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Abstract

Multiphase porous media flow simulation is through its wide range of applications
of great interest and importance. However, computational cost has been often the
limiting factor in using computerized methods to perform simulations. Therefore,
calibration of reduced-order models have become an increasingly popular alternative
to full forward simulations as a way to obtain faster and yet reliable forecasts [6,
18, 15, 28]. With the more efficient automatic differentiation based simulation [31]
and adjoint-based optimization [3, 16], we find reduced-order model emerging from
simple parameter optimization processes beneficial. To this end we consider for
reservoir models non-linear least square optimization problems which penalize the
misfit of the output of the reference fine-grid model with the output of the coarse
model. Gauss–Newton methods are available for this set of problems and have a
fast convergence rate which is crucial to reduce the number of expensive full forward
simulations. We provide a comprehensive analysis on all mentioned aspects. The
calibration process is performed on various notorious data sets including synthetic
benchmarks model SPE10 [4], the Norne field model [32] and the Egg model [13]
and the results are generated in MRST [26].

Norsk. Simulasjon av flerfasestrømninger i porøse medier er et viktig felt grunnet
dets mange anvendelsesomr̊ader. Til tross for dette har beregningskostnadene ofte
vært en begrensende faktor i bruken av numeriske metoder for å utføre slike simu-
lasjoner. Dermed har kalibrering av modeller med redusert orden blitt et stadig mer
populært alternativ til fullordens framover simulasjoner for å oppn̊a raskere predik-
sjoner, som fortsatt er p̊alitelige [6, 18, 15, 28]. Med den mer effektive automatiske
differensieringbaserte simulasjonen [31] og adjungertbasert optimering [3, 16] finner
vi at reduserte ordens modeller, som kommer fra optimeringsprosesser med enkle
parametre, er gunstige. Til dette formålet ser vi p̊a reservoarmodeller basert p̊a
ikke-lineære minste kvadraters optimeringsproblemer som straffer den grove model-
lens avvik fra den finere referanse modellen. Gauss-Newton-metoder er tilgjengelige
for denne typen problemer og de konvergerer raskt, noe som er avgjørende for å
redusere antall kostbare helordens framover simulasjoner. Denne oppgaven gir en
grundig analyse av de nevnte aspektene.
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Introduction

As multiphase porous media flow, we understand the flow of multiple fluids or gases
through a rigid porous medium. This field has been mainly pioneered by Henry
Darcy by his empirical derivations of the two-dimensional laws for porous media
flow in water filtration processes in sandboxes from 1856. Through experiments he
found out that the flow rate per cross-sectional area is proportional to the hydraulic
head of the water and inverse proportional to the length of the cylinder. Since most
of space is blocked by sand grains in his experiments, Darcy’s law does not provide
the velocity as it is often portrait but it provides the apparent macroscopic velocity
obtained by averaging the flux inside of representative elementary volumes (REV).
Simulation of multiphase porous media flow has great importance due to it vast

range of applications in chemistry, biology, medicine, and earth sciences, and many
more. Reservoir simulation that belongs to the latter has caught arguably the most
interest from not only engineers and scientist but also politicians and economists
who recognized the importance of groundwater flows and a variety of processes of oil
recovery [14]. Besides that, current hot topics which also involve subsurface porous
media flow are processes related to CO2-sequestration (see e.g., [27]) and geothermal
power plants (see e.g., [33]). What connects the porous media flow in different fields
mathematically is the base form of the governing equations, that is, conservation
of mass for fluid phases or chemical species and Darcy’s law for the superficial
velocity of fluid flow through porous media. The non-linear, time-dependent partial
differential equations

∂(ϕρ)

∂t
+∇ · (ρv⃗) = q, v⃗ =

K

µ
(∇p+ ρg∇z)

are based on the same idea of averaging the microscopic flow in a representative
elementary volume to obtain the apparent macroscopic flow to describe the mass
conservation of a fluid with density ρ filling a volume fraction ϕ of the bulk volume.
The resulting superficial flow velocity v⃗ is driven by pressure differences ∇p and
gravity g, resulting in the second partial differential equation. These, and more ad-
vanced model equations are discussed in more detail in Section 1.1. The averaging
method makes the fluid simulation feasible, since the computational cost of simulat-
ing the microscopic flow in a whole reservoir model is sky rocketing. However, the
microscopic flow simulation is used to find the right parameters for upscaling. In
fact, to obtain a whole life-cycle reservoir simulation, we start to derive parameters
from finer flow simulations both in time and space.
The general scheme for computing a numerical solution is based on the finite-

volume method for spatial discretization and implicit-Euler for temporal discretiza-
tion, as discussed in more detail in Section 1.2. This gives a large system of dis-
crete nonlinear equations, which is typically solved with Newton–Raphson (see Sec-
tion 1.3). Deriving the necessary linearizations and assembling the resulting Jacobi
matrix used to compute the Newton increments can be very complex and error-
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prone, but this process can be greatly simplified through the use of automatic dif-
ferentiation, which is introduced in Section 1.4.

Simulating a highly detailed reservoir model can be computationally expensive,
especially if multiple forward simulations are necessary, e.g., as part of a model cal-
ibration, uncertainty quantification, or production optimization process. Another
important consideration for computational cost reduction is the use of reduced-order
models. Many of those are obtained through deep learning and machine learning
methods. Some of them are data-based machine learning algorithms which focus
on finding relations between input and output of specific data sets. The caveats of
those methods are that the resulting reduced-order models will likely not represent
physical attributes or laws. A simpler approach to this end is to turn the calibration
of a reduced-order model problem into a simple parameter constrained optimiza-
tion problem of a parabolic convex function. In fact, we use a simple non-linear
least squares function as the objective function and restrict the solution space to
parameter values that lead to states that in turn represent a full forward simulation.
This translation has the benefit that the calibration set up is simple. Most reservoir
simulators are well set to perform efficient gradient-based optimization and provide
therefore the required framework. In the MATLAB Reservoir Simulation Toolbox
(MRST), the key technology which provides the gradient to the optimizer is based
on the KKT-conditions of the Lagrange relaxation of the constrained optimization
problem. These conditions give rise to the adjoint equations which can be imple-
mented additionally in parallel to the simulation evaluation process and enable an
AD-based efficient computation of the gradient.

Given the gradient, the choice of the right optimizer is then a modular design-
ing task. Iteration methods usually split into two sub tasks: determine the search
direction and computing the step length. Often, general optimizers are based on a
quadratic approximation of the objective function. The choice of the second-order
coefficient matrix is the name giving process. Davidon, in 1959, has pioneered the
class of quasi-Newton methods when he was in desperate search for a more stable
and efficient optimization method [7]. He generalized the secant method to arbitrary
dimension and derived through a minimization sub problem a corresponding choice
for the second-order coefficient matrix of the quadratic approximation. Based on
his method Broyden, Fletcher, Goldfarb and Shannon [2, 9, 11, 35] in 1970 indepen-
dently established the BFGS second-order matrix choice, which remains until now
the backbone of the most promising optimizers for general purposes. In particular,
a popular choice in MRST is BFGS with line search, due to its robustness, and
self-correcting properties. The main drawback of BFGS is the relatively low conver-
gence rate compared to the quadratic convergence rate of the Newton method. The
calibration process of reduced-order models gives rise to employ the Gauss-Newton
method which under certain condition convinces with a quadratic convergence rate
but it pays with an increasing space complexity which scales with the number of
residual components. This gives rise for a closer analysis. Based on numerical
experiments we search for improved optimization methods.

Chapter 1 and 2 provide the mathematical foundation. This subdivides into
the following tasks which are covered in Chapter 1: We introduce the reader to
the single and multiphase porous media flow. Then we illustrate the spatial and
temporal discretization and round up with a complete simulation loop for the single
phase case. We follow up with a section on two key technologies to enhance stability
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and performance for simulation: automatic differentiation and adjoint equations. At
the end we give a brief overview on reduced-order model calibration.
Chapter 2 describes the structures of iteration optimizers. The focus in this

presentation lies in an efficient implementation, more precisely, we ask how do we
design an optimizer with few function evaluations of the objective function.
Chapter 3 is dedicated to present calibration processes of reduced-order models in

MRST. To this end we discuss a simple code snippet for a small Cartesian example of
multiphase porous media flow and highlight the performance of the key technologies
mentioned in Section 1.6. We describe the physical models in MRST in detail
and present at the end the results obtained from the numerical experiments. We
conclude with further work and discuss amongst other how to generalize performance
in a broader spectrum of application.
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1 Porous Media Fluid Flow

In this first chapter we want to provide a mathematical introduction into porous
media flow. This chapter is inspired by Lie’s book [22, Chapter 4-8]. Porous media
flow has been studied also in more detail in [37] and the references therein indicate
the roots of the journey, beginning from the two-dimensional empirical derivations
of water filtration processes in sandboxes from 1856 from Henry Darcy up to more
general extensions, in particular, the development of Darcy’s law to the full three-
dimensional case. Here, we reduce the presentation to practical purposes such that at
the end the reader can understand the general structure of industry-standard porous
media flow simulators and optimizers. The topics are chosen as general as possible
to assess a variety of problems and also to cover a wide range of implementations
for porous media fluid flow solvers.
The chapter starts with the governing equations of porous media flow and a deriva-

tion of the parameters in Section 1.1. After having established the physical back-
ground, we are concerned with the numerical methods to compute an approximate
solution of our fluid flow system in Section 1.2. It is a finite-volume method used
for time-independent non-linear partial differential equation in 3D space.
It is based on the idea to connect differential operators to the specific underlying

unstructured grid system. We are considering a space discretization through a grid
structure and the governing variables (here mainly pressure) are averaged over the
grid cells.
Section 1.3 covers the temporal discretization of our system of equations with

implicit-Euler followed by Newton–Raphson to determine the solution of the arising
system of non-linear equations. The section gives a total overview on a finite-
volume method-based simulation for porous media flow where we explicitly set up
all required equations and explain the simulation loop.
Section 1.4 explains the principles of forward automatic differentiation. We dis-

cuss further the reason why AD is particularly useful for high dimensional reservoir
simulation which includes complex fluid physics.
In Section 1.5 we discuss the method of adjoint equations which is used to obtain

the gradient of a parameter constrained optimization problem. Often, in calibration
optimization processes for full scale reservoir models the number of parameters is
much larger than the number cells. The latter is the size of the systems emerging
from the adjoint equations. Noticing this fact enables a simple way to enhance
performance of gradient-based optimization which we want to discuss here as well.

1.1 Physical Model

We understand porous media as a solid matrix with interconnected void spaces
(pores). The solid matrix is not permeable for the fluid but the void pore space allows
to transmit and store fluids. Depending on the application, we have different scales
on which we simulate porous media flow. For instance, microscopic models represent

9



1 Porous Media Fluid Flow

the void space between individual particles (e.g., grains of a rock/molecules/ion
lattices) and are used to provide effective properties of the medium like permeability,
porosity, electrical, and elastic properties to models on larger scales. The next level
is mesoscopic models. These represent heterogeneous structures such as internal
laminations, membrane layering or sedimentation (in geological reservoir models this
also includes impermeable faults, shale layers and the whole variety of phenomenas).
Finally, overviewing the whole system is the task of the macroscopic model which
we are mainly interested in.
For reservoir simulation there is also a strong focus on different parameters de-

scribing various physical interactions and balances. In particular, complex molecular
forces such as capillary forces and surface tension and many more lead to a high
number of microscopic variations which cannot be transferred in the same resolution
to the macroscopic model. For instance, if we flood water into a porous rock filled
with hydrocarbon one is interested in many sub questions. When is the entry point
for a certain size of a pore cell? This depends on the capillary forces which in turn
is depending on the saturation of the fluid and, in particular, from its irreducible
saturation limits . On the other hand those quantities depend on the rock type and
so on. Then it depends on the wettability (see Section 1.1.2) of the fluids whether
we have a drainage or an imbibition process. In order to provide precise predictions
of oil production for certain well controls, this microscopic physical processes are
essential but must be heavily simplified to remain feasible in macroscopic full scale
models.
We restrict ourselves in this work to cover the relative minimum for above consid-

erations. Throughout this section we will make standard assumptions which simplify
the actual physical processes crucially.

1.1.1 Single-Phase Flow

We first consider single-phase flow through porous media. The governing equations
for conservation of mass and momentum are

∂(ϕρ)

∂t
+∇ · (ρv⃗) = ρq (1.1)

and

v⃗ = −K

µ
(∇p− gρ∇z), (1.2)

where ρ is the density of the fluid, ϕ is the rock porosity, v⃗ is the macroscopic Darcy
velocity, and q denotes fluid sources and sinks, i.e., outflow and inflow of fluids per
volume at certain locations.
Darcy’s law here is the porous media flow equivalent to models of regular diffusion

processes of gas or fluids (Fick’s law) and also electrical potential (Ohm’s law). The
driving forces here are gravity and pressure differences. The permeability K is tied
to the solid medium and it is derived from the microscopic model. The viscosity µ,
sometimes also replaced by the inverse of the mobility coefficient of a fluid, emerges
as a property from the fluid.
Last but not least, neglecting the porosity (which results from the solid medium),

these two equations result from the Navier–Stokes equations by neglecting the iner-
tial forces. In regular reservoir models, the inertial forces will be neglected. Reser-
voirs in the Nowegian Sea extend over 10–100 km in each direction (see e.g., [21]).

10



1.1 Physical Model

Since we have more unknowns than equations, we need to establish further rela-
tions. To link pressure to density, we consider the relations between temperature
and pressure. Let V be the volume for a fixed number of particles. Then V is a
function of p and the temperature T . From this follows

dV

V
=

1

V

(
∂V

∂p

)
dp+

1

V

(
∂V

∂T

)
dT.

Since ρV is constant for a fixed number of particles, we obtain V dρ + (dV )ρ = 0,
and therefore

dρ

ρ
=

1

ρ

(
∂ρ

∂p

)
dp+

1

ρ

(
∂ρ

∂T

)
dT = cfdp+ αfdT

relating the density difference with the pressure and temperature difference, where
cf is the isothermal compressibility and αf the termal expansion coefficient. If we
assume that the temperature is constant, which is the case for many subsurface
systems, the equation simplifies to

cf =
1

ρ

dρ

dp
. (1.3)

The fluid compressibility cf (p) relates ρ to the pressure. Combining all our equa-
tions, we find the following relation for fluid pressure

ctϕρ
∂p

∂t
−∇ ·

[
ρK

µ
(∇p− gρ∇z)

]
= ρq (1.4)

where ct = cr + cf and cr =
1
ϕ
dϕ
dp

is the rock compressibility, a coefficient that relates

the porosity to the pressure p. Indeed, we have ctϕρ
∂p
∂t

= ∂(ϕρ)
∂t

by inserting the
identities

ρϕdpct = ρdϕ+ ϕdρ, (1.5)

∂(ϕρ)

∂t
=

∂ϕ

∂t
ρ+ ϕ

∂ρ

∂t
(1.6)

into Eq. (1.1). Let us draw some theoretical conclusions from Eq. (1.4).

For instance, we can observe that if we consider incompressible fluid and rock,
that is, ct = 0, we are left with

∇ ·K∇Φ = q, (1.7)

where Φ = p−gρz is the fluid potential. This is simply the elliptic partial differential
equation known as Poisson’s equation.
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1 Porous Media Fluid Flow

Remark 1.1 (Constant Fluid Compressibility):
Assume that cf = ct is constant and porosity ϕ and viscoscity µ are indepen-
dent from pressure. Then the equation

ctϕρ
∂p

∂t
−∇ ·

[
ρK

µ
(∇p− gρ∇z)

]
= ρq

can equivalently be expressed as

∂ρ

∂t
− 1

µϕcf
∇ ·
(
K∇ρ− cfgρ

2K∇z
)
=

ρq

ϕ

that is the heat equation for q = 0. Observe that if cf is large then

Proof. With constant compressibility, the differential Eq. (1.3) has the solution

ρ(p) = ρ0e
1
cf

(p−p0)
. (1.8)

Also we have the equation
cfρdp = dρ,

where dp is a small change in pressure and dρ a small change in density, respectively.
Dividing both sides by a partial derivative and replacing the difference operator d
with a partial derivative, we obtain

∇p = (cfρ)
−1∇ρ, (1.9)

∂p

∂t
= (cfρ)

−1ρp

∂t
. (1.10)

Inserting those identities to eliminate the pressure, we get

cfϕρ(ρcf )
−1∂ρ

∂t
−∇ · ρK

µ

(
(ρcf )

−1∇ρ− gρ∇z
)
= ρq, (1.11)

ϕ
∂ρ

∂t
− 1

µcf
∇ ·K

(
∇ρ− cfgρ

2∇z
)
= ρq. (1.12)

Constant fluid compressibility is reasonable to assume when no large quantities of
gas are dissolved. A more difficult task is the assumption for the rock compressibility
cr. If the rock of the reservoir is non-rigid then cr is simply zero and porosity must
not be governed in our equation. Compressibility can have a significant variation,
for instance, as evidences in the Ekofisk area in the North Sea show [22, Section
2.4]. The assumption of a constant rock compressibility leads to

ϕ(p) = ϕ0 exp[cr(p− p0)].

However, a linear relation between ϕ and p is often used for simplified models and
computational wise it might make sense to consider a piecewise continuous spatial
function for ϕ(p). An important observation is that the compressibilities cf and cr
are required to establish these relations between ρ(p) and ϕ(p), respectively, enabling
in first place that our system of partial differential equations (1.28) is solvable.
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1.1 Physical Model

Permeability: Permeability is a property for porous media which measures the
ability to transmit a single fluid when the void space is completely filled with it. In
other words it is a measure for the connectivity of pores in the subsurface system.
Permeability is measured in millidarcies (mD). Commonly, the permeability ranges
from 100 to 500mD for petroleum reservoir rock [25]. Darcy’s law (1.2) simplifies to
the equation

v⃗ = −K

µ
∇Φ, (1.13)

where ∇Φ is pressure or the potential gradient, that is, Φ = p − gρz. K is the
proportionality factor between the flow rate v⃗ and ∇Φ/µ. In general, K is a tensor
of the form

K =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz


with unit D [m2] = [D] which stands for ”darcy” and 1D ≈ 0.987 · 10−12m2. Here,
Kij is the coefficient relating the pressure drop in direction j to the flux in direction
i. That means that if Kij is large, a large pressure drop in direction j implies a large
contribution to the flux in direction i. If the permeability can be represented as a
scalar, we call the permeability isotropic. However, in the anisotropic case, where we
need a full tensor to represent permeability, the matrix must be symmetric due to
Onsager principle of reciprocal relations and positive definite because the eigenvalues
must be positive, which is equivalent to the fact that the flux follows the direction
of the pressure drop

Well model: We use the standard Peaceman well model that is just a linear law
for the source term qc and the pressure difference at the well connection pW and in
the reservoir at the well connection p. Let J be the proportionality constant, also
called well index. The relation includes the viscosity and reads

q =
J

µ
(pW − p).

