Hallvard Echtermeyer

Interoperability between
heterogeneous Blockchains for
Supply Chain

Master’s thesis in Programvareutvikling
Supervisor: Li, Jingyue
May 2022

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

@ NTNU

Norwegian University of
Science and Technology






Hallvard Echtermeyer

Interoperability between
heterogeneous Blockchains for Supply
Chain

Master’s thesis in Programvareutvikling
Supervisor: Li, Jingyue
May 2022

Norwegian University of Science and Technology

@ NTNU

Norwegian University of
Science and Technology






©@NTNU

Kunnskap for en bedre verden

Master Thesis

Interoperability between
heterogeneous Blockchains for
Supply Chains

Spring 2022

HALLVARD ECHTERMEYER



Abstract

There is a need for interoperability in the current blockchain environment
to shape a less fragmented blockchain ecosystem. In recent years there has
come a focus on interoperability between homogenous blockchains. With the
unique benefits provided by permissioned and permissionless blockchains, it is
unlikely that homogenous interoperability will solve the interoperability issue.
Therefore a focus has to be placed on heterogeneous interoperability.

This thesis developed two products following the design science paradigm,
solving our three research questions:

e Is there a way to interoperate data between two heterogeneous
blockchains?

¢ What is the performance, and what are the issues of the se-
lected interoperability solution?

e Can Self-sovereign identities be used to deanonymize cross-
chain data between two heterogeneous blockchains?

By answering these three questions, the current existing heterogeneous inter-
operability solutions were found, and a working solution was built based on
the superior solution. Experiments were done using the developed products,
focusing on the solution’s performance and exposing problems it had. A sec-
ond product was created to solve the anonymization issue discovered, using
Self-sovereign identity, yielding the desired result of deanonymizing the data
sent over the cross-chain solution.



Sammendrag

Det er et behov for interoperabilitet i det navaerende blokkjeder miljget for a
skape et mindre fragmentert blokkjeder gkosystem. I de siste arene har det
veert et gkt fokus pa interoperabilitet mellom homogene blokkjeder. Med de
unike fordelene gitt av tillatede og tillatelseslgse blokkjeder, er det usannsynlig
at homogen interoperabilitet vil lgse interoperabilitetsproblemet. Derfor ma
det settes fokus pa heterogen interoperabilitet.

Denne oppgaven utviklet to produkter etter det designvitenskapelige paradig-
met, og lgste vare tre forskningsspgrsmal:

e Er det en mate a interoperere data mellom to heterogene blokkjeder?

e Hva er ytelsen, og hva er problemene med den valgte interop-
erabilitetslgsningen?

¢ Kan Self-sovereign identiteter brukes til & deanonymisere krysskjede-
data mellom to heterogene blokkjeder?

Ved a svare pa disse tre spgrsmalene ble dagens eksisterende heterogene inter-
operabilitetslgsninger funnet, og en fungerende lgsning ble bygget basert pa
den overlegne lgsningen. Eksperimenter ble utfgrt ved bruk av de utviklede
produktene, med fokus pa lgsningens ytelse og avdekket problemer den hadde.
Et annet produkt ble opprettet for a lgse anonymiseringsproblemet som ble op-
pdaget, ved a bruke Self-sovereign identitet, noe som ga det gnskede resultatet
av deanonymisering av dataene sendt over krysskjedelgsningen.



Acknowledgments

I would first like to thank my thesis advisor, Associate Professor Jingyue Li of
the Department of Computer Science at the Norwegian University of Science
and Technology (NTNU). Assoc. Prof. Li was always available to answer
questions, and was very understanding of my unfortunate sickness period,
trying his best to accommodate my needs. I am also very grateful, for the
input he gave during the writing of the master thesis, his knowledge was
invaluable for the end result.

This thesis was in part supported by the Research Council of Norway (N0.309494).
The project PaaSforChain enabled me to communicate with colleagues from
China, and also work on blockchain-related projects, giving valuable feedback
and support.

I would also like to thank my colleague HaoMing Li, a student from NanJing
University, and part of the PaaSforChain project. His expertise was tremen-
dous in the creation of the BitxHub solution. his willingness and readiness
to answer questions was a substantial help throughout the latter half of this
thesis.

Last but certainly not least, I would like to thank my family and friends, for
their support. My friends provided me with the entertainment and breaks
I needed during this master thesis, and my family provided feedback on the
thesis, and gave food and shelter for the final part of the thesis writing



Contents

1

2

Introduction

Background

2.1 Definitions of Blockchains . . . . ... ... ... ... .....

2.2 Reasons for industry using Blockchains . . . . . . .. . ... ..

2.3 Blockchains related to the thesis . . . ... .. ... ... ...
2.3.1 Hyperledger Fabric . . . . . ... ... ... ... ...
2.3.2 Ethereum . . . .. ... ... ... ... ...
2.3.3 Permissionless Vs Permissioned . . . . . ... ... ...

2.4  Blockchain Interoperability . . . .. ... ... ... ... ...

2.5 Self Soveregin Identities . . . . .. ... ... ... ... ..

Related Work

Research Design and Implementation

4.1 Research Motivation . . . . . . ... ... ... ... ...
4.2 Research Questions . . . . . . . . ... ...
4.3 Research Method and Design . . . . . ... ... ... .. ...
Results
51 Bitxhhub . . .. ... ...
5.1.1 Architecture . . . . ... ...
5.1.2 Comsensus model . . . . . ... ... oL
5.1.3 Constraints . . . . . . .. ...
5.1.4 Interoperability . . . . .. .. ... ... .
5.1.5 Prosand Cons . ... ... ... .. ... ........
5.2 Heterogeneos Interoperability . . . . ... ... ... ... ...
5.2.1 Interoperability for heterogenous data transfer . . . . .
5.2.2 Consensus model evaluation . . . . . .. ... ... ...
5.2.3  Security related to interoperability . . . . . ... . ...
5.2.4 Performance . .. .. .. ... .
525 Cost . . . .. e
5.2.6  Scalability . . . . .. ...
5.3 BitxHub development . . . .. ... ... ... ... ...
5.3.1 Relay Chain. . .. ... ... ... ... .........
5.3.2 Hyperledger Fabric Cross-chain creation . . . . . . . ..
5.3.3 Cross-chain gateway Hyperledger Fabric . . . . . . . ..
5.3.4 Cross-chain gateway Ethereum . . . .. ... ... ...
5.4 Performance and challenges . . . . ... ... ... ... ...
5.4.1 Average Transaction speed . . . . ... .. ... ....
5.4.2 Throughput . . . . .. .. ... Lo
54.3 Amount of Data . . .. ... ... ... ... ...
5.4.4 TIssues Discoveries . . . . . . . .. .. ... ... ..
5.5 Self-soveregin identities . . . . . .. ... ...

10

13
13
14
16
16
18
20
22
24

29

31
31
32
32



5.5.1 Security . . . . ... 64

5.5.2  Controllability . . . ... ... ... ... ... ... .. 65

5.5.3 Portability . ... ... ... o 65

5.6 Creation of the SSI solution . . . . . ... ... ... ...... 66
5.6.1 Preparation . . . . .. ... ..o oo 66

5.6.2 Development . .. ... ... ... ... ... 67

5.6.3 Setup and experiment . . . ... ... ..., 69

6 Discussion 78
6.1 Interoperating data between two heterogeneous blockchains . . 78

6.2 Performance and issues of the selected interoperability solution 79
6.3 Self-sovereign used to deanonymize cross-chain data between
two heterogeneous blockchains . . . . . .. ... 00 80

7 Conclusions 82

8 Appendix A: Interoperability solutions found in the pre-study 93

8.1 Polkadot . . . . . . . . ... 93
8.1.1 Comsensusmodel . . . . .. ... ... .. ... ..., 99
8.1.2 Constraints . . . . . . . ... . ... .. 99
8.1.3 Imteroperability . . . . .. .. .. ... ... 100
814 Prosand Cons . . ... ... .. ... ... ....... 100

8.2 Hedera . . . . . . . . . e 104
8.2.1 Consensus model . . . . ... .. ... ... ... ... 106
8.2.2 Constraints . . . . . . . . . ... 106
8.2.3 Interoperability methods . . . . . . . .. ... ... ... 106
82.4 Prosand Cons . .. ... ... ... ... ... ..... 107

8.3 Hyperledger Quilt/Interledger . . . . . . ... ... ... .... 109
8.3.1 Comsensus Model . . . . . ... ... ... ... ..... 112
8.3.2 Constraints . . . . . . . . . ... 112
8.3.3 Imteroperability . . . . .. ... ... o 112
834 Prosand Cons . ... ... ... .. ... ... ..., 112

8.4 Smart Contract invocation protocol . . . . . . . ... ... ... 114
84.1 Comsensusmodel . . .. .. ... .. ... ... ..., 117
8.4.2 Constraints . . . . . . . . . .. ... 117
8.4.3 Imteroperability . . . . . ... ... 117
8.44 PROSand CONS ... ... .. ... ... ....... 118

8.5 Ermyas Abeb Relay . . . ... .. ... ... ... ... ... 119
8.5.1 Consensusmodel . . . . ... ... ... ... ...... 122
8.5.2 Constraints . . . . . . . . . .. ... 122
8.5.3 Imteroperability . . . . .. ... ... L. 122
85.4 Prosand Cons . . ... ... ... ... ......... 122

8.6 Hyperledger Cactus . . . . . ... ... ... ... ....... 124

9 Appendix B: Existing SCM systems, and their blockchains 126



List of Figures

1

w

10
11
12
13
14
15

16

17

18

19

20

21
22

23

An example structure of how a Hyperledger Fabric implemen-
tation might look like. In the picture are two channels C1 and
C2 with both their respective configuration blocks CC1.1 and
CC2, showing which Organisations can host nodes in the tri-
angles. The nodes themselves have the appropriate ledgers and
smart contracts for the different channels, and outside the net-
work square we see the appropriate CAs and applications which

can send requests to the blockchain, taken from [1] . . . . . .. 18
The structure of the ethereum blockchain . . . ... ... ... 19
The evolution of identity managment [2] . . . ... ... ... 24
The desired communication between Issuer, Holder (Owner in

this image) and Verifiers [3] . . . . ... ... .. L. 26

The BitxHub architecture, with different App-Chains (Blockchains),
Relay-Chains for intercomunication, and Cross-chain gateways
(in image called Peers) for setting up the IBTP between sender

and reciever . . ... ... e e e e e 35
The IBTP Data Structure . . . . . ... ... ... ... .... 36
Conversation which lead to the use of BitxHub V1.6.5 and

Golang . . . ... 44
How the Ethereum Cross-chain gateway interacts with App-

chain and Relay Chain . . . . .. .. ... ... ... .. .... 45
How the created Fabric 2.3 solution Cross-chain gateway inter-

acts with App-chain and Relay Chain . . . .. ... ... ... 46
Initiate Fabric network . . . . . . .. ... .. .. ... 46
The enviroumental variables needed to setup the network . . . 47
Ethereum Cross-chain gateway tree folder structure. . . . . . . 48
The structure of the Ethereum.toml file in V1.6.5 . . . . . . .. 49
Code used to make account.key for metamask . . . . .. .. .. 50
A registration command from Ethereum, and the yielded Pier

and proposal ID . . . .. .o oo 50
Shows the commands used to connect to a node, and the com-

mands to deploy rules and start the peer . . . . . .. ... ... 50
Bitxhub complete architecture. . . . . . . . ... ... ... .. 51
A simple method to fetch data from HyperledgerFabric. . . . . 51

The complete sequence diagram from a get call to the eventual
placing of the requested data in the blockchain. Cross-chain

gateways are removed . . . ... ..o Lo Lo 52
The code used in the Ethereum side to request information from

the other blockchain . . . . . .. .. .. ... ... ... ... 53
The get and set functions used in the cross-chain transaction . 54
Average transaction speed between Ethereum and Hyperledger

Fabric . . . . . . . . 99
Average transaction speed between Ethereum and Ethereum . 56



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40
41

42
43
44
45

46

Average Transaction speed between Hyperledger 2.3 and Hy-
perledger 2.3 . . . . . ..o
The average transaction speed measured when a transaction
was send every 60 seconds,10 seconds and 1 second . . . . . . .
Average transaction speed when sending 10kb data over Bitx-
Hub . . . . .
Average transaction speed when sending 10kb data over Bitx-
Hub . . . . .
Average transaction speed when sending 20Kb and 30Kb data
over BitxHub . . . .. ... ... ... ... ... ... ...
If a sent transaction, for some reason invokes two EmitInter-
chainEvent, a single result will be returned, but any subsequent
calls will be in limbo. . . . . . .. .o oo
A sequence diagram of the Double emit bug. . . ... ... ..
Gas Price at the bottom, which was set when sending the trans-
action . . ...
The current gas price in the Rinkeby Testnet, once the issue
occured pointed to by the yellow arrow . . . . . ... ... ...
The transaction will eventually be resolved, once the gas price
falls below the gas price set in the transaction . . . . . . . . ..
Sovrins intepretation of Allen’s Ten Principles of Self-Sovereign
Identity . . . . . . . .
A code snipit from the react Dapp enabeling the user to make
a proof and store the IPF'S hash on the blockchain . . . . . ..
Code example of how Hyperledger Fabric is able to make an
SSI proof inside chain code using node-fetch and ipfs-http-client
npm packages . . . . .. ..
Code example of how Hyperledger Fabric is able retrieve SSI
proof inside chain code using node-fetch and ipfs-http-client
npm packages . . . ... Lo Lo
Normal request sequence between two entities . . . . . . . . ..
The code first connects to the indy cluster, and then creates
credentials for the Steward and issuer, before finally the issuer
is given the Trust ANCHOR priviledge . . . . . ... ... ...
The complete sequence from makeProof . . . ... ... . ...
Code snippits from makeProof showing parts of the code from
credOffer to StoreCredentials . . . . . ... ... ... .....
an example of a requierment . . . . ... ... ... ... ...
code snippit from populate proof . . . . . ... ... ... ...
The complete sequence from getProof . . .. ... .. .. ...
The complete solution, combining the Bitxhub solution and the
SSIsolution . . . . . . . . .. Lo
Shows the envisioned strucuture of Polkadot from 2016. Includ-
ing the Fishermen, Validators, Collators. Image taken from [4]



47

48

49

50

ol

52

93

o4

Shows the estimated time in years, it would take for a node
to succeed in a malicious attack depending on how many other

nodes are also checking. Image taken from [5] . . . . ... ... 96
An example of how BABE needs to choose where to place the
next block based on GRANDPA’s need. Taken from [6] . ... 98

Shows how the Hedera netowrk will comunicate a message from
one blockchain to another. Images taken and edited together

from a Hedera Webinar [7] . . . .. ... .. ... ... .... 105
Shows the ILP lifecycle with the two possible outcomes of Fulfill
or Reject. Taken from [8] . . . .. .. ... ... .. ...... 111

An URL used in the SCL, in order to locate the correct smart
contract. Here gateway.com is the domain of the gateway,
blockchain=ethereum specifies that we want to reach an ethereum
blockchain id=eth-mainnet specifies that it’s the ethereum main-
net that should be contacted, and address=0xab... specifies the
smart contract unique address which is wished contected. from

O] . 115
A visual explanation of what happens in step one too eight
below, taken from [9] . . .. .. ..o 115
The figure shows how Abebe et al’s Relay service communicate
with different blockchains. Image taken from [10] . . . . . . .. 121

A proposed structure of how Hyperledger Cactuses Validator
nodes would work with the Blockchain nodes. taken from [11] 125

List of Tables

1

= W

© 00 = O Ot

Motivating factors driving industry to adapt blockchains based

on findings found in [12] . . . . . ... ... Lo 15
Considerations to make when choosing permissioned vs permis-

sionless blockchains . . . . . .. ... .. ... ... ... 21
Pros and Cons BitxHub. . . . . .. ... ... ... ....... 38
The different interoperability solutions and what they would

pass on for heterogenous interoperability . . . . . .. .. .. .. 44
Pros and Cons of Polkadot. . . . . ... ... .. ........ 100
Pros and Cons of Hedera. . . . .. ... ... ... ....... 107
Pros and Cons of Interledger/Hyperledger Quilt. . . . . . ... 112
Pros and Cons of SCIP. . . . . .. ... ... ... ....... 118
Pros and Cons Abeb et al. Relay. . . . .. ... ... ... ... 122
A snapshot of the different SCM and their features . . . . . . 127



Acronyms

SCIP Smart Contract Invocation Protocol
SSI Self-Sovereign Identity

pBTF Practical byzantine fault tolerance
GO Golang

CA Certificate Authority

PoW Proof of Work

EOA Externally owned account

FA Fungible assets

NFA Non-fungible assets

DID Decentralized identifier

SCM Blockchain-based supply chain system
IBTP Inter-Blockchain Transfer Protocol
SCL Smart contract locator

RBTF Redundant Byzantine Fault Tolerant protocol
TCP Transmission Control Protocol
SDK Software development toolkit
Dapp Decentralized application

JSON JavaScript Object Notation
IPFS Inter-Planetary File System

API Application Programming Interface
tps transactions per second



1 Introduction

Cryptographer Devid Chaum first proposed the concept of a blockchain-like
protocol in 1979 [13]. The realization of blockchains was first created by
Satoshi Nakamoto in 2008 when he launched Bitcoin [14], a peer-to-peer on-
line payment system that was immutable and trustless. Since the inception of
blockchains, multiple new blockchains have come, all with their different niche
use cases. Ethereum [15] built on Bitcoin, by introducing smart contracts, a
truing-complete programing language, which allowed blockchains greater di-
versity in what a blockchain could do. Hyperledger Fabric challenged the no-
tion of true decentralization and instead focused on making a blockchain that
could benefit businesses. Allowing only a select few users into the blockchain
could vastly increase performance and remove the gas cost needed in per-
missionless blockchains. Since 2008 there have come more and more new
blockchains, all aiming to fill a niche, Vechain, IBM Blockchain, and Hyper-
ledger Sawtooth, just to name a few. With the emergence of all the new
blockchains, a new challenge came: interoperability. Interoperability can be

defined as:

“the semantic dependence between distinct ledgers for the purpose of
transferring or exchanging data or value, with assurances of validity or
verifiability”. [10]

Blockchains have historically been indifferent to the idea of interoperability.
This indifference to future interoperability has led to a fragmented blockchain
universe, where none can communicate efficiently with each other [16]. This
lack of communication has limited users to only one blockchain, having to
prioritize desirable attributes.

To tackle the need for interoperability between blockchains, there have come
some interoperability solutions, using different methods trying to solve the
problem, such as Polkadot [4], Hedera [17], Interledger [18], Smart Contract
Invocation Protocol (SCIP) [9], Ermyas Abeb Relay [10] and BitxHub [19] for

instance.

The focus of the current interoperability landscape is communication between
homogeneous blockchains, that is, two compatible blockchains sharing the
same consensus model, smart contracts, and authentication methods [16], like
two Hyperledger blockchains or two Ethereum blockchains. Interoperability
between heterogeneous blockchains is be an afterthought after the system has
been developed, like Polkadot’s Bridges [20] or Hederas Hashport [21]. Typ-
ically these created solutions only focus on interoperating Fungiable assets,
something with value, taking a small fee for interoperating the asset. Busi-
nesses, however, place the most value in using blockchains for supply chains
[22], where data is the most critical information to interoperate. For this
reason, there was a desire to find out if it was possible to interoperate data
between two heterogeneous blockchains, Hyperledger and Ethereum.

10



This thesis addresses three research questions described below:

Research question 1: Is there a way to interoperate data between two
heterogeneous blockchains?

An analysis of blockchains found in the pre-study and master thesis found that
two candidates could interoperate data between heterogeneous blockchains.
These were SCIP and BitxHub. However, of the blockchains, which can in-
teroperate data between heterogeneous blockchains, none have provided any
literature about the performance of the solutions. The desire to uncover more
about the performance led to the second research question:

Research question 2: What is the performance and what are the issues of
the selected interoperability solution?

Heterogeneous blockchains will commonly have different methods for authen-
ticating users [9, 19]. Hyperledger Fabric works with digital certificates to
validate the users in their blockchain. These signatures are then used to sign
transactions they wish to be placed on the blockchain, which is later validated
and signed by the peers before the transaction is placed on the blockchain
ledger [23]. Ethereum uses digital wallets linked to a public address. Each
transaction set on the ledger by this wallet will display this address as the en-
tity which created the transaction. For heterogeneous cross-chain transactions,
problems arise when data is passed through the cross-chain solution. From
the discovered heterogeneous interoperability solutions [19, 9], both leave the
signing of information in their respective blockchains to the gateways. Leaving
the signing to the gateways anonymizes the data sent over the interoperability
solution. The information which potentially later would need to be audited
will stop at the cross-chain gateway, as all knowledge of who placed informa-
tion on the other blockchain is erased. A possible solution to this problem
is Self-sovereign identities (SSI). Enabled through desirable qualities found in
blockchains, SSI empowers users to reliably authenticate themselves digitally,
relying on a new trust model between issuer, holder, and verifier. This problem
and a potential solution led to the third research question:

Research question 3: Can Self-sovereign identities be used to deanonymize
cross-chain data between two heterogeneous blockchains?

This thesis contributes the following findings:

e an overview of which interoperability solutions can interoperate het-
erogenonus data between each other

e a working interoperability solution made in BitxHub, interoperating be-
tween Ethereum and Hyperledger 2.3. Code provided here

e An analisis about the performance of the created interoperability solu-
tion

11


https://github.com/Hallvard-Echtermeyer/Fabric1.6.5

A Hyperledger-Indy SSI solution used to deanonymize the information
sent over the Interoperability solution. Code provided here

This thesis is structured in the following way:

The background section 2 will list necessary information vital to under-
standing this thesis better

The related work section 3 will prove the novelty of the research questions
posed

Research and Design section 4: will provide the motivation for choosing
the questions and give an insight into the methods and designs used
during this thesis.

Results section 5 will provide the results found during this thesis

Discussion section 6 will provide the findings in this thesis and discuss
them

Conclusion section 7 will summarise the findings and provide suggestions
for future work.

12


https://github.com/Hallvard-Echtermeyer/Transfer

2 Background

2.1 Definitions of Blockchains

Blockchain is a distributed ledger for recording transactions, maintained by
many nodes, without a central authority, through o distributed cryptographic
protocol.

This sentence or similar ones are typically used to describe a blockchain. For
clarity, each part of the sentence will be explained.

A Distributed ledger is essentially a type of database that is shared, repli-
cated, and synchronized among the members of the network. This gives
blockchains the decentralization attribute, meaning that there is no single
point of failure in blockchains. In this database, there is typically a times-
tamp for when the transaction happened in this database and a cryptographic
signature unique to a user. The ability to have the ledger on all nodes makes
blockchains immutable, as the information can’t be changed after being put
on the blockchain.

A Node in a blockchain is simply one entity that is holding onto the infor-
mation which is sent, when there are made updates on the blockchain. It is
the nodes’ job to check if new information coming in is valid through some
form of consensus algorithm. It stores the transaction history and will update
new nodes in the cluster with the existing blockchain. Users can own or con-
nect to existing nodes in public (permissionless) blockchains, like Infura nodes.
In Private (permissioned) blockchains, a node might be a company, meaning
more users can access that same node.

A distributed cryptographic protocol This is simply put, the rules by
which the blockchain is governed. This includes how blocks agree on what in-
formation should be placed on the blockchain (Consensus Algorithm), how
transactions are done on the blockchain (Smart Contracts), and who can
see the information on the blockchain (permissioned, permissionless) and any
other choice which defines the blockchain.

Blockchains are simply put a cluster of nodes all working together to vali-
date and store data on distributed databases, giving an absolute truth of any
situation going on in the blockchain to all nodes.

Blockchains can be divided into two categories, this is permissioned and
permissionless. Permissionless means that anyone can participate in the
blockchain. The nature of permissionless blockchains allowing anyone to par-
ticipate makes security a priority. It should not be possible to propose a
transaction that is not true. Permissionless blockchains usually employ strong
consensus models like PoW or PoS or some variation to ensure a proposed
transaction’s validity. Strong consensus models like these hurt performance,
usually giving the blockchain low throughput. Permissioned blockchains are
strict on who can enter the blockchain, requiring some for om authentication

13



to enter. Partially knowing the identity of all participants in the blockchain
allows for a more lenient consensus. Typically a permissioned blockchain will
deal in signatures, checking using Practical byzantine fault tolerance (pBTF).
The more lenient security allows for faster throughput, as suggested changes
to the chain can be validated fast, and gas cost is unnecessary.

2.2 Reasons for industry using Blockchains

In the last decade, Blockchains have started to become more and more inter-
esting for businesses in their supply chain. In 2018 a survey conducted by
Deloitte, asking 1000 corporate executives what makes blockchain interesting
for them, 53% of the participants identified the supply chain as the use case
their companies are exploring [22]. So what makes blockchains attractive to
businesses?

A typical supply chain sees thousands of transactions every day. These trans-
actions usually only involve two parties in a huge supply chain. The transac-
tions are then stored on the databases of the two parties involved in the trade;
therefore each of these two links in the supply chain holds its own truth about
the product’s journey. Each new link in the supply chain then increments the
amount of ”truths” leading to inefficiency, errors, delays, and in the worst-
case, fraud. [24]. This can be solved with blockchains, as here, everyone who
should be in the know can have access to a shared database called a Ledger
which holds a single version of the truth. This powerful concept is not the
only driving force why supply chains are interested in blockchains.

A recent study done in 2020 [12] looked at what drives companies to choose
blockchains for their supply chain, and they identified the six factors given in
Table 1 that had a driving impact on the choice.

14



Factors Factor Characteristics Description
e Tracability and
Visibility The Blockchain ledgers with their unique
e e Identification of | identifier for every asset, make it easy to
Accessibility . . . .
issues know where the item is or if the asset has
o Integrity any issues.
Smart contracts halt the need for humans
o Laws to perform digital actions, and instead
Laws and policy e Goverment policy these actions will happen when certain

conditions are met. Smart contracts also
can meet the stricter privacy laws devel-
oping around the world..

Quality

e Quality assurance
e Quality fairness

Smart contracts execute all inputs onto
the ledger, so the bias and error provided
by humans is eliminated. This makes in-
vestigations to find weak points in the
chain more obvious, exposing corruption
or fraud

Data Safety and

e Hacking of data

change of data

e Controlling-

The Immutability in ledgers makes it near
impossible to change data, which first has
been placed on the ledger, hacking data
becomes harder, as anything the company

Decentralization authority will deem secret will be only stored as a
e Near impossible | hash. The relevant data will be off-chain.
loss of data Loss of data becomes impossible, as re-
moving one ledger does nothing because
every ledger is a copy of this ledger.
The ledger which is stored on every node
e High quality data | of the blockchain is updated in close to
Data ¢ Information flow | real-time, 100% accurate, and because
e Data access smart contracts contain all data needed.
Management . .
control This means all necessary data is stored on
the ledger making predictions on what is
happening easy.
Blockchains work on smart contracts, and
e Auditable therefore. ensure that what is Put on the
. blockchain is correct. Reducing human
e Accounting . . .
. errors (no wrong inputs), simplifies au-
Documentation e Ecosystem- e .
L . ditability, as a clean trail from start of
simplification

production to sale can be followed easily
and makes the whole ecosystem easier to
follow.

