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Abstract

Norwegian

Formalet med denne avhandlingen er a undersgke og implementere den nye hypervisorutvidelsen
for RISC-V, som ble ratifisert i spesifikasjonen i november 2021. Den sentrale implementerin-
gen oppnas ved a implementere en hypervisor og en gjestekjerne skrevet i Rust, for a undersgke
dens levedyktighet som et systemprogrammeringssprak. Den resulterende implementeringen kjgrer
en hypervisor med QEMU og virtualiserer en supervisor-gjestekjerne, hvor det er et hypercall-
grensesnitt for SBI klokke kall og virtuelt minne som kartlegger fysiske enheter som UART. Det
er imidlertid noen begrensninger: hypervisoren kan ikke virtualisere mer enn én gjest, og virtuelt
gjesteminne fungerer ikke som forventet. Og er dermed ikke i stand til & virtualisere mer komplekse
gjestekjerner som f.eks. operativsystemer. Pa grunn av dette, og at den kjgrte pa en simulator,
var det kun mulig & danne en sammenligning basert pa en statisk analyse utfort pa eldre hyper-
visorer skrevet for spesifikasjonen for utvidelsen ble ratifisert, da det ikke var mulig & samle inn
numeriske data. Det er imidlertid fortsatt mulig a si at den nye hypervisorutvidelsen er et verdi-
fullt tillegg, som reduserer programvarekompleksiteten og gjgr det lettere a utvikle hypervisorer pa
arkitekturen. Erfaring fra skrivingen av hypervisoren viser at Rust som programmeringssprak pa
systemniva har mange potensialer, men at det fortsatt er et stykke igjen for det kan bli en palitelig
erstatning for andre industristandarder som C.

English

This thesis aims to explore and implement the new hypervisor extension for RISC-V, ratified
into the specification in November 2021. The core implementation is achieved by implementing
a hypervisor and guest kernel written in Rust to explore its viability as a system programming
language. The resulting implementation runs a hypervisor with QEMU, virtualizing a supervisor
guest kernel where a hypercall interface exists for SBI timer calls and virtual memory mapping
physical devices like UART. However, some limitations exist: the hypervisor cannot virtualize more
than one guest, and guest virtual memory does not work as expected. And thus it is not able to
virtualize more complex guest kernels like operating systems. Due to this, and it was running on a
simulator, it was only possible to form a comparison based on a static analysis performed on older
hypervisors written before the specification for the extension was ratified since it was not possible
to gather numerical data. However, it is still possible to say that the new hypervisor extension
is a valuable addition which reduces software complexity and makes hypervisors easier to develop
on the architecture. Experiences from writing the hypervisor show that Rust as a system-level
programming language has a lot of potentials but still has some way to go before it can become a
reliable replacement for other industry standards like C.
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1 Introduction

Virtualization is a widely used technology for more complex computer systems and architectures.
Today most of what we think of as the cloud is a vast number of applications running isolated from
each other in virtual machines on powerful servers hosted in data centres. The virtualized nature
of these applications also enables flexibility by abstracting away hardware-specific dependencies so
the software can run on many systems.

We can also find virtualization on a smaller scale where its concepts are being used to isolate
applications on embedded platforms for enhancing platform security and reliability. One example
is Siemens Jailhouse which is open source and publicly available.

The concept and technology exist for several decades already but are even more relevant in today’s
connected and cloud-based environments. We can find references dating to the ’70s when Gold-
berg’s and Popek’s article ”Formal requirements for virtualizable third generation architectures”
[14]. So it already lays out the general requirements for a system to support virtualization.

1.1 Background and Motivation

RISC-V has matured increasingly in recent years, going from being an academic new instruction
set architecture to being widely adopted and used in the industry. With broader adoption comes a
wider interest in adapting technologies from other architectures to RISC-V. For example, ARM64
and X86_64 have their specification-defined way of virtualization with embedded hardware helping
features. This was not the case with RISC-V initially, so hypervisors like RVirt’s [11] rely on
trap-and-emulate within the privileged system mode, where the software is solely responsible for
doing the virtualization separation itself.

At the end of November 2021, the RISC-V hypervisor extension was ratified and formally adopted
into the privileged architecture specification. It defines hardware features that can be implemented
into a core to reduce virtualization overhead and simplify the implementation of a hypervisor. It
was, therefore, fascinating to look at and implement software which uses the new hypervisor
extension and document the process since there is little documentation on how to utilize the
extension at the time of writing.

Traditionally, the classic go-to system development language has been C or C++ for low-level
software development. However, in recent years new languages like Rust have started to appear,
which claim to provide the same flexibility and speed C has but with modern language features
and memory safety checks. It is interesting to see how Rust holds up, especially when writing
software for a newer architecture like RISC-V.

1.2 Scope and objectives of this thesis

The objectives of this master thesis will be the following.

e Explore the steps needed to create a hypervisor with the new RISC-V hypervisor extension
(H-extension).

Evaluate the simplicity of the new extension compared to the previous methods.

Evaluate the pros and cons of using Rust as a system development language.

Design and implement a working hypervisor on a RISC-V platform that supports the hyper-
visor extension.




2 Theory

2.1 Virtualization

Part of this section is from a paper I wrote earlier about virtualization [1].

In this section, we will explain and show the differences between the two types of virtualization,
namely full virtualization and paravirtualization. The idea here is to give a short overview so
each concept is understandable and the suggested implementation can be understood. For a more
comprehensive and detailed overview of these concepts, please see the relevant whitepaper [17]

Virtualization is the concept of running software semi or fully isolated from the host system while
giving the running software the impression it is running on a system of its own. Depending on the
implementation, the guest system (the virtualized environment) can also have direct or indirect
access to the hardware. For example, the host can section off parts of its system resources and
give the guest complete control over that hardware. It can alternatively direct enable access to
hardware through a hypervisor which will map the whole relevant system memory or peripherals to
the guest sees to the relevant allocated sections on the host’s system. A hypervisor is a component
that enables the possibility of virtualization within a system and handles and manages everything
corresponding to it.

There are different ways virtualization is implemented on various platforms. On operating systems
like Windows and Linux, embedded hypervisors are part of the operating system’s kernel. They
are enabling the possibility of virtualizing software while running the operating system. However,
implementations also exist where the hypervisor is running alone as an operating system of the
machine. This we can find in, for example, the Xen project, where the sole purpose of the system
is to virtualize software in so-called virtual machines (VMs) [4].

There are also different types of virtualization support depending on the implementation. As an
example, there are differences between hardware support and 10 (input and output) support. For
example, one enables essential support for the virtualization of the hardware, and the other allows
for the use of general input and output devices. These IO devices can be, for example, disk or
console input.

In terms of terminology, we often refer to guests and hosts when discussing virtualization. Here
the guest is the piece of software being virtualized by the host. There can be only one host but
multiple guests in a virtualization system.

2.1.1 Full virtualization

This type of virtualization is the most commonly used form, where all instructions executed on the
guest go directly to the host’s hardware. If the guest wishes to access hardware like IO, memory or
disk, it will trigger a trap into the hypervisor that is running underneath it all. A context switch
will happen, and the hypervisor handles the request of the guest system and returns what the
guest would expect or signals/handles an error. This allows the hypervisor to store data that was
supposed in the guest’s mind and go to a physical hard disk in a file instead. The advantage of an
approach like this is that you don’t need to make any changes to the guest system to make this
work. You only need a precompiled executable and can run it as long as the hypervisor can handle
all the relevant hardware requests. The disadvantage of this approach is that it’s a lot of overhead.
Triggering a trap and context switch every time you need to access 10 is very time-consuming,
which is why full virtualization is a fair bit slower than running the software natively on the host.

2.1.2 Paravirtalization

In paravirtualization, we have a more practical approach to virtualization than full virtualization,
although it is not without its downsides. Paravirtualization works similarly to full virtualization,




where we still abstract away hardware calls to a hypervisor which then handles these calls respect-
ively. The change is that instead of going through a trap handler, we recompile the respective
guest system to call the respective hypervisor calls directly rather than making it think it’s ac-
cessing real hardware. In practice, this might be implemented as syscalls to the hypervisor for the
different types of hardware it wants to access. This advantage is that we get rid of the overhead by
having a trap handler and needing to parse the respective hardware call in the hypervisor, mak-
ing the hypervisor stage significantly faster. However, the disadvantage of this approach, which
might be obvious, is that you need to recompile and change the running software. This can be
time-consuming since it requires familiarity with the codebase to know which function needs to
be patched. Sometimes the source code is also not always available if the plan is to virtualize
any proprietary software where you only have access to the binary files. This makes the patching
process even harder since you would need to reverse engineer and find the relevant function before
patching them.

Para-virtualization "Classic" Full-virtualization
Modified Guest Kernel Guest Kernel
Hypercall l Privileged instruction
Hypervisor Hypervisor
Operation l T Trap lEmuIate
Y
Hardware Hardware

Figure 1: Full virtualization compered to paravirtualization

Source: RicoRico, CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0), via Wikimedia Commons

Ultimately, which of these two virtualization methods is best comes down to the problem you
are trying to solve for running many different types of software. If you are trying to virtualize
specialized software you are familiar with, you can gain a lot of performance by rewriting it to
interact directly with the hypervisor.

2.2 RISC-V architecture

In recent years there have been efforts to make RISC-V an open ISA (Instruction Set Architecture)
for academia and industry to provide a feature set on par with commercial and closed licensed
instruction sets. Its features are free to use and extend as the user wishes without paying licensing
fees or royalties [3].

2.2.1 Privilege modes

In RISC-V, as with other architectures, the concept of privilege modes limits what the processor
has access to in the given moment. Different architectures can describe these modes as "rings”,
but on RISC-V, it is just referred to as privilege modes. Each hart (hardware thread which is the
RISC-V term for a processor core) runs in its own privilege mode.

Table 1 shows a list of the possible privilege modes to be used on a RISC-V core. Of course, it’s
up to the implementer of the RISC-V core which privilege modes it includes, but it needs always
to have machine mode and any of the privilege levels below.




Virtualization | Nominal . Two-Stage
Mode (V) Privilege Abbreviation | Name Translation
0 U U-mode User mode off
0 S HS-mode Hypervisor-extended supervisor mode | Off
0 M M-mode Machine mode Off
1 U VU-mode Virtual user mode On
1 S VS-mode Virtual supervisor mode On

Table 1: Privilege modes with the hypervisor extension.

Source: RISC-V International, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), via Github

M-mode mode is the highest privileges and can be found on all RISC-V core implementations
since the specification mandates it. Code running here is said to be trusted since it can access
everything in the system. M-mode would usually be reserved for low-level firmware in a system
with multiple privilege levels. An example is the opensbi, a platform-specific firmware developed
based on the SBI specification to provide an interface to interact with M-mode to control features
requiring M-mode privileges. User and supervisor hypervisor modes are then usually used for more
conventional applications like operating systems. And thus have fewer privileges than software
running in M-mode or S-mode respectively [2].

2.2.2 Control and Status Registers (CSRs)

Control and Status Registers, abbreviated to CSRs, are used as stated in the name to control and
monitor the status of the processor. Each privilege level has its own CSRs to control and monitor
the state of interrupts, exception delegation, address translation and more. By the privilege level,
one hart running with lower privileges cannot access the CSRs of a higher privilege level, while the
opposite is possible.

All CSR has a prefix with the privilege level they belonged to an overview of which can be found
in section 2.2.1. So machine mode CSRs has prefix ”m”, supervisor mode has ”s” and so on.

For further details of the currently allocated CSRs in the RISC-V specification, please see the
privileged architecture specification|[2].

2.2.3 Hypervisor extension

In RISC-V there is a ratified hypervisor extension to the RISC-V specification [2]. It describes
how a RISC-V implementation should handle and implement registers and modes corresponding
to functions which makes the implementation of a hypervisor easier. Specifically, the hypervisor
extension enables the possibility of running the processor in what is called VS (Virtual Supervisor)
and VU (Virtual User)-mode. This is parallel to the normal supervisor mode but with fewer
privileges than the normal supervisor mode. User mode mimics the same behaviour as normal
user mode apart from sending traps and syscalls into VS-mode instead of HS-mode. When this
extension is enabled, the normal S-mode privilege level becomes Hypervisor-extended supervisor
mode which is abbreviated to HS-mode.

The main advantage the hypervisor implementation gives is that it automatically handles the
translation of CSR reads and writes in the virtualized supervisor mode (VS-mode) to CSRs with
the prefix ”vs”. This enables simpler implementations and a hypervisor only needs to keep track
of the state of these registers for each machine it is virtualizing.

Another part the hypervisor extension has added is dedicated trap codes for the different calls it
might do like environmental calls (ecall instruction), a page fault and more. These trap codes are
described in appendix B. In general, all the trap cause codes are in place to easily distinguish the
virtualized user or supervisor environment from a none virtualized user and supervisor environment.




Specific interrupt registers can be controlled from the hypervisor, triggering a trap with the re-
spective trap cause set in VS-mode. This can be used to create abstracted implementations for
timers and other peripherals which the VM might expect.

An overview of the whole system implemented with a hypervisor using the extension features can
be seen in figure 2.

Virtual User (VU)

Application Application Application Application mode

Guest Guest Virtual Supervisor
Kernel Kernel (VS) mode

Hypervisor
Hypervisor Supervisor (HS)
mode

Machine Machine
Kernel (M) mode

Figure 2: An overview of how the overall system would look

For more details please see the RISC-V privileged architecture specification [2].