The well has also a non-trivial pressure distribution. For simplicity we assume
that it is always in hydrostatic balance, that is,

pW = pbhp + g∆zwρ(pbhp,

where pbhp is referred to as the bottom hole pressure of the well. The bottom
hole pressure is usually governed by a giving control function and is therefore the
reference point of the well.

1.1.2 Multiphase Flow

Before stating the mathematical flow equations, we first introduce some additional
physical quantities that are necessary to describe multiphase flow.

13



1 Porous Media Fluid Flow

Saturation: In multiphase flow we are distinguishing not only between different
densities for the fluids but also consider the fraction of pore volume occupied by the
fluid α. We call this fraction sα and we naturally require∑

α

sα = 1.

Saturation is a crucial governing variable when we simulate flow of immiscible fluids.
To this end consider the following example. The accumulation of hydrocarbons in
an aqueous environment usually starts with porous rock being fully filled with water.
By the time hydrocarbons migrate into the reservoir displacing water until the water
saturation reduces to approximately 5% to 40 %. At this state, water cannot flow
and forms small droplets through molecular forces. Then the water immersed in
the hydrocarbons is in an immobile state. The limit value for water to reach from
the mobile state (funicular state) to the immobile state (pendular state) is called
irreducible water saturation swir. Vice versa hydrocarbons also have limit value
called residual oil saturation sor which is typically higher than swir meaning that oil
is immobile in earlier stages of the displacement process through water injection,
that is, sor is in the range of 10% to 50%. The thresholds are due to surface tension
and so-called wettabilities, a quantity that measures the affinity to the solid medium
over the competing other fluid. For instance a higher wettability of water than oil
means that the water remains more in contact with the solid medium. We call such
a porous media water-wet and the opposite is called oil-wet porous media. The
former of those two types is more common and hence this explains also why sor
is usually the smaller value. For instance, for perfect water-wet porous media this
means that the only water has contact to the solid medium and the surface tension
between the two fluids does not stop the water flow anymore.
On the other hand, a perfect oil-wet porous media would imply that water forms

a perfect spherical droplet at the solid medium. Then the droplets are trapped in
this state and immobile.

Capillary pressure: Is not explicitly part of the equations but it relates the pressure
of the different phases with the saturation. Capillary pressure is the positive pressure
difference in a two phase flow. Since the non-wetting fluid pressure is always bigger
than the wetting fluid pressure, the capillary pressure pc can be written as pc =
pn−pw where pn is the non-wetting fluid pressure and pw is the wetting fluid pressure.
We can see porous media as an assortment of capillary tubes where the pore size

is the diameter of the tubes. Now for small pore size the capillary pressure is large
and will play a main role in the fluid distribution.
Consider an upward migrating hydrocarbon phase into a porous rock media filled

with water. To enter the reservoir, the buoyancy force must exceed the capillary
pressure that is required to enter the system. At first, the hydrocarbon enters the
widest tube, since it has the lowest capillary pressure. The more hydrocarbon enters
the system, the lower these capillary pressures become and and the lower the water
saturation becomes. There is a relation between capillary pressures and the water
saturation. With a low water saturation, the capillary pressure is high and hence
the hydrocarbon can not enter pores and stays immobile. Flooding a reservoir with
water to push hydrocarbon to the wells leaves immobile parts behind in the reservoir.
For the relation between the capillary pressure pc and the saturation we usually use
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1.1 Physical Model

the tabulated Leverett J-function [20]

J(sw) =
pc

σ cos θ

√
K

ϕ

where sw is the saturation of the wetting fluid and σ is the surface tension to the
other fluid and θ is the contact angle of the wetting fluid. We can then relate the
two immiscible fluids with pn − pw = pc(sw).

Relative permeability: The absolute permeability K from the previous section is
an immanent rock property. In a multiphase flow, each fluid α will experience an
effective permeability Ke

α that is lower than the absolute permeability: adding more
phases to the fluid flow will result in more obstacles that present resistance to flow.
The effective mobility of a fluid therefore decreases in the presence of other fluid
phases in the pore space. Through the interfacial tensions between the immiscible
fluid, the sum of effective permeabilities for all fluids must be smaller or equal to
the absolute permeability. This gives rise to the relative permeability kα = Ke

α/K.
Usually, they are functions of saturation. We can expect relative permeabilities
to be different during drainage and imbibition. Consider for instance, a drainage
where non-wetting hydrocarbon phase migrates into a water-wetting porous medium
completely saturated with water. The hydrocarbon is highly immobile as long as
its saturation is below the irreducble saturation soir. Vice versa the water relative
permeability start high and decreases while we approach swir. In a drainage process,
the drained fluid (in this case the water) gets flushed out slowly and hence the
relative permeability of water reduces slowly. The opposite effect would occur in an
imbibition process.

System of equations: We state the generic multiphase flow model and follow
up with the constitutive equations to relate physical quantities as we did for the
single fluid flow equation. For N immiscible fluids we have for each fluid the mass
conservation equation

∂

∂t
(ϕραsα) +∇ · (ραv⃗α) = ραqα (1.14)

with Darcy’s flux

v⃗α = −Kkrα
µα

(∇pα − gρα∇z). (1.15)

As it was mentioned for the relation of saturation and capillary pressure, the char-
acteristics of physical quantity relations and dependencies vary a lot across different
regimes. To this end, simplifying assumption are necessary to make the model more
computational tractable for simulations. A common change in notation is to replace
krα
µα

by λα, also known as the mobility of α.

∂

∂t
(ϕραsα) +∇ · (ραv⃗α) = ραqα

v⃗α = −Kλα (∇p− ραg∇z) , λα = krα/µα

qα = λw
αJ (pw − p)

(1.16)
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1 Porous Media Fluid Flow

where

α : phase (oil/water/gas)
p : pressure

s : saturation
v⃗ : Darcy flux
K : permeability (tensor)
ϕ(p) : porosity
ρ(p) : density
λ(s, p) : mobility

kr(s) : relative permeability
µ(p) : viscosity
g : gravity constant
z : depth
q : mass source
J : well connection factor
λw(s, p) : well mobility

pw : well pressure

: state variables governed in the system

The relations are indicated by the brackets and required to provide enough equations
to solve the system (1.16). We will state these relations briefly. The isothermal
compressibility of the rock is measure of change in pore volume per change in fluid
pressure [1]. Isothermal indicates that the temperature is assumed to be constant.
Then we have

dϕ

dp
= crϕ.

We can assume that cr is piece wise constant, then ϕ(p) = ϕ0 exp(cr(p− p0)). Sim-
ilarly, the fluid compressibility is characterized through the change in density per
change in pressure with the temperature being fixed. We get

dρ

dp
= cfρ.

The mobility combines the viscosity and the relative permeability. Note that krα is
often a monotone function in the range [0,1]. This is due to the fact that if krα = 1
then sα = 1 and vice versa for krα = 0. The viscosity µ(p) is often assumed be
linearly depending on the pressure. Such that we can assume a relation of the form

µ(p) = µ0 [1 + cµ(p− p0)] .

The well mobility is the fraction of relative permeability with the viscosity of the
fluid. Then

λα(s, p) =
krα(s)

µ(p)
.

1.2 Numerical Solution

To illustrate the simulation of porous media flow, we consider again the governing
equations of compressible, single-phase fluid flow

∂(ϕρ)

∂t
+∇ · (ρv⃗) = ρq, v⃗ = −K

µ
(∇p− gρ∇z). (1.17)

The approach presented herein follows the routines implemented in the open-source
software MRST (which we will come back to in Chapter 3).
First we consider a time-independent equation and illustrate the use of a finite

volume method, which is called the two-point flux approximation (TPFA) scheme.

16



1.2 Numerical Solution

1.2.1 Discretization in Space

There are two discretization methods required to spatially discretize the system in
Eq. (1.16). This will also lead to a solution which is defined over the underlying
discretization in the grid. The solution is then a vector of dimension inO(nc) and the
number of cells will be the magnitude of the dimension of the residual function and
the state dimension. The first method derives a relation between the discretized
pressure gradient to the flux and incorporates the parameters of Darcy’s law. In
particular, the permeability is part and the geometry of the grid structure are the
defining parameters of such a proportionality constant.
The second set of methods are related to the differential operators. We can sim-

plify those analytical operators by setting a lower bound on the actual notion of
infinitesimal small deviation: the lower bounds are the distances between neigh-
boring cells in the grid. The discretization is again then of dimension O(nc) and
presents a way to provide a finite representation of such an abstract notion for differ-
entiation, depending solely on the geometry of the grid structure. By the linearity of
the analytical differential operators it follows that the finite representation of those
operators must be a matrix and we achieve a boiled down equation with only basic
operators such as minus, plus, multiplication and some few basic unary functions
such as exp, log or other tabulated property functions for the fluid parameters.

TPFA: The two-point flux approximation uses the variational formulation of our
governing equations and it is required to find the constant of the proportionality
(called the transmissibility) that relates a pressure difference to an intercell flux.
Both transmissibility and the differential operators depend on the geometry of the
grid. However, while it is an exclusive dependency for the differential operators, the
transmissibility is also formed by the permeability of the medium.
We consider a single-phase flow with an incompressible fluid. In the absence

of gravity, Eq. (1.17) simplifies to the well-known Poisson-equation for the fluid
pressure p, here written in first-order form

∇ · v⃗ = q, v⃗ = −K∇p, on Ω ⊆ R3. (1.18)

We consider a partition (Ωi)i∈I of Ω, where we can identify Ωi as one cell of the
grid. Let us consider an arbitrary but fixed cell Ωi. Using integration on both sides
of the first equation and applying the divergence theorem on the left hand side,
yields ∫

∂Ωi

v⃗ · n⃗ds =
∫
Ωi

qdx⃗. (1.19)

The integral on the left-hand side can be written as a sum of integrals that are
restricted to the interface with each of the neighbouring cells. This results in sub
integrals of the form

vi,k =

∫
Γik

v⃗ · n⃗dS, Γi,k = ∂Ωi ∩ ∂Ωk (1.20)

for all k where k ̸= i. Here, vi,k describes the flux from cell i to cell k on the
intersection of those two cells. Let xi,k be the centroid of Γi,k and Ai,k be the area of

17



1 Porous Media Fluid Flow

Γi,k. Assuming small variations of vi,k on the face Γi,k, we can use the second equation
with the pressure gradient replaced by a standard finite-difference approximation to
obtain the approximation of vi,k

vi,k ≈ Ai,kKi
(pi − πi,k) c⃗i,k
∥c⃗i,k∥2

· n⃗i,k = Ti,k (pi − πi,k) . (1.21)

Here,

Figure 1.1: An illustration of the TPFA scheme with two neighboring cells. Taken
from [22, Section 4.4].

vi,k : flux at Γi,k

Ai,k : area of Γi,k

xi,k : the midpoint of the face Γi,k

c⃗i,k : the connection vector of the
inner cell to xi,k

Ki : permeability Ki in Ωi

πi,k : pressure on Γi,k

pi : pressure on Γi,k

Ti,k : half transmissibility on Γi,k

Tik : transmissibility between Ωi and Ωk

If we consider the relations of pressure and flux from both sides, we obtain

T−1
i,k vik = pi − πik, −T−1

k,i vik = pk − πik.

Finally, by eliminating the interface pressure πik, we end up with the following
two-point scheme for the flux approximation,

vik =
[
T−1
i,k + T−1

k,i

]−1
(pi − pk) = Tik (pi − pk) .

where

Ti,k =
Ai,k

∥c⃗i,k∥2
Kic⃗i,k · n⃗i,k, Tik =

(
T−1
i,k + T−1

k,i

)−1
. (1.22)

The special case where we have isotropic permeability (that is Ki ∈ R) and c⃗i,k·n⃗i,k

∥c⃗i,k∥2
=

c⃗k,i·n⃗k,i

∥c⃗k,i∥2
emits that Tik up to a constant is the harmonic mean of the permeabilities

of the two cells. In particular, exploiting properties of the harmonic mean, we have

min{Ti,k, Tk,i} ≤ 2Tik ≤ 2min{Ti,k, Tk,i},

that is, the transmissibility times the area of the face is in the magnitude of the
smaller permeability value, as one would expect. This observation can be generalised
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1.2 Numerical Solution

by considering the cosinus of the angle between c⃗i,k and n⃗i,k divided by the length
of c⃗i,k

c⃗i,k · n⃗i,k

∥c⃗i,k∥2

as the weight for the permeability from i to k. In Example 1.2 the cosinus value is 1
and hence we are weighting the permeability only in terms of the length of c⃗i,k and
c⃗k,i, respectively.

By summing up over all neighboring cells of Ωi, we obtain an approximation of∫
Ω
v⃗ · n⃗dS. Thus by solving the equation

∑
k

Tik(pi − pk) =

∫
Ωi

qdx⃗, ∀Ωi ⊆ Ω (1.23)

after the pressure, we obtain an approximated solution of the system (1.18). As-
sembling all equations of the form of Eq. (1.23) into a matrix T ∈ Rnf×nf , results
in a symmetric linear system with variables representing the pressure differences.
Further, with a small modification T is sparse with a banded structure: that means
in 1D the matrix is tridiagonal (since we only have two neighboring cells for each
cell), and penta- heptadiagonal for a Cartesian grid in 2D and 3D, respectively with
the same argumentation for the 1D case.

As the name of the scheme suggests, we relate the pressure of two points with the
flux between two cells.

Figure 1.2: A simple 2D example to illustrate the computation of the transmissibility
constant and its physical interpretation. From [22, Section 4.4].
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1 Porous Media Fluid Flow

Example 1.2:
Consider the situation of Figure 1.2.1, that is, a Cartesian grid in 2D, where
permeability is isotropic, that is, Ki ∈ R. Further consider the equation

∇ · v = 0

for incompressible fluid flow. We then observe the following:

Ai,k = ∆y,

ci,k =

(
1/2∆xi

0

) ck,i =

(
−1/2∆xk

0

)
n⃗i,k =

(
1
0

)
= −n⃗k,i.

This yields

vi,k = ∆y
(pi − πi,k)(

1
2
∆xi

)2 Ki

(
1
2
∆xk

0

)
·
(
1
0

)
= ∆y

2Ki

∆xi

(pi − πi,k) (1.24)

and likewise

vk,i = ∆y
(pk − πk,i)(

1
2
∆xk

)2 Kk

(
−1

2
∆xk

0

)
·
(
−1
0

)
= ∆y

2Kk

∆xk

(pk − πk,i) . (1.25)

The transmissibility then computes to

Tik =
(
T−1
i,k + T−1

k,i

)−1
= 2∆y

(
∆xi

Ki

+
∆xk

Kk

)−1

.

Tik is indeed the harmonic mean of the permeabilities per length unit times
the area of the face Γi,k. This matches the physical expectation that the lower
permeability value will be the dominant component of the transmissibility.

Concluding this section, we are able to solve the system (1.16) in space with the
finite-volume method TPFA. This algorithm is, due to its robustness and efficiency,
currently industry standard (state 2019). Equation (1.22) indicates how transmissi-
bility incorporates geometric information of the grid through the permeability and
the angles between cell mid-points and face mid-points. It is explicitly not depend-
ing on the fluid. To generalize to other system of equations, the idea is to introduce
discrete operators for the divergence and the gradient operators which incorporate
information about the grid. Just as the transmissibility constants emits a sparse
matrix, we can obtain those in a more general setting.

Discrete Differential Operators A convenient concept for the space discretization
of Eq. (1.1) is that of discrete gradient and discrete divergence operators. It is based
on the idea to connect differential operators to the specific underlying grid system,
thereby hiding away information about is geometry and topology.

We are considering a space discretization and the governing variables (here mainly
pressure) are averaged over the grid cells. A pressure field then becomes a vector

20



1.2 Numerical Solution

with dimension equal to the number of grid cells. The divergence in a physical
interpretation quantifies the amount of outflow minus the amount of inflow in an
infinitesimal small point. In the discrete case, we instead define the cells as the
infinitesimal small points and then the discrete divergence is simply a sum of the
net flow across the interfaces the cell make with its neighbors.

Similarly, we can represent a flux on the grid as a value for each face in the grid
that accounts for the difference the cell value on opposite sides of the interface. In
this way, the produced analogy matches the analytical definition of the gradient in
space as the fraction of the difference between function values of two infinitesimal
deviated points in space divided by the deviation itself. Now the spatial deviation is
replaced by considering neighboring cells and we assign the function value difference
to the corresponding face between two neighboring cells. Using indicator functions
this results in a sparse matrix mapping from Rnc → Rnf where nc is the number of
cells in the grid and nf is the number of faces in the grid.

Unsurprisingly, the discrete differential operators behave quite similar to their an-
alytical analogy. For instance there is a version of the Gauss–Green formula for the
discrete divergence and gradient operator. In functional analysis, the Gauss–Green
formula simplifies to the statement that for the Hilbert space L2 the gradient oper-
ator is the negative adjoint operator of the divergence operator. Translated to the
matrix language this implies that the linear mappings are the negative transposed
of each other. This lays the foundation of breaking down Eq. (1.1) into a system
of O(nc) equations which only involves basic operations without any differential
operators.

We want to formalize the ideas of the former in the following. Consider a grid G
with cells {1, . . . , nc} and faces {1, . . . , nf}. Further the faces are all orientated as
defined by mappings C1, C2 : {1, . . . , nf} → {1, . . . , nc} such that f is oriented from
C1(f)to C2(f). We define the discrete divergence div of a flux v for a cell c as the
sum of the outgoing fluxes minus the sum of the incoming fluxes, that is,

div(v)[c] =
∑

f∈C−1
1 ({c})

v(f)−
∑

f∈C−1
2 ({c})

v(f).

