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Sammendrag

I denne prosjektrapporten studeres konvergens av Følg-Lederen (FL) modellen av første orden
mot løsningen av Lighthill-Witham-Richards (LWR) modellen. Jeg studerer to generaliseringer
av LWR modellen der løsningen har diskontinuerlige hopp i den totale variasjonen, og deres
korresponderende FL modeller. I den første modellen har hastighetsfunksjonen en diskontin-
uerlig romlig avhengighet. I den andre er trafikkfluksen begrenset i et punkt. Det etableres et
nytt variasjonsestimat på den numeriske fluksen i FL modellen, som brukes til å bevise at FL
approksimasjonen er kompakt i Lp

loc for 1 ≤ p <∞. Argumentet krever at fluksen er genuint
ikke-lineær. Videre etableres det at grensene tilfredstiller entropiulikheter av Kružkov-typen. I
den første modellen etableres unikhet av grensen når den romlig avhengigheten er en stegfunk-
sjon. I den andre modellen etableres unikhet for stykkvis kontinuerlige fluksbegrensninger.
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Abstract

The final report contains proofs which establish that the Follow-the-Leader (FtL) model con-
verges towards the weak entropy solution the Lighthill-Witham-Richards (LWR) model. I am
considering two generalisations of the LWR model where the total variation of the solution
can blow-up immediately. The first model has a discontinuous space dependency in the ve-
locity function. The second model has a unilateral local point constraint on the flux. A novel
variation estimate on the numerical flux is established, which is used to prove compactness of
the method in Lp

loc for 1 ≤ p <∞. The argument requires a non-linearity condition on the
flux. It is proven that the limits satisfy Kružkov-type entropy inequalities. For the first model,
uniqueness of the limit is proven when the space dependency is piecewise constant. For the
second model, uniqueness is proven for piecewise continuous flux constraints.
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Chapter 1

The Many Particle Limit

The many particle approximation is based on the idea of approximating aggregated transport
quantities using the dynamics of an increasing set of particles. In the field of traffic model-
ling, the topic has seen a growing interest in recent years. Many particle approximations, or
micro-macro limits, have been used to bridge the gap between modelling paradigms. So-called
microscopic models describe the traffic state as a collection of interacting particles, which are
governed by a system of ODEs. For the purpose of this thesis, the vehicles are distributed on a
single-laned road

x1/2(0)< ...< xM−1/2(0), (1.1)

and do not overtake eachother. The prototypical example of a microscopic model is the first-
order Follow-the-Leader model.

ẋ i−1/2 = v (ρi) ,

ẋN−1/2 = 1,

ρi =
l

x i+1/2 − x i−1/2
,

x i−1/2 = x i−1/2(0) ∀i ∈ C, (1.2)

where C contains the set of cars and l > 0 is the length scale. The model is of first order, in
that the velocity of a vehicle depends on the distance to the vehicle in front. The model offers
a relatively high level of detail, in that it explicitly describes the trajectory of each vehicle.
The quantities of interest in macroscopic models are statistical averages of the traffic density,
velocity and flux. They offer a lower level of detail, compared to microscopic models. The
simplest macroscopic model for dense traffic on a single lane road is the LWR model

∂tρ + ∂x (ρv) = 0. (1.3)

The model is a scalar conservation law, and the first of Euler’s equations from gas dynamics
[13, intro.]. The LWR model describes single laned traffic as a compressible fluid. An early
application is [25], where kinematic wave theory is used to estimate how a region of high
density propagates along a long crowded road. The energy and momentum equations of Euler
hold no meaning in the traffic context. In the LWR model, the velocity is instead determined
by an empirical relationship between the mean mass density and mean traffic speed. The
prototypical model for the space mean speed is

v (ρ) = 1−ρ, (1.4)
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which was proposed by Greenshield in the 30’s. For an overview of the state of the art in traffic
modelling, see [23]. The micro-macro limit is investigated by considering

ρl(x , t) =
M−1
∑

i=1

ρi1[x i−1/2,x i+1/2), (1.5)

as a numerical approximation for the solution of Eq. (1.3). The method contrasts popular
shock capturing methods, such as the Godunov and Lax- Friedrich methods, in that it uses a
dynamical grid. An early example is [15], in which is was proven that

ρl(x , t)→ ρ in C
�

[0, T], L1 (R)
�

as M →∞ with




ρl






L1(R) held constant (1.6)

assuming v ∈ C 1[0, 1] and strictly decreasing. The limit ρ is the unique entropy solution of
Kružkov. The mathematical interest in many particle limits stems from the fact that the FtL
model is a discrete Lagrangian approximation. It approximates the continuum equation

x t(M , t) = v(M , t), (1.7)

using a finite set particles with positive mass l. In addition, the FtL model can be seen as the
continuous time upwind scheme,

d yi

d t
= D+ (Vi) , where yi =

1
ρi

and V (y) = v
�

1
y

�

, (1.8)

for Eq. (1.3) in Lagrangian coordinates

yt − (V (y))x = 0. (1.9)

The convergence of the FtL approximation to the solution of Eq. (1.3) can be proven by ap-
pealing directly to the theory of monotone, conservative and consistent methods in Lagrangian
coordinates; see [20]. Several extensions and generalisations of FtL models have been con-
sidered in the research literature. Many particle approximations have been investigated for
first order models with non-local velocity functions, in [19], for first order models with infin-
itely many vehicles (C=Z ), in [28], for second order models towards to ARZ models, in [10]
and [18], to name a few. Recently, many particle approximations have been investigated out-
side the context of vehicular traffic, in [14] and [17]. Many articles concerning convergence of
first order FtL models establish strong compactness of (1.5) with uniform total variation (T.V.)
bounds in space.

M−1
∑

i=1

|ρi+1 −ρi| ≤ C <∞, where C > 0 is independent of M . (1.10)

Such bounds may not always exist. Consider the following generalisation of the space mean
speed

v = v(x ,ρ) = k(x)v(ρ), (1.11)

which can be used to model changes in the condition of the road. This case is of interest in the
study of discontinuous systems of conservation laws, see [31]. The difficulty in establishing
strong compactness of the FtL model is determined largely by the assumptions on k. If k is
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sufficiently smooth, Ineq. (1.10) can be established. The case where k ∈ W 2,∞ was proven
in [27]. It was shown in [1, Thm. 2.9] that there exists conservation laws with discontinuous
fluxes such that the T.V. of the exact solution is unbounded, for certain initial data. This can
be understood as so-called nonlinear resonance, see [24]. If k is discontinuous, then a finite
(or infinite) explosion of T.V. can occur. In fact, unbounded T.V. of numerical approximations
may occur even when k is continuous, see for example [22, Ex. 8.13, p. 395]. In [4], the
authors point out that the FtL approximation lacks the order preservation and finite acceler-
ation properties, shared by the exact solution of Eq. (1.3) and well-known shock capturing
schemes. This is even the case for k = 1. The lack of order-preservation can make strong com-
pactness difficult to prove when uniform T.V. bounds cannot be established. The FtL method is
a conservative method, and therefore not L1-contractive. One cannot use the well-established
convergence paradigm for L1-contractive methods, which can be used to prove compactness
of numerical approximations without T.V. bounds. See for example [35]. Steps towards estab-
lishing the many particle limit have been taken when k has a finite set of discontinuities. In
[33], the existence of locally stable travelling wave solutions is proven. The authors propose
developing a higher order method to deal with the oscillation near the discontinuities. [5]
introduces a LWR model for pedestrian motion in a corridor with two exists. The model has a
discontinuous coefficient

k(x , t) = sign (x − ξ(t)) , (1.12)

where ξ(t) is the position where the perceived cost to each corridor exit is equal, which de-
pends non-locally on the solution itself. The authors prove convergence of the Follow-the-
Leader scheme, using uniform B.V.loc estimates. In this thesis, two pairs of FtL/LWR models
subject to blow-up of the total variation are considered. In Chapter 3, it is proven that the
discontinuous velocity FtL model converges to

ρt + (k(x)ρv(ρ))x = 0, (1.13)

when k is positive, has finitely many discontinuities and is smooth between discontinuities. In
Chapter 4, it is shown that a flux constrained FtL model converges to the LWR model with a
unilateral point constraint on the flux,

ρt + (ρv (ρ))x = 0,

f (ρ(0±, t))≤ q, q ∈ (0, fmax). (1.14)

In the context of vehicular traffic, point constraints can be used to model a tollgate along a
highway, traffic lights or speed bumps. In pedestrian crowd dynamics, Prob. (4.1) can model
doors, turnstiles, escalators and so on. The problem is closely related to conservation laws with
discontinuous fluxes, see [11] and [12]. The compactness proofs in both chapters are inspired
by the convergence analysis in [26], which uses the theory of compensated compactness.





Chapter 2

Background material and notation

The following theorem is taken from [32, 3.2.1, p. 82] and [36, Cor. 3.9, p. 79]

Theorem 2.1. (existence and uniqueness of ODEs) Consider the Cauchy problem

d x
d t
= F(x), x(0) ∈Rd (2.1)

Let U ⊂ Rd be open and contain the initial data x(0), and let F : U → Rd be locally Lipschitz.
Then there exists and interval (−η,η) and a C 1 function x : (−η,η)→ U such that x solves (2.1).
The solution x is unique. If U =Rd and F is bounded, one can set η=∞.

The following definition and theorems are taken from [8].

Definition 2.2. (Lp-spaces) Let (Ω,M,µ) be a measure space.

Lp(Ω,µ) = { f : Ω→R| f is measurable and ‖ f ‖Lp <∞}, (2.2)

with norm

‖ f ‖Lp =







�
ˆ

X
| f (x)|p dµ

�
1
p

for p∈ [1,∞) (2.3)

essupx∈X | f (x)| if p =∞ (2.4)

If the measure space is implied, we write Lp. The special case of p = 1 is called the space of
integrable functions.

Theorem 2.3. (Fischer-Riesz) Lp is a Banach space for any p, 1≤ p ≤∞.

Theorem 2.4. (Hölder’s inequality) Assume that f ∈ Lp and g ∈ Lp′ with 1≤ p ≤∞, where p′

is the Hölder conjugate of p. Then f g ∈ L1 and
ˆ
| f g| ≤ ‖ f ‖p ‖g‖p′ . (2.5)

Theorem 2.5. (dominated convergence theorem, Lebesgue) Let ( fn) be a sequence of functions
in L1 that satisfy

• fn(x)→ f (x) a.e. on Ω,

• there is a function g ∈ L1 such that for all n, | fn(x)| ≤ g(x) a.e. on Ω.

5
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Then f ∈ L1 and ‖ fn − f ‖1→ 0.

Theorem 2.6. (Jensen’s inequality) Assume |Ω| <∞ and φ : R → (−∞,+∞] be a convex
l.s.c. function, φ 6≡ +∞. Let f ∈ L1 (Ω) be such that f (x) ∈ D (φ) a.e. and φ( f ) ∈ L1 (Ω), then

φ

�
 
Ω

f
�

≤
 
Ω
φ( f ). (2.6)

The following lemma can be found in [22, p. 82].

