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Abstract

Sequential input aggregation is the task of condensing a, potentially very large, sequential dataset
into simpler features. In the industry, particularly finance and banking, sequential data is common,
making this a broadly relevant task. Due to the dynamic nature of transactions, and the way people
spend and earn money, an automated way of defining such features could potentially save a lot of
manual labor.

We propose two kinds of automatic methods of recognizing complex patterns in sequences of
transactions. The first method is fitting autoencoder recurrent neural networks to learn a fixed
number of features, and the second is applying Fourier analysis. Both of these can be applied to
large amounts of unlabeled, transactional data for effective aggregation of said data.

Using real world data, we evaluate our aggregation methods, by using the aggregates as inputs for
tree-based supervised learners. The automatic methods show some promise in recognizing features,
with the autoencoders seemingly capturing more than the Fourier analysis, but the automatic
methods could not yield any improvement when compared to manual feature engineering.
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Sammendrag

Aggregering av sekvensiell input handler om å redusere et, potensielt veldig stort, sekvensielt
datasett til enklere variabler. I industrien, og særlig innen bank og finans, er sekvensielle data
veldig vanlige, som gjør dette til en høyst relevant oppgave. Grunnet at sekvensene av transaksjoner
utvikles dynamisk over tid, i takt med at folk endrer hvordan de tjener og bruker penger, s̊a kan
en automatisk m̊ate å definere slike aggregater potensielt spare mye manuelt arbeid.

Vi foresl̊ar to typer automatiske metoder for å gjenkjenne komplekse mønstre i sekvenser av tran-
saksjoner. Den første innebærer å trene et autoenkoder-nevralt nettverk til å komprimere en
sekvens til et gitt antall variabler, og den andre er å anvende Fourier-analyse. Begge metodene
kan anvendes p̊a store umerkede sekvensielle datamengder, for å effektivt kunne aggregere dem.

Vi bruker data fra den virkelige verden for å evaluere metodene v̊are, ved å bruke aggregatene vi
lager som input-variabler for trebaserte maskinlæringsalgoritmer p̊a merket data. De automatiske
metodene viser noe potensiale i å finne kjennetegnende informasjon, og autoenkoderen ser ut til å
fange opp mer informasjon enn Fourier-analyse gjør, men de automatiske metodene klarer ikke å
forbedre resultatene man f̊ar, n̊ar de blir sammenlignet med manuelt definerte aggregater.
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1 Introduction

This section will briefly present the motivation, project description and research questions upon
which this project is based, as well as an outline for the report.

1.1 Motivation

In the world we live in, many phenomena can be described as sequential data — everything from
the steps you take while on a walk to the meals you make, and — as will be the focal point in this
process — financial transactions.

Transactions are full of data — a single transaction contains information not only about the amount
spent, but also how it was spent, where it is being transferred to, and what category, if applicable,
the transaction falls under (e.g. entertainment or food). Transactional data is highly granular —
typically, it is as finely grained as economic data can be, as it contains every single piece that can
be used in more composite kinds of data. They can be considered an atomic unit of bank history,
with each transaction being related to a single purchase.

While sequential data like this is full of information, it is often impractical for machine learning
models. Many machine learning architectures — including, but not limited to linear regression, k-
nearest-neighbor approaches, or random forest approaches — require a constant number of variables
in order to predict. Often, this means that sequential data is either overlooked or aggregated
manually — a bank might, for example, use sums or averages over the last week, month or year.

However, most manually defined aggregates are imperfect. They do not capture much nuance in
the sequences they attempt to summarize. They could, for example, compute how much was used
on video games during the last year, month and week — but they would not, for example, capture
that most of it is spent during an annual sale. Such patterns can be very important, particularly
when it comes to predicting future spending.

Of course, any such example of patterns can be added manually — however, this would result
in an unfeasibly large set of features. Additionally, with a constantly changing world, more and
more ways of aggregating the transactions would need to be proposed over time, demanding con-
stantly investing time and money into keeping their features and corresponding models up to date.
Therefore, an automated way of defining and computing aggregates would be both useful and
valuable.

1.2 Project Description

The project task is to research automated ways to create useful aggregations of transaction data
for machine learning models, based on real data. The produced aggregates do not need to be easily
explainable for humans, but they should be useful as input variables for machine learning models.

We define a transaction t as a feature vector t ∈ Rp, and a transaction history h of length N as
an ordered series of transactions h = {ti|i = 1, 2, ..., N, ti ∈ Rp}. Let H be the set of all histories.
An aggregation is a function f : H −→ Rk, where k is a positive integer, i.e. it maps a transaction
history of arbitrary length to a fixed number (k) of features.

Given a set of existing features X, we will define our aggregation performance in terms of model
improvement. Training one model m1 using only X, and training another model m2 on X ∪ f(h),
as shown in Figure 1. Each of these models are trained to optimize some loss function, e.g. mean
squared error, or cross-entropy. We use new data, unknown to both of the models, to compute
these loss functions l1 and l2, for m1 and m2 respectively. We will then define the aggregation
performance as

score = l1 − l2 (1)

1



Figure 1: Proposed use of an aggregation function f(h). The aggregated features are used alongside
existing features in supervised learning methods.
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It is important that the data used for measuring performance is not part of the training set, to
avoid overfitting, which would always place m2 at an advantage, regardless of whether there were
any actual patterns recognized in the data.

1.3 Goal and Research Questions

The goal of the project is to produce more informative input variables for Sparebank1 SMN’s ma-
chine learning models, and to create a framework in which such a set of variables can automatically
be redefined and recomputed in the future.

The success of the project will be measured as a supervised learning problem, with labeled data
provided by the bank. The exact success metrics will depend on the type of prediction prob-
lem, primarily keeping to maximum likelihood estimators - minimizing mean squared error for
regression, and cross-entropy for classification.

The project focuses on the following questions:

Research Question 1 What is the state of the art in aggregation of transactional data?

Research Question 2 How well can a sequence autoencoder produce valuable input variables for
Sparebank1 SMN’s machine learning models?

Research Question 3 How can more traditional methods be used to produce inputs, and how do
they compare to an autoencoder approach?

1.4 Outline

This section has presented the project motivation, and the task which the project will attempt to
solve. Section 2 provides the theoretical background on which the project is based. In Section 3,
several previous works are described, all of which bear key similarities to this project. Then,
Section 4 describes the data that is used, and Section 5 covers what methods will be applied to
said data, in terms of processing the data and evaluating the proposed methods. Section 6 will
describe the results that our experiments yielded. Finally, Section 7 covers some key discussion
points before the conclusion in Section 8, in which the key findings of the project are summarized,
and possible further works are proposed.

3



2 Background Theory

This section will lay the foundations on which this thesis is based. This includes feature engineering
and selection, representation learning, various supervised learning methods, and Fourier analysis.

2.1 Feature Selection and Engineering

When applying statistical and machine learning methods to a problem, either for prediction or
for inference, the model in question will always try to extract knowledge from the data itself. As
such, no model will be better than the data on which it is based. It is common to apply statistical
methods and domain knowledge, to ensure that the data used is meaningful and adds to whichever
solution you are trying to create.

2.1.1 Feature Selection

When working with high-dimensional data, i.e. data with many features, not all features have
the same value as predictors in a machine learning context, or any predictive value at all. Using
methods for subset selection, features with low or no impact can be discarded, making machine
learning upon the data yield better, more stable results.

Selecting the optimal subset of p features is not trivial, and requires to train all 2p possible subsets.
For large values of p, this rapidly becomes computationally infeasible. Furthermore, there is a
statistical issue: a very large search space vastly increases the probability of finding a subset that
works very well on the training (or validation) set, but performs poorly on new data. For these
reasons, it is more common to use stepwise selection methods for subset selection.

There are three kinds of stepwise selection. Forwards stepwise selection begins with a model with
no parameters, and then adds one feature at a time until all predictors are in the model. In each
step, it adds the feature that yields the greatest additional improvement when added to the model.
Then, select the best of the p + 1 models, using cross-validated performance metrics. Backwards
stepwise selection is similar, but begins with a model with all predictors, and removes them one
at a time instead, removing the predictor that yields the lowest decrease in training performance
when removed. The third alternative is using a hybrid solution. Hybrid approaches start similar to
forwards stepwise selection, but each time a variable is added, they may also remove any variables
that no longer improve the model fit significantly. (James et al., 2014)

2.1.2 Feature Engineering

Feature engineering is, in its essence, the combination of feature selection and domain knowledge.
Knowledge about what rules and forces define the domain in which you work, it is likely to include
some patterns. If this is the case, knowing about such patterns allows you to construct good
features. For example, when modeling house prices, a person with domain knowledge might suggest
that distance to the closest city or bus stop are important for most buyers. If a feature is constructed
from specific domain knowledge, it should also be considered more important than the statistics
alone might indicate - the threshold to include them is lower if you have good reason to believe it
is an important feature. (Ramasubramanian and Singh, 2017)

2.1.3 Representation Learning

In some cases, good features can be difficult to define, either because domain is very complex, or
because the rules governing the system are not well-known. When features are difficult to define,
one possible approach is to apply machine learning methods not only to learn the appropriate
function between input features and target features, but also the input features themselves. This

4



(a) A neural network in its simplest form: a single
layer, with no hidden units and one output unit

(b) A neural network with one hidden layer. The
outputs from the hidden layer are the inputs for the
final (output) layer.

Figure 2: The structure of a neural network. The input units are multiplied by the weights and
passed through an activation function to produce output units.

process is known as representation learning. A classic example of representation learning is the
autoencoder, described in Section 2.3.

2.2 Neural networks

Neural networks are a type of machine learning models following similar, layered architectures.
Each layer has a number of input- and output units, computed by weights. Specifically, the input
units are multiplied by a set of weights, added to the bias, then passed through some (differentiable)
activation function, i.e.

o = σ(w ⊙ i+ b),

where o are the output values, i the inputs, w the weights, b the biases and σ is the activation
function. The structure is shown in Figure 2. Depending on the type of layer, there may be as
much as one weight for every pair of input and output nodes - as is the case for fully connected
layers. Other architectures have fewer weights, and use the same weights for multiple parts of the
input data.