Complementary, the discrete gradient grad for pressure is defined for a face where
we compare the pressures on the neighboring cells of the face. That is,

grad(p)[f ] = p(C2(f))− p(C1(f)).

To illustrate this, we consider the following example.
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1 Porous Media Fluid Flow

Example 1.3:
Consider the Poisson equation in the box geometry, which we write as follows
using the discrete operators

−div(Tgrad(p)) = q, Ω = [0, 1]× [0, 1], (1.26)

where T is the transmissibility matrix depending on the permeability and
the specific cell geometries of the underlying grid. Let us consider a basic
Cartesian grid in 3× 3 of Ω.

1 2 3

4 5 6

7 8 9

11 2

3 4

5 6

7 8 9

10 11 12

First we consider the cells {1, 2, . . . , 9} and the faces {1, 2, . . . , 12} to which we
associate unknown pressures and fluxes, respectively; that is, pressures p ∈ R9

and fluxes v ∈ R12. We can represent div, grad as linear mappings which are
transposed up to sign to each other, that is, there exist tatrices A ∈ R9×12

and B ∈ R12×9 such that
(Av)c = div(v)[c]

and
(Bp)f = grad(p)[f ]

hold for all c ∈ {1, . . . , 9}, f ∈ {1, . . . , 12}, v ∈ R12, and p ∈ R9. Moreover,
A = −BT and this is independent from the grid and the grid separation. The
solution of (1.26) can be found by solving the linear equation

−ATATp = q

for p, where q ∈ R9 contains the source value for each cell.

(Proof sketch.) With the definition of the grid we also define the orientation of each
face. Each face f has exactly one origin cell C1(f) and another cell C2(f) that f is
pointing towards, where C1, C2 : {1, . . . , 12} → {1, . . . , 9}. The divergence operator
is defined for a cell c ∈ {1, . . . , 9} on a vector v ∈ R12

div(v)[c] =
∑

f∈C−1
1 ({c})

vf −
∑

f∈C−1
2 ({c})

vf ,

that is, the sum of the fluxes going out of the cell minus the sum of the fluxes going
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into the cell. Hence, we can also write div as the matrix

A ∈ R9×12, Ai,j =


1, i = C1(j),

−1, i = C2(j),

0, else,

such that

div(v)[c] = (Av)c.

Furthermore, we define the discrete gradient operator grad as

grad(p)[f ] = p(C2(f))− p(C1(f))

which clearly yields the matrix

B ∈ R12×9, Bi,j =


1, C2(i) = j,

−1, C1(i) = j,

0, else

such that we have

(Bp)f = grad(p)[f ]

for all p ∈ R9. Hence, A = −BT as claimed.
The matrix A has the form



cells / faces 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1
2 −1 1 1
3 −1 1
4 1 −1 1
5 −1 1 −1 1
6 −1 −1 1
7 1 −1
8 −1 1 −1
9 −1 −1


. (1.27)

Now assuming that the permeability is isotropic and equal to one, we obtain

v = Tgrad(p).

To solve the system (1.26) with respect to the discrete operators, we instead deter-
mine p ∈ R9 such that

AT (−AT)p = q,

where q ∈ R9 and each entry qi equals the production or injection amount in cell
i.

1.2.2 References

The system of equations (1.16) is taken from Stein Krogstad’s presentation at Geilo
Winterschool 2022. The derivation of the TPFA method and the figures 1.2.1 and
1.2.1 are inspired by and taken from Lie’s book [22, Chapter 4.4], respectively.
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1.3 Reservoir Simulation

The following section aims to bring the former topics together, in order to compute
a full forward reservoir simulation based on finite volume methods and Newton–
Raphson.

initial state physical model
Schedule:
steps controls

Simulator

Nonlinear solver

Discretized operators

Well model

Physical system

Linearized problem

Linearized solver

state(tk), controls
state(tk+1)

The diagramm shows the classical simulation loop and can be read as follows: First,
the setup for the simulator consists of three main components. The initial state
(represented as a set of discrete quantities), the discrete mathematical equations
that model the physical behavior of the system on a finite grid, and a set of instances
in time at which we seek to compute the discrete state of the system. Each of these
time instances have associated definitions of the boundary conditions and the source
terms, which in turn control the behavior of the overall system. Herein, we refer to
the time steps and these controls as the schedule that determines how the solution
process evolves.
Given these three, the task of the simulator is simply to generate the discrete states

at the given instances in time: state(t1), . . ., state(tN). This is done consecutively
by solving the step from tk to tk+1 for k = 0, . . . , N , where N is the number of
overall time steps.
To define the discrete model equations on a given time step, the simulator uses dis-

crete operators to approximate in space and implicit-Euler for the time discretization
of the partial differential equation emerging from the physical model. The system
emerging from the physical model includes mainly conservation of mass, Darcy’s
law, the well model and fluid and rock compressibility to relate porosity and density
with pressure. We solve the accumulated and discretized nonlinear system using
a standard Newton–Raphson iterative solver. That means, if the have the set of
equations written in residual form as F (x) = 0, where x are the governing variables,
then we update xi by the iteration

xi+1 ← xi +
∂F (xi)

∂x

−1

F (xi),

where x0 is given from the state at time tk. The solution yields a new state at
time tk+1 and the simulation step continues with the next time step. The described
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procedure is rather a general simulation loop. We will generalize the example in
Lie’s book [22, Section 7.2]. The general procedure is as follows:

1. Generate a discretization of time and space via a schedule and a time step size
and grid cell structure.

2. Set up relations for porosity, density, viscosity in dependence of pressure.

3. Set up the well model—production at the well connection and resulting pro-
duction/injection rate of the well.

4. Set up laws for conservation of mass and Darcy’s law.

5. Discretize all equations with implicit-Euler and discrete divergence and gra-
dient operators as in Eq. (1.33) and compute the transmissibility as in Eq.
(1.27) and collect all equations with right hand side zero into a system F .

6. Find a zero of F with Newton–Raphson regarding the governing variables
update the state.

We have previously described the equations for mass conservation, Darcy’s law,
and many of the closure relationships that relate different physical quantities. What
remains is to describe how to model source terms from injection and production
wells.

Well models: For the source term q we consider wells as thin cylinders with a
one-dimensional expansion in the grid. The flow inside the wellbore is described
by a pressure at a datum point inside the well (e.g., at the bottom of the well).
The pressure in the remaining parts in the well are assumed to be hydrostatically
distributed, that is, the pressure satisfies the ordinary differential equation

∂p

∂z
= gρ(p).

The flow in or out of the well is then determined by the difference between the
pressure inside the wellbore and the pressure in the surrounding rock.
Let us consider a well W and let N(W ) be the set of cells which contain a part

of this well. We call those cells also well connections. We have to distinguish two
production rates. One is the right-hand side for our governing equation of the mass
conservation law. It is based on the assumption that the pressure difference from
the well connection is proportional to the pressure inside of the grid cells directly
at the well. The proportionality constant includes the dimensionless well index WI,
which depends on the geometry of the well bore and the petrophysical properties
near the well, and the viscosity of the fluid. That results in

qc =
ρ

µ
WI
(
pc − p

)
, c ∈ N(W )

which is referred as the standard Peaceman model. Here, pc is the pressure in the
well connection and we assume in the Peaceman model that it is hydrostatically
distributed. In particular, we obtain

pc = pbhp + g∆zwρ(pbhp), c ∈ N(W ),
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where ∆zw is the vertical distance from the datum point (bottom hole) of the well
to the connection point and pbhp is the bottom-hole pressure given by the controls
as boundary conditions of our system. It defines if a well is a producer or injector
—if pbhp is below the pressure at the well connection then the well is a producer and
vice versa.
The other production rate is referred to the amount of fluid that leaves or enters

the system. For this we simply sum up all production rates in the cells which contain
the well and divided the sum by the surface density ρS, that is,

qP =
1

ρS

∑
c∈N(W )

qc(p, pbhp).

Note that qP is the quantity of interest to assess fluid recovery from a reservoir.

The complete system: Given the relations between porosity and density with
pressure, all the previous equations can be summarized as the complete system

∂ϕρ

∂t
+∇ ·

[
ρ

(
−K

µ
(∇p− gρ∇z)

)]
=

{
0 , x ̸∈ N(W ) ∀W,

qc , ∃W such that x ∈ N(W )
(1.28)

qc =
ρ

µ
WI(pc − p), c ∈ N(W ) (1.29)

where

pc = pbhp + g∆zwρ(pbhp) (1.30)

qP =
1

ρS

∑
c∈N(W )

qc(p, pbhp) (1.31)

pbhp = h(p, t, qP ) (1.32)

for some function h depending on the time and given from the predefined well
schedule. The governing variables of this system will be p, pbhp, qP . We consider this
system of equations on a discrete grid structure, hence for nc cells in the grid, we
have p ∈ Rnc , pbhp, qP ∈ R. The equations (1.29)–(1.32) can be evaluated for each
time step in a straight forward way in vector form. For the continuity equation 1.28,
we essentially use the same finite-volume discretization we have discussed earlier. If
we let p0 be the pressure from the previous time step, the equation for the unknown
pressure p at the current time step reads,

1

∆t

(
ϕ(p)p− ϕ(p0)p0

)
− div

[
ρ(pavg)

(
T

µ
(grad(p)− gρ(pavg)grad(z)

)]
− q
(
p, pbhp, qP

)
= 0, (1.33)

where ρ(pavg) ∈ Rnf is defined on each face via the arithmetic average of the pressure
between the two neighboring cells of each face. That is, for a face f from cell c1 to c2
and p ∈ Rnc we have pavg(f) =

1
2
(p(c1)+ p(c2)). It should be noted that in the more

general case, the viscosity µ is depending on the pressure as well and one finding a
similar expression for µ = µ(p). In this case, we need to use µ(pavg) ∈ Rnf again,
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since the discrete divergence operator is defined on each face. This is not required
when evaluating qc for c ∈ N(W ).
We stack this equation and the equations (1.29)–(1.32) upon each other and re-

distribute all terms to the left-hand side such that we can write this in a system
F (p0, p, pbhp, qP ) = 0. Hence, F is a system of non-linear equations and in order to
find a solution, we perform Newton–Raphson iterations. Let J be the Jacobian of
F , then the iteration is

J∆x = −F (p0, pi, pbhpi, qPi), (pi+1, pbhp(i+1), qP (i+1))← (pi, pbhpi, qPi) + ∆x,

where we continue to compute a new value of ∆x ∈ Rnc+2 until we reach a sufficient
close approximation for a zero of F . The outer scheme of the simulation is then as
summarized in Algorithm 1. In the next section we discuss a powerful numerical
technique we can use to avoid differentiating F by hand to derive analytic expressions
for the Jacobian J .

Algorithm 1: Simulation loop

Input: TotalTime, ∆t, iteration tolerance 10−5 = ϵ > 0, number of maximal iteration
per step maxIt = 10, initial conditions p init, h(p, t)

Output: sol
1 sol = repmat(struct(’time’, ,’pressure’, ,’bhp’, , ’qP’, ), [nSteps +1, 1]) ;
2 t = 0; step = 0;
3 (p,qP,bhp) = (p init,0, h(p init, 0));
4 while t < TotalTime do
5 t = t + dt; step = step +1; resNorm = 1099; nit = 0 ;
6 p0 = p; % Fixed for the Newton iterations
7 while resNorm > ϵ and nit ≤ maxIt do
8 Set up F ;
9 F = F (p0, p,bhp, qP);

10 J = dF (p0, p, bhp, qP)
d(p0, p, bhp, qP) ; % implicitly with ADI

11 resNorm = norm(F(p0,p, bhp, qP));
12 Solve J∆x = −F ;
13 (p, bhp, qP) = (p,bhp,qP) + ∆x ;
14 nit = nit +1 ;

15 if nit > maxits then
16 error(”Newton solver did not converge.”);

17 else
18 sol(step +1 ) = struct (’time’, t, ’pressure’, p, ’bhp’, bhp, ’qP’, qP );

In a straight forward implementation this would require to compute the derivative
separately and numerically. This does not only produce round-off errors but it also
requires us to solve systems of the size of O(n2

c) O(nc) times. With increasing nc

which can be several million in real asset reservoir models, the numerical differenti-
ation becomes more and more error prone. Automatic differentiation allows a stable
employment of higher dimensions and also offers the advantage for including high
complex fluid physics with tabulated property functions. This is for instance the
case for the dependence of the capillary pressure and the saturation.
The multiphase flow simulation is not covered here in detail. For a two immisci-
ble fluid flow simulation explanation consider for example [22, Section 8.3.2] which
illustrates one process with the derivation of the fractional-flow formulation.
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1 Porous Media Fluid Flow

1.4 Automatic Differentiation

Automatic differentiation [31] is also called algorithmic differentiation or compu-
tational differentiation, has caved the path for efficient gradient computation in
numerics. These sets of methods exploit the fact the any computational function is
based on a sequence of elementary arithmetic operations and elementary functions.
By applying the chain rule, the partial derivatives can be computed automatically
while computing the function value. Compared to numerical differentiation and
symbolic differentiation, it offers a much more stable and efficient method.

The idea of using automatic differentiation to develop reservoir simulators is not
new. It has been mentioned in more commercial intersect simulators by DeBaun
et. al 2005 [8] but has been mainly pioneered for the GPSS research simulator by
Geoffrey 1978 [12].

To give a brief practical overview of automatic differentiation, we consider here an
exemplary algorithm to illustrate the forward mode of this technique. For a deeper
introduction consider for example [29].

First, we need to introduce automatic differentiation objects (AD objects). An
AD object consists of the value of a function itself and the values of the partial
derivatives with respect to a given set of primary variables, evaluated at the specific
values of these variables that were used as input to the function evaluation. There
are different implementations of automatic differentiation. Here we illustrate the
principles used in MRST on a subset of possible operations: ·, ±, and ()k for k ∈ R.
The routine shown in Algorithm 2 can be generalized easily.

Algorithm 2: AD – Automatic differentiation

Input: xAD = (x, {In,0m×m}), yAD = (y, {0n×n, Im}), f
Output: fAD(xAD, yAD) = (f(x, y), {∂f∂x (x, y),

∂f
∂y (x, y)}

1 if f(x, y) = u(x, y) · v(x, y) then
2 uAD = ADI(xAD, yAD, u);
3 vAD = ADI(xAD, yAD, v);

4 return (u(x)v(y), {∂u∂xv +
∂v
∂xu,

∂u
∂y v +

∂v
∂yu});

5 if f(x, y) = u(x, y)± v(x, y) then
6 uAD = ADI(xAD, yAD, u);
7 vAD = ADI(xAD, yAD, v);

8 return (u(x)± v(y), {∂u∂x ±
∂v
∂x ,

∂u
∂y ±

∂v
∂y});

9 if f(x, y) = u(x, y)k then
10 uAD = ADI(xAD, yAD, u);

11 return (u(x, y)k, {kuk−1 ∂u
∂x , ku

k−1 ∂u
∂y });

12 if f(x, y) = c ∈ R then
13 return (c, {0n×n,0m×m});
14 if f(x, y) = c⃗ · x and c⃗ ∈ Rn then
15 return (c⃗ · x, {c⃗ I,0});
16 if f(x, y) = c⃗ · y then
17 return (c⃗ · y, {0, c⃗ I});

We mainly consider partial derivatives with respect to two complementary sets
of variables. Let x ∈ Rn and y ∈ Rm. The algorithm uses a recursion to compute
partial derivative from basic operators using the chain rule. In general this also
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1.4 Automatic Differentiation

includes log, sin, cos, exp. Consider a small example

f(x, y) = sin(xy).

Now for computing the derivative after x at (1, 2) we can introduce u(x, y) = xy
and write ∂f

∂x
(x, y) = ∂u

∂x
(x, y) cos(u), where ∂u

∂x
(x, y) = y, and hence

∂f

∂x
(1, 2) = 2 cos(1 · 2).

We can illustrate this substitutions of inner functions also by an operation tree.

Example 1.4 (Automatic Differentiation):
Consider

f(x, y) =
(
x2 − y2 + 42

) 1
2 .

The task is to compute fAD(2, 1). We set up the operation tree of f and perform
the computation of Algorithm (2). The subtraction signs means that we subtract
the lower branch from the upper branch.

()
1
2 +

−

()2

()2

()2

c

x

y

We now evaluate the leaves with xAD = (2, {1, 0}) and yAD = (1, {0, 1}) and perform
backtracing, using the rules of derivation for each partial derivative (as indicated
in Algorithm 2). It is also referred as forward mode automatic differentiation.

f ()
1
2 +

−

()2

()2

()2

c

x

y

(
√
19,{ 2√

19
,− 1√

19
})

(19,{4,−2})

(3,{4,−2})

(16,{0,0})

(4,{4,0})

(1,{0,2})

(4,{0,0})

(2,{1,0})

(1,{0,1})

Hence we have ∂f
∂x (2, 1) =

2√
19

and ∂f
∂y (2, 1) = −

1√
19
.
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1 Porous Media Fluid Flow

We see that the partial derivatives can be computed in the time and space com-
plexity of the evaluation of f . When computing the gradient numerically with
difference approximations, which is used in lsqnonlin or fmincon (see [24, Sec-
tion Input Arguments/options ], [10, Section Input Arguments/options]), we have
to evaluate

∂f

∂xi

≈ f(x+ hiei)− f(x− hiei)

2hi

(1.34)

for i = 1, . . . ,m using 2m function evaluations and it is error prone for high dimen-
sions. The drawback is the required structure—all functions and variables has to be
defined as AD-objects.
Now every function evaluation comes with a constant overhead (as indicated in

Example 1.4) but at the end of each function evaluation, we obtain the derivative
automatically without any further computation steps.