Lemma 2.7. (Crandall-Tartar) Let D be a subset of L1(Ω), where Ω is some measure space.
Assume that ifψ and φ are in D, then alsoψ∨φ =max(ψ,φ) is in D. Assume furthermore that
there is a map T : D→ L1(Ω) such that

ˆ
Ω

T (φ) =
ˆ
Ω
φ, φ ∈ D (2.7)

Then the following statements, valid for all ψ,φ ∈ D, are equivalent:

i) if φ ≤ψ, then T (φ)≤ T (ψ).
ii)

´
Ω (T (φ)− T (ψ))+ ≤

´
Ω (φ −ψ)

+, where φ+ = φ ∨ 0.
iii)

´
Ω |T (φ)− T (ψ)| ≤

´
Ω |φ −ψ|

The following compensated compactness lemma is taken from [26]. The assumptions are
k ∈B.V.(R), and α≤ k ≤ 1, α > 0, a.e.,

�

u 7→ f (k, u) ∈ C 2[a, b] for all k ∈ [α, 1],

k 7→ f (k, u) ∈ C 1[α, 1] for all u ∈ [0,1] (2.8)

and

∂ 2
uu f (k(x), u) 6= 0 for a.e. u ∈ [0,1]. (2.9)

Lemma 2.8. Suppose {uε}ε>0 is a sequence of measurable functions on R ×R+ where,

a ≤ uε(x , t)≤ b for all (x , t) ∈R ×R+, ε > 0, (2.10)

for a, b ∈R. If the two sequences

{S1 (u
ε)t +Q1 (k(x), uε)x}ε>0 ,

{S2 (k(x), uε)t +Q2 (k(x), uε)x}ε>0 , (2.11)

belong to a compact subset of W−1,2
loc (R ×R+), where

S1(u) = u− c, Q1 (k, u) = f (k, u)− f (k, c) ,

S2(u) = f (k, u)− f (k, c) , Q2 (k, u) =
ˆ u

c
( fu (k,ξ))2 dξ, (2.12)

for any c ∈ R. Then there exists a subsequence of {uε}ε>0 that converges a.e. to a function
u ∈ L∞ (R ×R+) .
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2.1 Notation table

∆+(x i) ¬ x i+1 − x i The forward difference operator.
D+(x i) ¬

x i+1−x i
l Lagrangian finite difference.

Function spaces

Ω ¬ An open subset of Rd , d ≥ 1.
C (Ω) ¬ The continuous functions on Ω.

C 0,α(Ω) ¬ The α-Hölder continous functions on Ω. Lipschitz is α= 1
Cc(Ω) ¬ The continuous functions with compact support.

C (k)(Ω) ¬ The continuously differentiable functions on Ω.
C∞c (Ω) ¬ The infinitely differentiable functions with compact support.
D ′(Ω) ¬ The dual space of C∞c (Ω).

B.V.(Ω) ¬ The functions with bounded total variation.
Lp(Ω) ¬ The functions in Lp.

Miscellaneous

R,Q,Z ,N ¬ The real line, the rational numbers, the integers and the natural
numbers

R+/R+0 ¬ The intervals (0,∞), [0,∞).ffl
¬ Integral average

a.e. ¬ Almost everywhere.
Eq., Ineq., Exp., Prob. ¬ Equation, Inequality, Expression, Problem

C (k)
�

Ω
�

denotes the space where for each element f ∈ C (k)
�

Ω
�

, there exists Ω̃ open,
Ω ⊂ Ω̃ such that f ∈ C (k)

�

Ω̃
�

.





Chapter 3

LWR with Discontinuous Flux

3.1 The Follow-the-Leader model with discontinuous velocity func-
tion

The LWR model with discontinuous flux is given as

ρt + (k(x)ρv(ρ))x = 0, (3.1)

where k is assumed to be discontinuous. The velocity function in the Follow-the-Leader model
is modified accordingly.

ẋ i−1/2 = k(x i−1/2)v(ρi) for i ∈ {1, ..., M − 1}, (3.2)

with mass density

ρi :=
l

x i+1/2 − x i−1/2
for i ∈ {1, ..., M − 1}. (3.3)

The leader is governed by the ODE

ẋM−1/2 = k(xM−1/2), ρM := 0. (3.4)

It is assumed that

0≤ ρ0 ≤ 1, suppρ0 is compact. (3.5)

Let x1/2(0) = xmin and xM−1/2(0) = xmax be min and max of the support of ρ0. For the
remaining vehicles,

x i−1/2(0) = inf

�

x ∈R

�

�

�

�

ˆ x

−∞
ρ0d x = (i − 1) l

�

, for i ∈ {2, ..., M − 1} (3.6)

where

l :=
‖ρ0‖L1(R)

M − 1
. (3.7)

9
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This definition takes into account possible vacuum regions within the support of ρ0. The free
flow speed and jam density is set to one. In addition, it is assumed that

v ∈ C 0,1 ([0, 1]) , non-increasing, v(0) = 1, v(1) = 0,

v ≥ 1−ρσ−1 for some σ > 1. (3.8)

The assumptions on k are

k ∈ C 2
�

R\
�

ξ1, ....,ξp

	�

,




k′






∞ <∞, k(x) ∈ [α, 1], for 0< α≤ 1. (3.9)

The coefficent k is allowed to have finitely many discontinuities, and is well-behaved between
the discontinuities. The existence and uniqueness of Prob. (3.2)-(3.9) can be proven using
standard ODE theory. Define

Φ(z) :=
ˆ z

0

dẑ
k(ẑ)

, (3.10)

where we adopt the convention that
´ x

y = −
´ y

x if x < y . Since k is bounded from above
and away from zero, it follows that Φ is a bijection on R. It is also Lipschitz continuous and
has a Lipschitz continuous inverse, denoted by Ψ. The main utility of Φ is that it removes
the multiplicative dependency of k in the Follow-the-Leader model. Assume that a Lipschitz
continuous solution exists and let Φi−1/2 = Φ(x i−1/2). The solution satisfies the chain rule a.e.,

Φ̇i−1/2 =
1

k
�

x i−1/2

� ẋ i−1/2 = v

�

l

Ψ
�

Φi+1/2

�

−Ψ
�

Φi−1/2

�

�

. (3.11)

The coordinate map Φ gives an alternative formulation of the Follow-the-Leader model, by
absorbing the space dependency into the argument of v. Since v,Ψ are both Lipschitz, the
ODE system (3.11) has a Lipschitz continuous and bounded right-hand side, and therefore a
uniquely and globally defined C 1-solution, by Theorem 2.1. The solution of Prob. (3.2)-(3.9)
is defined as

x i−1/2 = Ψ ◦Φi−1/2, (3.12)

which is Lipschitz continuous and satisfies Eq. (3.2) for a.e. t ≥ 0. Uniqueness is inherited from
the transformed system, since a solution to the original problem corresponds to a solution of
the transformed system,

Φi−1/2 = Φ ◦ x i−1/2, (3.13)

which is unique. The Follow-the-Leader density is

ρl(x , t) :=
M−1
∑

i=1

ρi1[x i−1/2,x i+1/2). (3.14)

Lemma 3.1. (Distances between vehicles go to zero) Let yi =
1
ρi

. Assume that (3.8) and (3.9)
hold, and that yi(0)≥ 1 for i ∈ {1, ..., M − 1}. Then,

1≤ yi(t)≤
��

yi(0)
α

�σ

+
σt
ασ−1l

�

1
σ

, (3.15)

where σ is given in assumption (3.8). If κ > 1
σ and yi(0) ≤ C for some positive constant C

independent of i ∈ {1, ..., M − 1} and l, then

max
t∈[0,T],i∈{1,...,M−1}

lκ yi(t)→ 0 as l → 0. (3.16)
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The lemma implies that vehicles do not collide and that distances between vehicles con-
verge to zero, when the mass of each vehicle goes to zero. As σ > 1, set κ= 1 in Ineq. (4.20).
Lemma 3.1 is a generalisation of [21, Lemma 2.1], which considers the case α= 1.

Proof. A simple calculation shows that

d yi

d t
= k(zi+1/2)v

�

1
yi+1

�

≥ 0, (3.17)

for yi(t)≤ 1. The lower bounds follows, as yi(0)≥ 1,∀i. To establish the upper bound, let

ŷi =
Φi+1/2 −Φi−1/2

l
, d(x , y) =

Ψ(y)−Ψ(x)
l

. (3.18)

Then

d ŷi

d t
=

v
�

1
d(Φi+1/2,Φi+3/2)

�

− v
�

1
d(Φi−1/2,Φi+1/2

)
�

l

≤
1− v

�

1
α ŷi

�

l
≤

1

l (α ŷi)
σ−1 (3.19)

The first inequality follows from v ≤ 1, v is decreasing and

Ψ(y)−Ψ(x)≥ α (y − x) for x < y. (3.20)

The second inequality follows from the lower bound on v in (3.8). It has been shown that

d
�

ŷσi
�

d t
≤

σ

ασ−1l
. (3.21)

The bounds

ŷσi ≤ ŷi(0)
σ +

σ

ασ−1l
t and yi ≤ ŷi ≤

1
α

yi , (3.22)

imply

yi ≤
��

yi(0)
α

�σ

+
σt
ασ−1l

�

1
σ

. (3.23)

In order to consider a larger class of ρ0, the uniform upper bound yi(0) ≤ C , ∀i ∈
{1, ..., M − 1}, ∀l > 0 of Lemma 3.1 can be relaxed. From Ineq. (3.15), it can be seen that

max
i∈{1,...,M−1}

�

x i+1/2(0)− x i−1/2(0)
�

→ 0 as l → 0, (3.24)

implies

max
t∈[0,T],i∈{1,...,M−1}

�

x i+1/2(t)− x i−1/2(t)
�

→ 0 as l → 0. (3.25)

Condition (3.24) is satisfied if suppρ0 is an interval and for K ⊂⊂ (suppρ0)
◦ in subset topology,

∃ CK > 0 such that

ρ0(x)≥ CK > 0 for x ∈ K , (3.26)



12 :

where ⊂⊂ denotes compact embedding. In addition, each boundary point of suppρ0 is con-
tained in an open neighbourhood of R where ρ0 is monotone. The first and last distance,
x3/2(0)− x1/2(0) and xM+1/2(0)− xM−1/2(0), converge slowest to zero out of all vehicles, and
can be used as a uniform bound. Next, assume Ineq. (3.26) holds but suppρ0 is the finite
disjoint union of V closed intervals. For sufficiently small values of l, each interval has a right-
most vehicle x i j−1/2, for j ∈ {1, ..., V}. The indices i j themselves are allowed to depend on the
constant l. For j ∈ {1, ..., V − 1},

x i j+1−2(0)− x i j+1−2(0)→ d j as l → 0, (3.27)

where d j > 0 is the length of the vacuum between interval j and j + 1. In other words, V − 1
distances fail to converge to zero. Assume that for each x ∈ ∂ (suppρ0), there exists an open
neighbourhood O(x) of R such that

x ∈ O(x) and ρ0 is monotone on O(x), (3.28)

then the distances between vehicles converge uniformly to zero, possibly except the distances
corresponding to vacuum regions.

max
i∈{1,...,M−1}\{i1,...,iV−1}

�

x i+1/2(0)− x i−1/2(0)
�

→ 0 as l → 0, (3.29)

which implies

max
t∈[0,T],i∈{1,...,M−1}\{i1,...,iV−1}

�

x i+1/2(t)− x i−1/2(t)
�

→ 0 as l → 0. (3.30)

Lemma 3.2. Under assumption (3.5) and (3.6), the Follow-the-Leader density has the invariant
region

0≤ ρl ≤ 1 ∀(x , t) ∈R ×R+. (3.31)

Furthermore,

suppρl(·, t) ⊂ [xmin, xmax + T], (3.32)

for any t ∈ [0, T], l > 0.