When training a neural network, you need a series of samples, each consisting of input- and output
variables, a loss function and the derivative of the loss function. A loss function is a measurement of
how poorly a machine learning model is performing — the higher it is, the worse the performance.
Strictly speaking, only the derivative of the loss function is necessary to train the network, but
knowing the value makes it easier to interpret and compare model performances.

During a single training step in a neural network, three things happen. First, the input variables
pass through the network, producing estimates of the output variable(s). Then, the derivative of
the loss function with respect to the model weights is computed through backpropagation (repeated
use of the chain rule). Finally, all the weights of the network are moved slightly in the opposite

5



Figure 3: A recurrent neural network r is applied repeatedly to each element i in an input sequence,
at each time step updating its inner state s.

direction of the gradient of the loss, in an attempt to make a small reduction in the loss. The
training step is repeated several times, to try to achieve as low loss as possible.

2.2.1 Recurrent Neural Networks

Neural networks where layers go directly from input to output, from the previous layer to the next,
are known as feed-forward neural networks. When using a neural network to process a sequence,
however, it is common to use a recurrent neural network (RNN) instead. RNNs are a type of neural
networks specialized to handle sequences of observations. Most of these can handle sequences with
differing length.

Unlike feed-forward neural networks, RNNs do not only feed their outputs forward, but also into
themselves, illustrated in Figure 3. For each element it in the input sequence, a recurrent layer
updates its own hidden state st, which is computed as a function of it and st−1. It also computes
an output ot as a function of st−1 and it. Depending on the further use in the next layer, the
output can either be produced as a sequence, or only the final output vector is used.

A key idea in RNNs is parameter sharing. Because the same layer is applied on each time step,
there is only one set of trainable parameters in an RNN, rather than one set of weights for each
element. This property is especially important when it comes to capturing information that may
occur in different places. For example, if processing someone’s transactions, consider a person
going to the supermarket, and stopping by a gas station on the way home to fill up their car.
This is only a minuscule difference from doing them in the opposite order, yet in traditional,
fully-connected networks, recognizing both orders of the occurrences would require several more
trainable parameters. This would, in turn, require even more data to fit properly, and generalize
more poorly. RNNs, on the other hand, use shared parameters for each time step, allowing for
better generalization. They can also handle sequences of arbitrary length, which is very useful, as
the number of transactions per person in a bank is not fixed.

Training an RNN requires a process known as back-propagation through time (BPTT). BPTT
is similar to running normal backpropagation through the same layer repeatedly, once for each
element in the input sequence. Recurrent Neural Networks often run in to the problem known
as the Vanishing Gradient Problem, where the gradients diminish into almost nothing for the
earlier parts of the sequence (Goodfellow et al., 2016). This problem exists for feed-forward neural
networks as well, but due to the nature of BPTT, it happens a lot more often, because sequences
can easily get longer than the depth of most feed-forward neural nets.

Because the vanishing gradient problem has been somethings RNNs struggle with for a long time,
several attempts have been made to solve it. Among these attempts are a class of RNNs called
gated RNNs. The idea is to create gates through time, to allow some information from the past to
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Figure 4: A GRU cell has two gates: a forget gate, responsible for deleting old information, and
an update gate, responsible for adding new information to the hidden state

be used again at a later time step. There are many different kinds of gated RNNs, but the most
commonly used ones are Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).
The structural difference between a regular and gated RNN can be seen Figure 3 and Figure 4.
They follow similar principles — the key difference being that an LSTM cell has three gates, but
GRU only has two. Both LSTM and GRU architectures have shown themselves to be effective on
different problems, but neither has been proven strictly superior to the other. (Goodfellow et al.,
2016)

2.2.2 Transformers

Traditional sequence-to-sequence modeling based is on recurrent or convolutional neural networks
as decoders and encoders. A new architecture for sequence-to-sequence learning, called the trans-
former, was suggested in Vaswani et al. (2017), using only an attention mechanism. This led
to a significant improvement in both training time and model performance. In later days, the
transformer architecture has shown great promise in natural language processing, most notably in
GPT-3(Brown et al., 2020).

The introduction of transformers increased training speed and performance in many problems,
but the attention mechanisms involved requires quadratic space in relation to the input sequence
length. Typical solutions for this have involved limiting the input to fixed size neighborhoods, where
elements outside of each others’ neighborhoods are assumed to have no interaction, also limiting
the expressive power of the models. Choromanski et al. (2020) propose an accurate approximation
of a full-rank transformer, but requiring only linear space complexity.

2.3 Semi-supervised Learning with Autoencoders

Traditionally, machine learning is in one of three categories: supervised learning, in which all
the data has labels which are learned, unsupervised learning, in which there are no labels, and
reinforcement learning, in which the agent tries to learn optimal actions for long-term reward in
an environment. However, neither of these methods properly learn from data which is partially
labeled. When dealing with very large data sets that require manual labeling, it is beneficial to be
able to use a large unlabeled dataset in addition to a smaller labeled one. This problem is known
as semi-supervised learning, and can be considered a combination of supervised and unsupervised

7



learning.

Generally, an autoencoder is a form of representation learning, which consists of an encoder function
and a decoder function. In this report, the term will be used about autoencoder neural networks,
i.e. an autoencoder where both the encoder and decoder functions are neural networks. The
encoder applies itself, encoding the data, and the decoder tries to reconstruct the original data
from the encoded data. Finally, a third neural network, the classifier head, is applied to the output
from the decoder network to create a classifier network.

Typically, the encoder network will attempt to reduce the dimensionality of the data. An autoen-
coder with such an encoder is known as an undercomplete autoencoder. By making the model
attempt to reproduce the data from a reduced number of variables, the encoder needs to find the
most salient features in the data. An alternative variant of autoencoders, known as regularized
autoencoders, can have larger encodings - in some cases even increased from the initial data di-
mensionality, but impose other restrictions or targets when optimizing, such as stability - where
you could penalize the model for having a high derivative.

Often, autoencoders are shallow, with a single-layered encoder and decoders. However, there
are many benefits to using deeper autoencoders. It greatly broadens the extent to which the
autoencoder can generalize. It can also reduce both computational cost and training data required
for some functions. They have also been shown to yield more effective compression than their
shallow counterparts.

Training a semi-supervised classifier happens in two stages. First, the autoencoder is trained,
using the unlabeled data. After the encoder (as part of the autoencoder) is trained on unlabeled
data, the classifier network is trained on the smaller, labeled dataset. The weights of the encoder
network may be frozen during the second stage. Using the first stage to learn what patterns exist
in the data, and the second stage to learn to label these patterns correctly, this efficiently uses
both unlabeled and labeled data, and can perform well even with a very small labeled portion.
(Goodfellow et al., 2016)

2.4 Principal Component Analysis

In the field of statistics, Principal Component Analysis is a well known method of dimensionality
reduction. It utilizes the correlation between a large set of features to summarize them into a
smaller number of representative variables. Each principal component represents a direction (i.e.
a unit norm vector) in the N-dimensional space spanned by the features in the data.

The principal components are selected in order to be highly variable - the first principal component
signifies the direction in which the data has the highest variance. The later principal components
are selected with the same criteria, with the added constraint of being orthogonal to each of the
earlier principal components. While a dataset with p features can have up to p distinct principal
components, most of the variance in the data can usually be explained by a small number of them,
unless the data is uncorrelated.

Principal component analysis is highly scale-dependent, so generally speaking it should be applied
to normalized data - otherwise, the principal components will be determined more by the scale of
the features than their correlation. (James et al., 2014)

2.5 Fourier Analysis

Fourier analysis concerns finding periodic patterns by decomposing a function into a (potentially
infinite) sum of trigonometric functions (Sundararajan, 2001). Because periodic patterns are likely
to exist within our problem space, applying discrete Fourier transforms to each individuals’ histories
might grant some valuable information about patterns in their spending, assuming some level of
periodicity — such as a yearly visit to the dentist, or a weekly shopping trip.

Because it finds periodic patterns, we will attempt to use the discrete Fourier transform of indi-
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vidual customers, possibly combined with principal component analysis. Ideally, if all shopping
habits were perfectly periodic, this would create an efficient encoding of each person’s shopping
habits, which should be valuable when it comes to understanding their needs.

Of course, such idealized scenarios are rarely ever the case, but applying machine learning to vari-
ables in a different domain can always be worth considering, and using predictors in the frequency
domain (i.e. Fourier transformed features) rather than time or space has been used successfully
before.

It is worth noting that, when applying a discrete Fourier transform (DFT), the highs and lows of
the transformed data often differs by several degrees of magnitude. It might, therefore, be advisable
to apply either a logarithmic transform after the DFT, or use methods that are insensitive to scale.
An ideal candidate in such a scenario is using tree-based methods, as these are independent not
only with respect to scale, but to any strictly monotonous transformations. Such methods include
Random forests and Gradient Boosting.

2.6 Supervised Learning Methods

When applying semi-supervised learning to a problem, some sort of supervised learning method
should be applied at the end. These are methods where each training sample has a set of input
variables, as well as one or more target variables with corresponding values. There are several
different methods for this, all of which have distinct strengths and weaknesses.

2.6.1 Neural Networks

Neural networks, as described in Section 2.2, are a highly versatile method of supervised learn-
ing. They provide great flexibility, but require vast amounts of data, and always run the risk of
overfitting very easily.

2.6.2 Tree-based Methods

Decision trees and regression trees are simple methods of classification and regression, based on
a recursive binary splitting of a dataset. Evaluating a decision or regression tree is similar to a
series of yes or no questions, each concerning the value of one of the features being greater than
a given threshold value or not. For each question, or “split”, the model passes the sample to the
appropriate sub-tree. This is repeated until there are no more splits in the subtree - at which point
a terminal node, or leaf, has been reached, and the tree provides an estimate of the variable which
you are trying to predict. An example of a fitted decision tree is shown in Figure 5.

Training a decision tree, you begin with the full dataset at the root of the tree. For each feature, you
compute an optimal split on the dataset, so that the loss function — typically MSE for regression
and gini index for classification — is as low as possible for the new groups. The example in Figure 5
has divided the dataset until each leaf node is unanimously the same type. This can often be the
case for small, or linearly separable, datasets. For more noisy data, it can often be beneficial to
stop at a certain depth, and instead yield probabilities for each of the classes. Usually, this is done
by first growing out a very large tree, and later pruning away the splits that do more harm than
good, e.g. by comparing on a validation set.