2.3 Virtual Memory

To isolate separate memory properly between a guest and a host, there needs to be some way to
protect against a program which runs as a guest to modify memory or read memory to which it
is not intended to have access. This could be accomplished with the physical memory protection
feature in RISC-V [2] which disallows a program that runs in a different privileged mode from
accessing the memory of a higher privilege mode if configured correctly. Although this accomplishes
the task of protecting memory that should not be accessed by a lower privileged mode, it does
not allow us to run general software which expects access to these memory areas when they are
compiled to be able to run. This is where virtual memory comes in. A concept of translating
memory addresses through the memory calls through an MMU (Memory Management Unit). This
allows the host system to map memory addresses that look like an ordinary program memory for
the guest program to an arbitrary memory location which the host decides on. Virtual memory is
an important feature which is used in many operating systems to enhance security and is essential
when implementing a hypervisor for virtualization.

2.3.1 RISC-V implementation

On RISC-V, virtual memory setup is accomplished by setting the sgatp for supervisor mode virtual
address translation or hgatp for use with the hypervisor extension to the root page table. In this
status register, we also configure the address translation configuration. Currently, there is Sv32x4
for 32-bit and Sv39x4, Sv48x4 and Sv57x4 for 64-bit RISC-V systems as available configurations.
The first number represents the number of bits used in the virtual address. The more bits that are
available, the more virtual addresses we can have at the same time. The second number after the x
represents translation for the hypervisor extension. The difference is that the hypervisor extension
version adds more bits in the VPN (Virtual Page Number) field. A larger virtual address bit size
potentially requires more storage if used at total capacity. Each page we allocate in our page table
will be of size 4KiB. This is the minimum size the MMU can map. In the case of virtual memory




translation for the hypervisor extension, the root page table needs to be 16KiB aligned instead of
the usual 4KiB alignment, which you have in normal supervisor mode address translation [2].

Depending on which address translation configuration is chosen, the page table has a different
number of levels starting from two levels with Sv32x4 to five with Sv57x4. The root page table is
counted as the first level. Based on the number of levels, the virtual address is split up into sections
that are used for indexes VPN for locating the physical address. Specific details for Sv39x4 will be
discussed more, although more information for the other configurations is similar apart from bit
width and number of page table levels. The virtual address consists of three VPN sections used to
find the corresponding page table entry. The first 12 bits from LSB are called the offset, directly
translated to the physical address. This is why the MMU can only map memory in 4KiB chunks.

Virtual Address Physical Address
Ve VN VP Offset PPN Offset
Index Index Index
~
44 10
44 10
PPN Flags
44 10
== PPN Flags
Root Page
Table
satp = PPN Flags
~ >
Level 1 Page
Table
~ >
Level 0 Page
Table

Figure 3: An overview of how virtual to physical memory translation works with Sv39x4.

The highest VPN field in the direction of MSB is used to find the first index in the root page table.
This field holds the physical address of the following page table PPN and flags to indicate if the
entry is valid or not. Next, the address of the PPN combined with the following VPN field in the
original virtual address is used to find another index repeating the process just described until we
reach our third lookup, which gives us a physical memory location the MMU is going to map in
the PPN field. Here the flags also indicate permissions of the mapping like read or write access or
if the lookup is accessible in user mode. If the action the program is trying to do does not match
what is set in the corresponding flags, then a page fault is triggered. If not, the PPN entry is
combined with the offset bits from the virtual address to create the physical memory location to
which our virtual address is mapped. An overview of this process can be found in figure 3 which
shows the translation steps for an Sv39x4 configuration. Red arrows symbolize physical memory
addresses, while blue arrow indicates virtual addresses.




2.4 Timers

A timer is a hardware-implemented peripheral that counts up to a given number and then triggers
an interrupt. They can be implemented differently depending on the platform. But they are
an essential part of a system where multiple tasks must be accomplished. For example, in a
hypervisor context, timers are the fundamental part of our scheduler, determining when we are
switching between VMs or returning to our hypervisor to update some parameters.

2.4.1 RISC-V implementation

On RISC-V, timers do not have a specific implementation according to the specification, so imple-
mentation will differ depending on the target platform. For example QEMU the timer is based on
a specific SiFive FU540-C000[16] core implementation.

2.5 Rust

Rust is a general-purpose system programming language that focuses on safety and performance.
Especially safe concurrency is a critical trait that Rust prioritizes, which results in programs
written in Rust being free of problems like race conditions by guaranteeing memory safety. Rust
offers mechanisms for low-level memory management and high-level language features like built-in
library support and a package manager. Syntax wise, it is inspired by C++, OCaml, Haskell, and
Erlang [7]. Since its original release in 2010, Rust has received a wide adoption in the industry
and is used by larger software companies like Amazon and Microsoft [5].

One feature that makes Rust ideal when it comes to low-level system programming is the advanced
compile-time checks it does. In addition, since Rust guarantees memory safety, it does borrow
checks[6] on all variables used to check for concurrency problems. This results in a program that
is free from memory access faults which causes less time to be used on debugging these problems
later down the road.

Rust also provides ways of skipping these checks through the use of the unsafe keyword. This
is sometimes necessary to set up a hardware driver where you need to dereference pointers to
hardcoded memory addresses. Then a safe wrapper can be created around this unsafe code
segment, and if memory safety-related problems occur, we know they can be isolated to the unsafe
sections.




3 Design

In this section, we will outline our hypervisor’s high-level design. This allows for a more general
description that does not rely on specific implementation details. The exact details surrounding
the platform and the implementation details can be found in section 4.

The hypervisor will consist of two parts, our machine kernel running in machine mode and a hyper-
visor running in hypervisor supervisor mode. Additionally, we need software to test our hypervisor.
Therefore we will also design a simple guest kernel that will act as our general supervisor mode
software to be virtualised. See figure 2 for a general overview of a hypervisor architecture.

3.1 Machine Kernel (M-Mode)

When the RISC-V core does a system reset, the program counter is set to a known value and
instructions at that memory location are fetched and executed. The system is now at an unknown
state, and the Entrypoint mark in figure 4. Afterwards, we proceed to System Initialization, where
we can configure our registers and set all the necessary CSRs RISC-V expects. All exceptions
apart from the timer and environmental call from HS mode are delegated to the hypervisor. This
is the stage where we also configure peripherals that will be used. In this design, we need a timer,
which is also initialised. After system initialisation, we hand off execution to our hypervisor entry
point and continue to run code in HS-mode.

The core needs to sometimes return to machine mode to handle tasks that require machine mode
privileges. This includes handling timer interrupts and environmental calls from the hypervisor.
The timer interrupt is dealt with and propagated to the hypervisor by triggering the respective
CSR. For this hypervisor design, we only need an interface to disable and enable global and timer
interrupts from the hypervisor. This is required to have the ability to disable these functions when
the hypervisor code enters a critical section.

M L Timer interrupt System call interface

O’ * v

Trap Handler

System Initialization

l Machine mode

Hypervisor

Hypervisor Mode

Figure 4: Overview of the general design of the machine mode kernel

3.2 Hypervisor (HS-Mode)

Picking up from where our machine kernel handed us off, the purpose of the hypervisor component
is to manage and set up the virtualisation aspect of the system. Here the guest’s memory is set up
with the help of virtual memory, and necessary hardware interfaces are directly mapped. There
also needs to be a guest setup stage where the essential structure for the virtual machine is set up,
and the guest kernel is loaded into the virtual memory initialised for the guest. After the guest is
fully set up, we hand off execution to the guest running in virtual supervisor mode. A high-level
overview of the hypervisor design can be found in figure 5.

10



After setting up the guest, there still needs to be interactions with the hypervisor. This can be
the guest trying to access memory it does not have access to and thus triggering a page fault.
Alternatively, it can also be environment calls from the guest called hypercalls as described as
paravirtualisation, see section 2.1.2. In this case, the hypervisor will have a hypercall interface for
SBI timer calls as defined in the SBI specification [9]. Hardware timer interrupts are then regularly
triggered on the hypervisor, which is combined with the parameters of the guest SBI timer call to
initiate an emulated timer interrupt for the guest. This theoretically allows us to have as many
timers interrupts for guests as we want. This hardware timer interrupt section can be extended
further. In a more complex hypervisor, this would be the ideal place to implement a scheduler
to switch between guests. However, that is outside the scope of this design. An overview of the
hypervisor trap handler interface can be found in figure 6.

l Machine mode

Entrypoint

v

 —
Virtual memory setup
<
Hypervisor Initialization
—
Guest setup
<
Switch to guest kernel
L Hypervisor mode
Guest Kernel

Virtual Supervisor mode

Figure 5: Overview of the initialization of the planned hypervisor

Environment Call VS
mode

[ A S AR A

Hypervisor Trap Handler

External Interrupt Timer Interrupt Unimplemented

Guest Kernel

Virtual Supervisor mode

Figure 6: Overview of the trap handler for the hypervisor
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3.3 Guest Kernel (VS-Mode)

Although not necessary for designing the hypervisor itself, we create a simple guest kernel to be
able to test if our hypervisor is working as expected quickly. This design is generic and should
assume that it runs in supervisor mode with a machine mode bootloader with an SBI interface to
control interfaces like timers. This kernel follows the generic operating system design principles
that one would think of creating for a low-level target.

Execution starts by code starting the default expected entry point, which is usually a predefined
memory location depending on the target architecture. Afterwards, we need to initialise our kernel
with the necessary interfaces, specifically virtual memory and timer interrupt. The timer setup is
done by relying on the SBI timer extension found in the specification [9]. Following the setup, our
kernel goes into an infinite loop, waiting for the timer interrupt to happen. The kernel trap handler
handles specifically the timer interrupt requested by the SBI call and notifies us that everything
is working as expected. An overview of the guest kernel can be found in figure 7.

Hypervisor Mode

Virtual Supervisor Mode

Entrypoint

ﬁ‘rﬁ

Kernel Initialization

- @ [ Timer interrupt handler

v

Y

Sbi call

Virtual memory
Initialization

4
Y

s N
Timer setup *){ Infinite loop

Figure 7: Overview of the general designed of the planed guest kernel.

Trap handler
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4 Implementation

As stated in section 1, this master thesis aims to document, evaluate and implement a hypervisor
with the newly ratified hypervisor extension for the RISC-V instruction set architecture. Addition-
ally, we want to consider Rust as a system programming language on the RISC-V platform. As a
basis, this implementation will take inspiration from Takashi Yoneuchi’s unfinished rust hypervisor
project rvvisor[18] which was based on an earlier draft of the hypervisor extension specification.
The generic outline of the design of the hypervisor and guest kernel can be found in section 3.

As a target platform, we will use QEMU version 7.0.50 to emulate a single-core RISC-V system with
512MB memory and a standard Virt interface. Since we want to make implementation generic,
we will not describe the detailed implementation of the drivers towards the VirtIO interface since
this will change if the target system changes.

This section will use abbreviations defined under section 2.2. Especially the abbreviations for the
different privilage modes in table 1.

There will also be relevant code snippets from the implementation code itself. The whole codebase
is not going to be included here but can be found on the following GitHub repository[13]

The hypervisor will consist of the following components, and the implementation of each will be
described in detail:

M-Mode:

e Bootloader to initialize the system and jump to HS-mode.

e Environmental call interface controls the machine timer and interrupts from HS-mode.
HS-Mode:

e Virtual memory controller to isolate virtual machine’s memory from each other.
e SBI standardized environmental call for virtual timers to the virtualized machines.

e Setting up the guest’s memory space and loading the guest kernel before switching to it.

4.1 Rust and RISC-V

Since Rust is still evolving as a programming language, we have two main branches of the language
that can be used. One is stable, and the other is nightly. As can be inferred from the name itself,
stability is standardized and not changing and nightly have features that the maintainer is subject
to change or deprecate later. Depending on what you want to accomplish, using some of these
nightly features might be needed when doing system programming.

Rust uses LLVM [8] as a compiler backend. That means the specific Rust compiler must only
compile the rust code to LLVM IR, an intermittent representation highly portable to different
architectures. Support for RISC-V in Rust is mainly depending on the LLVM backends RISC-V
architecture support which is well supported.

An additional benefit of Rust is the built-in package manager cargo which makes managing depend-
encies and setting up build environments reasonably simple. This contributes to making iteration
time faster, which makes the development process smoother.

4.1.1 Macros and assembly abstracting

In system programming, we need to do memory accesses or issue assembly instructions directly,
which Rust deems to be an unsafe behaviour. Since we want to take advantage of the Rust borrow-
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Listing 1: Control Status Register macro hypervisor/src/riscv/csr/macros.rs

1 macro_rules! define_read {

2 ($csr_number:expr) => {

3 pub fn read() -> usize {

4 unsafe {

5 let r: usize;

6 asm! ("csrrs {0}, {csr}, x0",
7 out(reg) r,

8 csr = const $csr_number,
9 options(nostack)

10 )

11 r

12 }

13 }

14 };

15 }

16

17 macro_rules! define_write {

18 ($csr_number:expr) => {

19 pub fn write(v: usize) {

20 unsafe {

21 asm! ("csrrw_ x0,_{csr}, {rs}",
22 rs = in(reg) v,

23 csr = const $csr_number,
24 options(nostack)

25 )

26 }

27 }

28 };

29 }

Listing 2: Controll Status Register definition example hypervisor/src/riscv/csr/misa.rs

1 define_read! (0x301);
2 define_write! (0x301);
3 pub const HV: usize = 1 << 7;

ing checks on compile, we need to wrap these unsafe calls in safe functions that do the necessary
checks. Keeping these segments concise helps prevent memory-related bugs from happening.

