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a b s t r a c t 

Public bicycle sharing systems are becoming an essential part of the future urban mobility system. Real- 

time monitoring of the system state through sensors on bicycles and/or stations gives possibilities for 

advanced coordination of the system. In this paper, we consider the dynamic bicycle rebalancing prob- 

lem, where bicycles are re-positioned by service vehicles to prevent stations from becoming completely 

full or empty, and so satisfying the demand for bicycles or locks. We solve the problem in a rolling hori- 

zon fashion with dynamic deterministic bicycle rebalancing subproblems (DDBRS) at the decision epochs. 

To solve the DDBRS within a few seconds in real-time, we propose a novel column generation heuristic 

(CGH). The CGH is tested within a simulation framework based on real data from the bicycle sharing 

system in Oslo. We show that the CGH is able to solve large real-life instances with computational times 

that are suitable for actual operation and that it provides significantly improved solutions compared with 

current planning practice. We also perform a number of tests to analyze the effect of changing the num- 

ber of bicycles and locks in the system, as well as adding extra service vehicles. The case company is 

now making preparations to implement an optimization-based decision support system based on the 

CGH proposed in this paper. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The amount of private motorized traffic is increasing in cities 

ll over the world. This leads to, amongst others, traffic congestion 

nd environmental pollution. Sustainable transportation methods, 

uch as bicycle sharing systems ( Laporte, Meunier, & Wolfler Calvo, 

018; Shui & Szeto, 2020 ), will therefore play an increasing role 

n future urban mobility systems ( Kaspi, Raviv, & Ulmer, 2022 ). A 

icycle Sharing System (BSS) allows users to pick up a bicycle at a 

tation, ride it to their destination, and lock it at a nearby station. 

BSSs have already become an essential part of cities’ public 

ransport systems. Over the last twenty years, the number of BSSs 

as increased from 10 to around 20 0 0 systems ( The Meddin Bike-

haring World Map, 2021 ). During recent years, many of these sys- 

ems have equipped their bicycles and/or stations with sensors, 

iving opportunities in terms of real-time tracking and coordina- 

ion of the system. An important operational challenge for most 

SSs is that stations, where the bicycles are picked up and dropped 

ff, regularly get empty (i.e., no bicycles to pick up) or full (i.e., no 
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ocks to drop off the bicycle) due to customer interactions. This 

eads to an imbalanced system with missed demand and poor user 

xperience as a result. 

In this paper we investigate the operational planning prob- 

em of rebalancing bicycles during the day using dedicated ser- 

ice vehicles and real-time data. Bicycle rebalancing involves mak- 

ng routing and inventory management decisions ( Gammelli et al., 

022 ). It can be categorized into static and dynamic rebalanc- 

ng, where the former typically happens over night and the lat- 

er happens throughout the day. The main difference is that for 

he dynamic case, user demand is considered during the rebal- 

ncing, making the modelling more complicated. The static rebal- 

ncing problem has attracted a lot of research ( Bulhões, Subrama- 

ian, Erdo ̆gan, & Laporte, 2018; Chemla, Meunier, & Wolfler Calvo, 

013; Erdogan, Battarra, & Wolfler Calvo, 2015; Erdo ̆gan, Laporte, & 

olfler Calvo, 2014; Espegren, Kristianslund, Andersson, & Fager- 

olt, 2016; Maggioni, Cagnolari, Bertazzi, & Wallace, 2019; Raviv, 

zur, & Forma, 2013; Schuijbroek, Hampshire, & van Hoeve, 2017 ). 

t is an important problem for bike sharing systems in big cities 

hat need to have a good initial state at the beginning of the day, 

r when rebalancing throughout the day is challenging due to traf- 

c issues. Nevertheless, having a balanced system throughout the 
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ay is crucial for a well-functioning BSS, being the main motiva- 

ion to study the dynamic bicycle rebalancing problem (DBRP) in 

his paper. 

The DBRP is a complex problem which has received increased 

ttention in the literature. We present a brief overview over 

he most crucial elements and refer the interested reader to 

rinkmann, Ulmer, & Mattfeld (2019) and Wang & Szeto (2021) for 

 more extensive classification of DBRP literature. 

In the DBRP, demand for bicycles and locks is not known be- 

orehand, and the system changes over time as users pick up and 

eliver bicycles. The literature deals with this complexity in dif- 

erent ways. First, instead of making routing and inventory deci- 

ions in an integrated way, they can be decomposed and solved 

equentially ( Regue & Recker, 2014 ). Moreover, it is common to 

etermine offline routing and rebalancing decisions for a long 

ime horizon, allowing for longer computational times ( Ghosh, 

arakantham, Adulyasak, & Jaillet, 2017 ). Furthermore, it is com- 

on to break down the DBRP into more manageable subprob- 

ems, considering shorter planning horizons, and solve these in a 

olling horizon fashion ( Shui & Szeto, 2018 ). These subproblems 

an then be modelled using continuous- or discrete time formu- 

ations. For the latter, a time-space network flow model ( Contardo, 

orency, & Rousseau, 2012; Pfrommer, Warrington, Schildbach, & 

orari, 2014; Zhang, Yu, Desai, Lau, & Srivathsan, 2017 ) is usu- 

lly used. Most DBRPs minimize imbalances in demand satisfac- 

ion ( Brinkmann et al., 2019; Legros, 2019; Shui & Szeto, 2018 ), but

ther measures, such as travel costs, can also be formulated in the 

bjective function ( Dell’Amico, Iori, Novellani, & Stützle, 2016 ). 

We can further categorize the DBRP based on the consider- 

tion of service vehicles. Nair, Miller-Hooks, Hampshire, & Buši ́c 

2012) calculate the need for rebalancing within considering vehi- 

les explicitly, while ( Brinkmann et al., 2019; Legros, 2019; Pfrom- 

er et al., 2014; Regue & Recker, 2014 ) do the rebalancing for 

 single vehicle. For larger systems, the interaction between the 

outes of individual service vehicles can become a major challenge. 

 typical approach is then to allocate individual service vehicles to 

redefined service areas ( Fu, Zhu, Ma, & Liu, 2021 ), but this can

ead to sub-optimal solutions by design. As opposed to the ma- 

ority of the literature, we consider multiple vehicles that perform 

ebalancing in an integrated way. This should be the preferred 

pproach for larger systems. To the extend of our knowledge, 

rinkmann, Ulmer, & Mattfeld (2020) is the only work that also 

oes this by extending the work from Brinkmann et al. (2019) to 

llow for coordinating multiple service vehicles. They view the 

BRP as a Markov decision process and embrace methods from 

pproximate dynamic programming ( Powell, 2007 ) to solve it. The 

onstructed lookahead policies mainly focus on which rebalancing 

ctions to perform at the current station and to which station to 

o next. Our approach, on the other hand, explicitly models the fu- 

ure routing and rebalancing decisions of all vehicles by means of 

 mixed integer programming (MIP) model and a rolling horizon 

pproach. As opposed to the literature, we use a continuous time 

ormulation for the subproblems. The instances that we solve have 

imilar dimensions as to what is presented in Brinkmann et al. 

2020) . 

When considering solution approaches for the (sub-)problems, 

e observe that exact methods, such as Branch-and-Cut ( Erdo ̆gan 

t al., 2014 ), are not suitable for the operational DBRP due to 

igh solution times and limitations on the problem size that 

an be solved. Therefore, various heuristic approaches, including 

arge Neighbourhood Search ( Ho & Szeto, 2017 ); Enhanced Artifi- 

ial Bee Colony ( Shui & Szeto, 2018 ); Variable Neighbourhood De- 

cent/Search and Greedy Randomized Adaptive Search Procedure 

 Rainer-Harbach, Papazek, Raidl, Hu, & Kloimüllner, 2015 ), have 

een investigated. Nevertheless, there are still many promising ap- 

roaches that have not been tested, for example heuristics based 
2 
n column generation. These have shown to provide good results 

n other vehicle routing problems ( Vadseth, Andersson, & Stålhane, 

021; Yuan, Cattaruzza, Ogier, Semet, & Vigo, 2021 ). 