Proof. From Eq. (3.6), it follows that

ρi(0) =
l

x i+1/2(0)− x i−1/2(0)
=
 x i+1/2(0)

x i−1/2(0)
ρ0d x ≤ 1, (3.33)

from which Lemma (3.1) gives the invariant region. The left-limit of Ineq. (3.32) holds because
the vehicles are moving rightwards. The leader vehicle has velocity is less than or equal to one,
by assumptions (3.8) and (3.9), which gives the right-limit.

3.2 Strong compactness of the Follow-the-Leader method

Recall the concept of the material derivative. Formally, it holds that

Dρ
d t
= ρt +ρx ẋ = −ρ (kv(ρ))x , (3.34)
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when ẋ = k(x)v(ρ(x , t)) and ρ is solution of Eq. (3.1). The Follow-the-Leader model has a
discrete equivalent,

dρi

d t
= −ρ2

i D+
�

ki−1/2vi

�

. (3.35)

Consider next the entropy flux

Qρ(k,ρ) = kρ2v′ (ρ) . (3.36)

Let Q(k, 0) = 0, then

Q(k,ρ) = kρ2v(ρ)− k
ˆ ρ

0
2ρv(ρ)dρ. (3.37)

The entropy flux can be used to rewrite Eq. (3.35) as a marching formula with a source term.

dρi

d t
+ D+

�

Q
�

ki−1/2,ρi

��

= ki+1/2vi+1D+
�

ρ2
i

�

− D+

�

2ki−1/2

ˆ ρi

0
ρv(ρ)dρ

�

= −
2ki+1/2

l

ˆ ρi+1

ρi

ρ (v(ρ)− vi+1) dρ

− D+
�

ki−1/2

�

ˆ ρi

0
2ρv (ρ) dρ. (3.38)

The first term on the right is of interest.

QV (x , y) :=
ˆ y

x
ρ (v (ρ)− v (y)) dρ (3.39)

Since the velocity is decreasing with respect to density, the integrand is an unsigned function
for x , y ≥ 0. In fact, for x , y ≥ 0,

QV (x , y)≥
x2 (v(x)− v(y))2

2 (1+ Lv)
, (3.40)

where Lv is the Lipschitz constant of v. If y > x , the integrand can at worst decrease with
derivative (1+ Lv) from the value at x ,

x |v(x)− v(y)| ≥ 0, (3.41)

to zero, the value at y . The graph intercepts the first coordinate axis at

x |v(x)− v(y)|
(1+ Lv)

, (3.42)

to the right of x , and forms a right triangle. If x > y , the integrand can at worst remain zero
until the argument is (3.42) to the left of x , from which it has to increase with (1+ Lv) to
attain (3.41). The area under these graphs is the right-hand side of Ineq. (3.40), in both cases.
The lower bound can be realised if velocity suddenly becomes constant for small densities,
such as the flattened Greenshield model

v(ρ) =







1−
ρ

ρ f
if ρ > ρ f ,

1 if ρ ≤ ρ f , (3.43)
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where ρ f ∈ (0, 1) separates free and congested flow. Since QV (x , y) is non-negative for non-
negative arguments, it can be used to establish a variation estimate. By definition,

ˆ x i+1/2

x i−1/2

ρ2
i

2
d x =

l
2
ρi , (3.44)

which shows directly that

d
d t

�ˆ x i+1/2

x i−1/2

ρ2
i

2
d x

�

=
l
2

dρi

d t
. (3.45)

Let QVi−1/2 = QV (ρi−1,ρi) and insert Eq. (3.45) into Eq. (3.38). Take the sum over i ∈
{1, ..., M − 1} and integrate in time.

ˆ T

0

M−1
∑

i=1

ki−1/2QVi−1/2d t = −
ˆ T

0

M−1
∑

i=1

d
d t

�ˆ x i+1/2

x i−1/2

ρ2
i

2
d x

�

+
1
2
∆+

�

Q(ki−1/2,ρi)
�

+∆+
�

ki−1/2

�

ˆ ρi

0
ρv (ρ) dρ

≤ −
1
2





ρl(T )






2
L2(R) +

1
2
‖ρ0‖

2
L2(R) +

1
2

ˆ T

0
Q(k1/2,ρ1) + T.V.(k)d t

≤
1
2
‖ρ0‖L1(R) + T.V. (k) T, (3.46)

The last inequality follows from 0≤ ρl ≤ 1, by Lemma 3.1, and Q(k,ρ)≤ 0 on [α, 1]× [0, 1],
by Eq. (3.36) and Q(k, 0) = 0. Since k(x)≥ α > 0 and Ineq. (3.40) holds, the following lemma
has been proven.

Lemma 3.3. (Variation estimates) For 0≤ T <∞,

ˆ T

0

M−1
∑

i=1

QVi−1/2d t ≤
1

2α
‖ρ0‖L1(R) +

T.V. (k)
α

T <∞,

ˆ T

0

M−1
∑

i=1

ρ2
i (vi+1 − vi)

2 d t ≤
1+ Lv

α

�

‖ρ0‖1 + 2T.V. (k) T
�

<∞. (3.47)

The variation estimates are sufficient to prove the following compactness lemma.

Lemma 3.4. (W−1,2
loc compactness) For any function S(k,ρ) ∈ C 2 ([α, 1]× [0, 1]), the sequence

of distributions

�

∂tS
�

k(x),ρ∆
�

+ ∂x

�

Q
�

k(x),ρ∆
��	

∆>0 , (3.48)

lies in a compact subset of W−1,2
loc

�

R ×R+0
�

, where ∂ρQ (k,ρ) = ∂ρS (k,ρ)∂ρ (kρv (ρ)).

Under the assumption that v ∈ C 2 ([0,1]), and ρv(ρ) is genuinely non-linear, Lemma
2.8 and Lemma 3.4 ensures ρl converges pointwise a.e. to a limit ρ ∈ L∞

�

R ×R+0
�

, possibly
through a subsequence. By genuinely non-linear, it is meant that the second derivative ofρv(ρ)
is non-zero almost everywhere,

2v′ (ρ) + v′′ (ρ)ρ 6= 0 a.e. in [0,1]. (3.49)
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Proof. (Lemma 3.4) Let Ω be an arbitrary open set of R×R+0 of class C 1, see [9, p. 298]. For
any function which takes two-dimensional input, such as Si, j−1/2 = S

�

k j−1/2,ρi

�

,

∆1
+

�

Si, j−1/2

�

:= Si+1, j−1/2 − Si, j−1/2,

∆2
+

�

Si, j−1/2

�

:= Si, j+1/2 − Si, j−1/2

∆+
�

Si, j−1/2

�

:= Si+1, j+1/2 − Si, j−1/2. (3.50)

The first operator increments with respect to ρi , the second with respect to ki−1/2. A quantity
depending on a single index should always be incremented, even if it appears in a product.

∆1
+

�

ki−1/2vi

�

=∆2
+

�

ki−1/2vi

�

= ki+1/2vi+1 − ki−1/2vi . (3.51)

Let S̃i = S(k(x),ρi) and Q̃ i = Q(k(x),ρi). Let φ ∈ C∞c ([−X , X ]× [0, T]) for X > 0, T > 0.
The distribution of interest is




L∆,φ
�

:=
ˆ

R+

ˆ
R

�

S
�

k(x),ρl
�

∂tφ +Q
�

k(x),ρl
�

∂xφ
�

d xd t. (3.52)

Consider the first term of the integrand

ˆ T

0

M
∑

i=0

ˆ x i+1/2

x i−1/2

S̃iφt d xd t. (3.53)

Let x−1/2 = −∞, xM+1/2 = +∞ and ρ0 = ρM = 0. Since the support of φ is compact,φ−1/2 =
φM+1/2 = 0. Leibniz rule for integration gives

ˆ x i+1/2

x i−1/2

S̃iφt d x =
d
d t

�ˆ x i+1/2

x i−1/2

S̃iφd x

�

−∆2
+

�

Si,i−1/2ki−1/2viφi−1/2

�

+
ˆ x i+1/2

x i−1/2

∂ρS̃iρ
2
i D+

�

ki−1/2vi

�

φ(x)d x

=
d
d t

�ˆ x i+1/2

x i−1/2

S̃iφd x

�

−∆+
�

Si,i−1/2ki−1/2viφi−1/2

�

+∆1
+

�

Si,i+1/2

�

ki+1/2vi+1φi+1/2

+ ∂ρSi,i+1/2ρi∆+
�

ki−1/2vi

�

φi+1/2 + ∂ρSi,i+1/2ρi∆+
�

ki−1/2vi

�

ˆ x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x

+
ˆ x i+1/2

x i−1/2

�

∂ρS̃i − ∂ρSi,i+1/2

�

ρ2
i D+

�

ki−1/2vi

�

φ(x)d x . (3.54)

The formula also holds for the edge cases i ∈ {0, M}.

∆1
+

�

∂ρSi,i+1/2ρi

�

=
ˆ ρi

ρi

∂ 2
ρρS

�

ki+1/2,ρ
�

ρdρ +∆1
+

�

Si,i+1/2

�

, (3.55)

shows that right-hand side equals

−∆+
�

Si,i−1/2ki−1/2viφi−1/2

�

+ ∂ρSi,i+1/2ρi∆+
�

ki−1/2vi

�

ˆ x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x

+
ˆ x i+1/2

x i−1/2

�

∂ρS̃i − ∂ρSi,i+1/2

�

ρ2
i D+

�

ki−1/2vi

�

φ(x)d x +
d
d t

�ˆ x i+1/2

x i−1/2

S̃iφd x

�

+

�

∆1
+

�

∂ρSi,i+1/2ρiki−1/2vi

�

− ki+1/2vi+1

ˆ ρi+1

ρi

∂ 2
ρρS

�

ki+1/2,ρ
�

ρdρ

�

φi+1/2 (3.56)
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The sum over the first term is zero. Consider the second term,




Ll
1,φ

�

:=
ˆ T

0

M−1
∑

i=1

∂ρSi,i+1/2ρi∆+
�

ki−1/2vi

�

 x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d xd t, (3.57)

An appliation of the Hölder inequality and using S ∈ C 1 ([0, 1]× [α, 1]) gives

�

�




Ll
1,φ

��

�≤ C
ˆ T

0

¨M−1
∑

i=1

ρ2
i ∆+

�

ki−1/2vi

�2
«

1
2
¨M−1
∑

i=1

� x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x

�2«
1
2

d t

≤ C1

ˆ T

0

¨M−1
∑

i=1

ρ2
i ∆+

�

ki−1/2vi

�2
«

1
2

d t max
t∈[0,T],i∈{1,...,M−1}

(l yi)
2α−1

2 ‖φ‖C 0,α
0 (Ω)