Table 1: Motivating factors driving industry to adapt blockchains based on

findings found in [12]

15




2.3 Blockchains related to the thesis
2.3.1 Hyperledger Fabric

Hyperledger Fabric is an open-source framework for developing permissioned
blockchains by the Linux Foundation, supporting the creation of smart con-
tracts in general-purpose programming languages such as Javascript (Node)
and Golang (Go) [25]. The ability to write in already familiar languages has
made Hyperledger Fabric a popular choice for blockchain development. It is
supported in blockchain development by IBM, Microsoft, SAP, and ORACLE
[16].

Making Hyperledger Fabric permissioned makes it a popular choice for busi-
nesses that want a certain amount of privacy or an assortment of companies
monitoring a supply chain. Hyperledger Fabric relies on the fact that the
users in the Blockchain will be known or partially known. This assumption
allows them to reduce the security, preferring consensus like Practical Byzan-
tine Fault Tolerance (pBTF) [26]. pBFT can handle there being up to %
malicious nodes in the Blockchain before the system is compromised. This
is significantly weaker than permissionless consensus models. However, this
vastly increases the performance of the blockchain and makes payments in the
form of gas obsolete. Permissioned blockchains suffer from a more substantial
possibility of malicious collaboration, especially in smaller channels.

Hyperledger Fabric works with digital X.509 certificates to validate the users
in their blockchain [27]. Without valid certificates, they are not allowed to
communicate within the network. These certificates provide some privileges
and knowledge about the users. To communicate in a Hyperledger blockchain,
you need the correct certificates. Without them, the user loses that privilege.
Certificates create a knowledge base inside the blockchain. For a transaction
to pass, the user signs the transaction which is later verified by endorsing
peers, who sign the transaction as valid. Once the transaction is validated,
the proposed inputs are used in the chain code, changing the state of the
blockchain [23].

Hyperledger Fabric is a blockchain with multiple different ledgers held by
nodes [1]. One node can hold onto numerous different ledgers within the same
blockchain. This is done by Hyperledger Fabric, allowing for channels within
the blockchain network. In a channel, a subgroup of organizations can com-
municate using their node without the remaining organizations knowing what
is going on. Creating channels within the blockchain is realized by creating
a configuration block. The configuration block details who can join and in-
teract and the policies, which define the structure of how decisions are made
and specific outcomes are reached. Therefore, all nodes within the channel are
bound by the policies created by the configuration block. To identify the nodes
of an organization, they must have the appropriate Certificate created by a
Certificate Authority (CA). These certificates are then used for identification
and endorsement. Organizations tend to prefer using their own certificate,

16



and therefore there will be multiple CA. To handle all these CAs, Hyperledger
Fabric also has a Membership Service Provider (MSP), which can identify that
nodes indeed were created by a valid organization. The channel configuration
can now provide the appropriate rights to the nodes based on the channel
policy. For example, some organizations might be allowed to add more orga-
nizations to the channel, while others might only be allowed to read what is
on the ledger.

A channel will have a distinct ordering service meant to create blocks [28]. It
is deterministic, meaning any block validated by the peer is guaranteed to be
final and correct. For this to work, a proposed update has to be sent. Then, a
subset of the channel peers invoke a smart contract and endorse the results, if
satisfactory. The approved proposal is then sent to the ordering service ( more
than one ordering block). The proposal will be ordered in a defined sequence
and packaged into blocks. The orderer will distribute the block created to
all peers connected to it using the gossip protocol. Each node will then look
at the transaction inside the block and validate them, checking that there
has been a correct endorsement and that these endorsements are valid. If a
transaction is found to be invalid, the block will remain in the blockchain, but
the transaction itself will be marked as invalid, and the ledger’s state will not
be updated based on this transaction in the block. Currently, the two main
ordering services used in Hyperledger Fabric are Raft and Kafka.

Hyperledger Fabric has smart contracts, which they call chain code. The
business logic that describes how nodes interact with the ledger is contained
in the smart contracts in Hyperledger Fabric. Smart contracts are, therefore,
channel-specific in Hyperledger Fabric. The Smart contracts are installed on
the relevant nodes in the channel, enabling them to do the desired interactions
based on the channel configurations. The most important smart contract in
each channel is the endorsement policy, used to validate incoming transactions
by the nodes [29].

When peers [30] finally come into the channel, they are all given the ledger for
this channel. Each node can be part of multiple channels and therefore can
also have multiple ledgers and smart contracts attached to it. The end result
might look something like Figure 2.

17



ooo 3288

"‘I'-..__ c2 -

ﬂm \ e et -

/

Figure 1: An example structure of how a Hyperledger Fabric implementation
might look like. In the picture are two channels C1 and C2 with both their
respective configuration blocks CC1.1 and CC2, showing which Organisations
can host nodes in the triangles. The nodes themselves have the appropriate
ledgers and smart contracts for the different channels, and outside the network
square we see the appropriate CAs and applications which can send requests
to the blockchain, taken from [1]

2.3.2 Ethereum

Ethereum is a permissionless blockchain allowing anyone to participate, pro-
vided they can create an Ethereum wallet. Ethereum was the first blockchain
to introduce the concept of smart contracts. Ethereum has a turning complete
programing language, allowing anyone who can write in primarily Solidity to
create smart contracts on the blockchain.

Ethereum is a popular choice for anything requiering a strong proof While it
is still most known for its currency ETH, Ethereum is linked to anything from
supply chains to the recent non-fungible tokens trend, anything which requires
documentation like audibility is preferred on a permissionless blockchain, as
it is harder to tamper with.

Ethereum is a permissionless blockchain and therefore has to assume that
there are malicious nodes in the domain. For this reason, Ethereum uses a
consensus mechanism called Proof of Work (PoW). A very energy and time-
consuming consensus model, which however is very secure. Ethereum sacrifices
performance for security.

Ethereum, at its core, is built up of accounts, which can either be an externally
owned account (EOA) or a smart contract. Independent of if it’s an EOA or
smart contract, it has 5 data fields [15].

18



o Address: a 20-byte address, which is a cryptographic public key, used to
identify both Ethereum wallets and Smart contracts uniquely.

e Value: The total sum of Eth held by an account.

e Code: If the account is a smart contract, this will be the code which
allows it to complete operations. If this is an EOA, this field is empty.

e Data: If this is a smart contract, this will be the data that is stored on
the smart contract (memory). If this is an EOA this is empty.

e Nonce: a counter, which makes sure a transaction can only be processed
once, and is incremented for every time the account is used.

Accounts

EOA Smart contracts

Address

Value

Code

Data

Nonce

Figure 2: The structure of the ethereum blockchain

Ethereum suffers compared to Hyperledger Fabric in speed, but the permis-

19



sionless nature of the blockchain makes it ideal for auditing a truth. Hyper-
ledger Fabric, the entity interested in the auditing, must be part of the correct
channel (not just blockchain) to prove a statement. In Ethereum, a user must
only have an account and access to the smart contract in question to prove
the statement [15].

2.3.3 Permissionless Vs Permissioned

When choosing between permissioned or permissionless, there are often a few
considerations to take into account when selecting which blockchain to use
[31], as shown in Table 2

20



Considerations Permissionless Permissioned

In a permissionless

blockchain, anyone  can | Permissioned blockchains only allow
Data access participate, and therefore | access to those entities who have

anyone can, in theory access
the information stored

been accepted into the blockchain

Permissionless blockchains are
generally seen as slow in pro-

Permissioned blockchains are con-
sidered a lot faster at processing and

Perf . . . . .
eriottance cessing transactions compared | storing information on the ledger
to permissioned ones compared to permissionless
Permissionl blockchai . .
asrgiis::rll ezficess ar?g (‘:chzlrr;s Permissioned blockchains only allow
Availability Y . ’ the entities inside the blockchains to
fore, are available to everyone | . . .
. view the information stored
in theory.
Permissionless blockchains are | Permissioned blockchains, while se-
often seen as having better | cure and immutable, only need a
. integrity, as their consensus | majority of the entities within the
Integrity . .. .
models require a lot more ef- | significantly smaller blockchain to
fort to successfully change in- | collude maliciously to change infor-
formation mation on the ledger
Permissionl blockchai . . o
ermlss%on o3 . OeRe a‘ms Permissioned blockchains are invite-
work with validators, which . .
. .. only, so there is already established
must be incentivized, so as
.. a good amount of trust to the users,
Cost not to act maliciously; for

this reason, there is a cost
associated with placing infor-
mation on the blockchain

for this reason, the consensus mech-
anisms don’t require a cost to come
to an agreement

Data Protection

Permissionless blockchains
need to be very careful about
what information is stored
on the blockchain. The
information is immutable,
so mistakingly placing sensi-
tive information on a public
blockchain can be detrimental
when following laws like
GDPR

Permissioned blockchains are invite-
only; for this reason, the data set on
the blockchain often does not need
to consider data protection as much
as permissioned

Governance

The blockchain is, in theory,
owned by everyone who has a
node on the blockchain. In
practice, depending on the
consensus mechanism, a small
to very small number of nodes
control the blockchain.

Permissioned blockchains usually
make their own consensus rules on
how the blockchain should be gov-
erned, and an agreement between
the parties involved is reached

Table 2: Considerations to make when choosing permissioned vs permissionless

blockchains

21




2.4 Blockchain Interoperability
Interoperability can be classified as: [16].

e The capacity of a computer system to exchange and make use of infor-
mation

e The capacity to transfer an asset between two or more systems while
keeping the state and uniqueness of the asset consistent.

The challenging part is the 2nd part of the definition, as blockchains need to
make sure that an asset in one ledger is not duplicated on the other ledger
without necessarily being able to check this for themselves.

Typically assets can be placed into three categories. [11, 32]

e Fungible assets (FA): These are assets which can be used interchangeably
with another asset of the same type. A typical everyday FA is money.
A One Dollar bill can be exchanged with any other One Dollar bill. In
the Blockchain world, a FA is typically a cryptocurrency.

e Non-fungible assets (NFA): These are assets that can’t be swapped as
they are unique, with specific properties. Typical everyday NFA is a
concert ticket. They are similar, but one has a completely different seat
number than the other, making both unique. In the Blockchain world,
this could also be a virtual ticket.

e Data: The final asset type is Data; this can be defined as everything else,
anything which can be on two ledgers at once without creating problems.
This might, for example, be current electricity prices. Again, having this
data in two separate places does not matter.

Challenges arise with FA and NFA. These need to be ensured to only exist in
one place at a given time to avoid duplication of assets. The blockchains will
either burn or lock this asset on their ledger to solve this issue. Locking means
that the blockchain doesn’t allow anyone to use this currency until it has been
unlocked again. This can happen when a trade is made, and the asset returns
in circulation. Burning an asset means that the asset is permanently lost on
the one blockchain and can’t be retrieved even if the value is traded back.

Typically these assets are swapped through different types of schemes [33]

e Notary Schemes are trusted intermediaries; these schemes typically
work where two blockchains are connected to a Notary Scheme, which is
third-party operated. The Notary usually listens in on events happening
on Blockchain A and when an event happens on blockchain B, it claims
to blockchain A that this event has taken place. These Schemes rely
heavely on trust, where both sides (or only one side) must trust that
what the Notary Scheme claims to be true actually is true.

Notary Schemes can also be used for the transfer of value. Usually FA for

22



other FA [34]. Here a Notary scheme will lock assets on one blockchain
and release the assets on the other blockchain. Typically the Notary
Scheme will either be centralized or federated, meaning either one party
or multiple parties will agree on when to release funds. Both suffer from
the trust problem, where a Notary Scheme can run off with all the locked
money if they want, less so in a federated on, but if more then 50% are
maliciouse the same problem applies. Centralised Schemes also suffer
from the single point of failure problem, where if the server running the
trusted third party is down the whole system is down.

Relays use smart contracts to read, validate and act upon events on an-
other ledger. This means that instead of trusting what a Notray Scheme
says is true, they themselves read what is happening one the other chain.
This interoperability requires that

— 1. Blockchain A has knowledge of what is happening in Blockchain
B

— 2. Smart contracts in blockchain A can somehow read and under-
stand what is happening in Blockchain B, use B’s consensus algo-
rithm to verify that this block is valid, and then from this deduce
information.

This is typically done by Both or one chain having some light version of
the blockchain they are reading on their blockchain. This is generally
achieved by a lightweight node [35] having the other blockchains header
downloaded and using Merkel trees to get the desired proof [34, 36]. This
also means that one the side feeding information, there must be a node
on block B that sends this information to block A. Relays Typically work
either one way or two way pegged.

— One-Way relays In a one way realy, Blockchain A can read from
ledger B, but not the other way, this is usually because one of the
ledgers is not able to understand their consensus algorithm.

— Two way relays Both relays know about each other and can read
each other’s ledgers

Hash-Locking Hashed Time Locks or Atomic Swaps [37, 38, 18]: Users
on different chains agree with each other on soemthing they want to
exchange, and create smart contracts with a hashlock and a timelock
securing them from maliciouse behaviour. Everyone involved first sends
out their contracts, showing a willingness to part from a certain amount
of assets/goods on their blockchain. When all parties have done this on
their respective blockchains, they then send out their secrets, releasing
their ownership from their assets and claiming their new assets in another
chain and then release their secrets on their respective blockchains. This
means instead of needing a partial copy of the ledger like in Relays, all

23



that is needed between two Blockchains that want to switch assets using
Hash Locking is a single hash.

For interoperability between blockchains, there currently exist two types of
interoperability defined by the world economic forum [16].

e homogenous (compatible blockchain platform) have the same platform
logic, consisting of consensus mechanisms, smart contracts and authen-
tication, and authorization™

e heterogenous (non-compatible blockchain platforms) have different plat-
form logic, consisting of consensus mechanisms, smart contracts, and
authentication and authorization

2.5 Self Soveregin Identities

When the internet was first created, it was built without a layer to authenticate
identities. However, people are not endpoints in a network, and therefore,
there is no way to identify people uniquely.

Figure 3: The evolution of identity managment [2]

Self-

User-centric - -
Sovereign??

The simplest form of identity management is Isolated User Identity. There are
only two parties involved, a service provider and users. The service provider
provides access to their domain, but the credentials are not valid in any other
domain providing services.

The next step is a federated model. The Identity provider works together
with one or more service providers. The Service provider then relies on the
Identity provider to issue the necessary credentials to the Service provider
for authentication. Once the Identity Provider registers a user, the user can
access all service providers who know the Identity provider. A typical example
is universities, which issue an Identity, which works on multiple platforms that
they have agreements with.

The user-centric model is similar to the federated model, however here there
does not have to be any trust between the identity provider and the service
provider. The Identity Provider will simply release the necessary information
which the Service Provider requires to authenticate users. Common examples

24



are Facebook and Google. This solution improves usability but gives huge
power and centralization to a few select businesses, giving these companies a
complete view of the digital footprint of their users. These companies could
now also deny access to users they deemed undesirable to a vaste amount of
services. [39].

The next step in the user identity is Self-Sovereign Identity. The individual’s
digital existence is independent of any single organization. Nobody can take
your Self-sovereign identity away from you.

Self-sovereign identity (SSI) gives individuals control over their own identity to
decide how their personal information is shared and accessed, enabling trusted
interactions while preserving privacy. [40].

SSI is a very new concept and therefore goes by many names. For this thesis,
It will therefore be set like this. The Self-sovereign identity (also known as
decentralized identity, personal identity, or distributed identity) is the total
of all the information available to be shared. The sharing of information is
accomplished using decentralized identifiers (DIDs).

Decentralized identifiers or certificates can be seen as holding some truth about
a person or object, like where that person went to university, and which degree
that person achieved; these identities should exist somewhere with the public
key of the entity owning the DID so that entities interested in verifying the
information can do so out requiring third parties [41] [42].

In an SSI setup, there are three key parties that must work together to enable
SSI to work: Issuer, Holder, and Verifier. [43, 44, 3, 45].

e Holders: Are individuals who store data in a digital wallet, typically
using blockchain technology, to store the total of all the credentials re-
ceived creating their SSI. The Holder is the only entity allowed
inside the blockchain to share their credentials.

e Issuers: Are credential creators. This entity creates credentials for Hold-
ers, which are known to them. Usually, these should be big trusted
organizations like universities, hospitals, or governments, which know
information about a holder, which can be of interest to other entities.
It is important to note that although they make the credentials for a
holder the Issuer can’t share it with anyone besides the holder
meaning information can’t be leaked by an Issuer.

e Verifiers: Are businesses or individuals that need to confirm something
about someone. This is achieved by proposing what information is re-
quired from the Holder to validate their requirements. Requirement can
be anything from age restriction to a valid passport, which then, through
the use of one or multiple credentials, can be verified.

25



Ver ifiable Verifiable
Clalm " & Halm
< Yo?
Issuer Verifier

A Eﬂstlﬂﬂ Trust
1 Relationship \@

Figure 4: The desired communication between Issuer, Holder (Owner in this
image) and Verifiers [3]

There is a fair amount of literature about the requirements needed for an SSI
[46, 2, 47]. However, most of them derive or at least use Christopher Allen’s
Ten Principles of Self-Sovereign Identity [48] as a basis. These ten principles
are:

e Existence: Users must have an independent existence. An SSI can’t digi-
talize the whole truth about a person but should make publicly accessible
some information about the user.

e Control: Users must control their identities. The user is the ultimate
authority on their identity and should be able to do with it as they
please.

e Access: Users must have access to their own data. A user must always
easily be able to retrieve all the claims made about them.

e Transparency: Systems and algorithms must be transparent. The sys-
tems used to administer and operate a network of identities must be
open, both in how they function and in how they are managed and
updated

e Persistence: Identities must be long-lived. The identities should prefer-
ably exist as long as the user needs them. However, the persistence
should not conflict with the right to be forgotten; if the user wishes, the
information should either be updated or deleted.

e Portability: Information and services about identity must be trans-
portable. A third-party entity should not hold identities. Preferably

26



the information should be transportable and recoverable.

e Interoperability: Identities should be as widely usable as possible. The
goal should be to make identities usable in as many situations as possible.

e Consent: Users must agree to the use of their identity. Sharing of data
should only happen at the behest of the user.

e Minimalization: Disclosure of claims must be minimized. When data is
disclosed, that disclosure should involve the minimum amount of data
necessary to accomplish the task at hand.

e Protection: The rights of users must be protected. When there is a
conflict between the needs of the identity network and the rights of
individual users, then the network should err on the side of preserving
the freedoms and rights of the individuals over the needs of the network.

A blockchain exhibits several properties which can aid in achieving the re-
quirements set by Allen and is therefore also an attractive option for SSI to
use as a basis technology for the solution [2].

e Distributed consensus Blockchain’s ability to gain a distributed con-
sensus on the state enables the verifiability of information by any au-
thorized entities. This enables transparency, everyone on the network
knows the consensus method and to some extent, can participate in the
authorization of the data saved.

e Immutability Achieving a distributed consensus with the participation
of a large number of nodes ensures that the ledger state becomes prac-
tically immutable and irreversible after a certain period, satisfying the
Persistence and Existance requirement

e Data persistance Data on a distributed ledger can’t be deleted. The
distributed fashion ensures that as long as a single node in the blockchain
exists, the data persists. This aids in the Persistance, Existance and
A ccess requirements.

e Data provenance The data storage process in any distributed ledger
is facilitated by a transaction. Every transaction needs to be digitally
signed to ensure the authenticity of the source of data, this means anyone
participating in the ledger has a key. Every user having a key enables the
user to control signing their information with their unique public key
and the possibility of existance, linking a user’s information to some
cryptographic authentication already used in the blockchain. This gives
users control of their data, as they are the only ones with the private
key to verify their information, giving them the ability to consent to
what information they want to share, as they need to use their key-pair
to verify it, enabling minimalization as verifiers can’t get too greedy
in what information they can ask for.

27



e Distributed data control The ledger ensures that there are always
multiple nodes that can provide the information, securing no single point
of failure. This secures access for users’ information on the blockchain.

e Accountability and transparancy Every single transaction can be
verified by an authorized entity, promoting accountability and trans-
parency. This, to some extent, helps the users with protection. How-
ever, it is not a solve-all solution to the problem.

28



Interoperability between homogenous blockchains

3 Related Work

A fair amount of research has been done on blockchain interoperability. The
most significant contributor to gathering this research is a systematic litera-
ture review, which has done an excellent job surveying all existing methods
from 2014 to August 2020 [49]. This paper does present solutions which it
claims can interoperate data heterogeneously. Unfortunately, their definition
of heterogeneous is a transaction between different blockchains, mean-
ing any two blockchains which can communicate data are considered hetero-
geneous. While our definition is a lot stricter and more in line with the world
economic forums definition [16]. They define heterogeneous as a difference in
platform layer, meaning consensus algorithm, smart contracts, and authen-
tication method, which essentially means two different types of blockchains.
Unfortunately, their suggestion for interoperating this data is using an API.
In our pre-study, we looked for interoperability solutions that would satisfy
the research question:

What are the current interoperability methods/technologies which might be used
to interoperate SCMs.

Five solutions were found which could interoperate either data, FA or NFA
between blockchains. These were Polkadot [20], Hedera [17], Interledger [18],
Abebe Relay [10] and SCIP [9]

Polkadot [20] only provides interoperability between substrate blockchains [50].
There are mentions of bridges. However, these are still in development [20].
Hedera seems only to be a solution for Hyperledger [17]. It has developed
the HashPort [21], which enables interoperability between Hypereldger and
Ethereum, however only for FA [51]. Intereldger was developed to interoper-
ate between heterogenous blockchains, however, only for FA [18]. Abebe was
developed to interoperate data between two Hyperledger Fabric blockchains,
limiting itself by requiring all the certificates on both blockchains for secure
validation [10]. SCIP is able to interoperate data betwenn Ethereum and
Hypereldger Fabric [9]. This shows that currently, the biggest focus on inter-
operability is homogenous or focused on FA.

We did not consider data interoperability between heterogeneous blockchains
during the pre-study when discussing them. To our knowledge there is no lit-
erature review or study conducted to highlight heterogeneous interoperability
solutions.

The two solutions found to satisfy the first research question, BitxHub [19]
and SCIP [9] both don’t provide any information about their solution’s perfor-
mance. Polkadot has been measured to at least 10 000 tps [49], while Hedera
talks about 250 000 tps with 100-byte transactions [52]. Both these solutions,

29



however, discuss homogenous performance. There is a need for this infor-
mation in heterogeneous interoperability, too, in order to better inform users
about the capabilities.

Self-sovereign identities are very new, and therefore most of the articles focus
on either of the three topics. The formalization of a definition of what Self-
sovereign identities require to function as intended [53, 54], justification of
why Self-sovereign identities are needed in the current day [47, 55, 53|, and
what needs to be improved about self-sovereign identities for them to become
mainstream [53].

There are very few use cases for Self-sovereign identities in the literature.
Most cases use SSI to digitalize existing identities or justify the need for SSI
in certain fields [56]. However, there do exist a fair amount of articles on
the internet presenting use cases, often by companies developing SSI, like
Cheqd [57] and Adnovum [58]. To the knowledge of this reader, there are no
articles about leveraging Self-sovereign identities as a method to authenticate
information sent over two heterogeneous blockchains.

30



4 Research Design and Implementation

This chapter will explain our research approach and implementation. In sec-
tion subsection 4.1 we present the motivation for our project, and in subsec-
tion 4.2 we give the three research questions yielded from this motivation.
Finally, in subsection 4.3 we present the methods and design we choose to
follow for each research question.

4.1 Research Motivation

Current supply chains typically have thousands of transactions happening ev-
ery day between multiple vendors in the chain, all processing and saving trans-
actions in their blockchain. However, communication between the different
blockchains for supply chains remains fragmented. From the pre-study sec-
tion 8, it was found that a vast majority of SCM adopt either Hyperledger or
Ethereum. To enable communication between these fragmented ecosystems,
Interoperability is needed. Interoperability can be defined as [10]:

“the semantic dependence between distinct ledgers for the purpose of
transferring or exchanging data or value, with assurances of validity
or verifiability”

From the results gathered in the pre-study, there was a clear tendency to
favor interoperability solutions that only work for a single blockchain (homo-
geneous). In order to tackle the fragmented blockchain ecosystem, a greater
focus must be placed on interoperability between non-compatible blockchains
platforms (heterogeneous). Linking blockchains of compatible nature does
not fully solve the fragmentation problem unless one blockchain type becomes
the standard; however, this is unlikely with the distinct advantages granted
by permissioned and permissionless blockchains. Therefore, we decided to
determine from the blockchains researched in the pre-study and this thesis
which one would best be able to interoperate data between two heterogeneous
blockchains, one permissioned and one permissionless.

Further, a greater insight into the problems and performance should be made,
as currently, no literature exists on this topic for heterogeneous blockchains.
For any supply chain system, the throughput of information is vital. In a
typical supply chain, there will be a lot of data processed to update all the
moving pieces constantly occurring in the supply chain. Therefore, it is desir-
able for the information transferred between the supply chains also to have a
good performance. However, no information about this issue exists and there-
fore needs to be highlighted to inform users of current capabilities and further
developmental priorities.

From the research done on BitxHub and SCIP, it was discovered that het-
erogeneous blockchains have a problem with authenticating data when it is
transferred from one blockchain to another. Information gets signed by the
respective cross-chain getaway, anonymizing the information, as it can’t be

31



traced back to the creator of the data on the other blockchains. Self-Sovereign
Identities (SSI) might be able to solve some of these issues related to the Iden-
tity of who placed the data. If this worked, it would enhance audibility in
the blockchains, as information transferred would have a verifiable origin, and
might enhance security, as data sent over the cross-chain gateway could be
authenticated to see if it comes from a trusted source.

4.2 Research Questions

From the research motivation mentioned in subsection 4.1, we formulated three
research questions. The three research questions are as follows:

RQ1: Is there a way to interoperate data between two heterogeneous
blockchains?

RQ2: What is the performance, and what are the issues of the
selected interoperability solution?

RQ3: Can Self-sovereign identities be used to deanonymize cross-
chain data between two heterogeneous blockchains?

4.3 Research Method and Design

This section will summarize the research method and design for our study.
A literature review was conducted in our pre-study to find existing interoper-
ability solutions. The thesis will primarily focus on designing artifacts capable
of solving our three research questions. This sets us into the design science
and behavioral science paradigm, which is argued to go hand in hand by Alan
Hevner [59].

Design science is the scientific study and creation of artifacts as they are
developed and used by people with the goal of solving practical problems of
general interest.[60]

The literature review will, together with the solution found in this thesis,
form the basis for which interoperability solution can interoperate data be-
tween two heterogeneous blockchains. The research here is the behavioral
science paradigm of finding the truth, which motivates the artifact’s creation.
Once the solution has been found, the artifact’s creation can begin. Research
question one will mainly focus on design as a process, where the solution is
built and evaluated until a satisfactory artifact is created.

