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Abstract

The brain is a fascinating organ—billions of electric signals between neurons transport information

continuously. Using functional Magnetic Resonance Imagining (fMRI), we can approximate these

processes. We consider a network of nodes and edges reflecting groups of neurons and their func-

tional connections, respectively. The nodes are defined according to a partition of the human brain,

referred to as a brain parcellation. The edges are computed using a statistical dependence of fMRI

signals from the nodes, known as functional connectivity (FC). During a stroke, parts of the brain

network become damaged. Neuroplasticity, or the brain’s ability to rewire itself, is presumed to occur

after a stroke. Rewiring entails the formation of new connections or the reinforcement of existing

ones. This thesis investigates whether we can detect rewiring using fMRI. An understanding of this

process can contribute better to facilitating the restoration of lost motor function after stroke. We

examined three fMRI scans performed over three months on healthy elderly participants in resting

state (rs). We have established a statistical framework to ensure that observed changes in FC after

stroke are associated with recovery. The framework includes a Test-Retest (trt) reliability evaluation

of a variety of brain parcellations and FC methods and a prediction of how many patients should be

recruited for a stroke rehabilitation study at St.Olav Hospital to identify FC changes after stroke. As

far as we know, the framework, which can readily incorporate new methodologies and data quality,

does not exist. Results reveal that the estimated brain networks cannot provide a reliable conclusion

on the number of required stroke patients. This is due to fMRI noise, violation of model assumptions,

and a limited number of control subjects. Nevertheless, the estimated sample sizes indicate that the

stroke rehabilitation study will most likely be unable to enrol enough stroke patients.
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Sammendrag

Hjernen er et fascinerende organ – milliarder av elektriske signaler mellom nevroner transporterer

kontinuerlig informasjon. Ved å bruke funksjonell magnetresonansavbildning, også kalt fMRI, kan

vi modellere disse prosessene. Vi tar for oss et nettverk av noder og kanter som reflekterer grupper

av nevroner og deres funksjonelle forbindelser. Kantene beregnes ved å bruke en statistisk avhen-

gighet av fMRI-signaler innenfor hver node, kjent som funksjonell konnektivet. Under et hjerneslag

kan deler av hjernen bli skadet. Nevroplastisitet, hjernens evne til å reorganiseres, er antatt å oppstå i

etterkant av et slag. Reorganisering betyr at nye forbindelser kan dannes, og eksisterende forsterkes. I

denne masteroppgaven undersøker vi om det er mulig å observere denne reorganiseringen ved bruk

av fMRI. En forståelse av denne prosessen kan bidra til å forbedre gjenoppretting av tapt motorisk

funksjon etter hjerneslag. Vi undersøkte tre fMRI skanninger utført over tre måneder på friske eldre

deltakere i hvilende tilstand. Vi har opprettet et statistisk rammeverk for å være sikker på at observerte

endringer i funksjonell konnektivet etter slag representerer reorganisering. Rammeverket evaluerer

påliteligheten til ulike modeller av det nevrale nettverket og predikerer hvor mange pasienter som

bør rekrutteres til et studie på St.Olav Hospital for å oppdage reorganisering. Videre kan rammever-

ket inkludere nye metoder og datakvalitet, og eksisterer så vidt kjent ikke i dag. Resultatene viser at

de estimerte nettverkene ikke er i stand til å produsere pålitelige prediksjoner av antall nødvendige

slagpasienter. Dette er på grunn av fMRI støy, brudd på modellantagelser og et begrenset antall del-

takere i studiet. Imidlertid indikerer de estimerte utvalgsstørrelsene at studiet sannsynligvis ikke vil

være i stand til å rekruttere nok slagpasienter.
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Acronyms

ACF Autocorrelation function.
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CV cross validation.
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Chapter 1

Introduction

This first chapter starts with presenting the problem description along with the motivation and main

objectives of this thesis. A brief introduction to neuroscience follows in Section 1.2, providing the

reader with an understanding of the data utilized in this study. Lastly, an outline of the following

chapters of this thesis is presented.

1.1 Problem Description and motivation

Networks are commonly utilized to describe real-life phenomena, such as social relations, economic

dependencies or the world wide web (better known as the internet). Fundamentally, networks are all

composed of nodes and edges. The nodes are identifiable entities that interact with other nodes. The

connection that binds the nodes together is called edges. How we characterize these two components

largely influences our perception of the underlying system represented by the network [1].

The neural network, a system of dynamic interactions between neurons in our brain, is one fascin-

ating network. Similarly, as your social network, linking people you have a relationship to, changes

yearly or even daily, the neural connections in the brain can change. The brain‘s ability to rewire it-

self is called neuroplasticity. Rewiring refers to either a production of new or strengthening existing

connections. Neuroplasticity is believed to occur in a damaged neural network, resulting from the

reduced blood supply following a stroke [2]. However, recent studies on resting state (rs) functional

Magnetic Resonance Imagining (fMRI) of humans following a stroke, yield conflicting results [3] [4].

The primary objective of this thesis is to investigate whether it is possible to detect rewiring related

to stroke recovery using rs fMRI. We consider a large-scale neural network where the nodes repres-

ent groupings of neurons. The nodes are connected through edges whose weights and direction are

1



2 CHAPTER 1. INTRODUCTION

determined by the statistical dependence of each node‘s fMRI response signal, known as functional

connectivity (FC) [5]. We refer to this system as a functional brain network.

Nodes and edges are clearly defined in most networks that model physical systems. For the social

network mentioned above, individual persons and their friendships are obvious choices of nodes and

edges. It is currently impossible to imagine a full-scale replica of the human brain, with nodes and

edges reflecting the individual neurons and their interactions. Functional neuroimaging technology

is limited to nodes larger than a millimetre. Consequently, there is no consensus on defining the

nodes of a functional brain network at present [6]. In fMRI research, this results in a wide range of

distinct partitions of the human brain, known as parcellations schemes [7]. Furthermore, there are

also a variety of approaches for inferring FC, resulting in various edges in terms of weight and dir-

ection, using the same fMRI data [8]. Low reproducibility is one of the most severe consequences

of the absence of standardized pipelines for analyzing neuroimaging data. The issue was brought to

light by a recent study in which seventy teams were given identical fMRI datasets but produced varied

results due to various analysis procedures [9]. A first step in addressing the reproducibility problem

is to evaluate how consistent measurements between scans of the same individuals are, known as

Test-Retest (trt) reliability. According to Elliott et al. fMRI research examining trt reliability of their

analysis methodologies before predicting clinical outcomes are few [10]. Another aspect of the repro-

ducibility difficulty in neuroscience is low statistical power, the likelihood that statistically significant

findings reflect true effects [11]. Statistical power deficiencies have been related to small sample sizes

of participants [12]. According to Poldrack et al., researchers should justify a required sample size

before initiating clinical trials to boost statistical power and, as a result, reduce false-positive findings

[13].

We investigate and evaluate different models of a functional brain network to detect neuroplasticity

after stroke. That involves different parcellation schemes to define the nodes and different measures

of FC to define the edges. The models are further incorporated into a framework which is utilized to

(1) evaluate the trt reliability of the methods to ensure that observed abnormalities following stroke

represent rewiring; and (2) decide how many patients are needed to observe significant longitudinal

changes in FC, following a stroke. The outcomes of this thesis are being used to determine the pro-

spects of a current trial at St.Olav Hospital aimed at improving motor recovery after stroke [14].
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Figure 1.1: The synapse between two neurons. This is where the action potential is transported from the axon of a presynaptic
(sending) neuron and to the dendrites of a postsynaptic (receiving) neuron. The action potential is further sent to the soma
before possibly continuing its journey.

1.2 Background in Neuroscience

Neuroscience is the study of brain function and structure. Basic concepts within this field are here

presented on microscopic and macroscopic levels. Section 1.2.1 gives a biological presentation of the

individual neurons and their synapses. Section 1.2.2 examines the whole brain network and gives

insight into how fMRI is related to neural activity. Finally, Section 1.2.3 describes the mechanisms

behind stroke recovery and synaptic plasticity.

1.2.1 The Neuron

The fundamental functional units of the human brain, in charge of processing environmental inputs,

are called nerve cells or equivalently neurons. Understanding the composition of such cells is helpful

before analysing the connections in the complete neural network.

The neuron consists of three main components: the cell body or soma, the dendrites and the axon, as

illustrated in Figure 1.1. The dendrites are the neuron‘s input that receives signals from other neurons

and transports them back to the soma. The axon is the output structure that carries the impulses away

from the cell body. These two components of the neurons continuously send and receive electrical

messages to each other across gaps, called synapses [15].

The area between the inside and outside of a nerve cell is called the membrane. Positive and negative

ions travel in and out of the membrane, leading to a voltage difference between these two areas called

the membrane potential. The membrane potential is responsible for carrying the electrical signal

throughout the nerve cell. Chemical neurotransmitters are released at the very end of the nerve cell
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Figure 1.2: A functional image of a healthy brain at one specific time point. The brain is visualised in all three anatomical planes:
sagittal (left image), coronal (centre image) and axial (right image) [20]. The time series represents the preprocessed, normalised
Blood-Oxygen-level-dependent (BOLD) signal from a voxel whose location is shown by the green cursor. The sampling rate is
TR= 1.53 seconds.

in order to transport the electrical signals between the gap of adjacent neurons. Ion channels open

when neurotransmitters bind to the dendrite receptors belonging to the next neuron. This opening

results in a change in the membrane potential of the receiving cell. With a net influx of negative ions,

the synapse is called inhibitory. Oppositely, for a net influx of positive charge, it is called excitatory.

This membrane potential is constantly changing, and when it reaches a specific threshold, an action

potential is created in the axon. The neuron is said to fire a spike, signalling that it is active and ready

to communicate with new nerve cells [16].

1.2.2 The Brain Network

The human brain is assumed to contain about 86 billion neurons [17], each communicating with

possibly thousands of other nerve cells. The number of synapses per neuron can vary between 1,000

and 10,000, implying up to a quadrillion connections in the entire brain [18]. A full-scale human brain

with nodes and edges corresponding to individual neurons and their structural, axonal connections

is computationally costly and difficult to comprehend. As a result, we examine groups of neurons,

each corresponding to distinct, separated brain regions that can be functionally connected. The fMRI

derived FC is widely used to study the operational structure of the human brain [19]. This section aims

to provide the reader with a brief overview of fMRI and how to interpret the output signal.

Structural Magnetic Resonance Imaging (MRI) detects the different tissues of the brain, areas of axons

and areas of somas [21]. A strong magnetic field surrounds the brain, and the protons of the hydro-

gen nuclei, most of which are in water molecules, align their spin in the presence of this field and

absorb energy to create what is known as an Magnetic Resonance (MR) signal. The distribution of

this signal, which varies for the two different tissues, can be transformed from the frequency domain
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into image space via inverse Fourier transforms [22]. The MRI scanner acquires several slices of the

brain, which are stacked to create a 3D image of the entire brain, called a volume. The MR signal

depends on the blood’s oxygen level, which can be mapped over time. Active brain cells need oxy-

gen to produce energy through glucose metabolism, supplied by an increased blood flow. Because

of this increased demand for oxygen, blood in areas where there is brain activity is more oxygenated

than in other parts. Since oxygen-rich and oxygen-poor blood have different magnetic properties,

the MR signal is an indirect measure of neural activity, called the BOLD signal [23]. Functional MRI

acquires several volumes of the entire brain with a sampling rate of 1-2 seconds, referred to as repti-

tion time (TR). Each volume contains a grid consisting of several uniformly spaced cubic elements

called voxels. The voxels represent the spatial distribution of the nuclear spin in an area. Figure 1.2

visualizes a functional scan of a control subject and the preprocessed BOLD signal across all volumes

for given voxel.

The exact relationship between the BOLD signal and the underlying neural activity is unclear [19]

[24]. However, previous studies have shown that the fMRI response signal is proportional to average

neuronal firing rates [25] [26]. Findings from Logothetis et al. [19] suggest that local field potentials

yield a better estimate of the BOLD responses compared to the spiking activity of a neural population.

The local field potential is believed to reflect the weighted average of synchronized current from the

dendrites contained in a larger volume of tissues [24].

Connectivity research aims to understand the strength, directness and directionallity of the edges in

a brain network. Weights denote the strength of the functional connection between two neuronal

entities. The term "directness" refers to whether a third, hidden node influences any of the two other

nodes (indirect connection) or if the link between the two nodes is immediate and undisturbed (direct

connection). Ultimately, a connection between nodes A and B is bidirectional or directed if it defines

whether the activity travels from A to B or B to A [27]. Generally, FC does not imply causality. Two

neural events A and B, are said to causally interact when A results from event B and B’s existence is

required for A to be present [27]. A more complex technique of measuring the underlying, causal

interactions between brain regions is referred to as effective connectivity. Complexity stems from the

fact that effective connection is heavily reliant on determining the real link between brain activity and

the observable BOLD signal [5], which is yet unknown, as discussed above. The effective connections

are directed and contain strength and direction. The Dynamical causal model (DCM), introduced in

the next chapter, is one such method. According to Horwitz [28], functional and effective connectivity

definitions appear inconsistent across studies. Effective connectivity is in this work treated as a subset

of FC. This follows from the fact that both metrics represent the similarity between different BOLD
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time series but differ in how the edges are inferred [27]. Furthermore, in this work, we study the

cerebral cortex, which is the brain’s outermost layer.

1.2.3 Stroke recovery

Neurons are dependent on energy from nutrients and oxygen provided by the blood to maintain syn-

aptic activity, as mentioned in the last section. When blood flow to a portion of the brain is disrupted,

the affected cells will die. This medical incident is called a stroke. A usual result is an impairment in

function depending on what the damaged brain cells used to control. According to the World Stroke

Organization, a stroke will affect 1 in 4 adults above the age of 25 during their lifetime [29]. Annually,

approximately 15 million people are suffering from a stroke worldwide; 5 million die and 5 million

are left permanently disabled [30]. The stroke rehabilitation study at St.Olav Hospital, to which this

thesis is connected, recruits patients suffering from their first stroke resulting in arm motor deficits

[14]. The study‘s objective is to investigate if there are any significant associations between improved

motor behaviour and changes in brain network functional connectivity.

Figure 1.3: An illustration of stroke is believed to impact the functional brain network. The nodes indicate brain areas, whereas the
edges represent functional connections, whose thickness determines interaction strength. The network in (a) is intact, representing
a healthy brain. The grey nodes in (b) reflect the lesion or injured brain regions. Tissue that surrounds the stroke core region
may be damaged [2]. Following a stroke, connections to these locations may become dysfunctional. These are the grey dotted
lines. During the first several months following a stroke, connections might rewire; new connections are formed, or old ones are
strengthened (c). The rewired connections are coloured green.

The human brain changes as we develop as human beings during our entire lives. Neuroplasticity, as

previously described, is the brain’s ability to change its structure and function [31]. A varying amount

of synaptic connections are lost as a cause of stroke. Fortunately, the human brain’s remaining intact

circuits can rewire. We refer to rewiring of the brain network as the development of new or strength-

ening of old functional connections. Figure 1.3 depicts the brain network before and immediately

after a stroke, as well as throughout rewiring. We believe that it follows that stroke patients can re-

store impaired function effectively by maximizing neuroplasticity through correct recovery. Recovery

refers to behavioural compensations provided by remaining or new brain connections, leading to im-

proved functional performance. Murphy et al. [2] claim that the human brain is highly plastic during
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a time-limited window following a stroke. Increased knowledge about the changes in pattern and

strength of FC during stroke recovery can therefore contribute to optimizing the rehabilitation of the

thousands of stroke incidents occurring annually.

1.3 Outline

Chapter 2 is divided into three parts, presenting (1) how the nodes are defined along with data pro-

cessing, (2) the three FC methods yielding the edges of the network; and (3) a framework for how

to examine trt reliability and conducting power tests to answer our research question. The results

obtained for each of the three parts of the preceding chapter are then presented in Chapter 3. The

chapter includes presentations of each FC method‘s brain network and an assessment of how vari-

ous parcellations affect the trt reliability and the predicted sample sizes of each method. Finally, in

Chapter 4, the impacts of key findings are examined and compared to similar research. In addition,

certain notable limitations and how they might be improved in the future are discussed. This chapter

comes to a close with a conclusion.





Chapter 2

Materials and Methods

The purpose of this chapter is to cover data processing and theory, both of which are required to com-

prehend the measures of FC, also referred to as connectivity measures. The nodes are first defined,

followed by a presentation of how the fMRI response signals are retrieved from each node. Then each

of the three methods for inferring node interactions is described. Finally, a framework is established

for calculating trt reliability and the estimated number of patients necessary to identify post-stroke

rewiring.

2.1 Data processing: Defining the nodes

2.1.1 Subjects

The dataset used in this work belongs to an ongoing clinical trial, Personalised rehabilitation of stroke

patients evaluated with multimodal quantitative tools (PROTEQT) [14], located at St.Olavs Hospital in

Trondheim, Norway. The project has, before the 1st of June 2022, enrolled 32 volunteers; 28 healthy

control subjects without previous central nervous system disease or trauma, and 4 stroke patient

admitted to the stroke unit, St Olav‘s Hospital, Trondheim, Norway, without previous stroke, neur-

ological disease or central nervous system trauma. The subjects undergo three fMRI sessions with

inter-session intervals equal to one and three months between sessions 1 to 2 and sessions 1 and

3, respectively. Recall that we want to calculate the Test-Retest (trt) reliability, which requires many

scans of the same subject. As a result, only the individuals who have undergone 3 scanning sessions,

as listed in Table 2.1, are considered in this study.

9
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Subject nr. Age Sex Handedness

G1002 64 F R
G1014 76 M R
G1018 74 F R

Table 2.1: Control subject demographics. Data is acquired at St.Olav Hospital.

Figure 2.1: An illustration of the data pipeline. Brain volumes are collected and preprocessed from the 7 Tesla MR scanner. The
volumes, which are 3D images of the brain, are acquired with a sample rate of 1.53 s. There are 315 volumes corresponding to
8 minutes of scan duration. The volumes contain equal grids of voxels. The voxels hold a Blood-Oxygen-level-dependent signal,
which is preprocessed according to Appendix B.1.

2.1.2 Data acquisition and preprocessing

A 7 Tesla Siemens MAGNETOM Terra System was used to obtain up to three sessions of resting state

fMRI for each participant – that is where the subject is lying in the scanner, at rest, eyes open. Each

session consists of T = 315 functional volumes of the whole brain, acquired with a TR = 1.53s. The

volumes are divided into a grid of 1.5mm×1.5mm×1.5mm voxels. The voxels each contain a BOLD

signal defined in Section 1.2.2. The signals are preprocessed and extracted from each voxel. Appendix

B.1 contains information on the preprocessing procedures. The pipeline from data acquisition to the

extraction of the preprocessed BOLD signal vectors of each voxel is depicted in Figure 2.1.

2.1.3 Cortical parcellation and signal extraction

Due to the demanding computational load required to assess a brain network of nodes represented

by individual voxels, we parcellate the cortex into larger regions before extracting the BOLD signals.

The brain regions are functionally and structurally separate, each containing a different number of

voxels that are presumed to be functionally homogeneous. An atlas contains instructions on parcel-

late the brain. There are a multitude of brain parcellations, or atlases, as discussed in Chapter 1. The

fMRI data in this work are parcellated according to the Kong-Schaefer atlas [32]. This functional atlas

clusters similar voxels in terms of their functional connections. The clusters are referred to as parcels.

Figure 2.2 illustrates how the left hemisphere can be parcellated into smaller brain regions. Nodes

refer to either an individual parcel or groups of parcels, called networks. The number of voxels in
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Figure 2.2: An illustration of the parcellation process of the right hemisphere (RH). According to Yeo [33], the hemispheres may
be classified into 17 functional networks. Parcels are stored in the networks. Each network has a different amount of parcels.
Furthermore, parcels consist of thousands of voxels representing a small cube of neurons.

each node varies depending on the quantity of brain tissue covered, that is, the node’s spatial dimen-

sion. We seek to investigate how variations in parcellation schemes affect trt reliability, and hence

examine seven different parcellation resolutions (8,16,17,34,100,300,500 nodes) of the entire cortex.