≤ C1T
1
2

¨ˆ T

0

M−1
∑

i=1

ρ2
i ∆+

�

ki−1/2vi

�2
d t

«

1
2

max
t∈[0,T],i∈{1,...,M−1}

(l yi)
2α−1

2 ‖φ‖C 0,α
0 (Ω)

≤ C3 max
t∈[0,T],i∈{1,...,M−1}

(l yi)
2α−1

2 ‖φ‖C 0,α
0 (Ω)→ 0 as l → 0, ∀φ ∈ C 0,α

0 (Ω) (3.58)

The constant C1 = C (xmax + T − xmin)
1
2 > 0, comes from application of Lemma 3.2. The third

inequality is application of Jensen’s inequality, for the function x
1
2 on x ≥ 0. The final bound is

established by invoking the second estimate of Lemma 3.3. A corollary of Morrey’s theorem is
that W 1,p (Ω) ⊂ C0,α (Ω) is a continuous injection for α ∈ (0,1− 2

p ), when Ω is bounded and of
class C 1 [9, Cor. 9.14, p. 285]). Furthermore, [9, Thm. 9.17, p. 288] and Poincaré’s inequality
[9, Cor. 9.19, p. 290] imply that W 1,p

0 (Ω) ⊂ C0,α
0 (Ω) is a continuous injection. This means that

for p > 2
1−α , α ∈

�1
2 , 1

�

,

�

Ll
1

	

l>0 is compact in W−1,q1 (Ω) , (3.59)

for q1 ∈
�

1, 2
1+α

�

,α ∈
�1

2 , 1
�

. Consider next the third term of Exp. (3.56), which sum and
integrate to




Ll
2,φ

�

:=
ˆ T

0

M−1
∑

i=1

 x i+1/2

x i−1/2

�

∂ρS̃i − ∂ρSi,i+1/2

�

ρi∆+
�

ki−1/2vi

�

φ(x)d xd t. (3.60)

Let P = {ξ1, ....,ξ|P|} be the set of discontinuities in k.

 x i+1/2

x i−1/2

�

�k(x)− ki+1/2

�

� d x ≤





k′






∞

2

�

x i+1/2 − x i−1/2

�

, (3.61)

for i ∈ {1, ..., M − 1}\{i1, ..., iD}. The exceptions correspond to intervals which contain a least
one discontinuity. The sum over Ineq. (3.61) is bounded uniformly, because of Ineq. (3.32).
For the exceptional terms,

 x i+1/2

x i−1/2

�

�k(x)− ki+1/2

�

� d x ≤ C1, (3.62)
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since k is bounded. As D ≤ |P|, the sum over these terms is also uniformly bounded. Therefore,

�

�




Ll
2,φ

��

�≤ max
[α,1]×[0,1]

�

�

�∂ 2
ρ,kS (k,ρ)

�

�

�

ˆ T

0

M−1
∑

i=1

 x i+1/2

x i−1/2

�

�k(x)− ki+1/2

�

� |φ(x)| d xd t

≤ C2

�

|P|+




k′






∞

�

‖φ‖∞ , ∀φ ∈ C0 (Ω) . (3.63)

By summing over i and integrating in time, the fourth term is




Ll
3,φ

�

:= −
ˆ

R
S
�

k(x),ρl(0)
�

φ(x , 0)d x , (3.64)

which satisfies
�

�




Ll
3,φ

��

�≤ C (X , T )‖φ‖∞ , ∀φ ∈ C0 (Ω) . (3.65)

Before dealing with the last term of Exp. (3.56), consider the second half of (3.52).

ˆ
R+

ˆ
R

Q
�

k(x),ρl
�

∂xφd xd t =
ˆ T

0

M
∑

i=0

ˆ x i+1/2

x i−1/2

�

Q (k,ρi)−Q
�

ki−1/2,ρi

��

φx d xd t

+
ˆ T

0
−

M
∑

i=0

∆+
�

Q
�

ki−1/2,ρi

��

φi+1/2d xd t, (3.66)

where k−1/2 = k1/2 and kM+1/2 = kM−1/2 has been introduced. Consider the boundary terms
of the first term on the right. Partial integration for piecewise C 1 functions gives,

ˆ T

0

�ˆ x1/2

−∞
+
ˆ ∞

xM−1/2

�

Q (k(x), 0)φx d xd t =
ˆ T

0
Q
�

k1/2, 0
�

φ1/2 −Q
�

kM−1/2, 0
�

φM−1/2

−
�ˆ x1/2

−∞
+
ˆ ∞

xM−1/2

�

∂kQ (k(x), 0) k′(x)φd x

−
D1
∑

i=1

[Q](ξi)φ(ξi , t), (3.67)

The first terms on the right cancel with corresponding terms in Eq. (3.66). The constants ξi
are discontinuities of k in

�

−∞, x1/2]∪ [xM−1/2,∞
�

and

[Q](ξi) =Q
�

k
�

ξ+i
�

, 0
�

−Q
�

k
�

ξ−i
�

, 0
�

. (3.68)

Let




Ll
4,φ

�

:= −
ˆ T

0

�ˆ x1/2

−∞
+
ˆ ∞

xM−1/2

�

∂kQ (k(x), 0) k′(x)φd x +
D1
∑

i=1

[Q](ξi)φ(ξi , t)d t, (3.69)

then
�

�




Ll
4,φ

��

�≤ C(X , T )‖φ‖∞ , ∀φ ∈ C0 (Ω) . (3.70)

Consider




Ll
5,φ

�

:=
ˆ T

0

M−1
∑

i=1

ˆ x i+1/2

x i−1/2

�

Q (k,ρi)−Q
�

ki−1/2,ρi

��

φx d xd t (3.71)
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Since Q ∈ C 1,

�

�




Ll
5,φ

��

�≤ C
ˆ T

0

M−1
∑

i=1

ˆ x i+1/2

x i−1/2

�

�k(x)− ki−1/2

�

� |φx | d xd t

≤ C




kl − k






Lp(Ω) ‖φ‖W 1,q2
0 (Ω) , (3.72)

by the Hölder inequality. Again, let |P| be the number of discontinuities in k. Then

ˆ x i+1/2

x i−1/2

�

�k(x)− ki−1/2

�

�

p
d x ≤





k′






∞

p+ 1

�

x i+1/2 − x i−1/2

�p+1
, (3.73)

for i ∈ {1, ..., M −1}\{i1, ..., iD}, where the exceptions correspond to intervals which contain a
least one discontinuity. For the exceptional cases,

ˆ x i+1/2

x i−1/2

�

�k(x)− ki−1/2

�

�

p
d x ≤ C max

t∈[0,T],i∈{1,...,M−1}

�

x i+1/2 − x i−1/2

�

, (3.74)

Therefore,

�

�




Ll
5,φ

��

�≤ C max
t∈[0,T],i∈{1,...,M−1}

�

(l yi)
1
p + (l yi)

�

‖φ‖W 1,q1
0 (Ω)→ 0 as l → 0, (3.75)

by Lemma 3.1 and Lemma 3.2. If Q (k, 0) = 0 ∀k, then

|Q (ρ, k2)−Q (ρ, k1)| ≤ Cρ |k2 − k1| , (3.76)

which asymptotically improves Ineq. (3.75)

�

�




Ll
5,φ

��

�≤ C̃
�

l
1
p + l

�

‖φ‖W 1,q1
0 (Ω)→ 0 as l → 0. (3.77)

The sequence
�

Ll
5

	

l>0 is compact in W−1,q2 (Ω), for q2 ∈ (1, 2] and p = q2
q2−1 ∈ [1,∞). Con-

sider sum of the last term of Exp. (3.56) and the second term on the right-hand side of Eq.
(3.66). It can be seen from

∆+
�

Q i,i−1/2

�

=∆+
�

Q(ki−1/2, 0)
�

+∆+
�

∂ρSi,i−1/2ki−1/2ρi vi

�

−∆+
�

ki−1/2

ˆ ρi

0
∂ 2
ρρS

�

ki−1/2,ρ
�

ρv(ρ)dρ
�

,

(3.78)

that the terms of their sum are

−∆2
+

�

∂ρSi,i−1/2

�

ki−1/2ρi vi +
ˆ ρi

0
∆+

�

∂ 2
ρρS

�

ki−1/2,ρ
�

ki−1/2

�

ρv(ρ)dρ

−∆+
�

Q(ki−1/2, 0)
�

+ ki+1/2

ˆ ρi+1

ρi

∂ 2
ρρSi,i+1 (ρ)ρ (v (ρ)− vi+1) dρ

= ∂ρSi,i+1/2∆+
�

ki−1/2

�

ρi vi −
ˆ ρi

0
∆+

�

∂ρS
�

ki−1/2,ρ
�

ki−1/2

�

(ρv(ρ))′ dρ

−∆+
�

Q(ki−1/2, 0)
�

+ ki+1/2

ˆ ρi+1

ρi

∂ 2
ρρSi,i+1 (ρ)ρ (v (ρ)− vi+1) dρ, (3.79)
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with common factor φi+1/2. Denote by



Ll
6,φ

�

the integral in time of the sum over Eq. (3.79).
Since S ∈ C 2 ([0,1]× [α, 1]), the first three terms are O

��

�ki+1/2 − ki−1/2

�

�φi+1/2

�

, which sum
up to O

�

T.V. (k)‖φ‖∞
�

. The integral over the sum of the last term is bounded by C(T )‖φ‖∞ ,
by Lemma 3.3.

�

�




Ll
6,φ

��

�≤ (C(T ) + C2T.V. (k))‖φ‖∞ , ∀φ ∈ C0 (Ω) . (3.80)

For all the terms with ‖φ‖∞ bounds,
¦




Ll
i







M(Ω)

©

i∈{2,3,4,6}
≤ C , (3.81)

for some finite uniform constant C > 0. Let M (Ω) = (Cc (Ω))
′ be the space of signed radon

measures of finite mass. From the embedding theorem [30, Lem. 2.55, p. 38], M (Ω) ⊂
W−1,q3 (Ω) is a compact embedding for any q3 ∈ (1,2). Summing up all terms, the sequence
�

Ll
	

l>0 is compact in W−1,q (Ω) for 1 < q := min(q1, q2, q3) <
2

1+α < 2. As 0 ≤ ρl ≤ 1, the
sequence

�

Ll
	

l>0 is bounded in W−1,r (Ω) for r > 2. By [26, Lem 3.3],
�

Ll
	

l>0 is compact in
W−1,2 (Ω) .

�

Ll
	

l>0 is compact in W−1,2
loc

�

R ×R+0
�

, (3.82)

as Ω is an arbitrary bounded open set in R ×R+0 of class C 1.