Research question two will then analytically evaluate the created artifact,
studying the artifact in use for dynamic qualities [59]. In our case, the quality
focused on is performance, as research has not been conducted on heteroge-
neous interoperability performance.

Research question three is motivated by the observation that data sent over
the heterogeneous interoperability solution gets anonymized. This question

32



will focus on design as a process, building and evaluating the design until it
can fulfill our goal of deanonymizing the data sent over the interoperability so-
lution. Once the artifact is created, an experimental design evaluation method
will be used. Finally, a controlled experiment will be conducted studying the
artifact for qualities, in our case, usability.

33



5 Results

This section will present the results found for our three research questions.

For our first research question: Is there a way to interoperate data be-
tween two heterogeneous blockchains?. We will first, in subsection 5.1
present the interoperability solution found in this thesis, BitxHub. We will
then, in subsection 5.2 attempt to find the solutions able to interoperate data
between heterogeneous blockchains and justify our interoperability choice. Fi-
nally, in subsection 5.3 we will use the found interoperability choice to build a
functioning solution capable of interoperating data between Hyperledger 2.3
and BitxHub.

For our second research question: What is the performance, and what
are the issues of the selected interoperability solution? We will in sub-
section 5.4 present the experiments and results related to performance, as well
as presenting the issues observed when using our developed interoperability
solution.

For our third research question: Can Self-sovereign identities be used to
deanonymize cross-chain data between two heterogeneous blockchains?.
First, in subsection 5.5 we will justify our choice to use Hypereldger Indy as
our platform for the SSI solution. Finally, in subsection 5.6 we will present
the whole creation process from preparation to working solution. After that,
we ultimately present the experiment used to prove that SSI can deanonymize
cross-chain data between two heterogeneous blockchains.

5.1 Bitxhhub

This section will present another interoperability solution found during the
master, claiming it can interoperate heterogeneous data. It will be shown in
the same way as the findings of the pre-study in section 8, to maintain the
consistency of how interoperability solutions are presented in this thesis. The
results shown here will subsequently be used in subsection 5.2 to find the best
interoperability solution between heterogeneous blockchains.

5.1.1 Architecture

BitxHub is, as of 2020, an open source solution [61], which aims to interoperate
all asset types Data, Fungiable Assets, and Non-fungible assets [19].

BitxHub consists of three core parts, and the Inter-Blockchain Transfer Pro-
tocol (IBTP) their standardized communication protocol, which enables the
sharing of information over the heterogeneous blockchains [61, 19].

The three core parts of BitxHub are

e App-chain: The App-chains are simply existing fully functioning blockchains,
which, together with the Cross-chain gateway and Relay chain, can

34



achieve interoperability between each other. Officially BitxHub claims
that it can communicate between Hyperledger Fabric (1.4), Ethereum,
BCOS, CITA, and Hyperchain.

e Cross-chain gateway: The Cros-Chain gateway is responsible for col-
lecting and broadcasting IBTP transactions [62]. The validation rules
should be set once a majority of peers inside the Relay-Chain have ac-
cepted the Cross-chain gateways proposal to join the channel, but before
it connects to the Relay-Chain. These Rules describe how the IBTP in-
formation should be handled for that particular App-chain [63]. Ideally,
the Cross-chain gateway should be managed by the same people man-
aging the App-chain. This ensures that there are no malicious motives
when managing the Cross-chain gateway. [61].

e Relay-chain: This is a permissioned blockchain responsible for routing
IBTP information from one App-chain to another. Like any blockchain,
it has its own peers, which are responsible for all the operations, as well as
keeping the ledger. For an App-chain to connect to the Relay-chain, the
Cross-Chain Gateway connected to the App-chain must receive a major-
ity vote from all the peers operating inside the App-chain. Only once a
majority has accepted the proposal to join can the Cross-Chain Gateway
(and by proxy the App-Chain) successfully connect to the Relay-Chain
[62]. After the successful registration, but before the actual connection,
the validation rules must be sent. The validation rules are inside a script,
which will be used to validate the Proof of the transaction and ensure
validity [19]

B, I .
o, ® -.
& | &
T - @5\ @5
L K - ” Fll p-_ .
\\' i @K‘ &0 » © ey Relay-chain
2, - B
Relay-chain ' . . @h == 5
—_ P ‘m ; "
* terp _‘-H Q\% — i Pier 8 \@
@ B
PESE—— .
C‘,ﬁﬂ%#

Figure 5: The BitxHub architecture, with different App-Chains (Blockchains),
Relay-Chains for intercomunication, and Cross-chain gateways (in image called
Peers) for setting up the IBTP between sender and reciever

BitxHub has a goal to interoperate with as many heterogeneous blockchains as
possible. All blockchains have to some degree different structures, which makes
it impossible to communicate directly between two heterogeneous blockchains.
For this reason, BitxHub created their cross-chain transfer protocol, which ab-

35



stracts the information of the blockchain into something which is readable for
the cross-chain gateways, which then can make it readable for their underlying
blockchain [19, 61].

The transfer protocol is called Inter-Blockchain Transfer Protocol (IBTP), and
consists of the following data fields shown in Figure 6

From ID of sending chain

To ID of receiving chain

Version Version of protocol

Index Index of interchain transaction
Payload Encoded content used by interchain
Timestamp Timestamp of interchain events
Proof Proof of inter-chain transactions
Extra Selt-defined fields

Figure 6: The IBTP Data Structure

The values in the fields are as followes [19, 61]:

From: Is the address of the Cross-chain gateway, which is sending the
information

To: Is the address of the Cross-chain gateway, which the information
should be sent to

Version: Is the version of the Cross-chain gateway, both Cross-chain
gateways need to have the same version to communicate

Index: Is an increasing number used to order interchain transactions.

Payload: Is the encrypted information which should be sent from one
App-chain to another.

Timestamp: is a timestamp of the transaction.

Proof: Holds the validation rules, which need to be validated by the
relay chain. The validation rules will be different according to the char-
acteristics of the app-chain that the Cross-chain gateway belongs to. A
permissioned blockchain can often instantly validate a block, while a

36



permissionless blockchain needs a certain length before it can be seen as
secured on the blockchain. The proof of the protocol is determined by
the type of App-chain (Is it fabric or Ethereum). However, the rules for
validating the proof can be written by a programmer before it has been
accepted into the relay chain [19, 63, 62].

e Extra: This field is an additional field which can be used to provide
some flexibility inside the protocol.

5.1.2 Consensus model

The IBTP protocol is the consensus model used by BitxHub and enables Cross-
chain gateways to translate information to IBTP and blockchain information
to IBTP. It holds all the critical information needed for the Relay chain to
send it from one Gateway to another and for gateways to validate the data.
[19, 61, 63]. Typically the most vital payload is the proof. The proof is
signatures from the App-chain/Gateway that the info is indeed on the App-
chain and has not been tampered.

For App-chains with probabilistic finality (like Ethereum), the sending gate-
way itself is responsible for signing that the information sent exists on the
blockchain in question [19]

For App-chains with absolute finality (Hyperledger Fabric), the peers inside
the blockchain themselves can sign the information as valid and existing and
then send it as proof to the Cross-chain gateway. [19].

5.1.3 Constraints

The validity security in a permissionless blockchain appears weak. The fact
that a single cross-chain gateway can be responsible for signing the existence
as valid means it easily could act maliciously. The Whitepaper mentions
incentives, and cross-chain clusters [19]; however there does not seem to be
any incentives provided in their solution or a method to connect multiple
Cross-chain gateways together. This means that the whole system needs a
strong trust in that the cross-chain gateway doesn’t act maliciously.

Having a single cross-chain gateway for each app-chain to relay chain connec-
tion can provide a single point of failure on the system, or can be a bottleneck
in high throughput situations [19, 62]

5.1.4 Interoperability

BitxHub uses the IBTP protocol to ensure a single format for communica-
tion through their relay chain, to allow multiple heterogeneous blockchains to
communicate with each other. This is enabled through using cross-chain gate-
ways, which take information from the App-chain and translate it into the

37



IBTP protocol format, making it readable for the Relay-chain. The Relay-
chain later sends it to the destination cross-chain gateway to be translated
into information readable to that app-chain. [19]. BitxHub claims a single
relay chain can hold at most 64 different App-chains, of any of the supported

app-chains, making it very scalable [19]

5.1.5 Pros and Cons

Table 3: Pros and Cons BitxHub.

PROS

CONS

Security

e The IBTP consensus ensures that
nothing will be tempered with from
when it was sent from App-chain A
to App-chain B.

e Only smart contracts which are val-
idated by the broker contract to in-
teract in the BitxHub system are
allowed to communicate over Bitx-
Hub.

e Validation rules are customisable,
meaning an entity can either in-
crease security if they see a need for
it.

e The Relay-chain is permissioned,
meaning the nodes inside the Relay-
chain must come to a majority con-
sensus that a new App-chain can
join

e The validation rules are customiz-
able for each owner of the Cross-
chain gateway enabeling every App-
chain to specifiy their own require-
ments for a consensus.

e The cross-chain gateway consists of

a single node, this means that it is a
single point of failure, if down, com-
munication is impossible and high
trust needs to be places in the peer,
so no censoring attacks occure.

Getting the Cross-chain gateway to
sign information for a probabilistic
finality blockchain means that node
has 100% controll over the validity
of the information. BitxHub men-
tiones in the whitepaper [19] a clus-
ter of nodes, but at the moment this
does noe seem possible to make

Performance

38




e BitxHub in their whitepaper men- e The cross chain gateway is as men-

tiones high perform, but does not tioned a single node, meaning it
mention how this is achieved or has needs to translate in and out-
any measurable results [19]. For this coming information from the valid
reason this claim has to proved. blockchain protocol to the IBTP
protocol, making it a bottleneck for
performance.
Scalability
e BitxHub has a highly scalable capa- e Interoperating blockchains
bility. every relay chain can in the- have prior knowladge about the
ory support 64 app-chains [19] existing smart contracts in the other
e Thanks to the IBTP protocol, any app-chain, and how to access them.
blockchain cabaple of adapting this e Interoperating blockcahins
protocol can communicate in Bitx- have knowledge about the chain-ID
hub. of the other blockcahin

e BitxHub is open source, so any-
one can expand on and make Bitx-
Hub interoperable with more bloc-
ckhains.

Costs

e There is no monetary cost associ- °
ated with using BitxHub

5.2 Heterogeneos Interoperability

This part will be based on the literature study presented in 8 and the later
found solution BitxHub 5.1 justifying the choice of the interoperability solu-
tion used to interoperate data between two heterogeneous blockchains. Sub-
sequently, the solution chosen from this section will motivate the next subsec-
tion 5.3 which will describe the development of the chosen solution.

Data is the simplest form of information that can be transferred and needs the
least amount of security compared to FA and NFA. However, in industry, this
is by far the biggest information flow and needs to be addressed before the
other two can be considered. The evaluation is further confined to requiring
one blockchain to be permissioned and the other permissionless. This is to
understand better how two very different consensus models create challenges
for interoperability and to enable an ecosystem where the users can reap the
benefits from both permissioned and permissionless blockchains. The selected

39



solution must also have the potential for future development, as interoperabil-
ity between blockchains is very new, and being able to adapt to state of the
art is essential.

The choice was based on some critical considerations created in the pre-study
when choosing which interoperability method to pursue. These are: In-
teroperability, Consensus Model, Security, Performance, Cost, and
Scalability

5.2.1 Interoperability for heterogenous data transfer

For Data to be transferred from one blockchain to another, there needs to be
satisfactory proof that the information being transferred is valid and is on the
other blockchain. The following interoperability methods have succeeded in
this requirement.

e SCIP uses its SCL to provide an URL identification method to contact
gateways, which are responsible for translating the uniform protocol from
the sender blockchain to the receiver blockchain. The information will
be returned to the sender with a degree of confidence between 0 and 1,
representing the likelihood that the information is on the chain.

e BitxHub uses smart contracts to fetch information from the ledger and
send it to the Cross-chain gateway, translating it to the IBTP. The re-
turned proof will differ depending on whether it’s probabilistic or ab-
solute finality. Probabilistic chains don’t use signatures and therefore
need to be signed by the cross-chain gateway, while absolute finality
uses signatures on the chain, collected as proof.

The interoperability solutions which do not fulfill the requirements are:

e Abebe Relay uses smart contracts and their relay component inside the
blockchain to allow communication. The three contracts will commu-
nicate together to get the signatures needed to validate the informa-
tion on the other blockchain. The data will be sent to the relay, trans-
lating the data to a network-neutral language using Google’s Protocol
Buffers. Finally, the returned value will be delivered with an agreed-
upon verification policy. However, this solution was designed for per-
missioned blockchains, where nodes sign the information needed so that
it can be validated on the other blockchain. The consensus model of
Abebe requires that all the certificates used in Blockchain A also exist
on blockchain B for validation. Permissionless blockchains that do not
have certificates to sign the data sent over the cross-chain make this
method impossible to use.

e Interledger uses its protocol layers to come to an agreement on what is
to be exchanged, the amount, and how to communicate. This is enabled
using connectors, which have currency accounts on two blockchains, en-
abling a bridge between two blockchains. Once enough bridges have

40



been created to reach the desired currency, the protocol layers initiate
the exchange and fulfill command is initiated between all the connectors.
The currency is transferred from one blockchain to another, with a small
fee paid to the connectors. The solution is very successful for Fungible
Assets. For Data, connectors would have no or little incentive to convey
the data.

e Polkadot’s relay chain is developed with substrate blockchains in mind.
To interoperate with other blockchains which are not a substrate, a
bridge must be developed. There is a promising solution to an Ethereum
bridge in their 2020 whitepaper [20]; however, a bridge would need to be
developed for every kind of blockchain not being a substrate, making it
too work-intensive.

e Hedera uses tokenization and token contracts, which can require proof
in the form of signatures that the information given is authentic. This
works exceptionally well in permissioned chains, where a signature sys-
tem is used. However, for probabilistic consensus without signatures,
Hedera falls short. Hedera created Hashport [21], which allows inter-
operability of digital assets between Hedera and Ethereum, essentially
allowing it between Hyperledger and Ethereum. However, the current
Hashport setup requires a 0.5% fee of the total transaction [51]. Since
data has no value the Hashport is currently only applicable for FA. For
Hedera to become desirable, the Hashport, would need to also exchange
data.

For this reason, Interledger, Polkadot, Abebe Relay, and Hedera will no longer
be considered. They do not meet the desired requirement to interoperate data
between the two heterogeneous blockchains described.

5.2.2 Consensus model evaluation

The consensus model must be able to function with multiple different blockchains
without there being a need to change the blockchain architecture or the in-
teroperability architecture itself significantly. For example, suppose a solution
requires massive changes in the solution’s underlying architecture for each new
blockchain. In that case, it is not scalable enough in the long run.

Of the remaining two options Bitxhub and SCIP, both methods pass this
requirement.

e BitxHub’s consensus model is based on the IBTP protocol and is trans-
lated and validated on the Cross-chain gateway. For this reason, what
is needed is that the information sent to the IBTP has to satisfy the
protocol standard. The Cross-chain gateway needs to be able to read
the information and translate it to the IBTP protocol. The appropriate
smart contracts that can communicate with the gateway will also be
required, and validation rules for the blockchain will be necessary. The

41



Relay chain only operates with IBTP messages and does not care about
the architecture of any of the App-chains involved and would not need
to be changed.

e SCIP, the consensus model, is based on the SCIP, reached through the
SCL through HTTP POST messages. For a new blockchain to be added,
the necessary smart contracts would need to be disclosed, and the JSON
schema used to handle translations between contracts would need to
be updated. To our knowledge, based on the literature presented, no
significant changes would need to be made in the SCIP or the SCL

5.2.3 Security related to interoperability

An adequate security level needs to be present in the solution. By nature, data
requires the least proof to maintain the state and uniqueness of the asset, as
it can exist on multiple ledgers at once. However, the solution must still prove
that the data exists on the other blockchain.

e BitxHub provides customizable security, leaving it up to the cross-chain
gateway admin to provide the security level desired by the blockchain.
The Relay-chain is a permissioned blockchain, requiring a majority vote
by the nodes in the Relay-chain to allow a new App-chain to join the
ecosystem. The Relay chain ensures no tampering during the transit.
For permissionless blockchains, the smart contract the Broker imple-
mented will ensure that only contracts validated to access the Cross-
chain gateway are allowed to access it.

e SCIP does not focus much on security. It manages to fulfill the require-
ments of being able to prove the data exists on the other blockchain, by
returning a degree of confidence that it has been placed there. It also
gets signed by the gateway that this information is correct. However
other then this there is little to no security. Users can controll what
they wish to expose, by writing the smart contracts they wish to expose
on their SCIP gateway.

5.2.4 Performance

Both solutions do not disclose any factual information about the performance
of the interoperability methods. Therefore using our chosen solution will be
tested and discussed. Furthermore, both have single nodes in the SCIP gate-
way and the Cross-chain gateway, which can become problematic as they can
be a bottleneck for throughput.

5.2.5 Cost

For a sufficient amount of data to be transferred from one blockchain to an-
other, the cost of sending data should not be a significant hindrance.

42



Both SCIP and BitxHub are here very similar, therefore they will be ad-
dressed simultaneously. For both solutions, there are no costs associated with
the cross-chain transfer of data. In the permissioned blockchains, with their
consensus model, there are no fees to add information to the ledger, therefore
storing information has no associated cost associated. However for the permis-
sionless blockchain, with their requirement to provide a gas fee to place data
on the ledger there is a small cost involved. Both solve this issue by making
the host of the respective gateways deal with the cost. This could become a
problem if the ecosystems become big. Still, with both having some form of
privacy involved in their interoperability method, both should, in theory, know
who is using their services. Payment options could be discussed off-chain.

5.2.6 Scalability

Both solutions have an excellent potential to incorporate more blockchains into
their ecosystem. There is an upper limit of 64 App-chains inside a Relay-chain
for BitxHub, while there does not seem to be an upper limit for Blockchains
inside SCIP. However, the SCL would have to be updated with the new gate-
ways in the ecosystem. Based on what was discussed for the consensus model,
while it would require work, both solutions are adept at incorporating more
blockchains. This is mainly because both abstract the blockchain logic in
the SCIP and IBTP, making the communication homogenous. However, both
have issues with their gateways. The Cross-chain gateway is currently only
a single node, making it vulnerable to security and performance issues. The
same problem exists for the SCIP Gateway. Both mention this issue in their
respective papers this issue but don’t seem to have a solution for it.

SCIP and BitxHub would be potential solutions for heterogeneous interoper-
ability. However, BitxHub has a distinct advantage over SCIP.

The SCIP solution was developed in 2020, as part of a Ph.D. thesis by Ghareeb
Falazi at the University of Stuttgart. Looking at the Github page given in the
SCIP paper [9], it seems the last development on the project was two years
ago, and no new articles have been published by Ghareeb Falazi on this topic
according to Google Scholar [64]

BitxHub, on the other hand, has since 2020 been an open-source project.
It has an active community developing solutions on it. It also has an active
community on WeChat where users can ask questions answered by developers.
BitxHub will see further development in the future, ensuring the solution’s
longevity.

Table 4 provides an overview of what the different interoperability solutions
pass on, shown with a checkmark, and what the fail on shown with a blank.
The Support row is left open to indicate that this is not a requirement, but
for the longevity and relevance of the project in the future, it is nice to have.

43



Table 4: The different interoperability solutions and what they would pass on

for heterogenous interoperability

BitxHub | SCIP Abebe Interledger | Polkadot | Hedera
Interoperability v v
Consensus Model | v/ v v v
Security v v v v v v
Performance Unknown | Unknown | Unknown | v/ v v
Scalability v v v v
Support v v v v

5.3 BitxHub development

The Installation of the necessary dependencies was done following the BitxHub
environment preparations. For the project itself, it was decided to use BitxHub
Version 1.6.5, and Golang V1.14.7. This is because BitxHub Version 1.6.5 is
a stable version, and Golang V1.14.7 was recommended to be used with this
particular version. This information is not noted on their documentation but
was retrieved by asking one of the developers on WeChat as shown in Figure 16.

e

-~

v1.6.5and v1.11 are stable
version

Ok thanks I'll tell him this ) ‘

22/22 10

Is there a Go version you

recommend using for v1.6.57?

A

Figure 7: Conversation which lead to the use of BitxHub V1.6.5 and Golang

We chose to interoperate data between Hyperledger Fabric 2.3 and BitxHub,
this would satisfy the heterogeneous requirement, but would also use the cur-
rent most popular blockchains in SCM, as discovered during the pre-study in

section 9

44




5.3.1 Relay Chain

The Relay Chain was made and built following the documentation on Relay
chain deployment provided by BitxHub [65]. and it was chosen to use the Solo
mode with four nodes in the Relay Chain. Once the files are made, there were
no further changes that needed to be made.

5.3.2 Hyperledger Fabric Cross-chain creation

The Hyperledger Fabric 2.3 Cross-chain gateway was developed by a our col-
league HaoMing Li, who changed the code in Fabric 1.4 retrieved from the
Cross-chain gateway deployment by BitxHub [62].

Every Cross-chain gateway is built using two core components, this is the peer
logic itself, which is used for every compatible blockchain [66], and a client for
that particular blockchain, like Hyperledger or Ethereum. Once implemented
together these two combined create the Cross-chain gateway for a specific
App-chain.

In a normal Cross-chain gateway, it is the cross-chain gateway, which is re-
sponsible for communicating with the App-chain and Relay chain, everything
must go through it. A high-level sequence diagram for how it would work in
Ethereum is shown in Figure 8

:

App-chain Gateway RelayChain

Transaction

IETP transacfion

Other gateway and
App-chain

IETP result transacfion

Result Transaction

Figure 8: How the Ethereum Cross-chain gateway interacts with App-chain
and Relay Chain

Hyperledger Fabric 2.3 solution is built on Fabric 1.4 solution. It was at-
tempted to replace the Fabric 1.4 SDK with the Fabric 2.3 SDK in the Hy-
perledger client, however, this made it not compatible with the peer logic.
For this reason, a third component was introduced, named the broker. The
broker sits between the App-chain and Cross-chain gateway, it is responsible
for translating the information sent and received into something readable for
the Cross-chain gateway and the App-chain. With this solution, it was now

45



possible to use the modern Hyperledger Fabric 2.3 instead of the older Hyper-
ledger Fabric 1.4. A High-level sequence diagram in Figure 9 shows how the
created solution interacts with the other components.

App-chain Broker Gateway RelayChain

2.3 Transacfion

h 4

Gateway Transaction

IETP transaction

A 4

—— Other gateway and
App-chain

IBTP resuit fransaction

Gateway results

2.3Resulls

Figure 9: How the created Fabric 2.3 solution Cross-chain gateway interacts
with App-chain and Relay Chain

5.3.3 Cross-chain gateway Hyperledger Fabric

For the Fabric Cross-chain gateway to work, the first thing which must be
done is to create a Hyperledger Fabric Test Network in the environment. The
Fabric Test Network was chosen because this is a fully functioning Fabric
network, which everyone can use. It was decided to use Fabric 2.3.2, because
this was the latest release when the development was started. A simple script
shown in Figure 10 can be used to download the whole fabric sample in the
correct version, and from there the user can follow the instructions provided
in Using the Fabric test network [67]

sudo curl -sSL 1y/2ysbOFE | bash -5 -- 2.3.2

sudo cp ./fabr 11 » Sfusr/local/bin
sudo rm -rf . /fabric-samples/bin

Figure 10: Initiate Fabric network

Once the channel is up and running, the environmental variables must be set
up locally in the development environment. This is so communication can be
done correctly when setting up the Chain code in the environment, and later
for communication between the chains, the environmental variables which need
to be set up are shown in Figure 11.

46



fpier-client

1sca.exanple. con-cert. pem

Figure 11: The enviroumental variables needed to setup the network

Once the envioruenmntal variables are put in place, the chain code can be
placed onto the blockchain.

This is done by first packing the relevant Golang scripts into what is called
a package. This means all the relevant scripts Broker, Data_Swapper, and
Transfer. Once the chain code is packaged in a tar.gz file, it must first be
installed onto the blockchain nodes. This must be done for each organization’s
peer, which is inside the channel, where the chain code should be installed.
Once the chain code is installed, each organization must approve the chain
code, before it finally can be committed and initiated.

Once the chain code is successfully committed to the nodes in the Hyperledger
blockchain, the Cross-chain gateway is ready to be connected to the Relay
chain.

5.3.4 Cross-chain gateway Ethereum

The Ethereum Cross-chain gateway was built following the documentation on
Cross-chain gateway deployment provided by BitxHub [62].

Once the documentation has been followed, the user should end up with a
folder tree as shown in Figure 12

47



Figure 12: Ethereum Cross-chain gateway tree folder structure

The important changes which need to be made after the creation is in the
ether/config files. In order to launch the Cross-chain gateway, there must first
be smart contracts deployed on an Ethereum network.

To this end, Truffle [68] was used. Truffle is a Node.js npm package, which
allows the developer to easily deploy contracts on an Ethereum network of
their choosing and use compilers of their choosing. All the scripts in BitxHub
V1.6.5 are written in solidity version 0.5.6, therefore it was chosen to use
this version. The network chosen was Rinkeby Test network. An alternative
would be to use Ganache-CLI which would give unlimited test ETH, however,
Rinkeby acts more like the main network, and therefore would give a more
realistic result when conducting tests. The choice of using Rinkeby Testnet
meant we had to connect to the Rinkeby Testnet, to this end, it was chosen to
use Infura [69]. Infura allows developers to easily connect to either a Testnet
or the Mainnet, using the nodes which they have in the different blockchains,
saving the developer the time of creating their own node in the ecosystem.
Infura does this by providing endpoints to the nodes, which can be used to
connect and communicate with the smart contracts developed. Finally to

48



deploy a contract a user must provide a wallet with ETH, so the price for
deploying and subsequently sending transactions can be paid for. We choose
to use Matamask [70].

Once the contracts had been deployed on the Rinkeby Testnet, the information
about the Blockchain connection (Infura), contract addresses and the wallet
key had to be added to the Ethereum.toml file. This is because when the Cross-
Chain gateway gets initiated, it must know which smart contracts to use, how
to connect to the blockchain, and how to access the wallet for transaction
payments Figure 13 shows an example of how it should look like.

[ether]
addr = ™ frinkeby.inf -3 3b3ted162fB4 775001860909 Fed5abcB”
name = "Sma
contract_addr TITAEGES1af64 1883482 3eBDE913AC5d1542"
ount.

"password”
min_confirm = 1

[comtract_abi]
78="data_swapper.abi”
"transfer.abi”

Figure 13: The structure of the Ethereum.toml file in V1.6.5

The other values in ether/config shown in Figure 12 also need to be populated
with the correct values, so that when the Cross-chain gateway starts it will
function as intended. The ABIs broker.abi, transfer.abi, and data_swapper.abi
all can be populated by a string of the respective ABIs which were created
when the contracts were deployed.