1.5 Adjoint Equations

The original method goes back to Cea [3] from 1986 where he used this method
with the Lagrangian multiplier formulation to obtain the gradient for an optimiza-
tion problem with respect to parameters. We will omit the derivation through the
Karush–Kuhn–Tucker conditions. Consider

min
u

j(x(u), u)

s.t. D(x(u), u) = 0
(1.35)

where x(u) ∈ Rn and u ∈ Rm. A straight forward computation of the gradient
would be equivalent to solve the system

dj

du
=

∂j

∂x

dx

du
+

∂j

∂u
.

Also with the continuity of x(u) we have

0 =
dD

du
=

∂D

∂x

dx

du
+

∂D

∂u

and hence
∂D

∂x

dx

du
= −∂D

∂u

is an equation with m rows. On the contrary, the adjoint equation is

λ
∂D

∂x
=

∂j

∂x

where the right hand side has n many rows. The latter leads to

dj

du
= λ

∂D

∂u
+

∂j

∂u
.

Clearly, the first approach leads also to the desired total derivative of j after u.
Hence both approaches will result in the gradient. However, we are considering
for the calibration of reduced-order models (see Section 1.6) optimization problems
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1.5 Adjoint Equations

where the number of parameters is usually much larger than the state dimension x.
The advantage of adjoint equations is evident in this case.
Let us derive the method in more detail. In particular, we exploit the form of our
residual governing equations emerging from the implicit Euler discretization which
has a special block bi-diagonal structure.
Let f : [0, T ]× Rn → Rn and x(t) : R→ Rn represent the solution curve of

d

dt
x(t) = f(t, x). (1.36)

Consider a time discretization (0 = t0, t1, t2, . . . , tN = T ) of [0, T ] with N ∈ N time
steps and width ∆tk = tk − tk−1 for k = 1, . . . , N . Recall the implicit Euler method
on an ordinary differential equation. We obtain an approximated discretized solution
by solving the implicit equation

xk+1 = xk + (tk+1 − tk)f(tk+1, xk+1), xk ∈ Rn (1.37)

for all k = 0, . . . , N − 1 such that xk is an approximation of x(tk).
Applying implicit Euler on the system 1.16, we obtain the discretization

(ϕραsα)
k+1 = (ϕραsα)

k

− (tk+1 − tk)
(
∇ · (ραKλα(∇p− ραg∇z))k+1) + qk+1

α

)
, (1.38)

where the divergence operator is realized in terms of the TPFA method from Section
1.2.1. We can rewrite this in a system of functions Fk : R2n+m → Rn with the
conditions

Fk(xk, xk−1, u) = 0, k = 1, . . . , N (1.39)

where xk denotes the joined vector of pα, sα, p
W
α at time step k and u contains the

parameters.
In MRST, the Newton–Raphson method will be used to compute an approximate

solution of Eq. (1.39) after xk, which describes the state of the reservoir in each cell
regarding the parameters pressure, saturation and well pressure of water, oil and
gas at time tk.
We want to compute the gradient while we are evaluating our system (1.16) by

using automatic differentiation and adjoint equations. To illustrate this we consider
an optimization problem with m parameters represented by u ∈ Ω ⊆ Rm and
objective function J(x, u) = J(x(u), u) where

x =

x1
...
xN

 . (1.40)

Together this yields the following optimization problem for initial data x0 ∈ Rn

min
u∈Ω

J(x0,x, u) (1.41)

subject to Fk(xk, xk−1, u) = 0, k = 1, . . . , N, (1.42)

x0 = x0. (1.43)
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dJ

du
=

∂J

∂x

dx

du
+

∂J

∂u
. (1.44)

Let

F (x, u) =

 F1(x1, x0, u)
...

FN(xN , xN−1, u)

 .

Since F (x(u), u) = 0 for all u ∈ Ω, we have

0 =
dF

du
=

∂F

∂x

dx

du
+

∂F

∂u
(1.45)

giving

∂F

∂x

dx

du
= −∂F

∂u
(1.46)

with

∂F

∂x
=



∂F1

∂x1
0 · · · 0 0

∂F2

∂x1

∂F2

∂x2
0 · · · 0

0 ∂F3

∂x2

∂F3

∂x3

. . .
...

...
. . . . . . . . . 0

0 · · · 0 ∂FN

∂xN−1

∂FN

∂xN

 , (1.47)

where ∂Fk

∂xk
∈ Rn×n. Hence ∂F

∂x
is a squared matrix and since ∂Fk

∂xk
is invertible as

∂Fk

∂xk

= I− hk
∂f(tk, xk)

∂xk

where f is defined as in Eq. (1.38) and hk is the step size between timestep k − 1
and k. The matrix on the right hand side is invertible for small hk and hence ∂F

∂x

is invertible. At this point we are distinguishing between two options. In order to
compute dJ

du
we can either compute dx

du
first and multiply it with ∂J

∂x
, or we can insert

dx
du

into Eq. (1.44) and consider the adjoint equation first, that is,

λ :=− ∂J

∂x

(
∂F

∂x

)−1

(1.48)

dJ

du
= −∂J

∂x

(
∂F

∂x

)−1

︸ ︷︷ ︸
=λ

∂F

∂u
+

∂J

∂u
. (1.49)

The name adjoint variable for λ comes from an equivalent derivation by considering
the unconstrained optimization problem of Problem (1.41) obtained by applying the
Lagrange multiplier method. Explicitly, we obtain

min
u∈Ω,λ∈R1×Nn

J(x0,x(u), u) + λF (x(u), u) (1.50)

where the introduced λ is often referred to as adjoint variable or Lagrange multiplier,
and the condition for λ emerging from further analysis is the adjoint equation λ =

−∂J
∂x

(
∂F
∂x

)−1
.
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1.5 Adjoint Equations

Implementation of Adjoint Equations To prevent confusion, we explain the di-
mensions of the stacked equations. x is vector which has all the N states stacked on
each other, where each state consists of n values and hence x ∈ RNn×1. F (x) is the
residual for each time step from 1 to N . The residual is also a vector of n entries,
since the Fis have the same dimension as the states xj.
Let x0 ∈ Rn be fixed. We have

dJ

du
= λ

∂F

∂u
+

∂J

∂u
(1.51)

and

λ
∂F

∂x
= −∂J

∂x
(1.52)

with u ∈ Rm,x ∈ RNn×1, F (x) ∈ RNn×1 and J(x0,x, u) ∈ R. That means for
instance that λ ∈ R1×Nn. From the sensitivity matrix in Eq. (1.47) , we obtain the
equation

(
λ1 . . . λN

)


∂F1

∂x1
0 · · · 0 0

∂F2

∂x1

∂F2

∂x2
0 · · · 0

0 ∂F3

∂x2

∂F3

∂x3

. . .
...

...
. . . . . . . . . 0

0 · · · 0 ∂FN

∂xN−1

∂FN

∂xN

 (1.53)

=
(
λ1

∂F1

∂x1
+ λ2

∂F2

∂x1
, λ2

∂F2

∂x2
+ λ3

∂F3

∂x2
, . . . , λN

∂FN

∂xN

)
(1.54)

where λi ∈ R1×n and ∂Fi

∂xj
∈ Rn×n. Equivalently, we have

λN
∂FN

∂xN

= − ∂J

∂xN

(1.55)

λk
∂Fk

∂xk

= − ∂J

∂xk

− λk+1
∂Fk+1

∂xk

(1.56)

for k = N − 1, . . . , 1. (1.57)

We assume that the simulation is given with states x(u) ∈ RNn×1 which are depend-
ing on the choice of the parameters u. Then with automatic differentiation and by
solving the adjoint equation, we can formulate the following algorithm.

Algorithm 3: Adjoint equation – gradient

Input: u ∈ Rm,x ∈ RNn×1, J, F
Output: dJ

du

1 solve λN
∂FN

∂xN
= − ∂J

∂xN
;

2 res = λN
∂FN

∂u ;
3 for k = N − 1, . . . , 1 do

4 solve λk
∂Fk

∂xk
=
(
− ∂J

∂xk
− λk+1

∂Fk+1

∂xk

)
;

5 res = res + λk
∂Fk

∂u ;

6 return res;
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There is also the possibility to solve the forward sensitivity equations, which is
solving for dx

du
in

∂F

∂x

dx

du
= −∂F

∂u
(1.58)

which is equivalent to

∂F1

∂x1

dx1

du
= −∂F1

∂u
∂F2

∂x2

dx2

du
= −∂F2

∂u
− ∂F2

∂x1

dx1

du
...

∂FN

∂xN

dxN

du
= −∂FN

∂u
− ∂FN

∂xN−1

dxN−1

du
.

(1.59)

Note that dxk

du
∈ Rn×m and hence we will need to save Nnm values in order to store

dx
du
. In both routines we have to solve N n×m linear systems but Algorithm 3 saves

memory by only having to store n entries from λk in each iteration. Observe that
in our reservoir models n is in the magnitude of the number of grid cells.

References This section about adjoints is inspired by Stein Krogstad’s presenta-
tion in the Geilo Winterschool 2022 and [14].

1.6 Parameter Sensitivities and Calibrating Reservoir
Models

Production optimization in reservoir simulation requires many full forward simu-
lations. Reducing the order of the reservoir model (e.g. by partition the cells to
coarser cells. That can be often a reduction from several million cells to hundreds
of cells) decreases the computational cost tremendously while the forecasting ability
can maintained to almost arbitrary accuracy through calibration of parameters in
the reduced-order model. This calibration process can be done by data based ma-
chine learning tools or deep neural networks [6, 15, 34], but there is also a simpler
approach to this end. We consider a simple parameterized box-constraint optimiza-
tion problem

min
ζ∈[0,1]n

f(ζ) =
1

2
∥r(ζ)∥2 (1.60)

where r(ζ) is the residual vector where each component represent the misfit of an
outcome parameter from the reduced-order model with the same parameter in a
fine-scale reference model.

Adjoint Equation. In Section 1.5 we have discussed a method to obtain the gradi-
ent of the objective function in a way where we solve a linear system with ℓ equations
for each time step where ℓ is the dimension of a state in the reduced-order model.
The choice of the method to obtain the gradient becomes important. Recall that
the forward sensitivity equations (1.59) require to solve systems with m rows where
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Figure 1.3: We reduced the dimension from 44915 to only 53 cells. The parameters
can be for example pore volume on each cell or transmissibility.

m equals the number of parameters. Hence the adjoint-equations enable a more
efficient way to assemble the gradients ∇ri for the optimization iteration.
Chapter 1. The method of adjoint equation is used in In Chapter 3 we treat the

many possible optimization methods for this purpose. Since our objective function
is a non-linear least square function the Gauss–Newton methods can be used with
a promising theoretical convergence advantage over the quasi–Newton methods.

Optimizer. There are many more consideration for the optimal choice of the op-
timizer. Often the notion of Gauss–Newton or quasi-Newton methods is misun-
derstood as full optimization methods. In fact, these names only determine the
second-order coefficient matrix for the second-order approximation of the objective
function. That is the matrix B in

q(p) = c+ gTp+
1

2
pTBp

where usually c = f(ζ0), g = ∇f(ζ0) and p indicates the search direction. Now we
can choose between different paths. E.g. the classical Newton method emerges if
B = ∇2f(ζ0) we assume f(ζ0 + p) ≈ q(p) and ∇f(ζ0 + p) = 0. Then

0 = ∇q(p) = g +Bp

gives the usual Newton step update formula. An advanced optimizer would then
use a routine to use the ideal step length. Many of those involve a lot of function
evaluations which is not computable feasible in our application. A totally different
approach expects q to describe f precisely within a so-called trust-region. A sim-
plified version of this trust-region minimization is explicitly solvable and hence the
solution has a predefined step length. An iteration must be repeated only if the
computed step is not a decrease. A detailed analysis will be given in Chapter 2

Example. In Fig. 1.3 we see the Norne field. The governing variables forming
a state of the simulation are hence only the number of coarse grid cells times the
number of governing variables.
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2 Optimization Methods

This chapter provides a general comprehensive overview on optimization methods
relevant for the optimization problem from (1.60) in Section 1.6. The parts are
drafted based on the standard textbook of Nocedal and Wright [30] on optimization
and they connect the descriptions with state of the art MATLAB implementations
taken from [24, 10].
We start with a short recap of the setting in Section 1.6. In order to calibrate

coarse grid models to access well production rate as accurate as the fine grid models
does, we compare the well production rates of our coarse grid model with the the
rates of the fine grid model in every time step. The resulting objective function is a
residual vector where each time step and well is represented as one residual compo-
nents, that is, we are concerned with solving the following optimization problem.
Therefore we are interested in solvers for box constrained non-linear least square
problems, that is,

min
x∈[0,1]n

1

2
∥r(x)∥2,

where r(x) ∈ Rm and all parameters are scaled. In our application, evaluating
the objective function f(x) = 1

2
∥r(x)∥2 comes with the simulation of a whole life

cycle of the coarse grid model. That implies, in order to remain within feasible
time complexity, we require a ”small” number of function evaluation. Some of the
standard optimization methods which we present in this chapter will not fall into
this category. However, they are included to motivate and derive industry standards
routines, used in e.g., the MATLAB Optimization Toolbox and also to establish more
theoretical results.
In later sections, we restrict our analysis on iterative gradient-based optimization
methods, since they are the main tools in MATLAB and MRST which have proven to
be robust and efficient. First, we will derive the theoretical background on iteration
methods of the form

xk+1 = xk + αkpk

where pk is the search direction and αk is the step length. We establish a criteria
to show convergence for this general problem type and also consider more specific
types such as pk = B−1

k ∇f(xk) and Bk ∈ Rn×n is a symmetric positive definite
matrix, imitating the regular Newton method but doesn’t require the computation
of the Hessian matrix. While we repeat known algorithms such as the quasi-Newton
BFGS method, Gauss–Newton method and the Levenberg–Marquardt method, we
want to provide insight into the implementation of those methods in the MATLAB
Optimization Toolbox and also discuss more practical issues.
Therefore, at the end of each section we will return to the above questions and

provide remarks regarding implementation.
Figure 2 gives an overview on the requirements to understand the construction

of the optimizers which we are considering. Section 2.1 and Section 2.2 provide
the basic procedure of the line search method but also establish theoretical results
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Iteration method
xk+1 = xk + αkpk

Trust-Region-
Method (Section 2.4)
1. Solve pk =

argmin∥p∥≤∆k
q(p),

2. check if f(xk + pk) <
f(xk),
3. set xk+1 = xk + pk,
otherwise
4. reduce ∆k and re-
peat.

Implicit Trust-Region
Method (Section
2.7.2)
1. Solve directional
equation

(Bk+Iλk)pk = −∇f(xk),

2. check if f(xk + pk) <
f(xk),
3. set xk+1 = xk + pk,
otherwise,
4. reduce λk and repeat.

Line-Search (Section
2.1)
1. compute pk from
Newton step

Bkpk = −∇f(xk).

2. compute αk

Common Approach
quadratic approximation
of f as q(p) =

f(xk) +
1

2
pTBkp+ gTp

and Bk is an approxi-
mation of ∇2f(xk) and
g = ∇f(xk).

Choice of Bk:
Bk defined as in Eq.
(2.24),(2.23), (2.30),
(2.10)
according to BFGS,
DFP, GM and Newton
method.

Figure 2.1: The different approaches presented in this work are all based on the
approximation of f by a quadratic function. Often, the choices of Bk

define the theoretical convergence rate, efficiency and stability. However,
each choice can be paired with each of the outer schemes.

for more general iteration methods. Every section provides the derivation of the
respective method (or class of methods) and provides a references to theoretical
results regarding convergence and time complexity. At Section 2.8 we draw the lines
back to Figure 2 and list the components of the algorithms from the MATLAB
Optimization Toolbox and MRST based on their function documentation.

2.1 Line Search

The mathematical content of Section 2.1 and Section 2.2 follows [30, Chapter 03] and
includes relevant information about the MATLAB Optimization Toolbox including
remarks on implementation.

For Chapter 2 we will use the notation of [30]. Consider a twice differentiable
function f : Rn 7→ R which is bounded from below. Let x∗ be a local minimum of
f . We will discuss the so-called line search methods to find the minimizer x∗. These
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2.1 Line Search

are iterative methods of the form

xk+1 = xk + αkpk (2.1)

where pk is the search direction and αk is the step size. We call pk a descent direction
to f at xk if pk points in the negative direction of the gradient of f at xk, that is,

∂f(xk)

∂pk
= pTk∇f(xk) < 0.

Observe that if pk is a descent method, we can find a step length αk such that
f(xk+1) < f(xk). Suppose we can compute the gradient of f efficiently. We will
show that choosing αk with the so called Wolfe condition (2.2) results in a conver-
gent line search method. Hence an efficient convergent method is simple to obtain
theoretically. But how can we do better?
Naturally, if we have curvature information for each point xk, that is, some informa-
tion about the Hessian matrix∇2f(xk), the convergence rate of the resulting method
can be become quadratic. More explicity, by the choice pk = −∇2f(xk)

−1∇f(xk)
and αk = 1 we obtain the Newton–Raphson method with quadratic convergence rate
in vicinity of a local minimum. Formally, this result follows by applying Taylor’s
formula on ∇f(xk)−∇f(x∗) to obtain a second factor of (xk − x∗) where x∗ is the
local minimum (see Theorem 2.5). Intuitively, we recall that the Newton method is
of the form

xk+1 = xk −
f(xk)

f ′(xk)

which sets xk+1 as the zero of the straight line

gk(t) = f(xk) + f ′(xk)(t− xk),

that is, we represent f by its first order taylor approximation to find a zero of f .
Geometrically, that means we expect the zero to be closer to xk if the slope f ′(xk)
is large and vice versa. This expectation will be met if f is close to linear in the
considered area. Turning back to our multidimensional case where we search for a
local minimum, the Hessian matrix ∇2f(xk) represents the gradient of ∇f(xk). In
vicinity of the zero of f it follows by the Taylor expansion of f that the error to the
local minimum x∗ of f which is in O(∥xk+1− x∗∥2) converges quadratically to zero.
However, in practice we cannot make sure that we are close to a local minimum and
what is the procedure if the Hessian matrix ∇2f(xk) is singular? Also the Hessian
matrix becomes expensive to compute in large systems emerging from, for instance,
reservoir simulation. This performance issues were the motivation for Davidon in
1951, to develope a more reliable algorithm [7] and he established a new class of
methods for iterative non-linear optimization solvers (see Section 2.6.1).
First we will focus on establishing the theory around iteration methods. Later, we
discuss the influence of those historical accomplishments to the current industry
standard for optimization solvers, used in MATLAB Optimization Toolbox.
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2.2 Step Length and Wolfe Condition

Assume we have a descent step direction pk, that is ∇f(xk)
Tpk < 0, the Wolfe

conditions for αk are the following

f(xk + αkpk) ≤ f(xk) + c1∇f(xk)
Tpkαk, (2.2)

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk, (2.3)

for 0 < c1 < c2 < 1.