Remark 3.5. The proof can be extended to the case with vacuum regions without much dif-
ficulty. The assumption that distances between vehicles go to zero was used to show that Ll

1
and Ll

5 converges to zero in W−1,q1 (Ω) and W−1,q2 (Ω), respectively. In the case where suppρ0
consists of V disjoint closed intervals, one can instead invoke Ineq. (3.30). First, remove the
terms associated with each vacuum region from the sum in Def. (3.57), before using Hölder
inequality. The sum over the extracted terms are compact in W−1,q1(Ω), as it can be bounded
by C (V − 1) l ‖φ‖C 0,α

0 (Ω), for 0 < C <∞. Similarly, extract the terms from Def. (3.71) and
use the partial integration for piecewise smooth functions, as in Eq. (3.67). One obtains V −1
terms which can be bounded above by ‖φ‖∞, up to a uniform constant. The embedding the-
orem of [30, Lem. 2.55, p. 38] can be used to prove W−1,q3 (Ω)-compactness of these terms
separately.

3.3 Convergence to weak solutions

Lemma 3.6. (Convergence of initial value) For ρ0 satisfying (3.5) and FtL initial value given in
(3.6), then

ρl(x , 0)
D ′(R)
* ρ0. (3.83)

Lemma 3.6 is implied by [5, Lem. 9].

Theorem 3.7. (Convergence to a weak solution) Let ρl = ρ(x , t) be the Follow-the-Leader
scheme (3.14). Assume v and k satisfy (3.8) and (3.9). In addition, assume v ∈ C 2[0,1] and
ρv (ρ) genuinely non-linear, that ρ0 satisfies (3.5) and either Ineq. (3.25) or Ineq. (3.30) holds.
There exists a subsequence such that, for any finite T > 0,

ρl → ρ in Lp (R × [0, T]) as l → 0, for any 1≤ p <∞, (3.84)
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and ρ ∈ L∞
�

R ×R+
�

is a weak solution ρ of Eq. (3.1), i.e. ρ is a bounded measurable function
satisfying ∀φ ∈ C∞c

�

R ×R+
�

,
ˆ

R+

ˆ
R
(ρφt + k(x)ρv (ρ)φx) d xd t +

ˆ
R
ρ0(x)φ(x , 0)d x = 0. (3.85)

Proof. The fact thatρl converges toρ in Lp
loc (R × [0, T]) and a.e. follows from Lemma 2.8 and

3.4. By Lemma 3.31, convergence in Lp
loc and Lp is equivalent. If S(k,ρ) = ρ, Q(k,ρ) = kρv(ρ)

in Lemma 3.4 and φ ∈ C∞c
�

R ×R+0
�

, If either Ineq. (3.25) or Ineq. (3.30) holds,




Ll
1,φ

�

→ 0 as l → 0. (3.86)

In the latter case, one can extract the distances which do not converge to zero from the sum
in Eq. (3.57), before invoking Hölder’s inequality. The sum over the extracted terms can be
bounded by C (V − 1)‖φ‖C 0,α

0 (Ω) l, which converges to zero. Since ∂ 2
ρ,kS (k,ρ) = 0, Ineq. (3.63)

gives



Ll
2,φ

�

= 0. (3.87)




Ll
3,φ

�

→−
ˆ

R
ρ0(x)φ(x , 0)d x , (3.88)

from Lemma 3.6. In addition,

Q (k, 0) = ∂kQ (k, 0) = 0, ∀k ∈ [α, 1] (3.89)

which implies that



Ll
4,φ

�

= 0. (3.90)

Furthermore,



Ll
5,φ

�

→ 0 as l → 0, (3.91)

with rate of convergence given in Ineq. (3.77). Eq. (3.89) and ∂ 2
ρρS = 0, ∆2

+

�

∂ρSi,i−1/2

�

= 0
together imply




Ll
6,φ

�

= 0. (3.92)

As ρl → ρ in L1 (R × [0, T]),
ˆ

R×R+
ρφt + k(x)ρv (ρ)φx d xd t +

ˆ
R
ρ0(x)φ(x , 0)d x = lim

l→0




Ll −Ll
3,φ

�

= 0. (3.93)

It is further assumed that

�

�ρl(x , 0)− c
�

�

D ′(R)
* |ρ0 − c| for any c ∈R. (3.94)

The limit also satisfies the following entropy inequality.



Chapter 3: LWR with Discontinuous Flux 21

Theorem 3.8. (A Kružkov type entropy inequality) For any 0≤ φ ∈ C∞c
�

R ×R+
�

and c ∈R,
the limit ρ of Theorem 3.7 satisfies
ˆ

R×R+
(|ρ − c|φt + k(x) sign (ρ − c) (ρv(ρ)− cv (c))φx) d xd t −

ˆ
R×R+

k′cv(c) sign (ρ − c)φd xd t

+
ˆ

R
|ρ0 − c|φ(x , 0)d x +

|P|
∑

j=1

�

�[k] j

�

�

ˆ ∞
0
|c| v(c)φ(ξ j , t)d t ≥ 0. (3.95)

Proof. Let

µ(x) = |x − c| , (3.96)

and consider first

ˆ
R×R+

µlφt d xd t =
ˆ ∞

0

M
∑

i=0

ˆ x i+1/2

x i−1/2

µiφt d xd t. (3.97)

where x−1/2 = −∞ and xM+1/2 = +∞. As a result, φ−1/2 = φM+1/2 = 0. Since φ is smooth
and µi , x i−1/2, x i+1/2 are Lipschitz, the following idenity holds a.e. 1

ˆ x i+1/2

x i−1/2

µiφt d x =
d
d t

�

µi

ˆ x i+1/2

x i−1/2

φt d x

�

− µ̇i

ˆ x i+1/2

x i−1/2

φd x −µi∆+
�

φi−1/2ki−1/2vi

�

=
d
d t

�

µi

ˆ x i−1/2

x i−1/2

φt d x

�

+ sign (ρi − c)ρi∆+
�

ki−1/2vi

�

φi+1/2

+ sign (ρi − c)ρi∆+
�

ki−1/2vi

�

 x i+1/2

x i−1/2

�

φ −φi+1/2

�

d x

−∆+
�

µiφi−1/2ki−1/2vi

�

+∆+ (µi)φi+1/2ki+1/2vi+1 (3.98)

for i ∈ {0, ..., M}. The special cases i ∈ {0, M} hold because ρ0 = ρM = 0. Next, let

F(x) := sign (x − c) (x v (x)− cv (c))

= µ(x)v(x)− c |v(x)− v(c)| , (3.99)

and consider ˆ
R×R+

k(x)F lφx − k′cv(c) sign
�

ρl − c
�

φd xd t (3.100)

Partial integration for piecewise C 1 functions gives

ˆ
R

F l k(x)φx d x =
M
∑

i=0

Fi∆+
�

ki−1/2φi−1/2

�

−
|P|
∑

j=1

[k] j F
l
�

ξ j

�

φ(ξ j , t)−
ˆ

R
F l k′(x)φd x ,

(3.101)

1Let µi = µ(ρi), then the a.e. derivative is given by

µ̇i = − sign (ρi − c)ρ2
i D+

�

ki−1/2vi

�

,

with the convention that sign(0) = 0. Since µi is lipschitz continuous, the fundamental theorem of calculus still
holds [34, ex. 1.6.44, p. 169].
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where P = {ξ1, ...,ξ|P|} is the set of discontinuities in k, and

[k] j = k
�

ξ+j

�

− k
�

ξ−j

�

. (3.102)

Therefore
ˆ

R×R+
k(x)F lφx − k′cv(c) sign

�

ρl − c
�

φd xd t =
ˆ ∞

0

M
∑

i=0

Fi∆+
�

ki−1/2φi−1/2

�

d t

−
ˆ

R×R+
sign

�

ρl − c
�

ρl v
�

ρl
�

k′(x)φd xd t

−
ˆ ∞

0

|P|
∑

j=1

[k] j F
l
�

ξ j

�

φ(ξ j , t)d t. (3.103)

A straightforward calculation shows that

∆+ (Fi)≤∆+ (µi) vi+1 +∆+ (vi)ρi sign (ρi − c) . (3.104)

Consider the first term on the right of Eq. (3.103).

M
∑

i=0

Fi∆+
�

ki−1/2φi−1/2

�

=
M−1
∑

i=0

−∆+ (Fi) ki+1/2φi+1/2

≥ −
M−1
∑

i=0

∆+ (µi) vi+1ki+1/2φi+1/2

−
M−1
∑

i=0

∆+ (vi)ρi sign (ρi − c) ki+1/2φi+1/2. (3.105)

It was used that φM+1/2 = φ−1/2 = 0. Add Eq.(3.103) and the time integral of the sum over
Eq. (3.98), and use Ineq. (3.105).

ˆ
R×R+

µlφt + k(x)F lφx − k′cv(c) sign
�

ρl − c
�

φd xd t

+
ˆ

R
µl(x , 0)φ(x , 0)d x ≥ A1 + A2 + A3, (3.106)

where we have defined














A1 :=
´∞

0

∑M−1
i=1 sign (ρi − c)ρ2

i vi
´ x i+1/2

x i−1/2
φ
�

Dx
+

�

ki−1/2

�

− k′
�

d xd t,

A2 :=
´∞

0

∑|P|
j=1−[k] j F

l
�

ξ j

�

φ(ξ j , t)d t,

A3 :=
´∞

0

∑M−1
i=1

�

sign (ρi − c)ρ2
i ki+1/2D+ (vi)

�´ x i+1/2
x i−1/2

�

φ −φi+1/2

�

d xd t. (3.107)

The function k has T ∈ {0, 1, ..., |P|} discontinuities when restricted to [x i−1/2, x j+1/2], pos-
sibly including the endpoints. Partition [x i−1/2, x j+1/2], with respect to the discontinuities
{ξ1, ...,ξT }. Let ξ0 = x i−1/2,ξT+1 = x i+1/2,

[k]k = k
�

ξ+k
�

− k−
�

ξ−k
�

for i ∈ {1, ..., T},

[k]0 = k
�

ξ+0
�

− ki−1/2 and [k]T+1 = ki+1/2 − k
�

ξ−T+1

�

. (3.108)
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Use the mean-value theorem

∆+
�

ki−1/2

�

=
T+1
∑

k=1

(k−(ξk)− k+ (ξk−1)) +
T+1
∑

k=0

[k]k

=
T+1
∑

k=1

k′(ck) (ξk − ξk−1) +
T+1
∑

k=0

[k]k, for some ck ∈ (ξk−1,ξk). (3.109)

A1 is decomposed into the following terms

A1
1 :=

ˆ ∞
0

M−1
∑

i=1

sign (ρi − c)ρi vi

�Ti+1
∑

k=1

ˆ ξi
k

ξi
k−1

φ
�

k′(c i
k)− k′(x)

�

d x

�

d t,

A2
1 :=

ˆ ∞
0

M−1
∑

i=1

Ti+1
∑

j=0

[k] j sign (ρi − c)ρi vi

 x i−1/2

x i−1/2

φ(x)d xd t. (3.110)

The first term goes to zero,

�

�A1
1

�

�≤
ˆ T

0

M−1
∑

i=1

ρi

�





k′′






∞ ‖φ‖∞
Ti+1
∑

k=1

�

ξi
k − ξ

i
k−1

�2
�

d t

≤
ˆ T

0

M−1
∑

i=1

ρi





k′′






∞ ‖φ‖∞
�

x i+1/2 − x i−1/2

�2
d t

≤ C ‖φ‖∞ l → 0 as l → 0. (3.111)

