd*sp.sqrt(μd**2-Δx**2)+\

3*Δx**4*sp.asinh(sp.sqrt(μd**2/Δx**2-1)))
Ωs = -Nc/(24*π**2)*((2*μs**2-5*Δy**2)*μs*sp.sqrt(μs**2-Δy**2)+\

3*Δy**4*sp.asinh(sp.sqrt(μs**2/Δy**2-1)))
Ωe = -1/(24*π**2)*((2*μe**2-5*me**2)*μe*sp.sqrt(μe**2-me**2)+\

3*me**4*sp.asinh(sp.sqrt(μe**2/me**2-1)))

Ω = Ωb + Ωr + Ωu + Ωd + Ωs + Ωe
dΩx = sp.diff(Ω, Δx)
dΩy = sp.diff(Ω, Δy)

Ω = sp.lambdify((Δx, Δy, μu, μd, μs, μe), Ω, "numpy")
dΩx = sp.lambdify((Δx, Δy, μu, μd, μs, μe), dΩx, "numpy")
dΩy = sp.lambdify((Δx, Δy, μu, μd, μs, μe), dΩy, "numpy")
self.Ω = lambda mu, md, ms, μu, μd, μs, μe: \

np.real( Ω(mu+0j, ms+0j, μu+0j, μd+0j, μs+0j, μe+0j))
self.dΩx = lambda mu, md, ms, μu, μd, μs, μe: \

np.real(dΩx(mu+0j, ms+0j, μu+0j, μd+0j, μs+0j, μe+0j))
self.dΩy = lambda mu, md, ms, μu, μd, μs, μe: \

np.real(dΩy(mu+0j, ms+0j, μu+0j, μd+0j, μs+0j, μe+0j))

Model.__init__(self, f"LSM3F", mσ=mσ, mπ=mπ, mK=mK)

def solve(self, Δx, guess):
def system(μQ_Δy_μe):

μQ, Δy, μe = μQ_Δy_μe # unpack variables
μu, μd, μs = μelim(μQ, μe)
return (self.dΩx(Δx, Δx, Δy, μu, μd, μs, μe),

self.dΩy(Δx, Δx, Δy, μu, μd, μs, μe),
charge(Δx, Δx, Δy, μu, μd, μs, μe))

sol = scipy.optimize.root(system, guess, method="lm")
assert sol.success, f"{sol.message} (Δx = {Δx})"
μQ, Δy, μe = sol.x
μu, μd, μs = μelim(μQ, μe)
return μQ, Δy, μu, μd, μs, μe

if __name__ == "__main__": # uncomment lines/blocks to run
# plot 3D potential for 2-flavor model with μu=μd
"""
mσ = 700
model = LSM2FlavorModel(mσ=mσ)
Δ = np.linspace(-1000, +1000, 100)
μQ = np.linspace(0, 500, 50)
Ω = np.array([model.Ω(Δ, Δ, 0, μQ, μQ, 0, 0) for μQ in μQ])
Δ0 = np.empty_like(μQ)
Ω0 = np.empty_like(μQ)
for i in range(0, len(μQ)):

μQ0 = μQ[i]
def Ω2(Δ): return model.Ω(Δ, Δ, 0, μQ0, μQ0, 0, 0)
sol = scipy.optimize.minimize_scalar(Ω2, bounds=(0, 350), method="bounded")
assert sol.success, f"{sol.message} (μ = {μQ0})"
Δ0[i] = sol.x
Ω0[i] = Ω2(Δ0[i])

plt.xlabel(r"$\Delta$")
plt.ylabel(r"$\Omega$")
plt.plot(Δ, Ω.T / 100**4, "-k")
plt.plot(Δ0, Ω0 / 100**4, "-r.")
plt.show()
Δc, μQc, Ωc = [], [], []
for i in range(0, len(Δ)):

for j in range(0, len(μQ)):
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μQc.append(μQ[j])
Δc.append(Δ[i])
Ωc.append(Ω[j,i])

cols = [μQc, Δc, list(np.array(Ωc)/100**4), μQc, list(Δ0), list(Ω0/100**4)]
heads = ["mu", "Delta", "Omega", "mu0", "Delta0", "Omega0"]
utils.writecols(

cols, heads, f"data/{model.name}/potential_noisospin_sigma_{mσ}.dat",
skipevery=len(μQ)