Appendix B.2 contains detailed information on the parcellation process.

We can decrease the data dimension before further analysis by extracting one representative time

series from each node. As showcased in Figure 2.1, every voxel holds a time series representing the

BOLD signal in a particular brain area. Principal component analysis (PCA) is an unsupervised stat-

istical tool for dimensionality reduction of multivariate data sets. The method computes a single

representative time series for each network node.

Let y j = (y1 j , . . . , yn j )T denote T = 315 observations of the normalised BOLD signal from the j th voxel,

for j = 1, . . . , v . There are v voxels contained in the node. The column matrix Y ∈ Rn×v consists of the

time series of all voxels contained in one node. The columns of Y are linearly transformed onto a lower

dimensional space spanned by orthogonal principal components x1, x2 . . . , xv ∈Rn×v while retaining

most of the variability [34] as follows

x1 =φ11 y1 +φ21 y2 + . . .+φv1 yv =
v∑

j=1
φ j 1 y j = Yφ1, (2.1)

where φ1 = (φ11,φ21, . . . ,φv1) ∈ Rv×1 is referred to as the loadings of the first principal component

(PC). Appendix A.1 contains more details on how the first PC is retrieved from each node’s data matrix

Y.
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2.2 Connectivity measures: Infering the edges

In the following section, let xk ∈RT denote a representative time series of length T = 315, correspond-

ing to the first PC introduced at the end of last section, for the kth node of a parcellation scheme. The

cortex is parcellated into p nodes. The number of nodes contained in a brain network is defined by

p ∈ (8,16,17,34,100,300,500). Let X ∈ RT×p be a data matrix of p column vectors, xk for k = 1, . . . , p,

each with T observations. Each of the three methods presented next results in a weight matrix,

W ∈ Rp×p . The weights represent the functional connections between all pairs of nodes in a brain

network of p nodes.

2.2.1 Pearson product-moment correlation

Functional connectivity is, according to Chapter 1, defined as the statistical dependency between

nodes. In the following section, we aim to compute the strength of the pairwise association between

the activity of two neural entities. A usual strategy utilized to assess FC, is to disregard temporal

dependency and assume a linear relationship between BOLD signals.

Correlation is a measure of dependecy between two continous random variables xi ∈RT , x j ∈RT , in-

dependent of the scale of measurement. The empirical correlation between the two vectors denoted

by rxi ,x j ∈R is defined as follows

rxi ,x j =
Ĉov(xi , x j )√

V̂ar(xi )V̂ar(x j )
=

T∑
t=1

(xt i − x̄i )(xt j − x̄ j )√
T∑

t=1
(xt i − x̄i )2

T∑
t=1

(xt j − x̄ j )2

. (2.2)

The observations are centered in the numerator by subtracting out the mean of each variable, defined

by x̄ = 1
T

T∑
t=1

xt . The numerator corresponds to the empirical covariance of the two variables. The de-

nominator scales the variables to have equal units through a division of the empirical variance of each

variable. The above formula, (2.2), corresponds to the definition of Pearson correlation coefficient of

the two variables xi and x j . The coefficient‘s range is r ∈ [−1,1]. The numerical part of r denotes the

strength of the linear relationship between two variables. The sign signifies whether the nodes are

positively or negatively correlated. Two variables are perfectly correlated when r = 1, meaning that

one variable can be explained by a linear function of the other [35].

Rodgers et al. [36] present 13 ways to interpret the Pearson correlation coefficient, illustrating the

diversity of this broadly applied index in statistics. The correlation coefficient between a pair of vari-

ables is directly analogous to the slope of a simple linear regression model of xi and x j , as defined in
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Appendix A.2,

xt i =β0 +β1xt j +εt , t = 1, . . . ,T, (2.3)

The slope β1 denotes the average change of the response xt i for every one unit increase in xt j . Ob-

serve that the correlation between xi and x j in (2.2) equals the standardized slope of the regression

line, whose least squares (LS) estimate of β1 is given in (A.9),

rxi ,x j = β̂1
V̂ar(x j )

V̂ar(xi )
. (2.4)

The BOLD vectors, considered in this work are normalized with zero mean and unit variance such

that the correlation coefficient rxi ,x j equals β̂1 from (2.4).

Although it is well-understood that Pearson correlation only assesses the linear relationship between

two variables, explicit assumptions of the method are intensely debated [37] [38]. However, one

should consider whether the data sample meets certain assumptions required for the Pearson cor-

relation coefficient to be a sufficient statistic [39]. These are summarised as follows:

1. Data is drawn from a random or representative sample.

2. Both variables, xi and x j are continous and jointly normally distributed.

3. Each observation pair (xt i , xt j ), t = 1, . . . ,T is measured independently of every other observa-

tions.

4. There are no outliers, that is observation pairs that differ significantly from the rest.

To avoid misleading correlations caused by data not behaving in accordance with the underlying as-

sumptions outlined above, Anscombe recommends analysing both computations and graphs [40]. It

is too time-consuming to plot and examine all pairs of time series in all parcellation schemes of p

nodes. Therefore, we provide graphs of different pairs of BOLD time series in Appendix B.3, of which

one pair is presented in Figure 2.3. The nodes, each holding a time series, are chosen arbitrarily to

assess a representative subset of node pairs. Figure 2.3a showcases the normalised BOLD signal from

each of the two nodes. First, we evaluate the data behaviour in Assumption 2, qualitatively through

an inspection of the bivariate distribution of the two variables in Figure 2.3b. The bivariate normal

distribution belongs to the large family of elliptical distributions [35]. It is bell-shaped with either cir-

cular or elliptical contours depending on the correlation magnitude between the two variables. The

variables of a normal joint distribution are marginally normally distributed. The small bars along the

axes of Figure 2.3b prove that the highest frequency of observations is around zero.
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(a)

(b) (c)

Figure 2.3: Three different visualisations of the relationship between a representative pair of BOLD time series are related to the
underlying assumptions of Pearson correlation. The BOLD signals correspond to the first PCs within two nodes of a parcellation
scheme of 16 nodes. The nodes are labeled according to the networks defined in Table B.2 and their associated hemisphere,
left hemisphere (LH) or RH (a): The normalised BOLD time series with T = 315 observations, and a sample rate of 1.53s. (b)
The bivariate distribution, achieved from kernel density estimation in Seaborn (Appendix C.1), is bell-shaped. The number of
contours is analogous to the sampling density. The observations of the two samples are visualised as ticks along the axes. (c) The
Autocorrelation function for the 40 first lags in each variable. The lags within the shaded region, the 95% confidence interval, are
assumed to have no significant correlation with the previous value. There is evidence for significant autocorrelation between the
first time points in both variables.
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A time series is defined as a sequence of random variables with indices t = 1,2. . . ,T ordered according

to the time they are obtained [41]. Define the Autocorrelation function (ACF) for a signal xt as a

function of delay s as follows:

AC F (s) = Cov(xt , xt−s)p
Var(xs , xs)

. (2.5)

Figure 2.3c visualises the ACF defined in (2.5) for each of the two representative time series in Figure

2.3a. Significant autocorrelations between the first few time lags are present in both vectors. Autocor-

related errors are a usual occurrence in time series data. Periodic noise present in the BOLD signal,

such as heart rate and respiration, referred to as seasonal components, might give rise to autocorrel-

ated errors [22]. Assumption 3 above states that observations from each variable must be independ-

ent of past and coming observations of the same pair of variables. Autocorrelated errors violate this

assumption and can lead to "nonsense correlations", which according to Harris et al. [42], result in

significant correlations for unrelated signals.

2.2.2 Partial correlation with Graphical lasso

Pearson correlation which was introduced in the last section, reflects the pairwise relationships between

BOLD signals. It was mentioned in Section 1.2.2 that a third, unobserved node might influence the

connection between the node-pair being considered. The FC method introduced next adjusts for

such confounding factors, yielding both the strength and directness of a brain network’s edges.

(a) (b)

Figure 2.4: An illustration of two possible scenarios leading to spurious correlations when considering the pairwise correlation
between node 1 and 2. (a) Node 3 confound the pairwise relationship between 1 and 2. (b) A loop between all three nodes is
observed, although only two connections are true.

In Section 2.2.1, we studied the node-pairs independently. We isolated two nodes from the rest and

computed their statistical dependency. Consider the three nodes in Figure 2.4a. Node 3 is correlated

with both node 2 and node 1. The connection between node 1 and 2, called spurious, occurs because

the two nodes appear casually related. The spurious connection is caused by a confounding factor,

which in this case is node 3. Partial correlation, introduced next, improves causal inferences in the
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case of confounders and chains, such as visualised in Figures 2.4a and 2.4b [27].

The partial correlation coefficient between a pair of random variables xi ∈RT and x j ∈RT , originating

from X ∼ RT×p , is directly analogous to the multiple linear regression model [43] defined Appendix

A.2. Let xi and x j be samples from N (µ,Σ). To compute the partial correlation between xi and x j ,

consider two linear regression problems, one for each of the variables as the response function

xi = X\{xi ,x j }β+εi

x j = X\{xi ,x j }β+ε j

(2.6)

where X\{xi ,x j } ∈ RT×(p−2+1) resembles the design matrix of all but the two variables to be correl-

ated. The residual vectors, εi ∈ RT and ε j ∈ RT , have indices corresponding to their related response

variable, xi and x j . Solving the problems in (2.6) amounts to estimating the regression coefficients

β = (β0,β1, . . . ,βp−2). The estimation can be performed using least squares (LS) defined in (A.8), or

Maximum Likelihood Estimation (MLE) as in (A.16). The partial correlation coefficient equals the

sample correlation of the two estimated residual vectors, defined as

ε̂i = xi −X\{xi ,x j }β̂

ε̂ j = x j −X\{xi ,x j }β̂

(2.7)

such that

ρxi ,x j |X\{xi ,x j } = �Corr(ε̂i , ε̂ j ). (2.8)

The sample correlation, estimating Corr(ε̂i , ε̂ j ) above is defined in (2.2). The partial correlation coef-

ficient quantifies the linear relationship between two BOLD signals xi , x j conditioned on the p − 2

other signals of X.

Scaling of the inverse covariance matrix of X, denoted Σ−1, is a less computationally intensive ap-

proach for estimating partial correlation coefficients. The inverse covariance matrix is also represen-

ted byΘ, called the precision matrix of X. The partial correlation coefficient ofΘ= {θi j }p×p , denoted

by ρxi ,x j |X\{xi ,x j }, is defined as follows:

ρxi ,x j |X\{xi ,x j } =− θi j√
θi iθ j j

. (2.9)

Details behind this result can be found in the book Graphical Models by Lauritzen [44], page 130.

The precision matrix contains the relationship between pairs of variables conditioned on all other

variables. If an entry of the precision matrix is zero, that is θi j = 0, the two nodes, xi and x j , are con-
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ditionally independent. While for a zero element in the correlation matrix, the two nodes xi and x j

are only marginally independent. According to Hastie et al., the latter kind of independence between

nodes does not represent the real world [45]. As a result, when examining network connections, the

precision matrix is generally favoured over the correlation matrix.

Next, we model the brain network by a Gaussian graphical model, that is, a conditional independence

graph with multivariate Gaussian distributions:

x1, . . . , xp ∼N (µ,Σ). (2.10)

The edges of a Gaussian graphical model correspond to the entries of a precision matrix Θ ∈ Rp×p

[43]. We need to estimate Θ to yield a network of connections between x1, . . . , xp . Consider the log-

likelihood function (defined in in Appendix A.3) of the multivariate Gaussian variables contained in

X, as a function of the precision matrix

logL(Θ | X) = logdetΘ− tr(Σ̂MLΘ). (2.11)

A derivation of (2.11) can be seen in (A.24). The log-likelihood in (2.11) is maximized with respect to

Θ. As a result, in (2.11), the terms of (A.24) that are constants with respect toΘ are removed.

Recall, T = 315 and p ∈ (8,16,17,34,100,300,500) in this work. In theory, the estimated precision mat-

rix denoted Θ̂ML converges towards Θ when the number of samples T tends to infinity. However, for

problems where the number of nodes p is large compared to T , a MLE may not exist. That is because

the sample covariance matrix Σ̂ML is not invertible in these cases. A solution is to consider a regular-

ized form of the MLE to constrain the precision matrix [46] while being estimated. In Appendix A.4

we define one such regularization technique, called least absolute shrinkage and selection operator

(lasso). We add a penalty to the log-likelihood in (2.11). The lasso penalty is based on the `1 of the

off-diagonal elements ofΘ:

Θ̂= max
Θ

logdetΘ− tr(Σ̂MLΘ)−λ‖Θ‖1

‖Θ‖1 =
∑
s 6=t

| θst | .
(2.12)

λ is a non-negative tuning parameter. The lasso penalty has the effect that, when the tuning para-

meter is large, some of the entries of Θ̂ will be exactly zero. As a result, the optimization problem

above can be solved for p > T . An efficient algorithm that estimates a sparse inverse covariance mat-

rix, Θ̂ by solving (2.12) using coordinate-descent is called Graphical lasso (GLasso), and was proposed
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by Friedman et al. [47]. To demonstrate coordinate-descent, a problem analogous to (2.12) is solved

in Appendix A.4. The main focus for the remainder of this section is the GLasso algorithm defined in

Algorithm 1. The theory presented is based on the book The Elements of Statistical Learning by Hastie

et al. [45].

We start by setting the gradient ofΘ in (2.12) to 0, using the fact that the derivative of logθ equals θ−1,

as follows

Θ−1 − Σ̂MLE −λΓ= 0. (2.13)

Γ is a matrix of Lagrange parameters with nonzero values for all node pairs without any edges. In other

words, when θi j = 0 then γi j 6= 0. Let W =Θ−1 denote the current working estimate of the inverse of

the precision matrix. Furthermore, let S represent the sample covariance matrix Σ̂MLE . The GLasso

algorithm estimates the entries W and Θ, updating one row and column at a time. The system (2.13)

is solved via blockwise coordinate descent, partitioning all matrices, W,Θ and S, into two parts: the

first being the block of j −1 rows and columns, and the second the j th row and column. By definition,

we know that: WΘ= I, which for the blockwise partitioning is expressed as follows:

Wp−1 wp

w T
p wpp


Θp−1 θp

θT
p θpp

=

 I 0

0T 1

 (2.14)

Wp−1 is the upper left (p−1)×(p−1) block, wp are non-diagonal elements of the pth row and column

and wpp the corresponding diagonal element. The same accounts for Θ and S. Let p denote the last

row and column such that the upper right of (2.13) becomes

wp − sp −λγp = 0. (2.15)

The relation in (2.14) implies that

wp =− 1

θpp
Wp−1θp

= Wp−1β,

(2.16)

where β=− 1
θpp

θp . Substitute (2.16) into (2.15) such that

Wp−1β− sp +λγp = 0. (2.17)

The above equation (2.17) is analogous to the objective function in (A.29). Consider a usual regression

setup with response variable y and predictor matrix X, such as in (A.26). A subgradient equation of
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the expression in (A.26) becomes

1

n
XT Xβ− 1

n
XT y +λsign(β) = 0, (2.18)

which compared to (2.17) show that 1
n XT Xβ is analogous to Wp−1 and 1

n XT y to sp . We can solve

the blocks of equations in (2.17), treating each variable as the response variable and the other p −1

variables as the predictors by the GLasso algorithm defined in Algorithm 1 [46].

Furthermore, to infer Θ̂, notice that the diagonal elements ofΘ can be found from

1

θpp
= wpp −w T

p β. (2.19)

using partitioned inverse formulas of (2.14). Notice that the diagonal elements wpp stay unchanged

and equal to spp as initialized.

Algorithm 1: Graphical Lasso

1 Let W be current working estimate.
2 Initialize W with the empirical covariance matrix S.
3 while not converged do
4 for j = 1,2, . . . , p,1,2, . . . , p, . . . do
5 Partition W into a block matrix as shown in (2.14).
6 Solve Wp−1β− sp +λsign(β) using a coordinate descent algorithm.

7 Update w j = W j−1β̂ from (2.16).

8 for j = 1,2. . . , p do
9 RecoverΘ by solving (2.19) for θ j j and then (2.16) for θ j , using the final estimate of W .

The convergence criteria in Algorithm 1 can be set to either a maximum number of iterations or a

specified tolerance t such that the average absolute change in W is less than t · average | S−diag |.
S−diag are the off-diagonal elements of the empirical covariance matrix S. The tolerance is set to

t = 10−3∀p in our implementation. We perform a 5-fold-cross validation (CV) with loss function equal

the negative log-likelihood in (2.11), to find the optimal hyperparameter λ. The cross validation (CV)

procedure is defined in Appendix A.4.

2.2.3 Dynamical causal model

None of the two FC methods described so far has been able to account for all of the characteristics of

edges in a brain network: strength, directness, and directionality, as defined in Section 1.2.2. Meas-

ures of effective connectivity attempt to examine a brain network with edges that contain all three fea-

tures by establishing the genuine relationship between the recorded BOLD signal and neural activity.
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The Dynamical causal model (DCM), primarily proposed by Friston et al. [48], is one such method.

The method is mainly exploited on a reduced brain network to test hypotheses about whether exper-

imental input will activate specific brain connectivity patterns. Connectivity weights are represented

by parameters tuned to generate a predicted BOLD signal. The computational cost of accounting for

the human brain’s complex biophysical processes is substantial.

More efficient DCM variants exist, such as the spectral DCM (spDCM) implemented using rs fMRI

data. This model may be utilized to discover the structure of larger networks [49] compared to the

original procedure. However, due to the exponential increase of free parameters as the network grows,

we have only been able to fit the spDCM to a network with a maximum of 17 nodes. The following

section provides a brief introduction to the original DCM. We consider experimental stimuli, such as

hand movement, when defining this model. Finally, the spectral DCM is defined, primarily based on

the same theoretical ideas as the original model.

State equations

Consider a small brain network of three connected nodes, as illustrated in Figure 2.5. The DCM estim-

ates the effective connectivity, defined in Section 1.2.2 as a subset of FC, represented as coupling para-

meters between nodes. Central to estimating these parameters is the neuronal state variable defined

for each node. The variables correspond to the assumed synaptic activity of each node and are de-

noted as Z = (z1, z2, z3)T , where each state variable is zi ∈ RT , i = 1,2,3. Recall that T denotes the

number of observations, or time points of the BOLD signal. The time derivative of each state variable

is a function of the states of other nodes, some experimental input vectors, U = (u1, u2)T ∈Z2×T , be-

lieved to drive the activity in the nodes, and some matrices holding the coupling parameters, A ∈R3×3

and C ∈R3×3.
dZ

d t
≈ AZ(t )+CU. (2.20)

A, whose entries represent the intrinsic connectivity between all nodes represent the weight matrix

W ∈ Rp×p for p nodes. C denotes the effect of influence from the experimental input vectors u1, u2,

and is not of main interest in further analysis.

We can now understand most of the variables in Figure 2.5. The nodes each holds a T -dimensional

state vector zi . Recall T = 315. The arrows denote the connection weights, either from experimental
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Figure 2.5: Three nodes each holding a neural state z, connected with each other trough coupling matrices A and C is displayed.
The driving input affects both states directly. The parameters are inferred when estimating the time series ŷ from each node
through a function g depending on the hemodynamic state vector x and the neural state z.

input or from other nodes. Now, expand equation (2.20) for the 3-nodes case in Figure 2.5:


ż1

ż2

ż3

=


0 a12 0

a21 a22 0

a31 a32 0




z1

z2

z3

+


c11 0

0 0

0 c32


u1

u2

 (2.21)

To understand the rest of the details in Figure 2.5, we introduce the remaining state variables be-

longing to each node. That is, the biophysical states that are believed to engender the BOLD signal

by translating the inferred synaptic activity, zi from (2.20), into some hemodynamic state variables

x1, x2, x3, x4 ∈RT . These variables enter a nonlinear function h to estimate the observed BOLD signal

yi ∈RT , with a measurement error, denoted εi for node i as follows

yi = h(Xi ,θi )+ε,ε∼N (0,Cε). (2.22)

The error term εi is assumed zero mean additive Gaussian noise with covariance Cε. Let Xi be the

state vector for node i , holding the four hemodynamic states (x1, x2, x3, x4), in addition to the neur-

onal state variable zi . The parameter vector θ = (A,C, . . .) holds the coupling matrices and biophysical

parameters related to some hemodynamic differential equations. These differential equations, trans-

forming synaptic activity from zi into the hemodynamic states x1, x2, x3, x4, were proposed by Buxton
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et a. [50] aiming to explain the changes in biological states linked to blood flow during brain activa-

tion. The state equations are not of main focus in this work, and the reader is referred to the original

work by Friston et al. [48] for further details.