Because Metamask does not provide an account.key file, one had to be pro-
duced using the private key of the Metamask account, and a password of
choice. The code snippet is shown in Figure 14 which was used to enable
this. Once the the file with the account.key info is created, it can be copied to
the account.key in ether/config, and the password used must be placed in the
password file. The final file in ehter/config, validating.wasm was not touched
during this project. This file is however the file that provides the validation
rules for the Cross-chain gateway. If a user wishes to add or change the secu-
rity requirements which are checked before the received data is seen as valid
by the Cross-chain gateway, and sent to the underlying blockchain, then this
file needs to be changed. BitxHub provides a basic tutorial on how this can
be done in their Wiki [63].

49



-fromPrivat

Figure 14: Code used to make account.key for metamask

With these changes, the Ethereum Cross-chain gateway can be connected to
the Relay chain.

Once both Ethereum and Fabric are ready for deployment, they must first
be registered. The registration will give the gateways a unique Pier-ID and
Proposal-ID, which will be used to communicate and register respectively. The
Registration command and the output given are shown in Figure 15

ier$1 appchain register --name-ethereum

Figure 15: A registration command from Ethereum, and the yielded Pier and
proposal ID

With the Proposal-ID, the nodes inside the Relay-chain can now approve the
Cross-chain gateway to join the ecosystem. Once a majority of nodes have
approved the Cross-chain gateway it is now possible to deploy the rules, and
finally start the Cross-chain gateway, which now can communicate with the
BitxHub Relay-chain. The commands for Ethereum to do this are shown in
Figure 16

bitxhub --repo bitxhub/scrip ! v --id € ¥ 356 ced987s 8 --info approve --reason approvel

Figure 16: Shows the commands used to connect to a node, and the commands
to deploy rules and start the peer

50



The final setup is shown in Figure 17 The Ethereum and Hyperledger Cross-
chain gateways are now connected to their respective Blockchains, as well as
the Relaychain, and can communicate information to each other.

¢

Cross-chain gateway Relay-chain pier

,@}%
‘ L .é«/ \~<§~ . .:, HYPERLEDGER
4 Ny ~¥ FABRIC
.é% Hyperleger Fabric 2.3 blockchain
Ethereum blockehain

BitxHub Relay-chain

Figure 17: Bitxhub complete architecture

On the Hyperledger Fabric side, everything is now prepared to communicate,
however on the Ethereum side, the broker contract must still approve the
data_swapper and transfer the smart contract. This is for security reasons,
because Ethereum is a permissionless blockchain, anyone who has the address
to broker could in theory use it to send cross-chain information over. How-
ever, the developers thought of this and implemented a method to only allow
approved smart contract addresses to communicate with the broker contract.
For this reason, before we can communicate, we need to approve the addresses
of data_swapper and transfer. Once they are registered, both sides can com-
municate with each other. A simple interaction is shown in Figure 18

eyl").send({From: add

Figure 18: A simple method to fetch data from HyperledgerFabric

Once everything is connected, the first thing which must be done is the ledgers
must populated with data. Both sides must place some information on their
respective ledgers in order for it to be fetched. After this on the Ethereum
side, the broker must register the addresses of the data_swapper and transfer
smart contracts, this must only be done once. Finally, a transaction can

o1



be made with the Hyperledger Fabric blockchain. Once this is done and the
data_swappers get command has been called, the information will be retrieved
following the sequence diagram shown in Figure 19

Data_swapper Ethereum Broker Ethereum Data_swapper Hyperledger Broker Hyperledger
Relay
Get o Chain
P —

] emitinterchainEvent

getOutMessage

[
L
getinMessage .
Ll
] Invokelnterchain
i InvokelndexUpdate
; markinCounter
call interChainSet
L
refurn interchainSed
GetOutMessage

getinMessage

A

Invokelnterchain

InvokelndexUpdate

markCallbackCounter

RIS

call interchainSet

; set

Figure 19: The complete sequence diagram from a get call to the eventual
placing of the requested data in the blockchain. Cross-chain gateways are
removed

The first and only function which has to be called in order to retrieve informa-
tion from the other blockchain is data_swapper.get(). The get function takes
in three parameters

e Pier-ID: which was created when the Cross-chain gateway was first reg-
istered as shown in Figure 15.

e data_swapper location: For Ethereum, this is the smart contract address,

52



while for Hyperledger this is the channel it is in combined with the name
of the contract. As shown in Figure 18

e data: The key from the Key-Value pair which the users wish to retrieve
information about on the other blockchain.

The get function will then communicate with the broker contract, which then
will communicate with the cross-chain gateway to send out this information.
The code for this interaction is shown in Figure 20

emitInterchainEvent(
stCl

erchainEvent (

)] [outCounter[destChainID]] =

Figure 20: The code used in the Ethereum side to request information from
the other blockchain

The Relay chain will then send this information to the appropriate Cross-
chain gateway, where it will then trigger updates of the current state of the
Cross-chain gateway, depending on if it is ingoing or outgoing.

In both cases, it will invoke Invokelnterchain and InvokelndexUpdate. De-
pending on if it’s ingoing or outgoing it will call MarkInCounter or markCall-
backCounter respectively. These three functions all work on maintaining the
correct state of the cross-chain gateways ensuring that information is dealt
with appropriately. If it’s an ingoing message, the broker will also call inter-
ChainGet. Interchain get is responsible for retrieving the desired information,
and returning it to the broker, which then with the return address from the
IBTP protocol will send it back to the Relay-chain. Finally, the information
will be set in the blockchain which first requested the information. The get
function is used to retrieve the information, and the two set functions used to
set the information are shown in Figure 21.

93

. number;




interchainGet(

» dataM[key]);

Figure 21: The get and set functions used in the cross-chain transaction

5.4 Performance and challenges

With a functioning solution presented in subsection 5.3, there was now a desire
to see how this solution performs. The main focus was transaction speed.
subsubsection 5.4.1 will present the transaction in its most basic form, sending
one transaction from blockchain A to Blockchain B. subsubsection 5.4.2 will
try to increase the transactions per second (tps) by increasing the number of
messages sent in different time intervals. subsubsection 5.4.3 will observe how
the system functions when sending higher amounts of data. The final part
subsubsection 5.4.4 will present issues found while testing the performance of
the interoperability solution

5.4.1 Average Transaction speed

With a functioning solution that was able to interoperate data between Hyper-
ledger fabric and Ethereum, we wanted to see a bit how the solution performed.
The reasoning for doing this was an observed lack of information about perfor-
mance in the solutions which could interoperate data between heterogeneous
blockchains, SCIP, and BitxHub.

For all the experiments checkmarks were set at appropriate places, measuring
the time in milliseconds from 1970 and printed out when these checkmarks
were hit. There were set a total of three checkmarks.

e Checkpoint One: was triggered when the get function was called.

e Checkpoint Two: Was set when the other blockchain first retrieved the
request in invokeInterchain.

e Ckechpoint Three: Was set once the information desired was set on the
blockchain, after set was called.

Once the information was gathered, the received request would be measured
by taking:

(Checkpoint Two - Checkpoint One) / 1000

The Message returned would be measured by taking

54



(Checkpoint Three - Checkpoint Two) / 1000

This would give us the three measurements Message Received, Message Re-
turned, and total time in seconds.

The first experiment focused on transaction speed. Transaction speed is a
relevant matrix to measure, as the current industry requires a high transaction
speed in order to send stay relevant. The experiment was set up using the
Hyperledger Fabric solution and Ethereum solution described. A transaction
was sent from Hyperledger to Ethereum. The time was recorded, and another
transaction was sent.

It was found that the average transaction speed between Hyperledger Fabric
and Ethereum using BitxHub was 15.78 seconds This average was received
after running ten transactions between Hyperledger Fabric and Ethereum on
five different occasions, where one such experiment is shown in Figure 22.
However, it seems that the Transaction speed is linked to the average block
time inside the blockchain. This is because BitxHub needs to set the informa-
tion requested by users into the respective blockchains. Therefore the whole
transaction process needs to wait until the transaction is set in the blockchain.

For this reason, another experiment was set up using two Ethereum blockchains
to talk to each other over BitxHub. The expected result would be that when
two Ethereum blockchains communicate together, the information would first
need to be requested. The request should take the time equivalent to one
block creation, as some data gets updated, while the returning and saving this
information on the second blockchain should take another block creation. It
was expected that the total time should be somewhere close to 30 seconds to
this extent.

Message Recieved Message Returned Total Transaction Ethereum Hy:)er edgef Transaction

6.726 8.311 15.037 20
3.863 11.145 15.008
3.848 14.111 17.959

3.951 11.189 1515

S W N @ e W N

3.891 14.211 18.102

4303 13237 1754 == Message Recieved == Message Returned Total Transaction

3.99% 11.072 15.068
3.797 14218 18.015
4251 10.753 15.004 10

5.921 12226 16.146 5 w

Figure 22: Average transaction speed between Ethereum and Hyperledger
Fabric

The test results shown in Figure 23 do indeed support the hypothesis that
the Transaction speed is linked to average block time. This means that the
transaction speed between Ethereum and Hyperledger Fabric using BitxHub
is not determined by the speed of the cross-chain transaction but rather the
speed of Ethereum.

95



Test Message Recieved Message Returned  Total Transaction Ethe['eu m T'ansac[ioﬂ

15.114 15718 30832 == Message Recieved == Message Refurned Total Transaction
14.987 14.995 29.982 50
15.243 14772 30.015
26.999 15.004 42.003

18.01 15.006 33.018

15.02 14.986 30.006 20
15.009 15.00 30.009 10
15.001 14.997 29998 0
14934 151 30.034 2 4 8 8 1
15.005 14.988 29993 Test

40
30

S W@ N D ! R W=

Figure 23: Average transaction speed between Ethereum and Ethereum

A final experiment was done between Hyperledger Fabric and Hyperledger
Fabric. The average here after three separate tests doing ten transactions,
sending one every 25 seconds resulted in an average transaction time of 10.36
seconds. One such experiment is shown in Figure 24.

From this experiment, it can be proven that the BitxHub interoperability
method is not the only slowing factor when interoperating data between Hy-
perledger and Ethereum, as the transaction speed between Hyperledger and
Hyperledger is about 5 seconds faster than Ethereum and Hyperledger.

= Message Recieved == Message Refurned Total Time
Transactions Message Recieved Message Returned  Total Time 12

1 253 6.527 9.057 10

2 4.499 4.58 9.079

3 4.484 4533 5.017 8

4 2.497 4536 7.033 5

5 2482 6.529 9.011

6 4.486 6.542 11.028 4

7 4.487 6.532 11.019 2

8 4.494 4532 5.026

9 4495 4536 5.031 0 2 4 P 3 10
10 4489 4543 5.032

Figure 24: Average Transaction speed between Hyperledger 2.3 and Hyper-
ledger 2.3

A transaction speed of one transaction every 15 seconds is very slow. Com-
pared to existing solutions like Polkadot, which claims it can do 160 000 tps,
without much proof to back this up [71], it can claim at least 10 000 tps cited
in [49]. It should be mentioned that these between 160 000 - 10 000 are shared
between all parachains in the domain. This means if 20 parachains were us-
ing the lower end, a para-chain could maximum expect 500 tps. Polkadot is,
however, an interoperability solution for homogeneous blockchains. There are
currently no articles measuring the transaction speed of two heterogeneous
blockchains to the knowledge of the writer.

5.4.2 Throughput

So far, the transactions have been sent over BitxHub, in a fashion where we
only see the average time between sending the transaction and later receiving

o6



the transaction. A potential way to increase the number of transactions per
second is to send multiple transactions simultaneously. For example, if the
system can handle two transactions within 15 seconds, the tps would be halved.

An experiment was set up where the first set of transactions was sent every
minute, ensuring that even at the worst conditions there should not be any
throughput issues. The second set of transactions was sent every 10 seconds.
This is below the average throughput of 15.78 seconds, ensuring that multi-
ple transactions would need to be handled at once. Finally, the third set of
transactions was sent out every second. The results are shown in Figure 25

Time required to receive results

Transaction Throughput 60s  Throughput 10s Throughput 1s = Throughput 605 == Throughput 10s Throughput 1s
16.003 16.342 26.249 | 125
19.41 25464 37.04
17.32 30.974 47.906
18.116 25.550 53.621
14734 32.476 54.39
16.285 27.683 75.128 50
15.998 30.464 80.779
18.16 33295 91538 25 QS
15435 32.948 99.304
16.378 33752 110.086 > 4 5 s 10

100

75

R R T

Transaction

Figure 25: The average transaction speed measured when a transaction was
send every 60 seconds,10 seconds and 1 second

In the 60-second throughput, which should not pose a challenge, the system
worked as expected, giving a transaction time average of 16.16 seconds. This
is a bit higher than the average found in the first experiment where the av-
erage was found to be 15.78. This could mean there is a small stress on the
system, or the average block creation time was worse during this experiment.
In messages sent every 10 seconds, there is at the beginning a typical through-
put, but this quickly increases to about double the average transaction time,
to 28.98 seconds for each transaction to be processed. Finally, if a transaction
is sent every second, there is a linear increase in time needed to handle each
transaction, averaging 68.60 seconds after only 10 transactions. Nevertheless,
the total time to process all the transactions remained about the same. The
ten-second throughput was at 15.775 seconds, while the one-second through-
put was 16.210 seconds, indicating that the first transaction received needs
to be completed before a new transaction can be handled. These results sug-
gest that it is impossible to increase the transaction speed with the current
Cross-Chain gateway that BitxHub has. The cross-chain would need to al-
low multiple transactions to be processed at once to enable an increase in
transactions per second; however, if a single node could handle this increased
workload is difficult to say.

o7



5.4.3 Amount of Data

With the transaction speed seeming to be forced to around 15 seconds, another
experiment was done to see how much data could be sent over BitxHub, with-
out any increase in the transaction speed. Literature usually does not mention
how big the payload can be for a single transaction. Hedera’s whitepaper [17]
mentions a 250 000 tps with 100 bytes max in each transaction and a consen-
sus delay of 6 seconds. A solution to tackle a slow transaction speed is to send
a lot of data in big bunches. for this reason, an experiment was done to see
how much data could be sent over the solution, out there being an increase in
transaction time.

Request received Data Returned Total Transaction Sending ‘1 OKB
1 6.771 23.232 30.003 == Requestreceived == Data Returned Total Transaction
2 1.944 10.079 12.023 0
3 3.928 11.099 15.027
4 3.92 11.089 15.009
5 2043 13.102 15145 30
] 4083 11.102 15165
7 2.108 13.113 15.221
8 4525 10.495 15.02 2
9 251 12.506 15.016
10 2.582 12512 15.094 0

15.0605
Figure 26: Average transaction speed when sending 10kb data over BitxHub
At 10KB per transaction the system, as shown in Figure 26 works as expected.

The average transaction speed is around 15 seconds, which seems to occur
consistently throughout the transactions.

Sending 15KB

== Request received == Dafa Returned Total

Request received Data Returned  Total 10
1 6.324 23.856 30.18
2 6.526 26.481 33.007
3 4.049 10.97 15.019 30
4 5.629 9.379 15.008
5 4367 11.026 15.393 20
6 5837 9137 14.974
7 5.196 9.807 15.003
8 3.218 11.796 15.014 10
9 4131 10.875 15.006 W
10 5619 9.4 15.019

Figure 27: Average transaction speed when sending 10kb data over BitxHub

At 15KB per transaction, the system acts the same as in 10KB, there are a
few outliers, but in the majority of the cases, the transaction speed is still
around 15 seconds, which is the average block production time.

o8



= Total 20 KB == Total 30 KB
40

Total 20 KB Total 30 KB
15.146 29.464
14578 13 684
15374 15047
16235 14995
15.075 15.19
30.059 30.049
15336 15192
15235 30085
15095 1576
16232 15.043 2 4 5 3 0

30

20

Transactions

Figure 28: Average transaction speed when sending 20Kb and 30Kb data over
BitxHub

Finally as shown in Figure 28 two more experiments were done with 20Kb
and 30Kb, while 20Kb had its outlier, there was a clear increase in the 30Kb
experiment.

It was observed that there did come an increase in transactions taking more
than 30 seconds to be processed, however, there was no clear correlation be-
tween transaction size, and increased transaction time. The best conclusion
can be that transferring a high amount of data at once increases the risk of a
transaction taking double the normal time.

5.4.4 Issues Discoveries
Double emit bug

One huge issue which can occur is that a single transaction gets sent twice
by mistake. This issue, based on observations from the experiments seems to
be an Ethereum Cross-chain gateway issue only. It occurs when Ethereum
requests information from Hyperledger. This issue happens very rarely, and
there is no method to replicate it. However, the consequence of this issue is
that the Cross-chain gateway cannot send or receive new messages. This is
most likely because it is still waiting for the returned information to return a
second time. This issue is easily solved by simply restarting the cross-chain
gateway. Once the Cross-chain gateway was restarted, the problem seems to
resolve itself, and the requested and sent data was eventually retrieved with-
out any loss. Figure 29 shows this issue. A message was sent; the message
was however sent twice (emitInterchainEvent). The information was retrieved
by BitxHub and saved on the chain (Set). The appropriate parameters for
the Cross-chain gateway were updated (invokeIndexUpdate, markCallback-
Counter). However, once a new transaction was sent (the third emitInter-
chainEvent) it never received a response because it most likely is waiting for
an answer for the second emitInterchainEvent. A sequence diagram shows the
suspected behavior Figure 30. It is unknown if the other blockchain receives
the information and does not process it, or if it never receives the information

99



because it could not be replicated, we failed to gather enough information to
conclude anything about it.

new event - sender: emitInterchainEvent-1 and time is 1651423996
1651420401238

new event - sender: emitInterchainEvent-2 and time is 1651423996
1651420416256

new event - sender: set-1 and time is 1651424826

1651420431269

new event - sender: invokeIndexUpdate-2 and time is 1651424026
1651420431277

new event - sender: markCallbackCounter-2 and time is 1651424826
1651420431278

new event - sender: emitInterchainEvent-3 and time is 1651424856
1651420461290

Figure 29: If a sent transaction, for some reason invokes two EmitInterchain-
Event, a single result will be returned, but any subsequent calls will be in
limbo.

Actor Actor

emitinterchainEvent

>
emilinterchainEvent

»

>

Updates Gross-chain information

Return request

Updates that first request is recieved

emitinterchainEvent

h 4

Nothing happens

Figure 30: A sequence diagram of the Double emit bug.

Gas price issue

This problem occurs once the gas price on the Ethereum blockchain fluctuates
a lot. A gas price that is below the average gas price will be set as the reward
for placing the transaction on a block Figure 31. However, because the gas
price is lower than the current average gas price for getting a block on the
blockchain (shown in Figure 32), the transaction will be in limbo until the
gas price drops to the amount in the transaction. Then, the transaction will
inevitably be a success, as shown in Figure 33. The time this takes is the issue.
Sometimes this issue will be resolved in seconds. However, it has also taken
29 minutes for this to be resolved. The way the Cross-chain getaway operates
will result in all ingoing and outgoing transactions having to wait until this
inevitably is resolved. This is the equivalent of a 30-minute downtime, where
nothing can occur. This is a problem that occurs on Ethereum and might be
fixable by setting the gas price willing to be used to a higher priority, however,
this is not immune to a big spike either.

60



Overview

[ This is a Rinkeby Testnet transaction only ]
?) Transaction Hash: Ox00cci4iec
7) Status © Pending T
7) Block: (Pending)
) Timestamp: (Pending)
?) From Oxbe29 0
7 To 0x00 (N
7) value 0 Ether ($0.00)
7) Transaction Fee (Pending)
7) Gas Price 0.000000001052683402 Ether (1.052683402 Gwei)

Figure 31: Gas Price at the bottom, which was set when sending the transac-

tion

BEST BLOCK UNCLES LAST BLOCK AVG BLOCK TIME

1 1503s
&= ACTIVE NODES 5/45 GAS PRICE |:|' I:l GAS LIMIT .,' PAGE LATENCY

BLOCK TIME DIFFICULTY BLOCK PROPAGATION LAST BLOCKS MINERS

UNCLE COUNT TRANSACTIONS GAS SPENDING GAS LIMIT

Figure 32: The current gas price in the Rinkeby Testnet, once the issue occured
pointed to by the yellow arrow

61



[ This is a Rinkeby Testnet transaction only ]

(3) Transaction Hash 0x00cc141ec26015f93179b1a5dcr1b2dea3bca2ibbgc500d676a594520a7339 [
(3) Status © Success

(2 Block 10601348 1 Block Confirmation

(@) Timestamp: © 7 secs ago (May-01-2022 05:05:47 PM +UTC)

(@ From 0xfhe29ccB6a5680fbc0305f3a11369becc78acgds [

@) To: Contract 0x005db87188a404330d71eb1579a495b5bda7dads @ @

(@ Value: 0Ether (50.00)

(3) Transaction Fee: 0.001491967132971198 Ether ($0.00)

(7) Gas Price: 0.000000001052683402 Ether (1.052683402 Gwei)

Click to see More ¥

Figure 33: The transaction will eventually be resolved, once the gas price falls
below the gas price set in the transaction

62



5.5 Self-soveregin identities

When searching for the best option for SSI, it was crucial that the solution
followed Allen’s Ten Principles of Self-Sovereign Identity [48], and was also
using blockchains as an underlying technology to enable these ten principles
better, presented in the background in subsection 2.5.

The writer decided to use Hyperledger Indy/Sovrin as the platform for en-
abling SSI authentication between the two blockchains, Hyperledger Fabric
and Ethereum. Hyperledger Indy and Sovrin are essentially the same things.
In 2017 the Sovrin Foundation transferred the open-source codebase to the
Linux Foundation to become the Hyperledger Indy project [72].

The Sovrin network is a blockchain designed purely for identity. The blockchain
itself is what they call public permissionless. This means that anyone can join
in the ledger. Still, the consensus decision is made by Stewards, which are a se-
lect few nodes responsible for achieving global consensus inside the blockchain
[73]. These nodes use a variation of the BFT protocol, called Redundant
Byzantine Fault Tolerant protocol (RBTF), enabling high throughput com-
pared to purely permissionless ledgers [72]. Currently, there are a total of 46
organizations [74], who have agreed to abide by the requirements of Sovrin,
and are now running nodes operating the blockchain.

Sovrin acknowledges the need to standardize the format of an identity. Because
digital credentials need to be read by a machine, it needs to be in a format
that machines can understand. This means that multiple standards currently
in the ecosystem are detrimental to widespread use. Just like the internet has
a standard format for TCP, there will eventually need a stable standard for
identity if it should see widespread adaption. For this reason, Sorvin uses the
standards created from W3C, called verifiable claims [3, 72, 75]. This standard
is shown in Figure 4 and relies on a certain level of trust between verifier and
issuer.

Sovrin took the requirements from Allen [48] and grouped them into three
different categories [3] Security, Controllability and Portability, of which they,
through different solutions, attempt to satisfy.

63



Security
the identity information must

be kept secure

Controllability
the user must be in control
of who can see and access

Portability
the user must be able to use
their identity data wherever

their data they want and not be tied to
a single provider
Protection Existence Interoperability
Persistence Persistence Transparency
Minimisation Control Access
Consent

Figure 34: Sovrins intepretation of Allen’s Ten Principles of Self-Sovereign
Identity

5.5.1 Security

Sovrin provides pairwise-pseudonymous Decentralized Identifiers (DIDs) and
public keys for every relationship to create a secure channel of communication
between two parties, called onboarding [3, 76]. These communications will
happen off-chain, typically on edge devices, as storing the encrypted data on a
public blockchain could result in future decryption, resulting in the exposure
of sensitive information [44, 75].

Not anyone can become an issuer inside the blockchain. To become an issuer,
you must obtain the TRUST ANCHOR identity, which can only be given
to you by a steward. These are individuals or organizations for whom there is
sufficient evidence of trustworthiness to believe they will live up to the Sovrin
standards; examples of this could be universities or government organizations
[77]. Not allowing everyone to be an issuer makes it a lot harder to acquire a
fake identity. Furthermore, because an issuer has to sign all verifiable claims
with their key, it would also be easy to find out who issued a phony claim [78].

When a credential is created, a revocation ID also comes with it. This revoca-
tion ID is placed in the holder’s credential, and a cryptographic accumulator is
maintained on the Sovrin Blockchain. If the issuer has to remove the creden-
tial, like when the credential holder quits his job, the revocation ID is removed
from the accumulator. If this credential is then later used by the holder, it
will be denied because there is a check to see if the revocation ID exists in the
accumulator [75].

Sovrin has developed methods where an entity can validate itself through two
methods to a validator. This is through requested attributes or requested

64



predicates. These can either be self-attested or need to be issued by an issuer
of the validators choosing [44]. Requested predicates are boolean assump-
tions, allowing users to disclose wanted information, like the person over 18
years old, without giving away the date of birth. Additionally, this system of
requesting information allows the user to himself disclose only the minimum
required information needed by the verifier, satisfying the minimalization
requirement.

5.5.2 Controllability

If a key is rotated by an issuer, which for security reasons, it should do from
time to time, the key used on the holder’s claim will no longer be valid. Because
of the nature of blockchains, keeping track of each block will not be the case,
as the claim only needs to be signed with the key used at the time of creation.
This ensures persistence; even if a key is removed, the only way to remove a
claim is either by deleting it from the wallet or by getting it revoked [78].

Once a claim has been issued, it is entirely in the control of the holder of the
claim. An issuer will sign the claim when giving the claim to the holder, so
all parties can know who issued the claim, but it is the key belonging to the
holder which is used to verify the claim [78]

When a verifier wishes to get the appropriate proof needed for a transaction,
the verifier must issue a proof request. A proof request is a file that describes
the sort of proof that would satisfy the validation. Once the holder receives
the proof request, it is up to the holder to scan their identity wallet for the
relevant information or choose not to disclose the information needed [79]

Achieving a distributed consensus with the participation of many nodes en-
sures that the ledger state becomes practically immutable and irreversible after
a certain period.

Private data is not stored on the blockchain and is entirely in the control of the
holder. However, Sovrin has chosen a public permissioned schema, meaning
that the consensus is left to a few stewards. This increases performance but
does not make it truly decentralized, as a majority of the stewards could easier
collude compared with a truly permissionless blockchain [46]

5.5.3 Portability

The Sovrin blockchain is based on open standards developed by the W3C
[80], and the software is produced with an open-source license provided by the
Linux foundation and made into the Hyperledger Indy project [81], satisfying
the transparency requirement.

Access for Self-Sovereign identity has two critical access points:

e The storage of the SSI material: because all information is stored off-
chain [76] it needs to be stored somewhere where the holder is in complete

65



control of the data. This is mainly done with wallets. Currently, Sovrin
allows users to keep their information in three different types of wallets,
as well as recover the wallet should a device be lost [82]. Having multiple
wallet options means that users can store their information in different
wallets, removing wallet providers as a single point of failure for access.

e The access to authenticate the SSI material: To do any transactions with
the SSI material, the Holder must access the Sovrin network, which
should be possible at all times. The Sovrin network is a blockchain
network and is, therefore, not owned by any entity; for this reason, even
if a steward decided to shut down, the remaining stewards would keep
the system up, making it nearly impossible for the system to go down.