)
"""

# vacuum potentials
"""
Δ = np.linspace(-600, +600, 300)
for mσ in [500, 600, 700, 800]:

LSM2FlavorModel(mσ=mσ).vacuum_potential(Δ, np.array([ms0]), write=True)
for mσ in [400, 500, 600, 700, 800]:

LSM2FlavorConsistentModel(mσ=mσ).vacuum_potential(Δ, np.array([ms0]), write=True)
Δ = np.linspace(-1000, +1000, 50)
for mσ in [500, 600, 700, 800]:

LSM3FlavorModel(mσ=mσ).vacuum_potential(Δ, Δ, write=True)
"""

#LSM2FlavorModel(mσ=600).eos(write=True)
#LSM2FlavorModel(mσ=700).eos(write=True)
#LSM2FlavorModel(mσ=800).eos(write=True)
#LSM2FlavorModel(mσ=600).stars(111, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=600).stars(131, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=600).stars(151, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=700).stars(68, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=700).stars(88, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=700).stars(108, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=800).stars(27, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=800).stars(47, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=800).stars(67, (1e-7, 1e-2), write=True)
#LSM2FlavorModel(mσ=800).star(0.0012500875, 27, write=True)

#LSM2FlavorConsistentModel(mσ=400).eos(plot=False, write=True)
#LSM2FlavorConsistentModel(mσ=500).eos(plot=False, write=True)
#LSM2FlavorConsistentModel(mσ=600).eos(plot=False, write=True)
#LSM2FlavorConsistentModel(mσ=400).stars(107, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=400).stars(127, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=400).stars(147, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=500).stars(84, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=500).stars(104, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=500).stars(124, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=600).stars(27, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=600).stars(47, (1e-7, 1e-2), write=True)
#LSM2FlavorConsistentModel(mσ=600).stars(67, (1e-7, 1e-2), write=True)

#LSM3FlavorModel(mσ=600).eos(plot=False, write=True)
#LSM3FlavorModel(mσ=700).eos(plot=False, write=True)
#LSM3FlavorModel(mσ=800).eos(plot=False, write=True)
#LSM3FlavorModel(mσ=600).stars(111, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=600).stars(131, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=600).stars(151, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=700).stars(68, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=700).stars(88, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=700).stars(108, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=800).stars(27, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=800).stars(47, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=800).stars(67, (1e-7, 1e-2), write=True)
#LSM3FlavorModel(mσ=800).star(0.000937590625, 27, write=True)
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Hybrid quark-hadron model (chapter 10)

hybrid_stars_apr_lsm.py

#!/usr/bin/python3

from quark_hybrid_stars_common import *
import quark_stars_lsm

class HybridModel(Model):
def eos(self, N=1000, B=111**4, hybrid=True, plot=False, write=False):

arr = np.loadtxt("data/APR/eos.dat")
mn = 900 # MeV
nB = arr[:,0]
P_over_nB = arr[:,1]
μB_over_mn_minus_one = arr[:,3]
ϵ_over_nBmn_minus_one = arr[:,6]
P = P_over_nB * nB
ϵ = (ϵ_over_nBmn_minus_one + 1) * (nB*mn)

nB1 = nB
μB1 = (μB_over_mn_minus_one + 1) * mn
P1 = P * 1e-3 * (GeV/fm**3) / ϵ0 # MeV/fm^3 -> GeV/fm^3 -> SI -> TOV-dimless
ϵ1 = ϵ * 1e-3 * (GeV/fm**3) / ϵ0 # MeV/fm^3 -> GeV/fm^3 -> SI -> TOV-dimless

ϵ2int, nu2int, nd2int, ns2int, _, μQ2int = self.quarkmodel(
mσ=self.mσ).eos(N=N-len(P1), B=B

)
nB2 = (nu2int(P1)+nd2int(P1)+ns2int(P1)) / 3
μB2 = μQ2int(P1) * 3

if plot:
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.plot(μB1, P1, "-b.")
ax1.plot(μB2, P1, "-r.")
ax2.plot(μB1, nB1/0.165, "-b.")
ax2.plot(μB1, nB2/0.165, "-r.")
plt.show()