Two instructions that are going to be used a lot are csrrs and csrrw to facilitate writes and reads
to CSRs (Control Status Registers). Since there are a lot of different CSR registers and numbers
we need to use we can wrap this unsafe call Rust macros define_read and define_write which
can be seen in Listing 1. Defining these macros in a file will implement the functions read and
write with respective CSR id. Note that the unsafe section here only deals with passing the input
and output from the assembly instruction, and there is no possibility for undefined behaviour. It
will always read and write to a CSR and return a value if expected.

In a separate file, we can then call the macros with the specific id of the CSR. In listing 2 we define
the call for misa CSR. Afterwards, reading and writing to all the CSRs we have defined can be

Listing 3: Controll Status Register call example hypervisor/src/mkernel.rs:81

1 let misa_state = riscv::csr::misa::read();
2 riscv::csr::misa::write(misa_state | riscv::csr::misa::HV);
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done safely, as shown in the example in listing 3 where we read and set a constant using OR we
have defined in the file and then write back the original value.

4.2 Machine Kernel (M-Mode)

In this section, we will explain the detailed implementation of the machine kernel design found in
section 3.1, which is the software running in the highest privilege mode. In this privilege mode,
we are mainly concerned about doing the necessary setup of the system before handing it off to
the hypervisor running in HS-mode. We also handle required hardware interrupts and system calls
from the hypervisor mode to control these interrupts. An overview of the functions and program
flow can be found in figure 8.

Entrvooint Enable/Disable Enable/Disable
P Interrupts Timer
s N [ T ¢ T ¢ N
init() Timer interrupt ‘ System call interface
rust_m_entrypoint() T ,L T ¢
setup_timer() rust_mtrap_handler()
A
Y
switch_to_hypervisor()
i Machine mode
Hypervisor

Hypervisor Mode

Figure 8: Overview of the machine mode kernel

4.2.1 Bootstrapping

As part of every bare-metal software implementation, we need some bootstrapping before we can
run our Rust code. QEMU starts program execution on address 0x8000_0000. We, therefore, tell
our linker script to include some assembly code at the start of our program section, so it is the
first instructions that QEMU executes, which can be found in listing 4. The linker script can be
found in appendix A.

Listing 4: m_entrypoint from hypervisor/src/boot.S

1 la a0, _trapframe

2 csrw mscratch, a0

3 # load stack addr

4 la sp, _m_stack_end

5 # jump to rust code

6 tail rust_m_entrypoint

We set up a trap frame and write this into mscratch in case we want to peek at what went wrong
if we get an unexpected trap. Next, we need to set up our stack to store local variables. This is
done by loading the address we have allocated to our stack into the sp register (stack pointer). The

15



core is now ready to start executing our Rust code, and we jump to rust_m_entrypoint which is
explicitly not mangled and exported as a C style function to increase compatibility with the linker.
All of this is encapsulated into Entrypoint in figure 8

4.2.2 Initialization

The primary purpose of the machine kernel is to function as a simple bootloader for our hypervisor
and an interface layer to change components that require machine mode privileges. We, therefore,
only do the necessary setup before handing it off to our hypervisor.

Since we are working with bare-metal code, there is no pre-defined way our system should behave
when it panics. We, therefore, need to define this, which can be seen in listing 5. We can see that
when panic is called, we invoke print and println, which is another macro defined as part of the
UART driver, which will be described later. We use these to print the information Rust makes
available through its core panic library. Finally, at the end of the panic call abort is called, which
forces the core to wait indefinitely for an interrupt, enabling us to attach and debug the core if we
wish to get more information.

Listing 5: Panic handling definition hypervisor/src/debug.rs

1 #[panic_handler]

2 fn panic(info: &core::panic::PanicInfo) -> ! {
3 print! ("abort: ") ;

1 if let Some(p) = info.location() {

5 println! (

@ "line {}, file {}: {}",

7 p-lineQ),

8 p.-file(),

9 info.message () .unwrap()

10 );

11 } else {

12 println! ("no,information available.");
13 }

14 abort () ;

15 }

16

17 #[no_mangle]

18 extern "C" fn abort() -> ! {

19 loop {

20 unsafe {

21 asm! ("wfi", options(nostack));
22 }

23 }

24 }

After the boot is done as described in section 4.2.1, the first part of our entry code rust_m_entrypoint
calls init where the function is wrapped in and result checker, which is a Rust language feature to
make error handling easier, which can be seen in listing 6. We can then have an error propagate
from init, and if it is not handled, it will call the panic macro, which aborts execution in an
expected way and prints which file and line it failed at. One important thing to note here is that
panic cannot display any information to our screen before the output interface is set up, which is

a UART interface. Therefore the UART interface initialization is one of the first functions called
in init, see listing 7.

Listing 6: Code snippet to show the call and error handling of init hypervisor/src/mkernel.rs

1 pub extern "C" fn rust_m_entrypoint(hartid: usize, opqaue: usize) -> ! {
2 if let Err(e) = init() {
3 panic! ("Failed to,initialize. {:7}", e);
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4 };

5 )

6 if let Err(e) = setup_timer() {

7 panic! ("Failed to,initialize timer. {:7}", e);

8 };

9 switch_to_hypervisor(hypervisor::entrypoint as unsafe extern "C" fn());
0 }

The UART interface is platform-specific for the QEMU Virt interface, so the specific implementa-
tion is not described but can be found in the corresponding source file in the repository[13]. Within
this implementation, the macros print and println are defined as described in section 4.1.1 which
gives us a way to print characters to the respective output interface. Following the initialization
of our UART interface, we proceed to configure our control status registers (section 2.2.2) which
have already been defined with their corresponding ids described in section 4.1.1. The first CSR
we configure is medeleg which allows us to delegate exceptions to the hypervisor supervisor mode
(section 2.2.1). Here all exceptions are delegated apart from environmental calls from the hyper-
visor mode so the hypervisor can interact with the machine kernel. The mideleg CSR is configured
to forward all supervisor external timer and software interrupts to the supervisor mode, which is
by default delegated to machine mode. One optional CSR here is misa which has an extension
field that allows the software to turn off different RISC-V extensions implemented on the core.
All of the supported fields should be enabled per the RISC-V supervisor specification[2], but it is
enabled to be sure. To handle traps, we also need to tell our system where to jump when a trap
is caused. This is done by setting the mtvec CSR to our trap handler. Lastly, the satp CSR is
set to zero, which makes sure virtual address translation is turned off for the HS-mode since this
would only cause an unnecessary performance impact on the code running our HS-mode since we
don’t want to isolate the hypervisor code from accessing the machine mode memory. If then no
errors have occurred the init function returns Ok since our function expects either a Ok or Err

type.

Listing 7: Code snippet mkernel init hypervisor/src/mkernel.rs

1 pub fn init() -> Result<(), Error> {

2 // init UART

3 uart: :Uart: :new(memlayout: :UART_BASE) .init () ;

4

5 // medeleg: delegate synchoronous exceptions

6 // except for ecall from HS-mode (bit 9)

7 riscv::csr::medeleg: :write(

8 Oxffffff ~ riscv::csr::medeleg::HYPERVISOR_ECALL );
@

10 // mideleg: delegate all interruptions

11 riscv::csr::mideleg: :write(

12 riscv::csr::mideleg: :SEIP |

13 riscv::csr::mideleg::STIP |

14 riscv::csr::mideleg: :SSIP);

15 // enable hypervisor extension

16 let misa_state = riscv::csr::misa::read();

17 riscv::csr::misa::write(misa_state | riscv::csr::misa::HV);
18 assert_eq! (

19 (riscv::csr::misa::read()) & riscv::csr::misa::HV,
20 riscv::csr::misa::HV

21 )

22

23 // mtvec: set M-mode trap handler

24 riscv::csr::mtvec::set(&(trap as unsafe extern "C" fn()));
25 assert_eq! (

26 riscv::csr::mtvec::read(),

27 (trap as unsafe extern "C" fn()) as usize

28 ) 5
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29 riscv::csr::satp::write(0x0); // satp: disable paging
30 0k(()) // Return no error
31 }

The next initialization step, seen in listing 6 is to initialize our hardware timer, which relies on a
platform-specific CLINT implementation described in section 2.4.1 so as with UART, the details
will not be described. The only generic step apart from the platform-specific implementation is to
set the flag in the mie CSR to enable our machine timer to interrupt.

4.2.3 Switching to hypervisor supervisor mode

Following the initialization of our general core and timer, the core is ready to jump to the hyper-
visor by calling the function switch_to_hypervisor the code of which can be seen in listing 8. To
do a proper switch to hypervisor mode, the mpp CSR to CPU mode supervisor and mpv CSR to
Virtualization Mode Host. Since the hypervisor mode is just an extension of the normal supervisor
mode, the value controls the distinction between virtualized supervisor mode and hypervisor su-
pervisor mode in the mpv CSR. Please see table 1 for all the available modes. The CPU also needs
to know where to start to execute after we invoke the context switch. This is achieved by setting
mepc, which is the machine exception program counter, to our hypervisor entry address. The
last thing we need to configure before we can jump into the hypervisor supervisor is to configure
the physical memory protection (PMP) to allow our hypervisor to access the program memory.
In this implementation, we give the hypervisor access to all memory and then disable PMP since
we don’t need to segregate the memory. This is achieved by configuring the CSRs pmpcfg0 and
pmpaddr0 with the assembly code seen in listing 8 from line 10 to 13. Finally, we invoke the
trap return instruction for this mode mret which sets the program counter and privilege mode
correctly based on what we configured earlier.

Listing 8: Code for jumping to the hypervisor hypervisor/src/mkernel.rs
1 pub fn switch_to_hypervisor<T: util::jump::Target + Copy>(target: T) -> ! {

2 riscv::csr::mstatus::set_mpp(riscv::csr::CpuMode: :S);
3 riscv::csr::mstatus::set_mpv(riscv::csr::VirtualzationMode: :Host);
4 riscv::csr::mepc::set(target);

5 assert_eq! (

6 riscv::csr::mepc::read(),

7 target.convert_to_fn_address()

8 )

9 unsafe{

10 asm! ("1i_t4,.,31");

11 asm! ("csrw pmpcfg0, t4");

12 asm! ("1it5,,(1,<<55) —u1");

13 asm! ("csrw pmpaddr0, t5");

14 }

15 riscv::instruction: :mret();

16 }

17

4.2.4 Trap handling

Even though we have delegated most of the exceptions to our hypervisor mode trap handler, there
are still cases that the machine kernel trap handler needs to handle. As described in section 3.1
and figure 8, we want the hypervisor to be able to control the hardware timer and interrupt from
its privilege mode. We, therefore, need a system call interface that handles environmental calls
from the hypervisor. Additionally, on our platform, the hardware timer can only trigger timer
interrupts in machine mode. If our hypervisor receives these interrupts, we also need to propagate
them manually from machine mode.
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In section 4.2.2 the mtvec CSR was set to point to trap. This implementation points to the follow-

ing assembly code in listing 9. There needs to be some assembly before we can call rust_mtrap_handler
because we need to save the state of registers so we can put the CPU into the same state before

we return from the trap. Using the assembly macro save_gp, we save the current register values

to our local context retrieved from mscratch. After the trap frame is saved, we prepare a stack

for the trap handler and load CSRs we need as function arguments. When the Rust trap handler
returns, we expect a return value which will be used to set mepc which will dictate where the
code continues executing after we return from this trap. Lastly, we restore the saved trap frame
with the modifications we might have done and exit our trap with mret.

Listing 9: trap from hypervisor/src/mkernel.S

1 .macro load_gp i, base
2 1d x\i, ((\i)*8) (\base)
3 .endm

5 .macro save_gp i, base

6 sd x\i, ((\i)*8) (\base)
7 .endm

g trap:

9 csrrw t6, mscratch, t6
10 .set i, 0

11 .rept 31

12 save_gp %i, t6

13 .set i, i+l

14 .endr

15 mv t5, t6

16 csrr t6, mscratch

17 save_gp 31, tb

18 csrw mscratch, tb

19

20 csrr a0, mepc

21 csrr al, mtval

22 csrr a2, mcause

23 csrr a3, mstatus

24 csrr a4, mscratch
25 la sp, _mintr_stack_end
26 call rust_mtrap_handler
27 csrw mepc, a0

28 csrr t6, mscratch
29

30 # restore GPRs

31 .set i, 1

32 .rept 31

33 load_gp %i, t6

34 .set i, i+1

35 .endr

36 mret

The main logic of the trap handler happens in the Rust part of the handler, snippets of which
can be found in listing 10. Here the arguments prepared in listing 9 are parsed into the function,
and as long as we return a valid program counter value, we can do the rest of the trap handling
through Rust. Using the value of mcause, we can figure out what type of trap is called and
handle it accordingly. Here we first match if the trap is an interrupt or not and then look at the
exception code. A complete list of the trap cause codes can be found in appendix B. Suppose the
trap cause is neither a machine timer interrupt nor an environment call from HS-mode. In that
case, we call the unimplemented macro, which causes a panic so we can implement a handler
for any unknown trap cause we might find.
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For our timer interrupt, we propagate this to HS-mode by setting the HS-mode timer interrupt
pending bit in mip and enabling the hs-mode timer interrupts in mie. This will trigger a timer
interrupt trap properly in HS-mode. We also do the platform-specific timer configuration to set
the time for when our next timer interrupt is triggered. The other exception handling we have is
our environmental call interface, which is to allow the code running in HS-mode to either disable
or enable all interrupts or enable or disable timer interrupts. We use the saved trap frame from our
hypervisor to retrieve the argument stored in register a0. As long as it’s a recognized argument,
it will return with a value of zero in a0, and if it’s an unknown environmental call, it returns
with a return of one. Reading and writing to the trap frame is, as one can see, wrapped in
unsafe brackets. This is due to random memory access where Rust cannot ensure memory safety;
therefore, we must be cautious in inspecting the edge cases in how we access our trap frame. When
we are done handling our environmental call, we return mepc + 0x4. This is because we need to
skip one instruction ahead. If not, we would endlessly do an environmental call. Otherwise, we
return the same value of mepc as we received into rust_mtrap_handler.