Let us define the level function ϕ(α) := f(xk +αpk). Then the derivative ϕ′(α) =
∇f(xk+αpk)

Tpk is negative for α = 0 as pk is a descent direction. We interprete the
Wolfe condition in the two dimensional plane on the graph of ϕ. The first equation
requires that the new iteration point ϕ(αk) is below a straight line which starts from
f(xk) and has slope c1∇f(xk)

Tpk ≤ 0. The second equation requires that the slope
in pk direction of f at xk+1 is greater than slope at xk, such that the absolute value
of the slope of ϕ is closer to zero. Combined with (2.2), we select a local minimum
of ϕ(α) that satisfies a decrease condition.
Why the Wolfe condition?
We have two reasons to choose these conditions. The first one is about convergence.

f(xk)

ϕ

Figure 2.2: The first Wolfe condition is illustrated by the blue straight line. It re-
quires the next step to be below this line. The second condition requires
that ϕ′(xk+1) = ∇f(xk+αkpk)

Tpk ≥ c2ϕ
′(0) and is indicated by the dot-

ted blue line. Since ϕ′(0) is negative ϕ′(xk+1) is required to be positive
or closer to zero and hence xk+1 is closer to a local minimum. The red
marked areas indicate where the Wolfe conditions are satisfied. Observe
that, since pk is a descent direction and c1 < 1, the existence of an αk

satisfying the Wolfe condition is guaranteed.

2.3 Convergence with Wolfe Condition

Now assume an iterative method where we can provide a descent direction pk which
is bounded from being orthogonal to ∇f(xk) and αk is chosen according to the
Wolfe condition (2.2). In this case Zoutendijk’s theorem guarantees convergence for
this method. Before we discuss the result, we define the angle between the search
direction pk and the negative of the gradient −∇f(xk).

cos θk =
−∇f(xk)

Tpk
∥∇f(xk)∥∥pk∥

.
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2.3 Convergence with Wolfe Condition

Theorem 2.1 (Zoutendijk’s Theorem):
Assume that f is twice differentiable, ∇f is Lipschitz continuous to bounding
constant L > 0 and f is bounded from below by M . Further let pk be a
descent direction, that is,

pTk∇f(xk) < 0

and αk satisfies the Wolfe conditions (2.2). Then∑
k≥0

cos2 θk∥∇f(xk)∥2 <∞

and in particular cos2 θk∥∇f(xk)∥2 → 0 for k →∞.

For the proof see in the Appendix 4.1. We can formulate the following criteria for
convergence:

Corollary 2.2:
Consider a line search method such that pk is a descent direction and αk

satisfies the Wolfe condition (2.2) and (2.3).
If there is a k0 ∈ N and δ > 0 such that

cos θk ≥ δ for all k ≥ k0,

then (xk)k∈N converges to a stationary point of f .

The second reason for using the Wolfe condition is: It is crucial for the well
posedness of the sub-problem for the quasi-Newton methods BFGS and DFP. By
imposing Inequality (2.3), we obtain directly the inequality

(∇f(xk+1)−∇f(xk))
T(xk+1 − xk) ≥ αk(c2 − 1)∇f(xk)

T(xk+1 − xk) ≥ 0.

The outer parts of this inequality are equal to the precondition Inequality (2.20)
of the sub-problem from both, the BFGS and DFP method. Hence the secant equa-
tion Eq. (2.19) for Bk+1 has a solution. This implies that Bk and Hk, respectively,
are good approximation for the optimal choice for the second order Taylor approx-
imation of f . For details consider Section 2.6.1. Moreover, quasi-Newton methods
converge against a stationary point of f if the condition number of Bk is uniformly
bounded. This can be stated as a corollary.

Corollary 2.3 (Convergences of quasi-Newton methods):
Let pk = −Bk∇f(xk) for a symmetric matrix Bk such that the following
requirements are met:
1. ∥Bk∥∥Bk∥−1 ≤ M —the condition number of Bk is uniformly bounded by

M .

2. the conditions of Zoutendijk’s Theorem 1.1 are met.
Then the quasi-Newton method defined by αk and Bk converges against a
stationary point of f .

41



2 Optimization Methods

Proof. We only need to show that cos θk is uniformly bounded away from zero.
Hence consider

cos θk =
∇f(xk)

TB−1
k ∇f(xk)

∥∇f(xk)∥∥B−1
k ∇f(xk)∥

≥ ∇f(xk)
TB−1

k ∇f(xk)

∥∇f(xk)∥2∥Bk∥−1
.

The inequality is due to the properties of the operator norm. Now the numerator is
a scalar product with a symmetric positive definite matrix. We have

∇f(xk)
TB−1

k ∇f(xk) ≥ ∇f(xk)
T∇f(xk)

1

∥Bk∥

and thus we obtain an overall lower bound for cos θk as

cos θk ≥
∇f(xk)

T∇f(xk)

∥∇f(xk)∥2∥Bk∥∥Bk∥−1
=

1

∥Bk∥∥Bk∥−1
≥ 1

M
> 0.

This concludes the proof by applying Zoutendijk’s Theorem.

To see a standard step length algorithm consider Appendix 4.1.

2.4 Trust-Region Methods

This section is inspired by Nocedal-Wright [30, Chapter 04]. In both iteration
method schemes we consider the second order approximation of f

mk(p) = fk + gTk p+
1

2
pTBkp,

where fk = f(xk), gk = ∇f(xk) and Bk is symmetric and an approximation of the
Hessian matrix of f in xk.

The step length is implicitly defined before each iteration by the choice of the
parameter ∆k, the trust-region radius. The step pk is the minimizer of the following
non-linear constrained quadratic program

min
p

1

2
pTBkp+ gTk p+ fk, ∥p∥ ≤ ∆k. (2.4)

Note that the choice of the two parameter ∆k and Bk define the method. Before
we come to the solution of the subproblem (2.4), let us consider the algorithm. The
algorithm 4 is taken from [5].

∆k is updated in a standard routine and in particular reduced when f(xk + pk) ≥
f(xk) holds. Note that the reduction routine presented in Nocedal-Wright [30, Chap-
ter 4] is not the method of choice when function evaluations of f are expensive.
In fact, lsqnonlin trust-region reflective routine is based on this simple scheme [24].
A simple question remains: How do we solve the quadratic minimization problem
(2.4)? The following Theorem 2.4 is from [30, Theorem 4.1]. The proof is included
by me.
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2.4 Trust-Region Methods

Algorithm 4: Trust-region method
Input: x0, f
Output: xN approximation of a local minimum of f

1 k := 0;
2 while ∇f(xk) ≥ ϵ do
3 Solve (2.4) with solution pk;
4 if f(xk + pk) < f(xk) then
5 xk+1 = xk + pk;

6 Adjust ∆k;
7 k := k + 1;

x0

x1

x2

x3

x4

contour lines of f

Figure 2.3: The trust-region method. In each iteration we represent p 7→ f(xk +
p) with a quadratic approximation q(p) = f(xk) + gTp + 1

2
pTBkp and

compute p as the minimizer of q in the trust-region indicated by the
circle. The dark colored contour lines indicate high function values of f .
Observe further that the adjustment of ∆k depends on how accurate q
approximates f . If q fails to generate a point with f(xk+1) < f(xk) then
∆k will be reduced and the iteration will be repeated.
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Theorem 2.4:
Given a symmetric positive definite matrix B ∈ Rn×n, g ∈ Rn, c ∈ R and
∆ ≥ 0. Consider the quadratic function

m : Rn → R, p 7→ 1

2
pTBp+ gTp+ c

and the quadratic minimization problem

p∗ = argmin
p≤∆

m(p).

Then p∗ satisfies one of the following conditions is satisfied:

1. Bp∗ = −g, that is, the global minimizer is in the ball of radius ∆.

2. ∥p∗∥ = ∆ and there is a λ ≥ 0 with λp∗ = −∇m(p∗) = −Bp∗− g. That
is, the solution p∗ lies on the sphere of radius ∆ and points towards
−∇m(p∗). This simplifies to the equation

(B + λI)p∗ = −g, λ ≥ 0. (2.5)

Proof. We have
∇m(p) = Bp+ g

and
∇2m(p) = B

which is symmetric positive definite. Hence m has its unique minimum at p∗ with
0 = ∇m(p∗) = Bp∗ + g.
If the solution to this equation is not in K∆(0) = {x ∈ Rn| ∥x∥ ≤ ∆} then no
inner minimum can be attained. Consequently, ∥p∗∥ = ∆ and by the Lagrangian
multiplier on h(p) := 1

2
(p21 + p22 + . . .+ p2n −∆2) and

maximize −m(p) (2.6)

subject to: h(p) = 0 (2.7)

we obtain the condition −Bp∗−g = −∇m(p∗) = λ∇g(p∗) = λp∗ (the inner equation
formalizes p∗ points in the direction of steepest descent) for a global minimum on
the sphere of radius ∆. This simplifies to

Bp∗ + λp∗ = (B + λI)p∗ = −g

concluding the proof.

A minimizer p∗ is consequently either the global minimum of m or it is collinear
to the gradient of m and hence orthogonal to the contour lines of m. Equivalently,
we can formulate the necessary conditions for p∗ from Theorem 1.4 as

1. (B + λI)p∗ = −g,

2. λ(p− ∥∆∥) = 0.
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2.5 Newton Method

From this theoretical basis we derive some methods to solve the quadratic mini-
mization problem (2.4) which are used in the Matlab optimization toolbox.
We introduce the two-dimensional subspace minimization for which we consider the
problem

min
p∈Rn

m(p) = c+ gTp+
1

2
pTBp s.t. ∥p∥ ≤ ∆, p ∈ span

[
g,B−1g

]
. (2.8)

It is cheap to compute a good approximation of the former. For instance, this prob-
lem can be reduced to finding roots of a polynomial in one variable of degree four.
Why is the choice of those two directions advantageous?
Solving the quadratic minimization problem in the direction g yields the Cauchy
point method (see below), which under certain (basic) choices of ∆ and Bk is glob-
ally convergent. The direction −B−1p is simply the direction towards the global
minimum of m (assuming B is positive definite) that turns out to be a promising
choice.
Global Convergence
For the sub problem restricted to one dimension, that is,

min
p

m(p) = f + gTp+
1

2
pTBp s.t. ∥p∥ ≤ ∆, p ∈ span [g] (2.9)

and use a standard but adequate routine for the adaptation of ∆, we can already
prove global convergence for the trust-region method Algorithm 4. In this case, we
can identify the solution of the sub problem (2.9) with the Cauchy point which is
simply

pC = − gTg

gTBg
g.

Hence the trust-region method using the two dimensional subspace method as a
subroutine converges globally. See in [30, Section 4.2] for a detailed proof.

2.5 Newton Method

The theoretical background for Section 2.6.1 and Section 2.5 and for algorithm were
inspired by [30, Chapter 3, Chapter 6]. The Newton method is defined as

xk+1 = xk −∇2f(xk)
−1∇f(xk). (2.10)

The Newton method is in general not a descent method.

∇f(xk)
Tpk = −∇f(xk)

T∇2f(xk)
−1∇f(xk) < 0

is not necessarily satisfied if ∇2f(xk) is not positive definite. Hence we might even
increase along pk. However, since x∗ is a minimum, ∇2f(x∗) is positive definite in
vicinity of x∗. We obtain the following result
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Theorem 2.5 (Newton method):
Let f : Rn 7→ R be a twice continuous differentiable and x 7→ ∇2f(x)
Lipschitz–continuous to constant L > 0. Further let x0 be close enough to x∗

such that ∇2f(x) is positive definite. Then
1. the Newton method (2.10) will converge to x∗ with a quadratic convergence

rate, that is,
||xk+1 − x∗|| = O(||xk − x∗||2)

for all k ≥ 0.

2. ∥∇f(xk)∥ converges to zero.

Proof. The proof is straight forward by using Taylor’s formula. That is, the line of
the vector field t 7→ ∇f(x+ t(y − x)) derives to ∇2f(x+ t(y − x))(y − x). Hence

∇f(x)−∇f(y) =
∫ 1

0

∇2f(x+ t(y − x))(y − x)dt,

and consequently by setting ∇2f(xk) = H, we obtain

∥xk+1 − x∗∥ = ∥xk + pk − x∗∥
= ∥xk − x∗ − (∇2f(xk))

−1∇f(xk)∥

= ∥
(
∇2f(xk)

)−1 [∇2f(xk)(xk − x∗)− (∇f(xk)−∇f(x∗))
]
∥

= ∥H−1

∫ 1

0

H(xk − x∗)−∇2f(x∗ + t(xk − x∗))(xk − x∗)dt∥

≤ ∥H−1∥
∫ 1

0

∥∥H −∇2f(x∗ + t(xk − x∗))
∥∥ dt∥xk − x∗∥

≤ ∥H−1∥
∫ 1

0

Lt∥xk − x∗∥dt∥xk − x∗∥

= C∥xk − x∗∥2

where C = ∥H−1∥L. Hence ∥xk+1 − x∗∥ = O(∥xk − x∗∥2).
Moreover,

∥∇f(xk)∥ = ∥∇f(xk)−∇f(x∗)∥ =
∫ 1

0

∇2f(xk + t(x∗ − xk))(x
∗ − xk)dt (2.11)

≤ L∥xk − x∗∥2 (2.12)

With the assumptions that x0 is close enough to x∗ we can conclude the statements.

2.6 Quasi-Newton Method

We want to provide an overview over convergence analysis of quasi-Newton methods.
First, we need the following definition.
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Definition 2.6:
Let (X, ∥ · ∥) be a normed space. A convergent sequence (xk)k∈N ⊆ X with
limit x∗ ∈ X converges superlinear if there exist a sequence (ck)k∈N ⊆ R,
converging towards zero, such that

∥xk+1 − x∗∥ ≤ ck∥xk − x∗∥. (2.13)

We denote this as
∥xk+1 − x∗∥ = o(∥xk − x∗∥).

Theorem 2.7:
Consider the iteration xk+1 = xk+αkpk, where pk is a descent direction and αk

satisfies the Wolfe conditions with c1 ≤ 1/2. If the sequence (xk)k converges
to a point x∗ such that ∇f (x∗) = 0 and ∇2f (x∗) is positive definite, and if
the search direction satisfies

lim
k→∞

∥∇fk +∇2fkpk∥
∥pk∥

= 0

then
(i) the step length αk = 1 is admissible for all k greater than a certain index

k0

(ii) if αk = 1 for all k > k0, {xk} converges to x∗ superlinearly.

If we apply this to the quasi-Newton method we obtain the result

Theorem 2.8:
Consider the iteration xk+1 = xk + Bk∇f(xk). Let us assume also that (xk)k
converges to a point x∗ such that∇f (x∗) = 0 and∇2f (x∗) is positive definite.
Then (xk)k converges superlinearly if and only if holds

lim
k→∞

∥(Bk −∇2f (x∗)) pk∥
∥pk∥

= 0. (2.14)

These results are proven in [30, Theorem 3.6] and provide one way to show global
superlinear convergence of the two methods BFGS and DFP. The general conver-
gence is shown by using Zoutendjik’s Theorem 2.1, and hence combined with Theo-
rem 2.8, we will come to vicinity of x∗ and obtain superlinear convergence of (xk)k∈N
with step length 1.
For details see [30, Chapter 6.4]. Moreover, as we will see in the next section,
Theorem 2.8 provides an approach to construct reasonable quasi-Newton methods.

2.6.1 BFGS and DFP

In 1951, W.C. Davidon, a computational physicist at Argonne National Laboratory,
proposed the first quasi-Newton method similar to the one presented in this sec-
tion. Frustrated over long computation times and repeated computation crashes,
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he developed a more stable and efficient method than the Newton method. With
its simplicity, robustness and efficiency it has stood the test of time and the DFP
(Davidon-Fletcher-Powell) method, described in [7], and the very similar BFGS
(Broyden-Fletcher-Goldfarb-Shannon), developed in 1970 independently from its
eponyms [2, 9, 11, 35], are yet state of the art for most general applications. In fact
the standard optimization method from MATLAB fmincon is based on the BFGS
method.
Let us discuss the derivation of the method. Assume that Bk, pk and αk define an
iteration method such that

xk+1 = xk + αkpk

and Bk is used to determine pk and αk is determined afterwards.
Both DFP and BFGS are based on a generalized form of the secant method. How-
ever, BFGS updates the inverted curvature matrix and hence the computational
complexity in each iteration of BFGS is in O(n2), compared to O(n3) in Newton’s
method.
We first observe that if

lim
k→∞

∥(Bk −∇2f (x∗)) pk∥
∥pk∥

= 0 (2.15)

then our iteration method converges superlinearly by Theorem 2.8 even if αk = 1
for all k. In particular, Bk is an approximation of the Hessian matrix of f in
the direction pk. But how can we find such an approximation? As suggested by
Eq. (2.15), Bk should be chosen as an approximate of ∇2f(xk), provided that xk

converges towards x∗. In order to do so Davidon considered the modified function
of the second order Taylor approximation of f . That is, the quadratic function

mk : p 7→ f(xk) +∇f(xk)
Tp+

1

2
pTBkp.

