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Abstract

Support vector machines (SVM’s) are useful tools used to perform binary classification
of datasets on Hilbert spaces. However, in certain applications such as classifying the
hippocampi belonging to people with schizophrenia, or separating brain signals due to
specific stimuli, the data do not lie on Hilbert spaces. Instead, it is beneficial to model
the data as belonging to generalized surfaces called Riemannian manifolds. In this thesis
we present a novel classification model on Riemannian manifolds, inspired by the SVM
model, called Distance SVM (DSVM). This model classifies data by a weighted sum of the
Riemannian distance between support points, instead of computing their inner product.
Variations on the Distance SVM model which produce linear separators on Hilbert spaces
are also considered. In addition, we compare the Distance SVM models with three other
existing manifold SVM models on real world data from the brain computer interface
competition BCI-IV and show that the sparse DSVM models are competitive in test
accuracy.

Sammendrag

Støttevektormaskiner er nyttige verktøy brukt til binærklassifikasjon av datasett på
Hilbertrom. I noen applikasjoner derimot, slik som å klassifisere hippocampuser til
mennesker med schizofreni eller separare hjernesignaler basert på stimuli, ligger ikke
dataen naturlig på et Hilbertrom. I stedet anser vi dataen for å ligge på generalis-
erte overflater kalt Riemannske mangfoldigheter. Vi presenterer en ny klassifiskasjons-
modell på Riemannske mangfoldigheter, inspirert av støttevektormaskiner, som kalles
Avstands-støttevektormaskin. Denne modellen klassifiserer data ved å vekte den Rie-
mannske avstanden til en mengde støttepunkt, i stedet for å beregne indreproduktet.
Vi presenterer også variasjoner på denne modellen som produserer lineære skilleplan
i Hilbertrom. Til sammenligning tester vi Avstands-støttevektormaskinmodellene og
tre eksisterende modeller for klassifisering på Riemannske mangfoldigheter på ekte
data fra hjernemaskingrensesnitt-konkurransen BCI-IV, og viser at de glisne Avstands-
støttevektormaskinmodellene er konkuransedyktige hva gjelder treffsikkerhet på test-
datasettet.

iii



Acknowledgement

The work done in this thesis would not be possible without the generous help of several
people.

First, I would like to thank my supervisor Ronny Bergmann for all the good discussions,
advice and feedback during the work on this thesis. I am grateful for your help and
guidance with understanding and working on Riemannian manifolds, as it was quite
a change of domain that began last autumn. And thank you for encouraging me to
contribute to the MaGIC 2022 colloquium by giving a talk on the outlook of this Master’s
thesis, and for the help in preparing the presentation itself.

I would also like to thank all my study colleagues, for the entertaining lunch conversations,
aid with spitballing ideas, and overall for making the time spent writing this thesis
enjoyable. Thank you as well to all my friends and the student society in Trondheim,
for keeping me engaged and motivated during my time at the Norwegian University of
Science and Technology, and for making these last six year truly amazing.

Finally, a special thank you to my parents Stein Dankert and Ingrid for being a constant
source of support and encouragement, and for reminding me that student life is about
more than just studying.

iv



Contents

1 Introduction 2
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Optimization Theory 5
2.1 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Lagrange Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Convex Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 The Wolfe Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Classical Support Vector Machines 12
3.1 Solving for the Classical SVM Model . . . . . . . . . . . . . . . . . . . . 14
3.2 The Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 19

4 Smooth Riemannian Manifolds 21
4.1 Vector Space Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Differentials on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Tangent Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 The Riemannian Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Exponential and Logarithmic Mapping . . . . . . . . . . . . . . . . . . . 32
4.7 Riemannian Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Riemannian Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Line Search Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10 The Sphere and SPD Matrices . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Existing Models 42
5.1 Tangent Vector Space SVM . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Manifold Radial Basis Function SVM . . . . . . . . . . . . . . . . . . . . 44
5.3 Manifold Control Point SVM . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Distance SVM 48
6.1 The Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



6.2 Distance SVM on Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Optimizing the Distance SVM Models . . . . . . . . . . . . . . . . . . . . 54
6.4 Heuristic for Sparse Distance SVM Models . . . . . . . . . . . . . . . . . . 61

7 Numerical Experiments 62
7.1 DSVM vs. Euclidean SVM on the Plane . . . . . . . . . . . . . . . . . . . 63
7.2 Manifold SVM Models on the Two-Sphere . . . . . . . . . . . . . . . . . 67
7.3 BCI-IV Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Conclusion 81
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Hyperparameter Values for BCI-IV 2a Dataset 83

Bibliography 84

Contents 1



1Introduction

Support vector machines have a rich history in classification applications and function
estimation problems [1], having been used to for example classify handwritten digits [2]
and detect human faces in pictures [3]. However, the theory on support vector machines
(SVMs) and their applications all work on Hilbert spaces with a vector space structure.

Some classes of data that we wish to classify are naturally restricted to specific subsets
of e.g. Rn, and through the framework of Riemannian geometry [4] we can imbue
these subsets with a manifold structure. In some applications the assumption that
data points lie on a vector space also ignores intrinsic information about the data, as
is the case for Fletcher, Lu, et al. [5], who apply shape analysis to medical imaging
seeking to improve the accuracy of medical diagnosis. The authors of [5] represent
three-dimensional biological tissue as collections of medial atoms, which are points on
R4 ×R+ × S(2)× S(2), where S(2) denotes the two-sphere. For medial atoms the idea of
adding two medial atoms is not meaningful in a vector space sense, and the data is better
understood by considering the geometric structure of R+ and S(2). Styner, Lieberman,
et al. [6], working in the field of neuroimaging, studied the viability of using medial atom
representations of the hippocampus to classify shape abnormalities in schizophrenia.
They seek to determine if there is a morphological change in the hippocampus of people
with schizophrenia, to classify people at risk for schizophrenia as opposed to healthy
structures. And again it would be inappropriate to apply the regular vector space SVM
methods as the data domain is not a vector space.

Another field where the data is not always well describes as lying in a vector space is
computer vision. Tuzel, Porikli, et al. [7] perform pedestrian detection in images by first
constructing covariance feature matrices on a per-pixel basis, and then classify clusters
of pixels as either covering a pedestrian or not. These covariance matrix features are
guaranteed to be symmetric positive semi-definite matrices, and assuming they’re positive
definite they can be imbued with a manifold structure. Jayasumana, Hartley, et al. [8]
further mention the set of 2D shapes and linear subspaces of Rn as sets of nonlinear data
that are encountered in computer vision classification problems and can be imbued with
a Riemannian manifold structure.

1.1 Related Work
We will call any classification model on manifolds which is inspired by the classical SVM
model a manifold svm model. And the first idea which might come to mind when trying to
generalize the classical SVM model to manifolds is to choose a reference point pref ∈M
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on the manifold in question, and then map all the training points into its tangent vector
space using the logarithmic mapping. Assuming that all the training points are within
the injectivity radius of the reference point, we then have a vector space representation
of our training points, and we can apply the standard SVM model. Such a tangent vector
space based manifold SVM model has been presented by Barachant, Bonnet, et al. [9]
and Tuzel, Porikli, et al. [10], who all use the above idea on the manifold of symmetric
positive definite matrices. However, the choice of a reference point, or the best reference
point, is not trivial, and we might lose geometric information by mapping into the tangent
vector space and using Euclidean models which are blind to the inherent geometry of the
manifold in question.

The second manifold SVM model used by e.g. Jayasumana, Hartley, et al. [11], and
Yun, Gu, et al. [12], extends the kernel trick for classical SVM models to Riemannian
manifolds with a specific class of Riemannian metrics. By considering the metric space
structure of certain Riemannian manifolds they present an adapted Radial Basis Function
(RBF) kernel which fulfills the requirements for implicitly mapping to a Hilbert space in
which a linear separator can be constructed.

Finally, the third manifold SVM model we’ll present works directly on the manifold itself
instead of in a tangent vector space, thus avoiding the task of choosing a reference point
to represent your training data in. Instead, Sen, Foskey, et al. [13] introduce two control
points c+ and c− on the manifoldM, one for each of the classes. Points on the manifold
are then classified according to which of the control points they are closest to, and they
optimize overM2 to find the pair of control points which minimizes misclassification of
all the training points along with the squared distance between the two control points to
promote uniqueness in the set of optimal control points.

1.2 Our contribution
In this thesis we present a novel classification model on Riemannian manifolds which
does not map the training data into a tangent vector space or introduce new control
points in the manifold. Instead, our model classifies points by computing the sign of
a weighted sum of the squared distances to a set of support points on the manifold in
question. We call this model Distance SVM, as its derivation is closely related to the
classical SVM model, but relies on measuring the distance between points instead of their
inner product. In addition, we present a variation on Distance SVM (DSVM) called Zero
Curvature DSVM (ZCDSVM) which produces linear separators in Hilbert spaces, and in
some cases the exact same linear separator as the classical SVM model.

Furthermore, we compare the three existing manifold SVM models mentioned in Sec-
tion 1.1 with the DSVM models on real world data from the field of brain computer
interfaces. Specifically we train and test the models to classify brain activity based on

1.2 Our contribution 3



symmetric positive definite (SPD) covariance matrices generated from EEG measurements
made available through the BCI-IV competition [39].

1.3 Thesis Structure
Chapter 2, Optimization Theory

As a preliminary for how to solve for the classical SVM classifier and other models which
rely on solving constrained optimization problems, we present relevant concepts and
results from constrained optimization theory.

Chapter 3, Classical Support Vector Machines

In this chapter we derive the classical SVM model along with how to solve for it. Addi-
tionally, we present the extension of the SVM model to non-linear classifiers by use of
the kernel trick, and introduce the theory of positive definite functions to answer the
question of which mappings are valid kernels.

Chapter 4, Smooth Riemannian Manifolds

To work on Riemannian manifolds and understand which kinds of structures and func-
tions are available for generalizing the SVM classifier to manifolds, we give an introduc-
tion to manifold theory and parts of the theory of Riemannian manifolds.

Chapter 5, Existing Models

Here we explain the three existing manifold SVM models in greater detail, describing
their motivations and derivation, and present how to find the classifiers for each model.

Chapter 6, Distance SVM

In this chapter we present the Distance SVM model, explaining its derivation and motiva-
tion. We also compare how the DSVM classifier looks in vector spaces with the classical
SVM linear classifier, to get a deeper understanding of how the DSVM model differs from
the classical SVM model.

Chapter 7, Numerical Experiments

In this chapter we first compare the resulting DSVM classifiers with the classical SVM
classifiers on three toy academic datasets on R2. Then we compare the DSVM classifiers
with the existing manifold SVM classifiers trained on two generated datasets on S(2). In
the last section of this chapter we present a real world dataset and test all the DSVM
models and existing manifold SVM on it.

Chapter 8, Conclusion

Lastly, we summarize the results of the numerical experiments, and discuss the benefits
and drawbacks of the DSVM models as compared to the exist2ing manifold SVM models.
And we point towards directions for further research on manifold SVM models.

1.3 Thesis Structure 4



2Optimization Theory

Having defined a model to classify data, we usually find the optimal classifier by solving
an optimization problem, with or without constraints. To understand how we solve
for the classical support vector machine model we present some general vector space
optimization theory results, which are useful for some manifold SVM models as well.

2.1 Constrained Optimization
Following the notation of Nocedal and Wright [14], we write a general constrained
optimization problem for a lower semi-continuous objective function F : Rd → R as

min
x ∈ Ω

F (x), (2.1a)

s.t. ci(x) = 0, i ∈ E , (2.1b)

ci(x) ≥ 0, i ∈ I. (2.1c)

with constraint functions ci : Rd → R, i ∈ E ∪ I indexed by E and I for equality and
inequality constraints, respectively. Denoting the domain of a function F by domF the
domain of the optimization problem is

Ω =
( ⋂
i∈E∪I

dom ci

)
∩ domF ⊆ Rd, (2.2)

which we assume is non-empty. Given a feasible point x ∈ Rd, i.e. a point satisfying
both Eq. (2.1b) and Eq. (2.1c), it is useful to keep track of which constraints are met by
equality, and to this end we define the active set:

Definition 2.1 (Active Set [14, Def. 12.2]). The active set at any feasible x consists of the
equality constraint indices E as well as the indices in I for which ci(x) = 0 and is denoted
A(x). That is,

A(x) = E ∪ {i ∈ I | ci(x) = 0}.

We furthermore say that a constraint ci is active at x if ci(x) = 0. Thus, for a feasible
point x, all the constraints indexed by A(x) are active.

For unconstrained optimization problems with continuously differentiable objective
functions F (x), a necessary condition for a point x∗ to be a local minimizer is that
the gradient ∇F (x∗) vanishes [14, Thrm. 2.2]. Analogous results hold for constrained
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optimization problems, but they depend on the constraint functions and their gradients
satisfying certain conditions, or constraint qualifications. One such constraint qualification
is the reasonably strict Linear Independence Constraint Qualification (LICQ).

Definition 2.2 (LICQ [14, Def. 12.4]). Given a point x ∈ Ω and the active set A(x), we
say that the Linear Independence Constraint Qualification (LICQ) holds if the set of active
constraint gradients {∇ci(x) | i ∈ A(x)} is linearly independent.

A construct which greatly aids in capturing the interplay between the objective function
and the constraint functions of an optimization problem like Prob. (2.1) is the Lagrangian
function defined as

L : Rd × R|E| × R|I| → R, L(x, ν, λ) = F (x)−
∑
i∈E

νici(x)−
∑
i∈I

λici(x). (2.3)

The variables ν and λ are known as the Lagrange multipliers of their respective con-
straints, and will later play a central role in the dual formulation of optimization problems.
Having defined the LICQ, the following theorem presents a number of conditions on the
gradients of the objective, constraint function, and Lagrange multipliers in order for a
point x∗ to be a local minimizer of Prob. (2.1).

Theorem 2.1 (First Order Necessary KKT Conditions [14, Thrm. 12.1]). Suppose that
x∗ is a local minimizer of Prob. (2.1), that the functions F , ci in (2.1) are continuously
differentiable, and the LICQ holds at x∗. Then there are Lagrange multipliers
(ν∗, λ∗) ∈ R|E| × R|I|, such that the following conditions are satisfied at (x∗, ν∗, λ∗):

∇xL(x∗, ν∗, λ∗) = 0, (2.4a)

ci(x∗) = 0, ∀ i ∈ E , (2.4b)

ci(x∗) ≥ 0, ∀ i ∈ I, (2.4c)

λ∗i ≥ 0, ∀ i ∈ I, (2.4d)

λ∗i ci(x∗) = 0, ∀ i ∈ I. (2.4e)

The conditions in Eq. (2.4) are collectively known as the Karush-Kuhn-Tucker conditions,
or KKT conditions for short. Conditions (2.4b) and (2.4c) enforce that x∗ is a feasible
point. Condition (2.4e) is known as a complementarity condition, and ensures that
Lagrange multipliers λ∗i can only be non-zero when the corresponding constraint ci is
active at x∗. This condition also has implications for the vanishing gradient condition of
(2.4a), which we can expand as

∇xL(x∗, ν∗, λ∗) = ∇F (x∗)−
∑
i∈E

ν∗i∇ci(x∗)−
∑

i∈A(x∗)∩I
λ∗i∇ci(x∗) = 0, (2.5)

2.1 Constrained Optimization 6



where we’ve excluded the sum over inequality constraints with corresponding zero λ∗i .
This condition can be viewed a consequence of Farkas’ Lemma [14, p. 326]. To give an
intuitive explanation we first set n = |E| and m = |A(x∗) ∩ I| and consider the cone

C(x∗) = {JE ν + JI λ | w ∈ Rn, λ ∈ Rm, λ ≥ 0}, (2.6)

where the matrices JE = [∇ci(x∗)]i∈E and JI = [∇ci(x∗)]i∈A(x∗)∩I are the matrices
whose columns are the gradients of the equality constraint functions and active inequality
constraint functions, respectively. Farkas’ Lemma applied to our situation then states
that given the vector ∇F (x∗) ∈ Rd, exactly one of the following two alternatives is true.
Either, ∇F (x∗) ∈ C, or there exists g ∈ Rd such that

∇F (x∗)T g < 0, JTE g = 0, JTI g ≥ 0. (2.7)

In the former case, Eq. (2.5) is fulfilled for some (ν∗, λ∗), λ∗ ≥ 0, as stated, whilst the
latter case implies that there exists a feasible direction g which reduces the objective
value whilst staying in the feasible set to first order. For a local minimizer x∗ this cannot
be the case, and thus the inclusion of ∇F (x∗) in the cone C(x∗) becomes a necessary first
order condition for a local minimizer.

The KKT conditions are central to the theory of constrained optimization, and for certain
types of constrained optimization problems it is particularly useful that the KKT conditions
become both necessary and sufficient for local minimizers under weaker constraint
qualifications than LICQ.

2.2 The Lagrange Dual
In the previous section we defined the Lagrangian in Eq. (2.3) and treated it primarily
as a function of the primal variable x ∈ Rd. Now we use the Lagrangian to define the
Lagrange dual function [15, p. 216],

q : R|E| × R|I| → R ∪ {−∞},

q(ν, λ) = inf
x∈Ω
L(x, ν, λ) = inf

x∈Ω

(
F (x)−

∑
i∈E

νici(x)−
∑
i∈I

λici(x)
)
.

(2.8)

The Lagrange dual is not well defined whenever L(x, ν, λ) is unbounded from below, so
we define the domain of q as [14, p. 344]

dom q = {(ν, λ) | q(ν, λ) > −∞}. (2.9)

2.2 The Lagrange Dual 7



Whenever λ ≥ 0 and (ν, λ) ∈ dom q, we say that (ν, λ) is dual feasible [15, p. 216]. We
denote the optimal objective value for Prob. (2.1) by F ∗ := F (x∗), and an immediate
consequence of the definition of the Lagrange dual is that for dual feasible (ν, λ)

q(ν, λ) ≤ F ∗, (2.10)

and this property is known as weak duality. We can see that the property holds by noting
that for any feasible point x̂ and dual feasible (ν, λ)

−
∑
i∈E

νici(x̂)−
∑
i∈I

λici(x̂) ≤ 0, (2.11)

as ci(x̂) = 0 for i ∈ E , and ci(x̂) are non-negative for i ∈ I. Thus,

q(ν, λ) = inf
x∈Ω
L(x, ν, λ) ≤ L(x̂, ν, λ) ≤ F (x̂) (2.12)

for all feasible points x̂, and the inequality in Eq. (2.10) follows [15, p. 217]. Thus,
any value g(ν, λ) > −∞ for dual feasible (ν, λ) is a lower bound for the optimal primal
objective value F ∗. As a follow-up question we can ask what the best lower bound on F ∗

is. That can be answered by solving the Lagrange dual problem [15, p. 223]

q∗ = max
ν, λ

q(ν, λ),

s.t. λ ≥ 0.
(2.13)

The quantity F ∗ − q∗ is called the duality gap, and if it’s zero, we say that strong duality
holds. Whenever strong duality holds, it has consequences for how the solutions to
the primal and dual problem relate to one another. Let x∗ be a primal optimal point
and (ν∗, λ∗) be dual optimal for an optimization problem where strong duality holds.
Following Boyd and Vandenberghe [15, p. 242] we expand the strong duality condition
as

F (x∗) = q(ν∗, λ∗),

= inf
x∈Ω

(
F (x)−

∑
i∈E

ν∗i ci(x)−
∑
i∈I

λ∗i ci(x)
)
,

≤ F (x∗)−
∑
i∈E

ν∗i ci(x∗)−
∑
i∈I

λ∗i ci(x∗),

≤ F (x∗),

(2.14)

where the last inequality follows due to (x∗, ν∗, λ∗) being primal-dual feasible as in Eq.
(2.11). We conclude that the inequalities in Eq. (2.14) are in fact equalities, which means
that x∗ is a minimizer of L(x, ν∗, λ∗). Furthermore, we see that

∑
i∈I λ

∗
i ci(x∗) = 0, which

implies λ∗i ci(x∗) = 0, i ∈ I because λ∗i , ci(x∗) are all non-negative. This means that
an analogous complementarity condition to Eq. (2.4e) holds for primal-dual optimal
solutions (x∗, ν∗, λ∗) if strong duality holds.

2.2 The Lagrange Dual 8



2.3 Convex Problems
In general one cannot expect to find the global minimizer of a non-linear constrained
optimization problem like Prob. (2.1), and instead one seek to find local minimizers
characterized by first or second order conditions. For convex optimization problems
however, one can show that any local minimizer is a global minimizer [15, pp. 136-139].
A set Ω ⊂ Rd is convex if for all x, y ∈ Ω the cord connecting the two points is also
included in Ω, i.e. (1 − t)x + ty ∈ Ω for t ∈ [0, 1]. A function f : Ω → R is convex if its
domain is convex, and if for all x, y ∈ Ω

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), t ∈ [0, 1]. (2.15)

Positive sums of convex functions are also convex, i.e. for two convex functions f1 and
f2, λ1f1 + λ2f2 is convex if λ1, λ2 ≥ 0. Lastly, a function g is concave if −g is convex.
Now we can state the requirements for an optimization problem to be convex.

Definition 2.3 (Convex Optimization Problem).
A convex optimization problem [14, p. 8] is one like in Prob. (2.1) where:

• The objective function F (x) is convex,

• The equality constraints ci(x) = 0, i ∈ E are affine,

• The inequality constraints ci(x) = 0, i ∈ I are concave.

For convex problems we can guarantee that strong duality holds and that the dual optimal
value q∗ is attained by some dual feasible (ν∗, λ∗) under the relatively simple constraint
qualification known as Slater’s constraint qualification [15, pp. 226-227].