In most cases, the predictive power of a single decision tree is very limited, and they are prone to
overfitting. They do, however, have some very useful properties, that are also inherited by other
tree-based methods. Each split in a decision tree is binary, only dependent on which samples are
higher or lower than a given value. This means that it is unchanged, and invariant with respect to
any strictly monotonous transformations of the features. It is not invariant of any transformation
of the labels — this is, however, only a possible problem for regression trees, as categorical variables
have no meaningful transformations.
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Figure 5: A single decision tree, fitted to the iris flower dataset (Fisher, 1936). All the setosa
samples were captured by the first split, while it took a few more questions to separate versicolor
from virginica samples.
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An extension of decision trees, based on bootstrapping, is bagging. Instead of training and pruning
a single tree based on the entire dataset, we can construct and fit B separate trees from B cor-
responding bootstrapped training sets. Each tree trains individually and independently, and they
process all inputs individually and independently. When all trees have computed a prediction, the
bagging model takes the mean of the individual tree predictions as its own estimate, as shown in
Figure 6.

Random forests are based on bagging, but also attempt to decorrelate the different bagged trees. It
is common that some variables are selected more often than others, which is often beneficial for the
individual trees. However, when training several trees to act together, they all benefit from being
different — to reduce their correlation, and in turn decrease the total variance. To accomplish this,
random forests impose another restriction on the trees. Whenever a node in the tree proposes a
divide of the data, it only gets m randomly selected features to choose from. It is common to use
m =

√
p, where p is the total number of features. The m eligible features are selected at random

for each node, so each tree can use most of the features during the training period, but none of
the features are considered at every split. This makes each tree in the random forest a lot more
different from each other, because they are trained with independent restrictions. Because they are
now largely decorrelated, variance decreases substantially the more trees are added to the forest.
One interesting, and highly beneficial, property for random forests is that they don’t risk training
for too long — adding more trees to the forest will never lead to an overfit, because every tree is
uncorrelated.

A final tree-based method is boosting. Similarly to bagging, this method also uses a large number
of decision trees. However, instead of training large, independent trees in parallel, boosting grows
several trees sequentially, and in a highly correlated manner. The basic idea is slow learning, by
fitting several small trees. However, unlike bagging and random forest, only the first tree is fit on
the original data, and the subsequent trees are fit to the residuals after the previous tree — that
is, how much the previous prediction missed by. For each new tree, new residuals are computed
based on the sum of all the previous trees.

To ensure that learning happens slowly, all tree predictions are shrunk by a shrinkage parameter
of λ, which is a positive, typically very low value, like 0.01 or 0.001. Assume for the sake of an
example that two trees are fit to two samples, with ground truth values y = (−3, 3), and shrinkage
parameter λ = 0.4. Assuming a perfect fit — which is usually unlikely with real data, but trivial
in a simple example like this — the first tree provides estimates ŷ = (−3, 3), which is then shrunk
to λŷ = (−1.2, 1.2). The second tree is then fit to the residuals, i.e. the amount by which the
prediction missed, y′ = (−1.8, 1.8). Because boosting trains slowly, it also overfits slowly, but it
can train for too long and yield an overfit to the training data. (James et al., 2014)

2.7 Performance Metrics

When defining metrics in a supervised scenario, it is common to define it in terms of the predicted
labels up against the correct ones, e.g. accuracy or R-squared. However, the target of this project
is not to find an optimal model for transaction classification, but rather to compute useful input
variables for other machine learning models to take advantage of.

2.7.1 Feature Importance

In bagging and in random forests, on every split, one out of a given number of features is chosen.
Because the target when generating a split is to minimize either Gini index or MSE, the relevant
metric is computed before and after each split of the dataset. Based on this metric, feature
importance is computed in each individual tree, defined as the total amount by which the metric
is improved over all of the splits where the given feature is chosen. The overall importance in the
forest is typically expressed as the mean of importances in each tree. (James et al., 2014)

Because computing feature importance requires the target variables, it is imperfect in terms of
judging the general quality of a feature. Nonetheless, noting the (mean) variable importance for
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Figure 6: Bagging uses several different trees, and uses the average of their predictions to make a
single prediction
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the aggregated features, particularly compared to manually-defined aggregates, is a good metric
to know that the model utilizes the new features well.

2.7.2 Model Improvement

Another metric to take into account is how the additional features impact the general supervised
models. By evaluating the accuracy of a model before and after adding the new features, we get
what is arguably the best metric for feature quality.

Much like feature importance, this is specific to the labels in whichever dataset is chosen. A dif-
ference between model improvement and feature importance is that feature importance is easily
computable in training, but also slightly more naive. For example, if you compute feature import-
ance of two highly correlated variables in a larger dataset, both will have similar values for feature
importance, but the inclusion of one reduces the feature importance of the other, and the inclusion
of both variables could yield no actual improvement compared to just one.

Hence, measuring the actual improvement of the model might be a better metric, as it also takes
into account the novelty of the new features. A reasonable feature importance score can be achieved
by repeatedly adding the same feature, assuming it is a feature that has a considerable amount
of predictive power. This strategy is, however, not likely to mark a notable improvement in the
actual predictions, but only dilute the importance of each occurrence of the identical features.

Typical metrics depend on the type of problem. In classification problems, typical metrics are
cross-entropy and prediction accuracy. Cross-entropy is a better metric when attempting to predict
probabilities accurately, but accuracy is easier for humans to interpret, and can arguably be a better
performance metric in cases where the goal is only predicting, with no consideration for uncertainty.
In regression problems, typical metrics are mean squared error and R squared (portion of variance
explained). These two metrics are closely related, and quite similar. The primary difference is that
R squared is easier to interpret across models — as R squared is always a value between 0 and 1,
whereas the scale of the mean squared error depends entirely on the data in question.

Most of the problems relevant to SMN are classification problems, and more specifically, the target
feature we will be working with is whether a customer will change their address during the next
three months. As such, the features we will be observing will be accuracy and cross-entropy, with
a priority on cross-entropy — because it is important to the bank that they can find accurate
probabilities, not just binary estimates.
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3 Related Works

This section looks at earlier works that have attempted similar things to our project, including the
key similarities and differences between the fields.

In order to preserve the privacy of their customers, banks rarely share their data. Therefore, there
are not many closely related works available to the public. However, since the methods proposed
are not necessarily exclusive to the finance industry, we can look to related works applying more
or less similar methods on different kinds of data.

3.1 Natural Language Processing

Natural languages are a common example of sequential data, and is also a field where there is an
abundance of, mostly unlabeled, data available. Furthermore, words are commonly encoded as
vectors in these works, which makes the shape of the data very similar to that of bank transfers
— a variable length sequence of vectors. As such, this is one of the most directly applicable fields
to ours.

Dai and Le (2015) describes successful use of Semi-Supervised Sequence learning in text classifica-
tion. Their findings showed that Semi-Supervised LSTM networks had more stable performance,
and generalized better than their counterparts without pretraining. Using this method, they beat
the previous best reported results for four different datasets. This applied to multiple types of
task, spanning from sentiment analysis to more general text classification, and even showing some
promise for image object classification.

One key difference between bank transactions and natural language is the question of noise. A
sentence or article written in a natural language is designed to bear some meaning, because the
intention of the sentence itself is to express a message. If you add a new word into a sentence,
or change one of the existing ones, it might change the meaning. Anyone writing a sentence
will typically keep this in mind, and construct it in a way in which their message clearly gets
through. When comparing words and bank transactions, the bank customer rarely intends to
express anything with their monthly spending, and as such it must be expected to be much more
noisy.

3.2 Genetics

Another field in which sequences play a central role is genetics. Semi-supervised learning has
seen some different use cases in genetics, and has shown itself to be a versatile method when
working with sequential data. Like in languages, we know that sequences play some role in genetic
expression, but unlike in languages, some noise will naturally occur due to random mutations.
The dimensionality of each element in a genome is also quite small, being limited to four bases
(A, T, C and G), which is a lot smaller than the vocabulary size required in language models.
Transactional data will likely be somewhere inbetween the two in terms of dimensionality - almost
certainly including more than four simple features per transaction, but very unlikely to go in to
the thousands.

3.2.1 Imputation of Single-cell Gene Expression

RNA-sequencing is an emerging technology, but has limitations, including a high rate of dropout.
Badsha et al. (2020) describes using an autoencoder to impute such values, showing that deep
autoencoders have ability to beat existing methods’ MSE, picking up on nonlinear relations between
genes, and additionally being highly effective in terms of computational efficiency and scalability.
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3.2.2 Genetic Prediction

Semi-supervised learning has also been used for prediction on gene sequences. Xie et al. (2017)
used a deep autoencoder model to predict gene expression, which is determined by many factors, all
the way down to DNA-level. Peng et al. (2019) uses similar methods to reduce the dimensionality
of genetic data, in order predict the occurrence of Parkinson’s disease.

3.3 Power System Dynamics

Being able to predict the changes in a power grid efficiently, and in real time, is very useful
and, in the long term, necessary, because renewable energy sources like solar and wind power are
unstable, and harder to plan for in advance. Currently, doing this requires numerically solving a
set of ordinary differential equations (ODEs), an operation which is too computationally intensive
for real time use. Therefore, it is a common practice to limit the amount of e.g. wind power
generated into the grid, to keep everything as stable as possible. In the longer term, using effective
and accurate predictors could become a necessity when moving away from non-renewable energy
sources.

Cui et al. (2021) proposes a framework for prediction of power system dynamics in the frequency
domain (i.e. using a Fourier transformation). Applying machine learning methods in the fre-
quency domain, they demonstrate high accuracy in prediction and fault detection, while reducing
computation time by orders of magnitude compared to traditional methods.

They compare metrics of their methods to those of the state of the art, which runs prediction in
the time domain. Their proposed methods had less than half of the previous mean squared error,
when compared to the state of the art machine learning methods, including Physics-Informed
neural networks.