The second inequality follows from
∑

i x2
i ≤

�∑

i |x i|
�2

. The final constant is a consequence of
Ineq. (3.32). Next, consider

A2
1 + A2 =

ˆ ∞
0

|P|
∑

j=1

[k] jcv(c) sign
�

ρi j
− c
�

φ(ξ j , t)d t

+
ˆ ∞

0

|P|
∑

j=1

[k] jρi j
vi j

sign
�

ρi j
− c
�

 x i j−1/2

x i j−1/2

φ(x)−φ(ξ j , t)d xd t. (3.112)

The density ρi j
corresponds to discontinuity ξ j . The first term is bounded below by

−
|P|
∑

j=1

�

�[k] j

�

�

ˆ ∞
0
|cv(c)|φ(ξ j , t)d t. (3.113)

The second term can be bounded in absolute value by

C ‖φx‖∞ l → 0 as l → 0. (3.114)
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Consider next

|A3| ≤
ˆ T

0

M−1
∑

i=1

ρi |∆+ (vi)|

�

�

�

�

�

 x i+1/2

x i−1/2

�

φ −φi+1/2

�

d x

�

�

�

�

�

d t

≤
ˆ T

0

¨M−1
∑

i=1

ρ2
i (∆+ (vi))

2

«

1
2
¨M−1
∑

i=1

‖φx‖
2
∞

�

x i+1/2 − x i−1/2

�2
«

1
2

d t

≤ C1

ˆ T

0

¨M−1
∑

i=1

ρ2
i (∆+ (vi))

2

«

1
2

d t max
i∈{1,...,M−1}

(l yi)
1
2

≤ C max
i∈{1,...,M−1}

(l yi)
1
2 → 0 as l → 0. (3.115)

The second inequality is an application of Hölder’s inequality. The constant

C1 = ‖φx‖∞ (xmax + T − xmin)
1
2 > 0, (3.116)

comes from Lemma 3.2. The final estimate is an application of Jensen’s inequality and Lemma
3.3. It has been shown that

lim inf
l→0

ˆ
R×R+

µlφt + k(x)F lφx d xd t −
ˆ

R×R+
k′cv(c) sign

�

ρl − c
�

φd xd t

+
ˆ

R
µl(x , 0)φ(x , 0)d x +

|P|
∑

j=1

�

�[k] j

�

�

ˆ ∞
0
|cv(c)|φ(ξ j , t)d t ≥ 0. (3.117)

From here, one can use a technical lemma [22, Lem. 8.20, p. 410] and assumption (3.94)
to show that Ineq. (3.95) holds. This was done in [22, p. 410-412], for the front-tracking
algorithm. The arguments rely only on the L1 and pointwise a.e. convergence of the method,
and are therefore not repeated.

The fact that the limit ρ satisfies the above entropy inequality is in-general not sufficient to
establish uniqueness of the solution. In addition, existence of strong L1-traces along the lines
of discontinuities and t = 0+ is needed. That is, measurable functions

�

γ±ρ
�

(t) such that

ess lim
ε↓0

ˆ T

0

�

�ρ(ξi ± ε, t)−
�

γ±ρ
�

(t)
�

� d t = 0 for i ∈ {1, ..., P}, for any T > 0. (3.118)

In addition,

ess lim
ε↓0

ˆ
R
|ρ(x , t + ε)−ρ0(x)| d t = 0. (3.119)

If the flux is genuinely non-linear and k is piecewise constant, the following Lemma states that
Ineq. (3.8) has a regularising effect near the lines of discontinuity of k.

Lemma 3.9. A bounded measurable function ρ which satisfies the conditions of Theorem 3.7
and Theorem 3.8 admits strong (right and left) traces ρ±m along each discontinuity ξ1, ...,ξ|P|.
Moreover, ρ admits a strong trace at t = 0+, so that the initial condition ρ|t=0 = ρ0 is satisfied
in the strong L1-sense.
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A proof was given in [26, Lemma 6.1], under assumptions (2.8) and (2.9). The Lemma is
adapted to the case with a space dependent discontinuous coefficient and initial data with com-
pact support. The authors of [26] suggest that the result of Lemma 3.9 may hold for k which
is smooth between the discontinuities, but this has to be assumed. Under the assumptions of
Theorem 3.7 and assuming the the conclusion of Lemma 3.9 holds, Ineq. (3.8) implies unique-
ness by the uniqueness theorem in [26, Theorem 6.1]. The uniqueness theorem requires a flux
crossing condition. Said condition is satisfied, since the LWR flux is on multiplicative form

f (k,ρ) = kρv (ρ) . (3.120)

Since the limit is unique, the Follow-the-Leader scheme converges to the weak entropy solu-
tion.

3.4 Further research

It would be interesting to see whether assumptions on v and k can be relaxed, perhaps by
using a different compactness technique. Common assumptions found in the literature are
v ∈ C 0,1[0,1] and k ∈B.V.loc (R). It seems reasonable that traces should exist when k is well-
behaved between discontinuities, but the same cannot be said for more general k. The prob-
lem of trace existence has received considerable attention in the literature, as they have to be
assumed when k has an infinite number of discontinuities. Many solution concepts for conser-
vation laws with discontinuous fluxes have been developed in the literature, some of which do
not assume traces to establish uniqueness; see [7], [29].





Chapter 4

LWR with a Unilateral Constraint on
the Flux

4.1 The flux constrained Follow-the-Leader model

The Colombo-Goatin (CG) model is an LWR model with a unilateral local point constraint on
the flux.

ρt + (ρv(ρ))x = 0,

ρ(x , 0) = ρ0,

f
�

ρ(0±, t)
�

≤ q, q ∈ (0, fmax), (4.1)

where fmax is the unique maximum of ρv (ρ). A Follow-the-Leader (FtL) model for approxim-
ating the solution of Prob. (4.1) is developed by controlling the velocities of the two vehicles
which are closest to the interface {x = 0}. In the protypical Follow-the-Leader model, a calcu-
lation reveals that the approximate trace of the interface flux is

�

(1− T (t))vk+1/2 + T (t)vk−1/2

�

ρk, (4.2)

where vk−1/2, vk+1/2 are the velocities of the next vehicle to pass (NVtP) and the nearest vehicle
past (NVP) the interface, respectively. The function T takes values between zero and one, and
meaures their relative closeness to the interface.

ρk =
l

xk+1/2 − xk−1/2
, (4.3)

is the mass density associated with NVtP. The flux at the interface is the product of a convex
combination of the velocities of NVtP and NVP, and the mass density of NVtP. Therefore, the
velocity function of the Follow-the-Leader model has to be on the form

vi−1/2 = v(ρi−1,ρi), (4.4)

to constrain the flux directly. The proposed model is

v(ρi−1,ρi) =







min(v (ρi) , v̂) if xi−1/2 < 0, x i+1/2 ≥ 0 and ρi v(ρi)> q

min(v (ρi) , v̂) if xi−3/2 < 0, x i−1/2 ≥ 0 and ρi−1v(ρi)> q

v (ρi) otherwise, (4.5)

27
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with

v̂(t) = v (ρ̂(t)) , (4.6)

where

ρ̂(t) =max{ρ ∈ [0, 1];ρv (ρ) = q(t)}. (4.7)

The first and second option of (4.5) represent the flux constraint for the NVtP and NVP, re-
spectively. The right-most inequalities indicate whether the system is in the congested or free
branch of the flow. If a vehicle falls into the congested branch, the velocity drops so that Exp.
(4.2) is satisfied.

ρi v̂ ≤ ρ̂ v̂ = q(t) for ρi ≤ ρ̂,

ρi vi ≤ q(t) for ρi ≥ ρ̂. (4.8)

To ensure existence of a solution for the model, one may need to limit the number of times a
vehicle can switch between congested flow and free flow. This can be done by introducing a
hysteresis loop in the model, inspired by multi-regime models. For the NVtP and NVP, replace
(4.5) by the multifunction

v(ρi) min(v (ρi) , v̂),

LHS>q

LHS<q−ε fmax

Figure 4.1: State transition diagram

The transition from the congested branch to free branch occurs for a stricter constraint level
than the capacity drop. Their discrepancy is determined by ε > 0. The idea is that a vehicle
will need to traverse the hysteresis loop to transition back to the same state, which can be used
to bound the number of state switches in finite time. Consider a measurable function ρ0 such
that

0≤ ρ0 ≤ 1, suppρ0 is compact, (4.9)

The Flux-Constrained Follow-the-Leader (FC-FtL) model is defined as

ẋ i−1/2 = v(x i−3/2, x i−1/2, x i+1/2,ρi−1,ρi), for i ∈ {1, ..., M},

ρi =
l

x i+1/2 − x i−1/2
, l :=

‖ρ0‖L1(R)

M − 1
for i ∈ {1, ..., M − 1},

ρ0 = ρM = 0. (4.10)

The right-hand side of the ODE is the multifunction given in (4.5) and Figure 4.1. Let x1/2(0) =
xmin and xM−1/2(0) = xmax be min and max of the support of ρ0. For the remaining vehicles,

x i−1/2(0) = inf

�

x ∈R

�

�

�

�

ˆ x

−∞
ρ0d x = (i − 1) l

�

for i ∈ {2, ..., M − 1} . (4.11)
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This definition takes into account possible vacuum regions within the support of ρ0. For Eq.
(4.5) to make sense for the edge-cases, x−1/2 = −∞, xM+1/2 =∞. In the LWR model, it is
assumed that

v ∈ C 0,1 ([0,1]) , non-increasing, v(0) = 1, v(1) = 0,

v ≥ 1−ρσ−1 for some σ > 1. (4.12)

For completeness,

v|(−∞,0) = 1 v|(1,∞) = 0. (4.13)

The control is piecewise continuous and has finitely many discontinuities

q : [0,∞)→ [0, fmax)

q ∈ C (R\{ζ1, ...,ζD}) (4.14)

The control is allowed to be zero on finitely many non-degenerate disjoint intervals, but is
bounded below away from the discontinuities. There exist a ρ̃ ∈ (0,1) such that

q|[0,∞)\{q−1({0})} ≥ ρ̃v (ρ̃)> 0. (4.15)

These assumptions covers for instance the application of traffic lights, which can be modeled
as discontinuous jumps to and from zero. The Follow-the-Leader density is

ρl(x , t) :=
M−1
∑

i=1

ρi1[x i−1/2,x i+1/2). (4.16)

Lemma 4.1. (Vehicles do not cross for fixed states) Assume that (4.11) and (4.12) hold, and fix
states in FC-FtL (4.10) model. I.e.fix which two vehicles can switch between states of Figure 4.1
and which regime either vehicle is in. Let yi =

x i+1/2−x i−1/2
l for i ∈ {1, ..., M − 1} be computed for

a fixed state, where yi(0)≥ 1. Then

yi(t)≥ 1∀t ≥ 0. for i ∈ {1, ..., M − 1} (4.17)

Proof. A simple calculation shows that

d yi

d t
=

vi+1/2 − vi−1/2

l
≥

vi+1/2

l
≥ 0 (4.18)

for yi ≤ 1, since vi−1/2 = v (ρi) = 0. This implies Ineq. (4.17).