Definition 2.4 (Slater’s CQ [15, p. 226]). For a constrained optimization problem of the
form (2.1), Slater’s constraint qualification holds if there exists x ∈ relint Ω such that

ci(x) = 0, ∀ i ∈ E , ci(x) > 0, ∀ i ∈ I. (2.16)

To define the relative interior of a set Ω ⊂ Rd, denoted relint Ω, we first define the set of
all affine combinations of points in a set Ω, or its affine hull [15, p. 23]:

aff Ω = {θ1x1 + · · ·+ θkxk | x1, . . . , xk ∈ Ω, θ1 + · · ·+ θk = 1}. (2.17)

The relative interior of Ω is then defined as [15, Chap. 2.1.3]

relint Ω = {x ∈ Ω | B(x, r) ∩ aff Ω ⊆ Ω, for some r > 0}, (2.18)

where B(x, r) = {y | ||y − x|| < r} for some norm || · || on Rd.

2.3 Convex Problems 9



For affine inequality constraints cj , j ∈ I we can relax the requirement on those con-
straints in Slater’s condition to the relaxed inequality cj(x) ≥ 0. Furthermore, if all the
equality and inequality constraints are affine, then Slater’s condition simplifies to the
requirement that the primal feasible set is nonempty and domF is open [15, pp. 227].

We also note that if Slater’s condition holds for a convex optimization problem, then
the KKT conditions are necessary and sufficient for optimality [15, p. 244]. Slater’s
condition implies that the duality gap is zero, and the dual optimum is attained. With the
implication of Eq. (2.14) showing that a point x∗ which attains the infimum of q(ν, λ)
is a minimizer of F (x), we conclude that a point x is optimal iff. there are (ν, λ) which
together with x fulfill the KKT conditions in Eq. (2.4).

2.4 The Wolfe Dual
Assuming that our optimization problem is convex with inequality constraints, we can
construct the Wolfe dual problem [14, pp. 346-348]. The Wolfe dual problem consists of
maximizing the Lagrangian of our problem over the primal and dual feasible variables,
conditioned on its gradient w.r.t. the primal variables vanishing, as shown below.

max
x ∈ Ω, λ ∈ R|I|

L(x, λ) = F (x)−
∑
i∈I

λici(x), (2.19a)

s.t. ∇xL(x, λ) = 0, (2.19b)

λ ≥ 0. (2.19c)

This problem formulation can be useful for computing solutions to the Lagrange dual
problem, although the equality constraint on the gradient of the Lagrangian is nonlinear
in general and thus Prob. (2.19) can be non-convex.

Central to the usefulness of the Wolfe dual is its connection with the Lagrange dual
problem in Eq. (2.13). Given dual feasible λ the function L(·, λ) : Ω→ R is convex for a
convex optimization problem, because −ci is convex for i ∈ I and λ ≥ 0. For any x̄ ∈ Ω
which fulfills Eq. (2.19b) then,

L(x, λ) ≥ L(x̄, λ) +∇xL(x̄, λ)T (x− x̄) = L(x̄, λ). (2.20)

This means that the infimum inf
x∈Ω
L(x, λ) is achieved at x̄, and q(λ) = L(x̄, λ).

Assuming that Slater’s condition holds and (x∗, λ∗) are a primal-dual optimal solution to
Prob. (2.13), the KKT conditions, which are necessary for primal-dual optimality, ensure
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that all the constraints of Prob. (2.19) are met by (x∗, λ∗). For any other feasible (x, λ)
then, we can follow [14, Thrm. 12.14] to show that

L(x∗, λ∗) = F (x∗),
≥ F (x∗)−

∑
i∈I

λici(x∗),

= L(x∗, λ)
≥ L(x, λ) +∇xL(x∗, λ)T (x− x∗),
= L(x, λ),

(2.21)

meaning that (x∗, λ∗) maximizes the Lagrangian under the required constraints, and thus
solves the Wolfe dual problem.

2.4 The Wolfe Dual 11



3Classical Support Vector Machines

Before we expand on the SVM idea to classify manifold valued data, we first present the
classical vector space SVM model. Following the presentation of Hastie, Tibshirani, et al.
[16, Chap. 12] and Burges [17, pp. 128-136], the idea of the Support Vector Machine
is to find a linear separator between two classes of points sampled on a feature space
Rd. We’ll develop the model under the assumption that the two classes are linearly
separable, a term which will be defined below, but relax this assumption later to allow for
classification of non-linearly separable datasets. Let the training data be tuples of points
x ∈ Rd and class labels y ∈ {1,−1}, i.e. XR = {(xi, yi)}ni=1 ⊂ Rd × {1,−1}. Then define
a hyperplane in Rd by its normal vector β ∈ Rd, and bias β0,

H(β, β0) = {x ∈ Rd | fSVM(x | β, β0) := β0 + βTx = 0}. (3.1)

Fig. 3.1 illustrates binary classification of a dataset on R2 by linear separators, with three
different hyperplanes overlaid. Only two of the three hyperplanes successfully separate
the two classes, with H3 having the greatest margin to any training point. We call the
function fSVM : Rd × Rd × R→ R the classifier, and

sign(fSVM(x | β, β0)) ∈ {1,−1} (3.2)

is used as the classifying rule to separate the two different classes.

The value fSVM(x | β, β0) also has a geometric interpretation as ||β||2 times the signed
distance between x and H(β, β0). Letting x1 ∈ H(β, β0), the distance between the
hyperplane H(β, β0) and x ∈ Rd can be computed as the length of the difference x− x1

projected onto the hyperplane normal vector 1
||β||β:

∣∣∣∣ 1
||β||β

T (x− x1)
∣∣∣∣ = 1
||β||

∣∣∣(βTx+ β0
)∣∣∣ = 1

||β|| |fSVM(x | β, β0)| , (3.3)

where we’ve used that βTx1 = −β0. Leaving out the absolute value from the above
expression, the signed distance 1

||β||fSVM(x | β, β0) has magnitude equal to the distance
between H(β, β0) and x. When fSVM(x | β, β0) is positive we say that x is on the positive
side of H(β, β0), and on the negative side in the opposite case.

The dataset XR is called linearly separable if there exists β ∈ Rd, β0 ∈ R s.t.

yifSVM(xi | β, β0)) > 0, ∀ i. (3.4)

12



Fig. 3.1.: Illustrative example of a two class dataset in R2 with three linear separators. The
line (1D hyperplane) H1 does not separate the full circles from the open circles. H2
does separate the two classes narrowly, whilst H3 is the maximum margin separator.
Meaning it has the maximum minimal distance to any training point. Source: [40]

There are infinitely many linear separators of a linearly separable dataset, but we can
specify a unique linear separator which is also robust to perturbations in the data by
finding the maximum margin linear separator. The margin between a linear separator
f(· | β, β0) with ||β|| = 1 and training data XR is defined as

M = min
(y,x)∈XR

yfSVM(x | β, β0), (3.5)

as fSVM(x | β, β0) is the signed distance to H(β, β0) when ||β||2 = 1. To find this
maximum margin separator we need to solve the optimization problem

max
β, β0

M, (3.6a)

s.t. yi fSVM(xi | β, β0) ≥ M ∀ i, (3.6b)

||β|| = 1. (3.6c)

Hastie, Tibshirani, et al. [16, p. 132], show that the norm-one requirement on β can
be discarded by noting that |fSVM(x | β, β0)| ∝ ||β||, and rescaling the l.h.s. of the
inequalities in Eq. (3.6b) by 1/||β||.

1
||β||yi fSVM(xi | β, β0) ≥ M ⇒ yi fSVM(xi | β, β0) ≥ ||β||M = 1, (3.7)
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where we’ve set M = 1/||β||. With this rescaling Prob. (3.6) can be restated as the
equivalent convex quadratic minimization problem

min
β, β0

1
2 ||β||

2, (3.8a)

s.t. yi fSVM(xi | β, β0) ≥ 1, ∀ i. (3.8b)

This problem is convex as per Def. 2.3 the objective is convex and all the inequality
constraints, ci(β, β0) = yi(β0 +βTxi)−1, are linear in β and β0. However, the feasible set
for Prob. (3.8) is only non-empty if the training data XR is linearly separable. To allow
for some under classification/misclassification of training points the standard approach
[16, p. 419] is to introduce non-negative slack variables ξ ∈ RN , ξ ≥ 0, and modify the
classification inequalities in Eq. (3.8b) to

yi fSVM(xi | β, β0) ≥ 1− ξi, ∀ i. (3.9)

For each training point xi then, the corresponding ξi measures the proportional amount
w.r.t. the margin M by which the point xi can be under classified, and misclassifications
will happen when ξi > 1. To control the balance between the size of the classification
margin and the average under/misclassification we add the term (1/N)∑N

i=1 ξi scaled by
the hyperparameter C > 0 to the objective in Eq. (3.8a)

min
β, β0, ξ

1
2 ||β||

2 + C

N

N∑
i=1

ξi, (3.10a)

s.t. yi fSVM(xi | β, β0) ≥ 1− ξi, ∀ i, (3.10b)

ξ ≥ 0. (3.10c)

This optimization problem neatly generalizes the linearly separable case, as we can
reduce back to the linearly separable case in Prob. (3.8) by letting C →∞.

3.1 Solving for the Classical SVM Model
In order to solve Prob. (3.10) we could proceed directly with the primal formulation as
stated, but this would require that we find a feasible starting point (β̃, β̃0, ξ̃), and handle
the relatively intricate interplay between the objective function and the classification
inequalities mediated by the slack variables ξ. The more common way to solve Prob.
(3.8) is to transform the problem to its Wolfe dual from Sec. 2.4, and solve a relatively
easy quadratic maximization problem over the Lagrange multipliers corresponding to the
classification inequalities [16, pp. 420-421], [17, pp. 128-132].
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The Lagrangian of Prob. (3.8) with Lagrangian multipliers λ, µ ∈ RN for the constraints
in Eq. (3.10b) and Eq. (3.10c) respectively, is

LSVM(β, β0, ξ, λ, µ) = 1
2 ||β||

2 + C

N

N∑
i=1

ξi −
N∑
i=1

λi(yi fSVM(xi | β, β0)− 1 + ξi)−
N∑
i=1

µiξi.

(3.11)
Writing out the expression for the classifier fSVM(xi | β, β0) and rearranging terms the
Lagrangian can be expressed as

LSVM = 1
2 ||β||

2 −
N∑
i=1

λiyix
T
i β +

N∑
i=1

λi − β0

N∑
i=1

λiyi +
N∑
i=1

(C/N − λi − µi)ξi. (3.12)

All the inequality constraints in Prob. (3.8) are affine and the domain of the objective
function is open, meaning Slater’s condition reduces to determining whether there exists
a feasible point (β̃, β̃0, ξ̃). Due to the addition of the slack variables ξ there always exists
a feasible point as we can simply increase any ξi until the relevant constraint is satisfied
for any (β, β0). The KKT conditions are thus both necessary and sufficient for optimality
of Prob. (3.8) and they are

∇βLSVM = β −
N∑
i=1

λiyixi = 0, (3.13a)

∂β0LSVM = −
N∑
i=1

λiyi = 0, (3.13b)

∂ξi
LSVM = C/N − λi − µi = 0, ∀ i, (3.13c)

yi fSVM(pi | β, β0)− 1 + ξi ≥ 0, ∀ i, (3.13d)

λi(yi fSVM(xi | β, β0)− 1 + ξi) = 0, ∀ i, (3.13e)

µiξi = 0, ∀ i, (3.13f)

ξ, λ, µ ≥ 0. (3.13g)

The vanishing gradient conditions of Eq. (3.13a) and Eq. (3.13b) imply that

β =
N∑
i=1

λiyixi, and
N∑
i=1

λiyi = 0 (3.14)

at critical points of the Lagrangian. Combining the vanishing gradient condition (3.13c)
with the non-negativity constraints on ξ, λ, and µ allows us to eliminate µ by constraining
λ to 0 ≤ λ ≤ C/N and implicitly setting µi = C − λi. The complementarity condition
in Eq. (3.13f) ensures that ξi = 0 if λi < C/N , and for any 0 < λi < C/N the
complementarity condition in Eq. (3.13e) ensures that the corresponding point xi is
exactly on the margin, i.e. yif(xi) = 1. We can use this to solve for the bias β0 as

β0 = yi − βTxi, (3.15)
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where xi is the corresponding training point to λi. Numerically one usually takes the
average of the β0 computed from all margin points with 0 < λi < C/N . Crucially, λi
is only non-zero if the corresponding training point xi is exactly on the classification
margin, or under/misclassified by ξi > 0. This generally leads to a sparse optimal λ.

Inserting the vanishing gradient requirements back to the expression for the Lagrangian
results in the Wolfe dual objective

LSVM(β, β0, ξ, λ, µ) = 1
2

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

λiyixi

∣∣∣∣∣
∣∣∣∣∣
2

−
N∑
i=1

λiyix
T
i

 N∑
j=1

λjyjxj

+
N∑
i=1

λi,

= −1
2

N∑
i=1

N∑
j=1

λiyix
T
i xjλjyj +

N∑
i=1

λi,

= −1
2λ

T (YKY)λ+ λT1.

(3.16)

Here we’ve introduced the class label matrix Y = diag(y1, . . . , yN ) and the kernel matrix
K ∈ RN×N , whose entries are the pairwise inner products between our training data.
That is, (K)i,j = 〈xi, xj〉. The naming of this matrix will be explained later, but for now
it’s noteworthy that K is a Gram matrix [18, p. 441], and all Gram matrices are positive
semi-definite. For any α ∈ RN

αTKα =
N∑
i=1

N∑
j=1

αi〈xi, xi〉αj =
〈

N∑
i=1

αixi,
N∑
i=1

αixi

〉
≥ 0. (3.17)

After inserting the vanishing gradient conditions and box constraints for λ, the Wolfe
dual to Prob. (3.10) becomes

λ̂ = arg max
0 ≤ λ ≤ C

N

DSVM := −1
2λ

T (YKY)λ+ λT1.
(3.18)

The dual objective DSVM is concave, and as such minλ−D(λ) with box constraints on
λ is a convex quadratic optimization problem. Numerically, Prob. (3.18) can be solved
using optimization algorithms like the interior point based Ipopt algorithm [19], or the
SCS algorithm [20] for convex problems. And having solved for λ̂, we recover the primal
solution β̂ from Eq. (3.14) and β̂0 by averaging Eq. (3.15) applied to all margin points
identified by 0 < λ̂i < C/N .

3.2 The Kernel Trick
The idea behind the kernel trick comes from realizing that the only manner in which
our training data points enter the Wolfe dual in Prob. (3.18) is through pairwise inner
products as elements of K [17, pp. 138-143][16, Chap. 12.3]. That means we can map
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our training data from the feature space Rd into another Hilbert space V by a mapping
Φ: Rd → V. Then we construct the kernel matrix element wise as

(K)i,j = 〈Φ(xi),Φ(xj)〉V , (3.19)

and Prob. (3.18) optimizes for the maximum margin linear separator in the possibly
infinite dimensional Hilbert space V. The separator value for x ∈ Rd is computed by
mapping into V through Φ as

fSVM(Φ(x) | β, β0) = β0 +
N∑
i=1

λiyi〈Φ(xi),Φ(xj)〉V , (3.20)

where we’ve expanded the hyperplane normal vector β ∈ V as β = ∑N
i=1 λiyiΦ(xi).

However, for higher dimensional V, it can be prohibitively expensive or numerically
infeasible to compute the explicit mappings x 7→ Φ(x) ∈ V. And the explicit value
of Φ(xi) is only ever used to compute its inner product with another element Φ(xj).
Therefore, we can compose the mapping Φ×Φ with the inner product 〈·, ·〉V to construct
the corresponding kernel

K : Rd × Rd → R, K(x̃, x̄) = 〈Φ(x̃),Φ(x̄)〉V , (3.21)

which first applies the mapping Φ to both its arguments before computing their inner
product in V . This perspective also opens the question of what properties we must require
of a function K : Rd × Rd → R in order for it to implicitly define a mapping Φ: Rd → V
and be a valid kernel. It turns out that as long as our kernel is positive definite, a term
defined below, the implicit mapping into a Hilbert space exists. And by using a positive
definite kernel we perform linear separation in a possibly very high dimensional space.

We state the following definitions of positive definite and negative definite kernels, due to
Berg, Christensen, et al. [21]:

Definition 3.1 (Positive and negative definite kernels [21, Chap. 3, Def. 1.1]). Let X be
a nonempty set. A symmetric function φ : X × X → R is called a positive definite kernel if
and only if

N∑
i,j=1

cicjφ(xi, xj) ≥ 0, (3.22)

for all N ∈ N, {xi}Ni=1 ⊆ X , and {ci}Ni=1 ⊆ R. A symmetric function ψ : X × X → R is
called conditionally negative definite if and only if

N∑
i,j=1

cicjψ(xi, xj) ≤ 0, (3.23)

for N ≥ 2, {xi}Ni=1 ⊆ X , and {ci}Ni=1 ⊆ R, with
∑N
i=1 ci = 0.
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Note the additional requirement on {ci}Ni=1 for a function ψ to be a conditionally negative
definite kernel, i.e.

∑N
i=1 ci = 0, which explains the requirement N ≥ 2.

The above definition of a positive definite kernel is equivalent to requiring that the matrix
Kφ ∈ RN , (Kφ)i,j = φ(xi, xj) be positive semi-definite. However, for historical reasons
one call kernels which satisfy the requirement in Eq. (3.22) with a strict inequality a
strictly positive definite kernel, and the same prefix applies for any conditionally negative
definite kernel which satisfies Eq. (3.23) with a strict inequality [21, p. 67]. Berg, Chris-
tensen, et al. [21] omit the word "conditionally" when defining conditionally negative
definite kernels, but due to the extra constraint on the coefficients {ci}Ni=1 for which
a function ψ needs to satisfy Eq. (3.23), we’ve chosen to define them as conditionally
negative definite kernels to avoid confusion.

Positive definite kernels enjoy a plethora of different properties. A useful first result is
that if h : X → X is a bijection, then φ is a positive (resp. conditionally negative) definite
kernel iff. φ◦ (h×h) is a positive (resp. conditionally negative) definite kernel [21, p. 67].
Furthermore, given an arbitrary function g : X → R the kernel φ(x1, x2) = g(x1)g(x2) is
positive definite [21, p. 69], as

N∑
i,j=1

cicjφ(xi, xj) =

∣∣∣∣∣∣
N∑

i,j=1
cig(xi)

∣∣∣∣∣∣
2

≥ 0. (3.24)

Any positive definite kernel φ necessarily satisfies the property that

φ(x, x) ≥ 0 ∀ x ∈ X , (3.25)

and by considering the requirement in Eq. (3.22) for any x1, x2 ∈ X and arbitrary
c1, c2 ∈ R, we find the necessary requirement

det
([
φ(x1, x1) φ(x1, x2)
φ(x2, x1) φ(x2, x2)

])
≥ 0, ⇒ |φ(x1, x2)|2 ≤ φ(x1, x1)φ(x2, x2), (3.26)

for any positive definite kernel φ [21, p. 69]. The following Theorem due to Berg,
Christensen, et al. [21], also shows that positive definite kernels are closed under
pointwise multiplication.

Theorem 3.1 (Multiplication of pos. def. kernels [21, Chap. 3, Thrm. 1.12]). Let
φ1, φ2 : X × X → R be positive definite kernels. Then the kernel

(φ1 · φ2) : X × X → R, (φ1 · φ2)(x1, x2) = φ1(x1, x2) · φ2(x1, x2), (3.27)

is positive definite too.

The proof of Theorem 3.1 uses properties of positive semi definite matrices, specifically
the fact that a matrix A ∈ Rn×n is positive semi definite iff. it can be realized as the
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Gram matrix of a set of vectors {bi}ni=1, bi ∈ Rk, i.e. (A)i,j = bTi bj [18, Thrm. 7.2.10].
And building on top of Theorem 3.1, one can show that if φ is positive definite, the
composition exp ◦ φ : X × X → R is a positive definite kernel [21, Chap. 3, Cor. 1.14].
Finally, the next theorem connects conditionally negative definite kernels to positive
definite kernels through composition with the exponential function.

Theorem 3.2 (Exp. of neg. def. kernel [21, Chap. 3, Thrm. 2.2]). Let X be a non-empty
set, and let ψ : X × X → R be a kernel. Then ψ is conditionally negative definite iff.
exp(−tψ) is positive definite for all t > 0.

Using the above properties of positive definite kernels, we can prove that the well known
Radial Basis Function (RBF) kernel is positive definite.

Theorem 3.3 (The Radial Basis Function Kernel). Let V be Hilbert space with inner
product 〈·, ·, 〉V . Then the RBF kernel

KRBF : V × V × R+ → R, KRBF(x1, x2 | σ2) = exp
(
−||x1 − x2||2V

2σ2

)
, (3.28)

is positive definite for all σ2 > 0.

Proof. As V is a Hilbert space, we can express the squared distance function as

||x1 − x2||2V = 〈x1 − x2, x1 − x2〉V

and factorize KRBF(x1, x2) as

KRBF(x1, x2) = exp
(
−||x1||2V

2σ2

)
exp

(
−||x2||2V

2σ2

)
exp

(〈x1, x2〉V
σ2

)
. (3.29)

If we define g(x) = exp
(
− ||x||

2
V

2σ2

)
, the kernel K1

RBF(x1, x2) = g(x1)g(x2) is positive

definite by the property described in Eq. (3.24). As we’ve shown in Eq. (3.17), any
inner product is a positive definite kernel, and remains so when composed with the
bijection h(x) = x/σ. Therefore, K2

RBF(x1, x2) = exp
(
〈x1,x2〉V

σ2

)
is positive definite, being

the exponential of a positive definite kernel. Finally, due to Thrm. 3.1 the pointwise
multiplication of the two positive definite kernels K1

RBF,K
2
RBF results in another positive

definite kernel, KRBF = (K1
RBF ·K2

RBF).