3.4 Learning in the Frequency Domain

As a Fourier transform can be applied in several dimensions, it has also been used for higher-
dimensional data, such as image processing. Xu et al. (2020) describe some benefits of the fourier
transform. Importantly, image downsampling (in the spatial domain) makes no distinction between
important and redundant data when removing information. Because many machine learning mod-
els require a fixed input size - as is the case for this project as well — this can be problematic.

For this purpose, methods for data preprocessing and feature pruning were also proposed, including
a learning based method for frequency selection. The method involves a gate module, which scales
importance from 0 (completely redundant) to 1 (highly salient).

Applying their models to a static selection of frequencies (i.e. a fixed set of features in the frequency
domain) instead of fixed size images, they improve upon the top accuracy provided by some of the
best performing models on the ImageNet dataset, including ResNet-50 and MobileNetV2. They
also observed an 0.8% accuracy improvement on image segmentation on the COCO dataset.

3.5 Use of the Fourier Transform for Feature Extraction

Heidari et al. (2021) describes the challenge of learning from data with nonlinear redundancies,
and the use of the fourier transform to effectively extract information in such scenarios. Their
methods apply to the supervised problem, using the relations between features and labels, i.e.
feature extraction for a single supervised problem.

Other alternatives considered therein had drawbacks when compared to the discrete fourier trans-
form based methods. The most common methods for dimensionality reduction only capture linear
relationships, which is not sufficient to cover most real-life patterns. Other more flexible methods
of feature extraction include kernel-based methods, which can capture nonlinear dependencies —
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but the ω(n) time complexity of their computation process makes them scale poorly, which is not
ideal when the sample size grows very large.
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Column Description
Customer ID a unique identifier, necessary to make connections between

customers and connect them to transactions
Month The month for which this row was recorded
Gender Gender of the customer
Age Age of customer, measured in whole years
Customer Start
Date

The time of the beginning of the customer’s relationship
with the bank

Post Code An anonymized version of the customer’s postal code
Municipality An anonymized code for the municipality in which the

customer lives
Country An anonymized code for the customer’s country of resid-

ency
Sum of loans The total amount the customer owes in loans
Sum of deposits The total amount deposited into the customer’s accounts
Customer seg-
ment

Which customer segment the customer is in. Indicates
how many of the bank’s products the customer uses

Moved Whether the customer changed their address during the
month in question

Table 1: Data format in the customer table

4 Data

This section describes the data which is used throughout the practical part of the project. The
data in focus for this project is customer data, provided by Sparebank 1 SMN.

4.1 Format

The dataset consists of four tables: one with background information on each customer, one for
account transactions, and two for debit and credit cards, respectively.

Several columns here are anonymized. The anonymization process is simply using a simple index
representing the value, instead of the actual value. For example, the postal code 7030 might be
assigned the number 2, and the assigned number will be consistent for all postal codes throughout
the dataset. This sacrifices information regarding the proximity of postal codes, such as 7031 being
closer to 7030 than 7100, but it was necessary in order to keep the data sufficiently anonymous.
There are potential ways to work around this, e.g. making sure the indices are assigned in ascending
order of postal codes, but it will always end up being a matter of balancing salient data with the
concern for customer privacy, in which case the bank will rather err on the side of caution.

4.1.1 Customer

The customer information table contains basic, but anonymized, information about each individual
customer. The table contains monthly updates about the customer, i.e. there is one row per
customer per month. This background data is shown in Table 1.

4.1.2 Account Transactions

Account transactions are any transactions that transfer money into or out of a customer’s bank
account. The data from them are shown in Table 2.
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Column Description
Customer ID the unique identifier of the customer
Date The date on which the transaction happened
Account num-
ber

An anonymized version of the account number

Other Account the account number of the counterpart of the transaction,
following the same anonymization as account number

Classification
code

An internal classification of transactions, specifying if they
are related to e.g. a minibank, an electronic invoice or
salary payments

Currency The currency in which the transaction is made
Amount The amount being transferred into an account, in original

currency. Negative numbers represent outgoing transfers.
Amount in
NOK

The amount of money being transferred into the account,
converted to NOK

SMN Transac-
tion

Flag representing whether the transaction is between two
SMN accounts.

Customer
Internal Trans-
action

Flag representing whether the transaction is between ac-
counts belonging to the same customer

Debet flag Flag representing whether money is outgoing
System Gener-
ated Transac-
tion

Flag representing whether the transaction was generated
by the system, e.g. interest and fees.

Table 2: Data format in the account transaction table

4.1.3 Debit and Credit Card Transactions

The final two tables follow a very similar format, as they both relate to card payments. The format
of the data stored in these tables is shown in Table 3.

4.2 Scope

The data contains data pertaining to bank transactions for Sparebank 1 SMN’s private customers
over 2 years, with certain exceptions, which are described in Section 4.3.

4.3 Limitations

Due to the General Data Protection Regulations (GDPR), there are strict limits on what can and
cannot be done with this data - as a person’s transaction history includes a lot of personal data.
This means, among other limitations, that no part of the data may leave Sparebank 1’s premises,
and all analysis must run on their systems, on their own hardware. It also means we are not
allowed to inspect the data - only apply the code and test its performance. In addition to these
usage guidelines, the data itself has been filtered, removing certain transactions that are considered
too sensitive to use in machine learning models, such as visits to the doctor.

Furthermore, GDPR imposes strict rules for anything that can be considered identifiable, including
combinations of several features. As such, any combination of personalia that is too rare is also
removed before the data is made available to our machine learning models. The factors considered
to be identifiable here are age, gender, and postal code. While the postal codes themselves are
anonymized (by mapping to an index), they could be possible to identify or narrow down from
e.g. the number of users in each postal code. Therefore, any combination of these factors with less
than 5 unique customers are filtered out. Finally, all customers below the age of 18 are removed
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Column Description
Customer ID The unique identifier of the customer
Date The date on which the transaction happened
Account num-
ber

An anonymized version of the account number, corres-
ponding to those in the Account transactions table

Currency The currency in which the transaction is made
Amount The amount being transferred, in original currency.
Amount in
NOK

The amount of money being transferred, converted to
NOK

Transaction
time

Time of day on which the transaction was made

Transaction
counterpart

An anonymized code representing the place in which the
transaction was made

MCC The Merchant Category Code of the counterpart, as
defined in the ISO 18245 standard (International Organ-
ization for Standardization, 2003)

Group Categorization of merchants, more coarsely grained than
standard MCC

Group descrip-
tion

Description of said group

Main group A more coarse grouping
Main group de-
scription

Description of the main group

Table 3: Data format in the credit- and debit card transaction tables

from the data used in this project. In total, this leaves approximately half of the bank’s private
customers remaining in our data set.

Anyone under the age of 18, and anyone who belongs to a too narrow demographic, are excluded
in the project. As a consequence, the data, and by extension the machine learning models fitted
to the data, will likely be skewed towards adults in densely populated areas.
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5 Methods

The methods section covers all the key methods that will be applied in Section 6, as well as an
outline for how the experiments will be conducted.

The practical methods applied to the data are written in Python 3.7. This includes preprocessing,
learning and evaluation.

5.1 Tools and Libraries

The python libraries used for the project are:

• numpy, version 1.19.2 1

• tensorflow, version 2.3.0 2

• scipy, version 1.6.2 3

• scikit-learn, version 0.24.2 4

• pandas, version 1.3.4 5

5.2 Preprocessing

5.2.1 Data Scale

Different columns in the data can often take on values that differ by several orders of magnitude.
This can bring to light several issues.

For example, if a bank transaction can be anything from NOK 20 to buy a soda in a store to NOK
5000000 to buy a house, the scale at which an autoencoder model might miss is extremely high,
and can very easily become problematic in terms of convergence. Typically, neural networks train
more effectively when the data is normalized to zero mean and unit norm (LeCun et al., 1998),
which is not the case for our data set. Histograms for the transaction sizes, sorted by transaction
types (as described in Section 4), are displayed in Figure 7.

If we simply normalize the data by dividing by a fixed number (e.g. standard deviation), only
the very large transactions retain any influence at all. We propose two alternatives to avoid this
problem.

The first alternative, applying a logarithmic transform, is a simple and easily applicable mathem-
atical function, which narrows the dynamic range of the dataset down. Another benefit is that it
makes differences more relative to the size of the transaction. Before a log transform, estimating
4200 when the actual value is 4000 is considered equally bad as estimating 240 when the actual
value is 40, as both miss by 200. After applying a log transform, it becomes more scale-sensitive,
and predicting 4200 instead of 4000 is the equivalent of predicting 42 instead of 40. It does not
guarantee any distribution - but does bring all the data into a much narrower frame, in which it
might be plausible to simply divide by the standard deviation.

The results of applying a logarithmic transform to amounts in question resulted in distributions
shown in Figure 8. The histograms all appear to be close to a gaussian distribution, and normal
Q-Q plots also seem to indicate this being the case.

1https://numpy.org/doc/1.19/
2https://www.tensorflow.org/versions/r2.3/api docs/python/tf
3https://docs.scipy.org/doc/scipy-1.6.2/reference/
4https://scikit-learn.org/0.24/
5https://pandas.pydata.org/pandas-docs/version/1.3/index.html
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(a) Histogram for debit card transactions (b) Histogram for credit card transactions

(c) Histogram for account transactions

Figure 7: Histograms showing the distributions for the size of debit card, credit card, and account
transactions, respectively. Apart from taking the absolute value, to get the size without a positive or
negative sign, no transformations have been applied to either of the distributions. The histograms
were cut off at 5000 in order to display them properly, as larger and larger transactions get rarer
and rarer.

The other alternative is using quantiles. Having a significant number of transactions available, it is
simple to compute quantiles, i.e. estimate the distribution of the transaction sizes. These quantiles
can, in turn, be used to translate transaction sizes to the portion of the dataset that it is greater
than, which will yield a uniformly distributed feature. This can either be used as is, or it can be
used to translate to the corresponding quantile in e.g. a gaussian distribution.

5.2.2 Joining the Tables Together

The first piece of the preprocessing pipeline will be joining the data from several tables together,
and piecing them all in to customer objects. Each customer should have a three transaction
histories - one for account transactions, one for debit card and one for credit cards.