Proposition 4.2. (Existence) Prob. (4.10)-(4.15) has a globally defined forward solution, which
is Lipschitz continuous.

The solution is constructed by starting from the initial value and stitching together solu-
tions of constant state. Continuity assumptions on q and v bound the number of state switches
on compact intervals, for any ε > 0. Details are given in the appendix.

Lemma 4.3. (Distances between vehicles go to zero) Let yi =
1
ρi

where ρi is computed from FC-
FtL with yi(0)≥ 1 for i ∈ {1, ..., M −1}. Assume that (4.12) holds and q satisfies (4.14),(4.15).
Then, there exists ε1 > 0 such that when the hysteresis parameter satisfies 0< ε≤ ε1

1≤ yi(t)≤ 2
σ−1
σ

�σt
l
+ (Ĉ + yi(0))

σ
�

1
σ

for i ∈ {1, ..., M − 1}\{i1, ..., iQ}. (4.19)
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σ is given in assumption (4.12), Q is less than or equal to the number of intervals where q is zero
and Ĉ > 0 is a constant independent of l. If κ > 1

σ and yi(0) ≤ C for some positive constant C
independent of i ∈ {1, ..., M − 1} and l, then

max
t∈[0,T],i∈{1,...,M−1}\{i1,...,iQ}

lκ yi(t)→ 0 as l → 0. (4.20)

The proof is left to the appendix.

Lemma 4.4. Under assumptions (4.9) and (4.11), the FtL density has the invariant region

0≤ ρl ≤ 1 ∀(x , t) ∈R ×R+. (4.21)

Furthermore,

suppρl(·, t) ⊂ [xmin, xmax + T], (4.22)

for any t ∈ [0, T].

Proof. From (4.11), it follows that

ρi(0) =
l

x i+1/2(0)− x i−1/2(0)
=
 x i+1/2(0)

x i−1/2(0)
ρ0d x ≤ 1, (4.23)

from which Lemma 4.3 gives the invariant region. The left-limit of (4.22) holds because the
particles are moving rightwards. By (4.12), the velocity of the leader vehicle is less than or
equal to one, which gives the right-limit.

4.2 Strong compactness of the Follow-the-Leader method

Compactness of the FC-FtL model is with the same approach as in Chapter 3. Let

vi = v(ρi) the LWR velocity, (4.24)

vi−1/2 = v(ρi−1,ρi) the FtL velocity.

Lemma 4.5. (Variation estimates) For 0≤ T <∞,

ˆ T

0

M−1
∑

i=1

ˆ ρi+1

ρi

ρ (v (ρ)− vi+1) dρd t ≤
1
2
‖ρ0‖L1(R) +

1
2

T,

ˆ T

0

M−1
∑

i=1

ρ2
i

�

vi+1/2 − vi−1/2

�2
d t ≤ (1+ Lv)

�

‖ρ0‖L1(R) + 7T
�

, (4.25)

where Lv is the Lipschitz constant of v.

The proof is similar to the one given for Lemma 3.3, and is left to the appendix. As the
FC-FtL model reduces to the original Follow-the-Leader model away from the interface, the
compactness proof is shorter than in Chapter 3.

Lemma 4.6. (W−1,2
loc Compactness) For any function S(ρ) ∈ C 2 ([0,1]),

�

∂tS
�

ρl
�

+ ∂xQ
�

ρl
�	

l>0 , (4.26)

lies in a compact subset of W−1,2
loc

�

R ×R+0
�

, where Q′ (ρ) = S′ (ρ) (ρv (ρ))′.
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Proof. LetΩ be an arbitrary open set of R×R+ of class C 1, see [9, p. 298]. Letφ ∈ C∞c ([−X , X ]× [0, T]),
x−1/2 = −∞, xM+1/2 =∞, ρ0 = ρM = 0 and φM−1/2 = φ−1/2 = 0. Consider first

ˆ
R×R+

S
�

ρl
�

∂tφd xd t =
ˆ ∞

0

M
∑

i=0

ˆ x i+1/2

x i−1/2

Siφt d xd t. (4.27)

From the product rule and Leibniz rule for integration,

ˆ x i+1/2

x i−1/2

Siφt d x = −Si∆+
�

vi−1/2φi−1/2

�

+
ˆ x i+1/2

x i−1/2

S′iρ
2
i D+

�

vi−1/2

�

φ(x)d x +
d
d t

�ˆ x i+1/2

x i−1/2

Siφd x

�

= −∆+
�

Si vi−1/2φi−1/2

�

+ S′iρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x

+
�

S′iρi∆+
�

vi−1/2

�

+∆+ (Si) vi+1/2

�

φi+1/2 +
d
d t

�ˆ x i+1/2

x i−1/2

Siφd x

�

. (4.28)

The formula also holds for the edge cases i ∈ {0, M}.

∆+
�

S′iρi

�

=∆+ (Si) +
ˆ ρi+1

ρi

S′′ (ρ)ρdρ, (4.29)

shows that the right-hand side equals

−∆+
�

Si vi−1/2φi−1/2

�

+ S′iρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x

+

�

∆+
�

S′iρi vi−1/2

�

−
ˆ ρi+1

ρi

S′′ (ρ)ρvi+1/2dρ

�

φi+1/2 +
d
d t

�ˆ x i+1/2

x i−1/2

Siφd x

�

. (4.30)

The sum over the first term is zero. Let




Ll
1,φ

�

:=
ˆ T

0

M−1
∑

i=1

S′iρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d xd t. (4.31)

An appliation of the Hölder inequality and using S ∈ C 1 ([0, 1]) gives

�

�




Ll
1,φ

��

�≤ C
ˆ T

0

¨M−1
∑

i=1

ρ2
i ∆+

�

vi−1/2

�2
«

1
2
¨M−1
∑

i=1

� x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x

�2«
1
2

d t

≤ C1

ˆ T

0

¨M−1
∑

i=1

ρ2
i ∆+

�

vi−1/2

�2
«

1
2

d t max
t∈[0,T],i∈{1,...,M−1}

(l yi)
2α−1

2 ‖φ‖C 0,α
0 (Ω)

≤ C T
1
2

¨ˆ T

0

M−1
∑

i=1

ρ2
i ∆+

�

vi−1/2

�2
d t

«

1
2

max
t∈[0,T],i∈{1,...,M−1}

(l yi)
2α−1

2 ‖φ‖C 0,α
0 (Ω)

≤ C3 max
t∈[0,T],i∈{1,...,M−1}

(l yi)
2α−1

2 ‖φ‖C 0,α
0 (Ω)→ 0 as l → 0. (4.32)

The constant C1 = C (xmax + T − xmin)
1
2 > 0, comes from application of Lemma 4.4. The third

inequality is application of Jensen’s inequality, for the function x
1
2 on x ≥ 0. The final bound is
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established by invoking the second estimate of Lemma 4.5. A corollary of Morrey’s theorem [9,
Cor. 9.14, p. 285]) is that W 1,p (Ω) ⊂ C0,α (Ω) is a continuous injection for α ∈ (0, 1− 2

p ), when
Ω is bounded and of class C 1. Furthermore, [9, Thm. 9.17, p. 288] and Poincaré’s inequality
[9, Cor. 9.19, p. 290] imply that W 1,p

0 (Ω) ⊂ C0,α
0 (Ω) is a continuous injection. Therefore,

when p > 2
1−α , α ∈

�1
2 , 1

�

,
�

Ll
	

l>0 is compact in W−1,q (Ω) for q ∈
�

1, 2
1+α

�

,α ∈
�1

2 , 1
�

. Since
0 ≤ ρl ≤ 1, the sequence

�

Ll
	

l>0 is bounded in W−1,r (Ω) for r > 2, and [26, Lemma 3.3]
implies

�

Ll
1

	

l>0 is compact in W−1,2 (Ω) . (4.33)

Consider next
ˆ T

0

M
∑

i=0

ˆ x i+1/2

x i−1/2

Q iφx d xd t =
ˆ T

0

M
∑

i=0

Q i∆+
�

φi−1/2

�

d xd t

=
ˆ T

0

M−1
∑

i=0

−∆+ (Q i)φi+1/2d xd t, (4.34)

where

∆+ (Q i) =∆+
�

S′iρi vi

�

−
ˆ ρi+1

ρi

S′′ (ρ)ρv (ρ) dρ. (4.35)

Add the right-hand side to the sum over the third term of Exp. (4.30), and integrate in time.
Let




Ll
2,φ

�

:=
ˆ ∞

0

M−1
∑

i=0

�

∆+
�

S′iρi

�

vi−1/2 − vi

��

+
ˆ ρi+1

ρi

S′′ (ρ)ρ
�

v (ρ)− vi+1/2

�

dρ

�

φi+1/2d t.

(4.36)

The number of terms involving vi−1/2 where

vi−1/2 6= vi , (4.37)

can be bounded uniformly. Their sum is bounded by C ‖φ‖L∞ . For the remaining indices, the
first term of the sum is zero. The sum over the second term is bounded by C ‖φ‖L∞ , by the
first estimate of Lemma 4.5 and S′′ ∈ C ([0,1]). Hence,

�

�




Ll
2,φ

��

�≤ C ‖φ‖L∞(Ω) ∀φ ∈ C0 (Ω) . (4.38)

The fourth term of Exp. (4.30) sum up to




Ll
3,φ

�

= −
ˆ

R
S
�

ρl
�

φ (x , 0) d x , (4.39)

when integrated in time.
�

�




Ll
3,φ

��

�≤ C(Ω)‖φ‖L∞(Ω) ∀φ ∈ C0 (X ) , (4.40)

which shows that




Ll
2







M(Ω) ,




Ll
3







M(Ω) ≤ C , (4.41)
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where M (Ω) = (Cc (Ω))
′ is the space of signed radon measures of finite mass. Consider

Ll = Ll
1 +Ll

2 +Ll
3. (4.42)

As 0≤ ρl ≤ 1, the sequence
�

Ll
	

l>0 is bounded in W−1,r (Ω) for r > 2. In addition, since Ineq.
(4.33) and Ineq. (4.41) hold, Ll is a sum of a sequence of uniformly bounded measures and a
precompact sequence in W−1,2 (Ω). An application of [16, Cor. 1, p. 8] shows

�

Ll
	

l>0 is compact in W−1,2 (Ω) , (4.43)

Since Ω was an arbitrary bounded open set of class C 1, this proves the lemma.

4.3 Convergence to weak solutions

From Lemma 3.6, it holds that

ρl(x , 0)
D ′(R)
* ρ0. (4.44)

Up to a subsequence, the FC-FtL model converges to a weak solution of the unconstrained
LWR model.