3.3 Reproducing Kernel Hilbert Spaces
In order to show that any positive definite kernel φ implicitly defines a mapping Φ: X →
H where H is a Hilbert space such that φ(x1, x2) = 〈Φ(x1),Φ(x2)〉H, we refer to the
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notion of a Reproducing Kernel Hilbert Space (RKHS) associated with any positive
definite kernel [21, Chap. 3, §3].

Aronszajn [22, Thrm. 4, p. 344] states that for every positive definite kernel there exists
a unique corresponding Hilbert space H, with an inner product 〈·, ·〉H : X × X → R. To
give some intuition for the above statement, we follow Berg, Christensen, et al. [21, Chap.
3, 3.1] and let φ : X ×X → R be a positive definite kernel. Let H0 be the linear subspace
of RX generated by the functions {φx | x ∈ X}, where φx : X → R, φx(y) = φ(x, y) [21,
p. 81]. If f = ∑

i ciφxi and g = ∑
j djφyj belong to H0, then the quantity

∑
i,j

cidjφ(xi, yj) =
∑
j

djf(yj) =
∑
i

cig(xi), (3.30)

does not depend on the (possibly non unique) representations of f and g, and we denote
it 〈f, g〉H0 . By setting g = φx we see from Eq. (3.30) that

〈f, φx〉H0 = f(x), ∀ f ∈ H0, x ∈ X . (3.31)

The above relation in called the reproducing property of 〈·, ·〉H0 , and specifically implies
that 〈φx, φy〉H0 = φ(x, y). As φ is positive definite

〈f, f〉H0 =
∑
i,j

cicjφ(xi, xj) ≥ 0. (3.32)

Using the reproducing property and the nonnegative determinant property of positive
definite kernels from Eq. (3.26) we see that

|f(x)|2 = |〈f, φx〉H0 |2 ≤ 〈f, f〉H0 · φ(x, x), (3.33)

implying that 〈f, f〉H0 = 0 iff. f is identically zero. Therefore, 〈·, ·〉H0 defines an inner
product over H0 forming a pre-Hilbert space (H0, 〈·, ·〉H0), and its completion is the
aforementioned Hilbert space H [21, p. 81]. In conclusion, we state the following
theorem:

Theorem 3.4 (RKHS [22, Thrm. 4, p. 344][21, p. 82]). Let X be a nonempty set and
φ : X × X → a positive definite function. Then there exists a unique Hilbert space H
corresponding to φ and a mapping Φ: X → H, x 7→ φx such that

φ(x, y) = 〈Φ(x),Φ(y)〉H, (3.34)

where φx : X → R, φx(y) = φ(x, y).
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4Smooth Riemannian Manifolds

Consider a setM. Given a subset U ⊂ M we call a bijection ϕ : U → Rd onto an open
subset of Rd a d-dimensional chart of the setM, denoted by the tuple (U , ϕ). When clear
we suppress the explicit mention of the domain U , and simply write ϕ to represent the
relevant chart (U , ϕ). For any p ∈ U , the value ϕ(p) ∈ Rd is called the coordinates of p in
the chart ϕ [23, p. 18].

Charts ϕ : U → Rd and their inverses ϕ−1 : ϕ(U) → U function as local handles on the
setM. For example, they allow us to study functions f : U → R by instead considering
f ◦ ϕ−1 : ϕ(U)→ R which we can analyze using tools from real analysis. However, we
generally require a collection of several charts to cover the set M, and wherever the
domains of two different charts (U1, ϕ1) and (U2, ϕ2) overlap, the properties of structures
defined on the setM should not be dependent on the specific choice of chart. The notion
of a good collection of charts to cover a manifold in a compatible way is codified into the
concept of an atlas.

Definition 4.1 (Atlas [23, p. 19]). A (smooth) atlas A of M into Rd is a collection of
charts {(Uα, ϕα)} of the setM such that:

1.
⋃
α∈I
Uα =M.

2. For any pair α, β with Uα ∩ Uβ = C 6= ∅, the images ϕα(C) and ϕβ(C) are open sets
in Rd, and the chart transition function ϕα ◦ ϕ−1

β : ϕβ(C)→ Rd is differentiable (C∞

smooth) over its domain ϕβ(C).

Essentially we require that the collection of charts covers the whole set M, and the
change of charts function ϕα ◦ ϕ−1

β must be differentiable for any pair of overlapping
charts, or C∞ smooth for a smooth atlas. Two atlases A1,A2 overM are equivalent if
the union of both collections of charts A1 ∪ A2 is still an atlas. That is, for any chart
(U , ϕ) ∈ A2, the collection of charts A1 ∪ (U , ϕ) is still a chart according to Def. 4.1.
Furthermore, given an atlas A we define the maximal atlas generated by A as the set of
charts (U , ϕ) such that (U , ϕ) ∪ A is still an atlas, and denote it A+. Connecting back to
the idea of equivalent atlases, two atlases A1,A2 are equivalent iff. they generate the
same maximal atlas, i.e. A+

1 = A+
2 [23, p. 19].

A collection of charts from a maximal atlas A+ over M induces a topology over M,
called the atlas topology ofM. In this topology a set V ⊂ M is open iff. for any chart
(U , ϕ), ϕ(U ∩ V) is an open subset of Rd. Throughout this thesis we will be referring
to the atlas topology when talking about open sets on a manifold. With the concepts
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of charts and atlases over the setM defined, we are ready to state the definition of a
differentiable/smooth manifold.

Definition 4.2 (d-dimensional Manifold [4, Def. 2.1]). A differentiable (smooth) manifold
of dimension d is a setM along with an atlas A+ overM such that

• A+ is a (smooth) maximal atlas ofM into Rd.

• The atlas topology induced by A+ is Hausdorf and second countable.

For a topology to be Hausdorff means that for any two distinct points x, y ∈ M, there
exists open subsets V,W of M such that x ∈ V, y ∈ W and V ∩W = ∅ [24, p. 85].
In essence, all distinct points in a set with a Hausdorff topology are distinguishable by
non-overlapping open sets. Furthermore, for a topology onM to be second countable
there must exist a countable collection of open sets T = {Vi}i∈K, Vi ⊂M such that all
open sets W ⊂M can be written as a union of sets from T over a sub-sequence K′ ⊂ K,
i.e. W = ⋃

j∈K′ Vj [24, p. 84].

Both Absil, Mahony, et al. [23] and do Carmo [4] state that the conditions on the atlas
A+ for a tuple (M,A+) to be a maximal atlas along with inducing a Hausdorff atlas
topology onM is included for technical reasons to avoid unconventional topologies. If
these conditions were not present, one would allow for atlas topologies on manifolds
where convergent sequences of points may not have a single limit point [23, p. 19].
A maximal atlas over a set M which satisfies the requirements of Def. 4.2 is called a
manifold structure or a differentiable structure onM. To construct a manifold structure
on a setM we do not need to define a maximal atlas however, it is enough to define an
atlas A whose maximal atlas generates the manifold structure onM. And any such atlas
is called an atlas of the manifold (M,A+) [23, p. 20]. When (M,A+) is a manifold, we
sometimes say "the manifoldM" when referring to an implicit manifold structure, and
"the setM" when referring to the underlying setM without the manifold structure.

4.1 Vector Space Manifolds
An important class of sets with a “trivial” manifold structure are vector spaces E . Although
trivial in a sense, some definitions and concepts can be unified by considering Rd or
Rm×n ∼= Rmn as having a manifold structure in their own right. Let E be a d dimensional
vector space with basis {pi}di=1 such that for any p ∈ E , p = ∑d

i=1 ai pi. Then we can
define a chart with global domain U = E as

ϕE : E → Rd, ϕE(p) 7→ [a1, ..., an], (4.1)

and the atlas with the single chart A = (U , ϕE). Then A is an atlas of the manifold
(E ,A+), generating a manifold structure over the vector space E [23, pp. 22-23]. These
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vector space manifolds are subsequently useful as building blocks when viewing manifolds
as embedded within vector spaces, like for example constrained sets of matrices in Rm×n,
where the precise meaning of an embedded manifold will be specified later. The vector
space Rm×n can be also be realized as a Hilbert space with element-wise addition and
scaling, along with the inner product

X,Y ∈ Rm×n, 〈X,Y〉 = tr(XTY) =
m∑
i=1

n∑
j=1

Xi,jYi,j . (4.2)

This inner product is simply the regular Euclidean inner product applied element wise to
matrices, and induces the Frobenius norm ||X||Fr =

√
tr(XTX), X ∈ Rm×n.

Any open setM⊂ E admits a differentiable structure inherited from the vector space E ,
and intuitively we can reason that any chart (U , ϕ) over E is a chart overM if we restrict
the domain of ϕ to (U ∩M, ϕ). Such a manifoldM⊂ E is called an open submanifold.

Definition 4.3 (Open submanifolds Boumal [25, Def. 3.6]). Let M be an open subset
of a vector space E . ThenM admits a smooth manifold structure, and we call it an open
submanifold. IfM = E , we call it a linear manifold. The set E is called the embedding
space or the ambient space ofM.

4.2 Differentials on Manifolds
For both scalar and manifold valued mappings the concept of differentiability of mappings
is crucial to both the analysis of manifolds and the optimization of objective functions
f : M→ R. We can view R as a vector space manifold in the sense of section 4.1, and
as such we may view f as a mapping between two manifolds as well. Here we’ll first
introduce a coordinate based definition of the differential of a mapping, and later we’ll
introduce the concept of tangent vectors which generalize directional derivatives of scalar
valued functions on manifolds.

Using charts (U1, ϕ1), U1 ⊂ M1 and (U2, ϕ2), U2 ⊂ M2 we can define a coordinate
representation of a mapping F : M1 →M2 as

F̂ : ϕ1(U1)→ ϕ2(U2), F̂ (x) = ϕ2 ◦ F ◦ ϕ−1
1 (x). (4.3)

One can verify that this coordinate representation of F is chart independent [23, p. 24],
and therefore we can investigate properties about the original mapping F from its
coordinate representation. Specifically we can examine its differential properties through
the charts. For the aforementioned mapping F with its coordinate representation F̂ , we
say that the mapping F is smooth at a point p ∈M if the chart differential of F̂ ,

DF̂ [ϕ1(p)] : Rd1 → Rd2 , (4.4)
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is smooth at p. Furthermore, we say that a mapping F is smooth if it is smooth at all points
inM1. As the chart differential of F̂ is a linear operator between Rd1 and Rd2 we can
discuss its rank as in a linear algebra setting, where rank(F ) = dim(range(D F̂ [ϕ1(p)])).
With the rank of a mapping between two manifolds in mind, we define the concept of a
submersion between two manifolds.

Definition 4.4 (Submersion and Regular Values). Let M1 and M2 be manifolds of
dimension d1 and d2 respectively. Then a submersion between the two manifolds is a
differentiable mapping F : M1 → M2 such that rank(F ) = d2 for all points p ∈ M1.
Additionally, a point q ∈ M2 is denoted a regular value of F if rank(F ) = d2 for all
p ∈ F−1(q) = {p ∈M1|F (p) = q}.

Inspired by Boumal [25, Sec. 7.7], we can intuitively think of the full rank requirement
on the mapping F as ensuring that the gradients of the constraints defining the manifold
through F (p) = q remain linearly independent. In this sense, we require that the LICQ
condition [14, Chap. 12] from classical optimization is satisfied at all points on our
manifoldM1, which generally keeps the solution domain of our optimization problems
well-behaved. In order for the rank of a mapping F : M1 →M2 to be d2 at any point
p ∈M1, we necessarily need d1 ≥ d2.

When constructing new manifolds, it is common to view them as embedded in a higher
dimensional manifold. For example, the elements of the 2-sphere manifold are the points
in R3 with norm one. To be more precise about this notion, we introduce the concept
of an embedded submanifold. Given two manifolds (M1,A+

1 ), (M2,A+
2 ) withM1 ⊂M2

we say thatM1 is an embedded submanifold ofM2 if the manifold topology of (M1,A+
1 )

coincides with the topology it inherits as a subspace ofM2 [23, p. 25].

The concept of a submersion is highly useful when one is trying to characterize whether
a set admits a manifold structure, as we can use the following theorem to characterize
closed embedded submanifolds as the pre-image of a regular value under a constant rank
differentiable mapping between two manifolds.

Theorem 4.1 (Submersion Theorem [23, Prop. 3.3.3]). Let F : M1 →M2 be a smooth
mapping between manifoldsM1 andM2 of dimensions d1 and d2 respectively with d1 > d2.
Then if q ∈ M2 is a regular value of F , the pre-imageM = F−1(q) is a closed embedded
submanifold ofM1. Furthermore, dim(M) = d1 − d2.

We note that a mapping F : M1 →M2 is a submersion iff. DF (p) : TpM1 → TF (p)M2 is
a surjection for all p ∈M1 [23, p. 38].
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4.3 Tangent Vectors
Given a curve γ : R→M, the regular notion of a derivative of that curve at a time t as
defined by the limit

γ′(t) = lim
τ→0

γ(t+ τ)− γ(t)
τ

, (4.5)

is not applicable on manifolds in general, as they lack a vector space structure with
addition and subtraction operations between two points p, q ∈ M, as well as lacking
scalar multiplication. This means that we need to introduce another manner of measuring
derivatives of curves on manifolds, and we do this by instead computing derivatives of
functions composed with the smooth curve in question. Given a manifoldM, a smooth
function γ : R →M, t 7→ γ(t) is called a curve. Composing such a curve γ with a C∞

smooth real valued function f : M→ R we get a well-defined function f ◦ γ : R→ R for
which the classical derivative is well-defined [23, p. 33].

For p ∈ M let Fp(M) denote the set of smooth functions on a neighborhood of p, and
let F(M) denote the set of smooth real valued functions on M. Then given a curve
γ : R→M with γ(0) = p we define the derivative operator γ̇(0) : Fp(M)→ R as

γ̇(0)f = d
dtf(γ(t))

∣∣∣∣
t=0

, f ∈ Fp(M). (4.6)

In anticipation of the fact that the space of derivative operators given by all curves passing
through a point p ∈M forms a vector space, we follow [23, p. 34] in defining tangent
vectors at p.

Definition 4.5 (Tangent Vectors [23, Def. 3.5.1]). Let p be a point on a manifoldM. Then
a tangent vector ξp is an operator ξp : Fp(M)→ R for which there exists a curve γ : R→M
with γ(0) = p such that

ξpf = γ̇(0) f = d
dt
f(γ(t))

∣∣∣∣
t=0
∀ f ∈ Fp(M), (4.7)

in which case we say that γ realizes the tangent vector ξp .

Furthermore, the point p is called the anchor of ξp, but the subscript p is usually omitted
if it’s clear from the context what point is the anchor of a particular tangent vector.
The collection of all tangent vectors at p is denoted TpM. It can be shown that the
space of tangent vectors TpM at a point p on a d-dimensional manifold M form a
d-dimensional vector space, where addition and scaling of tangent vectors is defined as
follows [23, p. 34]. Given α, β ∈ R and γ1, γ2 smooth curves on a manifoldM such that
γ1(0) = γ2(0) = p, we define the result of scaling and adding two tangent vectors into
another tangent vector γ̇(0) = αγ̇1(0) + βγ̇2(0) by

[αγ̇1(0) + βγ̇2(0)]f = α(γ̇1(0)f) + β(γ̇2(0)f). (4.8)
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To show that there exists a curve γ which realizes the tangent vector γ̇(0) at p let (U , ϕ)
be a chart about p centered such that ϕ(p) = 0. Then define the local curve

γ(t) = ϕ−1(αϕ(γ1(t)) + βϕ(γ2(t))).

We see immediately that γ(0) = ϕ−1(0) = p as required, and using the chain rule on
f ◦ ϕ−1 : Rd → R we find that the curve γ realizes the scaled and added tangent vectors
γ1 and γ2 as required by the definition in (4.8).

We can also find a basis for the tangent space at p using the chart ϕ. By defining the set
of curves {γi}di=1, γi(t) = ϕ−1(ϕ(p) + tei) moving along each of the canonical coordinates
ei ∈ Rd, the set of tangent vectors {γ̇i(0)}di=1 form a basis for TpM [23, p. 35]. To see
this we read f : M→ R through the chart as f̂ = f ◦ ϕ−1 : Rd → R and note that for any
ξ ∈ TpM realized by the smooth curve γ,

ξf = d
dt

(f ◦ ϕ−1)(ϕ ◦ γ(t))
∣∣∣
t=0

= d
dt

(f̂ )(x1(t), . . . , xd(t))
∣∣∣
t=0

, (4.9)

=
d∑
i=1

ẋi(0) ∂

∂xi
f̂(ϕ(γi)) =

d∑
i=1

ẋi(0)(γ̇i(0)f) =
(

d∑
i=1

ẋi(0)γ̇i(0)
)
f.

In the second-to-last equality above we’ve used that ∂
∂xi

(f ◦ ϕ−1)(ϕ(γi)) = γ̇if . With
the basis constructed above it can be shown that TpM is a d-dimensional vector space
[4]. For ease of notation we can denote the canonical basis {γ̇i(0)}di=1 at p as {(∂i)p}di=1,
where we suppress the reliance on the curves {γi}di=1 from above.

Collecting all the tangent vector spaces of a d-dimensional manifoldM we define the
tangent bundle ofM [23, p. 36] as

TM =
⊔
p∈M

TpM. (4.10)

As each ξ ∈ TM is an element in a single tangent vector space, the manifold M is a
quotient of TM with the projection π : TM→M, ξp ∈ TpM 7→ p. For each chart (U , ϕ)
overM the mapping

ξp ∈ TpM 7→ [ϕ1(p), . . . , ϕd(p), ξpϕ1, . . . , ξpϕd]T ∈ R2d, (4.11)

with the domain π−1(U) is a chart over TM. Collecting these charts into an atlas one
can show that it generates a manifold structure on TM [23, p. 36].

Another concept we can generalize to manifolds is the idea of vector fields, defining it as
a smooth function fromM to TM which assigns a tangent vector Xp ∈ TpM to each
point p ∈M [23, p. 37]. We denote the set of all smooth vector fields over a manifold
M by X(M), where the evaluation of vector field ξ at p ∈ M is denoted ξp ∈ TpM. A
vector field can be applied to a smooth function f ∈ F(M), returning a scalar function
ξf ∈ F(M), p 7→ ξp(f) ∈ R. Multiplication of vector fields with smooth scalar valued
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functions is also defined, returning another vector field (fξ)p = f(p)ξp. Addition of two
vector fields ξ, η ∈ X(M) simply evaluates pointwise as (ξ + η)p = ξp + ηp ∈ TpM.

We can provide a local basis for vector fields on a chart (U , ϕ) by defining the vector
fields {Ei}di=1, Ei ∈ X(U) by

(Eif)(p) := ∂

∂xi
(f ◦ ϕ−1)(ϕ(p)) = D(f ◦ ϕ−1)(ϕ(p))[ei], (4.12)

called the i’th coordinate vector field of (U , ϕ). The coordinate vector fields are smooth,
and every vector field ξ ∈ X(U) can be written as a linear combination of the coordinate
vector fields as

ξ =
d∑
i=1

(ξϕi)Ei, (4.13)

where (ξϕi) ∈ F(U) [23, p. 37]. An important example of a vector field is the velocity vec-
tor field of a smooth curve γ : R→M, denoted γ̇ : γ(R) ⊂M→ TM . The composition
γ̇ ◦ γ : R→ TM , t 7→ γ̇γ(t) ∈ Tγ(t)M is denoted γ̇(t) ∈ Tγ(t)M for ease of notation.

Using the concept of tangent vectors and tangent vector spaces we define an intrinsic
notion of the differential of a mapping between manifoldsM and N .

Definition 4.6 (Differential of a manifold mapping [23, p. 38]). Given a mapping
F : M → N , we denote the differential of the mapping by DF : M → L(TpM, TF (p)N ),
p ∈M, the pointwise linear mapping

DF (p) : TpM→ TF (p)N , ξp 7→ DF (p)[ξp], (4.14)

where for f ∈ FF (p)(N ), the resulting tangent vector DF (p)[ξp] ∈ TF (p)N is applied to f as
(DF (p)[ξp])(f) = ξp(f ◦ F ). And for any curve γ : R →M which realizes ξp ∈ TpM, the
tangent vector DF (p)[ξ] ∈ TF (p)N is realized by the curve F ◦ γ : R→ N .

Connecting back to Theorem 4.1, we note from Absil, Mahony, et al. [23, p. 38] that
a mapping F is a submersion iff. DF (p) : TpM→ TF (p)N is a surjection for all p ∈ M.
Furthermore, whenever a manifoldM is constructed as the level-set of a submersion
F : M → N , i.e. M = F−1(q), q ∈ N , we have for all curves γ on M that F ◦
γ(t) = q ∀ t ∈ R. This allows a characterization of the tangent space at p ∈ M, as
DF (p)[γ̇] = d

dt F (γ(t))|t=0 = 0, where γ(0) = p realizes a tangent vector ξp ∈ TpM. This
means that TpM⊂ ker(DF (p)). As both TpM and ker(DF (p)) are vector spaces and it
can be shown that these spaces are of equal dimension [23, p. 40], we conclude that

TpM∼= ker(DF (p)), (4.15)

for embedded submanifoldsM defined as in Theorem 4.1. For linear manifolds E , the
notion of a classical derivative for a curve γ : R → E is well-defined in the embedding
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space, and is denoted γ′(0) = limt→0
1
t (γ(t) − p) ∈ E with γ(0) = p. For the tangent

vector ξp realized by γ we have a one-to-one correspondence

ξpf = Df(p)[γ′(0)], (4.16)

for f ∈ Fp(E), independent of which curve γ realizes ξp, meaning that TpE ∼= E [23,
p. 35]. And ifM is an open submanifold of E the property extends to

TpM = TpE ∼= E , (4.17)

as stated by Boumal [25, Thrm. 3.15].