Parameter estimation

In what follows we have simplified notation by dropping the node index i . The predicted BOLD time

series, ŷ = h(X,θ) from (2.22), are generated by integrating the differential equations of the neural

state (2.20) and the hemodynamic states. There is need for some prior parameters to initialize θ

and yield a complete estimate ŷ . The posterior distributions of the parameters in θ are then estim-

ated iteratively by maximizing the negative free energy F̃ in (A.38) and thus minimizing the difference

between the observed and predicted BOLD signal.

Assume the prior distribution of θ to be Gaussian: π(θ) ∼ N (ηθ,Cθ). Bayesian inference, defined in

Appendix A.5, aims to infer parameter estimates after data is observed. Sine the sample size of the

fMRI time series is sufficiently large, the posterior distribution asymptotically approaches a Gaus-

sian distribution around the Maximum a Posterior (MAP). The posterior distribution of θ is therefore

assumed Gaussian

θ | y a∼N (ηθ|y (θ̂MAP),I−1(θ̂MAP)). (2.23)

Here I−1(θ̂MAP) is the inverse Hessian or Fisher information matrix from (A.21) evaluated at θ̂MAP [51].

We aim to find θ̂MAP that maximizes the posterior distribution. This is computed using the Fisher

scoring in (A.22), where ηθ|y is updated in the direction of the gradient of the log-posterior function

lp (θ), evaluated at the current estimated posterior mean η̂(t )
θ|y :

η̂(t+1)
θ|y = η̂(t )

θ|y +
∂2lp (θ)

∂θ∂θT

−1∣∣∣
θ=η̂(t )

θ|y

∂lp (θ)

∂θ

∣∣∣
θ=η̂(t )

θ|y
(2.24)

From Bayes rule (A.33) the log-posterior distribution can be derived as follows

lp (θ) =π(θ | y)

∝ logπ(θ)+ log p(y | θ)

=−1

2

(
log | Cθ | +(θ−ηθ)T C−1

θ (θ−ηθ)
)
+ c

− 1

2

(
log | Cε | +(y −h(θ))T C−1

ε (y − g (θ))
)
+ c,

where the marginal distribution is omitted as it disappears under maximization. c is a constant with
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respect to θ. To solve (2.24) the two first derivatives of lp (θ) with respect to θ is needed

∂lp (θ)

∂θ

∣∣∣
θ=η̂(t )

θ|y
=−

∂h(η̂(t )
θ|y )

∂θ

T

C−1
ε (y −h(η̂(t )

θ|y ))−C−1
θ (η̂(t )

θ|y −ηθ)

∂2lp (θ)

∂θθT

∣∣∣
θ=η̂(t )

θ|y
≈−

∂h(η̂(t )
θ|y )

∂θ

T

C−1
ε

∂h(η̂(t )
θ|y )

∂θ
−C−1

θ .

(2.25)

Notice that the second-order derivative of the nonlinear function h(η̂(t )
θ|y ) is ignored, as we assume the

function in (2.22) to be weakly nonlinear [52]. The iterative scheme requires a specified initial value

for the posterior mean. The initial value is set equal to the prior density, η̂(0)
θ|y = η̂θ.

The optimization scheme in (2.24) cannot be evaluated due to the unknown error covariance Cε

present in (2.25). The error covariance can be estimated through a linear mixture of some precision

components Qi weighted by hyperparameter λi for each node i , that is Cε =∑
i λi Q. The hyperpara-

meters θ has to be estimated in addition to the parameters θ suggesting a generalized Expectation

maximization (EM) algorithm similar to Algorithm 2. As stated in Appendix A.5 the EM algorithm

aims to maximize the likelihood of the observed data y conditional on the hyperparameters λ with

the presence of unobserved data. In this case θ is treated as the unobserved data, such that (A.36)

becomes

log p(y |λ) =
∫

p(y ,θ |λ)dθ. (2.26)

In Appendix A.5 it was demonstrated that there exists a lower bound on (2.26), F̃ (q,λ) ≤ log p(y | λ).

Thus, a maximization of the functional F̃ (q,λ) implies a maximization of (2.26), see (A.39).

The E-step in the generalized EM algorithm searches for an approximate posterior distribution of the

parameters denoted as q(θ) ∼ N (µ̂,Σ̂). It maximizes F̃ (q,λ), holding the hyperparameters from the

last M-step fixed,

q (t ) ← argmax
q

(
F̃ (q,λ(t−1))

)
. (2.27)

The maximization of an approximate posterior distribution in (2.27) is equivalent to the iterative

search for the MAP-estimate η̂θ|y in (2.24). The hyperparameters λ are then estimated in the M-step

through a maximization of F̃ (q,λ), now with respect to λ, holding the parameters, estimated from the

previous E-step, fixed

λ(t ) ← argmax
λ

(
F (q (t ),λ)

)
. (2.28)

The M-step is then solved iteratively under a Fisher Scoring Scheme of F̃ (q,λ) evaluated at the current
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estimated hyperparameter λ̂(t ).

λ̂(t+1) = λ̂(t ) + ∂2F (q,λ)

∂λ∂λT

−1∣∣∣
λ=λ̂(t )

∂F (q,λ)

∂λ

∣∣∣
λ=λ̂(t )

(2.29)

The negative variational free energy, F (q,λ) defined in (A.38), can be approximated using Variational

Laplace, provided by Penny [53].

The EM scheme described above alternates between the E- and M-steps until q(θ) ≈ π(θ | y). As the

model is nonlinear, the difference between the two distributions, q(θ) andπ(θ | y), never reaches zero

[52]. The convergence criterium is defined as

∑
(ηθ|y − µ̂)2 ≤ c. (2.30)

In this work, the estimation procedure converges according to (2.30) for c = 10−6 [54] or when reach-

ing a maximum number of iterations, set to 128.

Spectral DCM

The DCM described so far explains how experimental input U influence the neural connections

through the coupling parameters of A,C. For resting state fMRI data, the neuronal model in (2.20)

becomes
dZ

d t
= AZ(t )+V(t ) (2.31)

where V(t ) contains vi (t ) ∈Rn for node i , and models the endogenous neuronal fluctuations assumed

to drive neural activity at rest. Now the neuronal state for node i , zi depends upon the states of the

other nodes and the endogenous fluctuations vi (t ) [55]. Furthermore, the state equation in (2.31)

is equipped with hemodynamic state equations equal to the ordinary DCM. The full model is then

mapped to measured BOLD responses similarly as in (2.22), as follows:

yi (t ) = h(Xi ,θi )+ε(t ) (2.32)

Due to the addition of the new stochastic term V(t) in (2.31), we must now estimate not just the model

parameters in θ, but also the neuronal states in Z(t ), that have become random variables, for all nodes

– a computationally demanding task. A solution is to convert the cross-correlation between pairs of

time series into the frequency domain, called the cross spectrum. Cross-correlation is similar to the

autocorrelation function in (2.5). However, instead of correlating time points within one time series,

cross-correlation represents the correlation between two time series as a function of the displacement
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of one relative to the other. The time series are then replaced by their cross spectra. As a result, a time-

invariant covariance of the random fluctuations of the BOLD signals is predicted instead of the neural

states zi (t ), as for the ordinary DCM [49]. The cross spectra is inverted and fitted for the observed

data using variational Bayesian techniques (definitions in Appendix A.5), similar as in the preceding

section. The aforementioned approach is known as Spectral Dynamic causal modelling (spDCM).

The reader is urged to read [56] for further information on this transition and model fitting.

When compared to the regular DCM, the spDCM manages to execute parameter inference on a larger

collection of nodes.

2.3 Comparison of brain networks

The previous sections introduced three different connectivity measures, each of which yields a weight

matrix W ∈Rp×p . The weight matrix holds the strength of all connections in a network of p nodes. The

diagonal elements of W represent self-connections, which are no interest in our analysis. Therefore,

only off-diagonal elements are utilized in the subsequent analysis of FC. For the two correlation-

based measures, that is Pearson and partial correlation defined in Section 2.2.1 and 2.2.2, the edges

contain no direction. Thus, for each of the two methods, only the lower triangle of W, i.e. wi j =
0, i > j , is used during the comparison of brain networks. Let w ∈ Re denote the vectorized p × p

dimensional weight matrix W. The number of edges e depends on whether the FC method yields

symmetric or asymmetric matrices.

In the following section, we establish a framework for examining the Test-Retest reliability of a con-

nectivity measure. This framework entails calculating a reliability score by quantifying the similarity

of two weight matrices representing distinct brain networks. Additionally, the framework considers

the individual edges of a functional brain network and how these connections change over time.

Based on the premise that relearning emerges as new, strong connections post-stroke, it estimates

the minimum number of stroke patients required to detect significant FC changes during the first

month following stroke. The connections of a healthy network are presumed to be constant through-

out a month. It is worth noting that the power calculations are based on the observed distribution of

temporal FC changes across controls as the project has not acquired enough stroke data yet.

2.3.1 Test-Retest Reliability Measure

Reliability of a measure refers to its ability to give consistent results under repeated measurements

with similar conditions [10]. The term is related to precision denoting the degree of similarity between
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measured values. Identifying possible post-stroke connectivity changes in a brain network requires a

reliable measure capable of quantifying the FC pattern with sufficient precision.

Let W(s) denote the estimated weight matrix from session s, where s = 1,2,3. We examine two test-

retest intervals in this work: one month and three months, or equally session 1 vs. 2 and session 1

vs. 3, respectively. A reliability score coefficient, quantifying the net degree of similarity between all

weights of W(1) and W(s) for session 1 and s such that s 6= 1, is Pearson correlation coefficient, previ-

ously defined in (2.2). Let r (1, s) denote the reliability score of session 1 and s = 1,3. The correlation

coefficient represents the strength of a linear relationship between two variables. Recall that the coef-

ficient ranges from −1 to 1, where the latter implies a perfect linear relationship between the weights

of the two matrices.

2.3.2 Power Analysis

Branscheidt et al. [4] state that stroke-related damage may alter the connectivity weights among only

a few brain regions within or across hemispheres. We believe that new functional connections appear

following a stroke, implying that there is a rewiring. Most edges of the brain network should remain

stable during the first months following a stroke, while a few particular connections will change in

magnitude from zero (that is, no connection) to powerful. Figure 2.6 illustrates expected connectivity

changes post-stroke compared to a healthy network. It was stated in Chapter 1 that the primary

objective of this thesis is to estimate how many stroke patients are required for the expected temporal

change in FC after a stroke to be significant. We conduct power tests to estimate this sample size

in the following section. Relevant theory regarding hypothesis testing is also presented in Appendix

A.6.

Let w (ses s,sub g ) ∈ Re be the estimated weight vector for a network of e weighted edges derived from

session s of a control subject g . The change in the i th connection over the course of a month is

defined as

d (sub g )
i = w (ses 1,sub g )

i −w (ses 2,sub g )
i (2.33)

where w (ses 1,sub g )
i ∈ w (ses 1,sub g ) and w (ses 2,sub g )

i ∈ w (ses 2,sub g ). In this study we consider only the

difference between the weights of sessions 1 and 2. Assume that the edgewise differences among the

subjects, i.e. d (sub g )
1 , . . . ,d (sub g )

e ∀g , are independent and identically normally distributed with zero

mean and common varianceσ2. To put it another way, the difference between the i th edges of subject

h, denoted as d (sub h)
i is both independent of (1) the difference between matching edges of another

subject, d (sub k)
i , and (2) the difference of mismatching edges of the same subject, d (sub h)

j .
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Figure 2.6: An illustration of the post-stroke assumed temporal connectivity change in comparison to a healthy network. The
time interval between session 1 and 2 is one month. The averaged FC within each group is represented by the two brain networks.
During a month, we anticipate the connection pattern in the averaged control group to remain consistent. After a stroke, we
expect new connections to form; the weights of certain edges in session 1 shift from zero (that is, no connection) to powerful (a
strong connection), denoted by δ in session 2.

The mean weight differences across n subjects is defined as follows

d̄i = 1

n

n∑
g=1

d (sub g )
i . (2.34)

Because d (sub 1)
i , . . . ,d (sub n)

i are approximately normally distributed with zero mean and variance σ,

the mean d̄i is likewise normally distributed with zero mean and variance σ2/n. As a result, when

evaluating the mean across subjects, the variance decreases as the number of subjects, n rises. Let

d̄ (s)
i , d̄ (c)

i indicate the mean weight difference within the stroke population and the control group, re-

spectively. We wish to identify a substantial difference in the weights of a brain network after stroke

compared to a healthy subject‘s network. To test our research topic, create some edgewise hypo-

theses.

H0 : d̄ (c)
i = d̄ (s)

i

H1 : d̄ (c)
i < d̄ (s)

i ,
(2.35)

or equivalently

H0 : d̄ (s)
i − d̄ (c)

i = 0

H1 : d̄ (s)
i − d̄ (c)

i > 0.
(2.36)
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The hypothesis in (2.35) tests whether the two population means, d̄ (c)
i and d̄ (s)

i , belong to separate

distributions. The degree of overlap between these two distributions is called effect size [57]. The

further apart the two distributions are, the greater the effect size. Previous studies have concluded

that the best way to increase power in neuroimaging research is by using sample sizes justified by

power calculations based on estimated effect sizes from prior data [13] [58]. Because we do not have

any stroke data available when this thesis is finished, we estimate d̄ (s)
i based on the distribution of d (c)

i .

As mentioned, we assume that a stroke patient will have the relearning appear like a new connection

with magnitude δ, see Figure 2.6. Concatenate all of the controls’ weight vectors from session 1 into

a single weight vector consisting of w (ses1,subg )
1 , . . . , w (ses1,subg )

e ,∀g . Then sort the components of the

resultant vector. The predicted temporal weight change of a stroke patient is given by the qth quantile

of the sorted list, denoted as δ(q).

We also need to assume that the FC network of controls stays constant during a month. Consequently,

since the expected weight change of controls is zero, δ(q) represents the estimated effect size between

the populations. Furthermore, the test statistic T under the nullhypothesis (2.35) can be defined

similarly as the test statistic in (A.42),

T = d̄ (s)
i −0√
s2/ns

∼ tns−1. (2.37)

s2, which is an estimator of σ2,equals the empirical variance of a sample consisting of all distance

elements of all controls, d (sub g )
1 , . . .d (sub g )

e ,∀g . The statistic T is t-distributed with ns −1 degress of

freedom, where ns refers to the sample size of stroke patients.

Rewiring after a stroke affects just a few edges of the brain network. We must execute the test in (2.35)

for the individual, i th edge because we do not know which edges this accounts for. As a result of mul-

tiple testing, the likelihood of a Type I error, which according to the definition in (A.41) equalsα, rises.

Therefore, to obtain a correct significance level α, adjust αi for each observation as follows

αi = α

e
, i = 1, . . . ,e. (2.38)

For e edges, there are e tests. The correction in (2.38) is called a Bonferroni correction [59].

We can now estimate the sample size ns of the stroke population necessary to achieve a power of 1−β
with significance level αi and effect size d̄ (s)

i = δ(q) > 0 from

ns = s2

δ2(q)
(tβ,ns−1 + tαi ,ns−1)2, (2.39)
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The above equation is based on the derivation in (A.43). Notice that the quantiles of the t-distribution

in (2.39) depends on ns . To estimate the sample size, set an initial guess for ns . To do this, assume

known variance and replace the t-distributed quantiles, tβ,ns−1 and tαi ,ns−1, in (2.39) with zβ and zαi ,

from a standard normally distributed test statistic T . The sample size n can be estimated by iteratively

evaluating (2.39) until convergence. That is, n(i+1)
s −n(i )

s < t where t is a set threshold.





Chapter 3

Results

We now present the results of applying the procedures specified in the preceding chapter, using a

variety of whole-brain parcellations. First, an exploratory analysis of the time series from each par-

cellation scheme is provided in Section 3.1. The estimated weights for each of the last chapter’s three

FC methods are shown in Section 3.2. Then each FC measure and parcellation scheme combination’s

trt reliability scores are presented in Section 3.3. Finally, the predicted sample sizes of stroke patients

are determined through power analyses in Section 3.4.

3.1 Exploratory Analysis

The main objective of this thesis is to study prerequisites for detecting longitudinal changes in FC

after stroke using rs fMRI data. We examine three sessions of rs fMRI scans performed over three

months on healthy elderly (control subjects), see Table 2.1. We conduct power analyses to estim-

ate the minimum required sample size of stroke patients necessary to find longitudinal post-stroke

FC changes if it is present in our data. To ensure that these changes are related to motor recovery

after stroke, we evaluate the Test-Retest reliability of various parcellations and FC methods. These

analyses are incorporated into a framework. The Kong-Schaefer atlas [32] was used to parcellate the

brain network into seven different resolutions: 8,16,17,34,100,300,500 nodes. In Appendix B.2, the

parcellation technique is described in depth.

Consider the 16 node brain network, composed of 8 nodes for each hemisphere. The nodes cor-

respond to networks, each of which is given a label depending on the brain area’s anticipated func-

tionality. Figure 3.1 depicts this brain network and the label and position of the 8 networks for each

hemisphere. The spDCM cannot be implemented on a network of more than 17 nodes as it is compu-

31
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Figure 3.1: An illustration of the 8 nodes of each hemisphere, 16 nodes in total. The networks are coloured according to
corresponding labels. The coordinates are defined as follows: L-R(left-right hemispheres), P-A(posterior-anterior axis) and I-S
(inferior-superior axis). The brain is visualised in the same three anatomical planes as for Figure 1.2: axonal (lower left), coronal
(upper left) and sagittal (upper right). A clarification of how the networks can be found in Appendix B.2. The figure was made
using FSLeyes [60], see Appendix C.1.

tationally intensive. The network of p = 17 nodes is constructed by a merging of nodes across the two

hemispheres; see Appendix B.2. It is not convenient to visualise the nodes’ position for this network.

Due to the advantages described above, the next chapter primarily employs the network of 16 nodes

as a sample parcellation technique for visualisation.

Figure 3.2 showcases the time series extracted from all parcellation schemes. The data come from a

representative control subject’s first session. Recall from Chapter 2 that T = 315 refers to the number

of BOLD observations in one signal or equivalently the number of volumes acquired during one scan.

The number of nodes in a network, p = 8,16,17,34,100,300,500 depends on the selected parcellation

scheme. Further details on how time series are extracted from NIfTI-1 data is available in Appendix

C.2.
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Figure 3.2: There are seven parcellation schemes of p nodes or brain regions. Each node holds a representative time series
corresponding to the first PC of the voxelwise, normalised BOLD signals within the node (see Section 2.1). The time series
consist of T = 315 observations or equivalently volumes, with a TR of 1.53s. Data is supplied by a control subject‘s first session:
sub-G1002.
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3.2 Analysis of connectivity measures

In Section 2.2 we presented three different approaches to estimating functional connectivity. When

analyzing FC, the strength, directness, and directionality of edges in a brain network should all be

taken into account; see Section 1.2.2. The FC approaches differ in terms of which network features

are considered. The functional connectivity between node i and node j is represented by a weighted

edge, wi j belonging to W ∈ Rpxp . Recall that for connectivity methods yielding symmetric weight

matrices, such that wi j = w j i , we examine the lower triangular part of W. For the DCM, which yields

bidirectional edges, the diagonal elements of W, or equivalently the self-connections, are omitted.