Finally, we observe that the majority of works focus on the 

computational) performance of the solution approach only in the 

ontext of the formulated optimization model. However, ideally, 

hese methods should be tested in real-life bicycle sharing systems. 

s such, there have been several studies that have developed a 

imulator, mimicking real-life BSSs, to test their approaches ( Ghosh 

t al., 2017; Regue & Recker, 2014; Shu, Chou, Liu, Teo, & Wang, 

013 ). 

To solve the DBRP in a practical setting, we propose a solution 

pproach where we iteratively solve a subproblem with a relatively 

hort planning horizon in a rolling horizon fashion at each deci- 

ion epoch. Since we consider such a short planning horizon, we 

ssume this subproblem to be deterministic. The main contribu- 

ions of this paper are: (1) the development of a new MIP model 

or this problem; (2) a column generation heuristic to solve the 

roblem in reasonable time; (3) the simulation of this approach in 

 detailed discrete-event simulator for solving the DBRP using real- 

ife data from the BSS in Oslo, Norway, showing that solution time 

s a crucial aspect for good real-time performance; and (4) using 

hese elements to present various managerial insights. 

The remainder of this paper is structured as follows: 

ections 2 and 3 provide a description and mathematical formu- 

ation, respectively, of the dynamic deterministic bicycle rebalanc- 

ng subproblem. We solve this problem using the column genera- 

ion heuristic described in Section 4 and test its performance us- 

ng a discrete-event simulator described in Section 5 . We present 

n extensive computational study in Section 6 , before concluding 

n Section 7 . 

. Problem description 

The DBRP is an inherently dynamic and stochastic problem. De- 

and for bicycles and locks is not known beforehand, and the sys- 

em changes over time as users pick up and deliver bicycles. A 

ommon technique for solving large-scale discrete-time multistage 

tochastic problems is to approximate the problem by a series of 

maller subproblems and solve these at each decision epoch in a 

olling horizon fashion ( Shui & Szeto, 2018 ). Decision epochs can 

e defined in terms of an event, such as the arrival of a service 

ehicle at a station, or a fixed time interval. The generated, over- 

apping, subproblems have a much shorter planning horizon than 

he original problem. 

Fig. 1 illustrates this rolling horizon approach. Preliminary test- 

ng has shown that allowing for multiple visits is not efficient 

hen considering a short planning horizon. Hence, with a suffi- 

iently short planning horizon in the subproblem, the demand for 

icycles and locks can be assumed to be deterministic and stations 

an be visited at most once. This leads to the dynamic determin- 

stic bicycle rebalancing subproblem (DDBRS), which we will refer 

o as the subproblem . 

The DDBRS considers a bicycle sharing system consisting of a 

eet of bicycles, capacitated stations and a heterogeneous fleet of 

apacitated service vehicles. At each station, there is a known de- 

and for bicycles and locks for the considered planning horizon 

e.g., 30 minutes). This demand typically fluctuates throughout a 

ay. The distribution of bicycles in the system depends on the pick- 

ps and deliveries of bicycles by the users, as well as rebalanc- 

ng decisions from the BSS operator. The event where a bicycle- 

emanding customer arrives at an empty station is referred to as 

 starvation , while the event where a lock-demanding customer ar- 

ives at a full station is referred to as a congestion . These events 

re collectively known as violations . To meet future demand be- 

ond the planning horizon of the subproblem, each station has a 
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Fig. 1. Illustration of a rolling horizon procedure for a single service vehicle. Stations are represented by nodes in a path. 
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arget inventory level (number of parked bicycles) at the end of 

he planning horizon, defined as the station’s target state . The dif- 

erence between a station’s load at the end of the horizon and its 

arget state is defined as a deviation . 

The DDBRS consists of, for a given planning horizon, determin- 

ng (1) the route of each of the service vehicles (i.e., the sequence 

f stations to visit), and (2) how many bicycles to pick up and de- 

iver at each station along these routes. The objective is to mini- 

ize a weighted sum of the total number of violations and devia- 

ions, by performing rebalancing actions with the available service 

ehicles during the considered planning horizon. We assume that 

he initial state of the problem, described by the number of bicy- 

les at each station and the service vehicles’ location and number 

f loaded bicycles, is known. The net demand at a station, defined 

s the number of customers requesting a lock minus the number of 

ustomers requesting a bicycle (every time unit), can be estimated 

ased on historical data. Stations are defined as delivery or pickup 

tations, depending on whether they have a positive or negative 

et demand in the following planning horizon, respectively. Note 

hat a station can be a pickup station during one period of the day 

nd a delivery station during another. The service vehicles’ driv- 

ng times between stations are assumed to be known and include 

 fixed parking time which can depend on the location as well as 

he service vehicle. The bicycle handling time is proportional to the 

umber of bicycles handled, regardless of the nature of the actions. 

As explained more in Section 5 , it should be emphasized that 

he DDBRS is to be solved at every decision epoch, e.g., whenever 

 service vehicle arrives at a station. This also means that we are 

n reality only concerned about the decision about (1) how many 

icycles should this particular service vehicle pick up or deliver at 

he current station, and (2) which station to go to next. However, 

n order not to be too myopic, the subproblem also includes the 

ecisions about future stations to visit for the whole fleet of ser- 

ice vehicles. To prevent further shortsightedness, we also consider 

he deviations from the target state and incentivize service vehi- 

les to start on a trip that exceeds the relatively short planning 

orizon considered in the subproblem, as illustrated in Fig. 1 . This 

eans that the planning horizon indicates the latest time vehicles 

an start a new trip. 

. Model formulation 

In the following, we present the notation and the mathematical 

ormulation for the DDBRS. A summary of all notation is presented 

n Appendix A . 

.1. Notation 

We consider a set of stations S with elements indexed by i and 

j, where each station has a given number of bicycle locks that are 
3 
epresented by the capacity Q i . Moreover, we have a set of service 

ehicles V , where the capacity Q 

V determines the number of bicy- 

les that can be loaded on each vehicle. The problem is solved over 

 planning horizon T , indicating the latest time service vehicles can 

tart a trip to a new station. Each service vehicle starts and ends 

ts route at the origin and destination nodes o and d, representing 

he initial and final location, respectively. The parameters L 
i 

and 

 

V 
v define the initial number of bicycles at station i and on service 

ehicle v , respectively. The target state at the end of the planning 

orizon at station i is denoted L 
T 

i . The driving time between sta- 

ions i and j, including the parking time at station j, is denoted 

y T D 
i j 

, and T H is the handling time per bicycle for loading and un-

oading onto/from the service vehicles. The customer demand D i 

epresents the net demand per time unit at station i . A positive 

emand indicates demand for locks, and a negative demand indi- 

ates demand for bicycles. Stations with positive demand are de- 

oted as pickup stations ( S L ), and stations with negative demand 

re denoted as delivery stations ( S U ). We use the convention that 

denotes a large number whose minimum value can be deduced 

rom the constraint where it appears. 