Listing 10: Code for trap handler hypervisor/src/mkernel.rs
1 #[repr(C)]
> #[derive(Clone, Copy, Debug)]
3 pub struct TrapFrame {

4 pub regs: [usize; 32], // O - 255
5 pub pc: usize, // 256
6 }

7 #[no_mangle]
s pub extern "C" fn rust_mtrap_handler(

9 mepc: usize, /* a0 *x/

10 mtval: usize, /* al *x/

11 mcause: usize, /* a2 *x/

12 mstatus: usize, /* a3 *x/

13 frame: *mut TrapFrame, /* a4 */) -> usize {

14 let is_async = ((mcause >> 63) & 1) == 1;

15 let cause_code = mcause & Oxfff;

16 if is_async {

17 match cause_code {

18 7 =>{

19 riscv::csr::mip::set_stimer();

20 riscv::csr::mie::enable_s_mode_hardware_timer();
21 let timer = clint::Clint: :new(0x200_0000 as *mut u8);
22 timer.set_timer (0,

23 timer.get_mtime() + M_MODE_TIMER_VALUE

24 ) ’

25 }

26 _ => {

27 unimplemented! ("Unknown M-mode interrupt,id: {}"
28 , cause_code);

29 }

30 }

31 } else {

32 match cause_code {

33 9 => {

34 let hypervisor_frame = unsafe{*frame.clone()};
35 let a0 = hypervisor_frame.regs[10];

36 let mut result = O;

37 match a0 {

38 m_mode_calls: :ENABLE_ALL_INTERRUPTS => {
39 unsafe{riscv::interrupt::enable();}

40 }

41 m_mode_calls: :DISABLE_ALL_INTERRUPTS => {
42 unsafe{riscv::interrupt::disable();}
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43

44

45

46

47

48

49

50

51

52

59

60

61

62

63

64

}
m_mode_calls: :ENABLE_ALL_TIMERS => {
riscv::csr::mie::enable_m_mode_hardware_timer();
}
m_mode_calls: :DISABLE_ALL_TIMERS => {
riscv::csr::mie::clear_m_mode_hardware_timer();
}
_=>A
result = 1;
}
}
unsafe {(*kframe).regs[10] = result;}
return mepc + 0x4;
}
_ =
unimplemented! ("Unknown M-mode_ Exception id: {}"
, cause_code);

}

return mepc;
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4.3 Hypervisor (HS-Mode)

In this section, we will describe the detailed implementation of the hypervisor kernel described in
the design section 3.2 which runs in hypervisor supervisor mode also known as HS-mode. This is
where everything in regards to virtualization is handled. This section will have two main parts,
the initialization part and the trap handling part, an overview of which can be found in figure 9
and 10 respectively.
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Figure 9: Overview of the initialization of the hypervisor

4.3.1 Initialization

After the system initialization in M-mode described in section 4.2, the function we enter is
rust_hypervisor_entrypoint which can be found in listing 11. As with the mkernel initialization
in section 4.2.2, we use the built in result type in rust to do error handling on our init function.
Notice here that the init function is wrapped in a riscv::interrupt::free found in listing 12 which
wraps our critical section function by disabling timers before calling the respective function and
then reenabling them afterwards. The functions disable_timers and enable_timers, the code of
which can be found in listing 13, are wrappers for environmental calls. The handling of those is
described in section 4.2.4.

Listing 11: Entry point code for hypervisor hypervisor/src/hypervisor.rs

1 #[no_mangle]
2 pub fn rust_hypervisor_entrypoint() -> ! {
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3 if let Err(e) = riscv::interrupt::free(|_| init()) {

4 panic! ("Failed jto,init hypervisor. {:7}", e)

5 }

G let mut guest = riscv::interrupt::free(|_| Guest::new("guest01"));
7 riscv::interrupt::free(|_| guest.load_from_disk());

8 switch_to_guest (&guest) ;

o }

Listing 12: Critical section handler hypervisor/src/riscv/interrupt.rs

1 pub fn free<F, R>(f: F) -> R where F: FnOnce(&CriticalSection) -> R, {
2 m_mode_calls: :disable_timers();

3 let r = f(unsafe { &CriticalSection::new() });
4 m_mode_calls: :enable_timers();
5 return r; }

Listing 13: Custom environmental calls to M-mode hypervisor/src/m-mode_calls.rs

1 pub const DISABLE_ALL_INTERRUPTS: usize = 0x01;

2 pub const ENABLE_ALL_INTERRUPTS: usize = 0x02;

3 pub const DISABLE_ALL_TIMERS: usize = 0x03;

4+ pub const ENABLE_ALL_TIMERS: usize = 0x04;

5 pub fn disable_interrupts() {

6 riscv::instruction::ecall_with_args(DISABLE_ALL_INTERRUPTS, 0x0,0x0,0x0) ;
7}

s pub fn enable_interrupts() {

9 riscv::instruction::ecall_with_args(ENABLE_ALL_INTERRUPTS, 0x0,0x0,0x0) ;
10

11 pub fn disable_timers() {

12 riscv::instruction::ecall_with_args(DISABLE_ALL_TIMERS,0x0,0x0,0x0) ;
13}

14 pub fn enable_timers() {

15 riscv::instruction::ecall_with_args(ENABLE_ALL_TIMERS,Ox0,0X0,0XO);

16

After timer interrupts are disabled, we enter into the init function found in listing 14 which does
the necessary configuration of CSRs and initializes modules the hypervisor depends on. The first
modules we initialize are paging, which manages our virtual memory for our guest, and virtio, the
platform-specific interface we use to load the guest kernel into memory. The virtual memory and
page implementation is described in more detail in section 4.3.2. The CSR hedeleg is configured
to propagate exceptions to the guest like environmental calls from virtual user mode, breakpoints
and instruction address misalignment. Additionally, instruction, load and store page faults are
also propagated to the guest. For interrupts, we configure the hideleg CSR to propagate external
timer and software interrupt to the guest. hvip is set to zero to make sure we have no interrupts
pending for the guest. We configure stvec to our trap handler in the hypervisor so if a trap occurs,
the CPU knows where to execute. Next, we allocate a page where the address is set to the sscratch
CSR to save the trap frame when it occurs. The function enable_interrupt enables timer and
external interrupts by setting the relevant bits in the sie CSR. Further global HS-mode interrupts
are enabled by setting the relevant bit in sstatus.

Listing 14: Initialization function for hypervisor hypervisor/src/hypervisor.rs

1 pub fn init() -> Result<(), Error> {

2 paging::init();
3 virtio::init();
4 riscv::csr::hedeleg: :write(riscv::csr::hedeleg: : INST_ADDR_MISALIGN
5 | riscv::csr::hedeleg: :BREAKPOINT
6 | riscv::csr::hedeleg: :ENV_CALL_FROM_U_MODE_OR_VU_MODE
7 | riscv::csr::hedeleg::INST_PAGE_FAULT
|

riscv::csr::hedeleg: :LOAD_PAGE_FAULT
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9 | riscv::csr::hedeleg::STORE_AMO_PAGE_FAULT);

10 riscv::csr::hideleg: :write(riscv::csr::hideleg: :VSEIP

11 | riscv::csr::hideleg::VSTIP

12 | riscv::csr::hideleg::VSSIP

13 );

14 riscv::csr::hvip::write(0);

15 riscv::csr::stvec::set(&(trap as unsafe extern "C" fn()));

16 let trap_frame = paging::alloc();

17 riscv::csr::sscratch: :write(trap_frame.address().to_usize());
18 enable_interrupt();

19 0k ()

4.3.2 Heap and Virtual Memory

As mentioned in 4.3.1, part of the initialization step was to set up our paging memory. The init
function can be found in listing 15. This creates the basis for a simple heap where we intend
to be able to allocate pages. The base address for the simple heap is therefore made sure to be
page-aligned according to the requirements for the virtual memory, see section 2.3.1.

Listing 15: Initialization of paging hypervisor/src/paging.rs
1 pub const HEAP_SIZE: usize = 64 * 1024; // 64KiB

2 pub const PAGE_SIZE: ul6 = 4096;
3 pub unsafe fn elf_start() -> usize {

4 unsafe { &_elf_start as *const usize as usize }
5

¢ pub unsafe fn elf_end() -> usize {

7 unsafe { &_elf_end as *const usize as usize }
s }

o pub unsafe fn heap_start() -> usize {

10 (elf_end() & !(Oxfff as usize)) + 4096

11 }

12 pub unsafe fn heap_end() -> usize {

13 heap_start() + HEAP_SIZE

14 }

15 static mut base_addr: usize = O;

16 static mut last_index: usize = 0;

17 static mut initialized: bool = false;
18 pub fn init() {

19 unsafe {

20 base_addr = (heap_end() & !'(Oxfff as usize)) + 4096;
21 last_index = O;

22 initialized = true;

23] }

24 }

We can then begin to set up a page table according to section 2.3.1. This will map our guest’s
program memory to an allocated section on this simple page heap. A root page table can then be
created by allocating a 16KiB page with the function alloc_16. This in turn calls the function alloc
and makes sure to return a 16KiB page which is also 16KiB aligned to fit with the specification
requirements. The alloc in turn makes sure to allocate a 4KiB size page which is zeroed out. The
code of which can be found in listing 16

Listing 16: Allocation of 4KB and 16KB pages hypervisor/src/paging.rs

1 pub fn alloc() -> Page {
2 unsafe {
3 if l!initialized {
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4 panic! ("page manager was used but not initialized");

7 last_index += 1;

8 let addr = base_addr + (PAGE_SIZE as usize) * (last_index - 1);
9 if addr > DRAM_END {

10 panic! ("memory exhausted; 0x{:016x}", addr)

11 }

12 let p = Page::from_address(PhysicalAddress: :new(addr));

13 p.clear();

14 P

15 }

16 }

17
18 /// Makes sure the root page follows a 16KiB boundry
19 pub fn alloc_16() -> Page {

20 let mut root_page = alloc();

21 while root_page.address().to_usize(D&(Ob11_1111_1111_1111 as usize) > 0 {
22 root_page = alloc();

23 }

24 alloc() 5

25 alloc(Q) H

26 alloc();

27 root_page

28 }

Next, we want to map virtual addresses to physical memory in our page table. This is done by the
map function. Which creates an Sv39x4 page table entry and inserts it into our page table. The
specific details on how the page table entry is made and inserted into a page table are generic and
the same in most implementations. Therefore the details will not be discussed here, only the details
which are specifically relevant to this implementation, but the code can be found in appendix C.

4.3.3 Guest Setup

Following the initialization, in 4.3.1 we proceed to set up our guest so we can properly virtualize
it. As we can see in figure 9 and listing 11 Guest::new and Guest::load_from_disk are still
being executed from our critical section and we are thus still able to perform memory operations
without being interrupted by a timer interrupt. The first step in Guest::new (code in listing 17)is
to create a root page table for the guest in question, which allows us to switch between virtual
memory mapping for different guests easily. prepare_gpat_pt takes care of the initial creation
of the root page table and directly maps the UART device and allocates a memory region for the
guest’s DRAM with the respective mapping. For details the of prepare_gpat_pt can be found in
appendix D.

Listing 17: Creating of a new guest hypervisor/src/guest.rs

1 pub fn new(name: &'static str) -> Guest {

2 let root_pt = prepare_gpat_pt().unwrap();
3 let hgatp = riscv::csr::hgatp::Setting: :new(
4 riscv::csr::hgatp::Mode: :Sv39x4,

5 0,

6 root_pt.page.address() .to_ppn(),

7 D

8

9 Guest {

10 name: name,

11 hgatp: hgatp,

12 sepc: memlayout::GUEST_DRAM_START
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13 }
14 }

Following the creation of the guest, we can now load the guest kernel into the allocated memory
through load_from_disk. This implementation will not be described since it is platform-specific
to QEMU and the VirtlIO interface. From a high-level view, it takes an ELF of a kernel we have
provided to QEMU, parses it and proceeds to load it into the allocated guest memory so it can be
executed.