4.4 The Riemannian Metric
The tangent vector space about a point p ∈ M can be interpreted as a vector space
approximation of our manifold about p, but without a norm or inner product TpM we
lack a lot of useful structure which Hilbert spaces enjoy. However, we can introduce
such a structure by endowing the manifoldM with a Riemannian metric, denoted g. A
Riemannian metric g defines an inner product, i.e. a bilinear, symmetric, positive definite
form

gp : TpM× TpM→ R (4.18)

for all p ∈ M, smooth w.r.t. p [4, Def. 2.1][23, Chap. 3.6]. By the Riemannian metric
being smooth w.r.t. p we mean that for any open set U ⊂ M and smooth vector fields
ξ, η ∈ X(U), the function

g(ξ, η) : M→ R, p 7→ gp(ξp, ηp) (4.19)

is smooth, i.e. g(ξ, η) ∈ F(M) [4, p. 38]. Any manifold (M,A+) admits a Riemannian
structure [23, p. 45], and combining a manifold (M,A+) with the additional structure
of a Riemannian metric g we get what is called a Riemannian manifold (M,A+, g). In
this thesis we’ll only be concerned with this class of manifolds, and when the metric g is
implied, we’ll simply say the Riemannian manifoldM for (M,A+, g)

With the Riemannian metric defining an inner product gp at each p ∈ M, it induces a
norm at each tangent space, i.e. ||ξp||g =

√
gp(ξp, ξp). The action of the inner product on

ξ, ζ ∈ TpM is denoted gp(ξ, ζ) or 〈ξ, ζ〉p. In a chart (U , ϕ) we can express the Riemannian
metric component wise by the functions

gi,j = g(Ei, Ej) ∈ F(U), i, j = 1, . . . , d, (4.20)
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where {Ei}di=1 are the chart coordinate vector fields from Eq. (4.12). For vector fields
ξ = ∑d

i=1 ξiEi, η = ∑d
j=1 ηjEj the application of the metric g is then expressed as

g(ξ, η) =
d∑

i,j=1
ξig(Ei, Ej)ηj = ξ̂T G η̂, (4.21)

where G : U → Rd×d is the smooth matrix valued function with (G)i,j = g(Ei, Ej) and
ξ̂ = [ξ1, . . . , ξd], η̂ = [η1, . . . , ηd]. If vector space manifolds E with an inner product
〈·, ·〉 are imbued with the flat Riemannian metric ḡ we call the space Euclidean, and
Ḡ = Id. The action of the Riemannian metric in Euclidean spaces further reduces to
ḡp(ξ, ζ) = ξT Ḡζ = 〈ξ, ζ〉 for ξ, ζ ∈ TpE ∼= E .

The structure of a Riemannian metric allows for a natural definition of the Riemannian
gradient of a smooth scalar function f : M→ R. For each p ∈M the differential Df(p) is
a linear functional on the Hilbert space (TpM, gp), and the gradient gradf(p) is defined
as the unique element in TpM s.t.

〈gradf(p), ξ〉p = Df(p)[ξ], ∀ ξ ∈ TpM, (4.22)

the existence and uniqueness of which follows from Riesz’ representation theorem [23,
p. 46]. The Riemannian gradient enjoys some of the same properties as the regular
Euclidean gradient. It is the direction of the steepest ascent for f(p) in the sense that

gradf(p)
||gradf(p)||p

= arg max
ξ∈TpM,||ξ||p=1

Df(p)[ξ], (4.23)

and its norm ||gradf(p)||p gives the magnitude of the steepest slope of f at p.

4.5 Geodesics
If an iterative process finds itself at a point p ∈M on a Riemannian metricM, we would
like to be able to move along a direction given by a certain tangent vector ξp ∈ TpM, to
e.g. reduce an objective function. For vector spaces we define a straight line from p ∈ Rd

along ξ ∈ TpRd ∼= Rd by the curve γ(t) = p + tξ, and for manifolds the analogue to
moving along a straight line is the geodesic. Before presenting the definition of a geodesic
we’ll briefly present the ideas of an affine connection and the covariant derivative along a
curve onM.

First we state what an affine connection is, following do Carmo [4]:

Definition 4.7 (Affine Connection [4, Def. 2.1]). An affine connection ∇ on a smooth
manifoldM is a mapping

∇ : X(M)× X(M)→ X(M), (4.24)
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denoted (ξ, ζ) 7→ ∇ξζ, and which satisfies the following properties:

1. ∇fξ+gζη = f∇ξη + g∇ζη,

2. ∇ξ(ζ + η) = ∇ξζ +∇ξη,

3. ∇ξ(fζ) = f∇ξζ + ξ(f)ζ,

in which ξ, ζ, η ∈ X(M) and f ∈ F(M).

Intuitively, the affine connection generalizes derivatives of a vector field ζ along the
vector field ξ, as the idea used for defining tangent vectors by composing scalar functions
with smooth curves γ : R →M does not work for vector fields ξ ∈ X(M). We can see
this by "computing"

dξγ(t)
dt

∣∣∣∣
t=0

= lim
t→0

ξγ(t) − ξγ(0)
t

, (4.25)

which is not defined in general as ξγ(t) ∈ Tγ(t) and ξγ(0) ∈ Tγ(0) are elements of different
vector spaces [23, p. 93]. Any affine connection also induces a covariant derivative of
vector fields along smooth curves.

Definition 4.8 (Covariant derivative [4, Prop. 2.2]). LetM be a smooth manifold with
an affine connection ∇. Then there exists a unique correspondence which associates to a
vector field ξ : I → TM along the differentiable curve γ : I ⊂ R→M (i.e. ξ(t) ∈ Tγ(t)M)
another vector field Dξ

dt along γ, called the covariant derivative of ξ along γ, such that:

1. D
dt(ξ + ζ) = Dξ

dt + Dζ
dt ,

2. D
dt(fξ) = df

dt ξ + f Dξ
dt ,

3. If ξ is induced by a vector field η ∈ X(M), i.e. ξ(t) = η(γ(t)), then Dξ
dt = ∇γ̇η ,

for ξ, ζ : I → TM and f : I → R smooth.

Consider a chart (U , ϕ) ofM for which γ(I) ∩ U 6= ∅, ϕ(γ(t)) = [x1(t), . . . , xd(t)]T is a
local coordinate representation of the smooth curve γ : I ⊂ R→M. Any vector field ξ
along γ can then be expanded as

ξ(t) =
d∑
i=1

ξi(t)Ei(t), (4.26)

for ξi ∈ C∞(I) and {Ei(t) = (Ei)γ(t)}di=1 the coordinate vector fields of (U , ϕ). In this
chart the velocity vector field of γ can be expressed as γ̇(t) = ∑d

i=1
dxi(t)

dt Ei(t), and the
covariant derivate of Ei(t) can be computed using the third property in the definition of
the covariant derivative (4.8),

DEi(t)
dt = ∇γ̇Ei(t) = ∇

Σ
dxj (t)

dt
Ei(t)

Ei(t) =
d∑
j=1

dxj(t)
dt ∇Ej(t)Ei(t). (4.27)
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If we expand the d2 smooth vector fields ∇EjEi, i, j = 1, . . . , d in the same basis {Ei}di=1
independent of t as

∇EjEi =
d∑

k=1
Γkj,iEk, (4.28)

the chart-dependent coefficient functions Γkj,i ∈ F(U) are called the Christoffel symbols [4,
p. 52], and they fully define the connection ∇ in each chart [23, p. 95].

Continuing, Dξ
dt can be computed in the chart using properties of the affine connection

and the covariant derivative [4, p. 51]:

Dξ
dt =

d∑
i=1

dξi(t)
dt Ei(t) +

d∑
i=1

ξi(t)
DEi(t)

dt ,

=
d∑
i=1

dξi(t)
dt Ei(t) +

d∑
i,j=1

ξi(t)
dxj(t)

dt ∇Ej(t)Ej(t),

=
∑
k=1

dξk(t)
dt +

d∑
i,j=1

ξi(t)
dxj(t)

dt Γkj,i(γ(t))

Ek(t),
(4.29)

where we’ve renamed the i index with k in the first sum on the last line. Intuitively, the
covariant derivative takes into account the fact that the basis vectors {Ei(t)}di=1 change
from point to point along the curve. On a flat vector space manifold E , the Christoffel
symbols all vanish, as the tangent vector space at all points p ∈ E can be identified with
E , and is spanned by {ei}di=1 independent of the time t. Then, the covariant derivative
reduces to the regular second time derivative of a curve in a vector space E .

The choice of an affine connection ∇ on a Riemannian manifold M is in principle
free, but there exists a unique preferred connection with certain properties called the
Riemannian connection or the Levi-Civita connection.

Definition 4.9 (Riemannian (Levi-Civita) Connection [4, Thrm. 3.6]). Given a Rieman-
nian manifold (M,A+, g), there exists a unique affine connection ∇ onM satisfying the
conditions:

1. ∇ is symmetric, meaning that its associated Christoffel symbols are symmetric in the
lower indices, Γki,j = Γkj,i ∀ i, j, k, in all charts (U , ϕ) ∈ A+.

2. ∇ is compatible with the Riemannian metric g, meaning that for any two vector fields
ξ, ζ along a smooth curve γ : I →M we have

d
dt〈ξ, ζ〉γ(t) =

〈Dξ
dt , ζ

〉
γ(t)

+
〈
ξ,

Dζ
dt

〉
γ(t)

. (4.30)

In this work we’ll always be using the Levi-Civita connection on the Riemannian manifolds
we work with. And finally we are ready to state the definition of a geodesic as a curve
with a vanishing acceleration vector field D2

dt2γ = D
dt γ̇ [23, p. 102].
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Definition 4.10 (Geodesic [4, Def. 2.1]). Let γ : [t0, t1] →M be a smooth curve on the
manifoldM. Then, γ is a geodesic at t′ ∈ [t0, t1] if

D
dt γ̇

∣∣∣∣
t=t′

= ∇γ̇ γ̇ = 0, (4.31)

If the curve γ is geodesic at all points t′ ∈ [t0, t1], we say that γ is a geodesic connecting
γ(t0) and γ(t1).

Concerning the existence and uniqueness of such geodesics given an initial point and
tangent vector, we refer to do Carmo [4, Proposition 2.5].

Theorem 4.2 (Local Geodesic Existence and Uniqueness do Carmo [4, Prop. 2.5]). Given
p ∈M, there exists a neighborhood V ⊂M of p, δ > 0, ε > 0 and a C∞ mapping

γ : (−δ, δ)× Uε →M, Uε = {(q, ζ) | q ∈ V, ζ ∈ TqM, ||ζ||q < ε} (4.32)

such that the curve t 7→ γ(t, q, ζ), t ∈ (−δ, δ) defines the unique geodesic passing through q
at t = 0 with tangent vector ζ, for each (q, ζ) ∈ Uε.

The proof of the above theorem relies on the existence and uniqueness of solutions
to systems of ODE’s. If we write out the requirement for a curve γ : I ⊂ R → M
to be a geodesic in a chart (U , ϕ) as was done in Eq. (4.29) with ϕ(γ(t)) = x(t) =
[x1(t), . . . , xd(t)]T ∈ Rd, γ is a geodesic iff.

0 = D
dt(γ̇) =

∑
k=1

d2xk(t)
dt2 +

d∑
i,j=1

dxi(t)
dt

dxj(t)
dt Γ̂kj,i(x(t))

Ek(t), (4.33)

where Γ̂kj,i = Γkj,i ◦ ϕ−1. To construct a geodesic γ then, do Carmo [4, pp. 61-63]
demonstrates that we only need to prove the existence and uniqueness of a solution to
the coupled second order system of ODE’s

d2xk(t)
dt2 +

d∑
i,j=1

dxi(t)
dt

dxj(t)
dt Γ̂kj,i(x(t)) = 0, k = 1, . . . , d, (4.34)

for t ∈ (−δ, δ), with initial conditions ϕ(p) = x(0), γ̇(0) = ∑d
i=1

dxi(t)
dt Ei(0).

4.6 Exponential and Logarithmic Mapping
Theorem 4.2 guarantees the existence and uniqueness of geodesics locally about a point
p, with a trade-off between the magnitude of the tangent vector ζ at t = 0 and the time
domain of the geodesic. This trade-off can be formalized into the homogeneity principle
as formulated by do Carmo [4, p. 64] which states that if a geodesic γ(t, p, ξ) is defined
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on an interval (−δ, δ), then the geodesic γ(t, p, aξ), a > 0 is defined on the interval
(−δ/a, δ/a) and

γ(at, p, ξ) = γ(t, p, aξ). (4.35)

The above property motivates the definition of a map returning the result of moving for
a time t = 1 along the geodesic given by an initial point p ∈ M and an initial tangent
vector ξ ∈ TpM. This map is called the exponential map, defined by

Exp: Uε →M, Exp(p, ζ) = γ(1, p, ζ) = γ(||ζ||p, p, ζ/||ζ||p), ε = δ/2, (4.36)

where Uε is as defined in Proposition 4.2, limiting the tangent vector norms to ||ζ|| < δ/2
to ensure that the geodesic curve is defined for times |t| ≤ 1 [4, p. 65]. Furthermore, we
may restrict the exponential map to a point p ∈M and view the exponential map as a
mapping between TpM andM,

Expp : Bε1(0p) ⊂ TpM→M, Expp(ζ) = Exp(p, ζ), (4.37)

where Br(ζ) is the open ball of radius r about ζ ∈ TpM. Other immediate properties
of the exponential map are that Expp(0p) = p, and by its definition through the C∞

mapping γ : (−δ, δ)×Uε the exponential map is smooth. In the same manner as do Carmo
[4, p. 65], we can also compute the differential of the exponential map Expp at the origin
0p ∈ TpM using the canonical identification T0p(TpM) ∼= TpM, giving

D(Expp)(0p)[ζ] = d
dt(Expp(tζ))

∣∣∣∣
t=0

= d
dt(γ(1, p, tζ))

∣∣∣∣
t=0

, (4.38)

= d
dt(γ(t, p, ζ))

∣∣∣∣
t=0

= ζ,

where the last equality follows from the definition of the mapping γ(t, q, ζ). In conclusion,
the differential of the exponential map at the origin is the identity map, D(Expp)0p =
IdTpM. By the inverse function theorem this allows us to conclude that Expp is a local
diffeomorphism of Bε1(0p) onto an open subset V ⊂ M containing p [4, Prop. 2.9].
The image Expp(Bε(0p)) ⊂ M of such a ball Bε(0p) ⊂ TpM, given an ε > 0 for which
Expp : Bε(0p) → M is a diffeomorphism onto its image, is called a geodesic ball inM
[26, p. 158].

The inverse of the exponential mapping is called the logarithmic mapping, denoted

Logp : Vp → TpM. (4.39)

Its domain Vp is the image of the largest subset C̃ ⊂ TpM containing 0p for which
Expp : C̃ → M is a diffeomorphism onto its image. Points q ∈ V have a unique represen-
tation Logp(q) = q̃ ∈ TpM in the tangent space of p, so that expp(q̃) = q.
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4.7 Riemannian Distance
Given a Riemannian manifold (M, g) we measure the length of a smooth curve γ : I ⊂
R→M by integrating the norm of its velocity vector field γ̇(t) over its domain [26, p.
34],

Lg(γ) =
∫ t1

t0
||γ̇(t)||g dt,=

∫ t1

t0

√
〈γ̇(t), γ̇(t)〉γ(t) dt, (4.40)

analogous to the definition of the length of a parametrized curve in Rd. We can use the
minimum length of all curves connecting two points on a manifold as a "measure tape" to
define the distance between two points, but in order to be able to define a metric space
structure on a Riemannian manifoldM we require that it be path-connected.

A manifoldM is path-connected if for any p, q ∈M, there exists continuous curves

γp→q : [t0, t1]→M, s.t. γp→q(t0) = p, γp→q(t1) = p, (4.41)

connecting the two points. A curve γ : [a, b] → M connecting two points p, q ∈ M,
in the sense that γ(a) = p and γ(b) = q, is called admissible if there exists a partition
a = a0 < a1 < · · · < ak = b, k ∈ N s.t. γ|[ai−1,ai] : [ai−1, ai] →M, i = 1, . . . , k is smooth
with nonvanishing velocity [26, pp. 33-34]. IfM is a path-connected manifold, then any
two points p, q ∈M can be connected by an admissible curve [26, Prop. 2.50]. Restricting
the "measuring tapes" to admissible connecting curves, we define the Riemannian distance
between two points:

Definition 4.11 (Riemannian distance [26, p. 36]). Let (M, g) be a path-connected
Riemannian manifold. The Riemannian distance dist : M×M→ R+ is defined as

dist(p, q) = inf
γp7→q

Lg(γp 7→q), (4.42)

where γp 7→q is any admissible curve connecting p and q.

With the metric function dist : M×M → R+ defined above, the path-connected Rie-
mannian manifoldM is a metric space whose metric topology is the same as the atlas
topology [26, Thrm. 2.55].

Any curve γ : [t0, t1]→M connecting p and q inM and for which dist(p, q) = Lg(γ) is
called a minimizing curve connecting p and q. If q ∈ M is contained in a geodesic ball
about p ∈ M, then the geodesic curve t 7→ expp(tξ), t ∈ [0, 1] with ξ = logp(q) is the
unique minimizing curve connecting p to q, up to a reparametrization in t due to the
homogeneity principle [26, Prop. 6.11].

We say that a Riemannian manifoldM is metrically complete if every Cauchy sequence
on M converges. It turns out that this notion of completeness is equivalent to the
concept of a manifold being geodesically complete, in the sense that the exponential
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mapping is defined on the entire tangent bundle TM [26, Thrm. 6.19]. As these notions
of completeness are equivalent, we say that a Riemannian manifold M is complete if
either of the above notions of completeness hold. The Riemannian distance function
is particularly well-behaved on complete Riemannian manifolds, as ifM is a complete,
path-connected Riemannian manifold, any two points p, q ∈M can be connected by a
minimizing geodesic [26, Cor. 6.21].

For a geodesic γ, the norm of the velocity field tangent vectors of γ̇ are constant along
the path, as

d
dt ||γ̇(t)||2g = d

dt〈γ̇(t), γ̇(t)〉 = 2
〈

D
dt γ̇(t), γ̇(t)

〉
= 0. (4.43)

This means that for a geodesic γ : [0, 1] → M starting at γ(0) = p with γ̇(0) = ξp, the
length of the curve is given by

L(γ) =
∫ 1

0

√
||γ̇(t)||2g dt =

∫ 1

0

√
||γ̇(0)||2g dt = ||ξp||. (4.44)

This fact lends itself to another interpretation of Expp(ξ) as moving a distance of ||ξ||p
away from p along the geodesic curve passing through p with tangent vector ξ, as long as
||ξ||p is small enough for Expp(ξ) to be well-defined. And the Riemannian distance p and
q contained in geodesic ball about p can be computed as

dist(p, q) = || logp(q)||p. (4.45)

For a point p on the Riemannian manifold M, let C̃p ⊂ TpM be the largest subset of
TpM containing the origin 0p for which Expp : C̃p → Expp(C̃p) is a diffeomorphism. Then
image of the boundary ∂C̃ under the exponential mapping is called the cut locus of p,
denoted Cp = Expp(∂C̃p) ⊂ M [27, Sec. 2.1.3]. The Riemannian distance between a
point p ∈M and its cut locus,

dist(p, Cp) = inf
q∈Cp

dist(p, q), (4.46)

is called the injectivity radius of p, denoted inj(p). Furthermore, we define the injectivity
radius of a manifold M as the infimum over the injectivity radii of all its points, i.e.
inj(M) = infp∈M inj(p) [27, p. 4].

For the class of Hadamard manifolds an even stronger result holds regarding the existence
of minimizing geodesics. One way of defining a Hadamard manifold is through its
distance function:

Definition 4.12 (Hadamard manifold [28, Thrm. 1.3.2]). Let M be a complete, path-
connected Riemannian manifold. ThenM is Hadamard if for every pair p, q ∈ M there
exists a point m ∈M such that

dist2(m, z) + 1
4 dist2(p, q) ≤ 1

2 dist2(p, z) + 1
2 dist2(z, q), ∀ z ∈M. (4.47)
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In which casem is the midpoint between p and q, with dist(p,m) = dist(m, q) = dist(p, q)/2.

And for Hadamard manifoldsM, any two points p, q ∈ M are connected by a unique
minimizing geodesic, meaning the logarithm mapping between them is well-defined, and
inj(M) is infinite [28, p. 2].

In practice, we often work with the squared distance function due to its differentiability
properties. The squared distance function with one argument fixed

dist2(p, ·) : M→ R+, q 7→ dist2(p, q), (4.48)

is C∞ smooth onM\ Cp [27, pp. 4-6], with Riemannian gradient

gradq dist(p, q)2 = −2 logp(q), (4.49)

as long as q is within the injectivity radius of p.