From the above information, it was determined that Sovrin would be the best
fit for the project. It sits in a unique situation, having developed a blockchain
for the sole purpose of dealing with identities. This uniquely distinguishes
it from other solutions, which usually are built on different blockchains like
Ethereum or Bitcoin. By having their own blockchain, they can, in the long
run, guarantee the protection promise of always prioritizing the rights of the
users. Other solutions are more at the mercy of the blockchain they have built
their solution on.

Sovrin is aware of the need for standards in credentials and has therefore
chosen to adopt the open standards of W3C. While it is not set in stone that
these standards will prevail, they currently look promising, and the awareness
to invest in an open standard shows an interest in longevity for the project.

5.6 Creation of the SSI solution

This section will present the whole creation process of the SSI solution and,
finally, display the experiment used to prove SSI can deanonymize data sent
over the cross-chain solution.

5.6.1 Preparation

The Installation of the necessary dependencies was done following the Hyper-
ledger Indy Build Indy SDK [83]. This allowed for the right environment to
be built. Luckily there were no collisions in required dependencies between
Indy and BitxHub

It was decided to use the Hyperledger Indy cluster. The Indy cluster is acces-
sible through the Hyperledger Indy Github page [84]. The Hyperledger Indy
cluster is a docker image, which was set up following a setup tutorial from
medium [85].

The Hyperledger Indy cluster is needed because this gives the author the abil-
ity to be a steward inside the cluster. As described, this privilege is required to
provide the TRUST ANCHOR status required to issue credentials. This would

66



not be possible in the Sovrin network, as the necessary security clearance to
become an issuer makes it impossible.

For the method to communicate with the Indy cluster, it was chosen to use the
NodeJS version Indy SDK for Node.js [86]. Chain-code in Hyperledger fabric
2.3 allows the fabric-contract-api for Node.js to communicate with entities off-
chain. This could potentially allow verification of the proof inside the chain
code for the Hyperledger fabric side.

5.6.2 Development

From the experiment done with BitxHub subsection 5.2 we know it is possible
to interoperate data between Hyperledger Fabric 2.3 and Ethereum. For this
reason, we will only talk about what needed to be done for it to work in the
different blockchains.

For Ethereum, there were some challenges to overcome. Ethereum uses So-
lidity [87] as the smart contract language. However, solidity does not allow
off-chain communication inside the deployed smart contract. For this reason,
it was necessary to create a decentralized application (Dapp). A Dapp is es-
sentially a regular web page or App; however, it enables transactions with the
Ethereum blockchain, using the smart contracts created and deployed there.
For the development of the Dapp, it was chosen to use React [88], a well-
known Javascript library for building user interfaces. Further, the backend
communication was handled by the Web3 package, which enables communica-
tion with smart contracts deployed on an Ethereum ecosystem. This helped
us get the information that was wished to be stored on the blockchain and the
credentials on the Dapp application, which could create proof and keep it on
the blockchain. However, the proof is a huge JSON schema, and JSON is not
a supported type by Solidity. Further stringifying the JSON schema made it
too big for a String variable in Solidity. For this reason, it was concluded that
we should use the Inter-Planetary File System IPFS [89]. IPFS is a peer-to-
peer storage service that allows users to store information on IPFS, returning
a hash, which can be used to access this information later. IPFS hashes en-
sure that the content has not been tampered with because any changes to the
information would create a different hash. The user can therefore check if the
information received matches the hash; if it does not, the information has been
tampered with and is invalid.

67



Figure 35: A code snipit from the react Dapp enabeling the user to make a
proof and store the IPFS hash on the blockchain

With these changes, it was possible to create a proof, store it on IPFS, take the
received hash, and store it on the Ethereum blockchain, as shown in Figure 35.

Once the changes were made in Hyperledger Fabric shown in Figure 36 and
Figure 37. It was possible to send data over BitxHub and later retrieve this
information to validate it.

Working with Hyperledger Fabric there were no significant challenges. Hyper-
ledger Fabric allows developers to use commonly used programming languages,
GO and Node.js being the primary ones. Further, the Node.js version of the
Chaincode allows developers to communicate with off-chain sources after be-
ing packaged and deployed on the Hyperledger nodes. For this reason, it was
possible to create a chain code which took the login credentials as arguments,
as well as the data which the user wished to store on the blockchain. Further-
more, the use of the node-fetch npm package [90] allowed for communication
with the already developed holder, issuer, and verifier, enabling the creation
of the necessary proof for SSI validation.

In Figure 36, the functions in the chain code are shown, which enable the
interaction with both the Ipfs and the holder’s makeProof function, which
will complete the sequence of actions shown in Figure 40. Once the proof is
created, this is, together with the data provided, stored in a simple JSON
schema, which using the IPESMAKE function, sends this to IPFS and returns
the hash to retrieve it. Finally, using the fabric-shim npm, the information is
blacked on the blockchain as a key-value pair.

68



stringify(ipfsiash.path)));

Figure 36: Code example of how Hyperledger Fabric is able to make an SSI
proof inside chain code using node-fetch and ipfs-http-client npm packages

Once information is retrieved, the getProof as shown in Figure 37 can be
utilised to validate the data. The desired information is retrieved using fabric-
shim’s getState, which returns the IPFS hash. The IPFS hash is then used
by the holders getProof shown in Figure 44. If the credential turns out to be
valid, the information is fetched from IPFS and displayed.

Figure 37: Code example of how Hyperledger Fabric is able retrieve SSI proof
inside chain code using node-fetch and ipfs-http-client npm packages

5.6.3 Setup and experiment

From the observations made about heterogeneous blockchain interoperabil-
ity, it was observed that in both SCIP and BitxHub, the cross-chain node is
responsible for signing the incoming information so that it can be validated
inside the receiving blockchain. This means that all information that passes
through the cross-chain gateway will belong to the user responsible for main-
taining the cross-chain gateway in the eyes of the receiving blockchain. If data
placed through the cross-chain gateway turns out to be false, the auditing of
who placed it would end at the node maintaining the cross-chain gateway, as

69



knowledge of who placed it on the other blockchain gets abstracted when trans-
ferred. The point of this experiment is to try to deanonymize the information
sent over the blockchain by attaching verifiable proof to the information sent.
This proof should show that an entity that the receiving blockchain (verifier)
trusts was the one who sent this information and can offer some credentials of
who in that trusted entity placed this information.

The author decided to make three entities, the holder, issuer, and verifier. The
issuer and verifier were constantly accessible to simulate their accessibility on
the blockchain. However, the holder must log in and out of his wallet to
proceed with transactions to simulate how a user would act.

To this end, it was decided that the holder, issuer, and verifier should all
be accessible on the local host. The holder would need to log in and was
responsible for all interaction engagement with the two other entities. For
example, the holder might communicate with the verifier to communicate a
verification process. This would be done by the holder calling the service port
from the verifier to do the wished-for actions. An example is provided in
Figure 38

credOfferRresult = await indyFunctions.createFetchCall( ' credoffer’,{}, 1234°, issuer’);

issuer.credentialOffer = await createAndSendCredential(issuer.walletHandle er.coronaCredDefId);

value = { 'walletHandle’ : issuer.walletHandle, ‘did' : issuer.did, ‘cre r* : issuer.credentialOffer, 'credDef

Requester Sender

createFetchCall

someFunction
refurnValue

Figure 38: Normal request sequence between two entities

Once the Indy cluster had been started, all three entities, issuer, holder, and
verifier, needed to be started. This is to first connect to the Indy cluster,
create their respective wallets and DIDs, hold the created credentials, and
communicate with the other entities to sign certificates. The issuer will also
create a wallet and DID for the steward in the initiation phase. This is needed
so the steward can give the issuer the TRUST ANCHOR privilege to the issuer.
The process is shown in Figure 39. Finally, the issuer will create schemas and
credential definitions needed for the later creation of credentials.

70

: issuer.coronaCredDef}



steward.

steward .
steward ..

» Steward.walletCredential:

steward . it openkallet( ard.wallethame, steward.walletCredentia

steward . stes
steward.

[steward.did, steward.w

walleth

redentials);

issuer.walletHandle = awai

[issuer.did,

ward.did,

steward. poolHandle,
~d.walletHandle,

Figure 39: The code first connects to the indy cluster, and then creates cre-
dentials for the Steward and issuer, before finally the issuer is given the Trust
ANCHOR priviledge

With the finished code implemented, two steps must be done for the SSI
credentials to be created, the proof to be made, and the proof to be verified.
These two methods are makeProof and getProof, shown in Figure 40 and
Figure 44 respectively.

makeProof takes the wallet credentials of the users and the desired data, which
should be placed on the blockchain. From here, we will explain the different
steps for makeProof in the sequence diagram Figure 40.

71



credOffer: is used simply to initiate the sending of a credential offer to
the holder. The issuer will then issue an identity based on a credential
definition that the company owns. returning SendCredentialOffer

credReq: we assume that the holder indeed wants a credential from
Company One. With his DID, wallet, and MasterSecret, the holder will
sign a request to create a credential based on the credential definition
presented and send it to the issuer.

IssuerCreateCredential: The issuer will now populate the credential
definition, which was asked for and sign it. This is then returned to the
holder.

StoreCredential: The holder will take the credential and store it in
his wallet.

Some of the code used from credoffer to StoreCredential is shown in
Figure 41

AskRequirements: Will ask the verifier for the requirements needed
to satisfy their authentication and return this to the holder. An exam-
ple is shown in Figure 42, where the requested attributes, as well as the
requested predicates, are shown. The user must also provide the infor-
mation based on the restrictions, in this case the credDefID, which was
selected.

PopulateProof: The population of proof takes the stated requirements
shown in Figure 42 and looks inside the holders wallet to find the nec-
essary attributed, which satisfies the requirements to create a proof,
consisting of the stated requirements, the requested credentials found
in the wallet, the schemas, credential definitions, and revocation states
used to create the proof. the code used to Populate the proof is shown
in Figure 43

72



Holder Issuer Verifier

CredOffer

»
P

SendCredenfialOffer

CredReq

A 4

IssuercreateCredential

SendCredential

StereCredential

AskRequirements

CreateRequirments

SendRequiments

PopulateProof

Figure 40: The complete sequence from makeProof

alletMame, walletCredent

reateFatchCall(

t indyFuncti

madecredieqResult)

oreCredential

Figure 41: Code snippits from makeProof showing parts of the code from
credOffer to StoreCredentials

73



proverStateRequirme dbefld}{

redDef1d

: credDefId

*.requiredProof

Figure 42: an example of a requierment

74



indy . proverSearchCredential sForProo

redential
redential
redential

searchForPro

sendValue = await getCredDefsF

credief: ) vocStates awai poolHandle, credsForProofRequest, sendValue);

1, revealed:
25”1 {predicatel_referent: {'cred id': credential®S[8][ 'cre

statedRequirments, r

information

Figure 43: code snippit from populate proof

With the steps completed, the proof is now together with the data sent to
IPFS, where it is stored. The hash returned is then stored on the blockchain
of either Hyperledger or Ethereum, as shown in Figure 36 and Figure 35
respectively.

When sent over BitxHub as presented in subsection 5.2 the verification of the
proof must be done. In both cases, the data verification can only be done
after the information has been placed on the blockchain, signed by either
the Hyperledger user responsible for handling the Cross-chain gateway or the
Ethereum wallet connected to the Ethereum Cross-chain gateway.

On the Ethereum side, the verification must happen off-chain. The connection
to IPFS and the verifier is impossible to reach over Solidity smart contracts.
Therefore the IPFS hash must be retrieved from the Solidity smart contract.
However, on Hyperledger Fabric, using Node.js smart contracts, it is possible
to connect to get the IPFS, send it to the verifier, which extracts value from
the IPFS hash and validates the proof, to then send it back. If the proof turns

75



out to be true, the Chain code can then extract the IPFS information and
display the payload or if wished for, information stored in the proof about the
user who placed the information on the other chain. this is shown in Figure 37,
and a sequence diagram for the getProof is shown in Figure 44.

Holder Verifier

getipfs

sendProof

A 4

; validateProof

refurnValue

Figure 44: The complete sequence from getProof

The experiment proves it is possible to send a verifiable SSI proof and the
data over the BitxHub Cross-chain gateway. The verifier can himself choose
the credDef required to satisfy the verification they desire and therefore up-
holds the requirement that the verifier can choose a trusted proof. The other
blockchain is also able to verify this proof, off-chain for Ethereum and on-
chain for Hyperledger Fabric. Therefore, both chains can use this proof to
audit information by deanonymizing the information sent over. In Figure 45
we present the compleate coded solution combining the two solutions BitxHub,
and SSI.

The results show a possibility to verify data being sent over the heterogeneous
blockchain using SSI. The needed information could be changed based on what
was needed for proof. And most importantly, a proof could be shown to be
valid or invalid. The extra time it would take to authenticate a proof was only
1.39 seconds.

76



uleyo-Aejay gnHxug
UIBYOY20|q WN3J3Y13

uley420|q £'7 21geH Ja8apiadAy

Aema1ed uleyos-ssou) saSpapadiy \ -.mmui / Aema1ed uleyo-ssoud wnasaylg
1davd . (] S
NIDQIWEAH “ s C @)—| + 4 ) (@) ——

ddeq wnaiaylg @

ALIQITO0S o

I~
-

@ JEuaEaEy
ajqatfiiag




6 Discussion

The discussion chapter will describe the contribution of the findings from
section 5 and explain new insights that emerged as a result of our research.
The discussion will be broken down into the three research questions posed in
this thesis.

6.1 Interoperating data between two heterogeneous blockchains

A fair amount of work has been done on cross-chain interoperability, most of
it being covered in [49]. However, from this literature review, there was no
information about the current existing interoperability solutions that could
interoperate heterogeneous data. The world economic forum also published a
paper stating the need for heterogeneous interoperability [16]. However, their
solution at the data of publishing was using APIs, further accentuating the
need for this information in literature. Finally, in our pre-study, we found
solutions that were promising for SCM interoperability. Figuring out if the
solutions could interoperate data between heterogenous blockchains was not
something we had considered in the pre-study, but became very important in
the thesis.

Our findings highlight the solutions that are currently able to interoperate
data between heterogeneous blockchains and see if they pass other criteria
needed for SCM blockchains. Here it was found that two solutions currently
exist which can interoperate data, those being BitxHub subsection 5.1 and
SCIP subsection 8.4. It was argued that while two solutions exist, BitxHub
is currently the more attractive solution. BitxHub provides better security
than SCIP, which seems not to have considered it much under development.
BitxHub is also an open-source project with an active community developing
solutions on it, promoting longevity for the project. SCIP seems to have been
created as a Ph.D. project and has not seen any development since then.

A working solution between Hyperledger 2.3 and Ethereum was also developed.
The development process was documented, and the working solution will be
linked to this thesis.

While the literature review was done extensively during the pre-study, due
to sickness, the pre-study is by now one year old. BitxHub was found as a
possible new solution to the interoperability solution when the master thesis
was started again. This shows rapid development in the blockchain ecosystem;
for this reason, there might be more solutions out there, which slipped through
the cracks, but to our best knowledge, the two found solutions are the current
only solutions. Hyperledger is, however, developing their own solution to this
problem which they call Hyperledger Cactus subsection 8.6. Cactus is still in
the early stages of development and was therefore not mentioned in this thesis.
However with their current proposed capabilities and solutions, this project
might, in the future, become a desirable solution competing with BitxHub.

78



6.2 Performance and issues of the selected interoperability so-
lution

The performance of heterogeneous blockchains was a topic not covered by any
literature, which presented a heterogeneous interoperability solution. BitxHub
5.1 mentioned ”high performance” in their conclusion [19], while SCIP 8.4 does
not mention anything about performance. With the creation of a functioning
BitxHub solution between the heterogenous blockchains Hyperledger Fabric
2.3 and Ethereum, we shed some light on the performance and observed issues
found while conducting the experiments.

The results found that the current average transaction takes 15.78 seconds
from first sending the transaction request to receiving the desired information.
It was observed that the size of the data sent was not a significant issue for the
transaction speed; however, the throughput was hindered by how the Cross-
Chain Gateway is developed to handle multiple transactions. A linear build-
up was observed in processing time, indicating the Cross-Chain Gateway as a
bottleneck. Two problems were also observed related to the Ethereum side of
the Cross-chain gateway, which could negatively impact the transaction time.
These are the double emit bug and gas price issue described in the results.

For a wider adaption of interoperability for data, the transaction speed (tps)
needs to be increased. While other blockchains systems talk about 10 000
tps [49], this interoperability solution can only get out one transaction every
15 seconds. It was proven that the limiting factor for a single transaction
was using Ethereum as one of the blockchains. The Fabric to Fabric solution
only used 10.36 seconds. Having Ethereum in the interoperability solution
will always make it the limiting factor. Improving the cross-chain architecture
would not increase speed, as the bottleneck already is Ethereum. For this
reason, for a higher tps, the Cross-Chain gateway must be able to process
multiple transactions at once. A possible solution to this would be to adopt
some ideas from Polkadot’s subsection 8.1 XCMP, currently in development
[91]. Instead of needing the first transaction to be received before the next
transaction is sent, all transactions are stored in one of two queues, the inbound
and outbound queues. Once these transactions are then acted on, the queues
are updated to indicate what has and has not yet been received. This would
allow for multiple transactions to be sent without waiting for each transaction
before the next is created. Allowing for multiple transactions to be handled
at once would also reduce the impact of the gas price issue presented in the
results. With numerous transactions allowed, a transaction that would take a
long time to be received would not stall the whole system until this information
is received.

Another problem is that the Cross-chain gateway currently is a single node
leading to two problems.

e Signature: Currently, Permissionless blockchains in BitxHub need a val-
idation signature that the information exists on the blockchain. Permis-

79



sionless blockchains don’t have nodes to sign these transactions, which
falls on the cross-chain gateway. However, since there is currently only
one node, this node has all the power to validate the information, leading
to a potential for malicious behavior.

e Single Point of Failure: Currently, if the node stops working, this will
lead to no accessibility of the blockchain it is serving, leading to down-
time.

A possible solution would be to have multiple nodes communicating together
in a cluster like suggested by Hyperledger Cactus subsection 8.6. Having more
nodes would solve these two issues.

Combining these two suggestions would, in theory, create a much more robust
interoperability system. However, the changes which would have to be imple-
mented in the BitxHub system. How demanding the implementation of the
changes would be is unknown to us.

6.3 Self-sovereign used to deanonymize cross-chain data be-
tween two heterogeneous blockchains

From the related work, it was found that for academia, SSI is still mainly in a
phase where formalizations of definitions, improvements, and justification for
their existence are in focus. For industry, SSI is primarily used to showcase
use-cases to prove a need for the product. This solution similarly provides a
use case for SSI. However, the environment it is used in is new. Using SSI
to deanonymize information sent over two heterogenous blockchains over an
interoperability solution, to our best knowledge, is a unique and new case.

The approach has been developed and demonstrated to work in the Inter-
operability case, using BitxHub to interoperate data between Ethereum and
Hyperledger Fabric 2.3.

With these findings, it is possible to solve the anonymity issue when two
blockchains don’t have the same identity schemes, which is common to het-
erogeneous blockchains. For heterogeneous blockchains, the observed tendency
from SCIP [9] and BitxHub [19] is to let an entity sign the information on their
behalf. This creates data stored on the blockchain which can’t be correctly
audited. With SSI, adding proof to the data transferred, it is again possible
to figure out who placed this data on the blockchain. The results show that
with the provided proof, it is possible to authenticate who set this data and
determine if the proof provided is valid or not.

The created code was only a minimum viable proof. The main focus was
figuring out whether it could make SSI communicate with Hyperledger Fabric
and Ethereum over a cross-chain gateway. To make the product attractive
for the industry, a more flashed-out product would have to be created, using
supported wallets and SSI created in either the Staging network or the main

80



Sovrin network. If this would create new challenges, threatening the validity
of these findings is unknown.

The most significant limitation to the findings discussed is that validating the
information sent over can only be done after storing the data in the blockchain.
This allows the proof provided with the data to only be used for security/au-
diting checks after the data has been placed on the chain. However, we can
suppose the proof could be checked before the information was placed on the
blockchain. In that case, this could become an extra layer of security in cross-
chain messaging, where information sent is validated to come from a desirable
source before it is placed on the ledger. For Ethereum, which uses Solidity,
this seems impossible; however, for Hyperledger Fabric, this could become
possible if the code in BitxHub would be changed. The BitxHub chain code
is currently written in Golang, while the SSI chain code needs to be built in
Node.js to talk to off-chain sources. This forces two separate chain codes to be
deployed on the peers. The Golang chain code must first retrieve the informa-
tion, and later the Hyperledger chain code can validate the data. Suppose it
were possible to change the Golang chain code to become Node.js chain code.
If this would not lead to any communication issues between the chain code
and BitxHub’s Hyperledger Cros-chain gateway, everything could be written
in Node.js, enabling authentication of the data retrieved from Ethereum before
it was placed on the blockchain ledger.

81



7 Conclusions

Heterogenous interoperability methods for blockchains were the focus of this
thesis. SSI was used to solve the problem of authentication.

A literature study investigated existing interoperability methods. Only SCIP
and BitxHub are able to perform heterogeneous interoperability. BitxHub
was selected as the best choice, because it is open source and being further
developed and maintained, while SCIP seems to be a dormant program.

A working solution was successfully created allowing interoperability of data
between the two most popular heterogeneous blockchains Ethereum and Hy-
perledger Fabric 2.3, using BitxHub. the code for the solution can be found
here.

The created interoperability solution was used to evaluate BitxHub on perfor-
mance. BitxHubs transaction speed is 15.78 seconds. BitxHub is, however, not
the reason for this slow transaction speed. Ethereum limits the performance.
The speed cannot be increased, because BitxHub is configured to only handle
one transaction at a time. Trying to increase the throughput, only results in
a higher transaction time.

Bitxhub allows, however, a big amount of data to be transferred at once.
Transactions could be sent with 30KB data. The only risk would be that a
transaction time would take 30 seconds instead of 15, however, this did not
occur too often.

Finally, two issues were discovered, these being the double emit bug, and the
gas price issue. The double emit bug makes it impossible to transfer data over
the cross-chain solution, while the gas price issue stalls the solution until the
transaction with a low gas price is resolved.

From the two heterogeneous interoperability methods, it was found that infor-
mation being sent over heterogenous cross-chain gateways gets anonymized.
Data sent over the cross-chain gateway no longer contains information about
who placed it on the blockchain. A solution was created using SSI, creating a
verifiable proof of the sent data. The code can be found here. Using Hyper-
ledger Indy together with IPFS made it possible to create proofs, which could
be saved on either blockchain and sent over BitxHub to be verified later.

Including a verifiable proof deanonymized the transmitted data, allowing for
better auditing. However, it is only possible to verify the information after it
has been placed on the blockchain. Solidity does not allow for off-chain trans-
actions happening on the smart contract. For Hyperledger there is, however,
a possibility to make on-chain authentication happen.

BitxHub as an interoperability solution is currently too slow for commercial
Blockchain-based supply chain systems. Therefore, future work should be fo-
cused on increasing the transactions per second for BitxHub. For this to be

82


https://github.com/Hallvard-Echtermeyer/Fabric1.6.5
https://github.com/Hallvard-Echtermeyer/Fabric1.6.5
https://github.com/Hallvard-Echtermeyer/Transfer

possible, multiple transactions must be sent over simultaneously. The Cross-
chain gateway’s configurations must be changed. Currently the cross-chain
gateway is also a single point of failure, only consisting of a single node, prefer-
ably this also needs to be changed to increase security.

SSI could be improved in the future by enabling Hyperledger fabric to validate
the verifiable proof before the data is stored, and execute appropriate action
depending on the validity of the information sent over. This would vastly
increase the legitimacy to use SSI as an authentication method for heteroge-
neous interoperability methods, as the security evaluation would (at least on
the Hyperledger side) happen before the information is placed and not after,
as it currently is.

83



References

1]

[11]

H. Fabric, “How fabric networks are structured.” https:
//hyperledger-fabric.readthedocs.io/en/latest/network/network.
html, 2020. Accessed 23.01.2021.

M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of
self-sovereign identity leveraging blockchain technology,” IEEE Access,
vol. 7, pp. 103059-103079, 2019.

S. Foundation, “Sovrin™: A protocol and token for self-sovereign
identity and decentralized trust.” https://sovrin.org/library/
sovrin-protocol-and-token-white-paper/, 2018. Accessed 23.01.2021.

G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White Paper, 2016.

J. Burdges, “Availability and validity.” https://w3f-research.
readthedocs.io/en/latest/polkadot/Availability_and_Validity.
html, 2020. Accessed 09.02.2021.

J. Petrowski, “Polkadot consensus part 3: Babe.” https://medium.com/
polkadot-network/polkadot-consensus-part-3-babe-dcc2e0dd8878,
2019. Accessed 07.02.2021.

Hedera, “Webinar: Using the hedera consensus service with hy-
perledger fabric.” https://www.youtube.com/watch?v=elWRmHgRoww&t=
585s, 2020. Accessed 23.01.2021.

Interledger, “Interledgerarchitecture.”  https://interledger.org/
rfcs/0001-interledger-architecture/#connectors, 2020. Accessed
18.01.2021.

G. Falazi, U. Breitenbiicher, F. Daniel, A. Lamparelli, F. Leymann, and
V. Yussupov, “Smart contract invocation protocol (scip): A protocol for
the uniform integration of heterogeneous blockchain smart contracts,”
in International Conference on Advanced Information Systems Engineer-
ing, pp. 134-149, Springer, 2020.

E. Abebe, D. Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy,
P. Novotny, V. Pandit, V. Ramakrishna, and C. Vecchiola, “Enabling en-
terprise blockchain interoperability with trusted data transfer (industry
track),” in Proceedings of the 20th International Middleware Conference
Industrial Track, pp. 29-35, 2019.

Hyperledger, “Hyperledger cactus whitepaper.” https://github.com/
hyperledger/cactus/blob/main/whitepaper/whitepaper.md, 2020. Ac-
cessed 12.01.2021.

84


https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://sovrin.org/library/sovrin-protocol-and-token-white-paper/
https://sovrin.org/library/sovrin-protocol-and-token-white-paper/
https://w3f-research.readthedocs.io/en/latest/polkadot/Availability_and_Validity.html
https://w3f-research.readthedocs.io/en/latest/polkadot/Availability_and_Validity.html
https://w3f-research.readthedocs.io/en/latest/polkadot/Availability_and_Validity.html
https://medium.com/polkadot-network/polkadot-consensus-part-3-babe-dcc2e0dd8878
https://medium.com/polkadot-network/polkadot-consensus-part-3-babe-dcc2e0dd8878
https://www.youtube.com/watch?v=elWRmHqRoww&t=585s
https://www.youtube.com/watch?v=elWRmHqRoww&t=585s
https://interledger.org/rfcs/0001-interledger-architecture/#connectors
https://interledger.org/rfcs/0001-interledger-architecture/#connectors
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md

[12]

[13]

[14]

[15]

[16]

S. Yadav and S. P. Singh, “Blockchain critical success factors for sus-
tainable supply chain,” Resources, Conservation and Recycling, vol. 152,
p- 104505, 2020.