Let x i jv be a binary variable which equals 1 if service vehicle v 
ravels directly from station i to station j, and 0 otherwise. Let z i 
e a binary variable which is equal to 1 if station i is visited during

he planning horizon, and 0 otherwise. The continuous variable t i 
akes the time when station i is visited, and equals zero when no 

isit happens. The integer variables q L 
i v and q U 

i v keep track of how 

any bicycles are loaded from and unloaded to station i by service 

ehicle v , respectively. The number of bicycles at station i just be- 

ore being visited is denoted by l 
i 
, this variable equals zero when 

he station is not visited during the planning horizon. The num- 

er of bicycles on service vehicle v just after the service vehicle 

as visited station i is denoted by l V 
i v . Moreover, we introduce two 

ariables for violations when a station visit occurs during the plan- 

ing horizon: the accumulated congestions and starvations, de- 

oted by c i and s i , respectively. Now, let l i , l 
V 

v , c i and s i be defined 

imilarly as their counterparts without the bar, with the only dif- 

erence that they represent the values at the end of the planning 

orizon T . 

The variable d i represents the deviation at station i at the end 

f the planning horizon, i.e., the difference between the number 

f bicycles at station i and its target state L i . A visualization over 

hese variable definition is given in Fig. 2 . Finally, we force each 

oute to start on a trip that ends after the planning horizon. A re- 

ard r i that depends on the deviation at the stations can be ob- 

ained, but a cost is also incurred for the extra driving time t R v .

inary variables y L v and y U v are equal to 1 when vehicle v is within

 range of I units from being empty or full at the end of the plan-

ing horizon and will have to perform, respectively, a loading or 

nloading action next. 
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Fig. 2. Definition of loading, congestion, starvation and deviation variables depending on whether a station is visited or not. 
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.2. Objective function 

The objective of the DDBRS is presented in (1) , and minimizes a 

eighted sum of violations (before and at the end of the planning 

orizon) and deviations. Moreover, we give a reward for starting 

n a new visit that ends after the planning horizon, but penalize 

he extra driving time. We use ω with superscript to denote the 

eights where V is violations, D deviations, R + rewards and R −
xtra driving time. 

min 

∑ 

i ∈S 

[
ω 

V ( s i + c i + s i + c i ) + ω 

D d i − ω 

R + r i 
]
+ 

∑ 

v ∈V 
ω 

R −t R v (1) 

.3. Constraints 

Degree . Constraints (2a) and (2b) force each service vehicle to 

tart and end in the origin and destination respectively. Constraints 

2c) set a nodal balance, ensuring that if a vehicle visits a station, it 

lso leaves that station. Constraints (2d) enforce that each station 

an be visited at most once. Moreover, the binary variable z i , cap- 

uring whether a station sees a visit during the planning horizon, 

s defined in constraints (2e) . 
 

j∈S 
x ojv = 1 v ∈ V (2a) 

 

i ∈S 
x idv = 1 v ∈ V (2b) 

 

i ∈S 
x i jv −

∑ 

k ∈S 
x jk v = 0 j ∈ S, v ∈ V (2c) 

 

j∈S 

∑ 

v ∈V 
x i jv ≤ 1 i ∈ S (2d) 

 i = 

∑ 

j∈S 

∑ 

v ∈V 
x i jv i ∈ S (2e) 

Timing . If a service vehicle drives from station i to j, then con-

traints (3a) set the start time of visit j equal to the start time of

isit i plus the handling time at station i and driving time from i to

j. Constraints (3b) and (3c) enforce bounds on the visit times and 

ake sure that the last visit is always after the end of the planning

orizon. 

 i + T H 
∑ 

v ∈V 

(
q L i v + q U i v 

)
+ T D i j ≤ t j + M 

(
1 −

∑ 

v ∈V 
x i jv 

)
i, j ∈ S (3a) 

 

∑ 

v ∈V 
x idv ≤ t i ≤ T + M 

∑ 

v ∈V 
x idv i ∈ S (3b) 

 i ≤ M 

∑ 

j∈S 

∑ 

v ∈V 
x ji v i ∈ S (3c) 
4 
Vehicle load . Constraints (4a) and (4b) ensure the vehicle load 

alance, while (4c) and (4d) put capacities on the vehicle loading 

nd unloading, respectively. 

 

V 
i v + q U i v − q L i v − l V jv − M(1 − x i jv ) ≤ 0 i, j ∈ S, v ∈ V (4a) 

 

V 
i v + q U i v − q L i v − l V jv + M(1 − x i jv ) ≥ 0 i, j ∈ S, v ∈ V (4b) 

 

L 
i v ≤ Q 

V z i − l V i v i ∈ S, v ∈ V (4c) 

 

U 
i v ≤ l V i v ≤ Q 

V z i i ∈ S, v ∈ V (4d) 

Constraints (5a) and (5b) define the vehicle load at the plan- 

ing horizon. To reduce the solution space, we enforce that if the 

ehicle load at the planning horizon is close to its lower or up- 

er limit (within I units), then the final visit cannot be to a deliv- 

ry or pickup station, respectively. This is imposed in constraints 

5c) through (5f) . The threshold value I is assumed to be the same 

or the upper and lower limit, but it can be defined differently. 

 

V 

v ≥ l V i v − Q 

V (2 − x i jv − x j d v ) i, j ∈ S, v ∈ V (5a) 

 

V 

v ≤ l V i v + Q 

V (2 − x i jv − x j d v ) i, j ∈ S, v ∈ V (5b) 

 

V 

v ≥ I(1 − y L v ) v ∈ V (5c) 

 

V 

v ≤ Q 

V − I(1 − y U v ) v ∈ V (5d) 

 idv ≤ (1 − y L v ) i ∈ S U (5e) 

 idv ≤ (1 − y U v ) i ∈ S L (5f) 

Station inventory, starvations and congestions . Turning to station 

nventory levels, vehicle (un)loading is also restricted by the avail- 

ble station capacity as given in constraints (6a) . If a station is vis- 

ted in the planning horizon, constraints (6b) put a capacity on 

he number of parked bicycles at the stations, while constraints 

6c) calculate the station load and incurred starvations or conges- 

ions just before the rebalancing starts. 

 i + 

∑ 

v ∈ V 
(q U i v − q L i v ) ≤ Q i z i i ∈ S (6a) 

 i ≤ Q i z i i ∈ S (6b) 

 i = L 0 i z i + D i t i + s i − c i i ∈ S (6c) 
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The station load and congestions or starvations at the plan- 

ing horizon T are set in constraints (7a) through (7e) . Con- 

traints (7b) and (7c) state that if a station is visited during the 

lanning horizon, then the station load at the planning horizon 

quals the load just after the visit plus subsequent changes due 

o customer demand and potential starvations or congestions. Con- 

traints (7d) and (7e) do the same thing for the case when the sta-

ion is not visited during the planning horizon. 

 i ≤ Q i i ∈ S (7a) 

 i ≤
(

l i + 

∑ 

v ∈V 
q L i v − q U i v 

)
+ D i 

(
T − t i 

)
− s i + c i + M(1 − z i ) i ∈ S 

(7b) 

 i ≥
(

l i + 

∑ 

v ∈V 
q L i v − q U i v 

)
+ D i 

(
T − t i 

)
− s i + c i − M(1 − z i ) i ∈ S 

(7c) 

 i ≤ L 0 i + D i T + s i − c i + Mz i i ∈ S (7d) 

 i ≥ L 0 i + D i T + s i − c i − Mz i i ∈ S (7e) 

Deviations and rewards . Constraints (8a) and (8b) define the de- 

iation at station i at time T to equal the absolute difference be- 

ween the target inventory level and actual level. The reward is 

efined in (8c) and (8d) , which can equal the deviation at station 

 . Finally, the extra driving time after the end of the planning hori- 

on is defined in (8e) and (8f) . 

 i ≥ L i − l i i ∈ S (8a) 

 i ≥ l i − L i i ∈ S (8b) 

 i ≤ d i i ∈ S (8c) 

 i ≤ Q i 

∑ 

v ∈V 
x idv i ∈ S (8d) 

 

R 
v ≤ t i − T + M(1 − x idv ) i ∈ S, v ∈ V (8e) 

 

R 
v ≥ t i − T − M(1 − x idv ) i ∈ S, v ∈ V (8f) 

Domains . Eqs. (9a) –(9c) declare the domains of the variables: 

 i jv , z i , y 
L 
v , y 

U 
v ∈ { 0 , 1 } i, j ∈ S, v ∈ V (9a) 

 

U 
i v , q 

L 
i v ∈ Z 

+ 
0 i ∈ S, v ∈ V (9b) 

 i , t 
R 
v , l i , l i , l 

V 

i v , c i , c i , s i , s i , d i , r i ∈ R 

+ 
0 i ∈ S, v ∈ V (9c) 
h

5

. Column generation heuristic 

As solutions to the DDBRS have to be generated online , the solu- 

ion approach must be able to provide high-quality results within 

ere seconds. We propose to use a column generation heuristic 

CGH), which has proved to provide good quality solutions within 

 short amount of time. In particular, CGH is a promising approach 

hen routes are short, which is the case since the subproblem has 

 relatively short planning horizon. 