The input of all implemented methods is the time series data, X ∈ Rnxp , presented in Section 2.1 and

visualised in Figure 3.2.

3.2.1 Pearson correlation

The simplest of the FC measures considered in this work is the sample correlation matrix as defined

in Section 2.2.1. The lower triangular weight matrices are presented in 3.3 for all parcellation schemes

of a representative control subject. Each parcellation scheme’s node order, j = 1, . . . , p, matches the

parcel or network order specified in Appendix B.2. For the smallest parcellation schemes of p = 8 and

p = 16, the node order is also specified via the labels in Figure 3.1. Brain regions close to each other

in terms of spatial location hold neighbouring indexes. Observe that there is an increased correlation

between adjacent brain regions or nodes.

Figure 3.4: The brain networks of p = 16 nodes from session 1 (left), session 2 (centre) and session 3 (right). The edges belong
to the correlation matrices in Figure 3.3. The 25% absolute strongest weighted edges are visible. The coordinates are as follows:
L-R(left-right hemispheres), P-A(posterior-anterior axis) and I-S (inferior-superior axis). The nodes are coloured according to the
labels in Figure 3.1. The locations of the nodes correspond to the centre of gravity overall enclosed voxels. The parcellation
scheme for p = 16 nodes can cover separate brain areas. This is because the Kong-Schaefer parcellation joins nodes based on
functionality rather than location. Consequently, nodes are crammed together in the centre of the brain. Coordinates are extracted
using FMRIB Software Library (FSL) software, and the plots are visualised using Nipype, see Appendix C.1. Data is supplied by
sub-G1002.

The weighted edges in each of the plots in Figure 3.3 indicate a presence of both correlations and



3.2. ANALYSIS OF CONNECTIVITY MEASURES 35

anticorrelations between nodes corresponding to different brain regions. We defined functional con-

nectivity (FC) in Section 1.2 as the statistical dependency between measured activity from brain sig-

nals [5]. A strong correlation between two nodes signifies a strong FC. Consequently, there is a syn-

chrony of neural activity in the two corresponding brain regions. The neurophysiological understand-

ing of the role of anticorrelation is still unclear. Because these negative correlations may be important

according to a previous study on the human brain’s functional organization [61], these are kept for

analysis of trt reliability.

The spatial organization of the FC network of p = 16 nodes from three sessions of a control sub-

ject is visualised in Figure 3.4. The 25% strongest weights in absolute value are showcased as edges.

The locations of the nodes signify the mass centre of the contained voxels. Equivalent nodes across

hemispheres are coloured and labelled identically owing to homogeneous function; see Figure 3.1.

Observe that the strongest connections are between related nodes of each hemisphere. Figure 3.5

shows the distribution of all weights of session 1, 2 and 3 for the same control as visualised in Figure

3.3. There are some differences between the topology of the three networks depicted in Figure 3.4.

Figure 3.5 confirms this heterogeneity between sessions, as several weights from identical node pairs

of distinct sessions do not match in value.

Figure 3.5: The correlation weights from the lower triangular of W of session 1, 2 and 3 of sub-G1002. The networks consist of
p = 16 nodes. There are ((p −1)×p)/2 = 120 unique node pairs.

3.2.2 Partial correlation with Graphical lasso

Partial correlation, as defined in Section 2.2.2, regresses all variables when measuring the pairwise

correlation between time series. The FC method accounts for both strength and directness of the

edges in a brain network. Figure 3.3 of the correlation matrix proves that X suffers from multicol-

linearity; several nodes are highly correlated. When some predictors in a regression model are cor-
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related, estimating the coefficients may be challenging. A solution to this problem is penalizing the

parameters using lasso. The partial correlation coefficient is defined from a scaling ofΘ, see (2.9). The

precision matrix is estimated by maximizing the regularized log-likelihood function in (2.12) with re-

spect to theΘ. The optimization method is called GLasso and is implemented in R, see Appendix C.1.

Furthermore, a 5-fold-cross validation (CV) with loss function, the negative log-likelihood in (2.11), is

performed to find the optimal tuning parameter λ. Figure B.2 in Appendix B.3 presents the CV error

for all choices of λ for each parcellation scheme.

Figure 3.7: The brain networks of p = 16 nodes from session 1 (left), session 2 (centre) and session 3 (right). The edges belong to
the partial correlation matrices presented in Figure 3.6. The 25% absolute strongest weighted edges are visible. The coordinates
are as follows: L-R(left-right hemispheres), P-A(posterior-antieroir axis) and I-S (inferior-superior axis). The nodes are coloured
according to the labels in Figure 3.1. The locations of the nodes correspond to the centre of gravity overall enclosed voxels. The
parcellation scheme for p = 16 nodes can cover separate brain areas. This is because the Kong-Schaefer parcellation joins nodes
based on functionality rather than location. Consequently, nodes are crammed together in the centre of the brain. Coordinates
are extracted using FSL software, and the plots are visualised using Nipype, see Appendix C.1. Data is supplied by sub-G1002.

The lower triangular partial correlation matrices are showcased in Figure 3.6 for each choice of p.

Notice that the degree of sparsity is higher for the precision matrices compared to the sample correl-

ation matrices presented in Figure 3.3. Increased sparsity is a result of the lasso penalty on the size

of the coefficients, defined in (A.27). Sampling variations in fMRI often lead to FC estimates that are

never exactly zero, even for two conditionally independent variables. Weak edges are removed when

sparsity is increased. A sparse network is, therefore, usually preferred for interpretability. The high

degree of sparsity among the partial correlation coefficients is also visible in Figure 3.8, especially

when compared with Figure 3.5. Most of the node pairs in Figure 3.8 contain edges with weights close

to zero. Across sessions, there are some identical node pairs with edges of considerable weights of

opposite signs. Such major, temporal changes in individual edges indicate poor reliability. An ex-

ample of one such node pair is the close-to 30th node pair. However, the overall variance between

sessions, examined by looking at the distance between the three lines, is significantly lower in Figure

3.8 compared to Figure 3.5.
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Figure 3.8: The partial correlation weights from the lower triangular of W of session 1, 2 and 3 of sub-G1002. The networks
consist of p = 16 nodes. There are ((p −1)×p)/2 = 120 unique node pairs.

Figure 3.7 illustrates the spatial organization of the FC network of p = 16 nodes for three sessions.

Similarly as for Figure 3.4, only the 25% absolute strongest weights are showcased. The locations

of the nodes signify the mass centre of the contained voxels. Equivalent nodes across hemispheres

are coloured and labelled identically owing to homogeneous function; see Figure 3.1. Once again, we

observe that the strongest partial correlations are interhemispheric (similar to in Figure 3.4 presented

in the last section). The network topology from the partial correlation coefficients looks similar across

sessions. This observation is in agreement with the reduced variance of weights between sessions

depicted in Figure 3.8 compared to Figure 3.5.

3.2.3 Spectral Dynamical Causal Model (spDCM)

The last of the FC methods assessed in this work is the spectral spDCM, described in Section 2.2.3.

Unlike the two former models, the spDCM tries to account for the underlying biophysical processes

relating neural activity to the measured oxygen level of the blood flow. As a result, the method yields

a network of edges containing strength, directness and directionality. However, in large data settings,

the spDCM tends to be computationally expensive compared to the two formerly introduced sta-

tionary models. More concretely, the inversion scheme, trying to maximize the negative free energy

F̃ (q,θ) in (2.27), is computationally demanding due to a large number of free parameters contained.

Prior distributions of the parameters included in θ must be specified for the EM algorithm to have

initial values. For the hemodynamic parameters in θ we utilized the default priors implemented in

Statistical Parametric Mapping (SPM) [62]. A p×p matrix of ones was used as the prior for the intrinsic

connectivity matrix, A in (2.20) to account for all potential connections. The spDCM is restricted to

run on the three smallest parcellation schemes examined in this study. That is for p = 8,16 and 17
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nodes.

Figure 3.9 presents heatmaps of the final posterior estimate of the intrinsic coupling matrix, A for

the three smallest parcellations. Notice that only the off-diagonal elements are included. In com-

parison to the two correlation-based measures in Figures 3.3 and 3.6, the scale of magnitude of the

weights in Figure 3.9 has decreased. The weights in A are in units of Hertz, defining the rates of change

between regions [55]. Recall that the resulting weights of the spDCM represent the effective con-

nectivity between nodes; see Section 1.2.2. Notice that the sparsity of the coupling matrices increases

significantly with more nodes.

Figure 3.10: The brain networks of p = 16 nodes from session 1 (left), session 2 (centre) and session 3 (right). The edges belong
to the intrinsic coupling matrices presented in Figure 3.9. The 25% absolute strongest weighted edges are visible. The coordinates
are as follows: L-R(left-right hemispheres), P-A(posterior-antieroir axis) and I-S (inferior-superior axis). The nodes are coloured
according to the labels in Figure 3.1. The locations of the nodes correspond to the centre of gravity overall enclosed voxels. The
parcellation scheme for p = 16 nodes can cover separate brain areas. This is because the Kong-Schaefer parcellation joins nodes
based on functionality rather than location. Consequently, nodes are crammed together in the centre of the brain. Coordinates
are extracted using FSL software, and the plots are visualised using Nipype, see Appendix C.1. Data is supplied by sub-G1002.

Figure 3.10 visualises the 25% absolute strongest weights, as well as the spatial organization of the

16 nodes network. The node locations represent the mass center of all enclosed voxels. Due to ho-

mogeneous function, equivalent nodes across hemispheres are coloured and labelled identically, as

seen in Figure 3.1. Similarly as for Figures 3.4 and 3.7, the inter-hemispheric connections dominate

in Figure 3.10. Figure 3.11 showcases the weights of the edges between all pairs of nodes. Recall that

the spDCM results in twice as many connections as the two former methods due to the edges being

bidirectional. From both of Figures 3.10 and 3.11 we observe that the majority of weights are relat-

ively consistent across sessions. In contrast to the partial correlation coefficients in Figure 3.8, the

most extreme weights from the spDCM do not have contradictory signs.
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Figure 3.3: Lower triangular weight matrices from Pearson correlation. Data is supplied by sub-G1002, session 1. The colour bar
corresponds to the strength of Pearson correlation coefficients.
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Figure 3.6: Lower triangular weight matrices from Partial correlation. Data is supplied by sub-G1002, session 1. The colour bar
corresponds to the strength of the partial correlation coefficients.
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Figure 3.9: The weight matrices from DCM for p = 8,16,17 (p > 17 not available). Data supplied by sub-G1002 session 1. The
colour bar corresponds to the strength of the weight coefficients.

Figure 3.11: The intrinsic coupling weights from the off-diagonal elements (that is, entries of a matrix that are not in the
diagonal) of W from session 1, 2 and 3 of sub-G1002. The networks consist of p = 16 nodes. There are (p −1)×p = 240 unique
node pairs.
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3.3 Analysis of Test-Retest reliability

The Test-Retest reliability of a method refers to its ability to give consistent results under repeated

measurements given similar conditions. The same scanning protocols are used across participants

and sessions to secure similar settings. Since we expect the functional network topology of a healthy

brain to stay unchanged for three months, the estimated reliability scores give insight into the preci-

sion of our chosen analysis methods and the rest of the pipeline presented in Chapter 2.

p Method r (ses1,ses2) r (ses1,ses3)

8

Pearson

correlation

0.18 0.16

16 0.18 0.16

17 0.14 0.28

34 0.14 0.26

100 0.28 0.18

300 0.24 0.24

500 0.25 0.25

8

Partial

correlation

0.16 0.29

16 0.17 0.14

17 0.11 0.20

34 0.23 0.23

100 0.10 0.08

300 0.23 0.21

500 0.25 0.20

8

DCM

0.15 0.03

16 0.06 0.15

17 0.19 0.26

Table 3.1: The estimated reliability scores between sessions 1 and 2 (1-month interval) and sessions 1 and 3 (3-month interval)
for all methods and parcellations combinations. The columns are: the number of nodes p, the chosen method, and the estimated
average-across subjects reliability scores, r (ses1,ses2) and r (ses1,ses3).

There are three repeated measurements, referred to as session s for s = 1,2,3, and three control sub-

jects, referred to as sub-G1002, sub-G1014, sub-G1018 (see Table 2.1). Sessions 1 and 2 are acquired

one month apart, while for sessions 1 and 3, the time interval equals three months. Earlier, we

mentioned that the measured brain networks must be reliable to observe functional rewiring after

a stroke. The trt reliability score is reflected by the correlation coefficient between two vectorized
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weight matrices of different sessions as described in Section 2.3.1. Recall that the Pearson correlation

coefficient reflects the degree of a linear relationship between two variables; see Section 2.2.1. The

bivariate relationship between weights from sessions 1 and 2 and sessions 1 and 3 is depicted in the

Figures 3.12a, 3.12b and 3.12c. When plotted against each other, two variables are linearly correlated

if all observations are distributed around the diagonal line passing through the origin with a slope of

1. In comparison to the weight distributions in Figures 3.12b and 3.12c, the weights in Figure 3.12a are

more dissimilar. That is, there are more outliers or equivalently extreme values. Outliers are observed

more frequent as the sample’s variance increases. This discovery is accompanied by Figure 3.8, which

shows that multiple weighted edges differ across sessions.

Let r (ses k, ses l ),k = 1, l = 2,3, quantify the net similarity between the two weight matrices W(k) and

W(l ). Figure 3.13 presents the reliability score of the three methods for different parcellation schemes.

The standard deviation across subjects is visualised as error bars around the means. The average

score across subjects is also showcased in Table 3.1 for all methods and parcellation combinations.

Figures 3.14a, 3.14b and 3.14c further examine the variability between all subject‘s reliability score.

Individual controls’ scores are visualised separately for each FC method. When there are fewer nodes,

the between-subject variance of r (ses k, ses l ),k = 1, l = 2,3 is higher. The length of the error bars in

Figure 3.13, as well as the distance between the lines in Figures 3.14a, 3.14b and 3.14c demonstrate

this. Next, compare the performance of the different FC methods in terms of trt reliability. Notice that

not only the between-subject variance converges as the number of nodes rises, the trt reliability for

the two correlation-based methods also approached closer; see Table 3.1.
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(a) (b)

(c)

Figure 3.12: Scatter plots of the weights from session 1 vs. session 2 (interval: 1 month) and session 1 vs. session 3 (interval: 3
months) for each FC method studied in this work. The data belongs to one control subject. All networks consist of 16 nodes with
(a) weights from Pearson correlation, (b) weights from Partial correlation and (c) weights from spDCM. The dotted, diagonal
line resembles a straight line, cutting through the origin with a slope of 1.
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(a)

(b)

(c)

Figure 3.13: The mean across subjects Test-Retest (trt) reliability of sessions 1 and 2 (left) and sessions 1 and 3 (right) as a
function of different number of nodes. The standard deviation across subjects is indicated by an error bar around the mean. Each
row corresponds to a separate FC method: Pearson correlation (a), Partial correlation (b), and spDCM (c).



46 CHAPTER 3. RESULTS

(a)

(b)

(c)

Figure 3.14: The Test-Retest reliability between sessions 1 and 2 (left) and sessions 1 and 3 (right) as a function of different
number of nodes, and for each FC method: Pearson correlation (a), Partial correlation (b), and spDCM (c). The reliability scores
from individual control subjects are visualised as separate lines.
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3.4 Power Analysis

In the last section, the Test-Retest reliability scores, quantifying the net similarity of the entire FC

networks between sessions, were presented. Now, encompass the individual edges and how they

differ across sessions of the same subjects. We conduct edgewise power analyses on parcellations p

and method choice combinations.

Let d (sub g )
i denote the weight difference between the two first sessions for control subject g , as spe-

cified in (2.33). Since we have no available stroke data related to this study, we instead utilize data

from control subject‘s session 1 and session 2 for conducting the power tests defined in Section 2.3.2.

The hypothesis in (2.35) assume that d (sub g )
1 , . . . ,d (sub g )

e are drawn from a normal distribution with

zero mean and unknown variance σ2. The validity of this assumption can be examined by looking

at Figure 3.15. The distribution of weight differences between sessions 1 and 2 for all individuals is

shown in Figure 3.15a, demonstrating that this assumption is valid for each of the FC techniques in

this study.

Notice that the changes in temporal weights, represented by di , i = 1, . . . ,e for all edges, are uniformly

distributed around zero. Notice that the distribution of di in the first row of Figure 3.15a has a heavy

tail compared to the other FC approaches. In other words, the probability of getting a very large di is

higher for the weights retrieved from the Pearson correlation. This observation is consistent with the

findings in Section 3.2. Figure 3.15b showcases the mean weights from the two first sessions and the

mean differences across subjects. Recall that during three months, we assume the functional brain

network of controls to be constant. As a result, the distribution of d̄ (c)
i should have a higher frequency

of observations equal to zero than the distribution of the averaged weights, denoted w̄i . The dis-

tribution of weights and weight differences in Figure 3.15b have a mean zero. When comparing the

two distributions: d̄ (c)
i to have more outliers than w̄i . This conflicts with our assumption that the

functional connections of controls are constant for three months.

Based on the test in (2.35), we compute how many patients must be averaged over for the expected

temporal change in FC following a stroke to be significant. Recall that the standard deviation, σ, and

effect size, δ(q), is estimated based on data from control participants, as stated in Section 2.3.2. The

predicted sample size, n(s), is determined iteratively using (2.39) for all parcellation schemes p and

methods combinations. Based on the 90% quantile, that is q = 0.9, of the sorted weight list, Table 3.2

provides a summary of n(s) for α= 0.05, β= 0.2. For all FC methods, notice that the estimated stand-

ard deviations, σ̂ = s, and estimated effect size δ(q), both drop significantly as the number of nodes

p increases. Still, the sample size n(s) rises along with the number of nodes due to the Bonferroni
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correction resulting in a small αi , defined in (2.38). More samples are needed when we accept fewer

Type I-errors.

Due to the high amount of sparsity present in the precision matrix from (2.12), the effect size δ(q),

which depends on the magnitude of the weights, shrinks to zero. As a result, the estimated sample size

of the network of p = 500 nodes with edges equal to the partial correlation coefficients defined in (2.9),

diverges. This is a disadvantage of utilizing a median-based method to estimate δ(q). The predicted

sample sizes for different selections of significance level α, power 1−β, and quantiles q impacting

the resultant effect sizes δ(q) are shown in Figures 3.16a, 3.16b and 3.16c. An increase in either α

or β, meaning that we tolerate a higher probability of Type I and Type II-errors, leads to reduced

estimated sample size. Note that the magnitude of the effect size δ significantly impacts the predicted

number of stroke patients. Our results suggest that the amount of change in temporal functionality

of a brain network following a stroke, as opposed to healthy control, is the most significant variable

in the hypotheses test in (2.35).

p Method n(s) δ(q) σ̂

8

Pearson
correlation

21 0.80 0.77
16 24 0.80 0.70
17 21 0.80 0.71
34 23 0.72 0.63

100 26 0.59 0.46
300 32 0.55 0.43
500 33 0.53 0.41

8

Partial
correlation

18 0.5 0.43
16 26 0.36 0.36
17 25 0.37 0.37
34 31 0.29 0.29

100 43 0.21 0.23
300 264 0.02 0.02
500 ∞ 0 0.03

8
DCM

15 0.29 0.21
16 34 0.02 0.02
17 27 0.02 0.02

Table 3.2: The estimated sample sizes for all methods and parcellations combinations with α= 0.05, β= 0.20 and q = 0.90. The
columns are: the number of nodes p, the estimated sample size of stroke patients n(s), the effect size δ(q) and the estimated
standard deviation s = σ̂. See (A.45).
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(a) (b)

Figure 3.15: The weights from networks of p = 16 nodes. Each row corresponds to one FC method. The leftmost plot (a)
displays the distribution of differences di = w (1)

i −w (2)
i for all control subjects. Bin size is 0.1. The rightmost plot (b) gives the

distribution of mean weights, w̄ (ses 1) and w̄ (ses 2), together with the mean distances d̄ across subjects. Bin size is 0.01. The
curves in (a) and (b) are the kernel density estimates of the distributions.
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(a)

(b)

(c)

Figure 3.16: The estimated sample sizes for each of the three FC methods as a function of the number of nodes, p. The
resulting n(s) from different choices of significance level α, power 1−β and quantiles q (which is affecting the effect size δ(q)) are
showcased.