The procedure for joining the tables is relatively simple: For each unique Customer ID, initialize
background information with the latest available data from the Customer table. Then, for each
of the three other tables, select the transactions with matching customer ID, and insert them into
three arrays, each corresponding to one of the three tables. After processing all N customers, this
should result in N sets of background information, and 3 ·N arrays of transactions.

Naively, this algorithm runs in quadratic time. This can be reduced to O(n log n) by first sorting
the data with respect to customer IDs and dates, and then iterating sequentially through the
tables.
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(a) Histogram for log transformed debit card trans-
actions

(b) Q-Q plot for debit card transactions

(c) Histogram for log transformed credit card trans-
actions

(d) Q-Q plot of debit card transactions

(e) Histogram for log transformed account transac-
tions

(f) Q-Q plot of account transactions

Figure 8: Histograms and Q-Q plots showing the distributions for the size of debit card, credit card,
and account transactions, after a log transform has been applied. Q-Q plots seem to indicate that
they are close to gaussian, although the lower quantiles of the debit and credit card distributions
seem to have some consistent mismatch, so it’s likely not perfectly gaussian.

5.2.3 Data Units

For both of the proposed methods, there is a question of how to shape the data before applying
the learning process. On the one hand, the discrete fourier transform has well-known properties
when applied to time series, i.e. when each step in the series is represents a given unit of time
- where we’d know that periodic patterns, such as a weekly shopping trip, will be recognized -
which is not necessarily true if patterns are recognized by the number of transactions that are
made, rather than actual time. Furthermore, when attempting to extract features to summarize a
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person’s shopping patterns, it is likely to be more reasonable to train an RNN to recognize what
happens in given time steps, rather than e.g. punishing a model for not knowing the order in which
two store visits take place. Both of these can be reasons to use period-based data, e.g. summaries
per day or per week, instead of pure transaction-level data.

On the other hand, translating from transactional data to per-day or per-week summaries, inher-
ently requires a way to aggregate the data in question. As such, it misses out on the possibility
that there might be something important in the transaction-level data. Furthermore, it is possible
that some periodic patterns could apply when measuring time by the transactions themselves - if
a person has very clear-cut shopping habits, making the same purchases every week, but the day
and time of the trip to the store varies from week to week, a discrete fourier transformation of the
raw transactions would capture the periodic tendencies better.

Because both of the alternative time units - both transactions and real-world time units, have
apparent benefits and drawbacks, both should be attempted and their results compared to one
another.

Another choice that must be made is how to measure each transaction - such as account balance
after transaction, or simply using the transaction size and direction. In this case, we will use the
value of the transaction itself. This will, in itself, be easier, because it’s already stored in the data
that is provided. Furthermore, because certain transactions are filtered for privacy reasons, the
balance we can measure with the available data will be heavily time-dependent, and by the end,
the balances we can compute with our data will likely be off by quite a lot.

5.3 Autoencoder

After applying either preprocessing pipeline, a deep autoencoder model will be fitted to the data. It
is possible that some of the background data, such as age and gender, are already good predictors,
and that some detectable patterns in transactional data might be attributable to such factors.

To prevent our model from learning features that are already well-known and defined, we will
attempt to decorrelate the encoder from these features. This will be done by allowing the decoder
to use these variables directly, as external regressors, as shown in Figure 9. In an idealized scenario,
this would mean that the decoder can use the background data, that is now supplied directly, to
predict patterns related to those, and the encoder will be encouraged to find other, uncorrelated
features in the data.

5.4 Fourier Approach

After all preprocessing is complete, a discrete fourier transform will be applied to the transaction
histories to each of the customers in question. First, a large, fixed number of the frequency domain
values will be used directly in machine learning models. Then, feature selection or another form
of dimensionality reduction (such as principal component analysis) will be applied, and compared
to the naive approach of using all values in the set.

Strictly speaking, the size of a discrete fourier transform depends on the length of the sequence in
question, and as such, it does not directly solve the problems that motivated the problem. This
is, however, a minimal problem; it is quite simple to fix the size of the fourier transform to a given
range, by substituting the (theoretically consistent) value of 0 to anything outside the selected
range, and removing frequencies that span over longer time spans than the same range.

5.5 Evaluation

Encoder performance will be quantified in a supervised manner. Applying various supervised
learning methods to each of the different data encodings, we get an indication of how well the
different encoders, and their hyperparameters, work.
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Figure 9: An autoencoder corrected for external regressors
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The best models of each type (deep autoencoder and fourier encoder) will be selected based on
their validation set performance, and finally their test set performance will be reported.

5.6 Experiment Flow

The experiment will be conducted in three overall phases: unsupervised training, supervised train-
ing, and test set evaluation.

5.6.1 Unsupervised Training

During the first phase, we will apply unsupervised experiments, primarily with sequence autoen-
coders, and experimenting with different kinds of preprocessing. This will give us indications of
what kinds of training are plausible, and result in having a few different, saved models for feature
extraction.

5.6.2 Supervised Training

During the supervised training phase, we will use our automatic feature extraction methods to
produce features. We will try to use these features as input features to gradient boosting- and
random forest classifier models. We will also measure and report the validation cross-entropy and
accuracy for each feature extractor and supervised learning method.

In addition to automatic feature extractors, we will define some features manually, which we will
also use to train supervised models, similarly to what we did with the automatically generated
features. Metrics will also be reported for these.

Furthermore, we will try to combine some manually and automatically generated features, and
train corresponding models based on the combined feature set, to see whether they work better in
combination than either feature set does separately. We will also report the validation metrics for
these models.

5.6.3 Test Set Evaluation

After training all of these models and observing their validation metrics, the best manual model
will be selected based on validation set metrics. The best model using either automatically created
or combined features will also be selected, as the target is to know whether automatic methods
can provide useful features.

Finally, the best feature set will be determined based on their performance when applied to the
test set.
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Figure 10: The data flow of the autoencoder begins with three sequences, each being processed,
combined, and then being processed back into three separate sequences afterwards. The Sequential
boxes consist of one or more fully-connected layers, allowing for deeper patterns in encoding and
decoding.

6 Results

6.1 Aggregation

Preliminary results were produced with a subset of the data containing 5% of the total customer
data, to experiment with different configurations and preprocessing pipelines with a lower time
investment.

The autoencoder network architecture is displayed in Figure 10. There are three input- and output-
sequences - the fields differ slightly between the three tables (credit card, debit card and account
transactions), and as such each table is treated as a separate sequence of independent variables
and dimensionality. Before any target variables were considered, unsupervised training history was
a useful indicator to see how well the model was adapting itself to the data. If the autoencoder’s
own loss does not decrease, that is a clear indicator that it could not find any patterns.

After some trial and error, it became apparent that processing the raw transactions was infeasible:
a single epoch on the preliminary 5% of the data would take 8 hours of training time, and the full
data would require 20 times that, almost a full week per epoch. Furthermore, training often failed
very early in the training process, with an abundance of NaN values in its training history, despite
the data being scaled properly. This problem appared very regularly for raw transactions and 7-day
aggregated data, less commonly on data encoded to 14-day periods, and was never encountered on
data encoded for 31-day periods.

The computation time was also significantly reduced by longer periods, with an epoch on 14-day
encoded data only requiring 30 minutes (when applied to the preliminary 5%). This improvement in
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(a) Training history for 10 trials with equal configur-
ations, using the more complex model on data sum-
marized for 14 days. The x axis represents epoch,
the y axis mean squared error, and differently colored
graphs represent training histories for different trials.

(b) Training history for 10 trials with equal configura-
tions, using the simplified model on data summarized
for 14 days. The x axis represents epoch, the y axis
mean squared error, and differently colored graphs
represent training histories for different trials. Out
of the 10 trials that were initiated, only 5 completed
without failure, with the remaining 5 rapidly result-
ing in many NaN values.

Figure 11: Unsupervised training results on 14-day summarized data, before and after simplifying
the autoencoder model. The simplified model appears less stable, resulting in frequent NaN values
occuring. The y-axes are log scaled, as different initial states impact the training results by orders
of magnitude.

(a) Training history for 10 trials with equal config-
urations, using the more complex model. The x axis
represents epoch, the y axis mean squared error, and
differently colored graphs represent training histories
for different trials.

(b) Training history for 10 trials with equal configur-
ations, using the simplified model. The x axis rep-
resents epoch, the y axis mean squared error, and
differently colored graphs represent training histories
for different trials.

Figure 12: Unsupervised training results on 31-day summarized data, before and after simplifying
the autoencoder model. It appears that the more complex model performed better on average in
unsupervised training, but somewhat less stable.

computation time is inversely proportional to the period lengths, as longer periods effectively reduce
the sequence lengths, and recurrent computations take the majority of the time in computation.

However, even though shorter sequences lead to more stable results, with training loss following a
downwards trend, the values depend entirely on the initial weights. Running training several times
with equal hyperparameters, we can observe loss values varying by several orders of magnitude.
Training histories from 10 separate were observed for 14- and 31-day periodic encodings, respect-
ively. It is also worth noting that the mean loss over each epoch is often heavily influenced by a
single data point, in some cases representing as much as 92% of the total loss - but the position of
the highest loss changes between different runs of the same code, so there is no reason to believe
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the problem is a few outliers in the data itself.

After noting that training is highly unstable, and likely approaching several different local minima,
attempts were made to decrease the complexity of the network, by reducing the number of fully
connected layer in the middle of the autoencoder, as well as reducing the size of the remaining
layers. This did not notably change the results, but had a marginal improvement in computation
time. The training histories before and after simplifying the model are displayed in Figure 11
for 14-day encoded data, and Figure 12 for 31-day encoded data. It appears to have had little
notable impact on the 14-day data, but on the shorter sequences of 31-day summarized data, the
more complex model appears to consistently outperform the simpler one. It is difficult to conclude
exactly why this disparity happens, but noting that the learning curve on the longer 14-day encoded
sequences is rather flat in both cases, it is certainly a possibility that neither model manages to
learn the longer sequences, and the more complex one more effectively learns to encode the shorter
sequences.