Fig. 3 presents a conceptual overview of the CGH. Columns in- 

lude feasible routes for service vehicles and potentially also infor- 

ation about the number of bicycles loaded/unloaded along each 

oute. In Section 4.2 we describe how to generate the initial set 

f columns using a route extension algorithm. Given this set of 

nitial columns the CGH iterates between a master problem (MP), 

resented in Section 4.1 , and a scoring problem (SP), described 

n Section 4.3 , where the MP finds the optimal combination of 

olumns (solution) and the SP adds new columns that potentially 

an improve the current solution. 

We test two variants of the CGH, varying in what information 

he columns include: 

1. Route-based : columns represent routes only, i.e., the se- 

quence of stations to visit. Hence, all other variables, i.e., 

related to loading quantities, arrival times, inventory levels 

and violations, are determined endogenously in the MP. 

2. Pattern-based : columns also include loading/unloading pat- 

terns, which means that all information about loading quan- 

tities, arrival times, inventory levels and violations is given. 

Hence, the master problem reduces to a set packing prob- 

lem. 

.1. Master problems 

We now present the MPs for the Route-based and Pattern-based 

ariants of the CGH. 

.1.1. Route-based 

In this variant, columns consist only of the geographical routes 

or the service vehicles. For each service vehicle v we define a 

et of feasible columns R v . The binary parameter A i jv r indicates 

hether service vehicle v drives directly from station i to station 

j in route r. The binary variable λv r takes a value of 1 if route r

s allocated to service vehicle v , and 0 otherwise. The MP for the 

oute-based variant is obtained by taking the mathematical pro- 

ram as defined by (1) –(9) in Section 3 and adding the following 

onstraints: 

 i jv = 

∑ 

r∈R v 

A i jv r λv r i, j ∈ S, v ∈ V (10a) 

∑ 

∈R v 

λv r = 1 v ∈ V (10b) 

v r ∈ { 0 , 1 } v ∈ V, r ∈ R v (10c) 

Constraints (10a) link the routing and flow variables, while 

onstraints (10b) allow exactly one route per service vehicle, and 

10c) are the binary restrictions. We note that in model (1) –(9) the 

ow variables x i jv are completely replaced by the interior repre- 

entation 

∑ 

r∈ R v A i jv r λv r . 

.1.2. Pattern-based 

The pattern-based master problem considers columns which in- 

lude both information about geographical routes as well as load- 

ng/unloading patterns. To formulate the corresponding model, we 

ave to define the following new notation. Let the binary variable 
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Fig. 3. Conceptual overview of the column generation heuristic. 
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Fig. 4. A route extension tree. 

Data : S := First station visit; T := planning horizon; 

Result : F : Set of finished routes 

1 R : List with routes under construction initialized with S 

2 while size of R > 0 do 

3 for each route r in R do 

4 Estimate loading quantities and arrival times 

5 if duration of r < T then 

6 Determine the subset S R of stations that can be 

added to route r 

7 Calculate the station criticality for each station in 

subset S R 

8 Create up to B new routes by extending r with the 

stations with highest station criticality and insert 

these into R 
9 else 

10 Add r to F 

11 end 

12 Remove r from R 

13 end 

14 end 

Algorithm 1: Route extension algorithm. 

m

b

b  

W

a

s

4

t

h

v r equal 1 if service vehicle v is allocated route r, and 0 otherwise. 

et the binary parameter A i v r equal 1 if vehicle v visits station i in

oute r, and 0 otherwise. The parameters V and D represent the 

otal number of violations and deviations when no rebalancing ac- 

ions are performed. Since stations only can be visited by a single 

ehicle during the planning horizon, the routes are independent of 

ach other. As such, V v r and D v r define the number of prevented vi- 

lations and deviations, respectively, when vehicle v performs the 

ebalancing actions in route r. The parameter R v r represents the re- 

ard that service vehicle v obtains when visiting the last station in 

oute r after the planning horizon. The MP is now given by: 

in ω 

V 

( 

V −
∑ 

v ∈ V 

∑ 

r∈ R v 
V v r λv r 

) 

+ ω 

D 

( 

D −
∑ 

v ∈ V 

∑ 

r∈ R v 
D v r λv r 

) 

−ω 

R 

( ∑ 

v ∈ V 

∑ 

r∈ R v 
R v r λv r 

) 

(11a) 

∑ 

∈R v 

λv r = 1 v ∈ V (11b) 

 

v ∈V 

∑ 

r∈R v 

A i v r λv r ≤ 1 i ∈ S (11c) 

v r ∈ { 0 , 1 } v ∈ V, r ∈ R v (11d) 

The objective is defined in (11a) , consisting of the weighted 

um of violations, deviations and rewards for visiting stations af- 

er the planning horizon. This objective function value is equiva- 

ent to the value obtained from objective (1) if the geographical 

outes, loads and arrival times are identical. Constraints (11b) state 

hat each service vehicle must drive exactly one route, constraints 

11c) restrict the stations from having more than one visit each 

uring the planning horizon, while (11d) are the binary restric- 

ions. 

.2. Initialization - route extension algorithm 

As the set of columns can be very large, the aim of the initial-

zation step is to generate a subset of good initial columns. To gen- 

rate these columns we propose a route extension algorithm that 

onsiders specific problem characteristics. The main elements of 

his algorithm are: (1) the estimation of loading quantities ; (2) the 

ltering of stations that can be added to a route and (3) the calcu- 

ation of a station criticality , with each element having a dedicated 

ubsection. Routes can be visualized using a tree, where each path 

n the tree represents one geographical route, while each node rep- 

esents a station visit. Fig. 4 shows a small example of a route ex- 

ension tree for a service vehicle starting at station 1. In this ex- 

mple, four different routes are generated, i.e., the routes (1,10,2), 

1,10,4), (1,12,5) and (1,12,8). 

The route extension algorithm is summarized by Algorithm 1 , 

hich is being used for both variants of the CGH. New routes are 

reated by extending routes that are under construction with the 
6 
ost promising stations. The number of extensions depends on a 

ranching constant B , which is defined as the maximum number of 

ranches created from each node. In the example in Fig. 4 , B = 2 .

hen the duration of a route exceeds the planning horizon, we 

dd the route to the set of finished routes and remove it from the 

et of partial routes. 