Chapter 4

Discussion

The objectives of the present study were to investigate (1) the required sample sizes of stroke sub-

jects necessary to detect significant time-dependent changes in the functional brain network using

rs fMRI;(2) the trt reliability of three FC methods and seven parcellation schemes. We present some

more noteworthy findings and their implications for the related study at St.Olav Hospital. Then lim-

itations that have impacted the outcomes are discussed. Several exciting mathematical possibilities

for the current research are addressed in connection to future progress. A conclusion for this thesis is

provided at the end of this chapter.

4.1 Findings

The conducted power analyses in Section 3.4 suggest that there is a need for a large number of stroke

patients in order to find significant temporal FC changes after stroke. As expected, the sample sizes

increase with smaller effect sizes. Consequently, the study relies on either enrolling enough volun-

teers or observing significant differences between the two group‘s temporal connectivity changes.

Keep in mind that it is very challenging to recruit volunteering stroke patients that meet the clinical

trial requirements mentioned in Section 2.1 [14]. The predicted sample sizes of all parcellation and

methods combinations are presented in Table 3.2 for a significance level equal to 0.05 and statistical

power of 80%. The estimated effect size is set to the 90th percentile of weights from all controls in

this study, meaning that the expected change in FC post-stroke equals the 10% strongest connection

observed in controls. As a result, a single connection in stroke patients’ functional brain network

must change less than the 10% strongest connection in a healthy brain network to reject the null hy-

pothesis in (2.35). Considering similar studies, such substantial FC changes in stroke patients might

be unusual. Branscheidt et al. [4] collected rs fMRI data from 19 subcortical stroke patients and

51
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11 controls. The subjects finished up to five sessions during a year. In contrast to this study, Bran-

scheidt et al. examined only motor and somatosensory areas of the cortex, known to be relevant for

hand movement. Despite substantial behavioural improvement among patients in the first year after

stroke, they found no evidence for longitudinal post-stroke cortical connectivity changes. There were

no observed changes in FC neither across time nor across the two groups.

We have studied three FC methods: two that are correlation-based and stationary, and one that

provides bidirectional edges by accounting for the BOLD signal’s time dependency. The latter refers

to effective connectivity, a subset of FC. Recognise that the notion of directed effective connectivity

does not imply two nodes are causally related [63]. Smith et al. [64] validate and compare different

FC methods using the DCM to yield simulated fMRI data, see (2.22). The method’s performance is

determined by its sensitivity to recognising appropriate network connections. Their findings suggest

that correlation-based methods, such as Pearson and Partial correlation, outperform non-stationary

methods. Due to mathematical and computational feasibility, Smith et al. did not evaluate the Dy-

namical causal model. Also, the spectral DCM [56], implemented in this work, was not yet introduced

when the research article by Smith et al. was published. We have measured method performance us-

ing a trt reliability score. Our findings suggest that the DCM, which can be regarded as a lag-based

method, performs no worse than the correlation-based methods. However, unlike Smith and coau-

thors, we focus on the precision of a method rather than its accuracy. Also, simulated data is not

comparable to observed BOLD signals from fMRI sessions owing to simulations’ inability to recreate

the proper form of noise. Out of the three methods, partial correlation and spDCM yield weights with

significantly lower variance between sessions in comparison to the Pearson correlation (see Figures

3.5,3.8 and 3.11). This finding is interesting as the latter method is the one most frequently used in FC

analysis. Yet, it is worth remembering that the DCM holds a possible advantage because it produces

bidirectional edges.

We have also examined how different parcellation schemes influence the resulting trt reliability of

each FC method. There are no fMRI studies have assessed the effect of this variable on the trt reli-

ability, as far as known. We studied seven alternative parcellation schemes, each dividing the human

cortex into functionally separate brain areas called nodes. Table 3.1 shows a weak rising trend in the

control group mean reliability scores as the number of nodes increases. Furthermore, the between-

subject variances of the reliability scores, as shown in Figure 3.13, reduce significantly when the num-

ber of nodes increases from tens to hundreds. This finding implies that the results are more consistent

for more nodes. As mentioned in Chapter 1, one could argue that the individual neurons or voxels

represent single nodes more realistically. However, the large volumes of time series data to be in-
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vestigated may limit the available connectivity analysis methods. Due to an exponential expansion

of free parameters as the number of nodes increases, the spDCM cannot analyse more than the 17

time series. As a result, we incorporated the smaller parcellation schemes in the current study to in-

clude this model. Still, one can question whether a network of 8 nodes covering the entire cortex can

capture the activity caused by approximately 86 billion neurons.

4.2 Limitations

Regarding anatomy, no brains are the same due to our genetic material and unique life experiences

[65]. Furthermore, we know that stroke may alter the brain in various ways. As a result, the recovery

process differs greatly amongst patients [3]. Resting-state fMRI data should ideally be interpreted for

individual patients when studying FC networks of the human brain in health and disease [66]. Exam-

ination of single patients is usually insufficient in fMRI research due to poor trt reliability. Previous

studies of functional rewiring post-stroke consider the averaged connectivity patterns within each

group: controls and patients [4] [3]. Because the observed variation of identical edges across sessions

is considerable, as shown in Figure 3.15, we are obliged to use the mean across patients, despite the

drawbacks we have discussed. The independence assumption of di = wses1
i −wses2

i is another weak-

ness with the power analyses described in Section 3.4. We have considered d subg
i to be independent

of d subg
j for the same subject, and d subg

i to be independent of d subk
i from another subjects. These

assumptions are analogous to wi being independent of w j within and across subjects. Since most of

the nodes in a brain network are connected via edges whose existence is dependent on one another,

this is a weak assumption. Despite this, the assumptions were required to evaluate the distribution

of individual weight changes among participants, as used in (2.35), with just three controls. Addi-

tionally, the lack of stroke data affects the estimated effect size, δ(q), which is based on the range of

magnitude in the weights of a control subject network. However, the lack of enough subject data is

probably the major limitation of the conducted power analyses in this thesis.

The methods all perform poorly in terms of the trt reliability scores presented in Table 3.1 for both 1

and 3 months Test-Retest intervals. As previously indicated, certain of the selected FC method‘s and

reliability measure‘s assumptions regarding the data utilized are not being met. One such example is

the assumption of independence between sample points of the time-dependent BOLD signal, which

as addressed in Section 2.2.1 can result in "nonsense correlations" [42]. A presence of autocorrelation

in the response signal not only leads to these false-positive connections but may also bias the effect

on precision on the estimated connectivity pattern [67]. These miscalculated edges will shift from

session to session, possibly resulting in reduced overall consistency of the methods.
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It is crucial to keep in mind the low signal-to-noise ratio of rs-fMRI data [68] [66] when addressing

the reliability of our methods. The observed BOLD signal contains thermal noise from the scanner

and physiological noise from the individual subjects, owing to head movement and respiratory activ-

ity. Additionally, physiological effects such as level of stress [69] and recent sleep quality [70] act as

possible confounders that may disturb fMRI measurements. Recall that trt reliability quantifies how

similar the within-subject FC network is under identical conditions, such as the same scanner, time of

day, and analytic procedures. Although we strive to account for both forms of noise during data pre-

processing, see Appendix B.1, perfectly identical settings between sessions are hard to achieve. We

cannot be sure how these factors affect the measured response signal, which is an indirect measure of

brain activity. However, we must consider the likelihood that these confounders lead to biased estim-

ations of functional connectivity [68]. According to a recent study [71], extending the scan durations

of rs fMRI scans by up to double the existing BOLD time series can improve reliability. The record-

ing for this study were set to 8 minutes such that the total MR sequence, consisting of additional

acquisitions (MRI structural scans, tasks-dependent fMRI and diffusion Imaging) not exceeded an

hour.

4.3 Future Work

The only time-dependent among the thee FC methods studied in this work is the spDCM, which

was limited to the parcellation schemes of maximum 17 nodes. Therefore, examining another time-

varying FC method that manages to evaluate a brain network of hundreds of nodes is of interest.

Linearized variants of the Dynamical causal model, such as the more recent regression DCM [72] is

one such option. Considering the low variance and high sparsity created by the GLasso estimated

precision matrix, another possibility is to evaluate this procedure more closely. The tuning para-

meter estimation, performed through CV, is not optimized for any of the parcellation schemes, see

Figure B.2. Wang et al. state that k-fold CV with the negative log-likelihood as the choice of loss func-

tion tends to select overly dense graphs [73]. This finding may suggest that cross validation is not

the optimal penalty selection method for our data or that even a regularisation when estimating the

inverse covariance matrix is unnecessary for some cases. More efficient approaches exist for tuning

parameter selection [73]. In addition, a possible prospect is to extend the model to account for the

time dependence of the BOLD signal, using cross-correlation before partial correlating time series of

node-pairs.

How to handle negative FC estimations is an important aspect of defining edges. As mentioned

earlier, there remains little consensus for handling or interpreting these connections. A fraction of FC
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studies delete the negative weights prior to analysis [74]. We have examined the resulting trt reliability

of all parcellation schemes and methods combinations for all negative weights set to zero. Table B.3,

as well as Figures B.3 and B.4 prove that the reliability is slightly improved when negative weights are

set to zero. Other connectivity studies have treated the negative weights as positive weights and per-

formed separate analyses on the two resulting connectivity graphs [75]. Prior to the power analyses

conducted in Section 3.4, we define di as the difference between wi from sessions 1 and 2, and then

average di across subjects, see (2.34). It would be advantageous to treat the weights with different

signs separately before subtracting weights to prevent signal cancellation owing to opposite-signed

weights.

A last prospect of study involves the choice of brain regions. Similar studies have encompassed only

motor, and sensory, related to the expected damage post-stroke [4] [3]. This kind of brain parcellation

is referred to as region of interest (ROI) analysis, as the nodes correspond to brain regions relevant

to what is studied. There are several advantages with ROI-based parcellations. Firstly, the computa-

tional burden which confines the spDCM is reduced as there are fewer nodes to consider. Further-

more, the nodes represented by ROIs usually span smaller brain areas than the nodes of a whole-brain

parcellation. If only a few functional connections are affected by rewiring following a stroke, we may

be more likely to notice them when "zooming" in on relevant brain areas instead of encompassing

the entire brain simultaneously. On the other hand, analysis of pairwise interactions between all

brain areas concurrently, such as in a whole-brain parcellation, might provide a better understand-

ing of the network dynamics. Nonetheless, this relies on consistent models of the functional brain

networks, which, as discussed in this chapter, is challenging to achieve. Therefore, considering areas

in the Somamotor-area of the brain while studying motor recovery in stroke patients is an optim-

istic possibility for further work. Additionally, utilizing task-dependent fMRI where the participants

perform motor tasks during the data acquisition might improve the reliability between sessions and

among subjects [76].

4.4 Conclusion

The main objective of this thesis was to investigate whether we can detect neuroplasticity after stroke

using rs fMRI data. We examined three sessions of rs fMRI scans performed over three months on

healthy elderly participants. To be convinced that possible, observed changes in FC after stroke are

caused by motor recovery; we analysed the trt reliability of various FC approaches and parcellation

schemes. We also conducted power tests to predict how many patients should be recruited for a

stroke rehabilitation study at St.Olav Hospital to detect significant changes in the functional brain
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network post-stroke. Knowing whether or not a research’s experimental design should be adjusted

to yield useful results might save time and resources. The sample size predictions were based on the

observed temporal FC changes across controls. Due to the small sample size, fMRI noise, and viol-

ations of model assumptions, the measured brain networks could not provide a reliable conclusion

on the exact number of subjects to be recruited. However, the number is likely not feasible for the

stroke rehabilitation study – which will not be able to recruit a large number of stroke patients, par-

ticularly those who have had similar strokes. Our findings, therefore, contribute valuable insight into

prospects for this study. Furthermore, the reliability analysis and sample size calculations were incor-

porated into a statistical framework, for which one can easily include new methods and data quality.

This framework helps to address the issue of reproducibility in neuroimaging studies. Further work

is suggested to implement the framework using new FC measures, motor-task fMRI with longer scan

durations and more subjects.



Appendix A

Additional statistical theory

A.1 Principal Component Analysis (PCA)

The following section provides details regarding the dimensionality reduction tool Principal com-

ponent analysis (PCA), following the review article by Jolliffe and Cadima [77]. Consider a data matrix

Y = (y1, . . . , yv ) ∈ RT×v . The columns of Y, each of length T , are centered to have zero mean. The first

PC, denoted x1 equals the normalized linear combination of the columns of Y such that variance is

maximised. Define x1 as follows

x1 =φ11 y1 +φ21 y2 + . . .+φv1 yv =
v∑

j=1
φ j 1 y j = Yφ1, (A.1)

where φ1 = (φ11,φ21 . . .φv1)T ∈ Rv×1 is a vector of constants, called the loadings of the first PC. Next,

estimate the loading vector such that the variance of x1 is maximised,

max
φ11,φ21...φp1

Var(Yφ1) = max
φ11,φ21...φp1

1

T

T∑
i=1

(φT
1 yi −φT

1 ȳ)2 = max
φ11,φ21...φp1

φT
1 Σ̂φ1, (A.2)

where Σ̂ ∈Rv×v resembles the sample covariance matrix of Y. For the problem to have a well-defined

solution, impose the following constraint on the loading vectors:
v∑

j=1
φ2

j 1 = 1, or equivalently φT
1 φ1 =

1. A Lagrange multiplier, denoted by λ1 ∈ R1, is introduced for the maximizaton problem (A.2) to

enforce this constraint

max
φ11,φ21...φp1

φT
1 Σ̂φ1 +λ1(1−φT

1 φ1). (A.3)

Now, set the derivative of the above expression, with respect to φ1, equal to zero. Then the maximiz-

ation problem in (A.3) is equivalent to solving an eigenvalue-decomposition of the covariance matrix
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defined as follows:

Σ̂φ1 =λ1φ1. (A.4)

The above equation concludes that φ1 is the first eigenvector of Σ̂. That is the eigenvector with the

largest eigenvalue, in this case λ1. Since the first eigenvector of a covariance matrix yields the direc-

tion of the axes where there is most variance, the variance must be maximum when φ1 equal to the

first eigenvector, also known as the first PC [78].

A.2 Generalized Linear Model

A.2.1 Linear Regression Model

Regression aims to explain the effect of an independent variable x , called a covariate, on a dependent

variable of interest y , also called the response variable [59]. The relationship between the two con-

tinuous variables (yi , xi ), i = 1, . . . ,n can be represented through a simple linear regression model as

follows

yi =β0 +β1xi +εi , i = 1, . . . ,n. (A.5)

The regression coefficients β0 and β1 represent the intercept and slope of a regression line, respect-

ively. These coefficients are estimated from the data (yi , xi ), i = 1, . . . ,n, denoted as β̂0, β̂1, to yield an

estimated linear regression line ŷi = β̂0 + β̂1xi , i = 1, . . . ,n. The residual errors ε1, . . . ,εn , are assumed

independent and identically normally distributed with zero mean and constant varianceσ2 across all

errors εi ,

εi ∼N (0,σ2). (A.6)

It follows that the observations of the response variable yi follow a normal distribution, conditionally

independent on the covariate, with meanµi = E [yi | xi ] =β0+β1xi , i = 1, . . . ,n and varianceσ2,

yi ∼N (µi ,σ2). (A.7)

Estimations of the regression coefficients β0,β1 in (A.5) is necessary for inferring the regression line

ŷi = β̂0+β̂1xi , i = 1, . . . ,n. The estimates ofβ0,β1 are denoted as β̂0, β̂1 The simplest approach is called

the method of least squares (LS), as it minimizes the sum of the squared deviations as follows

β̂LS = min
β

n∑
i=1

(yi − β̂0 − β̂1xi )2. (A.8)
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Using simple calculus, the estimated slope coefficient becomes

β̂=

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
, (A.9)

where x̄ = 1
n

n∑
i=1

xi is the mean of the observations.

Now consider p independent continuous variables x1, . . . , xp each of n observations, and one re-

sponse variable y = (y1, . . . , yn)T . We have a multiple linear regression model,

yi =βT xi +εi , i = 1, . . . ,n, (A.10)

where xi = (1, xi 1, . . . , xi p ) is the i th observation of each covariate augmented with a 1 to allow for a

constant term in the regression equation, and β = (β0,β1, . . . ,βp )T the coefficient vector. Now, let X

contain p + 1 column vectors, the first being a vector of ones and the rest are the covariate vectors

x j = (x1 j , . . . , xn j ) for j = 1, . . . , p. X is called the design matrix, of dimension n×(p+1). The regression

model in (A.10) can be written in matrix form as follows:

y = Xβ+ε, (A.11)

with ε= (ε1, . . . ,εn)T , called the error vector.

A.2.2 GLM framework

It is possible to extend the model in (A.11) to allow for non-normal response and error distribution.

The response variable y is restricted to be written on the form of an univariate exponential fam-

ily:

f (yi | θi ) = exp
( yiθi −b(θi )

φ

)
w + c(yi ,φ, wi ), (A.12)

where θi is the natural parameter, φ the dispersion parameter and wi the weight parameter. The

linear model in equation (A.10) is a special case of Generalized linear model (GLM) where the re-

sponse function yi is gaussian and a member of the exponential family with φ=σ2, b(θi ) = 1
2µ

2
i and

θi =µi .

The structural component of a GLM ensures linearity. The response function is allowed to be non-

linear. This is done through a one-to-one and twice differentiable response function, h connecting
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the linear predictor ηi = xT
i β with the mean of the response E(yi ) =µi ,

µi = h(ηi ) = h(xT
i β). (A.13)

We often use the inverse of this function called the link function,

ηi = xT
i β= g (µi ). (A.14)

A.3 Maximum Likelihood Estimation

The method of least square (A.8) yields estimates of the unknown regression coefficients β in a linear

regression model, such as (A.11). For a GLM the parameters β are estimated by maximizing the log-

likelihood function of the data. That is, we want to estimate β̂ such that the probability of observing

the data we already have observed is at it‘s most likely [59].

Consider a sample y = (y1, . . . , yn) from a population with probability density function f (yi | θ) be-

longing to the exponential family. The likelihood function equals the joint density of the observations

yi as a function of a parameter vector θ ∈Rp

L(θ | y) =
n∏

i=1
f (yi | θ), (A.15)

The above equation (A.15) assumes y1, . . . yn to be to be independent and identical distributed. The

Maximum Likelihood Estimation (MLE) of θ is

θ̂MLE = max
θ

L(θ | y). (A.16)

Usually, it is more convenient to maximize the log-likelihood function. Since the logarithm is a strictly

increasing function, maximizing logL(θ | y) is equivalent to (A.16).