6.1.1 Complete Dataset

Once we felt confident that our methods were working as intended, we moved from using the
preliminary 5% of the dataset to the full dataset. We set aside 20% of the customers as the
validation set, and 10% for the test set, leaving 70% as the training set.

The increase in training data significantly increased time required to run our methods, but also
made the unsupervised training appear more reliable, although there are still points on which it
varies. The increase in training time does, however, make it harder to run several trials with the
same configuration, and creating 10 models to create a single of the plots in Figure 11 would take
more than a week if re-applied to the complete dataset, totalling almost a month to create plots
corresponding to all of Figure 11 and Figure 12 for the full dataset.

6.1.2 Alternative Preprocessing

One key problem with the method we are using, summarizing transactions over fixed-length periods,
is how we choose to represent these sums. Summarizing the data directly is a simple approach, but
simple is not always best. We therefore propose an alternative way to summarize the transactions,
in which the sequences contain data about how much money is spent in each category. While the
transactions contain essentially the same information as before, the sums now have a much simpler
real-world interpretation; the rows for each category all represent how much money is spent in that
category, rather than the number of purchases made in the category. Like earlier, a logarithmic
transform is applied to these sums, in order to keep the scale from blowing out of proportion.

Trying this new preprocessing, we trained new models. Before we get to their predictive perform-
ance in Section 6.2, we will look at how well they capture the patterns in the modified data. Initial
trials indicate that a model trained with the alternative preprocessing captures much more inform-
ation, reducing training loss by much more than the previous models could, indicative that this
encoding of the data is more suitable for an autoencoder to read than the initial version - with 2
different configurations of varying complexity, whose training histories are displayed in Figure 13,
seemingly outperforming what we have seen earlier in terms of learning progress. This is once
again a reminder that the format we feed into the model can be as important as the architecture
of the model itself.

The new preprocessing also changes the output of a Fourier feature extractor, as the fourier trans-
form is applied to a differently processed data point. Running principal component analysis on
the data in the frequency domain, the variance captured in the first 16 principal components is
displayed in Figure 14 for the original preprocessing, and Figure 15 for alternative.
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(a) Training history from 10 trials with equal config-
urations, using the more complex model. The x axis
represents epoch, the y axis mean squared error, and
differently colored graphs represent training histories
for different trials.

(b) Training history from 10 trials with equal con-
figurations, using the simplified model. The x axis
represents epoch, the y axis mean squared error, and
differently colored graphs represent training histories
for different trials.

Figure 13: Unsupervised training history after applying the alternative preprocessing to the data.
Due to the unstable results we got from 14-day encoded data earlier, as well as the time required,
only 31-day periods were used in this case.

6.2 Supervised Training

After achieving somewhat stable unsupervised training results, one autoencoder with fitting hy-
perparameters was used for the prediction of certain target variables, unknown to the autoencoder
model.

For the purpose of this thesis, the target variable used was whether the customer changed their
address within the next 3 months. This was selected because it is one of the more common events
that the bank monitors, and although it is still rather uncommon (with about 4% positives in the
dataset), it is much more common than any other target variable of interest, and as such provides
for less imbalance in the data.

6.2.0 Hyperparameter Tuning

Whilst random forest classification is a method which requires little hyperparameter tuning, gradi-
ent boosting classifiers can easily run the risk of over- and underfitting, so tuning hyperparameters
is much more important. We use the validation data for model selection, so to avoid validation set
overfitting, we use 5-fold cross-validation to find the optimal selection of hyperparameters.

Because each gradient boosting classifier has different variables to work with, they also need to be
tuned according to the variables they have available, so the cross-validation is run on each gradient
boosting model individually. This is a relatively heavy process, with a round of cross-validation
taking up to a few hours — the exact time required being heavily dependent on how many variables
the classifier has available. However, in the grand scheme of things, the extra hours required for
cross-validation are not that much, and they are necessary in order to provide accurate estimates
of how well the algorithm utilizes the different variables generated by the methods we proposed.

6.2.1 Aggregate-free Supervised Learning

As a benchmark for how much information the background variables by themselves contain, one
model of each type was trained with only the background variables, utilizing none of the transac-
tional data in the dataset. Their corresponding performances are listed as the baseline in Table 4.
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Figure 14: Proportion of variance captured by the first principal components, using PCA and
a discrete Fourier transform on top of the original preprocessing. The first principal component
captured 65% of the variance in the data, and the first 16 capture a total of 94%.

Figure 15: Proportion of variance captured by the first principal components, using PCA and a
discrete Fourier transform on top of the alternative preprocessing, the first principal component
captured 19% of the variance in the data, and the first 16 capture over 99%.
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6.2.2 Autoencoder Aggregates

Using the methods described in Section 5, a fitted autoencoder creates automatic aggregates for
each customer, which can be used in a supervised manner. Their training process is similar to
that of the previous subsections, but using said automatic encodings. Once training is complete,
running the autoencoder is a reasonably efficient process, taking only 30 milliseconds per customer
using 31-day encoded data, totalling a transformation time of 3 minutes for the preliminary 5% of
the data (and 1 hour for the full dataset).

These aggregates were then combined with background knowledge, and used to train various su-
pervised models. Autoencoders were fit at different scales, creating between 16 and 128 variables,
and different supervised learning methods were used to evaluate them.

6.2.3 Fourier Aggregates

Using a discrete Fourier transform, a given set of frequencies must be chosen for the resulting
aggregates to be of equal dimension. For the sake of simplicity, our early attempts will be limiting
themselves to using the lower ends of the spectrum, focusing primarily on longer term temporal
patterns. Attempts are also made to apply principal component analysis to the Fourier transformed
data, so that more general frequencies may be used, rather than only long-term patterns. The exact
numbers of frequencies to choose are easy to tweak, and similarly to the latent dimension of the
autoencoder, these processes will also be applied using several different numbers of aggregates.

Whilst the discrete Fourier transformation does not possess the expressive power of a neural net-
work, it proved much easier to tweak, as there is no costly training period. There are also much
fewer hyperparameters and architecture choices involved in producing this encoding of the data.

Applying the Fourier encoding to the customer base is also vastly faster, processing over 2000
customers per second on 14-day encoded data, making the computational cost nearly nothing, in
addition to not requiring any training. Principal component analysis is also highly efficient, and
takes a relatively small amount of time to apply on top of the earlier methods. As such, it could
be worth using these methods even if the impact is very small.

The validation set results of using the autoencoder, Fourier, and Fourier-PCA aggregates are
displayed in Table 4. The top performer, both for random forest and gradient boosting, was the
autoencoder for 64 variables, with alternative preprocessing. More generally, all methods perform
similarly when creating few variables, but when scaling up, the autoencoders using the alternative
preprocessing outperform the other methods when scaling up, whereas the autoencoder on the
original preprocessing performs poorly, particularly when scaling up.

The different Fourier encoders appear to have a small, positive impact on validation performance,
but there is little change to the supervised performance when scaling them up to produce a higher
number of variables.

6.2.4 Using Manual Aggregates

There are functionally infinite ways to manually define aggregates for sequences of arbitrary length.
Being humans, the aggregates we use will typically be things that we would consider salient in-
formation, and that can be plausibly expected to have some predictive power. We will use varying
numbers of variables, to see how well our models work compared to a human defining either a few
or very many variables.

Our suggested manual aggregates primarily consist of spending in given categories over given time
periods, e.g. a variable for spending on groceries in the last month, and one for the last year.
These have the benefit of being easier to interpret and compute, but their more rigid structure
could also result in less salient variables.

While these are manually defined, we will not be spending a lot of time defining each variable; for
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Gradient Boosting Random Forest
Variable
count

Method Cross-entropy Accuracy Cross-entropy Accuracy

0 Baseline 1.3369 0.96129 1.4199 0.95888

16

Autoencoder orig. 1.3389 0.96124 1.3331 0.96140
Autoencoder alt. 1.3350 0.96135 1.3389 0.96124
Naive Fourier orig. 1.3369 0.96129 1.3466 0.96101
Naive Fourier alt. 1.3369 0.96129 1.3369 0.96129
Fourier PCA orig. 1.3350 0.96135 1.3389 0.96124
Fourier PCA alt. 1.3369 0.96129 1.3427 0.96112

32

Autoencoder orig. 1.3427 0.96112 1.3350 0.96135
Autoencoder alt. 1.3330 0.96140 1.3350 0.96135
Naive Fourier orig. 1.3369 0.96129 1.3485 0.96096
Naive Fourier alt. 1.3369 0.96129 1.3389 0.96124
Fourier PCA orig. 1.3331 0.96140 1.3389 0.96124
Fourier PCA alt. 1.3369 0.96129 1.3389 0.96124

64

Autoencoder orig. 1.3466 0.96101 1.3350 0.96124
Autoencoder alt. 1.3273 0.96157 1.3254 0.96163
Naive Fourier orig. 1.3369 0.96129 1.3369 0.96129
Naive Fourier alt. 1.3369 0.96129 1.3369 0.96129
Fourier PCA orig. 1.3447 0.96107 1.3389 0.96124
Fourier PCA alt. 1.3408 0.96118 1.3389 0.96124

128

Autoencoder orig. 1.3466 0.96101 1.3312 0.96146
Autoencoder alt. 1.3369 0.96129 1.3292 0.96151
Naive Fourier orig. 1.3369 0.96129 1.3350 0.96135
Naive Fourier alt. 1.3350 0.96135 1.3408 0.96118
Fourier PCA orig. 1.3389 0.96124 1.3350 0.96135
Fourier PCA alt. 1.3369 0.96129 1.3389 0.96124

Table 4: Supervised results from automatically generated variables, used in Gradient Boosting
and Random Forest classification. Variable count is excluding the preexisting variables, i.e. the
number of new variables added to the model. orig. and alt. signifies feature extraction based on
the original and the alternative preprocessing, respectively.

example, when defining a variable for spending on groceries in the last year, it is a trivial task to
define similar metrics from the other transaction categories (as described in Section 4).

The results of all trials using manually defined aggregates are described in Table 5.

6.2.5 Combining Methods

Until this point we have focused on trying to find a single way to extract useful features, but there
is no guarantee that a single method alone is optimal. Therefore, we also attempted some mixed
learners, using variables from multiple different methods - for example, running supervised learning
on 64 autoencoder variables and 64 manually defined variables, or 64 autoencoder variables, 32
manually defined variables, and 32 fourier variables.