.2.1. Loading quantity 

The Pattern-based variant of the MP requires the loading quan- 

ity patterns to be predefined in the columns. We use a greedy 

euristic to estimate the loading quantities at each station visit in 
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 route. Given a (partial) route r for vehicle v , we iterate through 

he station visits in chronological order. If vehicle v goes from sta- 

ion i to j in route r we set the (un)loading quantities as follows: 

 

L 
i v = min 

{
Q 

V − l V i v , l i , Q 

0 . 5 
i j 

}
if i ∈ S L , 

 

U 
i v = min 

{
Q i − l i , l 

V 
i v , Q 

0 . 5 
i j 

}
if i ∈ S U , 

here Q 

0 . 5 
i j 

equals half the capacity of the service vehicle if sta- 

ion visits i and j are of the same type (pickup/delivery), and the 

ull capacity ( Q 

V ) otherwise. So, we (un)load as much as we can,

nless the subsequent station visit is of the same type. When vis- 

ting two stations of the same type consecutively, it might happen 

hat the service vehicle is not able to (un)load as much as possible 

t the second visit, while having extra capacity during the first. In 

his case we could have (un)loaded more during the first visit. In 

hese situations, the algorithm performs a regret . The regret func- 

ion takes the loading algorithm two steps back, and the loading 

uantities at the two last stations are re-estimated. This time, Q 

0 . 5 
i j 

s set to half the service vehicle’s capacity plus the remaining ser- 

ice vehicle load or available slots. If a node in the route extension 

ree is part of several routes, different loading quantities are set for 

ach route. All loading quantities are updated each time a route is 

xtended. So, the loading quantities are set chronologically for a 

oute, starting with the first station visit. 

.2.2. Filtering 

We filter the set of stations that can be added to a route based

n domain knowledge, leading to a subset S R . First, we consider 

he case when a partial route consists of only one station visit. If 

he first visit was a delivery and the service vehicle’s initial load 

s lower than some threshold value, then we infer that the sec- 

nd visit must be a pickup station. A similar logic is applied in 

he case where the first station being a pickup station and the ser- 

ice vehicle’s load being larger than some threshold value. Second, 

f a partial route contains at least two station visits, we do filter- 

ng based on the last two visits in the route. As the service vehi-

les have a limited capacity, we assume that it is inefficient to visit 

ore than two pickup or two delivery stations consecutively. Thus, 

f the two last station visits are pickup stations, all pickup stations 

re filtered out of S R for the next visit, and the other way around.

isiting multiple stations of the same type typically leads to in- 

reased costs due to, e.g., extra driving and handling time. Even 

hough allowing for more than two consecutive visits to pickup or 

elivery stations can be incorporated in the approach, we believe 

t leads to a more complicated modelling approach with little po- 

ential to improve the solutions. 

.2.3. Station criticality 

Before the branching algorithm picks a new station to add to 

n existing route, each station in subset S R is given a station criti- 

ality γi that expresses the importance of visiting the station. The 

tation criticality is meant to capture the benefit of visiting that 

tation and is defined as the weighted sum of (1) time to violation 

t V ) ; (2) net demand during the planning horizon (D i ) ; (3) driving

ime from the previous station j (T D 
ji 
) ; and (4) deviation from the 

arget state, given that the station is not visited during the plan- 

ing horizon ( d 
∗
i ): 

i = −ω 

1 t V + ω 

2 D i − ω 

3 T D ji + ω 

4 d 
∗
i , 

here: 

 

V = 

{
(Q i − l i ) /D i i ∈ S L 
−l i /D i i ∈ S U . 
w

7 
.3. Scoring problem 

The aim of the heuristic scoring problem (SP) is to explore more 

f the search space and identify promising columns that were 

mitted in the initialization. After having solved the MP for a sub- 

et of columns, the SP identifies stations that (1) are not visited 

n the current solution of the master problem, and (2) contribute 

he most to reducing violations and deviations. The SP then creates 

ew columns where these stations have a greater chance of being 

isited. These new columns are constructed based on information 

rom the most recent MP solution (violations and deviations of sta- 

ions that are not included in the MP solution), but they are not 

ased on dual prices from the MP. 

The SP algorithm is summarized in Algorithm 2 , where N 

S is the 

umber of scoring iterations, σi is a score for violations and devia- 

ions at station i , ω 

S is the corresponding weight, B S is a branching

onstant, and β is a Bernoulli random variable equaling one with 

robability p S . In short, we extract the violations and deviations 

rom the stations that are not visited in the solution of the MP. 

hese violations and deviations are scaled to obtain a score. We 

hen generate new columns using the route extension algorithm, 

ranching constant B S and an updated station criticality. We add 

he score to the existing station criticality with a probability of 

p S · 100% . This probabilistic approach is used to prevent columns 

rom only containing stations that were not visited before. When 

ew columns have been generated for all service vehicles, the MP 

s re-solved. 

1 F := list with new columns 

2 Number of iterations = 0 

3 while Number of iterations < N 

S do 

4 Read results from MP 

5 σi := 0 , for all stations i 

6 S S := Set of stations not included in MP solution 

7 for each station i ∈ S S do 

8 Calculate the scores as a weighted sum of the 

violations and deviations: σi = ω 

S ( c i + s i + d i ) 
9 end 

10 for each service vehicle do 

11 F ← Generate new columns through Algorithm 1 with 

branching constant B S and station criticality 

˜ γi = γi + βσi 

12 end 

13 Number of iterations ++ 

14 Execute MP 

15 end 

Algorithm 2: Scoring problem algorithm. 

. Simulation environment 

As the DDBRS assumes known demand, real-world uncertain- 

ies are not explicitly taken into account. Hence, a discrete-event 

imulation framework is developed to test how our modelling and 

olution approach performs in a realistic setting. In this section, we 

escribe how the simulation framework works. 

The simulation framework iterates between a simulator and 

ubproblem in a rolling horizon fashion, as illustrated in Fig. 5 . 

hen solving the subproblem, we obtain rebalancing decisions for 

 certain time period that includes information about the routes, 

rrival times and loading quantities for the different service vehi- 

les. The simulator takes this as input and tracks the evolvement of 

he system until the next decision epoch, which can be whenever 

ubstantial new information becomes available. It is typically done 

hen a service vehicle reaches a new station or after a given time 
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Fig. 5. Simulation framework: iterative process between simulator and the DDBRS. 
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nterval. The simulator then provides updated information about 

he state of the system, which again gives new input parameters 

o the subproblem, and the problem is solved to obtain new rebal- 

ncing decisions. 

Fig. 6 illustrates three iterations within the simulation frame- 

ork for a case with one service vehicle and two stations. In line 

), we visualize a complete customer arrival scenario , which con- 

ists of all customers arrivals (both lock and bicycle requests) dur- 

ng a particular planning horizon for the simulation. This informa- 

ion can be sampled before the actual simulation. Then, the in- 

ormation describing the system state at the start of the planning 

orizon is sent to the DDBRS. In line b), the subproblem is solved 

or a planning horizon of one hour, and the decisions about service 

ehicles’ routes, loading quantities and arrival times are passed 

ack to the simulator. The system is now simulated until route re- 

imulation is triggered by the event that the service vehicle visits a 

ew station (which happens at 8:45am). The information describ- 

ng the system state at 8:45am is sent to the subproblem and a 

ew route is generated in line c). Again, we proceed the simula- 

ion, using the arrival scenario and the current route, until the fi- 

al route-generation is triggered that is visualized in line d). The 

imulation is terminated when we pass the stopping time for the 

cenario. 

While the subproblem uses a linear approximation of customer 

emand, the simulator aims to model the customer demand as re- 

listic as possible through the above mentioned demand scenar- 

os. These customer demand scenarios are generated in the follow- 

ng way. For each hour and station, the simulator draws a random 

umber of requests for bicycles and locks. We use log-normal dis- 

ributions for these demands, and round the obtained value to the 

earest integer. We calculate the mean and standard deviation of 

he demand for locks and bicycles based on historical customer 

emand data for each hour and station. When stations are con- 

ested or starved, extrapolation is used to estimate the true de- 

and. Given a number of demand requests per hour, we then ran- 

omly distribute these requests within the considered time period. 