4.8 Riemannian Center of Mass
In vector spaces, the mean of a set of points, e.g. {xi}Ni=1 ⊂ Rd is defined as x̄ =
(1/N)∑N

i=1 xi, but this summation operation followed by multiplication with N−1 is in
general not possible for manifold valued points. The mean, or Riemannian center of mass,
of a set of points {qi}Ni=1 ⊂M can instead be defined as the solution(s) to the following
minimization problem [27, Def. 2.5]:

µ̄ = argmin
p∈M

µ(p) := 1
N

N∑
i=1

1
2 dist(p, qi)2. (4.50)

In Euclidean spaces, the unique minimizer of Eq. (4.50) is the aforementioned x̄, whilst
on general Riemannian manifolds there may be several local minimizers of the objective
function µ(p). However, the Riemannian center of mass is unique if all the points {qi}Ni=1
in question are contained in a metric ball

B(o, ρ) = {p ∈M | dist(o, p) < ρ}, (4.51)

about o ∈M and with a radius ρ > 0 depending on the manifold [27, Thrm. 2.6].

4.9 Line Search Optimization
With the structure of a Riemannian metric g on a smooth manifoldM, as well as the
concept of geodesics along tangent vectors we can generalize the idea of line search
methods for minimizing smooth scalar objective functions f : M→ R. Intuitively, we
can find the direction of the steepest ascent of f at p ∈M through its gradient gradf(p),
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and subsequently take steps along geodesics in the steepest descent direction −gradf(p)
by means of the exponential mapping expp(−t · gradf(p)), t > 0.

Even though it is desirable to step along geodesics by means of the exponential mapping,
it can be computationally expensive to compute, or theoretically intractable to solve
for the exponential mapping in a closed form expression given the Riemannian metric
g. To generalize the action of stepping from a point along a certain tangent vector we
introduce the concept of a retraction.

Definition 4.13 (Retraction [23, Def. 4.1.1]). Given a manifold M, a retraction is a
smooth mapping R : TM → M where we let Rp = R(p, ·) : TpM → M denote the
restriction onto p ∈M with the following two properties:

1. Rp(0p) = p, with 0p the origin of TpM.

2. DRp(0p) : TpM→ TpM = IdTpM, i.e. DRp(0p)[ξ] = ξ, ∀ ξ ∈ TpM.

We can interpret a retraction R as a first order approximation to the exponential map
for a Riemannian manifold, even though the curves t 7→ Rp(tξp) are in general not
geodesics.

The idea of a line search method from classical vector space optimization as presented by
Nocedal and Wright [14, Chap. 3] can be adopted to work on Riemannian manifolds.
Indeed, if we compose an objective function f : M → R with the retraction operator
at a point p ∈ M, we have a local model of f over the vector space TpM ∼= Rd where
d = dim(M). Denoted by

f̂p = f ◦ Rp : TpM∼= Rd → R, (4.52)

the function f̂p is called the pullback of f through Rp [23, Eq. 4.3]. Due to the properties
of retractions from Def. 4.13, the action of the differential of the pullback at p is the same
as for the objective function itself:

Df̂p(0p)[ξ] = D(f ◦ Rp(0p))[ξ] = Df(Rp(0p)) [DRp(0p)[ξ]] = Df(p)[ξ], ξ ∈ TpM.

(4.53)
Thus, the differentials Df̂(0p) and Df(p) are equal under the canonical identification
T0p(TpM) ∼= TpM. Consequently, the gradient of the pullback and original objective
function at 0p and p are also the same up to the canonical isomorphism, i.e. gradf̂(0p) =
gradf(p) [23, Eq. 4.4].

The above considerations justify the use of retractions to take steps along descent
directions using the pullback function, and we expect the behavior of the pullback
function to match the objective function composed with the exponential mapping to first
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order. In close analogy with line-search methods on Euclidean spaces we define iterates

{pi} ⊂ M, pi+i = Rpi(tiηi), (4.54)

where ti ∈ R+ is the step size taken in the search direction ηi ∈ TpiM. We seek to iterate
until we reach critical points p∗ of the objective function f : M→ R, characterized by
gradf(p∗) = 0. In the same manner as for regular Euclidean optimization this means
that the differential Df(p∗)[ξ] = 0 ∀ ξ ∈ Tp∗M, and we’ve found a stationary point of
our objective function.

In order to prove the convergence of line-search methods to critical points of the objective
function, we have to constrain the sequence of search directions. To this end we introduce
the definition of a gradient-related sequence, a necessary condition on our search directions
for our optimization algorithm to converge to a critical point of our objective function.

Definition 4.14 (Gradient-related Sequence [23, def. 4.2.1]).
Given a cost function f : M→ R on a Riemannian manifoldM, a sequence of line-search
directions {ηi}, ηi ∈ TpiM is gradient-related if for any subsequence {pi}i∈K of the iterates
{pi} that converges to a non-critical point of f , the corresponding sub-sequence is bounded
and satisfies

lim sup
i→∞, i∈K

gpi(gradf(pi), ηi) < 0. (4.55)

In this work we employ the steepest descent method where the search directions are given
by ηi = −gradf(pi), and as such our sequence of search directions are gradient-related.

Additionally, restrictions must be put on the step size ti taken along search directions ηi
to ensure convergence to a critical point. The Armijo condition is a standard condition
on the step size ti, stated for vector spaces by Nocedal and Wright [14, Alg. 3.1], and
adapted to work on manifolds by Absil, Mahony, et al. [23, Def. 4.2.2].

f(Rpi(ti ηi)) ≤ f(pi) + c1 gpi(gradf(pi), ηi) = f(pi)− c1||gradf(pi)||2pi
, (4.56)

The parameter c1 ∈ (0, 1) sets the required descent proportional to the magnitude of the
gradient and the step length. When computing an Armijo step size tAk in practice satisfying
the Armijo conditions, we choose an initial step size ti > 0 and a contraction parameter
c2 ∈ (0, 1). Then we backtrack to find a k ∈ N s.t. tAi = ck2 ti satisfies the Armijo condition
in Eq. (4.56).

Adapting the Accelerated Line Search algorithm of Absil, Mahony, et al. [23] to our
purposes, the general structure of our gradient based line-search method for minimizing
objective functions is presented in Algorithm 1.

In this work we use the default values c1 = 10−4 and c2 = 0.2 whenever we use
Algorithm 1. Before stating a theorem regarding the convergence of the line search
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Algorithm 1 Riemannian Gradient Descent [23, p. 63]

Require: Riemannian manifoldM, continuously differentiable scalar valued f : M→ R,
retraction R : TM→M, c1, c2 ∈ (0, 1), initial point p0 ∈M, initial step size t0 > 0.

1: for i = 0, 1, ... do
2: Compute gradf(pi).
3: Find k ∈ N s.t.

f(Rpi(βkti ηi)) ≤ f(pi)− c1||gradf(pi)||2pi
, (4.57)

where ti+1 = ck2ti is the backtracking Armijo step size.

4: pi+1 = Rpi(−ti+1 gradf(pi)).
5: end for

method in Algorithm 1, we describe how the concept of convergence of a sequence can
be handled on a manifold. An infinite sequence {pn}∞n=1 on the manifoldM is said to be
convergent if there exists a chart (U , ϕ) overM, a point p∗ ∈ M, and an N > 0 s.t. for
all n > N , pn ∈ U , and the sequence {ϕ(pn)}∞n=N+1 converges to ϕ(p∗) [23, Sec. 4.3.1].
The point p∗ = ϕ−1(limn→∞ ϕ(pn)) is the limit of such a convergent sequence {pn}∞n=1,
which is unique in a Hausdorff topology [23, p. 63]. Now we can state a convergence
result regarding the iterates of Algorithm 1.

Theorem 4.3 (Accumulation to critical points [23, Thm. 4.3.1]). Let {pn} be an infinite
sequence of iterates generated by Algorithm 1. Then every accumulation point of {pn} is a
critical point of the cost function f : M→ R.

4.10 The Sphere and SPD Matrices
Examples of sets which admit a smooth Riemannian manifold structure include the
n-spheres and the sets of n× n symmetric positive definite (SPD) matrices, n ∈ N. We
can imbue the n-sphere

S(n) = {p ∈ Rn+1 | ||p||2 = 1} ⊂ Rn+1 (4.58)

with a smooth Riemannian manifold structure as an embedded submanifold of Rn+1. To
see this, consider the mapping

Fn : Rn+1 → R, p 7→ ||p||22, (4.59)

which is a submersion on Rn+1 \ {0}. Specifically, 1 ∈ R is a regular value of Fn as we
can see by showing that DFn(x) is a surjection for all x ∈ F−1

n (1) = S(n). For any α ∈ R,
let x̂ = α

2x, s.t.
DFn(x)[x̂] = 〈2x, x̂〉 = α 〈x, x〉 = α. (4.60)
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By Theorem 4.1, S(n) is a closed embedded submanifold of Rn+1 with dimension n. The
tangent space TpS(n) can be associated with the kernel of DFn(x),

TpS(n) = ker(DFn(x)) = {ξ ∈ Rn+1 | 〈ξ, p〉 = 0}. (4.61)

As TpS(n) can be seen as a subspace of the embedding space Rn+1 the flat Riemannian
metric ḡ induces a Riemannian metric g on S(n) by the action

gp(ξ, ζ) = ḡp(ξ, ζ) = 〈ξ, ζ〉, ξ, ζ ∈ TpS(n). (4.62)

The geodesics of on S(n) with the flat Riemannian metric inherited from the embedding
space are great circles

γ(t) = cos(||ξ||p t)p+ ξp
||ξ||p

sin(||ξ||p t), t ∈ R (4.63)

with γ(0) = p, γ̇(0) = ξ [23, p. 103]. The exponential mapping at p becomes

expp : TpS(n)→ S(n), expp(ξ) = cos(||ξ||p)p+ ξp
||ξ||p

sin(||ξ||p). (4.64)

The logarithmic mapping at p becomes

logp : S(n)→ TpS(n), logp(q) = arccos(〈p, q〉) q − p〈p, q〉
||q − p〈p, q〉||2

, (4.65)

which is well-defined on S(n) \ {−p}, as the cut locus of p is the antipodal point. Finally,
the Riemannian distance between two points on S(n) becomes

distS : S(n)× S(n)→ R+, distS(p, q) = arccos(〈p, q〉). (4.66)

The set of SPD matrices in Rn×n, n ∈ N

P(n) = {p ∈ Rn×n | pT = p and xT px > 0 for all a ∈ Rn, a 6= 0} (4.67)

is an open subset of S(n) = {p ∈ Rn×n | pT = p} [29, Prop. 2.7], the vector space of
n×n symmetric matrices. Thus, P(n) can be imbued with a smooth manifold structure as
an open submanifold of S(n) with dimension n(n+ 1)/2. The tangent space at p ∈ P(n)
can further be identified with the embedding space, i.e.

TpP(n) ∼= S(n), p ∈ P(n). (4.68)

For the choice of Riemannian metric on P(n), we first present the Linear-Affine (LA)
metric introduced by Pennec, Fillard, et al. [30] and defined pointwise for p ∈ P(n) as

gLA
p (ξ, ζ) = tr(p−1ξp−1ζ), ξ, ζ ∈ S(n). (4.69)
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Highly useful for any Riemannian manifold structure on SPD matrices is the fact that
the matrix exponential Exp: S(n) → P(n) is a diffeomorphism from S(n) onto P(n)
[29, Thrm. 2.8]. Its inverse Log : P(n)→ S(n) is in particular well-defined for all SPD
matrices.

Writing ξ = UΞUT ∈ S(n) in its spectral decomposition, with U orthonormal and
Ξ = diag({ξi}ni=1), Exp(ξ) = U diag({exp(ξi)}ni=1)UT . The matrix logarithm applied to
an SPD matrix p = V ΛV T acts similarly as Log(p) = V diag({log(λi)}ni=1)V T , with V

orthogonal and Λ = diag({λi}ni=1), λi > 0, i = 1, . . . , n [30, pp. 45-46]. Additionally,
raising an SPD matrix to any power is a smooth mapping [29, Cor. 2.9]:

(·)α : P(n)→ P(n), pα = Exp (αLog(p)) . (4.70)

With the LA metric, the formula for the exponential mapping reads

expp : S(n)→ P(n), expp(ξ) = p−1/2 Exp
(
p1/2ξp1/2

)
p−1/2, (4.71)

whilst the logarithmic mapping becomes

logp : P(n)→ S(n), logp(q) = p1/2 Log
(
p−1/2ξp−1/2

)
p1/2, (4.72)

and is well-defined for all q ∈ P(n) [30, p. 48]. This means that inj(P(n)) = ∞. The
Riemannian distance under the Linear-Affine metric is

distP,LA : P(n)× P(n)→ R+, distP,LA(p, q) = ||Log
(
p−1/2qp−1/2

)
||Fr, (4.73)

where ||A||Fr =
√

tr(ATA) is the Frobenius norm. And with the Linear-Affine metric,
(P(n), gLA) is Hadamard [28, p. 10].

A second choice of Riemannian metric for the SPD manifold is the Log-Euclidean (LE)
metric, as introduced by Arsigny, Fillard, et al. [29]. The authors exploit the matrix
exponential diffeomorphism between S(n) and P(n) to construct a Lie group structure
on the manifold of SPD matrices by the logarithmic product

p� q := Exp (Log(p) + Log(q)) , (4.74)

which preserves the identity element and regular matrix inverse [29, Thrm. 3.3]. Choos-
ing a Riemannian metric compatible with this Lie group structure leads to computationally
expensive expressions for the exponential and logarithmic mapping, but the expression
for the Riemannian distance is particularly simple and reads

distP,LE : P(n)× P(n)→ R+, distP,LE(p, q) = ||Log(p)− Log(q)||Fr. (4.75)

Under the LE metric the space of SPD matrices is a flat Riemannian manifold, isometric
to S(n) endowed with the Frobenius norm [29, Cor. 3.10].
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5Existing Models

In this chapter we present the existing models for classification on Riemannian manifolds,
as mentioned in Section 1.1. We assume we’re working on a complete Riemannian
manifold (M,A+, g), and denote the training data X = {(pi, yi)}Ni=1 ⊂M× {1,−1}.

5.1 Tangent Vector Space SVM
As mentioned in Section 1.1, one way of generalizing the classical SVM model to Rieman-
nian manifolds is to exploit the fact that each point q ∈ M has a tangent vector space
TqM with an inner-product gq : TqM× TqM→ R. If all our training points are within
the injectivity radius of a certain reference point pref ∈M, so that logpref

(pi) ∈ TprefM is
well-defined for i = 1, . . . , N , we can map all the training points into TprefM with the
mapping pi 7→ logpref

(pi) =: ζi ∈ TprefM. We can then use the classical SVM model from
Chapter 3 directly on the tangent vector space representation of our training data

logpref
(X ) = {(ζi, yi)}Ni=1 ⊂ TprefM×{1,−1}. (5.1)

In this work we will call this type of model which relies on mapping the training points
to a specific tangent vector space a Tangent Space Support Vector Machine, or TS-SVM.
In order to classify new points, they would be mapped to TprefM, and evaluated by the
linear separator there. Denoting the optimal Lagrange multipliers for the trained linear
separator on TprefM by λ ∈ RN , the TS-SVM classifier becomes

fTS−SVM : M×M× RN × R,

fTS−SVM(q | pref , λi, β0) = β0 +
N∑
i=1

λiyi〈logpref (q), ζi〉pref .
(5.2)

The TV-SVM model has been proposed and tested by Barachant, Bonnet, et al. [9] to
classify human brain activity in the domain of Brain Computer Interfaces (BCIs). They
work on with points on the manifold of n× n SPD matrices P(n) with the Linear-Affine
metric, which has the advantage that inj (P(n)) =∞, as (P(n), gLA) is Hadamard as per
Definition 4.12.

With regard to the choice of reference point pref , we would in principle like to find
the reference point with the tangent space which most closely captures the geometry
locally about our training data. However, it’s not obvious which objective to use in order
determine such an optimal reference point.
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Tuzel, Porikli, et al. [10, Eq. (26)], propose to use the discrepancy between the Rieman-
nian distance between training points and the distance between their tangent vector
space representations as a measure of how well a specific tangent space captures the
local geometry. That is, they suggest that a point pref which minimizes the objective

ε(q) =
N∑

i,j=1

(
dist(pi, pj)− || logq(pi)− logq(pi)||q

)2
(5.3)

would be a good candidate for a reference point in which tangent space to perform the
linear separation of our training data, as the distances computed in that tangent vector
space would then most closely resemble the Riemannian distances between the training
points.

The above objective ε(q) is not trivial to minimize though, and as a heuristic Tuzel, Porikli,
et al. [10] suggest using the Riemannian center of mass as defined in Section 4.8. They
argue that even though they don’t have a theoretical proof as to why the Riemannian
center of mass should be the best choice for representing the training data in a tangent
space, they’ve generated many data sets on P(n) for differing n’s and found empirically
that the discrepancy ε(q) at the Riemannian center of mass of the points in question was
significantly lower than for any of the training points. And in the special case where
all the training data lie on a geodesic, the approximation error in Eq. (5.3) vanishes at
points q on the geodesic, including at the Riemannian center of mass of the training data
which then lies on that geodesic.

On the other hand, Barachant, Bonnet, et al. [9], compare three different natural choices
of a reference point on P(n). The identity matrix I ∈ Rn×n, the arithmetic mean of their
training data, and the Riemannian center of mass of their training data. The identity
matrix is clearly SPD, and the arithmetic mean of SPD matrices in the embedding Rn×n

is also SPD as

xT
(

N∑
i=1

1
N
pi

)
x = 1

N

N∑
i=1

xT pix ≥ 0, {pi}Ni=1 ⊂ P(n). (5.4)

Based on the classification accuracy on their test data they conclude that the choice of
the Riemannian center of mass yields the best result. They test their model by classifying
four classes of human brain activity as measured through 22 electrodes. The dataset they
use was part of the BCI-IV competition [39], specifically dataset 2a gathered by Naeem,
Brunner, et al. [31]. We will later present and use the same dataset as an example for
comparing the performance of different manifold SVM models in Section 7.3.
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5.2 Manifold Radial Basis Function SVM
Jayasumana, Hartley, et al. [11], propose a way of generalizing the classical SVM model
to Riemannian manifolds by utilizing the kernel trick presented in Section 3.2. Specifically,
they construct a valid kernel function on the Riemannian manifold, and take advantage
of the fact that the classical SVM model only requires a valid kernel function to implicitly
generate linear separators in a Hilbert space H.

The authors of [11] construct the manifold kernel based on the Euclidean RBF kernel
introduced in Eq. (3.28), in combination with Theorem 3.2. They show that if the
Riemannian distance function can be expressed as

distg(p, q) = ||Φ(p)− Φ(q)||H, Φ: M→H, (5.5)

where H is a Hilbert space with inner product 〈·, ·〉H, then

KMRBF : M×M→ R+, KMRBF(p, q | σ2) = exp
(
−dist2

g(p, q)
2σ2

)
(5.6)

is positive definite for all σ2 > 0 and thus a valid kernel function [11, Thrm. 6.1]. To
prove the above statement they define the kernel

φg : M×M→ R, φg(p, q) = dist2
g(p, q) = ||Φ(p)− Φ(q)||2H, (5.7)

and show that it is conditionally negative definite in the sense of Definition 3.1. To
see this, consider any set of points {qi}Mi=1, qi ∈ M, and any set {ci}Mi=1, ci ∈ R s.t.∑M
i=1 ci = 0, for an arbitrary M ∈ N. Then,

M∑
i,j=1

cicjφg(qi, qj) =
M∑
i,j=1

cicj ||Φ(qi)− Φ(qj)||2H

=
M∑
i,j=1

cicj〈Φ(qi)− Φ(qj),Φ(qi)− Φ(qj)〉H

=
M∑
j=1

cj

M∑
i=1

ci〈Φ(qi),Φ(qi)〉H

− 2
M∑
i,j=1

cicj〈Φ(qi),Φ(qj)〉H

+
M∑
i=1

ci

M∑
j=1

cj〈Φ(qj),Φ(qj)〉H,

= −2
M∑
i,j=1

cicj〈Φ(qi),Φ(qj)〉H = −2
∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

ciΦ(qi)
∣∣∣∣∣
∣∣∣∣∣
2

H

≤ 0.

(5.8)
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We will call this type of model which extends the SVM kernel trick to Riemannian
manifolds through the RBF kernel Manifold RBF SVM, or MRBF for short. A desirable
property of MRBF models as compared to the TS-SVM model is the fact that we do not
need to choose a reference point in whose tangent space we construct the classical SVM
model. However, the only Riemannian manifolds for which MRBF generates a positive
definite kernel are exactly the ones for which the distance function satisfies Eq. (5.5) for
some mapping Φ: M→H, meaning thatM can be isometrically imbedded in a Hilbert
space [11, Thrm. 6.1], [21, p. 81].

The Riemannian manifold of SPD matrices with the Log-Euclidean metric, (P(n), gLE),
is an example of a manifold which can be isometrically imbedded in S(n), the set of
symmetric n× n matrices. Letting ΦgLE(p) = Log(p) ∈ S(n), the Riemannian distance
function on (P(n), gLE) from Eq. (4.75) can be expressed as

distP, gLE(p, q) = ||ΦgLE(p)− ΦgLE(q)||S(n). (5.9)

Several manifolds can not be isometrically imbedded in a Hilbert space, like the n-sphere
S(n) [11, p. 2468]. However, for practical purposes one can still generate a ”pseudo-
kernel” matrix K̃MRBF using the kernel mapping in Eq. (5.6). And as long as K̃MRBF

is positive semi-definite one can still solve the Wolfe dual in Prob. (3.18), although the
notion that we’re constructing an implicit linear separator in an infinite dimensional
Hilbert space is no longer valid in this case.