If Bk is a good approximation of the Hessian ∇2f(xk) this function becomes the
second order Taylor approximation of f . In order to compute Bk+1 from Bk, it is
now reasonable to interpolate∇mk+1 at the position xk+1 and xk. That is equivalent
to require Bk must approximate ∇2f(xk) in the direction of p. The latter is achieved
by requiring

∇mk+1(0) = ∇f(xk+1), (2.16)

∇mk+1(−αkpk) = ∇f(xk). (2.17)

The second equation simplifies to

∇f(xk+1)−Bk(−αkpk) = ∇f(xk) (2.18)

and gives our condition on Bk. We call it the secant equation

Bk(−αkpk) = ∇f(xk)−∇f(xk+1). (2.19)

Observe that −αkpk = xk − xk+1. The constraint that Bk should be symmetric
positive definite implies that we require

(xk − xk+1)
TBk(xk − xk+1) = (xk − xk+1)

T(∇f(xk)−∇f(xk+1)) ≥ 0. (2.20)
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In general, if f is convex this equation is always satisfied and the Eq. (2.18) has
a guaranteed solution. However, if the Wolfe conditions is satisfied we also have
Eq. (2.20), which follows immediately by the curvature condition, Inequality (4.4).
Thus, if we use the Wolfe condition, the existence of Bk is assured.
To achieve uniqueness consider the minimization formulation

min
B

∥B −Bk∥ (2.21)

subject to B(xk − xk+1) = ∇f(xk)−∇f(xk+1). (2.22)

The formulation aims to minimize the step size. Bk+1 will be set as the unique
solution to above problem. In order to obtain a non-dimensional scaling, we make
use of the weighted Frobenius norm ∥B∥W = ∥W 1/2BW 1/2∥F with weight matrix

W−1 = Gk :=

[∫ 1

0

∇2f(xk + ταkpk)dτ

]
.

From Taylor’s Theorem we have Gk(xk − xk+1) = ∇f(xk)−∇f(xk+1) that implies

[
(
G

−1/2
k (B −Bk)G

−1/2
k

)
ij
] = [1]

for all entry indices i, j and thus the norm is non-dimensional, that is,

[∥B∥G−1
k
] = [1].

For simplicity, we write sk = xk − xk+1 and yk = ∇f(xk) − ∇f(xk+1). One closed
form solution can be determined as

(DFP) Bk+1 =
(
I− ρkyks

T
k

)
Bk

(
I− ρksky

T
k

)
+ ρkyky

T
k , (2.23)

ρk =
1

yTk sk
.

Observe that sk lies in the kernel of (I − ρksky
T
k ), because ρksky

T
k sk = sk and that

ρkyky
T
k sk = yk and thus

Bk+1sk = yk

as required. Using the Sherman-Morrison-Woodbury Formula, we obtain

(BFGS) Hk+1 =
(
I− ρksky

T
k

)
Hk

(
I− ρkyks

T
k

)
+ ρksks

T
k . (2.24)

The algorithm can be formulated as follows:
For Algorithm 5, an effective heuristic is to scale H0 after the first iteration before
the first BFGS update is performed. If we start with H0 = I then set

H0 ←
yTk sk
yTk yk

I.

The factor in front of I is an approximation of the smallest eigenvalue of ∇2f(x0)
−1.

Each iteration has running time in O(n2). The overall superlinear convergence is
proved in [30, Chapter 6.4]. The general advantage of BFGS is its robustness and
low cost for each iteration, while having a steady convergence property. In fact, it
has self-correcting properties. If there are miss estimations of the curvature of the
objective function, it will likely correct itself in a few steps (provided the step length
satisfies the Wolfe conditions).
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Algorithm 5: BFGS
Input: x0, convergence tolerance ϵ > 0, inverse Hessian approx. H0

Output: xk approximate stationary point of f
1 k ← 0;
2 while ∥∇f(xk) > ϵ do
3 pk = −Hk∇fk;
4 Determine αk;
5 xk+1 = xk + αkpk;
6 sk = xk+1 − xk;
7 yk = ∇fk+1 −∇fk;
8 Compute Hk+1;
9 k ← k + 1;

2.7 Algorithms For Nonlinear Least-Squares-Problems

The theory behind the following sections about the Gauss–Newton and Levenberg–
Marquardt method is inspired by [30, Chapter 10].
In least-square problems, the objective function f has the form

f : Rn → R, x 7→ 1

2

m∑
j=1

r2j (x), (2.25)

where each rj is a smooth function from Rn to R. Least-square problems are the
largest source of unconstrained optimization problems. Often they are used for
parameterized problems in a chemical, physical or financial, or economic application.
To measure the discrepancy between the model and the observed behavior of the
system, f is often minimized to obtain optimal parameter values for the model.
Rewriting rj (2.25) to a residual vector r : Rn → Rm, r(x) = (r1(x), . . . , rm(x))

T, we
obtain the equivalent form

f =
1

2
∥r(x)∥2 .

Now, let

J(x) =

∇r1(x)
T

...
∇rm(x)T

 ∈ Rm×n (2.26)

be the Jacobian of the residual vector r. Then

∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)T r(x), (2.27)

∇2f(x) =
m∑
j=1

∇rj(x)∇rj(x)T +
m∑
j=1

rj(x)∇2rj(x) (2.28)

= J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x). (2.29)

In many applications J is cheap to compute. Therefore, the first term J(x)TJ(x) of
the Hessian of f is efficiently computable. JTJ is a good approximation as long as
rj’s are close to affine and small such that

∑m
j=1 rj(x)∇2rj(x) is small.
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2.7 Algorithms For Nonlinear Least-Squares-Problems

2.7.1 Gauss–Newton Method

Consider a function f of the form from Eq. (2.25). In Gauss–Newton, the Newton
method equation for the search direction defined with the Hessian matrix ∇2f(xk)
by ∇2f(xk)p = −∇f(xk) simplifies into

J(xk)
TJ(xk)pk = −J(xk)

Tr(xk). (2.30)

Here we exploited the structure of ∇2f(xk) and ∇f(xk) from (2.29), neglecting the
residual term

∑m
j=1 rj(x)∇2rj(x).

The first advantages of Gauss–Newton over the Newton method is that the calcula-
tion of J is cheap. In contrast, ∇2rj is expensive to compute. If r is approximately
affine, then JTJ is a good approximation and we obtain a quadratic convergence
rate. Note also that if J(xk) has full rank, pk is a descent direction. This follows
from

(pk)
T∇f(xk) = (pk)

T J(xk)
Tr(xk) = − (pk)

T J(xk)
TJ(xk)pk = −∥J(xk)pk∥2 ≤ 0.

Implementation remarks: If the number residuals m is large while the dimension
n is small, it might be useful to compute

J(xk)
TJ(xk) =

m∑
i=1

(∇ri(xk))(∇ri(xk))
T, J(xk)

Tr(xk) =
m∑
i=1

ri(xk)∇ri(xk) (2.31)

successively, since J(xk)
TJ(xk) ∈ Rn×n and J(xk)

Tr(xk) ∈ Rn.
In practice the Gauss–Newton method has nearly quadratic convergence rate when
the eigenvalues of J(xk)

TJ(xk) are large compared to the term |rj(x)|∥∇2rj(x)∥.
However, if J(xk)

TJ(xk) is only semi-definite (2.30) is not always solvable. A more
sophisticated implementation based on the directional equation (2.30) was provided
by Levenberg and Marquardt.

Convergence of Gauss–Newton Method: To see that Gauss–Newton Method
has nearly quadratic convergence rate, we exploit the fact that J(xk)

TJ(xk) is a
sufficiently good approximation of ∇2f(xk). This is the case if xk is in vicinity of
x∗. Essentially, the proof is the same as for the Newton method 5. For simplicity
let J = J(xk). The line of the vector field t 7→ ∇f(x+ t(y− x)) derives to ∇2f(x+
t(y − x))(y − x). Therefore

∇f (xk)−∇f (x∗) =

∫ 1

0

JTJ (x∗ + t (xk − x∗)) (xk − x∗) dt

+

∫ 1

0

H (x∗ + t (xk − x∗)) (xk − x∗) dt

where H(x) denotes the second-order term in of ∇2f(xk). We then have that xk+1−
x∗ is equal to

xk + pk − x∗ = xk − x∗ −
[
JTJ

]−1∇f (xk)

=
[
JTJ

]−1 [
JTJ (xk − x∗) +∇f (x∗)−∇f (xk)

]
.

51



2 Optimization Methods

Assuming Lipschitz continuity of H(·) near x∗, shows that

∥xk+1 − x∗∥ = ∥xk + pGN
k − x∗∥

≤
∫ 1

0

∥∥∥[JTJ
]−1

H (x∗ + t (xk − x∗))
∥∥∥ ∥xk − x∗∥ dt+O

(
∥xk − x∗∥2

)
≈
∥∥∥[JTJ

]−1
H (x∗)

∥∥∥ ∥xk − x∗∥+O
(
∥xk − x∗∥2

)
.

If H(x∗) = 0 the convergence rate is quadratic.

2.7.2 Levenberg–Marquardt Method

We use a similar approximation as in Gauss–Newton method but replace the line
search by a trust-region strategy. Thus we avoid one of the weak points of Gauss–
Newton method: Jacobian matrix rank-deficiency. In order to derive the method,
let us first consider the sub problem

min
p

1

2
∥Jkp+ rk∥2 , (2.32)

subject to ∥p∥ ≤ ∆k (2.33)

where ∆k is the trust region radius. Further let us focus on the sub problem (2.32)
and drop the index k in the following. By Theorem 1.4 p∗ is a solution of (2.32) if
and only if there is a λ ≥ 0 such that

(JTJ + λI)p∗ = −JTr (2.34)

and 2
λ(∥p∗∥ −∆) = 0.

Observe that (2.34) is always solvable for almost all λ ∈ R.
The routine implemented in Matlab simplifies the idea above. Instead of choosing

∆k and using a method to solve the sub problem 2.32, we choose the damping factor
λk and adjust it in each iteration. It is closely related to the value of ∆k. That is, if
∆k tends to zero then λk tends towards infinity. The solution of (2.32) is then close
to the steepest descent direction, with magnitude tending towards zero. On the
other hand, if λk is small the solution pk tends to be the global minimizer of (2.32)
implying that the corresponding ∆k is large. The following algorithm is inspired
from [19].
If λk is close to zero then pk is close to a global minimizer of (2.32). On the

other hand, as λk tends to infinity, pk tends to the steepest descent direction with
magnitude tending towards zero. Consequently, for some sufficiently large λk

f(xk + pk) < f(xk)

holds.

Implementation remarks: We have two function evaluations per iteration. In
addition, we need the Jacobian matrix J explicitly. To be efficient, providing J
during the computation of r or f is crucial. Here, the dimension of J determines
the complexity of each iteration.
Further, observe that the gradient ∇f(xk+1) can be stored during the evaluation of
f(xk + pk), hence no additional evaluation of f is required.
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2.8 General Implementation Remarks

Algorithm 6: Levenberg–Marquardt method

Input: x0, f = 1
2∥r∥

2, tolerance ϵ > 0
Output: xk approximated stationary point of f

1 λ0 ← 0.01;
2 k ← 0;
3 while ∥∇f(xk)∥ ≥ ϵ do
4 Try to solve (J(xk)

TJ(xk) + λkI)pk = −J(xk)
Tr(xk);

5 if pk is updated and f(xk + pk) < f(xk) then
6 λk+1 = λk/10;
7 xk+1 = xk + pk;
8 k ← k + 1;

9 else
10 λk+1 = λk · 10;
11 xk+1 = xk;
12 k ← k + 1;

13 return xk;

2.8 General Implementation Remarks

Which algorithms are used in fmincon and lsqnonlin?
fmincon has the option to use several algorithms. The default algorithm is the
interior-point algorithm [30, Chapter 14] for some explanation and Karmarkar’s
algorithm from 1984 [17] which outperformed the simplex algorithm to solve linear
programming problems. It has been further developed to a non-convex optimization
solver and is now among the best performing constrained optimization algorithms
[30, Chapter 19]. In MATLAB’s function fmincon the interior point algorithm is
split in two possible iterations [10]. Either it computes a step directly from solving
the Karush-Kuhn-Tucker equations or it uses the trust-region method. Either way,
in our case we have no further constraints than the box constraint x ∈ [0, 1]n, and
the algorithm results in a simple trust-region method with Bk defined as in the
BFGS method Eq. (2.24) as default. lsqnonlin has as a default algorithm the
trust-region method which uses for Bk the matrix according to Eq. (2.30). And
to solve the quadratic minimization problem, it uses the two-dimensional subspace
method (Section 2.4) . lsqnonlin has as a second option the Levenberg–Marquardt
method which is fully described in Algorithm 6. We categorize it to the implicit
trust-region methods.
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2 Optimization Methods

Iteration method
xk+1 = xk + αkpk

Trust-Region-
Method (Section 2.4)
1. Solve pk =

argmin∥p∥≤∆k
q(p),

2. check if f(xk + pk) <
f(xk),
3. set xk+1 = xk + pk,
otherwise
4. reduce ∆k and re-
peat.

Implicit Trust-Region
Method (Section
2.7.2)
1. Solve directional
equation

(Bk+Iλk)pk = −∇f(xk),

2. check if f(xk + pk) <
f(xk),
3. set xk+1 = xk + pk,
otherwise,
4. reduce λk and repeat.

Line-Search (Section
2.1)
1. compute pk from
Newton step

Bkpk = −∇f(xk).

2. compute αk

Figure 2.4:
Implementations
fmincon uses trust-region method with BFGS (for the interior-point and trust-region
method)
lsqnonlin uses trust-region method or implicit trust-region method with Bk as in
Eq. 2.30.
unitBoxBFGS (MRST) uses line search with BFGS.
unitBoxLM (MRST) uses implicit trust-region method with Bk as in Eq.
2.30 (the damping factor λ is adapted more flexible)
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3 Tuning Reduced-Order Models in
MRST

The model equations and the discretization techniques discussed earlier in this chap-
ter are all implemented in the MATLAB Reservoir Simulation Toolbox (MRST) [26],
which is a comprehensive and open-source toolbox for reservoir modeling and sim-
ulation, developed by the Computational Geosciences group in the Department of
Mathematics and Cybernetics at SINTEF Digital. The software also includes an
automatic differentiation library aimed to be simple to use and efficient for vector
quantities (which in many ways are the cornerstone idea in MATLAB). MRST also
contains an object-oriented framework that implements discrete differential opera-
tors, a class hierarchy of physical model of increasing complexity, efficient linear and
nonlinear solvers, and gradient-based iterative optimizers, to name a few.

An extensive introduction to reservoir modeling and the usage of MRST is doc-
umented in Lie’s book [22], with more details on advanced usage documented in a
follow-up volume [23].

In this last chapter we want to connect the theory from the previous chapters in
concrete calibrations of reduced-order models (see Section 1.6). We will present
results from numerical experiments to compare coarse-scale model calibration of
Gauss–Newton methods with the quasi-Newton method BFGS. First, we need to
understand first how a reservoir model is incorporated in MRST and how optimiza-
tion is performed.

The chapter is divided into four sections. First, we discuss a code snippet in MRST
about this calibration process. Then we provide the data about the considered
models. This includes, the size, important properties and the parameters on which
we are performing the optimization. Then we introduce the relaxations of the Gauss–
Newton methods and explain its expected behaviour. And afterwards we present
the results of the calibrations with all optimizer of a natural subclass of relaxations
of the Gauss–Newton methods and BFGS. This will be data of 63 calibrations with
each 30 iteration.

3.1 Implementation of Reduced-Order Models

How to generate a porous media subsurface flow model and simulate the model in
MRST?

We consider this process in an example. First we compute a grid describing a 400
× 400 m domain using a 50 × 50 Cartesian grid, which through its geometry defines
the discrete gradient and divergence operator.
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3 Tuning Reduced-Order Models in MRST

nxyz = [ 50, 50, 1];

Dxyz = [400, 400, 10];

rng(0)

G = computeGeometry(cartGrid(nxyz, Dxyz));

rock = getSPE10rock(1:nxyz(1), (1:nxyz(2)), 1:nxyz(3));

rock.poro = max(rock.poro, 0.1);

In this case we have a Cartesian grid and hence the transmissibility, which is con-
necting the flux to the pressure drop, is a scalar. The function computeGeometry

is crucial to determine the matrix for the discrete divergence operator. The rock
porosity is taken from SPE10—a complex rock structure with a realistic porosity
distribution. To maintain all cells active, we set the minimum porosity to 0.1. Next,
we add production and injection wells in opposite corners.

%% wells/schedule

W = [];

% Injectors (lower-left and upper-right)

[wx, wy] = deal([1, nxyz(1)], [1, nxyz(2)]);

for k = 1:2

W = verticalWell(W, G, rock, wx(k), wy(k), 1:nxyz(3), ...

’Type’ , ’rate’, ’Val’, 300*meter^3/day,...

’Name’, sprintf(’I%d’, k), ...

’comp_i’, [1 0], ’Sign’ , 1);

end

% Producers (upper-left and -right)

[wx, wy] = deal([1, nxyz(1)], [nxyz(2), 1]);

for k = 1:2

W = verticalWell(W, G, rock, wx(k), wy(k), 1:nxyz(3),

’Type’ , ’bhp’,v’Val’, 100*barsa,...

’Name’, sprintf(’P%d’, k), ...

’comp_i’, [1 0], ’Sign’ , -1);

end

The producers are set to operate at a constant bottom-hole pressure (’type’ = ’bhp’),
in which case the value ’Val’ has units bar. The injectors are set to operate at a
fixed injection rate (’type’ = ’rate’), and the value ’Val’ is given in [m3/s].
The fluid is a structure of up to three phases (water, oil, gas). initSimpleADIFluid

defines a fluid with required parameters ’phases’, WOG defining the phases (here
water, oil and gas are present) and the density ρ. For instance, if the have the phases
WOG we initialize the density by [1000, 700, 100]*kilogram/meter^3 meaning
that water, oil and gas has densities of 1000 kg/m3,700kg/m3 and 100kg/m3, re-
spectively. The lines

pRef = 200*barsa;

fluid = initSimpleADIFluid(’phases’, ’WO’,...

’mu’ , [.3, 3]*centi*poise,...

’rho’, [1014, 859]*kilogram/meter^3, ...

’n’, [2 2]);

c = 5e-5/barsa;

p_ref = 200*barsa;

fluid.bO = @(p) exp((p - p_ref)*c);

modelRef = GenericBlackOilModel(G, rock, fluid, ’gas’, false);

creates a fluid with phases water and oil. The first entry of each vector defines
the values of the options for water and the second entry defines the option for oil.
Relative permeability is understood as the shift in permeability due to different sat-
uration value. The rock might be less permeable for oil due to high saturation value
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3.1 Implementation of Reduced-Order Models

of water. Usually, the relative permeability is modelled as a monomial function in
terms of the saturation. n is the degree of the monomial function modeling the
relative permeability of the fluid. The input c defines the (constant) fluid compress-
ibility. In the case of the absence of large amounts of gas in the fluid it can be
assumed to be constant. Then flud.bO is the relation for density with pressure
from Eq. (1.8).