D. L. Chaum, Computer Systems established, maintained and trusted by
mutually suspicious groups. Electronics Research Laboratory, University
of California, 1979.

S. Nakamoto and A. Bitcoin, “A peer-to-peer electronic cash system,”
Bitcoin.—URL: https://bitcoin. org/bitcoin. pdf, vol. 4, 2008.

V. Buterin et al., “Ethereum: A next-generation smart contract and
decentralized application platform,” 2014.

L. P. Nadia Hewett, Margi van Gogh, “Inclusive deployment of
blockchain for supply chains: Part 6 — a framework for blockchain inter-
operability,” 2020.

L. Baird, M. Harmon, and P. Madsen, “Hedera: A public hashgraph
network & governing council,” White Paper, vol. 1, 2019.

E. S. Stefan Thomas, “A protocol for interledger payments,” 2015.

H. Q. T. Co., “Bitxhub whitepaiper inter-blockchain technology plat-
form v1.0.0.” https://upload.hyperchain.cn/BitXHub%20Whitepaper.
pdf, 2019. Accessed 12.01.2021.

J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini,
F. Lama, H. K. Alper, X. Luo, F. Shirazi, A. Stewart, et al.,
“Overview of polkadot and its design considerations,” arXiv preprint
arXw:2005.13456, 2020.

Hashport, “Hashport.” https://www.hashport.network/, 2021. Ac-
cessed 29.04.2022.

P. A. M. Hanns Christian Hanebeck, Nadia Hewett, “Inclusive deploy-
ment of blockchain for supply chains: Part 3 — blockchain-based supply
chainsystem (scm) — which one is right for you?,” 2019.

H. Fabric, “Transaction flow.” https://hyperledger-
fabric.readthedocs.io/en/release-2.2 /txflow.html.

N. H. Sheila Warren, Christoph Wolff, “Inclusive deployment of
blockchain for supply chains: Part 1 — introduction,” 2019.

E. A. et al, “Hyperledger fabric.” https://hyperledger-fabric.
readthedocs.io/en/release-2.2/whatis.html#hyperledger-fabric,
2020. Accessed 22.01.2021.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,”

85


https://upload.hyperchain.cn/BitXHub%20Whitepaper.pdf
https://upload.hyperchain.cn/BitXHub%20Whitepaper.pdf
 https://www.hashport.network/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html#hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html#hyperledger-fabric

28]

[29]

[30]

in 2017 IEEE international congress on big data (BigData congress),
pp- 557-564, IEEE, 2017.

[27] H. Fabric, “Registering and enrolling iden-
tities with a ca.” https://hyperledger-fabric-
ca.readthedocs.io/en/latest /deployguide/usec A.html.

H. Fabric, “The ordering service.” https://hyperledger-fabric.
readthedocs.io/en/latest/orderer/ordering_service.html, 2020. Ac-
cessed 23.01.2021.

H. Fabric, “Glossary.” https://hyperledger-fabric.readthedocs.io/en/
latest/glossary.html#endorsement-policy, 2020. Accessed 23.01.2021.

H. Fabric, “Peers.” https://hyperledger-fabric.readthedocs.io/en/
release-2.2/peers/peers.html, 2020. Accessed 23.01.2021.

P. A. M. Hanns Christian Hanebeck, Nadia Hewett, “Inclusive deployment of
blockchain for supply chains part 3 — public or private blockchains — which
one is right for you?,” World Economic Forum, 2019.

B. Pillai, K. Biswas, and V. Muthukkumarasamy, “Blockchain interopera-
ble digital objects,” in International Conference on Blockchain, pp. 80-94,
Springer, 2019.

V. Buterin, “Chain interoperability,” R3 Research Paper, 2016.

A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and K.-
K. R. Choo, “Sidechain technologies in blockchain networks: An examination
and state-of-the-art review,” Journal of Network and Computer Applications,
vol. 149, p. 102471, 2020.

MYCRYPTOPEDIA, “Full node and lightweight node.” https:
//www.mycryptopedia.com/full-node-lightweight-node/, 2018. Accessed
29.01.2021.

Qinwen, “Polkadot  introduction.”  https://medium.com/@qinwen228/
polkadot-introduction-815abecebe8b, 2019. Accessed 05.02.2021.

M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018 ACM
symposium on principles of distributed computing, pp. 245-254, 2018.

A. Deshpande and M. Herlihy, “Privacy-preserving cross-chain atomic swaps,”
in International Conference on Financial Cryptography and Data Security,
pp- 540-549, Springer, 2020.

G. B. Association, “Self-sovereign identity.” https://www.bundesblock.de/
wp-content/uploads/2019/01/ssi-paper.pdf, 2018. Accessed 23.01.2021.

Y. Liu, D. He, M. S. Obaidat, N. Kumar, M. K. Khan, and K.-K. R. Choo,
“Blockchain-based identity management systems: A review,” Journal of net-
work and computer applications, vol. 166, p. 102731, 2020.

86


https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/latest/glossary.html#endorsement-policy
https://hyperledger-fabric.readthedocs.io/en/latest/glossary.html#endorsement-policy
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html
https://www.mycryptopedia.com/full-node-lightweight-node/
https://www.mycryptopedia.com/full-node-lightweight-node/
https://medium.com/@qinwen228/polkadot-introduction-815abecebe8b
https://medium.com/@qinwen228/polkadot-introduction-815abecebe8b
https://www.bundesblock.de/wp-content/uploads/2019/01/ssi-paper.pdf
https://www.bundesblock.de/wp-content/uploads/2019/01/ssi-paper.pdf

[41]

[42]

[43]

[44]

L. Stockburger, G. Kokosioulis, A. Mukkamala, R. R. Mukkamala, and M. Avi-
tal, “Blockchain-enabled decentralized identity management: The case of self-
sovereign identity in public transportation,” Blockchain: Research and Appli-
cations, vol. 2, no. 2, p. 100014, 2021.

Hyperledger, “What is  ssi did?.”  https://hydraledger.io/
what-is-ssi-did/, 2019. Accessed 29.09.2021.

N. Naik and P. Jenkins, “Does sovrin network offer sovereign identity?,” in
2021 IEEFE International Symposium on Systems Engineering (ISSE), pp. 1-6,
IEEE, 2021.

HyperledgerIndy, “Indy  walkthrough.”  https://hyperledger-indy.
readthedocs.io/projects/sdk/en/latest/docs/getting-started/
indy-walkthrough.html, 2021. Accessed 23.01.2021.

M. Ogza, “Decentralized identity — owning it!.” https://medium.com/
coinmonks/decentralized-identity-owning-it-94987f97649f, 2022. Ac-
cessed 05.04.2022.

A. Miihle, A. Griiner, T. Gayvoronskaya, and C. Meinel, “A survey on essential
components of a self-sovereign identity,” Computer Science Review, vol. 30,
pp- 80-86, 2018.

A. Tobin and D. Reed, “The inevitable rise of self-sovereign identity,” The
Sovrin Foundation, vol. 29, no. 2016, 2016.

C. Allen, “The path to self-sovereign identity.” http://www.
lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.
html, 2016. Accessed 29.09.2021.

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey on
blockchain interoperability: Past, present, and future trends,” arXiv preprint
arXiv:2005.14282, 2020.

S. D. Hub, “Front page.” https://substrate.dev/, 2020. Accessed
11.02.2021.

Hashport,  “How hashport works.” https://www.hashport.network/
how-it-works/, 2022. Accessed 29.04.2020.

L. Baird, M. Harmon, and P. Madsen, “Hedera: A public hashgraph network
& governing council,” White Paper, vol. 1, 2019.

A. Miihle, A. Griiner, T. Gayvoronskaya, and C. Meinel, “A survey on essential
components of a self-sovereign identity,” Computer Science Review, vol. 30,
pp. 80-86, 2018.

M. S. Ferdous, F. Chowdhury, and M. O. Alassafi, “In search of self-sovereign
identity leveraging blockchain technology,” IEEE Access, vol. 7, pp. 103059—
103079, 2019.

87


 https://hydraledger.io/what-is-ssi-did/
 https://hydraledger.io/what-is-ssi-did/
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/getting-started/indy-walkthrough.html
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/getting-started/indy-walkthrough.html
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/getting-started/indy-walkthrough.html
https://medium.com/coinmonks/decentralized-identity-owning-it-94987f97649f
https://medium.com/coinmonks/decentralized-identity-owning-it-94987f97649f
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://substrate.dev/
https://www.hashport.network/how-it-works/
https://www.hashport.network/how-it-works/

[55] U. Der, S. Jahnichen, and J. Siirmeli, “Self-sovereign identity — opportunities
and challenges for the digital revolution,” arXiv preprint arXiv:1712.01767,
2017.

[56] M. Shuaib, S. Alam, M. S. Nasir, and M. S. Alam, “Immunity credentials using
self-sovereign identity for combating covid-19 pandemic,” Materials Today:
Proceedings, 2021.

[57] cheqd, “Self-sovereign identity use cases.” https://www.cheqd.io/blog/
self-sovereign-identity-use-cases.

[58] adnovum, “Exploring  the potential of self-sovereign identity
with  representative use cases.” https://www.adnovum.com/blog/
exploring-the-potential-of-self-sovereign-identity-with-representative-use-cases,
2022. Accessed 29.09.2021.

[59] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in informa-
tion systems research,” MIS quarterly, pp. 75-105, 2004.

[60] I. Bider, P. Johannesson, E. Perjons, and L. Johansson, “Design science in
action: developing a framework for introducing it systems into operational
practice,” 2012.

[61] BitXHub, “Bitxhub documentation.” https://meshplus.github.io/bitxhub/
bitxhub/introduction/summary/, 2020. Accessed 29.09.2021.

[62] BitxHub, “Cross-chain gateway deployment.” https://meshplus.github.
io/bitxhub/bitxhub/usage/single_bitxhub/deploy pier/, 2022. Accessed
12.01.2021.

[63] BitXHub, “Bitxhub validation.” https://meshplus.github.io/bitxhub/
bitxhub/dev/rule/, 2020. Accessed 29.09.2021.

[64] G. Scolar, “Ghareeb falazi.” https://scholar.google.com/citations?hl=
en&user=8f1KQJsAAAAJ&view_op=1ist_works&sortby=pubdate, 2022. Accessed
29.04.2022.

[65] BitxHub, “Relay chain deployment.” https://meshplus.github.io/bitxhub/
bitxhub/usage/single_bitxhub/deploy_bitxhub/, 2022. Accessed 29.04.2022.

[66] BitxHub, “Pier repo.” https://github.com/meshplus/pier.git.

[67) H. Fabric, “Using the fabric test network.” https://hyperledger-
fabric.readthedocs.io/en/release-2.2 /test,etwork.htmlbring — up — the —
test — network.

[68] truffle, “Homepage.” https://trufflesuite.com/, 2022. Accessed 29.04.2020.
[69] infura, “Homepage.” https://infura.io/, 2022. Accessed 29.04.2020.
[70] metamask, “Homepage.” https://metamask.io/, 2022. Accessed 29.04.2020.

88


https://www.cheqd.io/blog/self-sovereign-identity-use-cases
https://www.cheqd.io/blog/self-sovereign-identity-use-cases
https://www.adnovum.com/blog/exploring-the-potential-of-self-sovereign-identity-with-representative-use-cases
https://www.adnovum.com/blog/exploring-the-potential-of-self-sovereign-identity-with-representative-use-cases
 https://meshplus.github.io/bitxhub/bitxhub/introduction/summary/
 https://meshplus.github.io/bitxhub/bitxhub/introduction/summary/
https://meshplus.github.io/bitxhub/bitxhub/usage/single_bitxhub/deploy_pier/
https://meshplus.github.io/bitxhub/bitxhub/usage/single_bitxhub/deploy_pier/
 https://meshplus.github.io/bitxhub/bitxhub/dev/rule/
 https://meshplus.github.io/bitxhub/bitxhub/dev/rule/
 https://scholar.google.com/citations?hl=en&user=8f1KQJsAAAAJ&view_op=list_works&sortby=pubdate
 https://scholar.google.com/citations?hl=en&user=8f1KQJsAAAAJ&view_op=list_works&sortby=pubdate
https://meshplus.github.io/bitxhub/bitxhub/usage/single_bitxhub/deploy_bitxhub/
https://meshplus.github.io/bitxhub/bitxhub/usage/single_bitxhub/deploy_bitxhub/
https://trufflesuite.com/
https://infura.io/
https://metamask.io/

[71]

[72]

73]

[74]

[75]

[76]

[77]

B. Insider, “Not ethereum, polkastarter, the dex protocol will launch
on polkadot.” https://www.bitcoininsider.org/article/94688/
not-ethereum-polkastarter-dex-protocol-will-launch-polkadot, 2022.
Accessed 29.04.2020.

Sovrin,  “Sovrin: A protocol and token for self-sovereign iden-
tity and decentralized trust.” https://sovrin.org/library/
sovrin-protocol-and-token-white-paper/, 2018. Accessed 29.09.2021.

D. Reed, J. Law, and D. Hardman, “The technical foundations of sovrin,” The
Technical Foundations of Sovrin, 2016.

Sovrin, “Stewards.” https://sovrin.org/stewards/, 2022. Accessed
29.09.2021.
J. C. Nauta and R. Joosten, “Self-sovereign identity: A comparison of irma

and sovrin,” Technical Report TNO2019R11011, Tech. Rep, 2019.

A. Satybaldy, M. Nowostawski, and J. Ellingsen, “Self-sovereign identity sys-
tems,” in IFIP International Summer School on Privacy and Identity Man-
agement, pp. 447-461, Springer, 2019.

Sovrin, “Sovrin provisional trust framework.”
https://www.evernym.com/wp-content/uploads/2017/07/
SovrinProvisionalTrustFramework2017-03-22.pdf,  2017. Accessed
29.09.2021.

P. Windley, “How sovrin works,” Sovrin Foundation, pp. 1-10, 2016.

H. Indy, “Negotiate proof.” https://hyperledger-indy.readthedocs.io/
projects/sdk/en/latest/docs/how-tos/negotiate-proof/README. htmlf,
2018. Accessed 29.09.2021.

W3C, “Verifiable credentials data model v1.1.” https://www.w3.org/TR/
vc-data-model/, 2022. Accessed 05.04.2022.

H. Indy, “Indy.” https://hyperledger-indy.readthedocs.io/projects/sdk/
en/latest/toc.html, 2022. Accessed 05.04.2022.

Sovrin, “Interoperability series: Sovrin stewards achieve
breakthrough in wallet portability.” https://sovrin.org/
sovrin-stewards-wallet-portability/, 2020. Accessed 29.09.2021.

H. 1. SDK, “Setup indy sdk build environment for ubuntu based dis-
tro (ubuntu 16.04).” https://hyperledger-indy.readthedocs.io/projects/
sdk/en/latest/docs/build-guides/ubuntu-build.html, 2018. Accessed
29.04.2022.

H. I. SDK, “Indy sdk github.” https://github.com/hyperledger/indy-sdk,
2018. Accessed 29.04.2022.

89


https://www.bitcoininsider.org/article/94688/not-ethereum-polkastarter-dex-protocol-will-launch-polkadot
https://www.bitcoininsider.org/article/94688/not-ethereum-polkastarter-dex-protocol-will-launch-polkadot
https://sovrin.org/library/sovrin-protocol-and-token-white-paper/
https://sovrin.org/library/sovrin-protocol-and-token-white-paper/
https://sovrin.org/stewards/
https://www.evernym.com/wp-content/uploads/2017/07/SovrinProvisionalTrustFramework2017-03-22.pdf
https://www.evernym.com/wp-content/uploads/2017/07/SovrinProvisionalTrustFramework2017-03-22.pdf
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/how-tos/negotiate-proof/README.htmlf
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/how-tos/negotiate-proof/README.htmlf
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/toc.html
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/toc.html
https://sovrin.org/sovrin-stewards-wallet-portability/
https://sovrin.org/sovrin-stewards-wallet-portability/
 https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/build-guides/ubuntu-build.html
 https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/build-guides/ubuntu-build.html
 https://github.com/hyperledger/indy-sdk

[85] S.  Maldeniya, “Setup hyperledger indy pool in local linux en-
vironment using docker.” https://medium.com/@smaldeniya/
setup-hyperledger-indy-pool-in-local-linux-environment-using-docker-304d13eb86dc,
2018. Accessed 29.04.2022.

[86] H. Indy, “Indy sdk for node.js.” https://www.npmjs.com/package/indy-sdk,
2022. Accessed 29.04.2022.

[87] Solidity, “Solidity.” https://docs.soliditylang.org/en/v@.8.13/,2022. Ac-
cessed 29.04.2022.

[88] React, “React.” https://reactjs.org/, 2022. Accessed 29.04.2022.
9] IPFS, “Ipfs.” https://ipfs.io/, 2022. Accessed 29.04.2022.

[90] node fetch, “Node fetch.” https://www.npmjs.com/package/node-fetch,
2022. Accessed 29.04.2022.

[91] P. Wiki, “Cross-chain message passing (xcmp).” https://wiki.polkadot.
network/docs/en/learn-crosschain, 2020. Accessed 09.02.2021.

[92] P. Network, “A tale of  two technologies presenta-
tion transcript.” https://medium.com/polkadot-network/
a-tale-of-two-technologies-presentation-transcript-e7397c1c7a49,
2018. Accessed 12.01.2021.

[93] CryptoSeq, “Polkadot — an early in-depth analysis — part
three—  limitations and  issues.”  https://medium.com/@CryptoSeq/
polkadot-an-early-in-depth-analysis-part-three-limitations-and-issues-d8b@a795a3e,
2020. Accessed 09.02.2021.

[94] M. Brill, R. Freeman, S. Janson, and M. Lackner, “Phragmén’s voting meth-
ods and justified representation,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 31, 2017.

[95] J. Petrowski, “Polkadot consensus part 2: Grandpa.” https://medium.com/
polkadot-network/polkadot-consensus-part-2-grandpa-fb1963ef6c70,
2019. Accessed 07.02.2021.

[96] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling hyperledger
fabric to 20 000 transactions per second,” International Journal of Network
Management, vol. 30, no. 5, p. €2099, 2020.

[97] PolkadotWiki, “Frequently asked questions (fags).” https://wiki.polkadot.
network/docs/en/faq, 2020. Accessed 09.02.2021.

[98] Polkadot, “Polkadot home.” https://polkadot.network/, 2020. Accessed
15.02.2021.

[99] Psrity, “A scalable, interoperable & secure network protocol for the next web.”
https://www.parity.io/polkadot/, 2020. Accessed 15.02.2021.

90


https://medium.com/@smaldeniya/setup-hyperledger-indy-pool-in-local-linux-environment-using-docker-304d13eb86dc
https://medium.com/@smaldeniya/setup-hyperledger-indy-pool-in-local-linux-environment-using-docker-304d13eb86dc
https://www.npmjs.com/package/indy-sdk
https://docs.soliditylang.org/en/v0.8.13/
https://reactjs.org/
https://ipfs.io/
https://www.npmjs.com/package/node-fetch
https://wiki.polkadot.network/docs/en/learn-crosschain
https://wiki.polkadot.network/docs/en/learn-crosschain
https://medium.com/polkadot-network/a-tale-of-two-technologies-presentation-transcript-e7397c1c7a49
https://medium.com/polkadot-network/a-tale-of-two-technologies-presentation-transcript-e7397c1c7a49
https://medium.com/@CryptoSeq/polkadot-an-early-in-depth-analysis-part-three-limitations-and-issues-d8b0a795a3e
https://medium.com/@CryptoSeq/polkadot-an-early-in-depth-analysis-part-three-limitations-and-issues-d8b0a795a3e
https://medium.com/polkadot-network/polkadot-consensus-part-2-grandpa-fb1963ef6c70
https://medium.com/polkadot-network/polkadot-consensus-part-2-grandpa-fb1963ef6c70
https://wiki.polkadot.network/docs/en/faq
https://wiki.polkadot.network/docs/en/faq
https://polkadot.network/
https://www.parity.io/polkadot/

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

109

[110]

[111]

[112]

[113]

[114]

X. Luo, “Cross-chain messaging.” https://w3f-research.readthedocs.io/
en/latest/polkadot/networking/4-xcmp.html, 2020. Accessed 15.02.2021.

J. Petrowski, “Polkadot consensus part 4: Security.” https://medium.com/
polkadot-network/polkadot-consensus-part-4-security-eb3180b6d7e4,
2019. Accessed 09.02.2021.

PolkadotWiki, “Polkadot consensus.” https://wiki.polkadot.network/
docs/en/learn-consensus?fbclid=IWAR2hc46AGFBbnAJOLF11FaXA_8xVs_
quocIQeiIm38u23rTOnZfQxBhgTAw, 2020. Accessed 09.02.2021.

A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. Knot-
tenbelt, “Xclaim: Trustless, interoperable, cryptocurrency-backed assets,” in
2019 IEEE Symposium on Security and Privacy (SP), pp. 193-210, IEEE,
2019.

Hedera, “Mainnet nodes.” https://docs.hedera.com/guides/mainnet/
mainnet-nodes, 2020. Accessed 24.01.2021.

L. Baird, “The swirlds hashgraph consensus algorithm: Fair, fast, byzan-
tine fault tolerance,” Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep,
2016.

H. Hashgraph, “Hedera governing counci.” https://hedera.com/council,
2020. Accessed 11.02.2021.

H. Hashgraph, “Tokenization on hedera whitepaiper.” https://hedera.com/
hh_tokenization-whitepaper_v1.20201207.pdf, 2020. Accessed 11.02.2021.

Hyperledger, “Hyperledger quilt.” https://www.hyperledger.org/use/quilt,
2020. Accessed 22.01.2021.

Interledger, “Bilateral transfer protocol 2.0 (btp/2.0).” https://interledger.
org/rfcs/0023-bilateral-transfer-protocol/, 2020. Accessed 11.02.2021.

Interledger, “Stream: A multiplexed money and data transport for ilp.” https:
//interledger.org/rfcs/0029-stream/, 2020. Accessed 11.02.2021.

Interledger, “Simple payment setup protocol (spsp).” https://interledger.
org/rfcs/0009-simple-payment-setup-protocol/, 2020. Accessed
12.02.2021.

Interledger, “Interledger protocol v4.” https://interledger.org/rfcs/
0027-interledger-protocol-4/, 2020. Accessed 17.01.2021.

J. Gray and A. Reuter, Transaction processing: concepts and techniques. El-
sevier, 1992.

Interledger, “Connector risk mitigations.” https://interledger.org/rfcs/
0018-connector-risk-mitigations/, 2020. Accessed 12.02.2021.

91


https://w3f-research.readthedocs.io/en/latest/polkadot/networking/4-xcmp.html
https://w3f-research.readthedocs.io/en/latest/polkadot/networking/4-xcmp.html
https://medium.com/polkadot-network/polkadot-consensus-part-4-security-eb3180b6d7e4
https://medium.com/polkadot-network/polkadot-consensus-part-4-security-eb3180b6d7e4
https://wiki.polkadot.network/docs/en/learn-consensus?fbclid=IwAR2hc46AGFBbnAJ0LFl1FaXA_8xVs_qu0cI0eiIm38u23rTOnZfQxBhqTAw
https://wiki.polkadot.network/docs/en/learn-consensus?fbclid=IwAR2hc46AGFBbnAJ0LFl1FaXA_8xVs_qu0cI0eiIm38u23rTOnZfQxBhqTAw
https://wiki.polkadot.network/docs/en/learn-consensus?fbclid=IwAR2hc46AGFBbnAJ0LFl1FaXA_8xVs_qu0cI0eiIm38u23rTOnZfQxBhqTAw
https://docs.hedera.com/guides/mainnet/mainnet-nodes
https://docs.hedera.com/guides/mainnet/mainnet-nodes
https://hedera.com/council
https://hedera.com/hh_tokenization-whitepaper_v1_20201207.pdf
https://hedera.com/hh_tokenization-whitepaper_v1_20201207.pdf
https://www.hyperledger.org/use/quilt
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/
https://interledger.org/rfcs/0029-stream/
https://interledger.org/rfcs/0029-stream/
https://interledger.org/rfcs/0009-simple-payment-setup-protocol/
https://interledger.org/rfcs/0009-simple-payment-setup-protocol/
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://interledger.org/rfcs/0018-connector-risk-mitigations/
https://interledger.org/rfcs/0018-connector-risk-mitigations/

[115]

[116]

[117]

G. Falazi, A. Lamparelli, U. Breitenbuecher, F. Daniel, and F. Leymann,
“Unified integration of smart contracts through service orientation,” IFEFE
Software, vol. 37, no. 5, pp. 60-66, 2020.

A. Lamparelli, G. Falazi, U. Breitenbiicher, F. Daniel, and F. Leymann,
“Smart contract locator (scl) and smart contract description language (scdl),”
in International Conference on Service-Oriented Computing, pp. 195-210,
Springer, 2019.

Google, “Protocol buffers.” https://developers.google.com/
protocol-buffers/, 2019. Accessed 17.01.2021.

92


https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

8 Appendix A: Interoperability solutions found in
the pre-study

8.1 Polkadot

Polkadot [20, 4] was created by a co-founder of Etherium, Gavin Wood. Polka-
dot can be seen as two seperate parts, which interact with each other. The
first part are the Parachains. A Parachain is an independant blockchain which
then connects to the second part of Polkadot, the Relaychain. This is the hub,
which enables all chains inside this hub to share information with each other.
Figure 46 shows the system Gavin Wood envisioned.

Parachains are primarily created in Substrate, developed by Parity Techno-
ligies, as a framework for developing blockchains. Substrate and Polkadot
were designed to work together. This doesn’t mean that there won’t be more
languages compatible with Polkadot in the future, but currently, this is the
primary one [50, 92]. Substrate was developed to accommodate the network
level functionality required by Polkadot in order to communicate with other
Blockchains in the relaychain [20] shown in Figure[46]. Polkadot also wants
to connect with existing successfull blockchains, illustrating Etherium as an
example [4]. They hope to achieve this with Parachain bridges, which should
intermediate between the two forms of blockchains, providing provable finality
to other outside blockcahins about the state inside the Relaychain [20]. The
bridges unfortunalty remain a challange for the development team, four years
later still suggesting solutions on how to solve the problem.

The Relaychain is where the Parachains can interact with eachother. The
Relaychain is also itself a blockchain, storing all the information about the
communication between Parachains on its own ledger, but does not store the
message itself [91]. Polkadot envisions a capacity of 100 Parachains, but this
could change if Polkadot manages to create 2nd order Relaychains and nth
order Relaychains. The nested Relaychains as of 2020 seem to still be under
development, setting the limit to 100 Parachains at the moment [20]. There
are four critical roles nodes can take for the Relaychain to work, these are:
Validators, Firshermen, Nominators and Collators.

93



Transaction
(subemitbed by
axlermal actar)

. '__,‘::--""—-‘ Propagated transactions
Collator b +

" T Block candidate submission
Propagated block "‘""‘-/,‘7
L]

Fisherman .