The parameter vector θ represents the mean of the response µi , which through the link function

(A.13) is related to the linear predictor ηi . The linear predictor is further a function of the regression

parameters β through (A.14). Therefore, the likelihood function in (A.15) is a function of β.
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A.3.1 The Fisher Scoring algorithm

The MLE from (A.16) is usually estimated by setting the derivate of logL(θ), called the score function,

to zero and solving for θ̂:

s(θ̂) = ∂l (θ)

∂θ
= 0. (A.17)

For a nonlinear response function, the problem in (A.17) yields nonlinear equations that cannot be

solved analytically. An approximate solution can be found through a first-order Taylor expansion of

the score function s(θ̂) around an arbitrary point θ0

s(θ̂) = s(θ0)+ ∂s(θ)

∂θ

∣∣∣
θ=θ0

(θ̂−θ0)+O (θ2). (A.18)

The negative of the first order derivative of the score function is called the Observed Fisher information

,

H(θ) =−∂s(θ)

∂θ
= ∂l 2(θ)

∂θ∂θT
(A.19)

Rearrange the terms in (A.18) to solve for θ, and we obtain an iterative algorithm called Newton Raph-

son,

θ̂t+1 = θ̂t +H(θ̂t )−1s(θ̂t ) (A.20)

The algorithm is constantly finding a new tangent line of the score function evaluated at the current

estimate of θ̂ until the line approximately does not change anymore. A similar optimization technique

called the Fisher Scoring can be derived by replacing the observed Fisher information matrix in (A.20)

with the Expected Fisher information matrix,

I (θ) = E
(
− ∂l 2(θ)

∂θ∂θT

)
. (A.21)

This gives the iterative algorithm called Fisher Scoring

θ̂t+1 = θ̂t +I (θ̂t )−1s(θ̂t ) (A.22)

The Expected Fisher information matrix might be simpler to compute compared to H(θ), and the

Fisher Scoring is therefore often preferred [59].
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A.3.2 Multivariate Gaussian MLE

Consider the vector Y = (y1, . . . , yp )T drawn from a normal distribution Np (µ,Σ) with probability

density function

f (yi |µi ,Σ) = 1p
(2π)p |Σ | exp

(
− 1

2
(yi −µ)TΣ−1(yi −µ)

)
, (A.23)

where yi and µ are vectors in Rp . Insert the probability density function of yi in the log-likelihood

function (A.15),

logL(µ,Σ | y) =−np

2
log2π− n

2
log(detΣ)− 1

2

n∑
i=1

(yi −µ)TΣ−1(yi −µ)

=−np

2
log2π− n

2
log(detΣ)− 1

2

n∑
i=1

(yi − ȳ)TΣ−1(yi − ȳ)−n(ȳ −µ)TΣ(ȳ −µ)

=−np

2
log2π+ n

2
log(detΣ−1)− 1

2
tr

n∑
i=1

(yi − ȳ)(yi − ȳ)T

︸ ︷︷ ︸
Σ̂ML

Σ−1 −n(ȳ −µ)TΣ(ȳ −µ)

(A.24)

The above derivation exploits the trace tricks, xT Ax = tr(xT Ax) = tr(x xT A). One can easily notice

that the third term of the last equation is maximised for µ = ȳ , which is the MLE of the mean. The

MLE of the covariance matrix is equals the sample covariance matrix [35].

A.4 LASSO Regularization

Consider the linear regression model in (A.11). The regression parameters β can be estimated using

the method of least squares

min
β

1

2n
(y −Xβ)T (y −Xβ). (A.25)

According to the book Statistical Learning with Sparsity by Hastie et al. [46], there are two reasons

why one should consider the regularization of coefficients β in the problem above. The first is an

improvement of prediction accuracy by introducing bias and reducing the variance of the predicted

values of y . The second reason is to increase interpretability by identifying a smaller subset of pre-

dictors that exhibit the strongest effects, shrinking the rest of the coefficients to zero. The rest of this

section is based on the same book.

Regularization imposes a penalty on the size of the coefficients,

min
β

1

2n
(y −Xβ)T (y −Xβ)+λ∥∥β∥∥

1 (A.26)

where λ is a tuning parameter controlling the amount of shrinkage and‖‖1 denotes the `1 norm given
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by: ∥∥β∥∥
1 =

p∑
j=1

|β |2 . (A.27)

The method called lasso shrinks small coefficients to zero, doing model selection on the regression

parameters. We can rewrite the lasso problem in the Lagranian form

1

2n
min
β

∥∥y −Xβ
∥∥2

2 +λ
∥∥β∥∥

1 . (A.28)

The optimization problem in (A.28) is a convex, quadratic program that can be solved by a numerical

computational method such as coordinate descent.

Consider a response variable y ∈ Rn with p covariates X = (x1, . . . xp )T and regression coefficients

β ∈ Rp . Coordinate descent solves the lasso problem in (A.28) for the j th regression coefficient β j

with all other coefficients, βk ,k 6= j , fixed. It cycles through all covariates in a fixed order, that is

j = 1,2, . . . , p,1,2, . . . , p, . . ., and updates β j on the j th step. This update is repeated until satisfied

convergence. The objective in (A.28) can be written as

1

2n

n∑
i=1

(yi −
∑
k 6= j

xi kβk −xi jβ j )2 +λ ∑
k 6= j

|βk | +λ |β j |, (A.29)

assuming that both yi and xi j have been standardized and the intercept can be omitted. The solution

for each β j , expressed in terms of the partial residuals r ( j )
i = yi − ∑

k 6= j
xi k β̂k is

β̂ j = Sλ
( 1

n
〈x j ,r ( j )〉

)
= Sλ

( 1

n
〈x j , yi −x− j β̂− j 〉

)
Sλ(x) = sign(x)(| x | − λ)+,

(A.30)

Sλ(x) is called the soft-thresholding function whose output is zero for | x |≥ λ and (| x | − λ) multi-

plied with the sign function of the input x else. The sign function is a piecewise function defined as

follows:

sign(x) =



−1 x < 0,

0 x = 0,

1 x > 0.

(A.31)

The algorithm minimizes (A.29) along each coordinate j at a time, updating the j th coefficient β̂ j

according to (A.30) keeping the other coefficients, β̂− j fixed.

The regularization parameter λ can be selected using k-fold cross-validation with the Gaussian log-
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likelihood in (A.24) as a score function. The observations are divided into k groups of approximately

equal size; k − 1 of them are training sets used to estimate the coefficients, and the last fold is the

validation set where (A.24) is validated, inserting the coefficient estimates from the training set. This

scheme is repeated k times so that each fold is treated as the validation set. The CV-estimate is com-

puted by averaging over the score functions of each iteration [34],

CV(k) =
1

k

k∑
i=1

logL(βtrain,Σ | X). (A.32)

This procedure is usually run for a list possible choices of λ, and the optimal parameter is that which

gives the smallest average test error of (A.32).

A.5 Variational Bayesian inference

A.5.1 Bayesian Inference

The DCM relies on Bayesian statistics, treating the observed data as fixed functions and the paramet-

ers as random variables. Consider a sample y = (y1, y2, . . . , yn)T drawn from a probability distribution

p(y | θ) with θ considered the random variable. The Bayesian model consists of [59]:

The prior distribution, π(θ) contributes to prior beliefs about the parameter before data is observed.

The posterior distribution, π(θ | y) updates the prior after observing the data y .

The evidence p(y) , which is the marginal distribution of the observed data, is independent of any

unknown parameters.

The aim of Bayesian inference is estimating the posterior distribution, obtained from Bayes the-

orem:

π(θ | y) = p(y | θ)π(θ)

p(y)
(A.33)

where the marginal distribution p(y) can be written as
∫
θ p(y ||| θ)π(θ)dθ. Notice that this quantity

is constant with respect to θ, and can therefore be treated as a normalizing constant ensuring that

p(y ||| θ)π(θ) integrates up to one. Rewrite Bayes theorem as a proportional relation: π(θ ||| y) ∝ p(y |||
θ)π(θ).

The maximum likelihood procedure was described in Appendix A.2 to achieve an estimator for the
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unknown parameter β. The same technique can be performed in Bayesian inference,

θ̂ML = argmax
θ

(
p(y | θ)

)
= argmax

θ

(∑
i

log p(yi | θ)
)
.

(A.34)

The above equation does not include any prior information when deriving the estimator. An altern-

ative estimator can be found by maximizing the posterior distribution function π(θ | y) with respect

to θ, leading to the Maximum a Posterior (MAP):

θ̂M AP = argmax
θ

(
π(θ | y)

)
= argmax

θ

(
p(y | θ)π(θ)

)
= argmax

θ

(∑
i

log p(yi | θ)+ logπ(θ)
)
.

(A.35)

The marginal likelihood distribution p(y) from (A.33) is independent of θ, and therefore omitted in

the maximization.

A.5.2 The Expectation-Maximization (EM) algorithm

Estimating the posterior distribution can be analytically unfeasible due to the integral in (A.33). The

integral can be approximated in two ways: stochastic sampling or variational inference, bypassing

the computation using a few assumptions [79]. A generalized version of the Expectation maximiza-

tion (EM) algorithm, an iterative procedure for inferring point estimators when dealing with latent

variables, is an example of the latter approximative method. The rest of this section is based on the

book Pattern Recognition and Machine Learning by Bishop [78].

Now consider a sample of continuous observed data y = (y1, y2, . . . , yn)T , some unobserved (latent)

data z = (z1, z2, . . . , zn)T and a vector of unknown parameters θ. The EM algorithm seeks to find the

MLE (or MAP) of θ (A.34) by iteratively maximizing the expectation of the marginal distribution of the

observed values, p(y | θ), with respect the i th estimate of the conditional distribution of the z given

y , denoted as q(z | θ(i )) = p(z | y ,θ(i )). We can see that the likelihood function

L(θ | y , z) =
∫

p(y , z)d z =
∫

p(y | z ,θ)p(z | y ,θ)d z , (A.36)

is not possible to solve directly without z being known. Therefore it is necessary to approximate

p(z | θ) for the i th guess of θ. The expectation of (A.36), with respect to the current estimate q(z | θ(i )),
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of θ(i ) is:

Q(θ | θ(i )) = Eq(z |θ(i ))[logL(θ | y , z)] =
∫

q(z | θ(i )) logL(θ | y , z)d z . (A.37)

Next, update the parameter estimate from θ(i ) to θ(i+1) through a maximization of (A.37). This pro-

cedure, called the EM algorithm, is iterated until the parameter converges or q(z | θ(i )) equals the true

distribution p(z | θ).

In cases where the maximization of (A.37) remains intractable, seek θ such that a lower bound, F (q,θ)

on (A.36) increases. The lower bound of the likelihood function is derived by applying Jensen‘s in-

equality for concave functions, E[ f (x)] ≤ f (E[x]), as follows:

logL(θ | y , z) = log
∫

p(y , z | θ)d z

= log
∫

p(y , z | θ)
q(z | θ)

q(z | θ)
d z

= logEq(z |θ)

[
p(y , z | θ)

q(z | θ)

]

≥ Eq(z |θ)

[
log

(
p(y , z | θ)

q(z | θ)

)]
︸ ︷︷ ︸

−F̃ (q,θ)

.

(A.38)

The function F̃ (q,θ) is called the variational free energy from statistical physics and with opposite

sign it equals the Evidence lower bound [79]. We can now summarize the generalized EM algorithm

as a "maximization-maximization" algorithm in 2

Algorithm 2: Maximization-maximization

1 E-step: q (i ) ← argmax
q

(
F̃ (q,θ(t ))

)
2 M-step: θ(i+1) ← argmax

θ

(
F̃ (q (i ),θ)

)

We can in fact show that the M-step of the ordinary and generalized EM algorithm both maximize the

same quantity by re-organizing (A.38) as follows

F̃ (q,θ) =
∫

q(z | θ(i )) log
p(y , z | θ)

q(z | θ(i ))
d z

=
∫

q(z | θ(i )) log p(y , z | θ)d z −
∫

q(z | θ(i )) log p(y , z | θ)d z

= Eq(z |θ(i ))[log p(y , z | θ)]︸ ︷︷ ︸
Q(θ|||θ(i ))

−Eq(z |θ(i ))[log q(z | θ(i ))].

(A.39)

The last term above is the negative entropy of the approximate distribution q which is independent

of θ. Thus a maximization of F̃ (q,θ) implies a maximization of the expectation of the log likelihood,
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Q(θ ||| θ(i )).

A.6 Hypothesis testing

Statistical hypothesis testing is an inference method that determines which of two complementary

hypotheses is true based on a sample from a population [80]. When formulating hypotheses, we

commonly use a summary statistic such as the population mean. Let µ be the population mean of a

sample x1, . . . , xn , and specify the hypotheses

H0 :µ= 0

H1 :µ> 0.
(A.40)

The null hypothesis claims that the population mean is zero, whereas the alternative hypothesis states

the opposite. The test is one-tailed, which means that we consider only one side of the population

distribution.

When evaluating a hypothesis test there are two possible outcomes that can lead to incorrect findings.

These are referred to as Type I-and type-II-errors [80],

P (Type I-error) = P (Reject H0 | H0 True) =α

P (Type II-error) = P (Not reject H0 | H1 True) =β.
(A.41)

The risk of rejecting the null hypothesis when it is true is represented by α, whereas the risk of not

rejecting the null hypothesis when the alternative is true is represented by β. Statistical power refers

to the opposite scenario of a Type-II error. When the population mean is different from zero, this is

the chance of correctly rejecting H0.

Assume the population is normally distributed X ∼ N (µ,σ) with unknown variance and define the

following test statistic

T = x̄ −0√
s2

n

∼ tn−1, (A.42)

which is t-distributed with n −1 degrees of freedom. The sample mean is the average of all observa-

tions, x̄ =
n∑

i=1
xi , while the sample variance is s2 = 1

n−1

n∑
i=1

(xi −x̄)2. Set a decision rule for when to reject

the null hypothesis in (A.40). That is, define a critical value c such that if T ≥ c, the null hypothesis is

rejected. The critical value is determined by the chosen significance level defined in (A.41). For the

test statistic in (A.42) we reject H0 if T ≥ tα,n−1.
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A.6.1 Power analysis

Sometimes we wish to know how many observations are required to avoid a Type-I or Type-II error.

It is then necessary to define the likelihood for both types of errors, α and β. Additionally, we must

select the size of the effect we believe can cause the population mean to differ from zero. To illustrate,

let x̄ denote the mean weight change during one month of a population receiving a diet. We want

to find the required number of people to be included in the sample for us to observe a mean weight

increase of δ due to the diet. We can estimate the minimum sample size n necessary to achieve a

power of 1−β with significance level α and effect size δ as follows

P (Reject H0 | x̄i = δ) = 1−β

P
( | x̄i −0 |p

s2/n
> tα,n−1 | x̄i = δ

)
= 1−β

P
(
| x̄i |> tα,n−1

√
s2/n | x̄i = δ

)
= 1−β

P
( | x̄i | −δp

s2/n
> tα,n−1

p
s2/n −δp

s2/n
| x̄i = δ

)
= 1−β.

(A.43)

In the last equation above, the expression is standardized according to δ. Now, the right side of the

inequality above equals the 1−β quantile of the t-distribution

tα,n−1
p

s2/n −δp
s2/n

= t1−β,n−1, (A.44)

which can be solved for n as follows

n = s2

δ2 (tβ,n−1 + tα,n−1)2. (A.45)



Appendix B

In depth data processing and analysis

B.1 Preprocessesing details

Preprocessing of the rs fMRI data was performed by my co-supervisor, Riccardo Iandolo, and is de-

scribed in detail in the following section

Anatomical images:

The 7T MP2RAGE UNI and INV2 images were firstly defaced with the software pydeface [81]. Then,

the INV2 image was corrected for intensity non-uniformity using SPM [62]. UNI image was multiplied

with a bias-corrected and scaled version of the INV2 as described here [82]. This step is needed to get

rid of the noisy salt and pepper pattern in the background of UNI image (this process is also “called”

as mpragesing, as described here [83][84]). Finally, after bias field correction, brain extraction has

been performed with SPM. The resulting brain mask was adjusted with AFNI 3d mask-tool.

Preprocessing of functional images:

Preprocessing of resting state data has been performed with fMRIPrep version 21.0.2 [85]. The above

already skull-stripped UNI structural image has been provided as input (the command has been

launched with the option -skull-strip-t1w skip).

A B0-nonuniformity map (or fieldmap) was estimated based on two (or more) echo-planar imaging

(EPI) references with ‘topup‘ as part of FSL [86]. For each of the BOLD runs found per subject the

following preprocessing was performed. First, a reference volume and its skull-stripped version were

generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to the

BOLD reference (transformation matrices, and 6 corresponding rotation and translation parameters)

are estimated before any spatiotemporal filtering using ‘mcflirt‘. The estimated fieldmap was then

69
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aligned with rigid-registration to the target EPI (echo-planar imaging) reference run. The field coeffi-

cients were mapped on to the reference EPI using the transform. BOLD runs were slice-time corrected

to 0.742s (0.5 of slice acquisition range 0s-1.49s) using "3dTshift" from AFNI [87]. The BOLD reference

was then co-registered to the T1w reference using "mri-coreg" (FreeSurfer) followed by "flirt" with the

boundary-based registration cost-function. Co-registration was configured with six degrees of free-

dom. Several confounding time series were calculated based on the preprocessed BOLD: framewise

displacement (FD), DVARS and three region-wise global signals. FD was computed using two formu-

lations following Power (absolute sum of relative motions) and Jenkinson (relative root mean square

displacement between affines). FD and DVARS are calculated for each functional run, both using

their implementations in Nipype.

The three global signals are extracted within the CSF, the WM, and the whole-brain masks. Addi-

tionally, a set of physiological regressors were extracted to allow for component-based noise correc-

tion CompCor. Principal components are estimated after high-pass filtering the preprocessed BOLD

time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal

(tCompCor) and anatomical (aCompCor). CompCor components are then calculated from the top

2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and

combined CSF+WM) are generated in anatomical space. The implementation differs from that of Be-

hzadi et al. [88] in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks

are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained

by thresholding the corresponding partial volume map at 0.05, and it ensures components are not

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled into

BOLD space and binarized by thresholding at 0.99 (as in the original implementation). Components

are also calculated separately within the WM and CSF masks. For each CompCor decomposition, the

k components with the largest singular values are retained, such that the retained components’ time

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined,

or temporal). The remaining components are dropped from consideration.

The head-motion estimates calculated in the correction step were also placed within the correspond-

ing confounds file. The confound time series derived from head motion estimates and global signals

were expanded with the inclusion of temporal derivatives and quadratic terms for each. Frames that

exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers.

The time series were resampled into several standard spaces, correspondingly generating the follow-

ing spatially-normalized, preprocessed BOLD runs: MNI152NLin6Asym, MNI152NLin2009cAsym.

One reference volume and its skull-stripped version were generated using a custom methodology
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of fMRIPrep. Automatic removal of motion artifacts using independent component analysis, ICA-

AROMA was performed on the preprocessed BOLD on Montreal Neurological Institute (MNI) space

time series after removal of the first three non-steady state volumes and spatial smoothing with an

isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). "Non-aggresively" denoised

runs were produced after such smoothing. Additionally, the "aggressive" noise-regressors were col-

lected and placed in the corresponding confounds file. The ICA was performed as exploratory in

order to identify the potential presence of unwanted artifacts. All resamplings can be performed with

a single interpolation step by composing all the pertinent transformations (i.e. head-motion trans-

form matrices, susceptibility distortion correction when available, and co-registrations to anatomical

and output spaces). Gridded (volumetric) resamplings were performed using "antsApplyTransforms"

(ANTs) [89], configured with Lanczos interpolation to minimize the smoothing effects of other ker-

nels. Non-gridded (surface) resamplings were performed using "mri-vol2surf" FreeSurfer.

Other anatomical steps were performed using fMRIPrep. That involves a brain tissue segmenta-

tion of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) performed on the brain-

extracted T1w using ‘fast‘. Volume-based spatial normalization to two standard spaces, which are

(MNI152NLin6Asym, MNI152NLin2009cAsym), was performed through nonlinear registration with

‘antsRegistration‘, using brain-extracted versions of both T1w reference and the T1w template. The

following templates were selected for spatial normalization: FSL’s MNI ICBM 152 non-linear 6th Gen-

eration Asymmetric Average Brain Stereotaxic Registration Model, ICBM 152 Nonlinear Asymmetrical

template version 2009c*.

Postprocessing of functional images

All postprocessing steps have been performed on functional data registered to MNI152NLin6Asym

with 1 mm resolution voxel size. First, the brain mask obtained with fMRIPrep has been applied to

the resting state data. Second, the following confounds has been regressed out using the command

"fsl-regfilt": CSF, WM, six motion parameters and framewise displacement. Then, the time series were

band-pass filtered [0.01,0.08] Hz using the AFNI command 3dTproject.

B.2 Parcellation details

The parcellation of preprocessed BOLD signals received in NIfTI-1 format was conducted by the au-

thor of this master’s thesis. The process, which was briefly discussed in Chapter 2, is described in

further detail in the following section.