% Set up 4 control-steps each 150 days

scheduleRef = simpleSchedule(...

rampupTimesteps(2*year, 30*day, 5), ’W’, W);

%% run reference simulation

stateInitRef = initState(G, W, 200*barsa, [0, 1]);

modelRef.toleranceCNV = 1e-8;

[wsRef, statesRef] = ...

simulateScheduleAD(stateInitRef, modelRef, scheduleRef);

For the simulation we set up the time discretization in a straight forward way,
where we consider a total time span of 2 years. Last but not least, the simulation
function simluateScheduleAD uses the discretized divergence and gradient operator
to obtain a solution for each time steps. Then a time discretization with implicit
Euler is set up and solved by Newton–Raphson method. The output from each time
step is a vector of pressure and saturation for each cell in the simulation grid, in
addition to well production rates and bottom-hole pressures.

How do we set up a coarse grid model and parameters to perform adjoint-based
training?

MRST provides a framework to generate a coarse grid from a regular grid in a very
intuitive way. Here we just reshape Cartesian grid cells to match the new dimension
3× 5× 1.

%% make a coarse model and run

p = partitionCartGrid(modelRef.G.cartDims, [3 4 1]);

model = upscaleModelTPFA(modelRef, p);

model.toleranceCNV = 1e-6;

schedule = upscaleSchedule(model, scheduleRef);

stateInit = upscaleState(model, modelRef, stateInitRef);

[ws0, states0] = simulateScheduleAD(stateInit, model, schedule);

To train our coarse grid model, we define parameters which we want to optimize.
While the transmissibility in the fine grid reference model was computed using cell
geometries and permeability, we now allow it to to be tuned so as to match the sim-
ulation results of the fine grid reference model in terms of the well production rates
at each time stamp. The parameter ’conntrans’ models connection transmissibility
relating the pressure difference at the well with the production rate which is also
usually derived from the properties of the well and the surrounding properties but
here it is enabled to fit with the averaged pressure over larger cells.
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3 Tuning Reduced-Order Models in MRST

%% parameter options

setup = struct(’model’, model, ’schedule’,...

schedule, ’state0’, stateInit);

nc = modelRef.G.cells.num;

nf = numel(modelRef.operators.T);

% transmissibility

parameters{1} = ModelParameter(setup, ’name’, ’transmissibility’, ...

’type’, ’value’);

parameters{2} = ModelParameter(setup, ’name’, ’conntrans’, ...

’type’, ’value’);

At the end, we define the residual function which adds up the mismatch between
the well production rates at every time step with a predefined weight. The oil and
water rate are here considered more important, since we are relating cost factors
with those.

%% Setup function handle to evaluateMatch

u = getScaledParameterVector(setup, parameters);

% Define weights for objective

weighting = {’WaterRateWeight’, (300/day)^-1, ...

’OilRateWeight’, (300/day)^-1, ...

’BHPWeight’, (500*barsa)^-1};

% 1. gradient case - objective is sum of mismatches squared

obj1 = @(model, states, schedule, statesRef, tt, tstep, state)

matchObservedOW(model, states, schedule, statesRef,...

’computePartials’, tt, ’tstep’, tstep, weighting{:},...

’state’, state, ’from_states’, false,’mismatchSum’, true);

f1 = @(u)evaluateMatch(u, obj1, setup ,parameters,...

statesRef, ’enforceBounds’, false);

Observe that evaluateMatch does not only provide the residual function value, but
also performs the gradient computation with the use of automatic differentiation,
which allows us to perform the reverse mode simulation to obtain the adjoints. If
we now use an optimizer from MRST or the MATLAB Optimization Toolbox, we
can provide the gradient and save important computation complexity compared to
using finite differences to compute the gradient with 2m many function evaluations
(see Eq. (1.34)). These function evaluations of f1 are coming with a simulation of
the coarse grid model for a long simulation with multiple timesteps, and thus the
advantage of using automatic differentiation is significant. Usually, a training cycle
uses up to 30 iterations and quasi-Newton often only requires one function evaluation
per iteration. Hence, computing the gradient via finite differences already takes more
computation time than the whole training process when we provide the gradient in
each iteration beforehand.

3.2 Reduced-Order Models in MRST

The problem we consider compares well production rates of the reduced-order models
with the fine-scale reference models. Note that our goal is to generate low cost
alternatives for forecasting production rates to optimize well control strategies [14].
The general setting of Section 1.6 will be refined in the following. Hence we have
again

min
ζ∈[0,1]n

f(ζ) =
1

2
∥r(ζ)∥2 (3.1)
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3.2 Reduced-Order Models in MRST

where r(ζ) ∈ Rm. The restriction on the unit box [0, 1]n can be achieved by scaling
the parameters. We restrict ourselves to the case where the ri’s are related to the
well production rates for each time step. For a fixed time step and well, we compute
the well production mismatch of the coarse-scale model by comparing the different
values of pressure at wells or production rates of wells. At the end our coarse-scale
model predicts well production rates for the fine-scale model over the whole lifespan
of a reservoir despite using only a small fraction of the number of cells in the fine-
scale model.
We call the the process where we iteratively find an approximation of a local mini-
mum tuning or training of the coarse-scale grid model. However, we have no method
to find the global minimum. Therefore, different optimization algorithms with sim-
ilar performance find different solutions. An ensemble of those method potentially
improves the end result. In particular the hierarchy of Gauss–Newton method we
will introduce in Section 3.3 provide a basis for such an ensemble of optimizers.
As indicated above, the MRST optimization algorithm is using BFGS with line

search. Another task here is to compare the performance of relaxations of the Gauss–
Newton methods from the MRST Optimization Toolbox with the current algorithm
and approve the theoretical faster convergence rate. The examples we will train are
three reservoir models which are all contributed to the MRST software. A compre-
hensive list of all available data sets in MRST can be opened with the command
mrstStartupMessage in MATLAB followed by clicking on mrstDatasetGUI(). We
consider a simple Cartesian grid model by Stein Krogstad with a SPE10 rock [4]
permeability and porosity field, a model of the Norne field in the Norwegian Sea by
Sintef Digital [32] and the synthetic Egg-model, generated at Delft University by
Jansen et al. [13] from 2014. The reduced-order training files were contributed by
Sintef Digital.
We consider the following reservoir models:

1. A Cartesian grid with four wells and 2500 cells and rock porosity SPE10. See
Figure 3.1.

2. The Norne field model in the Norwegian Sea with 11 wells and 44915 cells.
See Figure 3.3.

3. The Egg model, a synthetic model with 12 wells and 18533 cells. See Figure
3.4.

The following plots show the fine and coarse-scale models with a description of how
many wells and cells we are considering. The more comprehensive data is provided
in the datasheet where also the dimension of the Jacobian of r from Eq. (2.26) and
the tuning parameters are listed (see Table 3.1). From this table we can deduce
the computational complexity of the given optimization problem but we can also
analyze it in more pratical terms.
Let us consider the easiest reservoir model of the three to perform exemplarily an

analysis.

1. The Sensitivity model has a 3D cart grid of dimension 50× 50× 1. The rock
is of constant porosity and permeability or is part of SPE10—a complex rock
structure feature from MRST [4, Model 2].

2. The coarse grid is a 3D cart grid of dimension 3× 4× 1.
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3 Tuning Reduced-Order Models in MRST

Figure 3.1: The colorbar indicates the porosity. The left upper plot shows a 50 ×
50 × 1 Cartesian grid with a SPE10 porosity field with four wells. The
right plot shows the coarse grid model of dimension 3 × 4 × 1 before
training. The porosities are obtained by averaging the porosity of the
cells in the fine grid model. I1, I2 are the injector and P1, P2 are the
producer wells. The least-square function f consists of the sum of the
mismatches of the well production rates in both models for each time
step. The training result is shown in the third plot. The porosity is
nowhere close to represent the distribution.

3. The parameters are ’transmissibility’, ’conntrans’ and ’porovolume’.

The transmissibility and the connection transmissibility define the values of the
discrete gradient and divergence operator. In the reference grid the transmissibility
is the proportionality constant of the flux and the pressure difference and depends on
the permeability of the rock and the geometry of the cell partition. More precisely,
it is defined here in Eq. (1.22). ’conntrans’ stands for connection transmissibility
and is the proportionality constant between the flux and the pressure difference at
the wells. Let us consider a small computation to obtain n, the number of parameter
variables, from such a physical description.
There are two ways to obtain this. First, MRST provides grid structures with a lot
of geometrical information such as orientation of faces, centroids of cells, volumes.
Now let f = model.G.faces.neighbors where f consists of two columns where
each entry indicates an oriented face from the first entry to the second entry. We
let all outer faces be oriented inwards, that means all entries for faces to the outside
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3.2 Reduced-Order Models in MRST

Figure 3.2: The Norne field in the Norwegian Sea with 11 wells. The fine grid model
has 44915 cells and the coarse grid has 53 cells . The parameters are
’transmissibility’ , ’conntrans’ , ’porevolume’, and saturation limits of
the cells for each fluid (’swcr’, ’swl’, ’sowcr’ etc.).

are starting with a zero, where zero indicates the outside cell.
Then the number of rows in f(~(f(:,1) == 0),:) equals the number of inner
faces which is also equals the number variables for the parameter ’transmissibility’.
Secondly, in our example one could compute the number of inner faces by hand. Let
us consider the more general case.

Lemma 3.1 (Inner Faces in Cartesian Grid):
Let us consider the Cartesian grid of dimension x1 × . . . × xN where xi ∈ N
then the number of inner faces in the grid is equal to

N∑
j=1

(xj − 1)
∏
i ̸=j

xi.

Proof. Let ej be the standard basis vector and let the Cartesian grid be embedded in
a Cartesian coordinate system aligned with the coordinate axes. Then we can count
the faces orthogonal to ej which are exactly

∏
i ̸=j xi faces for a fixed j coordinate

where we find a face orthogonal to ej, and since we are counting only inner faces we
have to multiply this by xj − 1. Since every face is exactly orthogonal to one of the
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Figure 3.3: The simulation of the well production rates of the trained coarse-scale
model matches well to the production rates of the fine grid model.

ej, we can sum up the number of faces as in the formula.

Therefore our grid with dimensions 3 × 4 × 1 has (4 − 1)3 + (3 − 1)4 = 17 inner
faces which matches the output in MATLAB for the command
size(f(~(f(:,1) == 0),:),1). Hence we have 17 variables for the transmissibility
parameter and the connection transmissibility is a variable for each well, hence we
have 4 variables for this parameter. The porosity is defined upon each cell and yield-
ing 12 variables for the tuning of ’porosity’ giving n = 33 in our example. Now the
Sensitivity example uses a schedule of 30 time steps and contains 4 wells. Since each
well production will be assessed by 3 pressure values (water pressure, oil pressure and
’bhp’ —bottom hole pressure) we obtain 3 · 4 · 30 = 360 = m residual entries. Hence
the Jacobian for the Gauss–Newton methods is of dimension 360× 33. In order to
solve a Gauss–Newton directional equation, we consider the matrix JTJ ∈ R33×33

which is very cheap compared to the simulation of the coarse-scale model and hence
neglible.
This is also the case for the other examples hence the main issue is to mini-
mize the number of function evaluations. Since Levenberg–Marquardt uses rela-
tively many function evaluations per iteration, the trust-region method has a more
promising overall performance and the same expected quadratic convergence rate.
One drawback, however, which we will encounter while considering relaxations
of the Gauss–Newton directional equation (2.30) is that the existence of solution
for JTJpk = −JTr can be problematic and then we must switch to Levenberg–
Marquardt.
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Figure 3.4: The Egg-model with uniform rock porosity. The fine-scale grid consists
18533 cells and the coarse-scale grid consists of 33 cells. The parameters
are ’transmissibility’ , ’conntrans’ , ’porevolume’, and saturation limits
of the cells for each fluid (’swcr’, ’swl’, ’sowcr’ etc.). In all three reser-
voir models we can achieve almost arbitrary accuracy by increasing the
iteration maximum.
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Table 3.1: The attributes provide a small insight into the complexity of a train-
ing iteration. Recall that updating the direction for BFGS takes O(n2)
computation steps. Solving the system with JTJ + λI takes O(n3) com-
putation steps. One could also compute m for each column (or model) by
taking the product of number of wells times number of time steps times
number of fluids plus one—pressure at the wells for each fluid plus the
’bhp’, that is, the bottom hole pressure. The tuning parameters define n.
In order to illustrate that conisder the column of the Egg model. We can
observe that with all the saturation and relative permeability parameters
are defined for each cell in the coarse grid. Hence n for the Egg model
must be equal to 33 · 7 + 12 + 54 = 297, where 54 is the number of inner
faces in the grid of the Egg model and 12 is the number of wells match-
ing the number of variables for ’conntrans’. The saturation is defined on
a fluid for each cell. The relative permeability is in the physical model
due to differences in permeability in different states of saturation. Fully
with oil saturated porous media is usually less permeable for water than
unsaturated porous media.

Attribute Norne Egg Sensitivity

N. of cells (fine-scale) 44915 18533 2500
N. of cells (coarse-scale) 53 33 12

N. of wells 11 12 4
training time steps (coarse) 24 60 30

Fluid types WO WO WO
dimension of J 792× 472 2160× 297 360× 33

Tuning parameters
porevolume true true true
conntrans true true true

transmissibility true true true
smallest water saturation (SWL) true true false
highest water saturation (SWCR) true true false
max. water saturation (SWU) true true false
highest oil-in-water sat.(SOWR) true true false
max. rel. permab.water (krw) true true false
max. rel. permab. oil (kro) true true false
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3.3 Complexity and Gauss–Newton Relaxation

The data sheets are of importance for the complexity analysis. Recall that we pass
the gradient from the simulation of the coarse grid model to the optimizer otherwise
it will compute it numerically with 2n function evaluations, where n is the dimen-
sion of the parameters. That however, implies that we have to compute and store
the Jacobian matrix J . That is the main drawback of the Gauss–Newton methods
compared to BFGS, since J ∈ Rm×n where in the considered cases m≫ n. For the
BFGS method it is enough to pass ∇f(xk) ∈ Rn×1. Other from that the iteration
complexity is mainly formed by the number of function evaluation, since computing
the direction of the next step only costs O(n2) for BFGS and O(n3) computation
steps for the Gauss–Newton methods and n is in the magnitude of the number of
coarse grid cells. For comparison, alone in order to compute one space discretization
for one time step in the simulation of the coarse grid model we require to solve the
system with the transmissibility matrix (1.27) which costs at least O(N2) compu-
tation steps, where N equals the number of cells in the coarse-scale model. Also we
solve for each time steps the implicit-Euler Equation (1.38) with Newton–Raphson,
which also requires O(N3) computations in each iteration. Hence the function eval-
uations of f are clearly the main contributor of computational complexity in each
iteration and the number of required function evaluation vs. the decreasing residual
gives us the main indicator on the performance of the algorithm. It is to be expected
that the algorithms with quadratic convergence needs a significantly smaller num-
ber of iteration and function evaluations and hence and overall better performance
than BFGS with line search. However, the quadratic convergence of Gauss-Newton
is only given in special conditions (when the residual entries ri are small or close
to affine mappings). The performance of the Gauss-Newton methods on the three
reservoir models will be discussed in Section 3.4.
So even though we are expecting that saving J is not as expensive as running more
function evaluations, we want to experiment with the reduction of the dimension
of J leading to a certain relaxation of the Gauss-Newton methods. This class of
Gauss-Newton methods reduce the complexity by considering partial sums of r to
reduce dimensions of the Jacobian matrix. We write those dimension reduced resid-
ual vectors as

r̃ = (r̃I =
∑
i∈I

ri, I ∈ P )T (3.2)

where P is a partition of {1, 2 . . . ,m}. A proper definition of those methods is the
following:
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Definition 3.2 (Relaxations of Gauss-Newton):
Let

J =

∇r
T
1
...
∇rTm

 ∈ Rm×n.

For a partition (I1, . . . , Iℓ) of {1, . . . ,m} we consider relaxations of the Gauss-
Newton methods of the form

J̃TJ̃pk = −JTr (3.3)

where

J̃ =


(
∇
∑

i∈I1 ri
)T

...(
∇
∑

i∈Iℓ ri
)T
 ∈ Rℓ×n. (3.4)

Observe that for the trivial partition ({1, . . . ,m}), J̃ is one row of dimension n
and the resulting method is J̃TJ̃pk = −∇f(xk) where J̃

TJ̃ has dimension 1 and the
system is likely to be not solvable. In general, if ℓ < n, the trust-region method for
least square problems from MATLAB Optimization Toolbox automatically changes
to the Levenberg–Marquardt method which reduces to

(λI+ J̃TJ̃)pk = −∇f(xk)

which is then solvable for some λ ̸= 0. We restrict ourselves to the subclass of par-
titions of {1, . . . ,m} which are equal sized and only merges residuals for the same
well and pressure point and fluid but for different consequent time steps. For exam-
ple if we consider the Sensitivity model, then we have 4 wells with pressure values
for oil and gas and bottom hole pressure resulting in 12 residuals for the first time
steps. The next 12 residuals represent those values for the second time step and
so on. If we now consider this enumeration and merge consequent time steps with
a partition of equal-size 2, we obtain the corresponding partition of {1, 2, . . . , 360} as

r1
r2
r3
...
r12

r13
r14
r15
...
r24

r25
r26
r27
...
r36

r37
r38
r39
...
r48

r49
r50
r51
...
r60

r61
r62
r63
...
r72

. . .

r337
r338
r339
...

r348

r349
r350
r351
...

r360

For a short analysis on the performance of the relaxation, we consider the identity
from Eq. (2.29), that is,

∇2f = JTJ +
m∑
i=1

r∇2r =
m∑
i=1

∇ri∇rTi +
m∑
i=1

r∇2r.
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Remark 3.3:
For a partition (I1, . . . , Iℓ) of {1, . . .m} J̃ defined as in Eq. (3.4, we have

J̃TJ̃ = JTJ +
ℓ∑

i=1

∑
j ̸=k∈Ii

∇rj∇rTk .