Validator swarm
{mach cakaured by it 2nd order

detignated parachain) RB'B'_I,I"C"IEII'I

Parachain community

Account
Inbound transaction

Interchain transactions
[mansged by vabialons)

Outbound transaction

Parachain
queuas and /O

Parachain
Parachain

Virtual parachain
(e.g. Ethereum)

Figure 46: Shows the envisioned strucuture of Polkadot from 2016. Including
the Fishermen, Validators, Collators. Image taken from [4]

e Validators: are the heavy lifters in the Relaychain. They are full nodes
in the relaychain and interact with Parachain Collators which they are
randomly assigned in regular intervals. This role is given to nodes being
nominated with sufficiently high trust by the nominators, who have in-
vested a sufficient amount of Polkadots token DOT. This creates a NPoS
(Nominated Proof of Stake), if the validator is found to be malicious, a
percentage of the invested DOTs are slashed from all nominators who
nominated it. Validators will work together with the Collators on the
assigned blockchain to validate the blocks provided by the Parachain,
will make sure all messages have been recieved and answered, as well as
create blocks on the Relaychain, as part of the BABE and GRANDPA
hybrid consensus model.

e Collators: These are full nodes on their respective Parachains, having all
the necessary information to author new blocks and create transactions.
They watch the progress of the block production and consensus protocols
in their Parachain. Under normal circumstances, they will collect and
combine transactions, execute transactions to create an unsealed block,
and provide it together with proof of validity block (Bpey) to one or more
validators working for that Parachain.

94



e Fishermen: Fishermen are not related to the creation of the blockchains,
but are rather observers, looking for malicious behaviour, motivated by
a huge payoff should they find this maliciousness. The resources needed
for a fisherman unlike the collator and validator is very small, there is
no requirement for them being a full node. Fisherman themselves need
a small bond in order to exist, so they don’t spam the validators with
false maliciousnes claims.

e Nominators: Nominators are any node who owns DOTS (Polkadots cur-
rencie) and wants to invest into a validators, they believe act honerably,
motivated by a payoff, for successfull transactions.

It is assumed that % of all nominators who place a stake in the validators are
honest, giving a total of % honest validators. Fishermen can be as dishonest as
they want they will be found and punished by removing their small stake. Col-
lators do not have a specific amount of honest participants for their parachin,
but it’s assumed that at least one collator is honest. Polkadot does however
claim they have checks for a totally malicious member [20].

The NPoS is used to nominate the validators who are supposed to act on their
behalf and are responsible for the security of the relaychain. The Validators
are assumed to be bounded but grow linearly with the number of Parachains
connected to the system, prefering 10 validators for each Parachain [5, 93].
This is presumably to avoid a problem where a too few validator are respon-
sible for a single Parachain opening the possibility for validators colluding
maliciousley. These Validators will be reelected every “era” of about roughly
one day. Rewards or Slashings are given according to the elected Validators
performance. The Validators fee should be higher then any DOT holder can
afford, making it impossible for a single entity to support a single Validator.
It is also expected that a significant amount of all DOT's will be used each era
to promote the validators.

To ensure that validators are chosen as fairly as possible, so most possible
nodes placing a stake get included, it has been set a great focus on gaining
proportional representation, based on the Mathematician Edvard Phragmén’s
method to gain Proportional justified representation (PJR) [94]. Polkadot has
made an adaption of PJR in order to secure that nominators, to a greater,
extent, get represented by their chosen set of nominators they want to nom-
inate. This ensures a wider decentralisation of nominators having a stake in
the blockchain, ensuring that not only the biggest DOT holders control the
system.

When blocks are created in the Parachain, and sent out to the Relaychain with
some desired wish to exchange value, it is first sent to the collator, and needs
to be validated by the validators currently validating the Parachain. Because
the validators need to validate the Parachain block, it is not enough that the
collator just presents the block to the validator. Validators are not full nodes
of the Parachain, like the collators are, and therefore need more proof to accept

95



a block. This is done by creating the proof of validity block By, which is
possible to verify even for validators. This is done using the parachins state
transition validation function (STVF), which will be stored on the relaychain.
The STVF will output the validity as a Merkel tree, header, and outgoing
messages. There will ideally be ten Validators for each Parachain, going as
low as 5, with an increased risk to security. Once enough validators approve
the block, it is eligible to go on the Relaychain. Fishermen now have the
oppurtunity to try to find malicious behaviour on the approved block as a
second line of defence. As a third line of defence is a few randomly assigned
validators which should proof the work done by the validators in the first
iteration. The number of validators assigned is based invalidity reports made
by fisherman, but it seams an extrea four validators for a total of 14 randonly
assigned validators is ideal [93]. This third phase is done before GRANDPA
gets a chance to vote, and finalize the block. With 14 validators looking at
the proof, it is calcualted that it would take a malicious validator 50 years
(Figure 47), assuming reorganisation of validators every five minutes, before
a succesfull attack [5].

450 ;

400 |

SO

50|

L 1

400 |

wcheck

Figure 47: Shows the estimated time in years, it would take for a node to
succeed in a malicious attack depending on how many other nodes are also
checking. Image taken from [5]

When Polkadots Relaychain produces blocks, it uses both a fast block produc-
tion engine called Blind Assignment for Blockchain Extransion (BABE) and
a slower consensus algorithm to finalize the proposed blocks in BABE and
removing all Forks called GRANDPA [20].

96



BABE consists of time divisions called epochs, where validators are allowed
to suggest blocks for the blockchain. These epochs consist of multiple slots
up to a given known bound R. There are two ways a Validator can become
eligible to write a block in a slot. The first and preferred way is primary
leadership, which is granded based on the evaluation of a verifiable random
function (VRF). VRFs generate pseudo random numbers along with a proof
that it was validly generated. The VRF takes an epoch random seed agreed
by all nodes, a slot number and the nodes private key. Using these three
together should give a random number, two factors, the epoche seed, and
the slot are given, while the private key should in combination generate a
truly random number. The validators will then create a number for each slot
in the epoch, and if it comes below a threshold 7 it is allowed to author a
block in this slot. The second method comes form the fact that there might
be cases where no validator comes blow the desired value 7 . When this
occurs, The Relaychain falls back to a round-robin fallback. Every Slot has
a secondary leader agreed upon in the start of the epoch. This secures that
every slot has a block author, and helps to guarantee consisten block time. The
produced blocks will then be validated by GRANDPA. Grandpa diverges from
a classical BFT algorithm with voting on chains, not blocks [95]. This allows
for potentially more then one block beein accepted each iteration it finalizes
blocks. GRANDPA works by having a primary validator. This validator was
a part of the last block finalisation round, and holds an estimate from the
previous round of the last block that could have been finalized last round,
calculated based on the prevotes and precomits. The primary validator then
invites all nodes which in the previous were part of the estimate, that is nodes
which precommited. The primary will then broadcast its estimate for the last
round, which the other validators will then prevote on. If it get more then %
of the prevotes, and it’s a descendant of the finalized block of last round it
passes. These two can then be combined to increase speed, by BABE following
two rules for BABE to work with GRANDPA [6].

e It must always follow the fork, which has the latest finalized block.

e BABE must place the next block on the chain with the most primary
blocks created by the previous BABE slot.

A practical example of how BABE would work tgether with GRANDPA is
shown below in Figure 48.

97



Built on last finalized block
(*) but not most primaries

. . 1 1 1 Built on last finalized block,
chain with most primaries

Built on last finalized block
) but not most primaries

() Not built on last finalized block
and it's automatically invalid

Last finalized block by GRANDPA

Figure 48: An example of how BABE needs to choose where to place the next
block based on GRANDPA’s need. Taken from [6]

Finally for actually communicating messages between two blockchains, The
Relaychain uses Cross-Chain Message Passing (XCMP). XCMP consists of
two parts

o Metadata about outgoing messages are included in the Relaychain, to
later authenticate messages by the receiving Parachain.

e The massage bodies need to be distributed from sender to receiver.

Number two is actually essential, a message must be received, not receiving a
message can potentially hinder a Parachain from building blocks. In order to
ensure this every Validator which validated a Bp,, and collators of the sending
Parachain should keep all outgoing messages for a long period of time until
they know it has been acted on.

In order to send messages from Parachain S to Parachain D, the message first
needs to be communicated to the relaychain. This is done when a validator
validates the B),,. When it is in the Relaychain the Relaychain will update
the Parachain header PH of Blockchain S, based on what messages were sent
in Block B. The Parachain header contains a message root M of outgoing
messages, as well as a bitfield indicating which Parachains were sent messages.
The Root M is a Merkel tree of a hash chain. This hash chain contains all
messages sent to Prachain S to Parachain D, allowing the receiving Parachain
D to authenticated the message using the Merkel tree M. On the receiving side
in Parachain D’s header PH’ contains a watermark. This watermark shows
how far into the Relaychain blocks it has read, up to a certain block R, and
also what particular message inside block R it acted on. When things have
been acted on the watermark will also be updated.

All outbound messages will be placed by the collator into the outbound mes-
sage queue, along with a destination and timestamp [91]. Collators from other
Blockchains will routinely ping all blockchains to see if a message is there for

98



them, based on what their current watermark. If they find a massage, this
will update their watermark, which will be read in their next Bp,,, notifying
the whole system that this message has been received.

8.1.1 Consensus model

Polkadots consensus model is based on a hybrid consensus model, using BABE
and GRANDPA [20]. The nodes involved in the consensus are the Validators
chosen by the nominators in the system, giving the validators a NPoS to act on
the behalf of the nominators who placed a stake in them. A hybrid consensus
model means the finality gadget ( what finalises the blocks) and the block
production mechanism has been split. This speeds up the block production
process, as blocks can be produced quick with BABE having probabilistic
finality, and later in it’s own time be validated by GRANDPA having provable
deterministic finality.

8.1.2 Constraints

Polkadots currently biggest constraint is that it almost exclusively needs to be
a Substrate built blockchain for it to be able to follow predescribed protocol
specifications, making it hard for already depolyed permissioned Blockchains
to migrate to Polkadot. It is further unlikely that Blockchains based on Hyper-
ledger would be willing to integrate with Polkadot. Each Parachain is capable
of around 1000 tps [93], while hyperledger is capable of at least 3000 tps going
up to 20 000 tps [96], making it unlikely they would be willing to cooperate
with a chain much slower than themselves.

Parachains must also have Collators, which will act as the communicator be-
tween the Parachain and the relaychain. These need to be full nodes of their
respective Parachain. The blockchain the needs to accept messages from the
collator, and subsequently answer them, as well as distribute Parachain blocks,
and hold them for a certain period of time, satisfying polkadots need for all
messages needing to be answered [20]. Polkadot also requires Parachains to
have some form of PoV, so the Validators, which are not full nodes in the
Parachain can validate the proposed blocks [20], this is to avoid potantial
Censorship Attacks and Front Running attacks, where a malicious collator
might either decide to withold information or prioretise certain messages [93].
Polkadot Also is constrained by the amount of validators it currently has.
There should ideally be 10 validators for each Parachain, going down to 5
as a minimum [20]. Currently Polkadot manages to have 297 validators [97]
in the system meaning that while it in theory can hold 100 Parachains, the
real number is currently 29-59 Parachains, with the upper end significantly
lowering the security it can provide [5].

99



8.1.3 Interoperability

Polkadot throught the use of XCMP provides a possability to create a one-
way channel between two communicating Parachains. A pair of Parachains
can have a total of two of these channels open one for sending and one for
recieving [91]. Polkadot claim they can interoperate any type of data or asset
[98, 99]. It is however not mentioned anywhere how polkadot should achieve
anything except the transfer of Data, which can happen through XCMP [91],
as it proves the authenticity of the data by storing a Merkel tree root in the
Relaychain for message authentication [20]. Polkadot does however not assum
anything about the Parachains [20], and once a message is sent over XCMP, it
is not responsible for the distribution inside the Parachain [100]. It could be
possible for a Parachain to use the XCMP, to send provable messages agreeing
on asset transfers, and then themselves sorting out the burning or locking of
assets as mentioned in section[2.4]. This would allow Polkadot to send all
assets. This however is an assumption, and is not explained in any litterature.

8.1.4 Pros and Cons
Table 5: Pros and Cons of Polkadot.

PROS CONS

Security

100



e Uses NPoS to elect validators. The

Stake is DOT tokens which will be
slashed based on percentage of val-
idators caught, raising to 100% at
the % mark, where the Byzantine
Fault Tolerance failes for Polkadot
[20].

Polkadot achieves provable deter-
ministic finality in their consensus
model, meaning when GRANDPA
has validated a block, it will never
be changed, and this can be proven
to eventual Bridge Blockchains [20].
Polkadot uses an punishment sys-
tem, if a Validator is found to act
malicious or is not behaving. A cer-
tain percentage of DOTs will be re-
moved from everyone who placed a
stake in the validator if found. This
can be very minor amounts, for not
being offline, to a super linear slash-
ing, going up to 100% if a high per-
centage of Validators are found to
Equivocation. Placing a risk on try-
ing to act maliciously [101, 20].

For there to be a successfull attack,
at least % of Validators need to be
malicious [20].

All security for exahnging assets is
done by the Relaychain, whihc every
substrate blockchain inherits, when
they become a parachin in Polkdaot
[4, 20]

Polkadot checks the information
placed on the Relaychain a total of
three times before GRANDPA gets
to do the final validation. The first
check is done by the 10 Validators
observing the blockchain, the second
check is done by the firshermen, and
the final check is done by a number
of external to the Parachain valida-
tors for a final security check. [20]
Polkadot doesn’t use a centralized
time service, but instead uses it’s
own local clock and syncronizeg@tith
the rest [6, 20]

e Having few validators validate,

means that it is open to potential
attacks, where an outside party
within the timeframe tries to dis-
cover and bribe the Validators in a
certain Parachain.

If a faulty block is detected, after
it has been finalized, Polkadot will
have to roll back the state of all
Parachains and all transactions in-
side the system to that point [93].
Polkadot provides good security for
the Relaychain, but the collators do
not receive any incentives to do a
good job from Polkadot, and there
are limited ways to prove they are
acting maliciousley [100].  rather
they get incentives from their own
Parachain, this can create censoring
of transactions, both inbound and
outbound, if the collators feel they
are not incentivised enough by cer-
tain nodes [93].




Performance

e Polkadot claims BABE will produce °
a block every 6 seconds [102], possi-
bly going as low as 2-3 seconds if op-
timization works as intended, or in-
crease if there come more parachins
in the network [97].

e Every Parachain should be able to
do about 1000 transactions per sec-
ond [93].

Bridges [4, 20] are a separate
blockchain which can’t be rolled
back, therefore it has to be abso-
lutely certain that there will not
come any fisherman challenges. It
is suggested a waiting period of
60 minutes, which is huge latency
[93]. This however assumes they get
bridges.

Scalability

102




e Polkadot can handle a total of 100
Parachains in practice and is looking
into expanding this with a 2nd order
Relaychain, enabling all these chains
to interoperate if wanted [20, 4].

e Polkadot in reality has 297 Val-

idators [97], where a recomended
amount for every Parachain is 10
and a lower bound is 5 [5], allow-
ing them to currently have anywhere
from 29-59 Parachains.

Polkadot has also looked into
Bridges, in order to make it possible
to include other Blockchains, cur-
rently focusing on BTC and ETH.
They envision a bridge relay, un-
derstanding as much as possible of
the bridged chain, and a bank for
locking and releasing DOT's for ETH
or BTC. The idea was first men-
tioned in the 2016 whitepaper [4]
and still under development in the
2020 whitepaper [20], now with a
design inspiration based on XClaim
[103].

Polkadot scaling past the first
100 Parachains seems challenging.
Polkadot suggested looking into ex-
panding this with a 2nd order Re-
laychain. This was a topic presented
by Gavin Wood in his 2016 whitepa-
per [4], and is still a topic of in-
terest in the 2020 whitepaper [20],
where they say “We are also inter-
ested to increase scalability of Polka-
dot further, for example by investi-
gating the idea of having nested Re-
laychains”

Polkadots  currently  exclusively
needs to be a Substrate [50] built
blockchain for it to be able to follow
predescribed protocol specifications
[20, 4], making it hard for already
depolyed permissioned Blockchains
to migrate to Polkadot

Costs

103




e Polkadot is does not require GAS to
place transactions of blocks.

e Polkadot is relying on auctioning
off slots for Parachains in the re-
laychain [20]. This means smaller
parachins without too many DOTs
might never get the opportunity to
participate in the chain, especially if
their scalability remains a problem.

8.2 Hedera

Hedera Consensus Service (HCS) [17, 52] is one of the interoperability options
emerging for especially Hyperledger fabric. It is a collection of nodes called
the Hedera Mainnet, used for the fast creation of time-stamped messages,
combined with the Hedera Mirrornet, to store and communicate the events
agreed upon by the Hedera Mainnet, to the relevant parties. For HCS to
communicate with the fabric blockchain, it will have to implement several
SDKs and the Hedera API (HAPI) using protobufs. The HCS plugin will then
be responsible for fragmenting and merging the blockchain’s 6kb messages.

The Hedera Consensus Service is public, meaning that anyone can join it and,
to a degree, see what is going on, by creating a mirror node.

Before connecting to Hedera, a blockchain client would configure one or mul-
tiple mirror nodes. The group would also define one or more topics attached
to messages, which the client’s application would send to the Hedera public
network. They would finally also configure keys allowing those who have the
keys to read the information sent for a specific topiclD.

Hedera works with Fabric in the following way as shown in Figure 49 and
explained below.

104



Hedera Hashgraph
Consensus nodes

5 Transaction proposed to e ae s S B a D)
Endorsed Client 1 Fibrree B - ge o
responses opic using
collected k
8

2 Client application broadcast Event reaches

I 3 transaction to orderer consensus, receiving
Ordered Fabric peer consensus

timestamp and state
proof

transactions
given to peers l

Transaction fragmented
3 into messages, associated
with topiciD

7 Fabric orderer @,
i %o
Transaction e ‘ ‘

reassembled, put HCS plug-in .‘.

in block

Mirror nodes

age order

Figure 49: Shows how the Hedera netowrk will comunicate a message from
one blockchain to another. Images taken and edited together from a Hedera

Webinar [7]

First, the Transaction is proposed in Hyperledger Fabric, and when a consen-
sus is reached, this can be broadcasted to the HCS plugin for fragmentation.
It is important to note that Hyperledger fabric’s consensus relies on a deter-
ministic consensus algorithm. This means that anything sent to Hedera will be
guaranteed to be final and correct. This means all Hedera needs to do is prove
to other users that nothing has been tempered with on the Hedera network
itself. When sent to the orderer SDK, it is made into small packages called
massages. Fach message contains a TopicID, message and a fee, in Hederas
own cryptocurrency Hbar.

The TopiclD is the ID given to the topic the blockchain defined used to mark
that this is information coming from them, enabling one or more mirror nodes
to then publish the information to registered Hyperledger Fabric peers.

These messages are then sent to the Mainnet. The Hedera Mainnet is a cur-
rently permissioned network operated by the Hedera Governing Council [104].
Mainnet is a quick-acting information acceptance hub designed to set a stamp
when all the nodes in the network came to a consensus of when an event
was created for auditing purposes. This consensus is reached by gossiping to
the other nodes, the information they received from a Blockchain client. The
agreed-upon timestamp will be the medium time when every node who re-
ceives the message, allowing for a 100% final timestamp once all active nodes
have received the information. This information will be sent to the Hedera
Mirror nodes.

The information sent to the mirror net is the current package with a now added
consensus timestamp, sequence number and a running hash. A running hash
is used to inform how the fragments of a given topic’s messages have come
in relation to each other to reconstruct the whole message at the Blockchain

105



client. The sequence number is used to tell how this message arrives relative
to all the other messages sent to with this TopiclD.

The massage is then sent to Blockchain clients with the Message, TopiclD,
timestamp, Sequence Number and running hash, where it is reconstructed by
the blockchain’s orderer using the keys necessary to reconstruct and read it.
This is finally sent to the recieving blockchain.

8.2.1 Consensus model

The Hedera Consensus service [52] uses a Hashgraph protocol [105] to reach
a consensus about when a message has been sent, using a gossip protocol to
communicate with the Mainnet nodes and subsequently the Mirror nodes. The
consensus is done in the Hedera Mainnet; currently, permissioned [104] and
operated by the Hedera Governing Council [106] consisting of huge companies
like IBM, LG, Google, ect. The message is thereafter sent to the Mirrornet, a
public collection of read-only nodes used to store and process the information
stamped by the Hedera Mainnet.

8.2.2 Constraints

Any blockchain wanting to participate in the Hedera Consensus service will
have to integrate several SDKs and the Hedera API (HAPI). Before connecting
to Hedera, a blockchain client would configure one or multiple mirror nodes.
The group would also define one or more topics attached to messages, which
the client’s application would send to the Hedera public network. They would
finally also configure keys allowing those who have the keys to read the in-
formation sent for a specific topicID. [52]. If the Blockchain is interested in
using Tokens, it would have to comply with the Hedera Message Standard
[107]. Data sent must be either provable deterministic finality or determinis-
tic finality. Probabalistic finality, where information later is not added to the
blockchain, could create false Data for other chains.

8.2.3 Interoperability methods

Hedera would interoperate, using tokens created in the different Blockchains.
These tokens would be what Hedera defines as Security Tokens [107]. The
tokens represent some form of value, either fungible or non-fungible. Hedera
has two services for tokens, one on the Hedera Mirrornet, and the other going
over the Hedera Consensus Service, which stores the tokens on blockchains.
In order to get tokens over the Hedera Consensus Service, the tokens must
follow the Token Message Standard [107], consisting of Application logic, used
to define roles and behavior of a token, called the Token Contract. The nodes
which contain the token contract logic are referred to as token nodes. The
nodes will be responsible for using the application for validating the Hedera
Consensus Service’s toekn message. It would ensure that it complies with
the roles and behaviours specefied for the specific token, for instance it could

106



ensure that the appropriate keys were used to sign a required transaction,
therefore validating the message as correct [107]. Token nodes will subscribe
to the appropriate TopicID for the token, which it will validate or reject if
a message containing the TopicID is made. Token contracts can be made
more complex to include atomic swaps or automated event triggering. Atomic
swaps would require all parties involved to be in both blockchains where the
exchanges happen [52].

8.2.4 Pros and Cons

Table 6: Pros and Cons of Hedera.

PROS CONS

Security

e Hedera uses a Hashgraph Proto- e Hedera Governing Council governs

col [105], meaning giving it asyn-
chronous byzantine fault tolerance
(ABFT). This would stop any DDoS
attack from working [52].

A Hashgraph Protocol also ensures
fair timestamps and transaction or-
der and access, meaning that no cen-
soring or prioritizing of messages can
happen [52].

Blockchains can send transactions to
multiple nodes in the mainnet at
once, ensuring that it is not sent to a
malicious one withholding informa-
tion [52].

Messages can be encrypted, so only
the appropriate parties with correct
able to read the message [52].

the Hedera Mainnet, which consists
of a relatively small amount of coop-
erations, could collude to skew con-
sensus [52].

Having too few Token nodes can
cause maliciousness [107] and to
what extent these Token nodes com-
municate to gome to a consensus of
validity is unknown.

Performance

107




e Hashgraphs

are 100% efficient.
Blocks are never suggested and
later removed [52]

Hedera can achieve a very high
throughput of up to 200 000 to 250
00 100 byte tps, with a latency of
6 seconds for consensus finalety, or
50 000 100 bye tps with a latency
of 2 seconds consensus finality [52].
The throughput is achieved with 16
nodes run by the Governing Council
[104].

If many mirror nodes are created,
this can have an impact on the per-
formance, this would be small [52]

Scalability

Mirrornet nodes, which are read-
only, don’t participate in the Main-
net and therefore don’t create la-
tency problems for the Mainnet.
Hedera wishes to, in the future
Shard their Mainnet, to increase
performance, as not every node
needs to process every transaction.
Sharding could solve their Cons for
scalability [52], unless too much
overhead is added for shards com-
municating with each other.

Latency in consensus finality might
become a problem if too many
nodes become active in the Main-
net. Many nodes reduce security
concerns but increase latency. If
Hedera would use 64 Nodes, they
would not increase throughput but
would advance latency to 20 sec-
onds, assuming nodes spread across
the globe [52]

With more mirror net nodes comes
more demand for the throughput.
Because Hedera doesn’t scale well
with more nodes observed from fig-
ure 1-3 in [52] problems with queues
waiting to be processed by the Hed-
era Mainnet might arise.

The tokens created to communi-
cate with different blockcahins in the
Hedera Consensus Service, might be
use case specific, meaning different
tokens might need to be made.

Costs

108




° e Hedera does require a small amount
of their token Hbar, for each mes-
sage sent to the Hedera Mainnet, as
a processing fee.

8.3 Hyperledger Quilt/Interledger

Interledger [18] and Hyperledger Quilt will be talked about in the same section.
This is because Hyperledger Quilt claims to be a Java language implementation
of the Interledger protocol [108].

Interledger [18] is a payment system, allowing two blockchains to trade cur-
rencies between the two blockchains, often using multiple other blockchains to
achieve this. The critical assumption in Interledger is that some nodes are in
both blockchains, enabling them to become connectors.

The unique idea with interledger is ledger provided escrow. This means instead
of having a trusted third escrow, which might run away with your money, you
only need to trust your own blockchains escrow to hold your funds, until it
has been confirmed with proof that the other party has transferred the funds.
Essentially meaning you need to be able to trust your own blockchain. This
idea can be continued with very long chains of blockchains to finally trade
the values which both parties wish for. To facilitate this, the intermediary
connectors will set themselves available to trade currencies intermediary for a
small fee. The participants in the trade have three roles:

e Sender: Is the party that organises the payment
e Reciever: The final recipient of the payment

e Connector: The intermediaries between a sender and a receiver, that
forward the ILP packets. They do this service for a small fee provided
to them. This is only needed if the sender and receiver party don’t have
a monetary system in common. In order to be a connector you need
to have two accounts one on each chain which you connect, making it
possible for it to intermediary between two currencies.

Interledger is inspired by the internet, and therefore takes similarities to it,
dividing into layers of protocols [8], with different responsibilities. Lower level
protocols provide basic functionality, while the higher level ones provide more
advanced functionalities, while at the same time depending on the lower level
functionalities.

e The lowest level protocol is the link protocol. This layer is often incorpo-
rated into a ledger plugin, because it needs to communicate settlements
that occur int the underlying ledger. The link protocols are the ones

109



providing secure two-way communication between two nodes in in the
same ledger. communication is done over WebSocket, using the IL-RFC-
23:Bilateral Transfer Protocol [109]

e The Interledger Protocol (currently ILPv4) these packets pass through
all participants from sender, through possible connectors to reciever.
This level handles the currency amounts, if currencies arrive or expire,
finding the path between sender and reciever through possible connec-
tors, as well as holding a cryptographic condition whose success condition
is only known to the recipient.

e The Transport protocol is responsible for the end-to-end communication
between sender and receiver. This layer is responsible for

— Defining the condition for fulfillment that are used on the ILP layer
(When will the currencies be released)

— Deciding the speed at which packets can be sent

Determining the exchange rate of a payment
— Encryption and Decryption

Interledger recomends using STREAM [110] for the transport protocol,
but does allow other transport protocols.

e the Application Protocol, this layer deals with destination discovery,
where exactly should the money be sent, what transport layer protocol
should be used, and any other information, which should be commu-
nicated in ILP packet data. Interledger suggests here using the Sim-
ple Payment Setup Protocol (SPSP) [111], which uses the recomended
STREAM [110] transport layser protocol.