In practice when using the MRBF model, we need to choose an appropriate ”variance”
or length scale for the kernel mapping KMRBF(p, q | σ2), as applied to the training data
X . In this work we choose σ as a fraction of the average between-class distance (BCD). If
there are N1 positive class points and N2 negative class points in the training data with
N = N1 +N2 points, this quantity is calculated as

BCD(X ) = 1
N1N2

∑
(yi,pi)∈X ,

yi=1

∑
(yj ,pj)∈X ,
yj=−1

dist(pi, pj). (5.10)

Similarly, we quantify the average positive class distance (PCD) as

PCD = 1
N1(N1 − 1)/2

N1∑
i=1

N1∑
j=i+1

dist(pi, pj), yi, yj = 1, (5.11)

and average negative class distance as

NCD = 1
N2(N2 − 1)/2

N2∑
i=1

N2∑
j=i+1

dist(pi, pj), yi, yj = −1, (5.12)
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To set σ2 then, we choose a fractional scale σs > 0, and set

σ = σs · BCD(X ). (5.13)

5.3 Manifold Control Point SVM
In contrast to the previous manifold SVM models which work to adapt the classical SVM
model to work on Riemannian manifolds, the model introduced by Sen, Foskey, et al.
[13] takes a more manifold centric approach. They introduce two control points c+ and
c− onM as representatives for the positive and negative class, respectively, and classify
points q ∈M according to which control point they are closest to.

Specifically, Sen, Foskey, et al. [13] introduce the control point (CP-SVM) classifier

fCP(q | c+, c−) = dist2(q, c−)− dist2(q, c+). (5.14)

The alternating choice of signs means that fCP(q | c+, c−) > 0 when q is farther away
from c− than c+, and vice versa. The separating surface onM for a choice of control
points consists of all the points q ∈M for which fCP(q | c+, c−) = 0, and is denoted

H(c+, c−) = {q ∈M | dist2(q, c−) = dist2(q, c+)}. (5.15)

If we imagine that we’re working on a Euclidean space E , the distance between any point
x ∈ E and H(c+, c−) can be expressed as

dist(x,H(c+, c−)) = |fCP(x | c+, c−)|
2 dist(c+, c−) , (5.16)

which Sen, Foskey, et al. [13, Sec. 2.3.1] say motivates the idea of minimizing dist2(c+, c−)
to maximize the ”margin” between training points and the separating surface H(c+, c−).
To solve for the best set of control points they propose the unconstrained optimization
problem

min
c+, c− ∈M×M

FCP := dist2(c+, c−) + C

N

N∑
i=1

h+(k − yifCP(pi | c+, c−)) , (5.17)

where h+(x) = max{x, 0} is the hinge loss function. The parameter k > 0 functions as
an insensitivity threshold, of k > 0, returning zero if a point pi is correctly classified by an
amount k or greater. The parameter C > 0 functions as a penalty weight, balancing the
desire to classify points correctly by an amount k, with minimizing the squared distance
between the control points.

The hinge loss function is however not differentiable at zero, which makes the objective in
Prob. (5.17) not differentiable. Sen, Foskey, et al. [13] do not discuss which optimization
procedure they applied to minimize the objective in Prob. (5.17), but in order to be able
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to apply the gradient descent method in Algorithm 1 we replace h(x)+ with the Huber
hinge loss Hu+ as presented in [32, p. 4]:

Hu+ : R× R+ → R, Hu+(z | ε) =


0 if z < 0,
z2

2ε if 0 ≤ z < ε,

z − ε
2 if ε ≤ z.

(5.18)

The Huber hinge loss is continuously differentiable as it transitions from quadratic over
[0, ε) to linear over [ε,∞), with a vanishing derivative at z = 0. In this work we’ve chosen
the default value ε = 10−4 to retain a close resemblance to the hinge loss.

Similar to how we choose the σ2 hyperparameter for the MRBF model, we choose the
scale dependent margin k > 0 for the CP-SVM model as a fraction of the average between
class distance. Specifically, we choose ks ∈ (0, 1) and set

k = ks · BCD(X ). (5.19)

With the Huberized hinge loss the objective in Prob. (5.17) is differentiable, and we
apply Algorithm 1 to minimize it. Without any global convergence results to an optimum
we can only expect to find a local minimum of the CP-SVM objective. And as a stopping
criterion we use whether ||gradFCP||pi < 10−6, or |FCP(pi+1) − FCP(pi)| < 10−6 from
one iteration step to the next.
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6Distance SVM

In this thesis we present a new model for classifying points on a Riemannian manifold
M called Distance SVM. The classifier works by weighing the squared distances to a set
of support points XS = {yi, pi}Mi=1 ⊂ {−1, 1} ×M,

fD : M× RM × R→ R, fD(q | β, β0) = β0 −
M∑
i=i

βiyi dist2(q, pi). (6.1)

The set of support points can in general be a subset of the full set of training points
XT = {yi, pi}Ni=1, i.e. XS ⊆ XT , but for the introduction of the model we’ll assume that
the entire training set is used as support points unless otherwise stated. For notational
purposes it is useful to define the negated squared distance mapping, which takes as input
a point q ∈M and computes the negated squared distances to all the support points,

Υ: M×MN → RN ,

Υ(q | XS) = [−dist2(q, p1), . . . , −dist2(q, pN )]T.
(6.2)

The dependence of Υ on the support points is suppressed for brevity when it is obvious
which set of support points we are considering. The negated squared distance mapping
allows us to rewrite the Distance SVM classifier in Eq. (6.1) as

fD(q | β, β0) = β0 + Υ(q)TYβ = β0 + (YΥ(q))Tβ, (6.3)

where Y = diag({yi}Ni=1). This expression for the classifier suggests the interpretation
that the Distance SVM model constructs a linear separator in the feature space RN after
mapping q 7→ YΥ(q) ∈ RN . This reformulation also allows us to represent the gradient
of the separator function w.r.t. β as

∇βfD(q | β, β0) = YΥ(q). (6.4)

The Distance SVM classifier is inspired by the control point SVM model of Sen, Foskey,
et al. [13]. However, whereas their classifier introduces two new control points and
assigns a class label according to which control point is closer, the Distance SVM classifier
weighs signed distances to existing training points. Additionally, the Distance SVM
classifier includes a bias β0 ∈ R to allow for greater flexibility in handling skewed support
point sets, if for example the number of points of each class is not balanced.
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In the same manner as for the Euclidean SVM model, our training data is correctly
classified with a margin of M > 0 if

yfD(p | β, β0) ≥ M, ∀ (y, p) ∈ XT . (6.5)

Even though the quantity M is analogous to the margin in the Euclidean SVM case, equal
to the minimum distance from any training point to the separating hyperplane defined
in Eq. (3.1), this geometric interpretation does not hold for the Distance SVM classifier.
Denoting the separating hypersurface on our manifoldM by

HD(β, β0) = {q ∈M | fD(q | β, β0) = 0}, (6.6)

the absolute value of the classification function |fD(q | β, β0)| is not proportional to the
distance between q and HD(β, β0), i.e.∣∣∣∣ 1

||β||2
fD(q | β, β0)

∣∣∣∣ 6= dist(q,HD(β, β0)) = inf
p∈H(β,β0)

dist(q, p). (6.7)

This is due to the lack of a Hilbert space structure on the Riemannian manifold M,
which means we cannot construct a linear separator on the manifold directly, instead
constructing a linear separator for YΥ(M) ⊂ RN .

To continue the analogy with Euclidean SVM’s we would ideally like to end up with a
sparse β vector in the final classification function, so that when we wish to classify a new
point q ∈M, we only need to compute the distance between the q and a subset of our
training points. The nonzero βi would then correspond to points pi which we call support
points of our model on the manifold.

6.1 The Optimization Problem
Analogous to the optimization problem for the Euclidean SVM model we seek to maximize
the quantity M from Eq. (6.5) to find the maximum margin Distance SVM classifier. This
leads directly to the optimization problem

max
β ∈ RN , β0 ∈ R

M,

s.t.
yfD(p|β, β0) ≥ M, ∀ (y, p) ∈ XT .

(6.8)

We can transform Prob. (6.8) to an equivalent problem which is more amenable to being
solved in its dual form by noting that

|fD(q | β, β0)| ∝ ||β||2. (6.9)
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Then similar to what we did when constructing the Euclidean SVM optimization problem
in Chap. 3 we rescale the classification inequalities of Eq. (6.5) by setting M = 1/||β||2
and requiring

1
||β||2

yfD(p|β, β0) ≥ M ⇒ yfD(p|β, β0) ≥ ||β||2M = 1, ∀ (y, p) ∈ XT . (6.10)

To find the maximum margin Distance SVM classifier then, we instead minimize 1
2 ||β||22

leading to the equivalent optimization problem

min
β ∈ RM , β0 ∈ R

1
2 ||β||

2,

s.t.
yfD(p | β, β0) = y(β0 + βTκ(p)) ≥ 1,

∀ (y, p) ∈ XT .

(6.11)

We say that the training data set XT is separable if there exists β, β0 such that the condition
in Eq. (6.5) is fulfilled for an M > 0, or equivalently if the feasible set of Prob. (6.11) is
non-empty. Not all training sets are separable however, and we would like to be able
to be able to construct a classifier trained on non-separable data as well. Additionally,
by requiring that we classify a training data set exactly, we run the risk of overfitting
our classifier to the training data. To alleviate both of the above-mentioned problems
we introduce non-negative slack variables ξ ∈ RN , ξ ≥ 0 to the rescaled classification
inequalities in Eq. (6.10), requiring instead

yifD(pi|β, β0) ≥ 1− ξi, i = 1, . . . , N. (6.12)

This way of achieving leniency in the classification of each training point is entirely
similar as to what was done for the Euclidean SVM model in Eq. (3.9). The introduction
of the slack variable ξi allows for under-classification of the training point pi by an
amount proportional to 1/||β||, leading to misclassification if ξ > 1. In order to control
the amount of misclassification we add the mean of the slack variables to ξ to Prob.
(6.11) to arrive at the following optimization problem for the Distance SVM classifier:

min
β ∈ RN , β0 ∈ R, ξ ∈ RN

1
2 ||β||

2 + C

N

N∑
i=1

ξi, (6.13a)

s.t. yi fD(pi | β, β0) ≥ 1− ξi, i = 1, . . . , N, (6.13b)

ξ ≥ 0. (6.13c)

The constant C > 0 is a hyperparameter penalizing the average misclassification, and
balancing the desire to maximize the separating margin with the average misclassification
of our training data, which is bounded above by 1

N

∑N
i=1 ξi. Letting C →∞ we recover
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the separable formulation, but this problem might be infeasible depending on the training
data as mentioned.

6.2 Distance SVM on Hilbert Spaces
Although the Distance SVM model is intended for use on manifolds where we take
advantage of the Riemannian distance, it is beneficial to investigate properties of the
model when used on a Hilbert space V with an inner product 〈·, ·〉 : V × V → R. By
investigating how the Distance SVM model looks in Hilbert spaces we can glean intuition
about how the Distance SVM model compares to the Euclidean SVM model which we
seek to generalize. Crucially we can express the squared distance function between two
points p, q ∈ V as dist2(p, q) = 〈p− q, p− q〉, which allows us to separate the Distance
SVM classifier into several terms.

Considering training data XT = {(yi, pi)}Ni=1 ⊂ {−1, 1} × V the Distance SVM classifier
can be expressed as

fD(q | β, β0) = β0 −
N∑
i=1

βiyi dist2(q, pi) = β0 −
N∑
i=1

βiyi〈q − pi, q − pi〉,

= β0 −
N∑
i=1

βiyi(||q||2 − 2〈q, pi〉+ ||pi||2),

= β0 −
N∑
i=1

βiyi||pi||2 +
N∑
i=1

2βiyi〈q, pi〉 − ||q||2
N∑
i=1

βiyi,

=
(
β0 −

N∑
i=1

βiyi||pi||2
)

+
〈
q,

N∑
i=1

2βiyipi
〉
− yTβ||q||2,

= β̃0 + 〈q,nD〉 − yTβ||q||2.

(6.14)

In the last equality above we’ve introduced the parameters

β̃0 = β0 −
N∑
i=1

βiyi||pi||2, nD =
N∑
i=1

2βiyipi, (6.15)

which are the effective bias and ∇qfD(q | β, β0)|q=0, respectively. From the last line of
Eq. (6.14) we see that the Distance SVM classifier is similar in form to the Euclidean
SVM classifier, except for the quadratic dependence on q through the term yTβ||q||2.

Consider the Euclidean SVM classifier with normal vector βSVM = ∑N
i=1 αiyipi in the

expression required by the KKT conditions in Eq. (3.14), allowing us to write

fSVM(q | βSVM, β0) = β0 +
N∑
i=1

αiyi〈q, pi〉 = β0 +
〈
q,

N∑
i=1

αiyipi

〉
, (6.16)
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with bias β0 ∈ R and Lagrange multipliers αi ≥ 0, i = 1, . . . , N . Then we can clearly
see the similarities with the expression for the Distance SVM classifier in Eq. (6.14).
Comparing the Distance SVM and Euclidean SVM separators further, we have from the
KKT condition corresponding to the Euclidean SVM classifier bias β0 that

N∑
i=1

αiyi = 0. (6.17)

If we imagine imposing the same constraint on the analogous Distance SVM support
point weights β we find that fD reduces to a linear separator on V as

yTβ||q||2 = ||q||2
N∑
i=1

βiyi = 0, (6.18)

eliminating the dependence on ||q||2 in fD(q | β, β0). The constraint in Eq. (6.18) can be
intuitively understood as requiring that we weigh the contributions of the two classes
equally in the Distance SVM separator. Using the Euclidean SVM separator as inspiration
then, we can constrain the Distance SVM model to linear separators in Hilbert spaces
by requiring yTβ = 0 as we solve Prob. (6.13). We call this extra constraint the zero
curvature (ZC) constraint, as it ensures that the separating surface HD(β, β0) becomes a
zero curvature hyperplane on Hilbert spaces.

Imposing this constraint on the weights β leads to the Zero Curvature Distance SVM
(ZCDSVM) model, and to find it we solve the optimization problem

min
β ∈ RN , β0 ∈ R, ξ ∈ RN

1
2 ||β||

2 + C

N

N∑
i=1

ξi, (6.19a)

s.t. yi fD(pi | β, β0) ≥ 1− ξi, i = 1, . . . , N, (6.19b)

ξ ≥ 0, (6.19c)

βT y = 0. (ZC const.) (6.19d)

Having constrained the Distance SVM model to linear separators in V through the
zero curvature constraint one might expect the Distance SVM separator to recreate
the Euclidean SVM maximum margin linear separator, at least in the separable case.
However, that is not generally the case, and the reason as we’ll see below comes down
to the difference in objective functions for the Euclidean SVM and Distance SVM model
optimization problems.
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Distance SVM Zero Curvature DSVM Euclidean SVM

Classifier: β̃0 + 〈q,nD〉 − yTβ||q||2 β̃0 + 〈q,nD〉 β0 + 〈q, βSVM〉

Objective: 1
2 ||β||22 1

2 ||β||22 1
2 ||βSVM||22

Constraints: yi fD(pi | β, β0) ≥ 1
yi fD(pi | β, β0) ≥ 1,

βT y = 0
yi fSVM(pi | βSVM, β0) ≥ 1

Tab. 6.1.: Comparison of DSVM, ZC-DSVM and Euclidean SVM classifiers and optimization
problems for separable training data XT = (yi, pi)N

i=1 on a Hilbert space V . Parameters
β̃0 and nD of DSVM models as given in Eq. (6.15).

For simplicity, assume that the training data X is separable, so that we can disregard the
slack variables ξ for both models when comparing them. Stated one more time, the Zero
Curvature Distance SVM and Euclidean SVM classifiers take the forms

fD(q | β, β0) = β̃0 + 〈q,nD〉 = β̃0 +
N∑
i=1

2βiyi〈q, pi〉, (6.20)

and

fSVM(q | βSVM, β0) = β0 + 〈q, βSVM〉 = β0 +
N∑
i=1

αiyi〈q, pi〉, (6.21)

respectively. The normal vector to the Euclidean SVM classifier is βSVM, expressed as the
linear combination of support vectors βSVM = ∑N

i=1 αiyipi, whilst the normal vector to
the zero curvature DSVM hyperplane is nD = ∑N

i=1 2βiyipi.

Comparing the Zero Curvature Distance SVM optimization problem in Table 6.1 we see
that it is very similar to the Euclidean SVM optimization, but with the crucial difference
that we’re not directly minimizing the norm of the normal vector to the resulting ZCDSVM
separating hyperplane, as is the case with the Euclidean SVM separator. Instead, we’re
minimizing the norm of the weight vector ||β||2, although the two are related in the sense
that

||nD||2 =
∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

2βiyipi
∣∣∣∣∣
∣∣∣∣∣ ≤ 2

N∑
i=1
|βi| · ||yipi||2,

≤ 2
(

N∑
i=1
||pi||22

)1/2( N∑
i=1
|βi|2

)1/2

,

= 2
(

N∑
i=1
||pi||22

)1/2

||β||2.

(6.22)
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The reason we can interpret fSVM(q | βSVM, β0) as the maximum margin linear separa-
tor is because

∣∣∣ 1
||βSVM||2 fSVM(q | βSVM, β0)

∣∣∣ equals the Euclidean distance from q to the
separating hyperplane

H(βSVM, β0) = {q ∈ V | β0 + 〈q, βSVM〉 = 0}. (6.23)

By minimizing ||βSVM||2, while ensuring that all the training points are correctly classified,
we maximize the margin M = 1/||βSVM||. The Distance SVM model on the other hand
does not minimize the norm of the resulting normal vector nD, as the Distance SVM
model is designed to work on Riemannian manifolds without a normed vector space
structure. Therefore, the Zero Curvature Distance SVM linear separator in general is not
the same maximum margin linear separator as for the Euclidean SVM model.

6.3 Optimizing the Distance SVM Models
When solving for the Distance SVM classifiers, with or without the zero curvature
condition, we do not make the assumption that the classifier uses the entire training set
as support points. Instead, we denote the training set and support set on the Riemannian
manifoldM as

XT =
{

(yt
j , p

t
j)
}N
i=1
⊂ {−1, 1} ×M, XS =

{
(ys
j , p

s
j)
}M
j=1
⊆ XT. (6.24)

We also define the class designation vectors

yT = [yt
1, . . . , y

t
N ] ∈ RN and yS = [ys

1, . . . , y
s
M ] ∈ RM , (6.25)

which encapsulate the class labels of the training points and support points, respectively.
Their matrix representations are denoted YT = diag(yT) and YS = diag(yS). With this
notation the Distance SVM classifier with support points XS can be expressed as

fD : M× RM × R→ R fD(q | β, β0) = β0 + (YSΥS(q))Tβ, (6.26)

where the signed squared distance mapping is restricted to the set of support points:

ΥS : M→ RM , q 7→ Υ(q | XS) = [−dist2(q, ps
1), . . . ,dist2(q, ps

M )]T . (6.27)
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Let λ ∈ RN be the Lagrange multipliers for the classification constraints in Eq. (6.13b)
and µ ∈ RN be the Lagrange multipliers for the non-negativity constraint on ξ in Eq.
(6.13c). Then the Lagrangian for the DSVM optimization problem in Prob. (6.13) is

LD := 1
2 ||β||

2 + C

N

N∑
i=1

ξi −
N∑
i=1

λi(yifD(pi|β, β0)− 1 + ξi)−
N∑
i=1

µiξi

= 1
2 ||β||

2 +
N∑
i=1

(
C

N
− µi

)
ξi −

N∑
i=1

λi
(
yi(β0 + (YSΥ(pi))Tβ)− 1 + ξi

)
,

= 1
2 ||β||

2 +
N∑
i=1

(
C

N
− λi − µi

)
ξi −

N∑
i=1

λiyi (YSΥ(pi))T β − β0λ
T yT + λT1,

= 1
2 ||β||

2 +
N∑
i=1

(
C

N
− λi − µi

)
ξi − (YSKDYTλ)Tβ − β0λ

T yT + λT1.

(6.28)

Here we’ve introduced the squared distance kernel matrix KD defined column wise as

KD =
[
ΥS(p1) | . . . | ΥS(pN )

]
∈ RM×N . (6.29)

In the special case where we use all our training points as support points, KD ∈ RN×N

becomes symmetric, and can be expressed element wise as

(KD)i,j = −dist2(pi, pj), i, j = 1, . . . , N. (6.30)

Now we’re prepared to state the theorem stating how we can solve for the Distance SVM
model on complete Riemannian manifolds.