In Fig. 6 , we simulate a customer arrivals scenario from 8:00am 

o 10:00am for a system with two stations. For the first hour, the 

ampled total number of customers requesting a bicycle and a lock 

quals three and one respectively. In the second hour, three re- 

uests for locks are sampled, and zero for bicycles. The arrival 

imes are then sampled randomly. 

. Computational study 

This section presents computational results for the CGH. We 

tart in Section 6.1 by defining the case study and the data used 

n the testing. Next, we test the performance of the CGH on the 

DBRS in Section 6.2 , before we test its performance on the DBRP 

escribed in Section 6.3 , which is the actual problem of interest. 

he latter is done by using the CGH in a rolling horizon setting 

ithin the simulation framework described in Section 5 . Finally, 

e do a number of tests to obtain some managerial insights in 

ection 6.4 . 

All tests are performed on a PC with an Intel Core i7-6700 CPU 

 3.40 gigahertz processor with 32 GB RAM, running Windows 10. 

he master problems of the CGH were implemented in Mosel 4.6.0 
8

nd solved with Xpress Optimizer 8.3. The initialization heuris- 

ic, scoring problem and simulation framework have been pro- 

rammed with Java in the IntelliJ programming development en- 

ironment. 

.1. Case study 

We test the developed framework on real-life data from the BSS 

n Oslo, Norway. The data is provided by the company Urban Shar- 

ng AS, who operate the system. The BSS in Oslo currently uti- 

izes up to five service vehicles, each with a capacity of 23 bicy- 

les. Moreover, at the time of the study, there were 158 stations 

nd around 1790 bicycles in the system, which corresponds to ap- 

roximately half the number of locks in the system. We assume 

 linear relation between the handling time and number of bi- 

ycles handled. Based on the actual performed rebalancing oper- 

tions in November 2017 we estimate the handling time per bi- 

ycle to 0.25 minutes, while the parking time is set to 2 minutes. 

riving times are based on Google Maps’ open API using the sta- 

ion coordinates. The demand for bicycles and locks at each sta- 

ion are both assumed to follow a log-normal distribution and are 

stimated based on historical hourly demand patterns for bicycles 

nd locks during weekdays from July 2017 to September 2017. As 

he historical data only contains information about the customers 

hat actually picked up or delivered a bicycle, we perform extrap- 

lation to estimate the real demand. While this gives us the to- 

al number of requests during an hour, we use a uniform distribu- 

ion to determine when during the hour these requests take place. 

his assumption is supported by the observation that for the BSS 

n Oslo the demand does not vary a lot within specific hours, al- 

hough it changes throughout the day. The target state for each 

tation and time period is defined to be the point where the prob- 

bility of congestion equals the probability of starvation, which is 

n line with the approach used by our case company. 

.2. Computational results for the DDBRS 

To test the performance of the two versions of the CGH, we 

ompare their performance in Table 1 with using a commer- 

ial MIP-solver (Xpress) that solves the full model presented in 

ection 3 . The presented results are for single runs of the sub- 

roblem with a planning horizon of 20 minutes (no simulation). 

he tests are performed on eight different instances, varying in 

ize from eight to 158 stations. Note that the considered time pe- 

iods represent rush hours, either in the morning or in the af- 

ernoon, so that for example instance “3_50_5pm” represents in- 

tance number 3, having 50 stations for a time period ranging from 

:00pm to 5:20pm. We perform the analyses for two and five ser- 

ice vehicles, maintaining the same demand. As the DDBRS has to 

e solved online in practice, we require its solution time to be at 

ost 10 seconds. While the solutions obtained for the two column 

eneration heuristics satisfy this requirement, solving the subprob- 

em exactly using a commercial solver takes a lot more time. The 

resented objective function values for the commercial MIP-solver 

 Exact) are obtained after running the model for 200 seconds. 

To obtain the results in Table 1 we have performed extensive 

arameter tuning on the main parameters such as the branch- 

ng constants and the objective-, scoring- and criticality-weights, 

hile complying to the 10 seconds solution time requirement. An 

verview of the tuned parameters is given in Appendix B . We ob- 

erved that the key parameter was the branching constant in the 

oute extension algorithm. A higher value allows for a more ex- 

ensive solution space but also leads to increased solution times. 

n the final configuration, the route extension algorithm in the 

nitialization procedure managed to generate good columns. We 
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Fig. 6. Simulation framework: flow-chart for a case with two stations and one vehicle. The capacity of both stations and the vehicle is five bicycles. The pairs denote (station 

ID, bicycle/lock demand) in line a) and (station ID, number of bicycles loaded) in lines b) through d). 

Table 1 

Computational results on the DDBRS for the Route-based (RB) and Pattern-based (PB) heuristic ap- 

proach and the commercial MIP-solver ( Exact ). 

Objective function value (Optimality gap in brackets.) 

V = 2 V = 5 

Instance Exact RB PB Exact RB PB 

1_8_7am 55.67 (0.00%) 55.67 56.34 39.01 (0.00%) 44.75 50.93 

2_8_5pm 18.01 (0.00%) 18.01 27.15 11.68 (0.00%) 12.35 20.66 

3_50_7am 220.76 (86.14%) 213.31 214.74 No solution 195.97 193.38 

4_50_5pm 169.95 (89.09%) 158.81 167.83 153.13 (85.48%) 141.98 144.41 

5_100_7am No solution 389.36 391.03 No solution 372.14 370.97 

6_100_5pm No solution 239.25 240.11 No solution 224.95 224.08 

7_158_7am No solution 536.90 535.56 No solution 521.47 515.48 

8_158_5pm No solution 362.77 369.39 No solution 341.61 345.45 

t

c

 

s

t

t

o

s

l

m

6

a

m

l

o

a

s

t

p

t

t

fi

n

o

P

a

Table 2 

Average number of violations over 10 demand scenar- 

ios for the two heuristic approaches. The last column 

presents the p-value for a t-test comparing the two av- 

erages. 

Route-based Pattern-based p-value 

V = 2 1562.4 1547.3 0.035 

V = 5 1316.5 1129.0 2 × 10 −6 
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herefore only use one or two scoring iterations to generate new 

olumns. 

Turning to the results in Table 1 , we observe that for the two

mallest instances, the MIP-solver ( Exact ) finds the optimal solu- 

ions. Nevertheless, the Route-based CGH variant obtains solutions 

hat are optimal or close to optimal within a much shorter amount 

f time, while Pattern-based performs somewhat worse. 

For the larger instances, we observe that the commercial MIP- 

olver is not able to find any feasible solutions within the time 

imit, while Route-based and Pattern-based have similar perfor- 

ance. 

.3. Simulated results for the DBRP 

Even though the results in Section 6.2 show that the CGH has 

 good performance on the DDBRS, it is not obvious that this also 

eans that that it performs well on the DBRP, which is the prob- 

em we are really interested in solving. So, to test the performance 

n the DBRP, we simulate the largest instance with 158 stations 

nd five service vehicles (unless stated differently), which corre- 

ponds to the real BSS in Oslo. We simulate over the four hour 

ime period of 7am – 11am. At the beginning of the simulation 

eriod at 7am, the locations of the bicycles are initialized with his- 

oric data, while the vehicles are randomly distributed in the sys- 

em. The planning horizon of the subproblem (i.e., the DDBRS) is 

xed to 20 minutes. In the following analyses we present average 

umbers based on simulations of 10 different demand scenarios 

ver the four-hour time period. 

We start by comparing the performance of Route-based and 

attern-based in the simulation framework. Table 2 compares the 

verage number of violations for both versions of the CGH. 
9

Assuming a significance level of α = 0 . 05 , we conclude that 

attern-based outperforms Route-based when considering two or 

ve service vehicles. This contrasts some of the results presented 

n Table 1 , where Route-based and Pattern-based had fairly similar 

erformance for the larger instances. 