Currently Interledger is on it’s 4th iteration called ILPv4 [112]. Different
from Their first iteration introduced in their whitepaper [18], is the design
of smaller, more homogenous packet amounts. This still means that you can
send large amounts through a high level protocol, but it is now optimised for
sending large volumes of small packets.

The ILPv4 now also uses Payment channels [112], this means that the con-
nectors now send the IPv4 packets through to the next connector, instead of
going through the blockchain ledger itself. This allows for the timeouts to be
much shorter, because they don’t need to take into consideration the process-
ing time of slow POW based ledgers like Bitcoin, which would increase the
payment time substantially. Payment channels are a way to use signed claims
against funds held on a ledger, they can exchange a signed claim after every
ILP packet is fulfilled, to keep the trust between ledgers as low as a single
packet value. When the two trading blockchains are done with their trade,
the connectors can then use the signed claim in their own ledger to balance
the funds in their own ledger, allowing for greater speed.

110



Higher level protocols are generally used for initiating the communication,
while lower level protocols are used for the actual transfer, but the user can
also use higher level protocols to send currencies, although ILPv4 is set up for
using lower level protocols, which therefore is recomended.

Interledger moves money by relaying packets. This is first done by sending
a ”prepare” packet, this allows all blockchains in the possible movement to
prepare currency, and with the condition for releasing it. Connectors will here
prepare the balances between them, as well as adjust the currency conversion,
and fees they take.

When the Prepare packet finally arrives the reciever, and the reciever accepts
the proposed amount, a fullfill packet will move down the chain back to the
start, confirming the planned balance changes on all chains. At any point in
the chain, the connectors or recievers can reject the proposal. Figure 50 shows
the Interledger consensus.

This can happen becouse a connector failes to prepare the funds, a reciever
rejects to offer, or an expiration happens. In all cases, the reject message goes
down the chain to the reciever, and no balance is changed.

Prepare Prepare Prepare
R R R
Sender Connector Connector Receiver
Fulfill Fulfill Fulfill
. Prepare Prepare
: € A
Sender Connector Connector Receiver

Reject Reject

Figure 50: Shows the ILP lifecycle with the two possible outcomes of Fulfill
or Reject. Taken from [8]

With smaller packets, it is now possible for the transport protocol to combine
the packets into the desired amount, this allows small packets to be sent, at
a much faster speed, finding the optimal route, and if rejected trying another
route. Smaller packets also open for more routes, as connectors might not
have the big chunk sum, but should have smaller sums prepared.

When the whitepaper [18] was propesed, they had two proposed methods,
atomic mode and universal mode. Atomic mode has since been removed, as

111



this required agreements in different blockchains which could not be gener-
alised [8]. It is instead now fully commited to what is called universal mode in
the whitepaper. Universal mode is similar to a two-phase commit, here each
party is isolated from risk beyond their imidiate peers. However between the
two pairs there is a chance for a non-blocking [113]. This should however be
mitigated, as Connectors take a fee for their transactions, knowing about this
risk, and with ILPv4 only very small amounts are being sent every iteration,
meaning huge sums of money will not be lost for the node.

8.3.1 Consensus Model

Interledger works by the different protocol layers coming to an agreement on
what is to be exchanged, the amount exchanged, and how to communicate. It
works with generalized agreements, which should work with all blockchains,
provided they have the Interledger Architecture implemented [18, §].

8.3.2 Constraints

The Interledger is reliant on the fact that all participants using interledger
must have nodes in multiple blockchains [18]. It is also important that the
blockchains are able to communicate using WebSocket, as this is needed in the
Link Protocol, to communicate between two nodes in the same blockchain. It
is also beneficial to use STREAM [110] and SPSP [111], as it will presumably
be more common on other blockchains, allowing for communication between
more blockchains.

8.3.3 Interoperability

For interoperability it can exchange currencies. Any currency which there is
a path for can be traded [18]. Interledger can’t exchange data or non fungible
assets. Data, connectors would have no incentive to convey the data. Non-
fungible assets are unique assets, and therefore don’t have any given exchange
rate which interledger uses to exchange currencies over the connectors. There
would also not be any incentives for the connectors to exchange the non-
fungible asset, as they can’t claim a fee from a non-fungible asset.

8.3.4 Pros and Cons

Table 7: Pros and Cons of Interledger/Hyperledger Quilt.

PROS CONS

Security

112



o Interledger provides ledger escrow,

meaning that the locking and sub-
sequent distribution of funds is done
on the blockchain itself, avoiding po-
tential 3rd party escrow acting ma-
liciously. Now the risk is on the
blockchain itself [18]

Connectors can choose to blacklist
senders and receivers, if they choose,
avoiding payment griefing [114]

e As of ILPv4 atomic mode is no
longer in use, and are now using
universal mode [8]. Universal mode
uses a two phase commit, which
is vulnerable to non-blocking [113],
where money in a transaction can be
lost.

e Because single nodes are used as
connectors, if an attacker can DoS
the node after the outgoing payment
transfer, but before they can fulfill
their own transfer, making the node
lose funds [114]. Mitigation meth-
ods can be taken, but this is for the
individual node to take precautions.

Perfor

mance

ILPv4 has substantially reduced
the time between proposal and
transaction using Payment chan-
nels. The time it takes how-
ever is still reliant on the receiv-
ing blockchain’s throughput. If the
receiving blockchains throughput is
fast, the proposal will be processed
fast, if not the transaction can take
time.

e With the introduction of ILPv4

small packets open the possibility
to interact with more connectors, as
having a large transaction, which a
connector could not balance would
previously be a bottleneck [8]

Scala

bility

113




e Interledger benefits from scalabil-
ity, and can in theory scale indefi-
nitely. Scalability opens more paths
for transactions, allowing for bigger
competition among connectors for
better fees [18] and possible shorter
paths between blockchains, as the
right connectors exist .

e The opposite end of the spectrum is

if there are too few blockchains using
interledger, then fees can be high,
paths can be large or it can be im-
possible to exchange the currencies.

sts

Costs can become substantial. If a
route between one currency to an-
other becomes big. Because every
connector requires a small fee, the

fees can become big. [18]

8.4 Smart Contract invocation protocol

The Smart Contract Invocation protocol (SCIP) [9, 115] is an abstraction
layer, that allows a blockchain to invoce smart contracts on another blockchain.
It has developed an uniform message protocol sent over the SCIP to the other
blockchain over an URL. Blockchain users need to operate a SCIP, exposing
the smart contracts, they themselves wish to expose. The Consumers can then
reach these SCIP Gateway, by using a Smart Contract Locator (SCL) [116].
SCL addresses smart contracts from outside their blockchains. An external
consumer can invoke the contract and receive information from the blockchain
that otherwise would be inaccessible. This is made possible over a gateway,
a web-accessible agent that can mediate between the external consumer and
the blockchain. SCL only allows invocation smart contract addressing only,
assuming that the communication between external consumer and gateway
over HT'TP is adequately secured. The SCL uses and URL to address gateway,
containing the following information in the HTTP POST message, shown in
Figure 51

e Which type of blockchain is being addressed

e Which exact blockchain network, as gateways can have more networks
accessible

e The blockchain-internal smart contract address or identifier.

114



https://gateway.com?blockchain=ethereum&blockchain-id=eth-mainnet&address
=0xalb73...0b80914.

Figure 51: An URL used in the SCL, in order to locate the correct smart con-
tract. Here gateway.com is the domain of the gateway, blockchain=ethereum
specifies that we want to reach an ethereum blockchain id=eth-mainnet
specifies that it’s the ethereum mainnet that should be contacted, and ad-
dress=0xab... specifies the smart contract unique address which is wished
contected. from [9]

The SCIP has parameters in the message, which are used to locate the ap-
propriate smart contract using SCL. SCIP allows a blockchain to invoke 4
different methods, Invoke, Subscribe, Unsubscribe and Query.

The Invoke method allows a blockchain to invoke a specific smart contract on
another blockchain, and receive the information desired, and works as follows
and shown in Figure 52.

e——— [

4 Store

Signed Request " {Tx, SR

Massage [SRM] et o o
S 1 941& |_____| Br:?;/ NOdE
Client oL ~ _LET""‘ . ’J_ i
icati ~ Gatewa ——_g :
—— o Ve Nece [12T
Ld

—a | —— Node

BC-

Response Message Result Query Tx Status

Figure 52: A visual explanation of what happens in step one too eight below,
taken from [9]

e Step one: is communicating with the SCIP gateway to communicate
what the receiving blockchain actually wants from the blockchain it
will interoperate with. To attain the desired information, the receiv-
ing blockchain must send packets with information to the gateway. This
packet contains:

— Desired function identifier, which is the name of the smart contract

— Parameters, which are inputs that should be put into the smart
contract to be executed on the sending blockchain.

— Callback URL: The URL which the gathered information of the
sender must be sent to (the receiving blockchain)

115



— Correlation identifier: Enables the receiving blockchain to know
exactly what message it is receiving back, but assigning a unique
identifier to every request and subscription.

— Degree of confidence: a percentage going from 0 to 1 on how certain
it should be that the information gathered actually ends up on the
senders blockchain. Close to 1 is high and close to 0 is low.

— How long in seconds the gateway should wait before deciding the
degree of confidence that receiving blockchain is asking for is not
obtainable.

— Signature: the encoded signature of the receiver

When all the desired information has been put into the message, the
client application, signs it using the algorithm SHA256withECDSA amd
the normative curve secp256kl, sending it to the gateway.

e Step two: This is where the information created gets sent over HTTP
to the SCIP Gateway. It is signed by the gateway on the behalf of
the receiving blockchain. The Signed transaction (Tx) and the Signed
Request Message SRM are then permanently stored at the gateway. The
reason it is signed by the gateway is that the receiving blockchain has
no idea of the structure of the sending blockchain, preventing it from
formulating a signature. Therefore it has to be signed by the gateway,
which knows the technical details.

e Step three: The gateway sends the message to a node in the sender
blockchain, using its API.

e Step Four: The node validates it and starts the consensus process by
announcing it to the network of nodes.

e Step Five: When the consensus begins, it is assigned a unique ID and
the Gateway is informed.

e Step Six: The gateway informs the receiver about the successful submis-
sion of the transaction.

e Step Seven: It will now query the sender blockchain node about the
status of the transaction

o Step Eight: If the query yields sufficient confidence from the sender
blockchain specified by the receiver’s degree of confidence within the
timefram of the timeout, the gateway sends the execution results back
using the callback URL specified.

The SCIP also has a Subscribe method, allowing the blockchain to monitor
desired occurrences on other blockchains, using the gateway as an information
gatherer.

116



The Subscription method requires the receiving blockchain to create a sub-
scription, using the Event and function identifier, which are simply names of
the event and function, a callback URL, Correlation identifier, and degree of
confidence. The last thing needed is a Filter, a boolean expression used to only
notify the requester about events they actually are interested in. When later
then an occurrence is detected by fitting the subscribed description, the gate-
way checks the degree of confidence, if it matches or is above the requested
amount, a callback using the callback URL and the correlation identifier is
issued with the information requested.

The Unsubscribe methode, would then unsubscribe the client from the desired
smart contract function.

The Query Methode allows a client application to query the previous occur-
rences of an event. This will need the Function identifier and function, filter
and a timeframe, which declares a timeframe to look for the desired occur-
rences. This will return a result of the occurrences with their timestamp,
together with the Parameters of the searched for information.

8.4.1 Consensus model

The consensus is achieved on the invoked blockchain. SCIP is only an inter-
mediary, allowing blockchains to expose smart-contracts to other blockchains,
which they can invoke or subscribe to. The SCIP will however in the uniform
messaging protocol return a degree of confidence that what has been palces
on the other blockchain has actually been placed on the blockcahin. It seems
that the SCIP will wait until the desired degree of confidence has been reached
before it will return the message to the sender.

8.4.2 Constraints

The SCIP abstraction layer must be implemented [9] on both the blockchains
that wish to interoperate and the appropriate smart contracts being exposed
in a SCIP gateway. This gateway would also need to be made. Adequate
security must be implemented [116], so a safe communication between the
client application and SCIP gateway.

They mention having a distributed SCIP gateway to avoid single point of
failure [9], however it seems that this solution must be self-implemented, and
is not something they themselves offer.

8.4.3 Interoperability

SCIP is used to gather data from one blockchain and sending this information
to another blockchain or database. Because it uses the smart contracts inside
the blockchain it queries, it can receive proof adequate to the data consumer
about how likely it is that this data will be on the blockchain [9]. The assets

117



which can be exchanged are dependant on the smart contracts which the
blockchain exposes.

The SCIP provides an uniform way to reach smart contracts on another blocke-
ahin using the SCL [9], it also has a uniform protocol sent over the SCIP which
is used to invoke the different smart contracts. As well as a JSON schema
used to handle different encoding types which might occur in different smart
contracts existing on blockchains, providing a 1-to-1 mapping to generate.
corresponding native data types.

8.4.4 PROS and CONS
Table 8: Pros and Cons of SCIP.

PROS CONS

Security

e Using native smart contracts of the e In the whitepaper [9], there is men-

blockchain, which gives out-degree
of confidence, the receiving party
can know the probability that the
invocation or query will have deter-
ministic finality [9].

The gateway needs a signature; if
the gateway only accepts authenti-
cated signatures, even if a malicious
actor would try to invoke a smart
contract, he could not because he
would not have the necessary signa-
tures. [9].

tion of a distributed SCIP gateway,
however, it seems to suggest this
as self implementation, meaning it
must be assumed, it currently is a
single gateway, validating these con-
cerns listed below.

The Gateway seems to be only a sin-
gle database [9]; this could result in
DoS attacks

The Gateway is also vulnerable to
downtime assuming it is a single
database. Consumers would during
the downtime not be able to listen to
the blockchain or invoke contracts.
The Gateway uses SQL to invoke
smart contracts [116], leaving it
open to potential SQL attacks if not
secured.

Providers of the SCIP are responsi-
ble for Gas fees of their respective
blockahins, this could lead to high
costs for a provider, if someone de-
cides to abuse posting information
on the blockchain.

Performance

118




e depending on the degree of con-
fidence wished for by the sender,
a confirmation might take a long
time, especially on probabilistic
blockchains
Scalability
e There can be an unlimited amount e For each SCIP gateway to work
of gateways created, as long as the ideal, the two or more blockchains
SCL in the blockchain knows how to using the gateway need to communi-
contact them, it can have an infinite cate the use cases and create appro-
amount of gateways connected to it priate smart contracts, so the other
[9]. parties can get the desired benefits
e More methods other than Invoke, [9, 115]
Subscribe, Unsubscribe and Query
could be added [9].
Costs
e There are no costs associated with e Providers are responsible for
the SCIP. the cost associated with using
blockchains requiering Gas fees

8.5 Ermyas Abeb Relay

Abebe et al [10]. define a relay, which itself will be a separate component
within the blockchain network. The relay service, which they call it, should
authenticate data from other blockchains by fetching the data and verifiable
proofs from the sender blockchain.

The team has decided this to be a separate component, so all nodes don’t need
to implement the changes, requiring considerable changes inside the blockchain
architecture. By introducing a separate component as the relay, the communi-
cation protocol can evolve independently. Having the relay separate allows for
further implementations on the relay without interfering with the blockchain
itself.

However, the implementation does assume that the two Blockchains that wish
to interoperate have prior knowledge of each other. The Blockchains must
know the identity of the other, as well as the configurations. The knowledge is
needed for the blockchains to communicate with each other, while the config-
urations are needed so the blockchains can agree on a verification policy used

119



when communicating, which requires the blockchains to know the verification
methods of the other and to know what smart contracts exist, to invoke their

query.

The relay itself communicates with other Blockchains using the relay’s shared
network-neutral language. The shared network-neutral language contains Google’s
Protocol Buffer [117]. The protocol is structured to provide the necessary de-
tails for addressing a network, ledger, and smart contract, the function name
and arguments for remote queries, as well as verification policy, satesfiable for
both parties of the requesting blockchain. This should yeld a response that in-
cludes the data queried and the proof that satisfies the requesters verification
policy. Finally, the relay includes pluggable network drivers that translate
the network-neutral protocol messages into calls that the specific blockchain
will understand. The system needs system contracts, which will need to be
implemented on all blockchain nodes. These will be used to enforce network
rules for data exposure, and acceptance of what has been sent is deemed valid
and can be placed on the blockchain. It can also be used to encrypt sensitive
data between relays. These system contracts are

e Configuration Managment: contains the identity and configuration in-
formation about blockchains, which it can interact with, and is used by
other system contracts for every cross network interaction, as well as set-
ting the verification policies and acceptance, which incoming data must
pass, verified by the Data acceptance contract.

e Data acceptance: allows the receiving blockchain to determine if the
data, and corresponding proof satisfied the verification policy, before it
is written on the ledger.

e Exposure control: sets and enforces access control policy rules against
incomming requests, deciding what in the ledger and smart contracts
can be exposed to the specific interoperable blockchain.

The system contracts will be deployed in the same way as application smart
contracts using a supported smart contract runtime environment and lan-
guage.

When everything is in place, the Blockchains will communicate in the following
way shown in Figure 53

e Step One: The destination network submits a request to its local relay
service by specifying the source network’s unique name, ledger, contract,
and function to invoke, along with any arguments. It also establishes the
verification policy determined during the initialization phase.

e Step Two: The Relay Service uses the Configuration Management to
discover the desired blockchain based on the destination network’s name.

e Step Three: The destination blockchain’s relay serializes the request and
forwards the message to the source relay.

120



= | APPLICATION
8 B B.' LUNIKALIS
-] i ﬁig”'iﬁs’r’zﬁ"
iE o H L= CONTRACTS
HEY i
! Q
T — R ey o i e
=ee8 @ .- I — R
| it H | ) L i f
| = I T~ CONSENSUS —7 :E ?ﬁ | ?E PEL P T CONSENSUS 7 - B
] He i- PROTOCOL — HE I T - o - _— e ! |~ PROTEEOL - -
| - i EEE H T E - EHEE
| LEDGERS | i PEER NETWORK 0 i PEER NETWORK LEDGERS |

Figure 53: The figure shows how Abebe et al’s Relay service communicate
with different blockchains. Image taken from [10]

e Step Four: The source relay deserializes it, and depending on if there is
a hierarchy in the nodes determines which nodes should get to see this
message.

e Step Five: It then creates a query against the respective nodes in the
network, based on the verification policy.

e Step Six: The nodes use the Exposure control to determine if the desti-
nation blockchain has the appropriate permissions to read the data.

e Step Seven: The result for each of the selected nodes create the proof
satisfying the verification policy (assuming the destination blockchain
has the appropriate permissions)

e Step Eight: The source relay serializes and sends it to the destination
relay.

e Step Nine: The destination relay then sends it to the destination blockchain.

e Step Ten: The destination relay constructs a transaction, which includes
the remote query and the proof. The Data acceptance contract then
validates the result data and proof against the agreed-upon verification
policy. If everything is in order, the ledger gets updated.

They managed to complete trade of a NFA (a Bill of Lading) and FA (money)
in their use cases. This was done with the assumption that both parties were in
both the two blockchains Tradelense, and We.Trade. However, they assumed
that the trade itself was done between the two parties in person, and therefore
there was no Atomic swap or similar methods. Making the trade in person
means that both the NFA and FA can be seen as a trade of data and not
an Atomic Swap. However, the team is aware of this and considers trying to
expand the architecture with some form of atomic swap to widen what can be
sent.

121



8.5.1 Consensus model

The agreement is met if the sending blockchain can provide an appropriate
proof, which was previously agreed using the configuration management, and
subsequently approved by the data acceptance when the blockchain received
the data [10].

8.5.2 Constraints

The Relaychain must be implemented, with the Protocol Buffers, Network
drives, and the system contracts, unlike the Protocol buffers and Network
drives that need to be placed on all nodes in the two interoperating networks.
It is expected the interoperating chains have prior knowledge of each other.
Depending on the use cases for the interoperating blockchains, more smart
contracts might need to be made [10].

8.5.3 Interoperability
It works only on receiving data. The team is looking into extending atomic
and HTLC interoperability[10]. This would enable FA for NFA or FA for FA.
8.5.4 Pros and Cons

Table 9: Pros and Cons Abeb et al. Relay.

PROS CONS

Security

122



The Data acceptance system control
allows the receiving blockchain to
verify the information received, en-
suring the blockchain’s data is valid
[10].

The Configuration management
communicates with the sending
blockchain on what proof the
receiving blockchain requires for
acceptable data [10].

The Exposure control decides who
can see what in the blockchain,
meaning different blockchains can
access various information depend-
ing on the trust between them [10]
System contracts can encrypt the
message before being sent to the re-
lay, ensuring that shared data is un-
readable for the relay [10].

e The network relay is a single node

and is therefore vulnerable to DoS
attacks [10].

e The network relay is s single node

and is therefore vulnerable to down-
time if the server shuts down [10].

Perfor

mance

Using smart contracts on another
ledger means the speed relies on the
Blockchain, which has to process the

query.

e Beein a single point of failure, if

it failes and has downtime, nothing
can be done during this period of
time.

Scalability

123




e The relay service is a separate com-

ponent inside the network. For this
reason, changes can be made on the
relay without affecting the network
itself [10].

Plans are being made to extend
the solution to incorporate Asset
transfers, either using Atomic swaps
or Hash Time locked constraints
(HTLC), opening for broader use
cases [10].

The networks communicating with
each other are reliant on some form
of proof, which both networks can
agree is valid [10].

It is assumed that interoperating
networks have prior knowledge of
each others’ identities and configu-
rations recorded on the ledger [10].
For each chain being interoperated,
the two parties need to agree on all
system contract requirements [10].

e More smart contracts might be nec-
essary to implement, depending on
the use cases of the interoperating
blockchains.

Costs

e Once running, there are no costs to °
use the relay.

8.6 Hyperledger Cactus

Hyperledger cactus [11] is a very new project in the Hyperledger family, aiming
to create interoperability options between ALL Blockchains. This would en-
able Hyperledger to communicate with any other blockchain, be it Ethereum
based, Bitcoin-based, or any other blockchain.

They hope to achieve this by extending a group of validator nodes, which pro-
vide the proof of state of the ledger they are connected to (shown in Figure 54).
The validator nodes are ledger-specific plugins, implying that there must be
created a smart contract for the validator nodes to observe the ledger state to
finalize a proof. Giving the Validators the proof of the underlying blockchain
means that the validators can communicate with other desired blockchains
using their validators, bypassing the need for ledger-specific signatures. Ver-
ification would be done with the validator nodes of one blockchain providing
their public key to another blockchain to accept the authenticity of the state
the validators claim.

124



Block-
chain

Figure 54: A proposed structure of how Hyperledger Cactuses Validator nodes
would work with the Blockchain nodes. taken from [11]

The system would look something like this, with the validator nodes listening
in on the blockchain state. These validator nodes would then run their algo-
rithm to agree on a state, which the blockchain is currently in. This algorithm
would be separate from the one used by the blockchain nodes.

Cactus aims to transfer all types of blockchain objects (Fungible assets, Non-
fungible assets, and Data)

Hyperledger cactus is in the early stages of development; while it is a promising
idea, they are just in version 0.3. The task they are setting out to solve is not
an easy one either, but leaving the communication with the validators to the
individual blockchain with smart contracts will reduce their workload.

125



9 Appendix B: Existing SCM systems, and their
blockchains

126



SeINYes] 1Y) pue NS IUSISPIP oy} Jo joysdeus y :0T o[qE],

Q102 SOA - - surddiyg oLIqe 108poIeodAY POUOISSTULID dSUoTOPRL],
0202 - - - ey orIqe I98po[edAY pouOISSTULIS IogperewnreyJ
G10C SOx oN ON Spoox) aAtsuadxr] oriqe Io93pa[IodAy POUOISSTULID J I08palIeAr]
810¢ - - - gurddyg - POUOISSTULID ] LLIN
Q107 - SOx ON sutddiyg uroog SSO[UOTSSTULID J MWSLLXO(]
Q102 SOX ON SOX surddiyg WNoIaY Y5 POUOISSIULID X031e)
1102 ON oN SOx ey WNaIaY )y SSO[UOISSIWIIOJ | YIOMION POWOqOY]
910¢ ON oN SOx ey wmaIey)y/ ouqe 108po[edA | WNILIOSUO)) urey)) [edTpaIN
2102 ON ON SOx [OTINOORULIRT wnaIY) pouOISSIULIS I I93PoTIPOIN
RT07 SOx ON ON pooq orIqe I98po[edAY pouOIsSSIULIS J 1IRTWRAN
Q10T SOx oN ON Spoox) aAlsuadxr] wWnaIay )y POUOISSTULIO J DRIy,
uorealI) JO IedX | Jerntowo)) | 03dAI) | uayo], A1ypsnpug urey)) odA], oure N

127



@ NTNU

Norwegian University of
Science and Technology



	Introduction
	Background
	Definitions of Blockchains
	Reasons for industry using Blockchains
	Blockchains related to the thesis
	Hyperledger Fabric
	Ethereum
	Permissionless Vs Permissioned

	Blockchain Interoperability
	Self Soveregin Identities

	Related Work
	Research Design and Implementation
	Research Motivation
	Research Questions
	Research Method and Design

	Results
	Bitxhhub
	Architecture
	Consensus model
	Constraints
	Interoperability
	Pros and Cons

	Heterogeneos Interoperability
	Interoperability for heterogenous data transfer
	Consensus model evaluation
	Security related to interoperability
	Performance
	Cost
	Scalability

	BitxHub development
	Relay Chain
	Hyperledger Fabric Cross-chain creation
	Cross-chain gateway Hyperledger Fabric
	Cross-chain gateway Ethereum

	Performance and challenges
	Average Transaction speed
	Throughput
	Amount of Data
	Issues Discoveries

	Self-soveregin identities 
	Security
	Controllability
	Portability

	Creation of the SSI solution
	Preparation
	Development
	Setup and experiment


	Discussion
	Interoperating data between two heterogeneous blockchains
	Performance and issues of the selected interoperability solution
	Self-sovereign used to deanonymize cross-chain data between two heterogeneous blockchains

	Conclusions
	Appendix A: Interoperability solutions found in the pre-study
	Polkadot
	Consensus model
	Constraints
	Interoperability
	Pros and Cons

	Hedera
	Consensus model
	Constraints
	Interoperability methods
	Pros and Cons

	Hyperledger Quilt/Interledger
	Consensus Model
	Constraints
	Interoperability
	Pros and Cons

	Smart Contract invocation protocol
	Consensus model
	Constraints
	Interoperability
	PROS and CONS

	Ermyas Abeb Relay
	Consensus model
	Constraints
	Interoperability
	Pros and Cons

	Hyperledger Cactus

	Appendix B: Existing SCM systems, and their blockchains