We also attempted PCA on the manually defined aggregates, as the variables we defined are likely
highly correlated (e.g. someone who has a high salary is likely to have higher expenses as well).
The variance contained in the first 16 principal components is shown in Figure 16.

This is a task that can be almost infinitely iterated upon - in addition to the near infinite ways to
summarize a year, we now also have an abundance of different combinations that can be tried. The
point of this project is not, however, to infinitely iterate using slightly different configurations every
time, and for the sake of brevity, we tried to limit ourselves to using just a few mixed aggregates.
From Table 4 we can see that the autoencoders perform best when producing 64 variables, so
we will focus on autoencoder estimates from the 64-variable encoder. In Table 5 it appears that
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Gradient Boosting Random Forest
Variable
count

Description Cross-entropy Accuracy Cross-entropy Accuracy

18
Monthly debit
card summary

1.3369 0.96129 1.3852 0.95989

Annual debit card
summary

1.3369 0.96129 1.3369 0.96090

36

Monthly debit-
and credit card
summary

1.3369 0.96129 1.3871 0.95984

Annual debit- and
credit card sum-
mary

1.3369 0.96129 1.3369 0.96090

44
Monthly account
summary

1.3427 0.96112 1.3254 0.96162

Annual account
summary

1.3177 0.96185 1.3196 0.96179

62

Monthly account
and debit card
summary

1.3369 0.96129 1.3775 0.96012

Annual account
and debit card
summary

1.3273 0.96157 1.3254 0.96163

80

Monthly account,
debit- and credit
card summary

1.3350 0.96134 1.3775 0.96012

Annual account,
debit- and credit
card summary

1.3273 0.96157 1.3196 0.96179

124

Annual and
monthly account
debit card sum-
mary

1.2964 0.96246 1.3022 0.96230

Table 5: Supervised results from using manually defined variables, used in Gradient Boosting
and Random Forest classification. Variable count is excluding the preexisting variables, i.e. only
counting the number of new variables added to the model. Due to the nature of the variables
available, there were no natural ways to define e.g. exactly 64 variables to compare with the
automatic aggregators. Although the debit and credit card tables are structurally similar, debit
data has been preferred when selecting variables, as a large portion of the customer base do not
have credit cards.
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Figure 16: The proportion of variance contained in the first 32 principal components, when applying
PCA to a set of manually defined aggregates. The first 16 contain 95% of the variance in the dataset.

the most salient variable combinations are a summary of annual account transactions, and the
combination of annual and monthly account and debit card transactions. Finally, we will be using
the first 16 principal components, which were computed on the basis of several manually defined
aggregates, including account, debit and credit card spending in different categories in the last
month, 3 months, and year. We found that these 16 principal components captured 95% of the
variance in the data. The results of this final round of supervised evaluation is summarized in
Table 6.

6.3 Test Results

Having trained several models and evaluated the different aggregates produced on the validation
data, we compare two model performances on the test dataset. Specifically, we will be using the
most promising models using only manually defined variables, as well as the most promising models
including automatic aggregates, which are the ones including 124 manually defined variables and
64 automatic. These will both include the same 124 manually defined variables, as these were
involved in the strongest performers in both Table 5 and Table 6, and the test results stand as a
test of whether the autoencoder provides salient values to the supervised learning models.

As shown in Table 7, the additional variables did not impact the performance of the gradient
boosting model at all, but it worsened the test performance of the random forest models.
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Gradient Boosting Random Forest
Variable
count

Description Cross-entropy Accuracy Cross-entropy Accuracy

80

PCA of manual
aggregates (16)
and autoencoder
(64)

1.3254 0.96163 1.3273 0.96157

108
Annual account
summary (44) and
autoencoder (64)

1.3138 0.96196 1.3196 0.96179

188

Monthly and an-
nual account and
debit summary
(124) and autoen-
coder (64)

1.2945 0.96252 1.3099 0.96207

Table 6: Supervised results from combining manually defined variables with automatically gener-
ated ones, used in Gradient Boosting and Random Forest classification. Variable count is excluding
the preexisting variables, i.e. only counting the number of new variables added to the model.

Gradient Boosting Random Forest
Description Cross-entropy Accuracy Cross-entropy Accuracy
Manual aggregates 1.3078 0.96214 1.3309 0.96147
Mixed manual and
automatic aggregates

1.3078 0.96214 1.3387 0.96124

Table 7: Test results comparing the best models using manually defined variables, to the best
models using a mix of manually and automatically defined variables. The automatically defined
variables do not appear to provide sufficiently salient information.
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7 Discussion

The discussion section aims to discuss the choices that were made during the project, in terms
of methods and the completion of the experiment, as well as discussing the results and issues we
encountered.

7.1 Limitations

While we have seen some limited success applying our methods to real-world data, it should be
noted that the proposed method of feature extraction is very much a ”black box” approach — it
uses inputs to produce outputs, but we have no reasonable way to interpret its reasoning.

For certain tasks, a level of explainability is required. For example, when evaluating credit scores,
Norwegian banks are required to provide an explanation for their conclusion — and with humans
in the other end, an explanation like “the third feature extracted from your transaction history
through a series of matrix multiplications and activation functions has a value between 1.4 and
3.8” would not be satisfactory when explaining why you cannot get a credit card.

Because many of the workings of a bank are required to have some level of transparency — which
a black box most certainly does not — the results achieved with these methods will be applicable
only to the parts that do not have such restrictions, such as advertising.

7.2 Computation Cost

Due to the poor computational performance of recurrent neural networks, and the difficulties
involved in computing them in parallell — particularly when sequences differ in length — it is
likely not feasible to train and evaluate a sequential autoencoder very often.

A lot of the methods described in this paper involve heavy computations, and even the best
performances we have seen have only provided marginally salient features. While the results
indicate that the aggregated features contain some value, it is a different question entirely how
much they are worth. From a practical standpoint, they must represent not only the slightest of
improvements, but the value they provide must outweigh the cost of computing them. This aspect
would speak more in favor of the fourier transform than the sequential autoencoder — as the
computation of the fourier transform has proven to be 1000 times faster, even when disregarding
the time it takes to train the autoencoder.

7.3 Periodic Summaries

In order to reduce the training and computation time of the autoencoders, we have summarized
transactions over time periods of differing lengths, typically from 7 to 31 days. Before this simpli-
fication, training the autoencoder would take a full week to run a single epoch, and upwards of a
month to complete a training of 5 epochs.

As valuable as the decrease in computation time is, it brings up an important new problem; by
summarizing weeks and months before the autoencoder sees the data, we are training the machine
learning model on a human-defined summary of the given time period — effectively re-introducing
the problem we are trying to solve, albeit on a much smaller scale.

As shown in Section 6.2, using different ways to summarize the data can vastly impact the quality
of the variables produced. Even when the algorithms used to extract features remained entirely
unchanged, the difference between the original and the alternate preprocessing pipelines were
massive, with the original preprocessing often resulting in variables that hurt the performance of
the models.

Ideally, we would have a method that could extract features from pure transactional data within
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a reasonable time frame, but with the methods described herein, that proved to be infeasible. If
new recurrent architectures are developed, or hardware more optimized for them emerges, this
could be looked in to, but until that happens, the sheer computation time involved — even before
considering hyperparameter optimization — will remain a major obstacle.

7.4 Training, Validation and Test Sets

In traditional time series analysis, it is common to use different time periods as training, validation
and test sets — typically with the training set chronologically first, followed by the validation set,
with the test set at the end. This practice is typically adopted to assert whether historic data
can be used, to some extent, to predict future events — and as such, ensuring that the findings
are long-term patterns, rather than merely picking up on what is trending at the time. A key
idea is that even though the model may recognize a short-term trend, it is much less useful if that
information is not applicable to any other time period.

When training and evaluating our methods, the training, validation and test sets were selected as
subsets of the customers, rather than periods of time. This was done deliberately. Among other
reasons, it ensures that an encoding applies on a customer-level, and that the autoencoder has
not seen any of the validation set — or test set — before running on them. Unlike ARIMA and
ARCH-models, which are common in time series analysis, recurrent neural networks work on long
term dependencies, and not just the latest few data points. This means that, although we are
not certain of how large the impact would have been, there could be real overlap in the training,
validation, and even test data — which is not ideal.

Furthermore, because the majority of the data is in the training set, it would result in the evaluation
being performed on data that is fundamentally different — either slightly longer sequences, if
including both training and validation data in validation, or much shorter, if only including the
validation segment. In any case, the autoencoder model would be evaluated on data that was
systematically different from what it was trained on. For use in a business, this would ideally
not be an obstacle, as repeated training can be costly. As such, our results here should not be
considered to be necessarily maximizing the business value of the model, but rather an evaluation
of the autoencoder’s ability to learn to aggregate features from the data in question.

We have no research regarding how much the autoencoder aggregates change over time, nor do
we have the time available to train enough models to monitor such a statistic. Knowing might
change the way one goes about training and fine-tuning a model — but although it is an interesting
question, is not one that this project was ever meant to answer, and answering it is a different task
altogether.

7.5 Model Architecture

As described earlier, we based our autoencoder on the architecture shown in Figure 10, using
LSTM layers as encoders and decoders, as well as some fully connected layers between them
to add flexibility. There are several other architectures possible, many of which we discarded
due to time constraints, as well as running on limited hardware. Thus, there is likely room
for improvement by changing the model architecture. This includes some simple changes, such as
hyperparameter tuning and regularization, but also more structural differences, like trying different
recurrent network architectures, such as the GRU, and even having deeper recurrent steps, using
multiple recurrent networks following one another.

Once again, similar to what we discussed in Section 7.3, we run in to a fundamental problem of
the task: whenever we define a model to extract salient features from the data, it will always, to
some extent, be colored by the humans who construct the network architecture. Although we can
add more flexibility, and try to make the models find patterns on their own, humans are always
defining the architecture of the model, and therein we also constrain the patterns it might find6. A

6This is not to say a human must understand whatever pattern the machine learning model finds - merely that
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different architecture may yield better results, or perhaps a different approach entirely is necessary
in order to actually learn features from such transactional data. No matter what architecture one
applies to the problem, there is no way to get away from the fact that a human will be involved in
describing it. Fundamentally, we must accept this, before looking for ways to improve the feature
extraction portion.