# find intersecting nB (from top)
P1i = scipy.interpolate.interp1d(μB1, P1)
P2i = scipy.interpolate.interp1d(μB2, P1)
sol = scipy.optimize.root_scalar(

lambda μB: P2i(μB)-P1i(μB), method="brentq", bracket=(1200, 2000)
)
assert sol.converged
μB0 = sol.root
if not hybrid:

μB0 = 2700 # will use only hadronic EOS
P0 = P1i(μB0)
print(f"μB0 = {μB0}")
print(f"P0 = {P0} = 10^({np.log10(P0*ϵ0)}) Pa")
print(f"Δϵ = {ϵ2int(P0)-np.interp(P0, P1, ϵ1) * ϵ0 / (GeV/fm**3)}")

# should it be stable? see ref:hybrid_star_stability_criterion, equation 15
lhs = ϵ2int(P0)-np.interp(P0, P1, ϵ1)
rhs = np.interp(P0,P1,ϵ1)/2+3/2*P0
print(f"Should be stable? {lhs} < {rhs} ? {lhs < rhs}")

# compute pressure for larger values to increase interpolation range
P2 = np.linspace(P0, 1e-1, N-len(P1))
ϵ2 = ϵ2int(P2)
P = np.concatenate((P1[P1<P0], [P0], P2))
ϵ = np.concatenate((ϵ1[P1<P0], [np.interp(P0, P1, ϵ1)], ϵ2))

if plot:
plt.plot(P, ϵ, "-k.", linewidth=4)
plt.plot(P1, ϵ1, "-b.")
plt.plot(P, ϵ2int(P), "-r.")
plt.show()

# hack: exploit nu=nd=ns=nB for density interpolation
nB2 = (nu2int(P2)+nd2int(P2)+ns2int(P2)) / 3 # compute with P2 instead of P1
nB = np.concatenate((nB1[P1<P0], [np.interp(P0, P1, nB1)], nB2))
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nu = np.concatenate((nB1[P1<P0], [np.interp(P0, P1, nB1)], nu2int(P2)))
nd = np.concatenate((nB1[P1<P0], [np.interp(P0, P1, nB1)], nd2int(P2)))
ns = np.concatenate((nB1[P1<P0], [np.interp(P0, P1, nB1)], ns2int(P2)))

μB1 = μB1 # already have from data set
μB2 = μQ2int(P2) * 3
μB = np.concatenate((μB1[P1<P0], [np.interp(P0, P1, μB1)], μB2))

ϵ = np.concatenate(([0], ϵ))
P = np.concatenate(([-10], P)) # force ϵ(P<Pmin)=0 (avoid interpolation errors)
nB = np.concatenate(([0], nB))
nu = np.concatenate(([0], nu))
nd = np.concatenate(([0], nd))
ns = np.concatenate(([0], ns))
μB = np.concatenate(([0], μB))
ϵint = scipy.interpolate.interp1d(P, ϵ); ϵint.__name__ = self.name
nBint = scipy.interpolate.interp1d(P, nB)
nuint = scipy.interpolate.interp1d(P, nu)
ndint = scipy.interpolate.interp1d(P, nd)
nsint = scipy.interpolate.interp1d(P, ns)
μBint = scipy.interpolate.interp1d(P, μB)

if write:
nB2 = (nu2int(P)+nd2int(P)+ns2int(P)) / 3 # compute with P instead
μB2 = μQ2int(P) * 3 # compute with P instead
ϵ1 = ϵ1 * ϵ0 / (GeV/fm**3)
ϵ2 = np.concatenate(([0], ϵ2int(P[1:]))) * ϵ0 / (GeV/fm**3) # skip -10
ϵ = ϵ * ϵ0 / (GeV/fm**3)
P = P * ϵ0 / (GeV/fm**3)
P1 = P1* ϵ0 / (GeV/fm**3)
cols = [nB, nB1, nB2, μB, μB1, μB2, P, P1, ϵ, ϵ1, ϵ2]
heads = ["nB", "nB1", "nB2", "muB", "muB1", "muB2", "P", "P1",