4.3.4 Guest Switching

After preparing in section 4.3.3 the guest is now ready to be switched to by calling the function
switch_to_guest. The code is found in listing 18 with reference to our guest struct. With the
root page table in the provided guest struct, we configure the hgatp CSR. This will cause the
MMU to automatically map memory calls through our root page table when the CPU is set to
VS-mode. Ultimately, we create just a generic struct to manage our guests. The hfence_gvma
instruction is then called to flush the cache, so no old page table entries reside there. Next, we
set the virtualization mode to guest in the hstatus CSR and make sure supervisor mode is still
selected as our privilege level in the sstatus CSR. The current program counter value stored in our
guest struct is loaded into the sepc CSR to tell the CPU which address to jump to after a return
is called. Finally, we call the sret instruction to do the return. If everything is done correctly, the
CPU should now be executing code the guest’s program code in an isolated environment virtualized
from the rest of the system.

Listing 18: Switch to guest hypervisor/src/hypervisor.rs
1 pub fn switch_to_guest(target: &Guest) -> ! {

2 // hgatp: set page table for guest physical address translation

3 riscv::csr::hgatp::set(&target.hgatp) ;

4 riscv::instruction: :hfence_gvma(Q);;

5

6 // hstatus: handle SPV change the virtualization mode to 0 after sret
7 riscv::csr::hstatus::set_spv(riscv::csr::VirtualzationMode: :Guest) ;
8

9 // sstatus: handle SPP to 1 to change

10 // the privilege level to S-Mode after sret

11 riscv::csr::sstatus::set_spp(riscv::csr::CpuMode: :S);

12

13 // sepc: set the addr to jump

14 riscv::csr::sepc::set(&target.sepc);

15

16 // jump!

17 riscv::instruction: :sret();

15}
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4.3.5 Trap handling
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Figure 10: Overview of the traphandler of the hypervisor

As with the trap handler in our machine kernel found in section 4.3.5, there also needs to be a
trap handler in the hypervisor which can handle exceptions which might occur in HS- or VS-mode.
The general design of this implementation was discussed in the design section 3.2. An overview of
the implementation can be found in figure 10. Initially, the handling is the same as trap handling
in machine mode (section 4.3.5) apart from accessing the equivalent status registers for HS-mode
which can be seen in listing 19 for a more detailed description of seeing the relevant section in the
machine kernel implementation.

Listing 19: trap from hypervisor/src/hypervisor.S

1 .macro load_gp i, base
2 1d x\i, ((\1)*8) (\base)
3 .endm

4

5 .macro save_gp i, base
6 sd x\i, ((\1)#*8) (\base)
7 .endm

s trap_to_hypervisor:

9 csrrw t6, sscratch, t6
10

11 # save GPRs

12 .set i, 1

13 .rept 30

14 save_gp %i, t6

15 .set i, i+l

16 .endr

17

18 mv t5, t6

19 csrr t6, sscratch

20 save_gp 31, tb

21

22 csrw sscratch, tb

23

24 csrr a0, sepc
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25 csrr al, stval

26 csrr a2, scause

27 csrr a3, sstatus

28 csrr a4, sscratch

29 la sp, _intr_stack_end
30 call rust_strap_handler
31 csrw sepc, a0

32 csrr t6, sscratch

33

34 # restore GPRs

35 .set i, 1

36 .rept 31

37 load_gp %i, t6

38 .set i, i+l

39 .endr

40

41 sret

As with the machine kernel trap implementation, the main logic part of the logic is handled in
rust_strap_handler which is part of our Rust code found in listing 20. Here the initial logic is
identical since we need to check if our trap is an exception or an interrupt and then match the
value of the scause CSR accordingly. The different trap cause values can be found in appendix B.
We have two interrupts we need to deal with. One is external interrupts and timer interrupts. If
the interrupt is unrecognized, we trigger the unimplemented macro. The external interrupts are
not that relevant to the general implementation since they are dependent on the platform-specific
PLIC implementation. But in this instance, we use it to handle VirtIO and UART interrupts. The
timer interrupts, on the other hand, clears the respective timer interrupt pending bit in the sip
CSR and enables bit in sie CSR since this is enabled when the hardware timer interrupt is triggered
in machine mode see section 4.2.4. With this timer interrupt, we increment all of our virtual timers
where one should exist for each guest. This is implemented to be scalable for multiple guests even
though we only virtualize one guest in this implementation. This timer interface will be described
in more detail in section 4.3.6.

Regarding exceptions, we need to provide an interface for the guest to send hypercalls to enable
paravirtualization functionality (section ??). This is done by handling environmental calls from
the guest, as with the environmental call interface in the machine mode trap handler in section
4.2.4 we need to access the trap frame, which is all of the values of the register before the trap
was caused. This was saved as part of our assembly code in listing 19. Also, this is an unsafe
operation since we need to dereference a pointer to a fixed memory address. So Rust cannot check
for us if this is a memory-safe operation or not on compile time. Therefore we need to ensure
this pointer value is valid to avoid a memory fault. In this case, we take the values from the
registers a0-7, which we then use to call the SBI interface handler, described more in section 4.3.6.
When the trap returns, the result is put back into the registers a0 and al. Lastly, before returning
from an environmental call trap, the program counter value in sepc needs to be incremented one
instruction further to avoid calling the same environmental call again.

Listing 20: Switch to guest hypervisor/src/hypervisor.rs

1 #[no_mangle]
> pub extern "C" fn rust_strap_handler(

3 sepc: usize, /* a0 */ stval: usize, /* al */

4 scause: usize, /* a2 */ sstatus: usize, /* a3 */

5 frame: *mut TrapFrame, /* a4 */ ) -> usize {

6 let is_async = scause >> 63 & 1 == 1;

7 let cause_code = scause & Oxfff;

8 if is_async {

9 match cause_code {

10 9 => { // external interrupt

11 if let Some(interrupt) = plic::get_claim() {
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T} el

sepc

}

match interrupt {

virtio::handle_interrupt (interrupt);

uart::handle_interrupt();

1..=8 => {

}

10 => {

b

-=> A1
unimpleme

}

3

nted! ()

plic::complete(interrupt);

} else {
panic!("invalid,s

}

5 => { //timer interrupt
riscv::csr::sip::clear_stimer();
riscv::csr::sie::clear_hardware_timer();

3

if let Some(mut timer

tate")

) = timer::TIMER.try_lock() {

timer.tick_vm_timers (HYPERVISOR_TIMER_TICK) ;

let timer_trigger
let guestO_timer_
if guestO_timer_i

_list = timer.check_timers();
intr_trigger = timer_trigger_ list[0];
ntr_trigger {

riscv::csr::hvip::trigger_timing_interrupt();

}
3

-=>{

unimplemented! ("Unknown interrupt,id: {}", cause_code);

}
}

se {

match cause_code {

10 => {

}

// Environment call

let user_frame = unsafe{*frame.clone()};

let guest_number = 0;

let a7 = user_frame.regs[17];
let a6 = user_frame.regs[16];
let al = user_frame.regs[11];
let a0 = user_frame.regs[10];
let params = [user_frame.regs[10], user_frame.regs[11],

user_frame.regs[1
user_frame.regs[1
let sbi_result = sbi:

2], user_frame.regs[13],
4], user_frame.regs[15]];
:handle_ecall(

a7, a6, params, guest_number);

unsafe {
(*frame) .regs[10]
(*#frame) .regs[11]
}

return sepc + 0x4; //

- =

unimplemented! ("Unknown Exception,id: {}", cause_code);

3

= sbi_result.error;
sbi_result.value;

Skips to the next instruction in guest
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70}

4.3.6 SBI Timer Interface

As mentioned in our design section 3.2, we want a hypercall interface which implements the SBI
timer interface for a guest to request timer interrupts as per the SBI (Supervisor Binary Interface)
specification[9]. It is meant as a generic interface to enable supervisor mode based software to
execute some privileged operations by doing environment calls. Usually, this is implemented by
having a piece of software like OpenSBI[10] running in machine mode. In this case, we can use
this generic interface to create a hypercall interface for our hypervisor since a guest is running
in VS-mode. Many SBI calls can be implemented, but here we will only implement the timer
interface.

The generic types defined in the SBI specification can be found in listing 21, which we need to
incorporate into the design. The SBI command is done through an environment call instruction
where register a7 is the extension type which is the type of SBI call being performed. In this
case, this is the constant EXTENSION_TIMER in listing 21. Register a6 should contain the
sub-function of the extension. In the timer extensions case, there is only one, so it is not relevant
what this value is set to. The register a0 is used for the function argument, and the function with
the argument has the following purpose ”Programs the clock for the next event after stime_value
time. stime_value is in absolute time. This function must clear the pending timer interrupt bit as
well.”[9]. After executing the request, we need to return a pair of values described in the sbiret
struct. The error code is located in register a0 and the value is in register al. We then return the
appropriate values if we encounter any errors or are successful.

Listing 21: Generic ¢ struct and function for the sbi timer

1 struct sbiret {

2 long error;

3 long value;

4 };

5 enum SBI_ERROR{

6 SBI_SUCCESS=0,

7 SBI_ERR_FAILED=-1,

8 SBI_ERR_NOT_SUPPORTED=-2,

9 SBI_ERR_INVALID_PARAM=-3,

10 SBI_ERR_DENIED=-4,

11 SBI_ERR_INVALID_ADDRESS=-5,

12 SBI_ERR_ALREADY_AVAILABLE=-6,

13 SBI_ERR_ALREADY_STARTED=-7,

14 SBI_ERR_ALREADY_STOPPED=-8

15 }

16 const int EXTENSION_TIMER = 0x54494D45; // "TIME"
17 struct sbiret sbi_set_timer(uint64_t stime_value)

When the SBI timer function is called, we run the following function set_time which, with the
argument, takes in the guest number we infer from the trap context. The timer struct is encapsu-
lated in a mutex made with the lazy_static macro, which is an external library that allows for the
declaration of statics that is only initialized at runtime. After the lock is acquired, the timer is set
in the virtual timer, the implementation of which can be found in appendix E. Lastly, we clear any
waiting timer interrupts for the guest with the hvip CSR, which is as per the SBI specification.

Listing 22: set_timer function in SBI timer interface hypervisor/src/sbi/timer.rs

1 lazy_static::lazy_static! {

2 pub static ref TIMER: spin::Mutex<VmTimers> =
3 spin: :Mutex: :new(VmTimers: :new()) ;
4 }

o
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6 fn set_timer(arg0: usize, guest_number: usize) -> SbiRet {

7 let time_value = arg0 as u64;

8 if set_timer_value(time_value, guest_number) {
9 SbiRet: :0k(0)

10 } else {

11 // should be probed with probe_extension
12 SbiRet: :not_supported()

13 }

14

15 }

16 pub fn set_timer_value(time_value: u64, guest_number: usize) -> bool {
17 let mut timer = TIMER.lock();

18 timer.set_timer(time_value, guest_number);
19 riscv::csr::hvip::clear_timing_interrupt();
20 true

21 }

As we mentioned in section 4.3.5, we trigger a timer tick in our virtual timer every time a timer
interrupt is triggered, which can be seen in listing 20. This is protected by a mutex required
by Rust, even though we know there can only be one exception handling done simultaneously.
Therefore we need a mutex to make Rusts borrow checking happy. After acquiring the mutex lock,
we access the virtual timer struct built-in functions found in appendix E to determine if any guest
timers need to be triggered. If so, the timer interrupts pending is set in the respective guests hvip
CSR.

4.4 Guest Kernel (VS-Mode)

When we have a hypervisor implemented, we need a guest kernel to test it with. This section will
describe the implementation of the guest kernel design outlined in section 3.3. The purpose here is
to make a guest kernel that is generic and made to be run on top of an SBI firmware like OpenSBI
running in M-mode.

The guest’s boot code and linking are very similar to how the hypervisor mode is booted due to
the HS-mode and S-mode being the same privilege level in practice. If of interest, the boot code
and linker file can be found in appendix F.

4.4.1 Initialization

As with the basic initialization of the hypervisor running in HS-mode described in section 4.3.1,
we set the following: stvec CSR to our trap handler, the sstatus CSR to enable interrupts and
the sie CSR where we specifically enable timer interrupts.

Next, we configure a page table with a virtual memory mapping to be able to test if the two-
stage address translation is working. The details of this implementation are the same as with
the hypervisor’s virtual memory implementation described in section 4.3.2. We map our UART
peripheral and program memory to have the virtual address match precisely with the physical
address, so we can still access these. After we have set up our root page table, we configure the
satp CSR accordingly and call the sfence.vma assembly instruction which synchronizes the TLB
(translation lookaside buffer) and ensures the in-memory memory-management data structures are
up to date.

4.4.2 SBI Timer

As described in section 4.3.6 we have an SBI interface as a guest to execute some privileged
operations. We can execute an ecall instruction with the appropriate parameters. Listing 23
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shows a function wrapper for the SBI call and an example call which is the one used in our guest
code. It takes in arguments defining the extension, function and two args which is what we need
to configure the underlying timer interface.

Listing 23: sbi_call wrapping a ecall instruction with example guest/src/kernel.rs

1 fn sbi_call(extension: usize, function: usize,

2 arg0: usize, argl: usize)

3 -> SbiRet {

4 let (error, value);

5 unsafe { asm! (

6 "ecall",

7 in("a0") arg0, in("al") argl,

8 in("a6") function, in("a7") extension,
9 lateout ("a0") error, lateout("al") value,
10 )}

11 SbiRet { error, value }

12 }

13

14 let response = sbi_call(EXTENSION_TIMER, 0x0, Oxdead, Oxbeef);

4.4.3 Trap Handling

As with the initialization section 4.4.1, the trap handler is also identical to the hypervisor imple-
mentation (section 4.3.5) when it comes to assembly code and handling. The only difference is
that we don’t handle any exceptions, and when a timer interrupt is called, we print to our screen
and call the SBI timer interface described in section 4.4.2 again.
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5 Results

After implementing our hypervisor and guest kernel described in the implementation section 4, we
can compile and run the code in QEMU. This is the following console output we get.