Theorem 6.1 (Solving the DSVM Optimization Problem). Let (M,A+, g) be a complete,
path-connected Riemannian manifold. Denote a set of N training points XT and M ≤ N
support points XS ⊆ XT as in Eq. (6.24). Given C > 0, the optimal Distance SVM classifier
is found by solving the convex quadratic minimization problem

λ̂ = arg min
0 ≤ λ ≤ C/N, λ ∈ RN

1
2λ

TDλ− λT1,

s.t. βT yT = 0,
(6.31)

with D = (KDYT)T (KDYT) positive semi definite. The optimal weight vector β̂ is then

β̂ = YSKDYTλ̂, (6.32)

and the optimal bias term β̂0 can be computed from any training points pi, i ∈ [1, N ] with
corresponding 0 < λi <

C
N as

β̂0 = yi − (YSΥS(pi))T β̂. (6.33)
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Proof. The optimization problem for the Distance SVM model in Prob. (6.13) is convex
as per Definition 2.3. Additionally, all the inequality constraints are affine, meaning
Slater’s Condition reduces to finding a feasible point for Prob. (6.13). A feasible point
(β̃, β̃0, ξ̃) always exists for arbitrary β̃ and β̃0 by choosing

ξ̃i = max{yi fD(pi | β̃, β̃0)− 1, 0}, i = 1, . . . , N. (6.34)

Thus, strong duality holds for Prob. (6.13) and the KKT conditions are necessary and
sufficient for primal-dual optimality of the variables (β, β0, ξ, λ, µ). To solve Prob. (6.13)
we transform it to its Wolfe dual from Section 2.4. The KKT conditions from Eq. (2.4)
applied to Prob. (6.13) are

∇βLD = β −YSKDYTλ = 0, (6.35a)

∂β0LD = −λT yT = 0, (6.35b)

∂ξi
LD = C/N − λi − µi = 0, i = 1, . . . , N, (6.35c)

yi fD(pi | β, β0)− 1 + ξi ≥ 0, i = 1, . . . , N, (6.35d)

λi(yi fD(pi | β, β0)− 1 + ξi) = 0, i = 1, . . . , N, (6.35e)

µiξi = 0, i = 1, . . . , N, (6.35f)

ξ, λ, µ ≥ 0. (6.35g)

The vanishing gradient KKT condition in Eq. (6.35a) means that β = YSKDYTλ for
any primal-dual optimal (β, β0, ξ, λ). The condition in Eq. (6.35c) along with the non-
negativity constraints on ξ, λ, and µ allows us to eliminate µ by constraining λ to
0 ≤ λ ≤ C/N and implicitly setting µi = C − λi.

Inserting the vanishing gradient condition on β along with rest of the vanishing gradient
KKT conditions from Eq. (6.35c) and Eq. (6.35c), which make the last two terms of the
Lagrangian in Eq. (6.28) vanish, the expression for the Lagrangian conditioned on its
gradient w.r.t the primal variables vanishing is

LD = 1
2(YSKDYTλ)T (YSKDYTλ)−

N∑
i=1

λi
(
yi(YSΥS(pi))TYSKDYTλ− 1

)
,

= 1
2λ

TYTKT
DY2

SKDYTλ−
N∑
i=1

λiyiΥS(pi)TY2
SKDYTλ+

N∑
i=1

λi,

= 1
2λ

TYTKT
DKDYTλ−

(
N∑
i=1

λiyiΥS(pi)T
)

KDYTλ+ λT1,

= 1
2λ

TYTKT
DKDYTλ− λTYTKT

DKDYTλ+ λT1,

= −1
2λ

TYTKT
DKDYTλ+ λT1,

(6.36)
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where we’ve used that Y 2
S = IM , and whilst requiring λT yT = 0. Defining the matrix

D = (KDYT)T (KDYT), (6.37)

the Wolfe dual problem to Prob. (6.13) is

max
0 ≤ λ ≤ C

N
, λ ∈ RN

− 1
2λ

TDλ+ λT1,

s.t. λT yT = 0.

(6.38)

This is a concave quadratic maximization problem, and by minimizing the objective with
the opposite sign we get the optimization problem in Prob. (6.31). Its solution gives the
dual-optimal Lagrange multipliers λ̂.

We recover the primal optimal variables β̂ from the vanishing gradient KKT condition in
Eq. (6.35a). Then we recover β̂0 by solving the complementarity conditions in Eq. (6.35e)
for β0 for any margin points with 0 < λ̂i < C/N , and for numerical stability we can
the mean of all the values found for each margin point. Lastly, the primal-dual optimal
values for ξ and µ are determined by the primal-dual optimal (β̂, β̂0, λ̂).

Due to the nature of the constraints for the problem in Prob. (6.13), we only get non-zero
λ̂i for those indices i ∈ [1, N ] which correspond to points which where not correctly
classified by margin greater than M = 1/||β̂||, i.e. yifD(pi|β̂, β̂0) − 1 ≤ 0. This means
that we can expect some degree of sparsity in the dual problem optimum λ̂, but that is
not the case for the resulting optimum weighting vector β̂ which is a linear combination
of the dense columns of YSKDYT picked out by λ̂.

We can also regard the above considerations as having a sparse representation for β̂
among the set of vectors YSΥ(p), p ∈ XS. However, to evaluate the classifier

fD(q | β, β0) = β0 + (YSΥ(q))Tβ (6.39)

on a point q ∈M, we first map it to RM as q 7→ YSΥ(q), an operation which is ”dense”
w.r.t. the set of support points, as it requires computing the distance to all the support
points in XS.
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The Lagrangian for the Zero Curvature Distance SVM optimization problem in Prob.
(6.19) is closely related to the Lagrangian in Eq. (6.28), except that we introduce another
Lagrangian multiplier ν ∈ R.

LDZC := LD − νyTS β,

= 1
2 ||β||

2 +
N∑
i=1

(
C

N
− λi − µi

)
ξi,

− (YSKDYTλ)Tβ,
− β0λ

T yT + λT1− νyTS β.

(6.40)

With the added term in the Lagrangian we can again state a result concerning how to
solve for the Zero Curvature Distance SVMmodel.

Theorem 6.2 (Solving the Zero Curvature DSVM Optimization Problem). Let (M,A+, g)
be a complete, path-connected Riemannian manifold. Denote a set of N training points XT
and 2 ≤M ≤ N support points XS ⊆ XT as in Eq. (6.24) with at least one training point
of each class included in the set of support points. Given C > 0, the optimal Distance SVM
classifier is found by solving the convex quadratic minimization problem

λ̂, ν̂ = arg min
λ ∈ RN , 0 ≤ λ ≤ C/N, ν ∈ R

1
2λ

TDλ− λT1− M

2 ν2

s.t.
λT yT = 0,

yTS YSKDYTλ+ νM = 0,

(6.41)

where again D = (KDYT)T (KDYT). The optimal weight vector β̂ is then

β̂ = YSKDYTλ̂+ ν̂yS, (6.42)

and the optimal bias term β̂0 is computed from any training points pi, i ∈ [1, N ] with
corresponding 0 < λi <

C
N as

β̂0 = yi − (YSΥS(pi))T β̂. (6.43)

Proof. The optimization problem for the Zero Curvature Distance SVM model in Prob.
(6.19) is still convex as per Definition 2.3, with the addition of a single linear equality
constraint as compared to Prob. (6.13). As all the inequality constraints are affine Slater’s
Condition reduces to finding a feasible point for Prob. (6.19). A feasible point (β̃, β̃0, ξ̃)
always exists for arbitrary β̃0 by choosing any β̃ s.t. β̃T yS = 0, which is possible for
non-trivial β̃ as there is at least a single support point of each class. Lastly we can choose

ξ̃i = max{yi fD(pi | β̃, β̃0)− 1, 0}, i = 1, . . . , N. (6.44)
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Thus, strong duality holds for Prob. (6.19), and the KKT conditions are necessary for
primal-dual optimality of the variables (β, β0, ξ, λ, µ, ν). To solve Prob. (6.19) we trans-
form it to its Wolfe dual from Section 2.4. Although the Wolfe dual formulation does not
explicitly include linear equality constraints we can rewrite the zero curvature equality
constraint in manner inspired by [33, p. 221] as two inequality constraints with their
respective non-negative Lagrange multipliers ν+ and ν−. If we then set ν = ν+−ν− we’ve
effectively introduced the equality constraint to the Wolfe dual problem formulation,
with the modification that the corresponding Lagrange multiplier is not constrained to be
non-negative.

The KKT conditions from Eq. (2.4) applied to Prob. (6.19) are

∇βLD = β −YSKDYTλ− νyS = 0, (6.45a)

∂β0LD = −λT yT = 0, (6.45b)

∂ξi
LD = C/N − λi − µi = 0, i = 1, . . . , N, (6.45c)

yTS β = 0, (6.45d)

yi fD(pi | β, β0)− 1 + ξi ≥ 0, i = 1, . . . , N, (6.45e)

λi(yi fD(pi | β, β0)− 1 + ξi) = 0, i = 1, . . . , N, (6.45f)

µiξi = 0, i = 1, . . . , N, (6.45g)

ξ, λ, µ ≥ 0. (6.45h)

The vanishing gradient KKT condition in Eq. (6.45a) means that β = YSKDYTλ+ νyS

for any primal-dual optimal (β, β0, ξ, λ, ν). Together with the zero curvature condition in
Eq. (6.45d) we get the relation

yTS (YSKDYTλ+ νyS) = yTS YSKDYTλ+ νyTS yS = 0. (6.46)

As all the elements of yS equal ±1, yTS yS = ||yS||22 = M . As for the DSVM model the
condition in Eq. (6.35c) along with the non-negativity constraints on ξ, λ, and µ allows
us to eliminate µ by constraining λ to 0 ≤ λ ≤ C/N and implicitly setting µi = C − λi.

Inserting the vanishing gradient conditions from the KKT conditions the expression for
the Lagrangian conditioned on its gradient w.r.t the primal variables vanishing is

LZCD = 1
2 ||YSKDYTλ+ νyS||22 −

N∑
i=1

λiyi(YSΥS(pi))T (YSKDYTλ+ νyS) + λT1.

(6.47)
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The first term of LZCD can be expanded as

||YSKDYTλ+ νyS||22 = (YSKDYTλ+ νyS)T (YSKDYTλ+ νyS),
= λTYTKT

DKDYTλ+ ν(YSKDYTλ)T yS,

+ νyTS YSKDYTλ+ ν2yTS yS,

= λTYTKT
DKDYTλ+ 2νyTS YSKDYTλ+ ν2yTS yS.

(6.48)

The second term can likewise be expanded as

N∑
i=1

λiyi(YSΥS(pi))T (YSKDYTλ+ νyS)

=
N∑
i=1

λiyi(YSΥS(pi))T (YSKDYTλ)

+ ν
N∑
i=1

λiyi(YSΥS(pi))T yS,

= λTYTKT
DKDYTλ+ ν(YSKDYTλ)T yS.

(6.49)

Combining the first two terms and using that yTS YSKDYTλ = (YSKDYTλ)T yS ∈ R we
get the final expression for the ZC-DSVM Lagrangian conditioned on the primal gradients
vanishing as

LZCD = −1
2λ

TYTKT
DKDYTλ+ λT1 + ν2yTS yS, (6.50)

whilst requiring that λT yT = 0 and yTS YSKDYTλ + νM = 0. The Wolfe dual to the
ZC-DSVM optimization problem is thus

max
λ ∈ RN , 0 ≤ λ ≤ C/N, ν ∈ R

− 1
2λ

TDλ+ λT1 + M

2 ν2

s.t. λT yT = 0,
yTS YSKDYTλ+ νM = 0.

(6.51)

The problem in Eq. (6.51) is concave quadratic with a convex feasible set, so again if we
switch the sign of the objective and minimize we get the convex quadratic optimization
problem in Eq. (6.41). Solving it returns the dual-optimal Lagrange multipliers λ̂ and ν̂.
From which we can recover the primal-optimal β̂ using the vanishing gradient condition
in Eq. (6.45a). And exactly as for the DSVM optimization we recover the primal optimal
β̂0 by solving the complementarity conditions in Eq. (6.45f) for β0 for any margin
points with 0 < λ̂i < C/N . And finally the primal-dual optimal values for ξ and µ are
determined by β̂, β̂0 and λ̂.
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6.4 Heuristic for Sparse Distance SVM Models
In principle, we could optimize over which subset of the available training points to use
as the support points for the DSVM and ZC-DSVM model, in order to find a classifier
with a sparse set of support points. However, this is a difficult combinatorial problem,
and as a heuristic we propose the following two-step method. First, we optimize the
DSVM models with the full set of training points as support points. Then we perform a
second optimization where the support points are chosen as the points pi for which the
corresponding λ̂i was non-zero in the full model.

Phrased differently, we first train the full model, and then choose the subset of training
points pi which ended up at the margin, or were under-/misclassified by the full model
as the set of support points for our sparse classifier, and perform a second optimization.
We call the models by applying this two-step sparsity heuristic to the DSVM and ZC-
DSVM models Sparse Distance SVM (Sp-DSVM) and Sparse Zero Curvature Distance SVM
(Sp-ZCDSVM), respectively.

This procedure is more expensive than simply solving for the DSVM and ZCDSVM models
using all the training points as support points, but by fitting the full classifier the hope is
that we’re able to extract the training points most relevant to separate the training data
well. And by retraining the DSVM and ZCDSVM models with this reduced set of support
points we have in a sense reduced the flexibility of the classifiers, which will hopefully
reduce the risk of overfitting to the training data.
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7Numerical Experiments

To compare the Distance SVM models with the Euclidean SVM model and see how they
compare with the existing manifold SVM models, we implement and test the models
numerically. First we compare the DSVM models with the classical SVM model on
artificial datasets on R2, then compare the DSVM models with the existing manifold SVM
models on artificial datasets on S(2), before concluding with a real world case comparing
the test accuracy of all the manifold SVM models on the BCI-IV 2a dataset [39].

This implementation of all the different models is done with the Julia programming lan-
guage [34], version 1.7. The functions needed to work on the manifolds S(n), (P(n), gLA)
and (P(n), gLE), i.e. the exponential and logarithmic mappings, the Riemannian met-
rics, and the Riemannian distance functions, are all implemented in the Manifolds.jl,
v0.75 [35] package. Furthermore, methods and algorithms to perform gradient de-
scent with Armijo line search on arbitrary Riemannian manifolds are implemented in
the Manopt.jl, v0.3.27 [36] package. To solve euclidean constrained optimization
problems we’ve employed the optimization modeling package JuMP.jl v1.1.0, in con-
junction with the Ipopt.jl, v1.0.2 solver [19]. All experiments are performed on
a laptop running Ubuntu 20.04 with an eight core Intel(R) Core(TM) i7-1065G7 @
1.30GHz CPU and 16 GB of RAM.

To illustrate the separating curves and margin curves of a differentiable classifier f : M→
R on a two-dimensional Riemannian manifold (M, g), e.g. R2 and S(2), we first find an
initial point p0 ∈ M for which f(p0) = δ. On all our figures δ ∈ {0,±1}, except for the
CP-SVM classifiers where δ ∈ {0,±k}, with k the desired margin hyperparameter of the
CP-SVM model from 5.3. In order to construct an ordinary differential equation whose
solution lies along level sets of f , consider the tangent vector

Nf (p) ∈ TpM, (7.1)

constructed by rotating the gradient of the classifier gradf(p) by π/2 clockwise in TpM.
That means

gp(Nf (p), gradf(p)) = 0, ∀ p ∈M

and ||Nf (p)||p = ||gradf(p)||p. Then we numerically solve the ordinary differential
equation

γ̇(t) = Nf (p), γ(0) = p0, (7.2)
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for the curve γ : [−T, T ] → M, T > 0, using ManifoldDiffEq.jl, v0.1.2 [41]. This
package implements several numerical ODE methods tailed to differential equations on
manifolds, from among others [37]. The time derivative of f(γ(t)) is

d
dtf(γ(t)) = Df(γ(t))[γ̇(t)] = gp (gradf(γ(t)), γ̇(t))

= gp (gradf(γ(t)), Nf (γ(t))) = 0,
(7.3)

meaning the curve γ is a level set curve for f with f(γ(t)) = δ, t ∈ [−T, T ].

7.1 DSVM vs. Euclidean SVM on the Plane
To better understand the differences between the Distance SVM models as compared to
the classical SVM (Eucl. SVM) model we present the different models applied to three
different datasets on the plane R2 in Figs. 7.1 to 7.3. As we’re working on the Hilbert
space R2 the considerations in Section 6.2 apply, and the zero curvature DSVM models
are guaranteed to result in linear classifiers fZCD(x | β, β0).

We train the Euclidean SVM model on each dataset and compare the Distance SVM
model with and without the zero curvature condition and heuristic sparsity method from
Section 6.4 applied, and we repeat here that we denote them as ”DSVM”, ”Sp-DSVM”,
”ZCDSVM”, and ”Sp-ZCDSVM”, respectively. Additionally, we train a zero curvature DSVM
model where the support points XS for the classifier are chosen as the support vectors of
the Euclidean SVM model, and we call this model ”Eucl. Supp. ZCDSVM”. For consistency
all models were trained with a misclassification penalty parameter of C = 103.

The dataset in Fig. 7.1 is linearly separable, with good class separation. Looking at the
top two frames of Fig. 7.1 we see that the ”Eucl. Supp. ZCDSVM” separator is close
to the same as the Euclidean SVM separator, but differs slightly in the direction of the
hyperplane normal vector and margin points, even when the models use the same support
points. In the middle two frames showing the DSVM and Sp-DSVM models we can also
see the effect of the quadratic dependence on x from Eq. (6.14) manifesting itself as
parabolic level sets of the classifier. This curvature is also more pronounced for the sparse
Sp-DSVM model.
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H(β,β0), f(p | β,β0) = 1, f(p | β,β0) = −1, Pos. Support, Neg. Support.

Fig. 7.1.: Easily separable dataset. Comparing the DSVM models with the Euclidean SVM model
on R2. All models optimized with misclassification penalty C = 103.

In Fig. 7.2 the dataset is linearly separable, but the margin of the maximum margin linear
separator is a lot smaller than in Fig. 7.1. And with the misclassification penalty C = 103

we see that the Euclidean SVM separator misclassifies a single negative point. However,
on this dataset the ”Eucl. Supp. ZCDSVM” linear separator recreates the Euclidean SVM
separator up to a difference in reconstructed parameter norms of 10−6. That is,

||βSVM − nD||2 + |β0 − β̃0|| < 10−6, (7.4)

using the notation from Eq. (6.15) for the reconstructed normal vector and bias of a zero
curvature DSVM model. Furthermore, the ZCDSVM separator in Fig. 7.2 is actually the
maximum margin separator of the dataset, which we confirmed by training the classical
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Fig. 7.2.: Barely linearly separable dataset. Comparing the DSVM models with the Euclidean
SVM model on R2. All models optimized with misclassification penalty C = 103.
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Fig. 7.3.: Non-linearly separable dataset. Comparing the DSVM models with the Euclidean SVM
model on R2. All models optimized with misclassification penalty C = 103.

SVM on the same dataset with the misclassification penalty set to C = 106, in which case
we get the same linear separator as shown in the lowermost left frame of Fig. 7.2.

The last dataset on R2 in Fig. 7.3 is not linearly separable, in contrast to the previous two
datasets. And again we see the same behavior as in the previous figure, where the Eucl.
Supp. ZCDSVM classifier matches the Euclidean SVM classifier exactly. Interestingly, we
see that the sparse versions of both the DSVM and ZCDSVM models recreate exactly the
same classifiers, even though they are based on a restricted subset of support points. This
seems to indicate that the re-optimization sparsity heuristic works well, and the training
points which are on the margin or under classified by the full model are the ones most
relevant for the final classifier as well. And comparing with the Euclidean SVM classifier
again, we note that the linear classifiers of both zero curvature DSVM models are exactly
the same as the Euclidean SVM classifier.
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7.2 Manifold SVM Models on the Two-Sphere
In order to illustrate the existing manifold SVM models and the Distance SVM models, we
generated two data sets on S(2), one easily separable and one with points of each class
overlapping. Then we trained the models on each dataset, and demonstrate the effect of
varying the parameter values for existing manifold SVM models in Figs. 7.4 to 7.17.

Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.4.: Distance SVM classifiers on S(2). Trained on separable dataset. Left: DSVM model,
right: Sp-DSVM model. Misclassification penalty CDSVM = 103.

Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.5.: Zero curvature DSVM classifiers on S(2). Trained on separable dataset. Left: ZCDSVM
model, right: Sp-ZCDSVM model. Misclassification penalty CDSVM = 103.

In figures Figs. 7.4 and 7.5 we show the DSVM models and ZCDSVM models trained on
the easily separable dataset, with the full models on the left, and the sparse models on
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the right, all with CDSVM = 103. The full DSVM and ZCDSVM models turn out to be
visually identical in this case.

Looking at the sparse DSVM classifiers, the zero curvature classifier appears noticeably
”straighter” than its counterpart. It is unclear how to quantify this ”straightness”, but
visually the zero curvature separating curve H(β, β0) looks close to a great circle on the
sphere, in which case it could be realized by a geodesic. However, the margin curves
where fD(p | β, β0) = ±1 are clearly not great circles based on visual inspection. We also
note that the sparse DSVM models recover the full classifiers if we increase CDSVM to
104.

Pos. Support, Pos. Data, Riemannian Center of Mass,

Neg. Support, Neg. Data, Separating Curve.

Fig. 7.6.: TS-SVM classifier on S(2), trained on a separable dataset. Left: CTS−SVM = 101, right:
CTS−SVM = 103.

The TS-SVM model trained on the same easily separable dataset is shown in Fig. 7.6, with
a lower misclassification penalty of CTS−SVM = 101 on the left and CTS−SVM = 103 on the
right. The point in which tangent space we’re applying the classical SVM model is marked
as a black point on the figures. As expected the margins are greater in the left frame
of Fig. 7.6 as we penalize under classification less (i.e. yifTS−SVM(pi | pref , λi, β0) < 1).
However, when CTS−SVM = 103 the TS-SVM classifier is visually very similar to the full
DSVM and ZCDSVM classifiers from the left frames of Figs. 7.4 and 7.5.
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Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.7.: Manifold RBF classifiers on S(2). Trained on separable dataset. Left: σ2 = 1/2, right:
σ2 = 2. Misclassification penalty set to CMRBF = 102 for both.

Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.8.: Manifold RBF classifiers on S(2). Trained on separable dataset. Left: CMRBF = 102,
right: CMRBF = 104. Variance set to σ2 = 1 for both.