"epsilon", "epsilon1", "epsilon2"]
outfile = f"data/{self.name}/eos_sigma_{self.mσ}.dat"
utils.writecols(cols, heads, outfile)

μQint = lambda P: μBint(P) / 3
return ϵint, nuint, ndint, nsint, lambda x: 0*x, μQint # ignore electrons

class Hybrid2FlavorModel(HybridModel):
def __init__(self, mσ=600):

self.name = "LSM2F_APR"
self.mσ = mσ
self.quarkmodel = quark_stars_lsm.LSM2FlavorModel

class Hybrid3FlavorModel(HybridModel):
def __init__(self, mσ=600):

self.name = "LSM3F_APR"
self.mσ = mσ
self.quarkmodel = quark_stars_lsm.LSM3FlavorModel

class Hybrid2FlavorConsistentModel(HybridModel):
def __init__(self, mσ=600):

self.name = "LSM2FC_APR"
self.mσ = mσ
self.quarkmodel = quark_stars_lsm.LSM2FlavorConsistentModel

if __name__ == "__main__": # uncomment lines/blocks to run
#Hybrid2FlavorModel(mσ=600).eos(B=111**4, plot=True, write=True)
#Hybrid2FlavorModel(mσ=700).eos(B=68**4, plot=True, write=True)
#Hybrid2FlavorModel(mσ=800).eos(B=27**4, plot=True, write=True)
#Hybrid2FlavorModel(mσ=600).stars(111, (1e-5, 1e-2), write=True)
#Hybrid2FlavorModel(mσ=700).stars(68, (1e-5, 1e-2), write=True)
#Hybrid2FlavorModel(mσ=800).stars(27, (1e-5, 1e-2), write=True)
#Hybrid2FlavorModel(mσ=600).star(0.001180703125, 111, write=True)

#Hybrid3FlavorModel(mσ=600).eos(B=111**4, plot=True, write=True)
#Hybrid3FlavorModel(mσ=700).eos(B=68**4, plot=True, write=True)
#Hybrid3FlavorModel(mσ=800).eos(B=27**4, plot=True, write=True)
#Hybrid3FlavorModel(mσ=600).stars(111, (1e-5, 1e-2), write=True)
#Hybrid3FlavorModel(mσ=700).stars(68, (1e-5, 1e-2), write=True)
#Hybrid3FlavorModel(mσ=800).stars(27, (1e-5, 1e-2), write=True)
#Hybrid3FlavorModel(mσ=600).star(0.0008160778808593749, 111, write=True)

#Hybrid2FlavorConsistentModel(mσ=400).eos(B=107**4, plot=True, write=True)

184



Section G.6: Utilities

#Hybrid2FlavorConsistentModel(mσ=500).eos(B=84**4, plot=True, write=True)
#Hybrid2FlavorConsistentModel(mσ=600).eos(B=27**4, plot=True, write=True)
#Hybrid2FlavorConsistentModel(mσ=400).stars(107, (1e-5, 1e-2), write=True)
#Hybrid2FlavorConsistentModel(mσ=500).stars(84, (1e-5, 1e-2), write=True)
#Hybrid2FlavorConsistentModel(mσ=600).stars(27, (1e-5, 1e-2), write=True)
#Hybrid2FlavorConsistentModel(mσ=400).star(0.001180703125, 107, write=True)

G.6 Utilities
We also write a utility function for data management:

utils.py

import numpy as np

def writecols(cols, headers, filename, skipevery=-1):
cols = [list(col) for col in cols]
maxlen = max(len(col) for col in cols)
for col in cols:

while len(col) < maxlen:
col.append(np.nan)

file = open(filename, "w")
file.write(" ".join(headers) + "\n")
for r in range(0, maxlen):

for col in cols:
if len(str(col[r])) > 0:

file.write(str(col[r]) + " ")
file.write("\n")
if skipevery > 0 and r % skipevery == skipevery - 1:

file.write("\n")
file.close()
print(f"Wrote {headers} to {filename}")
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The Crab Pulsar at the heart of the Crab Nabula. Credit: NASA/CXC/SAO (X-ray), NASA/STScI (optical), NASA-JPL-Caltech (infrared).
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