Listing 24: Resulting console output with virtual memory enabled in guest

2 rustyvisor

- [

4 [INFO] logger was initialized

5 [INFO] processor is in m-mode running with hartid: 2147483676
6 [INFO] Initing heap implementation: 0x0000000082325000 ->

7 0x0000000082335000 size: 0x0000000000010000

8 [INFO] jump to hypervisor while changing CPU mode from M to HS
9 [INFO] Current mepc addr 0x80100eal

10 [INFO] hypervisor started

1 [INFO] environment call from HS-mode at 0x000000008010c734

12 [INFO] virtioO addr: 0x0000000010001000

13 [INFO] a block device found

14 [INFO] -> allocated query object: 0x0000000082336000

15 [INFO] sscratch: 0000000082338000

16 [INFO] environment call from HS-mode at 0x000000008010c734

17 [INFO] succeeded in initializing the hypervisor

18 [INFO] a new guest instance: guestO1

19 [INFO] -> create metadata set

20 [INFO] environment call from HS-mode at 0x000000008010c734

21 [INFO] a page 0x000000008233c000 was allocated for a

22 guest page address translation page table

23 [INFO] environment call from HS-mode at 0x000000008010c734

24 [INFO] -> load a tiny kernel image

25 [INFO] environment call from HS-mode at 0x000000008010c734

26 [INFO] -> entrypoint: 0x0000000080000000

27 [INFO] -> section found: name=.text.entrypoint,

28 address:0x0000000080000000, offset=0x0000000000000010
29 [INFO] -> section found: name=.text,

30 address: 0x0000000080000010, offset=0x00000000000048£8
31 [INFO] -> section found: name=.rodata,

32 address:0x0000000080004910, offset=0x0000000000001395
33 [INFO] -> section found: name=.eh_frame,

34 address:0x0000000080005ca8, offset=0x00000000000003bc
35 [INFO] -> section found: name=.data,

36 address:0x0000000080007000, offset=0x0000000000000010
37 [INFO] -> the ELF was extracted into the guest memory

38 [INFO] environment call from HS-mode at 0x000000008010c734

39 [INFO] switch to guest

40 trap set to: 0x80000220
11 stvec is set to: 0x0000000080000220

42 hello world from a guest
43 a page 0x0000000080208000 was allocated
44 for a guest page address translation page table

45 satp to be written: 0x8000000000080208
46

47 PAGE ALLOCATION TABLE

48 ALLOCATED: 0x80208000 -> 0x80211000

49
50 Virt: 0x10000000 => Phys: 0x10000000
51 Virt: 0x80000000 => Phys: 0x80000000
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Virt: 0x801ff000 => Phys: 0x801£f£000
Num pages after each other: 511

Virt: 0x80200000 => Phys: 0x80200000

Virt: 0x80207000 => Phys: 0x80207000
Num pages after each other: 7
Virt: 0x82010000 => Phys: 0x82010000

Virt: 0x82020000 => Phys: 0x82020000
Num pages after each other: 16

Allocated: 544 pages (
[INFO] <--—-——--- trap ——--——-———-— >
[INFO] sepc: 0x00000000800007dc
[INFO] stval: 0x00000000800007dc
[INFO] scause: 0x000000000000000c
[INFO] sstatus: 0x0000000200000120
[INFO] ------- trapframe --------
x0 = 0x0000000000000000 | ra
sp = 0x0000000080106c00 | gp
tp = 0x0000000000000000 | tO
t1 = 0x0000000080106841 | t2
s0O = 0x0000000000000000 | si
a0 = 0x8000000000080208 | al
a2 = 0x000000000000000a | a3
a4 = 0x0000000000000000 | ab
a6 = 0x0000000080106880 | a7
s2 = 0x0000000000000000 | s3
s4 = 0x0000000000000000 | s5
s6 = 0x0000000000000000 | s8
s8 = 0x0000000000000000 | s9
s10 = 0x0000000000000000 | si1
t3 = 0x0000000000002710 | t4
t5 = 0x0000000005f5e0ff | t6
[INFO] ----—--- registers ---—-----
x0 = 0x0000000000000000 | ra
sp = 0x0000000081221640 | gp
tp = 0x0000000000000000 | tO
t1 = 0x000000000000000f | t2
sO = 0x0000000000000000 | si
a0 = 0x000000008010e854 | al
a2 = 0x000000008011ecb8 | a3
a4 = 0x0000000000000000 | ab
a6 = 0x0000000081221590 | a7
s2 = 0x0000000000000000 | s3
s4 = 0x0000000000000000 | s5
s6 = 0x0000000000000000 | s8
s8 = 0x0000000000000000 | s9
810 = 0x0000000000000000 | si1
t3 = 0x0000000000002710 | t4
t5 = 0x0000000082338000 | t6
[INFO] -———————- S csr ———-—————-
satp = 0x0000000000000000
sie = 0x0000000000000200
sstatus = 0x0000000200000120

2228224 bytes) .

0x00000000800007d4

= 0x0000000000000000

0x0000000000000064

= 0x346dc5d63886594b
= 0x0000000000000000
= 0x0000000000000000
= 0x0000000080002c36

0x0000000000000000

= 0x0000000080005b1a
= 0x0000000000000000

0x0000000000000000

= 0x0000000000000000

0x0000000000000000
0x0000000000000000

= 0x000000000000147b

0x0000000000000038

0x000000008010e97e

= 0x0000000000000000
= 0x000000000000000a

0x0000000081221728

= 0x0000000000000000
= 0x000000008011ea78
= 0x000000008010ba80
= 0x0000000000000000
= 0x0000000081221508
= 0x0000000000000000
= 0x0000000000000000
= 0x0000000000000000
= 0x0000000000000000

0x0000000000000000
0x000000000000147b
0x0000000000000038

sepc
sscratch
stvec

0x00000000800007dc
0x0000000082338000
0x0000000080100eb0
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scounteren = 0x0000000000000000 | scause = 0x000000000000000c
stval = 0x00000000800007dc | sip = 0x0000000000000020
[INFO] ---—-—-—-—- G S T
hedeleg = 0x000000000000a109 | hcounteren = 0x0000000000000000
hgatp = 0x800000000008233c | hgeie = 0x0000000000000000
hgeip = 0x0000000000000000 | hideleg = 0x0000000000000444
hie = 0x0000000000000000 | hip = 0x0000000000000000
hstatus = 0x00000002000001c0 | htval = 0x0000000000000000
hvip = 0x0000000000000000 | htimedelta = 0x0000000000000000
[INFO] -———-——- VS csr ————————-
vsatp = 0x8000000000080208 | vscause = 0x0000000000000000
vsepc = 0x0000000000000000 | vsie = 0x0000000000000000
vsip = 0x0000000000000000 | wvsscratch = 0x0000000000000000
vsstatus = 0x0000000200000000 | vstval = 0x0000000000000000
vstvec = 0x0000000080000220
[INFO] -------- Prev Mode -------
[INFO] Previous Mode before trap: Virtual Supervisor Mode (VS)

abort:

line 319, file src/hypervisor.rs:
not implemented: Unknown Exception id: 12

From listing 24 you can see the full console output of both the hypervisor and the guest. Everything
that is prefixed with [INFOQ] is from the hypervisor, and the text with no prefix or indent is from
the guests. We can see that an unexpected exception is happening with the number 12. Referring
to table 2 in appendix B we can see this is a Instruction page fault. Commenting out the code
in the guest setting the satp CSR and executes sfence.vma yields the following result shown in
listing 25.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

[INFO]
[INFO]
[INFO]

Listing 25: Resulting console output with virtual memory disabled in guest

logger was initialized
processor is in m-mode running with hartid: 2147483676
Initing heap implementation: 0x0000000082325000 ->

0x0000000082335000 size: 0x0000000000010000

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

jump to hypervisor while changing CPU mode from M to HS
Current mepc addr 0x80100eal
hypervisor started
environment call from HS-mode at 0x000000008010c734
virtio0 addr: 0x0000000010001000
a block device found
-> allocated query object: 0x0000000082336000
sscratch: 0000000082338000
environment call from HS-mode at 0x000000008010c734
succeeded in initializing the hypervisor
a new guest instance: guestOl
-> create metadata set
environment call from HS-mode at 0x000000008010c734
a page 0x000000008233c000 was allocated for a

guest page address translation page table
environment call from HS-mode at 0x000000008010c734
-> load a tiny kernel image
environment call from HS-mode at 0x000000008010c734
-> entrypoint: 0x0000000080000000
-> section found: name=.text.entrypoint,

address:0x0000000080000000, offset=0x0000000000000010

[INFO]

-> section found: name=.text,

address:0x0000000080000010, offset=0x00000000000048ea
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31 [INFO] -> section found: name=.rodata,

32 address:0x0000000080004900, o0ffset=0x0000000000001395
33 [INFO] -> section found: name=.eh_frame,

34 address:0x0000000080005¢c98, offset=0x00000000000003bc
35 [INFO] -> section found: name=.data,

36 address:0x0000000080007000, offset=0x0000000000000010
37 [INFO] -> the ELF was extracted into the guest memory

38 [INFO] environment call from HS-mode at 0x000000008010c734
39 [INFO] switch to guest

40 trap set to: 0x80000220
a1 stvec is set to: 0x0000000080000220

42 hello world from a guest

43 [INFO] environment call from VS-mode at 0x0000000080000832
44 [INFO] a0O: Oxdead, al: Oxbeef, a6: 0x0, a7: 0x54494d45

45 [INFO] ecall: SBI Extension Timer: extension: 0x54494d45,
46 function: 0x0, param: [57005, 48879, 57005, 48879, 0, 0]
a7 [INFO] Setting timer mtimecmp 57005 for guestO

48 [INFO] SBI result SBI_SUCCESS

49 [INFO] SBI result SbiRet { error: 0, value: O }

50 Sbi call error: 0, wvalue: O

51 Testing timer

52 [INFO] triggering timer interrupt on guestO

53 L======——= trap ———————-- >

54 sepc: 0x00000000800003ec
55 stval: 0x0000000000000000
56 scause: 0x8000000000000005
57 sstatus: 0x0000000200000120

58 vm timer interrupt triggered

50 [INFO] environment call from VS-mode at 0x0000000080000832
60 [INFO] a0: Oxdead, al: Oxbeef, a6: 0x0, a7: 0x54494d45

61 [INFO] ecall: SBI Extension Timer: extension: 0x54494d45,
62 function: 0x0, param: [57005, 48879, 57005, 48879, 0, 0]
63 [INFO] Setting timer mtimecmp 57005 for guestO

64 [INFO] SBI result SBI_SUCCESS

65 [INFO] SBI result SbiRet { error: 0, value: O }

66 Sbi call error: 0, wvalue: O

67 [INFO] triggering timer interrupt on guestO

68 Ke=mm———— trap ———————- >

69 sepc: 0x00000000800003ec
70 stval: 0x0000000000000000
71 scause: 0x8000000000000005
72 sstatus: 0x0000000200000120

73 vm timer interrupt triggered

74 [INFO] environment call from VS-mode at 0x0000000080000832

75 [INFO] a0: Oxdead, al: Oxbeef, a6: 0x0O, a7: 0x54494d45

76 [INFO] ecall: SBI Extension Timer: extension: 0x54494d45,

77 function: 0x0, param: [57005, 48879, 57005, 48879, 0, 0]
78 [INFO] Setting timer mtimecmp 57005 for guestO

79 [INFO] SBI result SBI_SUCCESS

80 [INFO] SBI result SbiRet { error: 0, value: O }

81 Sbi call error: O, value: O

From listing 25, we can see the hypervisor launching successfully. This is because the guest kernel
can use its SBI interface, and timer interrupts are triggered periodically in the guest.
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6 Discussion

6.1 Intent of thesis

This master thesis aimed to explore the new hypervisor extension, ratified into the RISC-V spe-
cification seven months (December 2021) before writing this thesis. Part of this exploration was
to try and implement a hypervisor with this extension and compare it to existing RISC-V hyper-
visors made before the H-extensions release. Another goal was to provide a detailed written down
explanation of how one proceeds to create a hypervisor with this new specification since there are
not that many in-depth explanations of the process at the time of writing.

This thesis also aimed to look at the Rust programming language and its viability in its current
form as a system-level language for programming hypervisors. This is because Rust offers many
modern languages and attractive features like memory concurrency checks on compile-time and a
built-in package manager, which would make developing system-level software easier.

6.2 Summary of results

By coding the implementation of the Rust based hypervisor described in the implementation
section 4, which in turn is based on the design in section 3, we get the console output results
as shown in section 5. The results shown have two different outcomes, listing 24 successfully
initializes the hypervisor and transfers to the guest. However, the kernel fails to initialize the
guest’s virtual memory and triggers an instruction page fault, which would signal a weakness with
the implementation or a problem elsewhere. Listing 25 on the other hand, it shows the hypervisor
booting up properly, setting up the guest and can request and handle virtual timer interrupt
calls sent from the hypervisor and apart from the guest, virtual memory seems to be working as
expected.