Finally, our model definition is rather naive. It makes no attempt to separate different variables,
even though some variables are fundamentally different. One distinction that one can make, could
be separating different pieces of transaction data into different types, to add more information to
the model; if applied correctly, this would allow us, the humans, to describe more of the logical
necessities as a priori information. For example, we could work with the following four variable
groups, with different activation functions in the decoder (which is trying to reconstruct the data
from the reduced dimensions): boolean (using a sigmoid activation), categorical (using softmax in
the decoder), nonnegative (ReLU), and numerical (linear) variables. Furthermore, the loss function
could also be different for separate variables, to optimize correctly for different kinds of data.

Adding more a priori knowledge to the model architecture would be a time-consuming endeavour,
but the benefit could be substantial, as the model wouldn’t need to spend time finding well-known
logical patterns. If done correctly, it won’t increase the model bias at all, while it could substantially
reduce the variance, thus reducing the overall error.

7.6 Manual Aggregates in Training

When validating our automatic aggregates, they performed better as part of a larger ensemble,
and the best performances on our validation set were achieved by mixing automatic aggregates
with manual aggregates. This is still true for the test set, although the manual aggregates did
yield the exact same metrics for their corresponding model, and the declining test performance of
the random forest model might indicate that the automatic aggregates are not useful enough.

As part of our model architecture, we included some known variables, as an attempt to make the
model learn variables unknown to us. However, because it was designed by itself, rather than
as part of a larger ensemble, we did not take into account that other aggregates might be used
alongside it. The value of the autoencoder, when used in an ensemble, could possibly increase by
including the variables produced by the rest of the ensemble (the manual aggregates) in its training
process, as part of the external features (as shown in Figure 9).

7.7 Evaluating an Unsupervised Solution

Although the feature extraction methods we have employed have been unsupervised, all the metrics
we use to evaluate their importance have been measured in a supervised context. Whether the
metric is cross-entropy or accuracy, there are two key issues to keep in mind.

First, different supervised learning methods function differently. While their goal is usually the
same, their way to reach that goal varies, and they have different strengths and weaknesses. When
we selected random forests and gradient boosting to evaluate our model, it was because they
are robust methods, they can handle and — importantly — they are invariant to any strictly
monotonous transform, which allows us to focus less on the scale on which our autoencoded data is
presented to the algorithms. There is, however, no guarantee that tree-based methods are the ones
that will get the most out of these variables, and it is quite likely that different machine learning
methods would change the evaluation performance of the new variables.

Second, different target variables will yield different results. In our final experiments, we focused
on the target variable of whether the person would change their address within the next 3 months,
primarily because it is a less imbalanced target variable than the rest — as most of the events
monitored by the bank are pretty uncommon. Ideally, we would like to evaluate the features based

humans define the equation that the algorithm tries to solve
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on their pure quality, but the metrics we use are unequivocally connected to the target variables
chosen.

Because of the structural imperfections in our metrics, the exact quality might need to be taken
with a grain of salt. The impact of these imperfections could be reduced somewhat by running
tests using more different supervised methods and more target variables, but they cannot be
completely removed no matter how many trials are run, unless every feature extraction method is
applied to every single supervised problem the bank has — which is clearly not feasible. Due to
time and hardware constraints, and because most of the available target features were extremely
imbalanced, we limited our experiments to including only one target variable and two supervised
learning methods.

7.8 Unsupervised Loss as a Feature

An interesting feature of an autoencoder neural network is that they can, inherently, know how
well they are doing on any given data point. Because the full network tries to match the input to
the output, the network does not require a separate target variable when computing its loss, as
the target variables are the same as the input. This also means that it can compute its own loss,
which is an indication of how well it captures the essence of any one data point.

Due to time constraints, we do not know whether the loss value would be a salient feature. It
is not the typical way to use an autoencoder, but it is possible that it could give other learners
useful information. For example, a high loss value from the autoencoder might indicate that it
is an unusual customer, or that the autoencoder simply does a poor job of summarizing their
transactions.

There are, however, some significant drawbacks to proposing this. One is the computation time,
as this would require using the entire autoencoder, as opposed to only the encoder half, effectively
doubling the time required to encode anything. Another, perhaps even more severe, is the difference
between seen and unseen data. Training data would, by the nature of the learning process, have
lower loss values than validation and test, as it is already known to the model. As such, we could
risk increasing the bias significantly by using this feature in training.

Until someone tries, we cannot say certainly how useful this feature would be, or whether the added
information it provided would outweigh the possible increase in bias that might occur. Because
the time we have is limited, there was not enough time to test this, but in the future, it could be
interesting to look into.
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8 Conclusion and Further Works

The conclusion section aims to summarize our findings, answer the research questions posed in
Section 1, and discuss what future developments might improve further upon this project.

Bank transaction data is high-dimensional, highly variant and takes many different forms. Using
autoencoder neural networks, and a discrete fourier transform, we have explored ways to utilize
the abundance of transactional data that exists within the world of banking. We got some limited
results. We found that our autoencoder could find features that were useful in the prediction task
it was tested on, but no improvements were made when compared to hand-picking features.

8.1 Answering the Research Questions

Research Question 1 What is the state of the art in aggregation of transactional data?

For related issues, particularly natural language processing, the state of the art is using recurrent
neural network architectures, often with unsupervised pretraining. In terms of banking, the state
of the art is kept closer to the chest of the individual banks, but it is no secret that manually
defined variables play a large part, because these are legally required for a lot of the areas in which
they incorporate machine learning.

Research Question 2 How well can a sequence autoencoder produce valuable input variables for
Sparebank1 SMN’s machine learning models?

An issue we failed to predict was the shape of the transactional data. Even though the dataset
contained several gigabytes of transactional data, which could be the equivalent of several hundred
million sentences, these were distributed across just 100000 customers, each of which had long
sequences of data attached to them — much longer than any meaningful sentence. That is to say,
even though the dataset was large, it was more complex and had fewer samples than one might
expect, given its size.

In our experiments, we had some moderate success, showing that a sequence autoencoder can
provide variables that yield a positive impact on the validation performance. This did, however,
prove to be very prone to the data fed into it, and applying different layers of preprocessing can
drastically change the value of the variables that are used.

Research Question 3 How can more traditional methods be used to produce inputs, and how do
they compare to an autoencoder approach?

More traditional methods are primarily feature engineering, manually defining what features we
are interested in, e.g. spending on groceries in the last month. By itself, manually defined variables
appeared to produce significantly better variables than the autoencoder, at least for the problem
that we used to evaluate our features. When combining engineered features with features produced
by an autoencoder, we saw a slight improvement in validation set performance (compared to only
feature engineering). When they were finally tried on the test set, however, they yielded equal
performances on their gradient boosting models, and the manually defined variables still had the
strongest performance when applying random forest classification. As such, it appears that manual
feature engineering is still more useful than automatic aggregates.

8.2 Further Works

Concluding this project, we have not solved everything related to the problem at hand, and so we
would like to mention some of the ways forward, to continue the research in the field.
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8.2.1 Computational Performance

There is more work to be done in improving the computational performance of the process. Some
of this can likely be helped in part through parallellism, which could potentially allow significantly
reducing the time required to use the autoencoder, both in training and execution. Other altern-
atives that can increase the speed can include other neural network architectures, as well as more
specialized hardware for the exact task.

8.2.2 Using More of the Data

When defining our model, we selected what data to try to learn from and what to discard in
preprocessing very early. While there is no guarantee that it will be important, it would be
naive to assume that none of it bears any information of interest — it is simply more difficult
information to extract. For example, transactions from one bank account to another contain a
text field, which was discarded for the purpose of this task. It will, without a doubt, prove rather
difficult to accurately reconstruct this data in the decoder, but using information from the text
in each transaction could be something to look into, delving into the domain of natural language
processing.

Furthermore, there was a lot of relational data that was also discarded, particularly account num-
bers. This goes primarily for accounts on the other side of the transaction — e.g. the person
to whom a renter pays their rent. Because this is such an individual data point, we could not
include it directly, but there may be ways to incorporate it partially — e.g. a flag for whether the
customer has transferred money to the same account earlier, or a field describing how long it was
since the last time a transaction was made between these accounts, or any other way to describe a
preexisting relation between two accounts. It could also be worth including what kind of accounts
are involved in a transactions, to the degree that a bank possesses this information — for example,
a person spending money from their housing savings account (BSU) is likely in a different situation
than one spending it from their current account, but with the data we had available, there is no
way to tell the difference.

Perhaps more mundane, the currencies were not fully explored for their informative value. They
were included indirectly, by including all transaction amounts as both local currency and NOK,
but not directly. The sample size would likely be too small for most currencies, which is a large
part of the reason this field was excluded, but it is possible that it could provide some information
— for example, that some currencies are more indicative that a customer might be a frequent
traveler.

8.2.3 Explainability

There are several challenges and drawbacks to the proposed methods, and explainability of any
features produced, even by the fourier methods, are severely lacking. Ideally, a transactional
aggregator such as the one proposed here should also extract features that are explainable even
to humans, which could vastly improve the value of the aggregated features, because it would be
legally applicable to many more use cases.

The target of this task was never explainability, and the methods used reflected it. The lack of
explainability is not always a problem, but a set of features that can be explained can be used in
many more cases, which would make them considerably more valuable from a business standpoint,
as opposed to anything coming out of a black box.

The field of explainability in artificial intelligence (XAI) can likely bring a lot of value to society,
and explainability in representation learning will likely yield some valuable insight in the future.
Knowing more about what features a machine learning models can find can also help working
against bias in AI, either through removing biased features directly, or ideally, ensuring that a model
never produces them in the first place. Furthermore, from a societal standpoint, understanding
the patterns that a machine sees can allow governments to take action more effectively, by finding
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more clear ways to solve various problems.

Making an automatic, explainable feature-extractor will require a lot more progress in both the
field of XAI and feature extraction, but if they do get made, they can provide businesses and
governments with a lot of value.
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