By examining the solutions generated with Route-based and 

attern-based , we observe that within the four hour time period 

ach service vehicle visits on average 22.1 and 25.5 stations, re- 

pectively, whereas the average loading quantities are 11.9 and 11.4, 

espectively. It appears that Pattern-based seems to generate better 

eographical routes as more station visits are completed within the 

ime period, which might be a result from the higher branching 

onstant. 

Fig. 7 illustrates the generated routes for the first hour of the 

imulation for a service vehicle starting at station 35 when routes 

re re-generated (i.e., the DDBRS is solved) every time the vehile 

rrives at a station. We are mainly interested in the loading quan- 

ity at the current station, as well as the planned station to visit 

ext, as these are only the decisions that will be executed with 

ertainty. These decisions are visualized in the red boxes. Moving 

head, and focusing on the loading quantity at the first planned 

tation visits, we observe that this quantity remains unchanged 
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Fig. 7. Sequence of generated routes for route re-generation at the station visits. Completed station visits are marked in blue, loading quantities are to the right of the station 

ID number and total number of additional generated routes for the other vehicles are given in grey. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Table 3 

Average number of violations for different combinations of the subproblems plan- 

ning horizon and route re-generation point (first station visit, third station visit, 

fixed 10 minute time interval). The last column presents the computational time in 

seconds of running a single subproblem. 

T 

Route re-generation Comp. time 

(seconds) 
first third 10 minutes 

10 1261 1299 1370 0.28 

20 1129 1155 1225 3 

30 1104 1096 1122 11.1 

c

c

c

p

t

t

s

t

t

t

t

t

t

p

t

p

c

r

n

r

6

f

6

t

b

m

o

o

s

e

s

g

w

o

t

t

s

e

c

v

a

s

S

e

m

b

o

t

l

t

c

s

i

p

d

a

t

s

ompared to the actual execution in all re-generated routes, ex- 

ept on the fourth line. However, the second planned station visit 

hanges in four out of seven cases, indicating that frequent re- 

lanning is beneficial. 

Table 3 presents the average number of simulated violations for 

hree different planning horizons (i.e., 10, 20 and 30 minutes) of 

he subproblem (DDBRS) and three different route re-generation 

trategies (re-planning every time a service vehicle arrives at a sta- 

ion, every third time a vehicle arrives at a station, and with a fixed 

ime interval of 10 minutes). 

We observe that frequent re-planning leads to a reduction in 

he number of violations, except when the planning horizon for 

he subproblem is 30 minutes and re-planning occurs every third 

ime a service vehicle arrives at a station. The number of viola- 

ions also decreases when the planning horizon of the DDBRS is 

rolonged, indicating that having short planning horizon can be 

oo myopic. However, this goes at the cost of the computational 

erformance. For a planning horizon spanning thirty minutes, the 

omputational time for each subproblem exceeds the 10 seconds 

equirement. Henceforth, we will in the following tests use a plan- 

ing horizon of 20 minutes in the subproblem and perform route 

e-generation every time a vehicle visits a station. 

.4. Managerial insights 

In this section we present some managerial insights obtained 

rom a number of additional tests. 
10 
.4.1. Comparison with current planning practice 

To further test the performance of the CGH, we compare it with 

he current planning practice of the case company. The current re- 

alancing strategy does not utilize any analytic program to deter- 

ine routes for the service vehicles. However, the service vehicle 

perators are equipped with tablets showing a real-time overview 

f the distribution of bicycles in the system and they make deci- 

ions based on some simple decision rules. The overarching strat- 

gy behind these decision rules is that each service vehicle is as- 

igned two zones (which can vary over a day) that can be cate- 

orized as a delivery zone and a pickup zone. To gain experience 

ith the current rebalancing strategy, we participated in the daily 

perations and observed that, amongst others, loading quantities 

end to correspond to either half the service vehicle’s capacity or 

he entire vehicle’s capacity; operators strive to balance several 

tations partially, rather than balancing a few stations entirely; op- 

rators visit at most two delivery stations or two pickup stations 

onsecutively; and whether a pickup station or delivery station is 

isited depends on the service vehicle’s load after the current visit. 

We have translated the observed rebalancing decision rules into 

 heuristic procedure. To make loading decisions on the current 

tation, this heuristic uses the loading quantity algorithm from 

ection 4.2.1 , though without the regret function as we experi- 

nced that future loading decisions were not considered. To deter- 

ine the next station, we use the following logic. If there are many 

icycles on the vehicle after the current visit, then we visit either 

ne or two delivery stations. If the vehicle load is almost empty, 

hen we visit one or two pick-up stations. For all other vehicle 

oad levels, the next station can either be a pickup or delivery sta- 

ion. The exact stations to be visited are then based on the station 

riticality as described in Section 4.2.3 as well as the presence of 

tations in the pre-defined zones. The weights in the station crit- 

cality reflect the information that the operator has available. In 

articular, the operator puts less weight on the driving time and 

eviation. In real-life, operators do not calculate these criticalities 

nd therefore do not always select the most critical station. Thus, 

he implementation of the current rebalancing method chooses a 

tation randomly among the five stations with the highest station 
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Fig. 8. Marginal reduction in violations as a function of number of service vehicles. 

Fig. 9. Violations as a function of number of bicycles in the system. 

Table 4 

Average number of violations for different rebalancing strategies. 

CGH Pattern-based Current method No rebalancing Num requests 

1129 1482 1916 8476 
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riticality. Here we note that the chosen station must be in the 

one of the service vehicle. 

Table 4 now compares the CGH with the current planning strat- 

gy, as well as with the strategy of not providing any rebalancing 

t all. 

We observe that there is a significant difference between the 

erformance of the CGH and the two other strategies. Compared 

ith current planning practice, the average number of violations 

uring a four hour period can be reduced by 24% with the same 

umber of service vehicles and employees. When comparing with 

he no rebalancing case, the reduction equals 41% . 

.4.2. The value of service vehicles, bicycles and geo-fencing 

The use of additional service vehicles and bicycles can lead to 

 reduction in the number of violations in the system. This means 

hat the BSS operator should aim to strike a balance between the 

umber of violations and the cost of operating the system. As such, 

ig. 8 presents the marginal reduction of the average number of vi- 

lations for a varying number of service vehicles. The marginal re- 

uction is defined as the number of violations that can be avoided 

ompared with having one less service vehicle. We observe, as ex- 
11
ected, a downward trend, which implies that the added value of 

dditional vehicles reduces for larger fleets. 

In addition, Fig. 9 presents simulation results for a varying 

umber of bicycles in the system. The system under consideration 

ontains 1790 bicycles and 3580 locks. The placement of bicycles 

n the system is done by scaling the initial distribution at 7am. 

e observe that the curve for the total number of violations as 

 function of the number of bicycles has a convex shape. At first, 

he number of violations decreases when adding bicycles, but as 

he number of bicycles gets closer to the total capacity (number of 

ocks), the violations start to increase. Moreover, the lowest num- 

er of violations is achieved when the number of congestions and 

tarvations are equal, which corresponds with the definition of the 

arget state used by our case partner. While the current number 

f bicycles in the system does not lead to the lowest number of 

iolations, there might be a trade-off with having a lower number 

f congestions. However, when station capacities can be increased 

e.g., by means of geo-fencing) it might be beneficial with extra 

icycles. 