As inferred from the results, it was also possible to create a hypervisor using the Rust nightly
toolchain where both the hypervisor code and guest kernel were written in Rust.

6.3 Interpretation of results

As seen in the result section 5, there was an issue with using two-stage address translation in the
guest, which caused an instruction page fault as seen in listing 24. This trap is usually caused
when the page tables are misconfigured, not allowing the CPU to read the program memory
where the instructions are stored. After investigating further, that does not seem to be the issue
because the page table configuration is identical to the hypervisor’s apart from the different memory
regions being mapped. It is also very deterministic when the sfence.vma instruction is called and
misconfiguring. Memory mappings in the page table cause other faults before we even reach that
instruction. Another possibility considered is a bug within the emulation software being used
QEMU. Due to the newness of the extension, it might be possible that this implementation hits a
corner case which causes a trapped bug like this.

If the two-stage address translation in the guest is disabled, we get a different result, as can
be seen in listing 25. Here the behaviour is more in-line with what we are excepting, and the
guest can initialize properly. Furthermore, it can be confirmed that the SBI interface and virtual
timer interface also work as expected since the guest can set and get timer interrupts triggered.
Unfortunately, due to the bug with the two-stage address translation, the hypervisor is limited to
not being able to virtualize more complex software like operating systems before this is resolved.

Another aspect that was one of the objectives of this thesis was to evaluate the advantages of using
the hypervisor extension compared to what has been done before. Since the RISC-V architecture
has always been within the rules outlined by Goldberg’s and Popek’s article ” Formal requirements
for virtualizable third generation architectures” [14] people have been implementing hypervisors
before the extension existed. One of these is RVirt [11] where the implementation relies on trap-and-
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emulate in S-mode where the software is solely responsible for doing the virtualization separation
itself. In contrast, the hypervisor extension adds, for example, CSRs, which automatically switch
between the hypervisor and virtualized environment, removing the need to change all of these
when there is a context switch. The extension thus comes with simplicity since the programmer
does not need to handle this CSR register themselves. It reduces the program’s complexity and
size, which is positive from a development point of view. Other papers have also evaluated earlier
drafts of the hypervisor like Bruno, José and Sandro’s ”A First Look at RISC-V Virtualization
from an Embedded Systems Perspective”[15] which states that the hypervisor extension reduces
performance penalty.

Finally, the last goal of the thesis was to evaluate Rust as a system programming language in
the context of creating a hypervisor on RISC-V. There are several advantages and disadvantages
I discovered in the process of implementing the hypervisor. One of the significant advantages is
compiling checks for memory concurrency and borrowing, which makes it very pleasant to do system
programming. If you have discipline and follow those checks, your code will be exception and race
condition free. This is a considerable advantage since developers spend many hours debugging
issues like these with older languages like C. There are unsafe sections in Rust that are required
for system programming, like dereferencing a pointer to a peripheral that can cause these bugs.
However, these sections can be wrapped, so we ensure safe handling of data entering and exiting
our unsafe areas, and if there are bugs, they are isolated to these sections. There are, however,
some downsides. Since Rust is still an evolving language, we rely on using features like asm_const
which is an unstable feature that might be removed or drastically changed in the future. The need
to rely on unstable features is a downside of system programming on Rust since many examples
and codebases of system programming which you find online might also be broken and not compile
today if they rely on unstable features (which most do). Another aspect is outdated packages Rust
calls crates, which I encountered while developing the hypervisor. Most RISC-V development on
Rust currently relies on many official crates that wrap different assembly instructions and CSR
access. However, these were not updated to reflect the new hypervisor extension, so making a new
wrapper from the bottom was necessary. This is not a gripe with the language itself but more
a comment on overreliant use, and trust in packages might not always be the best if you want
complete control and understanding of the system.

6.4 Limitations of this thesis

This thesis has several limitations, limiting which conclusions can be drawn from the results and
exploration.

Since we encountered an error with two-stage address translation, we could not progress further to
implement more advanced features, allowing us to collect some numerical results that could be used
to draw some conclusions. Therefore this thesis cannot provide any conclusive numerical results
to say if there are any performance benefits by running a hypervisor with the hypervisor extension
as opposed to not using it. We are only based on opinions on the resulting codebase from a static
analysis of other projects. Another aspect is that the emulator which was used, QEMU, does not
necessary emulate hardware at a low enough level. If one was to, for example, try to measure
MMU speeds, the measurement might give an inaccurate result due to QEMU taking shortcuts to
speed up emulation.

Another limitation was that we were not able to test more advanced pieces of software like operating
systems with the hypervisor. This impedes our ability to run standardized benchmarks, which
would help check the hypervisor’s stability and edge case handling. It is, therefore, likely that the
provided implementation contains edge case faults in what appears to currently works.

Another limitation is that this implementation is only tested on an emulated platform. Although
we have an implementation which appears to run in an emulated QEMU environment, this might
not be the case on another platform. This also limits our ability to identify if the two-stage
address translation problem we had earlier is an emulator bug or not. Making the case harder,
there is currently no physical hardware with the implemented hypervisor extension. Hence, we
cannot check whether it is a platform-specific bug. The only alternative to emulation at the time
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of writing is cores written in a hardware description language, which requires a lot of time and
resources to simulate and test our code on it.

6.5 Practical application and oppertunity for further work

Part of the motivation for writing this thesis was to provide a good overview of how the funda-
mentals of the hypervisor extension work and how it can be implemented. This is because not
many sources describe step by step and in detail how the details in the RISC-V specification can
be implemented into code. Many of the resources one can find online are either a short descrip-
tion of how the hypervisor works or codebases without description or documentation on how the
code works. Some of these even have code incompatible with the current specification since it was
based on a draft before the extension was finalized. Therefore, I hope this thesis might provide
the documentation and explanations I felt were lacking while implementing this hypervisor.

Additionally, since this project was implemented in Rust, it is possible to use it as a baseline
for implementing bare metal RISC-V in the same language since this thesis contains a lot of
fundamental handlers and structures, which would be helpful in any bare-metal application, not
just one facing hypervisors.

Due to the newness of the hypervisor extensions on RISC-V, there is still much ground to cover in
assessing how it scales with larger hypervisors, which holds up to other virtualization extensions on
different architectures and general performance. Since this thesis forms a foundation for RISC-V
implementation hypervisors, a continuation of what it outlines might be an excellent opportunity
to explore the hypervisor extension further. When physical hardware supporting the hypervisor
extension is made available, the theory can be easily tested if there is a bug with the two-stage ad-
dress translation. Additionally, it would be interesting to implement a scheduler for the hypervisor
to enable the virtualization of multiple guests.

6.6 Takeaways

To sum it up, this thesis has some advantages and disadvantages in regards to what it was able to
accomplish. We can implement a single guest hypervisor written in Rust running QEMU, providing
a virtual timer interface and a virtual memory mapped program memory for the guest. However,
we cannot proceed further in implementing a two-stage address translation for the guest due to
a bug which we cannot determine if it is human error mode on our part with the hypervisor or
guest implementation or if it is an emulation bug in QEMU. Furthermore, due to the hypervisor
extension’s newness, there is no hardware that we can use to test our implementation. Thus we
are limited with the results we can collect from it.

An evaluation of the Rust programing language and its advantages and disadvantages, when used
as a low-level system language. High-level language features are a welcome addition when one is
used to programming in C. For example, the compile-time checker ensures that the code is memory
safe, and we cannot generate race conditions unless we explicitly allow it. Unfortunately, this is
also one of the disadvantages that we cannot take advantage of on compile checks since part of
writing low-level software is that we need to dereference memory locations which Rust cannot
ensure is safe. Furthermore, since Rust is still a developing language, we need to use the nightly
branch and language features which are not yet stabilized and can be deprecated in the future.
However, all that taken into consideration, with the speed the language is being developed, many
of these shortcomings might be solved soon, making Rust a desirable language with much potential
for future implementations.
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7 Conclusion

In this master thesis, we have explored the steps needed to create a hypervisor with the new
RISC-V hypervisor extension, ratified into the specification at the end of November 2021. This
exploration was done by designing and implementing a hypervisor with the Rust programming
language, where the resulting implementation was run in a QEMU RISC-V emulator. The main
contribution of this thesis is to provide a detailed process description of how a hypervisor with the
new extension is implemented due to the current lack of documentation at the time of writing.
Another contribution aim was to evaluate the state of Rust’s ability to perform this task.

The resulting hypervisor was able to virtualize a single guest kernel where it had its program
memory-mapped through virtual memory created by the hypervisor. Additionally, the guest had
a UART peripheral directly mapped and a virtual timer interface through the SBI abstraction
layer, which shows that the hypervisor works on a fundamental level. Attempts were made to
make two-stage address translation work, but a hard to solve bug was encountered, which stopped
further implementation. Also, due to the current newness of the hypervisor extension, it is hard to
determine if a human error in the implementation causes an edge case in the emulation software.

An evaluation of the hypervisor extension compared to none extension approaches was also done.
We can see that the hypervisor extension simplifies the complexity needed by the hypervisor
software, improving readability and making it less likely for more bugs to be created. However,
we could not collect any numerical results for this evaluation, so no comment can be made on
performance. Another assessment was made of the Rust programing language, which shows it
has considerable potential for becoming a system-level language widely used due to its language
features like memory safety. However, the language is still developing, and many needed features
are still experimental language features that might be changed or deprecated in the future. Thus
making Rust very capable, but it still has some ways to go to be a stable alternative to industry
standards as C for system-level programming.

In the end, the takeaway of this thesis is there is a lot of potential in both Rust and the new
hypervisor extension for RISC-V. There are many opportunities for future work in both areas con-
cerning further development of the Rust language and more evaluation of the hypervisor extension.
Hopefully, this thesis gave a fundamental understanding of how the hypervisor extension can be
implemented and thus be used for further implementations or related research.
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A Hypervisor linker file

Listing 26: Linker file for hypervisor hypervisor/scripts/linker.ld
1 OUTPUT_ARCH("riscv")

s ENTRY(m_entrypoint)

5 SECTIONS

o {

7 . = 0x80000000;

8 .text.entrypoint

9 {

10 PROVIDE(_elf_start = .);
11 *x(.text.entrypoint) ;
12 }

13

14 .text

15 {

16 *(.text) *(.text.x*);
17 }

18

19 .rodata :

20 {

21 *(.rdata .rodata. .rodata.*);
22 }

23

24 o B ALIGN(4096);

25 .data :

26 {

27 *(.data .data.*);

28 }

29

30 _bss_start = .;

31 .bss

32) {

33 *(.bss .bss.*);

34 PROVIDE(_elf_end = .);
35 }

36 }
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B Trap Cause Codes

Interrupt | Exception Code | Description
Reserved
Supervisor software interrupt
Virtual supervisor software interrupt
Machine software interrupt
Reserved
Supervisor timer interrupt
Virtual supervisor timer interrupt
Machine timer interrupt
Reserved
9 | Supervisor external interrupt

10 | Virtual supervisor external interrupt

11 | Machine external interrupt

12 | Supervisor guest external interrupt
13-15 | Reserved

>16 | Designated for platform or custom use
0 | Instruction address misaligned

1 | Instruction access fault
2 | Illegal instruction
3 | Breakpoint
4 | Load address misaligned
5 | Load access fault
6
7
8

O[T O T Ww NN~ O

Store/ AMO address misaligned
Store/AMO access fault
Environment call from U-mode or VU-mode
9 | Environment call from HS-mode
10 | Environment call from VS-mode
11 | Environment call from M-mode
12 | Instruction page fault
13 | Load page fault
14 | Reserved
15 | Store/AMO page fault
16-19 | Reserved
20 | Instruction guest-page fault
21 | Load guest-page fault
22 | Virtual instruction
23 | Store/AMO guest-page fault
24-31 | Designated for custom use
3247 | Reserved
48-63 | Designated for custom use
>64 | Reserved

OO0 00 0000000000000 OOR R ERIFEFRRIF R R H|[— = /&

Table 2: Machine and supervisor cause register (mcause and scause) values when the hypervisor extension is
implemented.