Following the Kong-Schaefer atlas [32], we have included seven distinct parcellation techniques in



72 APPENDIX B. IN DEPTH DATA PROCESSING AND ANALYSIS

Number of nodes (p) Description Combined across hemispheres

8 based on 500-parcels. Yes
16 based on 500-parcels- No
17 based on 500-parcels. Yes
34 based on 500-parcels. No

100 based on 100-parcels. No
300 based on 300-parcels. No
500 based on 500-parcels. No

Table B.1: This study examined seven different parcellation systems derived from Kong-Schaefer2021 atlas [32]. The leftmost
column explains how many nodes are used to cover the entire cortex. The centre column gives a description of which of the
parcellation scheme the nodes are extracted from. The left and right hemishere’s respective networks can be integrated into a
single node based on their functional similarity. The rightmost column shows whether the nodes comprise networks from both
hemispheres or from each hemisphere separately.

this work. The atlas, based on a volumetric coordinate space, contains instructions for ten parcel-

lations of the full cortex with various degrees of granularity from p = 100,200, . . .1000 parcels. The

instructions specify which voxels should be grouped to form parcels, each represented by masks. The

masks are made up of binary numbers where any voxels within the mask are assigned a value one,

and any voxels outside the mask are assigned a vlue of zero. Kong et al. also match each of the ten

parcellations to Yeo 17 network parcellation [33]. Thus, the parcels can be further clustered into 17

global networks per hemisphere, which implies a total of 34 nodes. Table B.1 gives an overview of all

parcellation schemes utilized in this work. All schemes cover the entire cortex.

The parcellation schemes of 500, 300 and 100 nodes correspond to the three original ten schemes

by Kong-Schaefer. The Yeo 17 network parcellation identifies the 34 nodes with a base in the 500-

parcellation. That is, the 34 masks are created from merging predefined masks of the 500 scheme

according to [32]. Some of the 17 networks of each hemisphere are functionally comparable. These

networks are aggregated according to Table B.2, yielding 8 networks per hemisphere or 16 nodes. Fig-

ure 3.1 provides an overview of the location of the 8 networks in each hemisphere. The 17 nodes are

created by combining two equivalent masks from the 17 networks of left and right hemispheres. As

a result, the network masks of "LH-DefaultA" in the left hemisphere (LH) and "RH-DefaultA" in the

right hemisphere (RH) are concatenated into "DefaultA". Equivalently, the 16 nodes are created by

integrating two equivalent masks from the 8 networks of the left and right hemisphere: "LH-Default"

and "RH-Default" become "Default". The Bash script in Appendix C.2 show how the masks are cre-

ated, and BOLD time series are extracted using FSL.
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17 Network 8 Network

Default A
DefaultDefault B

Default C
Language Language
Control A

ControlControl B
Control C
SalVenAttn A

SalVenAttn
SalVenAttn B
DorsAttn A

DorsAttn
DorsAttn B
Auditory Auditory
Somamotor A

Somamotor
Somamotor B
Visual A

VisualVisual B
Visual C

Table B.2: The 17 Yeo networks of each hemisphere in left column are combined to yield 8 networks per hemisphere in right
column. Networks of similar function, thus similar labels, are merged.
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B.3 Additional Results

(a)

(b) (c)

(d)

(e) (f)

Figure B.1: Visualisations of the relationship between different pairs of BOLD time series, related to Section 2.2.1. The BOLD
signals correspond to the first PCs within two nodes of the p = 16 parcellation scheme. The nodes are labeled according to the
networks defined in Table B.2 and the associated hemisphere, LH or RH. There are three different visualisations. (a) and (d)
give the normalised BOLD time series with T = 315 observations, and a sample rate of 1.53s. (b) and (e) show the bivariate
distributions (Seaborn, C.1) which are both bell shaped. The amount of contours are analogous to the sampling density. The
individual observations are visualised as ticks along the axes. (c) and (f) show the Autocorrelation function with the 40 first lags
of each vector. The lags within the shaded region, the 95% confidence interval, are assumed to have no significant correlation
with the previous value. There is evidence for significant autocorrelation between the first time points in all variables.
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p Method r (ses1,ses2) r (ses1,ses3)

8

Pearson
correlation

0.22 0.23
16 0.23 0.31
17 0.24 0.35
34 0.22 0.34

100 0.33 0.31
300 0.32 0.33
500 0.35 0.34

8

Partial
correlation

0.28 0.30
16 0.30 0.28
17 0.24 0.29
34 0.33 0.33

100 0.15 0.15
300 0.34 0.33
500 0.36 0.29

8
DCM

0.11 0.07
16 0.17 0.19
17 0.19 0.23

Table B.3: The estimated reliability scores between sessions 1 and 2 (1 month interval) and sessions 1 and 3 (3 month interval),
for all methods and parcellations combinations when negative weights are set to zero. The columns are: the number of nodes p,
the chosen method, and the estimated average-across subjects reliability scores, r (ses1,ses2) and r (ses1,ses3).
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Figure B.2: The cross validation error for different choices of the tuning parameter λ of the GLasso model in (2.13). The optimal
λ, which is presented in log10-scale, minimizes the CV error which equals the negative log-likelihood function of Θ in (2.12).The
CV procedure is showcased for all parcellation schemes of one subject‘s session 1. For some of the cases, the selected parameter
lays on the boundary. This is due to the scheme not being able to fit (2.12) using smaller values of λ.
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(a)

(b)

(c)

Figure B.3: The mean across subjects Test-Retest (trt) reliability of sessions 1 and 2 (left) and sessions 1 and 3 (right) as a
function of different number of nodes when all negative weights are set to zero. The standard deviation across subjects is indicated
by an error bar around the mean. Each row corresponds to a separate FC method: Pearson correlation (a), Partial correlation
(b), and DCM (c).
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(a)

(b)

(c)

Figure B.4: The Test-Retest reliability between sessions 1 and 2 (left) and sessions 1 and 3 (right) as a function of different
number of nodes, and for each FC method: Pearson correlation (a), Partial correlation (b), and spDCM (c). The reliability scores
from individual control subjects are visualised as separate lines.



Appendix C

Tools and source code

C.1 Tools

C.1.1 FSL (FMRIB Software Library)

The FMRIB Software Library (FSL) is a software library for analysing brain imaging data, such as fMRI

data. The program was written mainly by members of the Analysis Group at the Oxford Centre for

Functional MRI of the Brain (FMRIB) [86]. For the preprocessed data received for this thesis, FSL was

used to create masks according to the Kong-Schaefer atlas and extract .txt-files of time series data.

A set of command-line functions from FSLUTILS, allowing analysis of NIfTI-1 files, were applied to

our data to perform these procedures. Also, the image viewer, FSLeyes [60], was utilised for the same

purpose.

C.1.2 SPM (Statistical Parametric Mapping)

Statistical Parametric Mapping (SPM) refers to the software written by the Welcome Department of

Imaging Neuroscience at University College London [62]. The program is a collection of MATLAB

functions used to organise and interpret fMRI data. SPM12 is the current version, applied in this

thesis to run DCM for cross-spectral densities.

C.1.3 CVGlasso (Lasso Penalized Precision Matrix Estimation)

The R library CVGlasso is a wrapper around the ’glasso’ package that Tibshirani wrote, one of the three

authors that introduced the Graphical lasso algorithm [47]. The ’glasso’ package performs estimation

of sparse inverse covariance matrices using lasso penalty. The CVglasso package extends these cap-

abilities by including a cross validation procedure for estimating the hyperparameter [90]. The CV

79
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plots in Section 3.2 are plotted using the R package ’ggplot2’.

C.1.4 Nilearn

Nilearn provides statistics for neuroimaging in Python [91]. We have used the library to produce

images of the brain network (see Figures 3.4 3.7 3.10).

C.1.5 Seaborn and matplotlib

Seaborn is data visualization library [92] in Python based on matplotlib [93]. All plotted results except

the CV plots and the brain network images in Section 3.2 utilize these libraries.

C.1.6 Markov

Markov is a cluster at the Department of Mathematical Sciences at NTNU. The cluster has been ex-

tensively used to run the data extraction, the spDCM in Matlab and the GLasso algorithm in R.

C.2 Bash scripts

C.2.1 Creating masks for parcellation

1 resolution="1mm"

2 parcels="500"

3

4 # path of output folder

5 out34="./ Masks_${resolution }/ Networks34"

6 out17="./ Masks_${resolution }/ Networks17"

7 out16="./ Masks_${resolution }/ Networks16"

8 out8="./ Masks_${resolution }/ Networks8"

9 out="./ Masks_${resolution }/ Parcels${parcels}"

10

11 # path of masks

12 out="./ Masks_${resolution }/ Parcels${parcels}"

13

14 # path to atlas

15 atlas="./ Parcellations/Parcellations_Kong2022_17network_order/MNI/Schaefer2018_$

{parcels}Parcels_Kong2022_17Networks_order_FSLMNI152_${resolution }.nii.gz"

16

17 # left hemisphere

18 lowleft =(’1’ ’17’ ’37’ ’54’ ’66’ ’82’ ’97’ ’107’ ’122’ ’136’ ’155’ ’167’ ’182’ ’

198’ ’213’ ’228’ ’246’);
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19 upleft =(’16’ ’36’ ’53’ ’65’ ’81’ ’96’ ’106’ ’121’ ’135’ ’154’ ’166’ ’181’ ’197’

’212’ ’227’ ’245’ ’250’);

20

21 # right hemisphere

22 lowright =(’251’ ’271’ ’282’ ’296’ ’305’ ’319’ ’336’ ’353’ ’370’ ’393’ ’406’ ’421

’ ’431’ ’451’ ’463’ ’480’ ’497’);

23 upright =(’270’ ’281’ ’295’ ’304’ ’318’ ’335’ ’352’ ’369’ ’392’ ’405’ ’420’ ’430’

’450’ ’462’ ’479’ ’496’ ’500’);

24

25 # network names

26 netnames =(’DefaultA ’ ’DefaultB ’ ’DefaultC ’ ’Language ’ ’ContA’ ’ContB ’ ’ContC’ ’

SalVentAttnA ’ ’SalVentAttnB ’ ’DorsAttnA ’ ’DorsAttnB ’ ’Audio ’ ’SomMotA ’ ’

SomMotB ’ ’VisA’ ’VisB’ ’VisC’);

27

28 # creating masks for 500 parcels , do the same for 100 and 300

29 for i in {1..500}

30 do

31 # Define masks for each parcel

32 fslmaths ${atlas} -thr ${i} -uthr ${i} -bin ${out}/ parcel${i}_${resolution }.

nii.gz

33 done

34

35 # creating masks for 34 networks

36 echo 34 networks

37 for i in {0..16}

38 do

39 echo ${lowleft[$i]} - ${upleft[$i]} ${lowright[$i]} - ${upright[$i]} ${

netnames[$i]}

40 fslmaths ${atlas} -thr ${lowleft[$i]} -uthr ${upleft[$i]} -bin ${out34 }/LH_$

{netnames[${i}]}_${resolution}

41 fslmaths ${atlas} -thr ${lowright[$i]} -uthr ${upright[$i]} -bin ${out34}/

RH_${netnames[${i}]}_${resolution}

42 done

43

44

45 # creating masks for 17 networks using fslmaths -add

46 echo 17 networks

47 for names in ${netnames [*]}

48 do

49 fslmaths ${out34 }/LH_${names}_${resolution} -add ${out34 }/RH_${names}_${

resolution} ${out17 }/ both_${names}_${resolution}

50 done
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51

52 #creating masks for 16 networks using fslmaths -add

53 echo 16 networks

54 #left hemisphere

55 fslmaths ${out34 }/ LH_DefaultA_${resolution }.nii.gz -add ${out34}/ LH_DefaultB_${

resolution }.nii.gz -add ${out34 }/ LH_DefaultC_${resolution }.nii.gz ${out16 }/

LH_Default_${resolution }.nii.gz

56 cp ${out34}/ LH_Language_${resolution }.nii.gz ${out16}/ LH_Language_${resolution }.

nii.gz # there is only one language network

57 fslmaths ${out34 }/ LH_ContA_${resolution }.nii.gz -add ${out34}/ LH_ContB_${

resolution }.nii.gz -add ${out34 }/ LH_ContC_${resolution }.nii.gz ${out16 }/

LH_Cont_${resolution }.nii.gz

58 fslmaths ${out34 }/ LH_SalVentAttnA_${resolution }.nii.gz -add ${out34}/

LH_SalVentAttnB_${resolution }.nii.gz ${out16 }/ LH_SalVentAttn_${resolution }.

nii.gz

59 fslmaths ${out34 }/ LH_DorsAttnA_${resolution }.nii.gz -add ${out34}/ LH_DorsAttnB_$

{resolution }.nii.gz ${out16}/ LH_DorsAttn_${resolution }.nii.gz

60 cp ${out34}/ LH_Audio_${resolution }.nii.gz ${out16}/ LH_Audio_${resolution }.nii.gz

# there is only one audio network

61 fslmaths ${out34 }/ LH_SomMotA_${resolution }.nii.gz -add ${out34}/ LH_SomMotB_${

resolution }.nii.gz ${out16}/ LH_SomMot_${resolution }.nii.gz

62 fslmaths ${out34 }/ LH_VisA_${resolution }.nii.gz -add ${out34}/ LH_VisB_${

resolution }.nii.gz -add ${out34 }/ LH_VisC_${resolution }.nii.gz ${out16 }/

LH_Vis_${resolution }.nii.gz

63 #right hemisphere

64 fslmaths ${out34 }/ RH_DefaultA_${resolution }.nii.gz -add ${out34}/ RH_DefaultB_${

resolution }.nii.gz -add ${out34 }/ RH_DefaultC_${resolution }.nii.gz ${out16 }/

RH_Default_${resolution }.nii.gz

65 cp ${out34}/ RH_Language_${resolution }.nii.gz ${out16}/ RH_Language_${resolution }.

nii.gz # there is only one language network

66 fslmaths ${out34 }/ RH_ContA_${resolution }.nii.gz -add ${out34}/ RH_ContB_${

resolution }.nii.gz -add ${out34 }/ RH_ContC_${resolution }.nii.gz ${out16 }/

RH_Cont_${resolution }.nii.gz

67 fslmaths ${out34 }/ RH_SalVentAttnA_${resolution }.nii.gz -add ${out34}/

RH_SalVentAttnB_${resolution }.nii.gz ${out16 }/ RH_SalVentAttn_${resolution }.

nii.gz

68 fslmaths ${out34 }/ RH_DorsAttnA_${resolution }.nii.gz -add ${out34}/ RH_DorsAttnB_$

{resolution }.nii.gz ${out16}/ RH_DorsAttn_${resolution }.nii.gz

69 cp ${out34}/ RH_Audio_${resolution }.nii.gz ${out16}/ RH_Audio_${resolution }.nii.gz

# there is only one audio network

70 fslmaths ${out34 }/ RH_SomMotA_${resolution }.nii.gz -add ${out34}/ RH_SomMotB_${

resolution }.nii.gz ${out16}/ RH_SomMot_${resolution }.nii.gz
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71 fslmaths ${out34 }/ RH_VisA_${resolution }.nii.gz -add ${out34}/ RH_VisB_${

resolution }.nii.gz -add ${out34 }/ RH_VisC_${resolution }.nii.gz ${out16 }/

RH_Vis_${resolution }.nii.gz

72

73

74 # creating masks for 8 networks using fslmaths -add

75 echo 8 networks

76 fslmaths ${out17 }/ both_defaultA_${resolution }.nii.gz -add ${out17}/

both_defaultB_${resolution }.nii.gz -add ${out17}/ both_defaultC_${resolution

}.nii.gz ${out8}/ DefaultTot_${resolution }.nii.gz

77 cp ${out17}/ both_language_${resolution }.nii.gz ${out8}/ LanguageTot_${resolution

}.nii.gz # there is only one language network

78 fslmaths ${out17 }/ both_ContA_${resolution }.nii.gz -add ${out17}/ both_ContB_${

resolution }.nii.gz -add ${out17 }/ both_ContC_${resolution }.nii.gz ${out8}/

ContTot_${resolution }.nii.gz

79 fslmaths ${out17 }/ both_SalVentAttnA_${resolution }.nii.gz -add ${out17}/

both_SalVentAttnB_${resolution }.nii.gz ${out8}/ SalVentAttnTot_${resolution }.

nii.gz

80 fslmaths ${out17 }/ both_DorsAttnA_${resolution }.nii.gz -add ${out17}/

both_DorsAttnB_${resolution }.nii.gz ${out8}/ DorsAttnTot_${resolution }.nii.gz

81 cp ${out17}/ both_Audio_${resolution }.nii.gz ${out8}/ AudioTot_${resolution }.nii.

gz # there is only one audio network

82 fslmaths ${out17 }/ both_SomMotA_${resolution }.nii.gz -add ${out17}/ both_SomMotB_$

{resolution }.nii.gz ${out8}/ SomMotTot_${resolution }.nii.gz

83 fslmaths ${out17 }/ both_VisA_${resolution }.nii.gz -add ${out17}/ both_VisB_${

resolution }.nii.gz -add ${out17 }/ both_VisC_${resolution }.nii.gz ${out8}/

VisTot_${resolution }.nii.gz

List of Code C.1: Bash script to create the masks for all parcellations in Table B.1, using FSL commands.

C.2.2 Extracting time series data from masks

1 resolution="1mm"

2 parcels="500"

3

4 # path for txt files

5 txt="./ txt_files_${resolution}"

6

7 #path to input data

8 input="./ subjects/${subject }/${subject}_rest_1mm_denoised_filteredBP_nodemeaned.

nii.gz"

9



84 APPENDIX C. TOOLS AND SOURCE CODE

10 # path of masks

11 out="./ Masks_${resolution }/ Parcels${parcels}"

12

13 # all subject -session scans to extract data from

14 subjects =(sub -G1002s1 sub -G1002s2 sub -G1002s3 sub -G1014s1 sub -G1014s2 sub -

G1014s3 sub -G1018s1 sub -G1018s2)

15

16 # extract txt -file with 1PC from all subjects with more than one session

17 for subject in ${subjects[@]}

18 do

19

20 for i in {1..500}

21 do

22 fslmeants -i ${input} -m ${out}/ parcel${i}_${resolution }.nii.gz --eig --

transpose >> ${txt}/${subject}_regions${parcels }.txt

23 fslstats ${out}/ parcel${i}_${resolution }.nii.gz -c >> file_name

24 done

25 done

List of Code C.2: Bash script used to extract time series from the preprocessed NIfTI-1-files of all available sessions of the
subjects in Table 2.1 using the masks from the script above. The above script is an example of the extraction of time series for
the p = 500 parcellation.

C.2.3 Extracting coordinates

1 resolution="1mm"

2 nets="16"

3

4 # path for txt files

5 txt="../ Coordinates_${resolution}"

6

7 # path to mask

8 mask="../ Masks_${resolution }/ Networks${nets}"

9

10 netnames =(’LH_Default ’ ’LH_Language ’ ’LH_Cont ’ ’LH_SalVentAttn ’ ’LH_DorsAttn ’ ’

LH_Audio ’ ’LH_SomMot ’ ’LH_Vis ’ ’RH_Default ’ ’RH_Language ’ ’RH_Cont ’ ’

RH_SalVentAttn ’ ’RH_DorsAttn ’ ’RH_Audio ’ ’RH_SomMot ’ ’RH_Vis ’);

11

12 #loop through all networks

13 for names in ${netnames [*]}

14 do

15 fslstats ${mask}/${names}_${resolution }.nii.gz -c >> ${txt}/

coordinates_regions${nets}.txt
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16 done

List of Code C.3: Bash script to extract centre of gravity coordinates from the p = 16 masks/nodes. The coordinates are defined
in the MNI space in mm.