Proof. A straightforward computation gives

J̃TJ̃ =
ℓ∑

i=1

(
∇
∑
j∈Ii

rj

)(
∇
∑
j∈Ii

rj

)T

=
ℓ∑

i=1

( ∑
j=k∈Ii

∇rj∇rTj +
∑

j ̸=k∈Ii

∇rj∇rTk

)

= JTJ +
ℓ∑

i=1

∑
j ̸=k∈Ii

∇rj∇rTk .

The remark shows that the perturbation term
∑ℓ

i=1

∑
j ̸=k∈Ii∇rj∇r

T
k is small for

finer partitions. Hence J̃TJ̃ becomes a worse approximation of ∇2f for coarser
partitions of {1, . . . ,m} which matches the intuition.
In order to approve these theoretical observations, we run the calibrations of

coarse-scale models for all three models on all those relaxations. In our case this
will result in 63 training processes (30 for the trust-region relaxations with Gauss-
Newton, 30 for Levenberg–Marquardt relaxations and 3 for BFGS). However, as
indicated most of the trials with the trust-region method will end up with the results
from Levenberg–Marquardt, since lsqnonlin automatically switches to Levenberg–
Marquardt when J has less rows than columns in order to avoid the situation where

J̃TJ̃pk = −JTr

has no solution.

3.4 Numerical Experiments

We will provide in this section a concise presentation of our results. First we present
the results of the standard Gauss-Newton methods from lsqnonlin, that are, the
trust-region method with Gauss-Newton directional Eq. (2.30) and Levenberg–
Marquardt. Then we will discuss the results of the relaxations. We focus on the
’good’ results and explain surprising performances against the intuition of Remark
3.3. We will conclude this section with suggestions for improvements and ideas
which could be applied for further developments.
The implementation of the examples for tuning parameters for coarse-scale models

were contributed by Sintef Digital. However, the script to generate the tables and
the figures, and also systematically going through the relaxations is all automated
and contributed by me.
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Figure 3.5: The format for the title name is ’field name’ + ’number of iterations’ +
’-’ + ’k’ where k indicates that we merge the residuals regarding to k
consequent time steps. We consider the relaxations of the Gauss-Newton
methods from Definition 3.2 with merging residuals from 5 consequent
time steps. Levenberg–Marquardt method performs worse in terms of
function evaluation but also in terms of optimal value. The plots on the
right hand side indicate the real complexity of the training process.

Gauss-Newton against BFGS. On 30 iterations the Gauss-Newton methods out-
perform BFGS in the Sensitivity model and the Egg-model. However, the result is
not so clear for the Norne model (see Figure 3.6). The trust-region method per-
forms much worse than the Levenberg–Marquardt method and even worse than
BFGS. However, the Levenberg–Marquardt method outperforms BFGS when we
train with 50 iterations—even when the Levenberg–Marquardt method uses for this
results 20 more function evaluations than BFGS. A fair comparison here would be
achieved by running 20 more iterations of BFGS. The similarity of the convergence
rates of both Gauss-Newton methods are observeable for the Egg and Sensitivity
models but for the Norne model it is not the case.
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Figure 3.6: Perfomance of the Gauss-Newton methods against BFGS. For the Sensi-
tivity example the quadratic convergence rate of Levenberg–Marquardt
is clearly visible in the beginning. For the Norne model the steady
convergence of BFGS seems to outperform Levenberg–Marquardt here,
except at the end where the quadratic convergence rate of Levenberg–
Marquardt creates the better end result with respect to the number of
iterations.
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Relaxations of the Gauss-Newton Methods. Table 3.2 shows the end residual
value and the number of function evaluations for each of the relaxations of the
Gauss-Newton methods. The blank spaces indicate that the integer in the first
column doesn’t divide the number time steps for the respective schedule of the
model or the trust-region method could not be applied in that case. There we don’t
look at the partition, because it is not equal-sized (even though there is particular
reason for the partition to be equal-sized).
As expected the results show a tendency to poorer performance of the relaxations
with large partition size. On top of that the trust-region method automatically
switches to the Levenberg–Marquardt method when m < n, so there is no data on
larger equal-sized partitions for the trust-region method.
Some results indicate that the relaxation can produce equally good results to the
classical methods. For instance Norne with partition of size 3,4 and 6 and also
the Sensitivity model for partition of size 2 with the Levenberg–Marquardt method
produces better results than the classical Gauss-Newton methods.
with the same time complexity. An important addition is in the Appendix 4.2.
There are more plots showing the calibration process with the relaxations. One can
see that not only the result improves but also the convergence behaviour can change
completely. That means, that some of those relaxations can find equally good but
completely different optimization paths.
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Table 3.2: The tables show the misfit value of the solution and the number of func-
tion evaluation produced by the relaxations (with respect to the time
steps) of the trust-region method and the Levenberg–Marquardt method
with 30 iteration. The first column contains the divisor of the number
of overall time steps, which defines the size of a class of the equal-sized
partition as in Eq. (3.2). For instance the first row describes the stan-
dard case where each time steps and well and type yields one residual
summand. We are expecting the best result in the first row, however, we
observe that this is not always the case. Small divisors produce even bet-
ter solutions, for instance in the second table for 3,,4 and 6 in the Norne
field. Even with big divisors as 12 we obtain feasible results. However,
those are worse than BFGS and considering the high time complexity due
to many function evaluation, BFGS is to be preferred. Further observe
that the trust-region method finds a local minimum for divisor 2 and 3
even before reaching the iteration maximum of 30. This makes the trust-
region method surprisingly more effective in the those cases.

Trust-region method
Div. Norne - res. Egg - res. Sens. - res. Norne F Egg F Sens F

1 0.075533 0.00016919 0.013087 32 32 32
2 0.00024668 0.0062764 22 32
3 0.54222 0.00023337 0.0099922 26 18 32
4 0.0002943 21
5 0.00033397 0.099332 32 32
6 0.0011701 0.039545 32 32
10 0.033208 32
12

Levenberg–Marquardt

1 0.0047734 7.1259e-05 0.033009 49 46 54
2 0.0053582 0.00013787 0.01997 49 49 52
3 0.0032048 0.00018697 1.1195 50 48 30
4 0.0038343 0.00030101 47 48
5 0.00034416 0.46061 50 54
6 0.004298 0.00062888 0.075597 50 49 52
8 0.027227 53
10 0.0011051 0.20978 50 54
12 0.0091827 0.0012233 53 50
15 0.00133 0.10099 49 52
16 0.034075 51
20 0.0014075 51
24 0.034075 51
30 0.0013314 11.9948 52 58
48 0.034075 51
60 0.0023196 49
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Conclusion. From Fig. 3.6 we see a clear tendency for the faster convergence rate
of the Gauss–Newton methods. In all three examples the convergence rate of the
Levenberg–Marquardt method convinces, except for the Norne field model. The
last two plots in Fig. 3.6 clarify those doubts. The Levenberg–Marquardt method
manages to obtain significant improvements in the last 20 more iterations. The closer
we come to a local minima, the better the Gauss–Newton update strategy Eq. 2.30
provides a approximation of the Hessian matrix (because the residual values are
small, compare Eq. (2.29)) and also the better the Newton method would have had
performed.
The trust–region method convinces in the Sensitivity example and the Egg model

but the second row of plots in Fig. 3.6 shows it performs much worse for the Norne
field.
We don’t observe these fluctuating steep error reduction from the Levenberg–Marquardt
method even though both methods rely on the same Gauss–Newton update strategy.
Hence we can attribute the discrepancy in convergence within the Gauss–Newton
methods to the weak adjustment strategy of the trust–region radius ∆k or the inac-
curacies of the two-dimensional sub space method in Section 2.4.
From Table 3.2 we observe that there is no partition size which performs better in

all examples. But what we can observe is that we have an equally well performing
set of optimizers with those relaxations of the Gauss–Newton methods.
Hence it enables us to consider an ensemble of methods. Paired with parallel

computation this opens up the opportunity to create ensemble optimizers running

3.5 Further Work

There are a couple of remarks emerging from those previous numerical experiments.
First, the terms JTJ and JTr can be computed without storing J as remarked in
Section 2.7.1. This would enhance the space complexity without increasing the time
complexity.
A further possible improvement could be to use ensemble methods. This could
either be in the big scale where we run different methods in parallel and choose
the best solution afterwards. Or we could use an ensemble of iteration methods
in each iteration in parallel and choose the step with the largest decrease in the
residual values. What also could be useful for the theoretical analysis is to implement
the Newton-method with automatic differentiation to attribute the non-quadratic
convergence to either a bad approximation of the Hessian or a bad condition of the
problem.
We will summarize and name various more possible extensions in the following:

• implement the remark in Section 2.7.1 at the end which saves us the computation
of J .

• improve the choice of the Gauss–Newton relaxation. The partitions on which we
decide which residual will be summed up was made arbitrary. This could also be
decided or chosen upon physical reasoning, since we employ a certain weight on
the different residuals implicitly by merging them together. Generalizing this idea
could also lead to a structured way to impose weight parameters.

• find the ideal outer scheme for the Gauss–Newton method. In particular, try
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different trust–region radius adjustment strategies.

• extend the test library (different types of order reductions, different types of pro-
cess/production optimization, different use-cases co2lab [27] etc.) and automatize
the test scheme for an arbitrary number of models.

• employ more complex machine learning and deep learning methods combined.
E.g. in [36] convolution neural networks are employed to parameterize approxi-
mated governing equations. Instead of using fixed parameters, we could replace
them by a dynamic neural network which governs those parameters.

• implement an ensemble optimizer, since there is no clear best method. We ensem-
ble the step vectors for all different methods and decide afterwards which step we
choose. The selection either will be done by evaluating all resulting new states
(expensive) or one could use cheaper measures to decide for the best step (e.g.
employ gradient and curvature conditions). Regarding the iteration expenses to
compute the different step, for all Gauss–Newton relaxations from Def. 3.2 we
only require the Jacobian J . Reducing the size by merging some of the rows of J
together and set up the system Eq. 3.3 can be done without much computational
effort.

At the end I want to emphasize that there was much focus on the simulation of
reservoir flow.
The beautiful part about those implementations is that MRST, as an open source

software with a highly accessible and comprehensive documentation [26, 22, 23],
provides a tool to generalize those findings, and developments and use them in
various ways and it can be employed almost anywhere where complex fluid dynamics
are part of an optimization process.
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Let f be the objective function and

xk+1 = xk + αkpk

and iteration method where pk is the search direction and αk is the step length. pk
and the negative of the gradient −∇f(xk). Further we define the angle between the
negative gradient and the step direction

cos θk =
−∇f(xk)

Tpk
∥∇f(xk)∥∥pk∥

.

Theorem 4.1 (Zoutendijk’s Theorem):
Assume that f is twice differentiable, ∇f is Lipschitz continuous to bounding
constant L > 0 and f is bounded from below by M . Further let pk be a
descent direction, that is,

pTk∇f(xk) < 0

and αk satisfies the Wolfe conditions (2.2). Then∑
k≥0

cos2 θk∥∇f(xk)∥2 <∞

and in particular cos2 θk∥∇f(xk)∥2 → 0 for k →∞.

Proof. Consider the second Wolfe condition (2.3)

∇f(xk+1)
Tpk ≥ c2∇f(xk)

Tpk.

Subtracting ∇f(xk)
Tpk on both sides, yields

(∇f(xk+1)−∇f(xk))
Tpk ≥ (c2 − 1)∇f(xk)

Tpk.

Applying the Cauchy-Schwarz inequality on the left hand side and use the Lipschitz
continuity of ∇f , we derive the following lower bound for αk

Lαkp
T
k pk ≥ (c2 − 1)∇f(xk)

Tpk

and finally,

αk ≥
c2 − 1

L∥pk∥2
∇f(xk)

Tpk.

If we turn back to the first Wolfe condition (2.2) and estimate αk by its lower bound,
we obtain

f(xk+1) ≤ f(xk) + c1
c2 − 1

L∥pk∥2
(∇f(xk)

Tpk)
2.
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Note that c1αk > 0 and ∇f(xk)
Tpk < 0, justifying the last step. Now set c :=

−c1 c2−1
L
≥ 0 and use the inequality on the right hand side recursively such that

f(xk+1) ≤ f(x0)− c

k∑
i=1

(∇f(xk)
Tpk)

2

∥pk∥2∥∇f(xk)∥2
∥∇f(xk)∥2 (4.1)

= f(x0)− c

k∑
i=1

cos2 θk∥∇f(xk)∥2. (4.2)

Letting k →∞ and estimating by the lower bound of f , we end up with

c
∑
k≥0

cos2 θk∥∇f(xk)∥2 ≤ f(x0)−M <∞.

4.1 Step Length -Wolfe conditions

How can we find a step length that does not violate the Wolfe condition?

There are different methods to find a step length αk that satisfies the Wolfe con-
dition. The following line search algorithm exploits the idea that we can compute
a local minima by a cubic or quadratic interpolation if the interval in which we
analyze the function is small enough.
First let us introduce once again the strong Wolfe condition for ϕ(α) := f(xk+αpk).
This leads to the reformulation

ϕ(α) ≤ ϕ(0) + c1αϕ
′(0), (4.3)

|ϕ′(α)| ≤ −c2ϕ′(0). (4.4)

We refer to (4.3) as the sufficient decrease condition and to (4.4) as the curvature
condition.
The function zoom will be explained in the following. For now it is only important

to assume that zoom will compute a point which satisfies the Wolfe condition given
that the existence in the given interval is guaranteed. Also, note that the first
argument in zoom must be the argument with smaller function value with respect
to ϕ, but must not be necessarily smaller than the second argument.
Observe that we have the following options for entering in zoom

1. ϕ(αi) ≥ ϕ(ai), i > 1 or ϕ(αi) does not satisfy the sufficient decrease condition

2. αi satisfies the sufficient decrease condition and has a smaller function value
as αi−1 as well as ϕ′(αi) ≥ 0.

These cases both imply that between αi−1 and αi must lie a point satisfying the
Wolfe condition. Because both cases (1) and (2) imply the existence of a local
minimum between αi−1 and αi which satisfies the sufficient decrease condition. If
we enter zoom by option (2) then we find ourself in the situation where αi satisfies
the sufficient decrease condition and ϕ(αi) < ϕ(αi−1) . With a nonnegative slope at
αi this guarantees us the existence of a point between αi−1, αi satisfying the Wolfe
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Algorithm 7: Line search – step length
Input: α0 = 0, αmax, α1 ∈ (0, αmax) (by a heuristic)
Output: step length α∗ satisfying the Wolfe conditions

1 while true do
2 Evaluate ϕ(αi);
3 if ϕ(αi) ≥ ϕ(0) + c1αiϕ

′(0) or [ϕ(αi) ≥ ϕ(αi−1) and i > 1] then
4 α∗ ← zoom(αi−1, αi);
5 return α∗;

6 Evaluate ϕ′(αi);
7 if |ϕ′ (αi)| ≤ −c2ϕ′(0) then
8 α∗ ← αi;
9 return α∗;

10 if ϕ′ (αi) ≥ 0 then
11 α∗ ← zoom (αi, αi−1);
12 return α∗;

13 Choose αi+1 ∈ (αi, αmax) ;
14 i← i+ 1;

condition as we have argued before. The only difference here now is that the smaller
function value is attained by the right bound αi.
Now, how can we actually compute a point which satisfies the Wolfe condition? The
function zoom iteratively shortens the search interval until the quadratic or cubic
interpolation is a sufficiently correct approximation of ϕ. Then by using the formula
for a minima for the quadratic or cubic interpolation we obtain our candidate. If our
canditate fails on one of the Wolfe conditions we will shorten the interval, according
to invariances we want to keep in each step. These invariances for the interval
(αlo, αhi) are

1. The interval between αlo and αhi contains a point which satisfies the Wolfe
condition.

2. αlo has among all evaluated values generated so far (in LineSearch and in
zoom) the smallest function value.

3. αhi is chosen so that ϕ′ (αlo) (αhi − αlo) < 0 which is equivalent to if αlo > αhi

then at αlo the function ϕ increases and vice versa.
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Algorithm 8: Zoom
Input: ϕ, αlo, αhi

Output: step length αk

1 while true do
2 Interpolate ϕ to find a trial step length αj between αlo and αhi;
3 if ϕ (αj) > ϕ(0) + c1αjϕ

′(0) or ϕ (αj) ≥ ϕ (αlo) then
4 αhi ← αj ;

5 else
6 Evaluate ϕ′ (αj);
7 if |ϕ′ (αj)| ≤ −c2ϕ′(0) then
8 Set α∗ ← αj ;
9 return α∗;

10 if ϕ′ (αj) (αhi − αlo) ≥ 0 then
11 αhi ← αlo;
12 αlo ← αj ;

4.2 Additional Results for Relaxations Of
Gauss–Newton

Here are some results omitted in the main part of the thesis. The name indicates
on which model we ran the calibration process, the number indicates the maximum
number of iterations and the second number indicates which relaxation type we have
used. For instance ’Egg30-3’ is the calibration on the Egg model with maximum 30
iterations where residuals regarding 3 consequent time steps were merged.

Egg. Fig. 4.1 shows some surprising results from the calibration processes with
the Gauss–Newton relaxations. While the best result still came from Fig. 3.6 with
the standard Levenberg–Marquardt, some very reasonable results were produced by
the relaxations. In particular, the last plot, where we merge residuals regarding
5 consequent time steps, has an equally good optimization results to the standard
Gauss–Newton methods.

Norne. Fig. 4.2 shows that we can even have a better result by merging certain
residuals and considering the method from Definition 3.2. The first calibration even
shows a better error path in the middle part of the process. That indicates that
the information loss through adding together residuals might have lead to desirable
weightings.

Sensitivity Example. Fig. 4.3 again shows this phenomena which occurred in the
Norne field calibration. The relaxation produces an actual better result then the
standard Gauss–Newton method.
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Figure 4.1:
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Figure 4.2:
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Figure 4.3:
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