Source: RISC-V International, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), via Github
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C Page table implementation code

Listing 27: Parts the relevant structs for the generic page table implementation hypervisor/src/paging.rs

1 #[derive (Debug) ]

2 pub struct VirtualAddress {

3 addr: usize,

4 }

5

6 impl VirtualAddress {

7 pub fn new(addr: usize) -> VirtualAddress {
8 VirtualAddress { addr: addr }

9 }

10

11 pub fn new_from_vpn(vpn : [usize; 3]) -> VirtualAddress {
12 let addr =

13 (vpn[2]) << 30 |

14 (vpn[1]) << 21 |

15 (vpn[0]) << 12

16 s

17 VirtualAddress { addr: addr }

18 }

19

20 pub fn to_vpn(&self) -> [usize; 3] {

21 [

22 (self.addr >> 12) & Ox1ff, //LO 9bit
23 (self.addr >> 21) & Ox1ff, //L1 9bit
24 (self.addr >> 30) & O0x3ff, //L2 11bit
25 ]

26 }

27

28 pub fn to_offset(&self) -> usize {

29 self.addr & 0x3ff //0ffsett 12bit

30 }

31

32 pub fn to_usize(&self) -> usize {

33 self.addr

34 }

35

36 pub fn as_pointer(&self) -> *mut usize {

37 self.addr as *mut usize

38 }

39 }

40

41 // PhysicalAddress

a2 /1117

43

4a #[derive (Copy, Clone, Debug)]

145 pub struct PhysicalAddress {

16 addr: usize,

a7 }

48

19 impl PhysicalAddress {

50 pub fn new(addr: usize) -> PhysicalAddress {
51 PhysicalAddress { addr: addr }

52 }

53

54 pub fn to_ppn(&self) -> usize {
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55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

107

self.addr >> 12 //ppn 44bit

fn to_ppn_array(&self) -> [usize; 3] {

(self.addr >> 12) & Ox1ff,
(self.addr >> 21) & Ox1ff,
(self.addr >> 30) & Ox3ff_ffff, //L2 26bit

fn to_usize(&self) -> usize {

fn as_pointer(&self) -> *mut usize {
self.addr as *mut usize

#[derive (Copy, Clone, Debug)]
pub struct Page {
addr: PhysicalAddress,

impl Page {
pub fn from_address(addr: PhysicalAddress) -> Page {
Page { addr: addr }

pub fn address(&self) -> PhysicalAddress {

/// Clears allocated memory for page
pub fn clear(&self) {

self.addr.as_pointer();
for i in 0..512 {
ptr.add(i) .write(0)

#[derive (Debug)]

struct PageTableEntry {
[usize; 3],
pub flags: ul6,

pub enum PageTableEntryFlag {
Valid = 1 << 0,
Read = 1 << 1,
Write = 1 << 2,
Execute = 1 << 3,
User = 1 << 4,
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}

Global =
Access =

1
1 << 6,

Dirty = 1 << 7,
// TODO (enhancement): RSW

impl PageTableEntry {

3

pub fn from_value(v: usize) -> PageTableEntry {
// PPN[0] 9 bit
// PPN[1] 9 bit

pub

pub

pub

pub

pub

let ppn = [ (v >> 10) & Ox1ff,

(v >> 19) & Ox1ff,
(v >> 28) & 0x3ff_ffff]; // PPN[2] 26 bit

PageTableEntry {

ppn: ppn,
flags: (v & (0x1ff as usize)) as ul6,

unsafe fn from_memory(paddr: PhysicalAddress) -> PageTableEntry {

let ptr = paddr.as_pointer();
let entry = *ptr;
PageTableEntry: :from_value(entry)

fn to_usize(&self) -> usize {

(if (self.ppn[2] >> 25) & 1 > 0 {
0x3ff << 54

} else {
0

}) | ((self.ppn[2] as usize) << 28)
| ((self.ppn[1] as usize) << 19)
| ((self.ppn[0] as usize) << 10)
| (self.flags as usize)

fn next_page(&self) -> Page {

Page: :from_address(PhysicalAddress: :new(
(self.ppn[2] << 30)
| (self.ppn[1] << 21)
| (self.ppn[0] << 12),

))

fn set_flag(&mut self, flag: PageTableEntryFlag) {

self.flags |= flag as ul6;

fn is_valid(&self) -> bool {

self.flags & (PageTableEntryFlag::Valid as ul6) !

pub struct PageTable {

}

pub

page: Page,

impl PageTable {

fn set_entry(&self, i:

usize, entry: PageTableEntry) {
let ptr = self.page.address().as_pointer() as *mut usize;

0
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unsafe { ptr.add(i).write(entry.to_usize()) }

}
fn get_entry(&self, i: usize)

unsafe { PageTableEntry::
}

pub fn from_page(page: Page)
PageTable { page: page }
}

pub fn resolve(&self, vaddr:
self.resolve_intl(vaddr,

}

fn resolve_intl(
&self,
vaddr: &VirtualAddress,
pt: &PageTable,
level: usize,
) —> PhysicalAddress {
let vpn = vaddr.to_vpn();

let entry = pt.get_entry(vpn[levell);

if lentry.is_valid() {

panic! ("failed toyresolve vaddr: ,0x{:016x}", vaddr.addr)

3

if level == 0 {

let addr_base = entry.next_page().address().to_usize();
PhysicalAddress: :new(addr_base | vaddr.to_offset())

} else {

let next_page = entry.next_page();
let new_pt = PageTable::from_page(next_page);
self .resolve_intl(vaddr, &new_pt, level - 1)

}

pub fn map(&self, vaddr: VirtualAddress, dest: &Page, perm:
self .map_intl(vaddr, dest, self, perm, 2)

}

fn map_intl(
&self,
vaddr: VirtualAddress,
dest: &Page,
pt: &PageTable,
perm: ul6,
level: usize,
) {
let vpn = vaddr.to_vpn();

if level == 0 {

-> PageTableEntry {
let ptr = self.page.address().as_pointer() as *mut usize;
from_value(ptr.add(i).read()) }

-> PageTable {

&VirtualAddress) -> PhysicalAddress {

self, 2)

// register “dest’® addr

let new_entry = PageTableEntry::from_value(
to_usize() as 164 >> 2) as usize)
| (PageTableEntryFlag::Valid as usize)

((dest.address().
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

| (PageTableEntryFlag::Dirty as usize)
| (PageTableEntryFlag: :Access as usize)
| (perm as usize),
)3
pt.set_entry(vpn[0], new_entry);
} else {
// walk the page table
let entry = pt.get_entry(vpn[levell);
if lentry.is_valid() {
// if no entry found, create new page and assign it.
let new_page = alloc();
let new_entry = PageTableEntry::from_value(

((new_page.address() .to_usize() as i64 >> 2) as usize)

| (PageTableEntryFlag::Valid as usize),

)3

pt.set_entry(vpn[levell , new_entry);

let new_pt = PageTable::from_page(new_page);

self .map_intl(vaddr, dest, &new_pt, perm, level - 1);
} else {

let next_page = entry.next_page();

let new_pt = PageTable::from_page(next_page);

self.map_intl(vaddr, dest, &new_pt, perm, level - 1);
s

Guest prepare_gpat_pt

Listing 28: Creating a page table mapping for guest hypervisor/src/guest.rs

fn prepare_gpat_pt() -> Result<paging::PageTable, Error> {

let root_page = paging::alloc_16();
let root_pt = paging::PageTable::from_page(root_page);

// create an identity map for UART MMIO
let vaddr = memlayout::GUEST_UART_BASE;
let page = paging::Page::from_address(
paging: :PhysicalAddress: :new(vaddr)
)
root_pt.map(
paging: :VirtualAddress: :new(vaddr),
&page,
(paging: :PageTableEntryFlag: :Read as ul6)
| (paging::PageTableEntryFlag: :Write as ul6)
| (paging::PageTableEntryFlag: :Execute as ul6)
| (paging::PageTableEntryFlag: :User as ul6), // required!
);

// Mapping VIRTIO memory to virtual machine
for i in 0..8 {
let vaddr = memlayout::VIRTIOO_BASE + (0x1000 * i);
let page = paging::Page::from_address(
paging: :PhysicalAddress: :new(vaddr)
)3
root_pt.map(
paging: :VirtualAddress: :new(vaddr),
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28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

T2

73

74

&page,

(paging: :PageTableEntryFlag: :Read
| (paging::PageTableEntryFlag
| (paging::PageTableEntryFlag
| (paging::PageTableEntryFlag

)
b

as ul6)

::Write as ul6)

: :Execute as ul6)

::User as ul6), // required!

// allocating new pages and map GUEST_DRAM_START ~ GUEST_DRAM_END

// into those pages for guest kernel

let map_page_num = (memlayout::GUEST_DRAM_END

- memlayout: :GUEST_DRAM_START)
/ (memlayout::PAGE_SIZE as usize)
+ 1;

for i in 0..map_page_num {

let vaddr = memlayout::GUEST_DRAM_START + i

* (memlayout::PAGE_SIZE as usize)
let page = paging::alloc();
root_pt.map(

>

paging: :VirtualAddress: :new(vaddr),

&page,

(paging: :PageTableEntryFlag: :Read
| (paging::PageTableEntryFlag
| (paging::PageTableEntryFlag
| (paging::PageTableEntryFlag

as ul6)

::Write as ul6)

: :Execute as ul6)

::User as ul6), // required!

let map_page_num = (memlayout::GUEST_TEST_AREA_END

- memlayout: :GUEST_TEST_AREA_START)
/ (memlayout::PAGE_SIZE as usize)
+ 1;

for i in 0..map_page_num {

let vaddr = memlayout::GUEST_TEST_AREA_START + i

* (memlayout::PAGE_SIZE as usize)
let page = paging::alloc();
root_pt.map(

)

paging: :VirtualAddress: :new(vaddr),

&page,

(paging: :PageTableEntryFlag: :Read
| (paging::PageTableEntryFlag
| (paging::PageTableEntryFlag
| (paging::PageTableEntryFlag

}

Ok (root_pt)

as ul6)

::Write as ul6)

: :Execute as ul6)

::User as ul6), // required!
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E Virtual timer implementation

Listing 29: The struct for our virtual timer implementation hypervisor/src/timer.rs

1 #[derive(Debug, Copy, Clone)]
2 pub struct VmTimers {

3 timers : [VmTimer; MAX_NUMBER_OF_GUESTS]

4}

5

¢ impl VmTimers {

7 pub fn new() -> VmTimers {

8 VmTimers{

9 timers: [VmTimer::new() ; MAX_NUMBER_OF_GUESTS]
10 }

11 }

12 pub fn tick_vm_timers(&mut self, amount: usize ){
13 let mut i = O;

14 while i < MAX_NUMBER_OF_GUESTS-1 {

15 self.timers[i] .tick(amount as u64);

16 i+=1;

17 }

18 }

19 pub fn check_timers(&self) -> [bool; MAX_NUMBER_OF_GUESTS] {
20 let mut vm_timer_list = [false ; MAX_NUMBER_OF_GUESTS];
21 let mut i = 0;

22 while i < MAX_NUMBER_OF_GUESTS-1 {

23 let vmtimer = self.timers[i];

24 if vmtimer.enabled {

25 if vmtimer.mtime >= vmtimer.mtimecmp {
26 vm_timer_list[i] = true;

27 }

28 }

29 i+=1;

30 }

31 return vm_timer_list

32) }

33 }

34

s #[derive(Debug, Copy, Clone)]
36 pub struct VmTimer {

w
n

37 enabled: bool,

38 mtime: u64,

39 mtimecmp: u64

40 }

41

42 impl VmTimer {

13 pub fn new() -> VmTimer {

44 VmTimer{

45 enabled: false,

16 mtime: O,

a7 mtimecmp: O

48 }

49 }

50

51 pub fn tick(&mut self, amount: u64){
52 if self.enabled {

53 self .mtime += amount;
54 }

50



55 }

56

57 pub fn set_timer (&mut self, amount: u64){

58 self.enabled = true;

59 self .mtimecmp = amount;

60 self.mtime = O;

61 }

62 }

63

6a impl Timer for VmTimers {

65 #[inline]

66 fn set_timer (&mut self, time_value: u64, guest_id: usize) {
67 self.timers [guest_id] .set_timer (time_value);
68 }

69 }

F  Guest kernel linker and boot code

Listing 30: Linker file for guest kernel guest/scripts/linker.ld
OUTPUT_ARCH("riscv")

-

s ENTRY(entrypoint)

5 SECTIONS

o {

7 . = 0x80000000;

8 .text.entrypoint

9 {

10 PROVIDE(_elf_start = .);
11 *x(.text.entrypoint) ;
12 }

13

14 .text

15 {

16 *(.text) *(.text.x*);
17 }

18

19 .rodata :

20 {

21 *(.rdata .rodata. .rodata.*);
22 }

23

24 o B ALIGN(4096);

25 .data :

26 {

27 *(.data .data.*);

28 }

29

30 _bss_start = .;

31 .bss

32 {

33 *(.bss .bss.*);

34 PROVIDE(_elf_end = .);
35 }

36 }

o1



Listing 31: boot code from guest/src/boot.S

entrypoint:

# load stack addr

la sp, _stack_end

# jump to rust code

tail rust_entrypoint

52



@ NTNU

Norwegian University of
Science and Technology



	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Scope and objectives of this thesis

	Theory
	Virtualization
	Full virtualization
	Paravirtalization

	RISC-V architecture
	Privilege modes
	Control and Status Registers (CSRs)
	Hypervisor extension

	Virtual Memory
	RISC-V implementation

	Timers
	RISC-V implementation

	Rust

	Design
	Machine Kernel (M-Mode)
	Hypervisor (HS-Mode)
	Guest Kernel (VS-Mode)

	Implementation
	Rust and RISC-V
	Macros and assembly abstracting

	Machine Kernel (M-Mode)
	Bootstrapping
	Initialization
	Switching to hypervisor supervisor mode
	Trap handling

	Hypervisor (HS-Mode)
	Initialization
	Heap and Virtual Memory
	Guest Setup
	Guest Switching
	Trap handling
	SBI Timer Interface

	Guest Kernel (VS-Mode)
	Initialization
	SBI Timer
	Trap Handling


	Results
	Discussion
	Intent of thesis
	Summary of results
	Interpretation of results
	Limitations of this thesis
	Practical application and oppertunity for further work
	Takeaways

	Conclusion
	References
	Hypervisor linker file
	Trap Cause Codes
	Page table implementation code
	Guest prepare_gpat_pt
	Virtual timer implementation
	Guest kernel linker and boot code