C.3 R code

1

2 library(R.matlab)

3 library(CVglasso)

4 library(ggplot2)

5

6 subs = c("02", "14", "18")

7 sess = c("1", "2", "3")

8 regs <- c("8", "16", "17", "34", "100", "300", "100", "500")

9

10 for (sub in subs){

11 for (ses in sess){

12 for (reg in regs){

13

14 input <- sprintf("timeseries/sub -G10%ss%s_regions%s.mat",sub ,ses ,reg)

15 data <- readMat(input)

16

17 t = 1e-3

18 lambdas <- exp(seq(log(1e-5), log(1), length = 10))

19

20 g <- CVglasso(data$Y,K=5,tol=t, lam=lambdas , cores =2)

21

22 #CV plot

23 ggplot( mapping=aes(x=log10(g$Lambdas),y=g$AVG.error)) +

24 geom_line(color="blue") +

25 geom_point () +

26 geom_vline(xintercept=g$Tuning [1], linetype="dashed", color = "red")+xlab("log10

(lambda)") +

27 ylab("CV error") +

28 ggtitle(sprintf("sub%s ses%s regions%s",sub ,ses ,reg))

29

30 #save files

31 path.out <- sprintf("glasso_results/sub -G10%s",sub)

32 filename.txt <- sprintf("glasso_sub -G10%ss%s_regions%s.txt",sub ,ses ,reg)

33 filename.png <- sprintf("cv_sub -G10%ss%s_regions%s.png",sub ,ses ,reg)

34 ggsave(file.path(path.out ,filename.png))



86 APPENDIX C. TOOLS AND SOURCE CODE

35 write.table(g$Omega , file=file.path(path.out ,filename.txt), append = FALSE , sep

= " ", dec = ".", row.names = FALSE , col.names = FALSE)

36 }}

List of Code C.4: Implementation of the GLasso algorithm from CVglasso in R. The methods returns precision matrix which is
imported into the Python script in C.5.

C.4 MATLAB code

1 clear DCM

2

3 subs = ["02", "14", "18"]

4 sess = ["1", "2", "3"]

5 regs <- [8,16,17]

6

7 for sub in subs

8 for ses in sess:

9 for reg in regs:

10

11 name = sprintf ("sub -G10%ss%s_regions%d.mat",sub ,ses ,reg)

12 input = fullfile ("../mat -files/",name)

13 output = fullfile (" dcm_results", "DCM_"+name)

14

15 ROI = load(input);

16 DCM.Y.y = ROI.Y; % BOLD time series for n ROIs

17 DCM.Y.dt = 1.53; % Interscan interval , TR

18 DCM.n = reg; % Number of nodes

19 DCM.v = 315; % Number of time points

20

21 % specify priors

22 DCM.a = ones(DCM.n,DCM.n);

23 DCM.b = zeros(DCM.n,DCM.n,0);

24 DCM.c = zeros(DCM.n,0);

25 DCM.d = zeros(DCM.n,DCM.n,0);

26 DCM.U.u = zeros(DCM.v,1);

27

28 DCM = spm_dcm_fmri_csd(DCM);

29 save(output)

List of Code C.5: The spDCM is implemented in SPM12, in MATLAB. The intrinsic connectivity matrix A is returned and
imported into the Python script in C.5.

C.5 Python code
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1 import numpy as np

2 import scipy.stats as sc

3 import math

4 from numpy import matlib

5 from scipy import io

6 import pandas as pd

7 import glob

8 import re

9 from itertools import groupby

10 from itertools import product

11

12 # %%%%%%%%%%%%%%%%%%%%%%%% Methods %%%%%%%%%%%%%%%%%%%%%%%%

13

14

15 #Remove diagonal of connectivity matrix

16 def removeDiag(mat):

17 ’’’

18 given a matrix (FC), remove diagonal elements and

19 return matrix with Nan in diagonal.

20 ’’’

21 mask = np.zeros_like(mat , dtype=bool) # nullmatrise med samme shape som mat

22 mask[np.diag_indices_from(mat)] = True

23 mat[mask] = np.nan

24 mat_pos = np.where(mat <0, 0, mat)

25 return mat

26

27 def partialCorr(P):

28 nvars = np.shape(P)[0]

29 #square root of the diagonal elements to be used in the denominator

30 mydiag = np.sqrt(np.abs(np.diag(P)))

31 parCorr = (-P/np.matlib.repmat(mydiag ,nvars ,1).T)/np.matlib.repmat(mydiag ,

nvars ,1)+2*np.eye(nvars)

32 return parCorr

33

34

35 #Pairwise correlation

36 def pearsonCorr(data):

37 ’’’

38 given a nxp matrix with p time series of length n, return the

39 pearson correlation matrix and remove diagnoal elements

40 ’’’

41 corr = removeDiag(np.corrcoef(data ,rowvar=False))
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42 # corr_pos = np.where(corr >0,corr ,0) #remove negative weights

43 return corr

44

45 #Vectorize symmetric connectivity matrix

46 def vectorize(mat , symmetric):

47 ’’’

48 given a weight matrix , return upper triangular

49 elements as an array if symmetric. If assymetric only ignore diagonal

elements.

50 ’’’

51 if symmetric:

52 # zero out everything above and including the diagonal

53 tri = np.tril(mat ,k=-1) # -1 is below main diagonal

54 vec = []

55 for row in range(1, tri.shape [0]):

56 for col in range(row):

57 vec.append(tri[row , col])

58 output = np.asarray(vec)

59 else:

60 vect = np.ndarray.flatten(mat)

61 output = vect[~np.isnan(vect)]

62

63 return output

64

65 # number of nodes to index in Regions

66 def nodesToIndex(nodes):

67 ’’’

68 Give the number of nodes , return the correct index for the Region class

69 ’’’

70 if nodes == 8:

71 return 0

72 if nodes == 16:

73 return 1

74 if nodes == 17:

75 return 2

76 if nodes == 34:

77 return 3

78 if nodes == 100:

79 return 4

80 if nodes == 300:

81 return 5

82 if nodes == 500:
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83 return 6

84

85 def powerAnalysis(alpha_orig , beta , quantile , df):

86 ’’’

87 Given significance level (alpha), 1-power (beta),

88 quantile of weights to decide effect size (q),

89 and dataframe from prePowerAnalysis. Returns sample size

90 ’’’

91 # assume edges are iid and subjects are iid

92 sigma = np.std(df[’d’])

93

94 # find delta: quantile of all session1 weights

95 q = quantile

96 w_sorted = np.sort(df[’w1’])

97 delta = w_sorted[int(q*np.shape(w_sorted)[0])]

98

99 # tests = nr. of edges

100 nr_tests = np.shape(df[’d’]/3) [0] #divide by 3 subjects

101

102 # bon ferroni correction

103 alpha = alpha_orig/nr_tests

104

105 # initial sample size estimate

106 z_alpha = sc.norm.ppf(alpha) #one sided

107 z_beta = sc.norm.ppf(beta)

108 n0 = (z_alpha + z_beta)**2*( sigma/delta)**2

109

110 #iteratively estimate sample size

111 nprev = 0

112 n = n0

113 while abs(n-nprev) > 0.01:

114 nprev = n

115 t_alpha = sc.t.ppf(q=alpha , df = nprev -1)

116 t_beta = sc.t.ppf(q=beta , df= nprev -1)

117 n = (t_alpha + t_beta)**2*( sigma/delta)**2

118

119 # if n is inf

120 if np.isinf(n):

121 n = np.nan

122 else:

123 n = int(math.ceil(n))

124
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125 return n, round(sigma , 2), round(delta , 2)

126

127

128 # %%%%%%%%%%%%%%%%%%%%%%%% Define classes %%%%%%%%%%%%%%%%%%%%%%%%

129

130 class Subject:

131 def __init__(self , sub_nr , ses1 , ses2 , ses3=None):

132 self.sub_nr = sub_nr

133 self.ses1 = ses1

134 self.ses2 = ses2

135 self.ses3 = ses3

136

137 # assume same number of regions in both sessions

138 def reliabilityAnalysis(self):

139 ’’’

140 Computes a reliability score using Pearson Correlation

141 for session1 vs session 2 and session 2 vs session 3 over all regions for

both FC-methods.

142 ’’’

143 # list of dictionaries containing: nodes (int), reliability (float), method

(string), ses (string)

144 data = []

145

146 # loop through all regions , i is regional index

147 for i in range(len(self.ses1.getRegions ())):

148 num_nodes = self.ses1.getRegions ()[i]. num_nodes

149

150 # FC MEASURE 1

151 data.append ({"nodes" : num_nodes ,"reliability" : np.corrcoef(self.ses1.

getRegions ()[i]. pearsoncorr_vect ,self.ses2.getRegions ()[i]. pearsoncorr_vect)

[0,1], "method" : "pearsonCorr", "ses" : "1vs2" })

152 data.append ({"nodes" : num_nodes ,"reliability" : np.corrcoef(self.ses1.

getRegions ()[i]. pearsoncorr_vect ,self.ses3.getRegions ()[i]. pearsoncorr_vect)

[0,1], "method" : "pearsonCorr", "ses" : "1vs3" })

153

154 # FC MEASURE 2

155 data.append ({"nodes" : num_nodes ,"reliability" : np.corrcoef(self.ses1.

getRegions ()[i]. partialcorr_vect ,self.ses2.getRegions ()[i]. partialcorr_vect)

[0,1],"method" : "partialCorr", "ses":"1vs2" })

156 data.append ({"nodes" : num_nodes ,"reliability" : np.corrcoef(self.ses1.

getRegions ()[i]. partialcorr_vect ,self.ses3.getRegions ()[i]. partialcorr_vect)

[0,1],"method" : "partialCorr", "ses":"1vs3" })
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157

158 #FC MEASURE 3

159 if self.ses1.getRegions ()[i]. num_nodes not in [500 ,300 ,100 ,34]:

160 data.append ({"nodes" : num_nodes , "reliability" : np.corrcoef(self.ses1.

getRegions ()[i].dcm_vect ,self.ses2.getRegions ()[i]. dcm_vect)[0,1], "method"

: "dcm", "ses": "1vs2" })

161 data.append ({"nodes" : num_nodes , "reliability" : np.corrcoef(self.ses1.

getRegions ()[i].dcm_vect ,self.ses3.getRegions ()[i]. dcm_vect)[0,1], "method"

: "dcm", "ses": "1vs3" })

162

163 # make dataframe of numpy list

164 self.reliability = pd.DataFrame(data)

165

166 def getReliability(self):

167 return self.reliability

168

169

170 class Session:

171 def __init__(self ,ses_nr , sub_nr , regions=None):

172 self.ses_nr = ses_nr

173 self.sub_nr = sub_nr

174 self.regions = regions

175

176 def getRegions(self):

177 return self.regions

178

179 # run pearsonCorr for all regions

180 def runPearsonCorr(self):

181 for region in self.regions:

182 #print("Run measures for region ", region.num_nodes)

183 region.updatePearsonCorr ()

184

185 # get path to partialCorr for all regions

186 def runPartialCorr(self):

187 for region in self.regions:

188 reg = region.num_nodes

189 ses = self.ses_nr

190 sub = self.sub_nr

191 if sub ==2:

192 sub= "02"

193 path = f"glasso_results/sub -G10{sub}/ glasso_sub -G10{sub}s{ses}_regions{reg

}.txt"
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194 region.updatePartialCorr(path)

195

196 # get path to DCM for p=8,16,17

197 def runDCM(self):

198 for region in self.regions:

199 reg = region.num_nodes

200 ses = self.ses_nr

201 sub = self.sub_nr

202 if reg not in [500 ,300 ,100 ,34]:

203 if sub ==2:

204 sub= "02"

205 path = f"DCM_results/sub -G10{sub}/DCM_sub -G10{sub}s{ses}_regions{reg}.

mat"

206 region.updateDCM(path)

207

208 # save .mat file of time series data , to be used for input in R and matlab

209 def save_mat(self):

210 for region in self.regions:

211 reg = region.num_nodes

212 ses = self.ses_nr

213 sub = self.sub_nr

214 if sub ==2:

215 sub= "02"

216 path = f"timeseries/sub -G10{sub}s{ses}_regions{reg}.mat"

217 io.savemat(path , {"Y" : region.data.tolist ()})

218

219

220 class Region:

221 def __init__(self ,path ,num_nodes):

222 self.path = path

223 self.num_nodes = num_nodes

224 self.extractData ()

225

226 self.pearsoncorr = None

227 self.pearsoncorr_vect = None

228 self.partialcorr = None

229 self.partialcorr_vect = None

230 self.dcm = None

231 self.dcm_vect = None

232

233

234 # Extract data from txt -files for each Region
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235 def extractData(self):

236 self.data = extractData(self.path ,self.num_nodes)

237

238 def updatePearsonCorr(self):

239 if self.pearsoncorr is None:

240 self.pearsoncorr = pearsonCorr(self.data)

241 self.pearsoncorr_vect = vectorize(self.pearsoncorr ,True)

242

243 def updatePartialCorr(self , path):

244 if self.partialcorr is None:

245 self.partialcorr = extractGlasso(path ,self.num_nodes)

246 self.partialcorr_vect = vectorize(self.partialcorr ,True)

247

248 def updateDCM(self , path):

249 if self.dcm is None:

250 self.dcm = extractPosterior(path)

251 self.dcm_vect = vectorize(self.dcm ,False)

252

253

254 # %%%%%%%%%%%%%%%%%%% Functions outside the classes %%%%%%%%%%%%%%%%%%%

255

256 # help function for subjectFactory

257 def key_funcs(group ,dir):

258 return lambda x: re.search(dir+’/sub -G10 (.*)s(.*) _regions (.*).txt’,x).group(

group)

259

260

261 # Construct the objects with subjects , sessions and regions

262 def subjectFactory(dir):

263 ’’’

264 given a path to directory containing txt -files on the form: sub -

G1002s1_regions300.txt ,

265 return a list of initialized Subject objects

266 ’’’

267 pathList = glob.glob(dir+"/sub -G10*.txt")

268

269 # initialize key functions for each category

270 subject_func = key_funcs (1,dir)

271 session_func = key_funcs (2,dir)

272 region_func = key_funcs(3,dir)

273 subjects = []

274
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275 # iterate through each region for each session for each subject

276 for i, sub in groupby(sorted(pathList , key = subject_func),subject_func):

277 sessions = [None , None , None]

278 for j, ses in groupby(sorted(sub , key = session_func),session_func):

279 regions = [None , None , None , None , None , None , None]

280 for region in list(ses):

281 k = region_func(region)

282 if k =="8":

283 regions [0] = Region(region ,int(k))

284 if k =="16":

285 regions [1] = Region(region ,int(k))

286 if k =="17":

287 regions [2] = Region(region ,int(k))

288 if k =="34":

289 regions [3] = Region(region ,int(k))

290 if k == "100":

291 regions [4] = Region(region ,int(k))

292 if k == "300":

293 regions [5] = Region(region ,int(k))

294 if k == "500":

295 regions [6] = Region(region ,int(k))

296 if j == "1":

297 sessions [0] = Session(int(j),int(i),regions)

298 if j == "2":

299 sessions [1] = Session(int(j),int(i),regions)

300 if j == "3":

301 sessions [2] = Session(int(j),int(i),regions)

302 subjects.append(Subject(int(i),*sessions))

303

304 return subjects

305

306

307 # extract parcelData from txt.file

308 def extractData(path ,regions ,timepoints =315):

309 ’’’

310 given path to txt.file of subject data , number of time points and number of

regions

311 return an np.array of the time series as column vectors

312 ’’’

313 all_parcels = np.zeros(( timepoints ,regions))

314 col = 0

315
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316 with open(path) as f:

317 for line in f:

318 parcel_data = line.split() # now every 2. list is []

319 if parcel_data != []:

320 better_data = [float(num) for num in parcel_data]

321 all_parcels [:,col] = np.transpose(better_data)

322 col +=1

323 return all_parcels

324

325 # extract data from .mat file

326 def extractPosterior(path):

327 ’’’

328 given a path to .mat file of intrinsic coupling matrix A,

329 return a numpy array

330 ’’’

331 data = io.loadmat(path)

332 DCM = data[’DCM’]

333 Ep = DCM[’Ep’]

334 Ep = Ep[0]

335 Ep = Ep[0]

336 Ep = Ep[0]

337 Ep = Ep[0]

338 Ep = Ep[0]

339 return removeDiag(Ep)

340

341 # extract data from .mat file

342 def extractGlasso(path ,regions):

343 ’’’

344 given a path to .mat file of connectivity weights from precision matrix of

size pxp ,

345 return a numpy array and remove diagonal elements

346 ’’’

347 i = 0

348 mat = np.zeros((regions ,regions))

349 with open(path) as f:

350 for line in f:

351 row = line.split()

352 new_row = []

353 for n in row: #add each elem in row to a vector

354 new_row.append(float(n))

355 mat[i,:] = new_row

356 i+=1
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357 return removeDiag(partialCorr(mat))

358

359

360 # get coordinates from txt.files from FSL

361 def getCoords(file):

362 ’’’

363 given a path to txt -file containing Kong -Schaefer coordinates for a given

parcellation ,

364 return a numpy array of coordinates

365 ’’’

366 allcords = []

367 #read all line

368 with open(file) as f:

369 lines = f.readlines ()

370 for line in lines:

371 line = line.split()

372 r = float(line [0])

373 a = float(line [1])

374 s = float(line [2])

375 coord = [r,a,s]

376 allcords.append(coord)

377 return np.array(allcords)

378

379 # prepare power analysis

380 def prePowerAnalysis(method , nodes , sublist):

381 ’’’

382 specify method , number of nodes and list of all subject objects , return a

dataframe of

383 weights and differences for all subjects

384 ’’’

385 data = []

386 n = nodesToIndex(nodes)

387

388 #loop through all subjects

389 for s in sublist:

390 snr = "02" if s.sub_nr == 2 else str(s.sub_nr)

391

392 if method == "pearsonCorr":

393 w1 , w2 ,w3 = s.ses1.regions[n]. pearsoncorr_vect ,s.ses2.regions[n].

pearsoncorr_vect ,s.ses3.regions[n]. pearsoncorr_vect

394

395 if method == "partialCorr":
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396 w1 ,w2 ,w3 = s.ses1.regions[n]. partialcorr_vect , s.ses2.regions[n].

partialcorr_vect ,s.ses3.regions[n]. partialcorr_vect

397

398 if method == "DCM":

399 w1 ,w2 ,w3 = s.ses1.regions[n].dcm_vect , s.ses2.regions[n].dcm_vect ,s.

ses3.regions[n]. dcm_vect

400

401 nlist = np.arange(np.shape(w1)[0])

402 data.append ({’subject ’ : "sub -G10"+snr , ’node -pair’ : nlist , "w1" : w1

,"w2" : w2, "w3" : w3, "d" : np.subtract(w1,w2)})

403 # d refers to the distance between ses1 and ses2

404

405

406 df = pd.DataFrame(data)

407 df = df.explode ([’node -pair’,’w1’,’w2’,’w3’,’d’], ignore_index=True)

408 return df

409

410 # run power analysis

411 def runPowerAnalysis(alphas , betas , quantiles , sublist , all_nodes):

412 ’’’

413 specify parameters for conducting power tests , a list all subject objects

and a list of all parcellation schemes ,

414 return a dataframe of estimated sample size for all combinations

415 ’’’

416 sample_sizes = []

417 all_methods = ("pearsonCorr", "partialCorr", "DCM")

418 for it in list(product(alphas ,betas ,quantiles , all_methods , all_nodes)):

419 alpha , beta , q, method , nodes = it[0], it[1], it[2], it[3], it[4]

420 if not (method == "DCM" and nodes > 17):

421 df = prePowerAnalysis(method , nodes , sublist)

422 n, sigma , delta = powerAnalysis(alpha , beta , q, df)

423 sample_sizes.append ({"nodes" : nodes , "sample" : n, "method" :

method , "alpha":alpha , "beta":beta , "quantile":q, "effectsize" : delta , "std

" : sigma })

424

425 df_sample_sizes = pd.DataFrame(sample_sizes)

426 df_sample_sizes[’log(sample)’] = np.log10(df_sample_sizes[’sample ’])

427 return df_sample_sizes

List of Code C.6: The Python script is used to perform the primary analysis of this thesis. That involves running the connectivity
measures to yield weight matrices, calculating reliability scores and conducting power analyses. Classes and functions that are
utilized to present the results in Chapter 3, except the code from plotting, are included in the code.
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