A geo-fenced area is an area around a station in which bicycles 

an be locked even if there are no physical locks available. This al- 

ows more bicycles to be parked and can increase the fixed station 

apacities. In turn, geo-fencing can mitigate the issue of congestion 

t stations, i.e., when there are no available locks. Fig. 10 presents 

he results of a simulation where the stations’ capacities are multi- 

lied by different capacity factors. Factors larger than 1 indicate an 

ncrease in capacity due to geo-fencing compared with the current 

ystem. We see that the number of congestions converges to zero 
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Fig. 10. The value of geo-fencing and different capacity factors. 

Fig. 11. Violations as a function of number of bicycles in the system when geo-fencing is enabled. 
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hen increasing the capacity. For a capacity factor of 4, there are 

o more congestions. However, the lowest number of violations is 

chieved for a capacity factor equaling 2. This is because too large 

tation capacities might result in more imbalances in the system 

ith more starvations. 

Finally, we investigate the case where we allow for geo-fencing 

ith a capacity factor of 2 and vary the number of bicycles. Fig. 11

llustrates the corresponding results. We observe that the combi- 

ation of geo-fencing and a larger number of bicycles in the sys- 

em can be highly efficient in terms of the average number of vi- 

lations. This set-up can achieve approximately 280 violations for 

0 0 0 bicycles, while today’s system leads to 1129 violations with 

790 bicycles. These benefits should be compared with the added 

ost of introducing additional bicycles into the BSS. 

. Conclusions 

In this paper we have considered the dynamic bicycle rebalanc- 

ng problem (DBRP). To be able to solve instances of realistic size, 

e approximate the DBRP through a set of smaller subproblems 

ith known customer demand that are solved in a rolling horizon 

ashion. The subproblems have a shorter planning horizon than the 

riginal problem and are referred to as dynamic deterministic bicy- 

le rebalancing subproblems (DDBRS). To prevent myopic decisions, 

he DDBRS penalizes deviations from the target state and forces 

ehicles to start on trips that exceed the planning horizon. Within 

he considered planning horizon of the subproblem, a vehicle can 
12 
isit a fair number of stations. This leads to a too large number of 

outes to be solved efficiently. Therefore, to solve instances of re- 

listic size, we develop a column generation heuristic (CGH). The 

GH starts with an initialization procedure that generates initial 

outes using a route extension algorithm. It then iterates between 

 master problem that picks the optimal routes for each vehicle; 

nd a scoring problem that generates new improving routes. We 

nvestigate two versions of the CGH that differ in the definition 

f columns, which either only include information about the ge- 

graphical route ( Route-based ), or additionally also information on 

oading patterns ( Pattern-based ). It is critical that solution meth- 

ds to the subproblem can be executed in an online fashion. Our 

roposed CGH provides good solutions with an upper bound on 

he solution time of 10 seconds. A balance between solution qual- 

ty and computational performance can be struck by correctly set- 

ing the length of the planning horizon as well as the branching 

onstant. 

To test the performance of the CGH in a realistic setting with 

eal world uncertainties, we developed a discrete-event simulator 

nd constructed a case study that uses real-life data from the BSS 

n Oslo, Norway, provided by our industry partner. We think that it 

s crucial to perform the computational tests on such a simulator, 

ince the DDBRS is only part of the actual problem of interest, i.e., 

he DBRP. For the large instances, we observed that Pattern-based 

utperformed Route-based in the simulation framework, while this 

as not visible when testing on an isolated subproblem. Our expla- 

ation is that with Pattern-based a higher branching constant can 
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Table A5 

(continued) 

Parameters 

D i Net customer demand at station i 

I Loading constant used to assign vehicles to pickup or 

delivery stations 

L V v Initial load of bicycles at service vehicle v 
L 0 

i 
Initial load of bicycles at station i 

L i Target state / inventory level at time T 

Q V Storage capacity at service vehicle v 
Q 

i 
Capacity at station i 

T Planning horizon 

T D 
i j 

Driving time between station i and j

T H Unit handling time used for picking up or delivering 

bicycles 

Binary variables 

x i jv 1 if service vehicle v drives from station i to j, 

0 otherwise 

y L v , y 
U 
v 1 if the load at vehicle v is lower than 

(or above) a certain threshold value at time T 

z i 1 if station i gets a visit before T 

Integer variables 

q L 
i v Number of bicycles loaded from station i by service 

vehicle v 
q U 

i v Number of bicycles unloaded to a station i by service 

vehicle v 
Continuous variables 

c i Congestion when visiting station i 

c i Congestion for station i at time T 

d i Deviation at station i at time T 

l i Inventory level (Bicycle load) at station i at start of visit 

l i Inventory level at station i at time T 

l V 
i v Bicycle load of service vehicle v just after visit i 

l 
V 

v Inventory level of vehicle v at time T 

r i Reward for visiting station i after the planning horizon 

s i Starvation when visiting station i 

s i Starvation for station i at time T 

t i Time station visit i begins 

t R v Extra driving time after the planning horizon 

A

w

c

w

T

c

Table B6 

Final configuration of model parameters for the Route-based and Pattern-based CGH. 

Parameter description 

Values 

Route Pattern 

Subproblem Planning horizon (minutes) T 20 

Violations ω 

V 0.6 

Deviations ω 

D 0.3 
e set, leading to good geographical routes. Route-based requires 

 lower branching constant to adhere to the 10 seconds solution 

ime requirement. The improvement in the objective function due 

o potentially better loading and unloading decisions cannot offset 

he disadvantage of considering fewer routes. 

We use the developed simulation framework to obtain addi- 

ional operational insights. Focusing on the rolling horizon frame- 

ork, we observe that frequent route-regeneration leads to the 

owest number of expected violations. Extending the planning 

orizon of the subproblems also leads to a decrease in the num- 

er of expected violations, but increases the computational time. 

n operator should therefore aim to strike a balance between the 

oute re-generation frequency, planning horizon length and com- 

utational time. Comparing the CGH approach with not doing any 

ebalancing at all, we find that the total number of expected vi- 

lations during a four hour period can be reduced by 41% . When 

omparing the performance of the CGH with the current planning 

ractice, we find that the expected violations can be reduced by 

4% , using the same number of service vehicles. This is one of the 

easons that the case company now is making preparations to im- 

lement an optimization-based decision support system based on 

he CGH proposed in this paper. Harvesting these potential gains 

y performing rebalancing using the proposed CGH can be crucial 

or obtaining good functioning BSSs, as customer satisfaction is key. 

inally, we find that the combination of a high number of bicycles 

n the system, together with a modest increase in station capac- 

ty (possibly due to geo-fencing) can lead to significant violation 

eductions. 
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ppendix A. Nomenclature 

Table A.5 presents the notation used in this paper. 
able A5 

otation used for modelling the DDBRS . 

Sets 

S Set of stations 

S L , S U ⊆ S Sets of pick-up (loading) and delivery (unloading) stations 

V Set of service vehicles 

Indices 

i, j Station i, j ∈ S
o, d artificial origin and destination nodes 

v Service vehicle v ∈ V
(continued on next column) 

13 
ppendix B. Parameter tuning 

To determine the values of the different parameters and 

eights in the model, we tested the performance of different 

onfigurations in the developed simulation framework. For the 

eights, we considered values from 0 to 1, with 0.1 increments. 

he other parameters were tested with unit increments. The final 

onfiguration of the parameters is given in Table B.6 . 
Objective weights Reward ω 

R 0.1 

Reward, prevented violations ω 

R + 0.06 

Reward, extra driving ω 

R − 0.04 

Route extension Branching Constant B 2 20 

Scoring 

Branching Constant B S 3 15 

Num scoring iterations N S 1 2 

Scoring weight ω 

S 4 4 

Scoring Probability p S 0.4 0.4 

Criticality weights 

Time to violation 0.1 0.1 

Net demand 0.7 0.5 

Driving time 0 0 

Deviation 0.2 0.4 
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