To illustrate the parameter dependence of the MRBF model on the easily separable
dataset on S(2) we’ve varied the variance σ2 in Fig. 7.7 with fixed CMRBF = 102, and
varied the misclassification penalty whilst keeping the variance fixed at σ2 = 1 in Fig. 7.8.
Even though the guarantee of a positive definite kernel from 5.2 do not apply on S(2) as it
is not isometrically embeddable in a Hilbert space, we can still optimize the classical SVM
model as long as the kernel matrix for our specific dataset is positive semi definite.
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From Fig. 7.7 it is clear that the variance has quite a big impact on the shape of the
separating curves. We see pronounced curvature in the margin curves for the MRBF
classifier with σ2 = 1/2, whilst the separating lines for the classifier with σ2 = 2 are
straighter. This behavior is consistent with the characteristics of the classical SVM model
using the RBF kernel, which is capable of generating non-linear separating lines when
they’re projected down to the original feature space from the infinite dimensional RKHS
of the RBF kernel. Changing the misclassification penalty CMRBF in Fig. 7.7 also produces
the expected result of tighter margins, and in the right frame the MRBF classifier is able
to separate the training data.

c+, Pos. Data, c−, Neg. Data, Separating Curve.

Fig. 7.9.: Control Point SVM classifiers on S(2). Trained on separable dataset. Left: k = π/20,
right; k = π/5. Misclassification penalty set to CCP−SVM = 10 for both. Margin lines
drawn at fCP(q | c+, c−) = ±k.

The CP-SVM classifiers trained on the easily separable dataset are illustrated in Figs. 7.9
and 7.10, where we vary the desired margin k and the misclassification penalty C

respectively. We observe in Fig. 7.9 that when we increase the desired classification
margin k the control points move farther away from one another. And in Fig. 7.10
the increased misclassification penalty CCP−SVM also moves the control points farther
away from one another, and thereby decreases the Riemannian distance between the
separating curve and the margin curves. This illustrates the complex interplay between
the hyperparameters k and CCP−SVM.

A quirk of the CP-SVM model on S(2) is that when k is set to a value greater than π/5 the
control points have a tendency of ending up on the opposite side of the sphere from the
training points. There they can achieve very small distance between the control points,
and still classify training points on the other side of the sphere, but in a sense they’re no
longer representative of the distribution of training points as intended. This behavior can
be understood as a consequence of the underlying manifold being curved, and would not
be possible on flat euclidean vector spaces.
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c+, Pos. Data, c−, Neg. Data, Separating Curve.

Fig. 7.10.: Control Point SVM classifiers on S(2). Trained on separable dataset. Left: CCP−SVM =
1, right: CCP−SVM = 20. Desired margin set to k = π/16 for both. Margin lines
drawn at fCP(q | c+, c−) = ±k.

Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.11.: Distance SVM classifiers on S(2). Trained on overlapping dataset. Left: DSVM model,
right: Sp-DSVM model. Misclassification penalty CDSVM = 103.
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Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.12.: Zero curvature DSVM classifiers on S(2). Trained on a harder to separable dataset.
Left: ZCDSVM model, right: Sp-ZCDSVM model. Misclassification penalty CDSVM =
103.

Pos. Support, Pos. Data, Riemannian Center of Mass,

Neg. Support, Neg. Data, Separating Curve.

Fig. 7.13.: TS-SVM classifier on S(2), trained on the overlapping dataset. Left: CTS−SVM = 102,
right: CTS−SVM = 104.

Switching over to considering models trained on a dataset where the training points
from each class overlap and is harder to separate, the resulting DSVM models trained
on this second dataset are shown in Figs. 7.11 and 7.12. On this dataset the DSVM and
ZCDSVM classifiers are not identical, and we see that the zero curvature condition again
has the effect of ”straightening” the separating curve and margin curves. The same effect
is present for the sparse DSVM and sparse ZCDSVM classifiers on this dataset, but when
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we increase CDSVM to 105 all four classifiers coalesce to the same set of support points
and appear visually quite similar.

The TS-SVM model trained on the overlapping dataset for two different values of
CTS−SVM are shown in Fig. 7.13, and they are both quite similar to the ZCDSVM
classifiers in Fig. 7.12. In particular the TS-SVM classifier trained with CTS−SVM = 104

ends up using the same support points as the sparse ZC DSVM classifier.

Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.14.: Manifold RBF classifiers on S(2). Trained on separable dataset. Left: σ2 = 21, right:
σ2 = 23. Misclassification penalty set to CMRBF = 103 for both.

Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 7.15.: Manifold RBF classifiers on S(2). Trained on overlapping dataset. Left: CMRBF = 102,
right: CMRBF = 104. Variance set to σ2 = 22 for both.

Training the MRBF model on the overlapping dataset and varying the variance and
misclassification penalty hyperparameters we get Figs. 7.14 and 7.15. Of note is the
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interplay between the hyperparameters. The classifier trained with the lower variance
σ2 = 2 and CMRBF = 103 in the left frame of Fig. 7.14 is very similar to the classifier in
the right frame of Fig. 7.15 with σ2 = 22 and CMRBF = 104. The classifier in the right
frame of Fig. 7.14 with higher variance also generates a separating curve that is quite
similar to the separating curve for the classifier in the left frame of Fig. 7.15, however
the latter classifier has a larger distance between the separator curve and the margin
curves.

c+, Pos. Data, c−, Neg. Data, Separating Curve.

Fig. 7.16.: Control Point SVM classifiers on S(2). Trained on separable dataset. Left: k = π/20,
right; k = π/5. Misclassification penalty set to CCP−SVM = 10 for both. Margin lines
drawn at fCP(q | c+, c−) = ±k.

Lastly, we present the CP-SVM model trained on the overlapping dataset for varying
desired margin k and misclassification penalty in Figs. 7.16 and 7.17, respectively.
The two classifiers in Fig. 7.16 end up generating very similar separating curves, even
though k increases fourfold between the left and right frame. The distance between
the control point does increase, though. In contrast, we see that when we increase the
misclassification penalty from CCP−SVM = 1 to CCP−SVM = 20 in Fig. 7.17 the separating
curve tilts and the margins decrease as expected.
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c+, Pos. Data, c−, Neg. Data, Separating Curve.

Fig. 7.17.: Control Point SVM classifiers on S(2). Trained on separable dataset. Left:
CCP−SVM = 1, right: CCP−SVM = 20. Desired margin set to k = π/16 for both.
Margin lines drawn at fCP(q | c+, c−) = ±k.

7.3 BCI-IV Experiments
To compare the existing manifold SVM models presented in Chapter 5 with the Distance
SVM models presented in Chapter 6 on real manifold valued data we use EEG data
from dataset 2a of the Brain Computer Imaging Competition IV (BCI-IV) [39]. The
experiments performed by Naeem, Brunner, et al. [31] consist of recording the brain
activity of subjects performing four different motor imaging tasks while a cue is shown
to them on a screen. That is, the subjects are told to imagine either movement of the
left hand (LH), the right hand (RH), both feet (BF), or the tongue (TO). A total of nine
subjects participated in the experiments, recording 144 samples for each cue, for each of
two different sessions.

The brain activity of each subject was recorded with a set of 22 EEG electrodes, and a
sampling frequency of 250Hz. The duration of each cue was 1.25 seconds. In the same
manner as Barachant, Bonnet, et al. [9] the raw EEG data measured in Volts is scaled by
106 to measure in µV, before passing the data from each sample through a 8− 35 Hz 5th
order Butterworth band-pass filter [38]. The effect of the band-pass filter on the EEG
signal is illustrated in Fig. 7.18, for a single sample ranging over 1.25 seconds of the LH
cue for subject 8 in the first session.

To classify which cue was shown to a given subject from the electrode measurements
Xi ∈ RT×22, i = 1, . . . , 144, where T ∈ N is the cue duration measured in number of
samples, we construct the empirical covariance matrices

pi = 1
T − 1XT

i Xi ∈ R22×22 (7.5)
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Fig. 7.18.: Sample training data for subject 8, LH cue. Comparison of raw data (Left) with data
passed through an 8—35 Hz 5’th order Butterworth band-pass filter (Right).

for each cue sample in the dataset after scaling and band-pass filtering. Although the
empirical covariance matrices pi in general are only positive semi-definite, numerically
we tested that their eigenvalues are all greater than 10−3, and we treat them as points on
P(22). The manifold SVM models are all binary classifiers, so we follow the authors of [9]
in evaluating the average performance of each model over the six binary classifications

{(1 : LH \RH), (2 : LH \BF ), (3 : LH \ TO),
(4 : RH \BF ), (5 : RH \ TO), (6 : BF \ TO)}

(7.6)

for each subject. We train the models on the data from the first session and then evaluate
the test accuracy on the data from the second session. As a measure of how well separated
data set X = {(pi, yi)}144

i=1 ⊂ P(22)× {−1, 1} we compute its relative class separation

RCS(X ) = BCD(
PCD + NCD

)
/2
, (7.7)

as the ratio between its average between-class distance defined in Eq. (5.10), and
the mean of the average positive and negative class distances defined in Eqs. (5.11)
and (5.12). The relative class separation of all the 9 · 6 = 54 different binary classification
tasks from the BCI-IV 2a dataset are shown in Table 7.1. As the values are all slightly
bigger than 1 we present the values as 100 · (RCS(X ) − 1), and then we see clear
differences across the subjects in the table.

7.3 BCI-IV Experiments 76



Binary Classification

Subj. 1 2 3 4 5 6 Mean

1 1.48 2.05 4.61 2.40 6.21 1.15 2.98
2 0.69 0.43 0.26 0.40 0.34 0.40 0.42
3 2.02 1.33 2.55 1.46 1.85 0.50 1.62
4 0.32 1.02 1.53 0.93 1.32 0.25 0.89
5 0.17 0.55 0.51 0.71 0.55 0.12 0.44
6 0.43 0.38 0.42 0.43 0.31 0.36 0.39
7 0.31 1.38 2.64 1.28 2.05 0.70 1.39
8 2.58 1.07 2.78 0.97 2.21 1.94 1.92
9 3.94 1.70 6.46 3.19 7.3 3.67 4.38

Tab. 7.1.: Relative class separation, Eq. (7.7), of all the training data from the first session of the
BCI-IV 2a dataset. Broken down by subject and binary classification between motor
imagery tasks. Distances are computed using the Linear-Affine metric on P(n), and
all values are given as 100 · (RCS(X )− 1) for readability.

In order to choose which hyperparameters to use for the different manifold SVM models
we’ve done a limited hyperparameter search for each model using 5-fold cross validation
on all 6 binary classifications for each of the 9 subjects.

The cross validation results for the four DSVM models DSVM, Sp-DSVM, ZCDSVM, and
Sp-ZCDSVM when varying the misclassification weight CDSVM are shown in Fig. 7.19.
We see a similar trend in cross validation error across all the four models, where the
cross validation accuracy decreases when the misclassification penalty is too low at
CDSVM = 0.05, and decreases when the misclassification penalty increases from 0.5 and
above, likely due to overfitting to the training data.

From Fig. 7.19 we also see that all the DSVM models achieve their highest average cross
validation accuracy at CDSVM = 0.1. At that value of CDSVM we see that both the full
DSVM models fare better than their sparse counterparts in terms of cross validation
accuracy, and furthermore the zero curvature models perform better than the models
without that constraint.

The cross validation results for the existing manifold SVM models are shown in Figs. 7.20
and 7.21. Of note is the fact that the MRBF model over (P(22), gLE) is relatively
insensitive to changes in the misclassification penalty parameter CMRBF, but is highly
sensitive to the choice of variance scale σs related to σ through Eq. (5.13).

After cross validation, the final classifiers for each subject and model are optimized with
the hyperparameters that achieved the highest average cross validation accuracy over all
six binary classifications for that subject. Then we test the classifiers on the unseen data
from the second session of the BCI-IV 2a dataset.
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Fig. 7.19.: Cross validation results for DSVM models.

The test results for each model are shown in Tables 7.2 and 7.3, and they display a
significant difference on a per-subject basis, consistent with the trends in relative class
separation shown in Table 7.1. The test accuracy is particularly low for subject 2, where
e.g. the DSVM model only achieves a test accuracy of 50%, equivalent to random chance.
The hyperparameters used for each model and subject are given in Appendix A.

In Table 7.2 comparing the test results for the four different DSVM models, we see that
both the Sp-DSVM and Sp-ZCDSVM models perform comparably well with average test
accuracies of 72.15% and 71.95%, respectively. In addition, they both perform better
than their full-support counterparts with average test accuracies of 67.98% and 69.71%
respectively. The existing MRBF and TS-SVM and models in comparison achieve an
average test accuracy of 70.37% and 72.54%, whilst the CP-SVM model achieves the
highest test accuracy at 72.65%.

Of note is the fact that the support fraction of the training data used by the sparse
Distance SVM models lower than for the existing M-RBF and TS-SVM models. Between
the existing manifold SVM models the M-RBF model is the worst performing in terms of
test accuracy, and is also the only model using the Log-Euclidean metric on P(n), which
induces a flat manifold structure. It could be that it is harder to separate the different
classes using that metric, but then again the choice of the Log-Euclidean metric was
required to guarantee positive definiteness of the manifold RBF kernel.
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Fig. 7.20.: Cross Validation results for the Manifold RBF and Control point SVM models on
the BCI-IV training data. Each data point is the average 5-fold validation accuracy,
averaged over all binary classifications and subjects (n = 6 · 9 = 54).
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Fig. 7.21.: Cross Validation results for the TS-SVM model on the BCI-IV training data. Each data
point is the average 5-fold validation accuracy, averaged over all binary classifications
and subjects (n = 6 · 9 = 54).
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Subj. DSVM Sp-DSVM ZCDSVM Sp-ZCDSVM

1 73.96 (±7.95) 79.17 (±7.49) 74.65 (±9.41) 77.08 (±10.08)
2 50.0 (±2.78) 50.69 (±0.36) 64.93 (±4.04) 56.94 (±3.53)
3 82.29 (±8.33) 73.26 (±6.21) 80.21 (±6.83) 76.39 (±4.92)
4 61.81 (±8.70) 81.60 (±11.10) 63.89 (±8.47) 78.47 (±8.18)
5 61.81 (±8.81) 70.14 (±5.319) 63.89 (±8.022) 70.14 (±8.107)
6 68.06 (±2.23) 62.15 (±5.51) 70.14 (±2.97) 61.11 (±3.50)
7 60.42 (±9.09) 84.38 (±10.89) 55.208 (±1.20) 77.083 (±1.09)
8 82.64 (±4.87) 72.57 (±5.82) 84.72 (±7.20) 74.31 (±5.07)
9 70.83 (±6.72) 75.35 (±6.95) 69.79 (±8.21) 76.04 (±6.29)

Mean test acc.: 67.98 (±11.24) 72.15 (±11.17) 69.71 (±10.05) 71.95 (±9.26)
Support frac.: 100 60.3 100 63.5

Tab. 7.2.: Average test accuracy and standard deviation over all six pairs of mental tasks for the
BCI-IV 2a dataset, in percentages. Comparing results for the Distance SVM models.
The ”support fraction” of each model is the fraction of the training data used by the
model classifier, averaged over all trials.

Subj. MRBF CP-SVM TS-SVM

1 75.52 (±6.87) 75.0 (±9.95) 74.88 (±10.26)
2 55.44 (±6.16) 58.80 (±5.06) 60.42 (±2.20)
3 77.89 (±6.33) 78.24 (±4.51) 78.00 (±5.15)
4 71.76 (±10.69) 77.20 (±8.44) 76.97 (±8.07)
5 59.95 (±6.374) 61.57 (±6.449) 60.30 (±8.453)
6 61.23 (±5.39) 68.87 (±2.72) 69.21 (±4.23)
7 76.041 (±0.928) 76.041 (±1.080) 75.694 (±1.383)
8 77.55 (±5.84) 77.43 (±6.74) 77.55 (±6.25)
9 78.24 (±6.64) 80.67 (±7.18) 79.86 (±8.00)

Mean test acc.: 70.37 (±10.84) 72.65 (±10.00) 72.54 (±10.31)
Support frac.: 94.7 N/A 81.5

Tab. 7.3.: Average test accuracy and standard deviation over all six pairs of mental tasks for
the BCI-IV 2a dataset, in percentages. Comparing results for existing Manifold SVM
models. The ”support fraction” of each model is the fraction of the training data used
by the model classifier, averaged over all trials.
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8Conclusion

In this thesis we considered binary classification models on Riemannian manifolds. The
novel Distance SVM and Zero Curvature Distance SVM models were introduced inChap-
ter 6, and we showed that the latter model produces linear separators in vector spaces.
By numerical experiments in Fig. 7.3 we showed that even though we cannot in general
expect the ZCDSVM separators to be the maximum margin separators produced by the
Euclidean SVM model, we do in some cases recover the maximum margin separators
with the ZCDSVM models.

Regarding sparsity in terms of set of support points for the DSVM and ZCDSVM models,
the optimization procedures presented in Theorem 6.1 and Theorem 6.2 do not produce
sparse support point weights directly. However, we can achieve DSVM and ZCDSVM
classifiers which use sparse subsets of the training points as support points with the two-
step optimization heuristic presented in Section 6.4. This sparsity heuristic appears to
work well, and seemingly captures relevant training data for producing good separating
curves, as illustrated in the figures comparing the full and sparse DSVM models in
Sections 7.1 and 7.2.

Compared to the TS-SVM model of Section 5.1 the DSVM models have the advantage that
they to not require a choice of reference point. Instead, they’re inherent to the manifold
and not confined to a single tangent vector space. The MRBF model of Section 5.2 also
does not require the choice of a reference point, but instead requires that the manifold
be isometrically embeddable in a Hilbert space. This limits the classes of manifolds on
which the MRBF kernel is guaranteed to produce positive definite kernel matrices, but
empirically we’ve shown that it can still work on non isometrically embeddable manifolds
like S(2), as illustrated in Section 7.2.

The CP-SVM model detailed in Section 5.3 is conceptually simpler, taking a different
direction towards classifying manifold valued data by which representative control point
is closest. The CP-SVM model seems to be resistant to overfitting to training data,
producing simpler separating curves than e.g. DSVM on the two S(2) datasets shown in
Section 7.2. However, the optimization procedure to find optimal control points for the
CP-SVM model is not convex overM×M, and we can therefore generally only hope to
find a local minimizer of the CP-SVM objective in Eq. (5.17). In contrast, the TS-SVM,
MRBF and DSVM models all rely on solving a convex optimization problem in order to
compute their classifiers, and therefore find globally optimal solutions.

In Section 7.3 we compared the existing manifold SVM models to the DSVM models on
real world data on P(22). We see from the test results in Tables 7.2 and 7.3 that the
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Pos. Support, Pos. Data, Neg. Support, Neg. Data, Separating Curve.

Fig. 8.1.: Example of L1-norm regularized ZCDSVM classifiers on S(2). Misclassification penalty
set to CMRBF = 102 for both.

sparse DSVM models are competitive with the best performing existing models, CP-SVM
and TS-SVM. The Sp-DSVM model achieved the highest average test accuracy among the
DSVM models of 72.15 (±11.17)%, within half a percentage point of the CP-SVM model
which achieved the highest average test accuracy of 72.65 (±10.00)%.

8.1 Future Work
It would be interesting to look into other ways of achieving sparsity for the DSVM
and ZCDSVM models. The optimization problems (6.11) and (6.19) do not result in a
naturally sparse set of support points, but one natural question is how the support point
weights would change if we instead minimize the L1-norm of β, as the L1-norm usually
promotes sparsity.

We’ve implemented the L1-regularized ZCDSVM model numerically, and illustrated the
resulting classifiers on the two S(2) datasets from Section 7.2 in Fig. 8.1. As expected the
resulting β̂ is sparse, and interestingly, the support points picked out by the optimization
procedure are the training points the farthest away from the separating curve.

Another interesting direction for future work would be to investigate how one could
generalize the idea of support vector machines for regression on Euclidean spaces, as
presented in [16, Chap. 12.3.6]. One switches context from a hinge loss in classification
to a hinge loss on the absolute error in the regression, but in Euclidean spaces the
framework is largely similar, and one ends up solving quadratic minimization problems
of similar to Prob. (3.18).
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AHyperparameter Values for BCI-IV
2a Dataset

The hyperparamter values for the DSVM models are given in Table A.1, and the values
for the existing manifold SVM models are given in Table A.2.

Model

Subj. DSVM Sp-DSVM ZCDSVM Sp-ZCDSVM

1 0.1 0.2 0.1 0.1
2 0.2 0.1 0.1 0.1
3 0.2 0.5 0.2 0.1
4 0.5 0.2 1.0 0.5
5 0.5 5.0 0.2 0.1
6 0.1 0.1 0.1 0.2
7 0.2 0.1 0.05 0.1
8 0.1 1.0 0.1 0.2
9 0.05 0.05 0.05 0.05

Tab. A.1.: Hyperparameter CDSVM used for a specific model on a subject when training the
DSVM models on the first session of the BCI-IV 2a dataset.

Models

Subj. MRBF (C, σs) TS-SVM (C) CP-SVM (C, ks)

1 (102.5, 0.5) 8 (2−1, 0.1)
2 (102.5, 0.5) 6 (2−3, 0.005)
3 (102.5, 0.6) 6 (2−2, 0.05)
4 (102.5, 0.9) 14 (2−2, 0.01)
5 (103, 0.9) 12 (2−1, 0.005)
6 (103, 0.9) 6 (2−1, 0.05)
7 (102.5, 0.5) 4 (2−3, 0.005)
8 (102.5, 0.5) 8 (2−1, 0.005)
9 (102.5, 0.4) 4 (2−3, 0.01)

Tab. A.2.: Hyperparameters used for training MRBF, TS-SVM, and CP-SVM models on a subject
when training on the BCI-IV 2a dataset.
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