Theorem 4.7. (Convergence to the weak solution) Let ρl = ρ(x , t) be given in (4.49). Assume
v satisfies (4.12). In addition, assume v ∈ C 2, ρv (ρ) is genuinely non-linear and ρ0 satisfies
(4.9) and There exists a subsequence such that, for any finite T > 0,

ρl → ρ in Lp (R × [0, T]) as l → 0, for any 1≤ p <∞, (4.45)

and ρ ∈ L∞
�

R ×R+
�

is a weak solution ρ of the Cauchy problem, i.e. ρ is a bounded measur-
able function satisfying ∀φ ∈ C∞c

�

R ×R+
�

,
ˆ

R+

ˆ
R
(ρφt +ρv (ρ)φx) d xd t +

ˆ
R
ρ0(x)φ(x , 0)d x = 0. (4.46)

Proof. The fact that ρl converges to some ρ ∈ L∞ (R × [0, T]) in Lp
loc (R × [0, T]) and point-

wise a.e. follows from Lemma 2.8, by taking k ≡ 1. Ineq. (4.22) shows that convergence in
Lp

loc implies convergence in Lp. A simple calculation reveals that
ˆ x i+1/2

x i−1/2

ρiφt +ρi vi−1/2φx d x

=
d
d t

�ˆ x i+1/2

x i−1/2

ρiφ(x , t)d x

�

+ρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x , (4.47)

which shows thatˆ
R×R+

ρlφt +ρ
l ṽ lφx d xd t +

ˆ
R
ρl(x , 0)φ(x , 0)d x =




Ll
1,φ

�

, (4.48)

where

ṽ l :=
M−1
∑

i=1

vi−1/21[x i−1/2.x i+1/2). (4.49)
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The error associated with vi−1/2 6= vi in ṽ l vanishes in the limit. The right-hand side converges
to zero, as was shown in Ineq. (4.32). As ρl → ρ in L1 (R × [0, T]) and (4.44) holds,

ˆ
R×R+

ρφt +ρv (ρ)φx d xd t +
ˆ

R
ρ0(x)φ(x , 0)d x = 0. (4.50)

It is assumed that

�

�ρl(x , 0)− c
�

�

D ′(R)
* |ρ0 − c| , for any c ∈R. (4.51)

The limit is an entropy solution in the following sense

Theorem 4.8. (The weak entropy solution) Assume (4.51) holds. For any 0≤ φ ∈ C∞c
�

R ×R+
�

and c ∈R, the limit ρ of Theorem 4.7 is bounded measurable function satisfying
ˆ

R×R+
(|ρ − c|φt − sign (ρ − c) (ρv(ρ)− cv (c))φx) d xd t

+ 2
ˆ ∞

0
|c| |v(c)− v̂(t)|φ(t, 0)d t +

ˆ
R
|ρ0 − c|φ(x , 0)d x ≥ 0. (4.52)

The unilateral constraint is satisfied in the sense of traces

f
��

γ−ρ
�

(0, t)
�

= f
��

γ+ρ
�

(0, t)
�

≤ q, for a.e. t ≥ 0. (4.53)

The proof is postponed to the end of the section. Condition (4.53) is well defined. For any
test function φ such that φ(0, t) = 0, Ineq. (4.52) shows that the limit is an entropy solution
of

ρt + (ρv(ρ))x = 0 on Ω= (−∞, 0)∪ (0,∞)× (0,∞), (4.54)

in the sense of Kružkov. As the flux is C 2 and genuinely non-linear, [3, Thm 2.2] ensures the
existence of strong L1-traces,

lim
h↓0

1
h

ˆ ∞
0

ˆ h

0

�

�ρ(±x , t)−
�

γ±ρ
�

(t)
�

�ξ(t)d xd t = 0 ∀ξ ∈ C∞c ([0,∞)) . (4.55)

The definition of weak entropy solution given in Theorem 4.8 is very similar to the CG-entropy
solution, which is obtained by replacing the second term of the left-hand side of Ineq. (4.52)
with

2
ˆ ∞

0

�

1−
F(t)
fmax

�

cv(c)φ(t, 0)d t. (4.56)

The next result establishes that these notions are equivalent.

Theorem 4.9. The weak entropy solution defined in (4.8) is the unique CG-entropy solution of
(4.1).

Since CG-entropy solutions are unique, the entire Follow-the-Leader sequence converges
strongly to the limit. Theorem 4.9 can be proven by showing that the entropy solution is a
G-entropy solution [3, Def. 2.8, Prop. 2.6 A]. In L∞ (R × [0, T]), the G-entropy solution of
Prob. (4.1) is the unique CG-entropy solution [3, Thm 2.9, 2.11].
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Proposition 4.10. (G-entropy solution) The entropy solution ρ of Theorem 4.8 is a Kružkov en-
tropy solution for x < 0 and x > 0, i.e. for all non-negative test functionsφ ∈ C∞c (R × [0, T]\{x = 0})
and all c ∈R, ˆ

R×R+
(|ρ − c|φt − sign (ρ − c) (ρv(ρ)− cv (c))φx) d xd t

+
ˆ

R
|ρ0 − c|φ(x , 0)d x ≥ 0. (4.57)

In addition, for a.e. t > 0,
��

γ−ρ
�

(t),
�

γ+ρ
�

(t)
�

∈ G (q(t)) , (4.58)

where G(q) = G1(q) ∪ G2(q) ∪ G3(q) ⊂ [0,1]2 is the admissibility germ of Prob. (4.1). For q ∈
[0, fmax],

• G1(q) = {(cl , cr) ∈ [0,1]2; cl > cr , f (cl) = f (cr) = q},

• G2(q) = {(c, c) ∈ [0, 1]2; f (cr)≤ q},

• G3(q) = {(cl , cr) ∈ [0,1]2; cl < cr , f (cl) = f (cr)≤ q}. (4.59)

The singelton G1(q) is the concrete extension of the classical LWR model, which corres-
ponds to an admissable non-classical shock at the interface.

Proof. (Theorem 4.9/ Proposition 4.10) The proof is an adaptation of the proof of [3, Prop
2.5]. The Ineq. (4.57) follows from Ineq. (4.52). Condition (4.53) implies Rankine-Hugoniot
across the interface {x = 0}. If

��

γ−ρ
�

(t),
�

γ+ρ
�

(t)
�

/∈ G (q(t)) , (4.60)

the only possibility is that

f
��

γ−ρ
�

(t)
�

= f
��

γ+ρ
�

(t)
�

< q and
�

γ−ρ
�

(t)>
�

γ+ρ
�

(t). (4.61)

Consider the cut function

ψε(x) =











1 if |x |< ε (4.62)

2−
|x |
ε

if ε≤ |x |< 2ε

0 if |x | ≥ 2ε,

which is Lipschitz. Using a standard mollifier, it follows by approximation that Ineq. (4.52) is
satisfied for φ =ψε(x)ξ(t), where ξ ∈ C∞c ((0,∞)).

I(ε)+J (ε)≥ 0,

I (ε) =
ˆ ∞

0

ˆ
R
(|ρ − c|)ξ′ψεd xd t

J(ε) =
ˆ ∞

0

ˆ
R

F(ρ)ξψ′εd xd t + 2
ˆ ∞

0
|c| |v(c)− v̂(t)|φ(t, 0)d t, (4.63)

where

F(x) := sign (x − c) (x v (x)− cv (c))

= |x − c| v(x)− c |v(x)− v(c)| , (4.64)
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I(ε)→ 0 as ε→ 0. Furthermore1,

lim
ε→0

J (ε) =
ˆ ∞

0

�

F
��

γ−ρ
�

(t), c
�

− F
��

γ+ρ
�

(t), c
�

+ |c| |v(c)− v̂(t)|
�

ξ(t)d t, (4.65)

which implies

F
��

γ−ρ
�

(t), c
�

− F
��

γ+ρ
�

(t), c
�

+ |c| |v(c)− v̂(t)| ≥ 0, (4.66)

for a.e. t ≥ 0,∀c ∈ R. Eq. (4.65) implies Ineq. (4.66) for a.e. t ≥ 0, for a given c ∈ R.
Therefore it holds a.e. ∀c ∈ Q. The left-hand side is continuous with respect to c, which
implies a.e. ∀c ∈R. Let

ρ̂(t) =max{ρ ∈ [0, 1];ρv (ρ) = q(t)}, v̂(t) = v (ρ̂(t)) . (4.67)

Let K ⊂ [0,∞) be the set where (4.61) holds. On K ,
�

γ+ρ
�

(t)≤ ρ̂(t)≤
�

γ−ρ
�

(t) and

0≤ F
��

γ−,ρ
�

(t), ρ̂(t)
�

− F
��

γ+ρ
�

(t), ρ̂(t)

= f
��

γ−ρ
�

(t)
�

+ f
��

γ+ρ
�

(t)
�

− 2ρ̂v (ρ̂)

= 2
�

f
��

γ−ρ
�

(t)
�

− q(t)
�

, (4.68)

which is a contradiction. K must be a null set, which establishes
��

γ−ρ
�

(t), (γrρ) (t)
�

∈ G (q(t)) for a.e. t ≥ 0. (4.69)

The section is concluded with a proof of Theorem 4.8.

Proof. (Theorem 4.8) Consider first

ˆ
R×R+

µlφt d xd t =
ˆ ∞

0

M
∑

i=0

ˆ x i+1/2

x i−1/2

µiφt d xd t. (4.70)

where x−1/2 = −∞, xM+1/2 = +∞ and

µ(x) = |x − c| . (4.71)

Since φ is smooth and µi , x i−1/2, x i+1/2 are Lipschitz, the following idenity holds a.e. 2

ˆ x i+1/2

x i−1/2

µiφt d x =
d
d t

�

µi

ˆ x i−1/2

x i−1/2

φt d x

�

− µ̇i

ˆ x i+1/2

x i−1/2

φd x −µi∆+
�

φi−1/2vi−1/2

�

, (4.73)

1For a continuous function θ on [0, 1], the trace of the composition is the composition of traces.

lim
h↓0

1
h

ˆ ∞

0

ˆ h

0

�

�θ ◦ρ(±x , t)− θ ◦
�

γ±ρ
�

(t)
�

�ξ(t)d xd t = 0 ∀ξ ∈ C∞c ([0,∞)) .

A proof is given under [3, Eq. 9].
2Let µi = µ(ρi), then the a.e. derivative is given by

µ̇i = − sign (ρi − c)ρ2
i D+

�

vi,i−1/2

�

,

(4.72)

with the convention that sign(0) = 0. Since µi is lipschitz continuous, the fundamental theorem of calculus holds
[34, ex. 1.6.44, p. 169].
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for i ∈ {0, ..., M}. The formula holds for the end-cases, since φ−1/2 = φM+1/2 = 0 and ρ0 =
ρM = 0. As a convention, let vM+1/2 = v−1/2 = 0.

ˆ ∞
0

M
∑

i=0

ˆ x i+1/2

x i−1/2

µiφt d xd t = −
ˆ

R
µl(x , 0)φ(x , 0)d x −

M
∑

i=0

µi∆+
�

φi−1/2vi−1/2

�

+
ˆ ∞

0

M
∑

i=0

sign (ρi − c)ρ2
i D+

�

vi−1/2

�

ˆ x i+1/2

x i−1/2

φd xd t

= −
ˆ

R
µl(x , 0)φ(x , 0)d x +

ˆ ∞
0

M−1
∑

i=0

∆+ (µi)φi+1/2vi+1/2d t

+
ˆ ∞

0

M−1
∑

i=0

sign (ρi − c)ρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ −φi+1/2

�

d xd t

+
ˆ ∞

0

M−1
∑

i=0

sign (ρi − c)ρi∆+
�

vi−1/2

�

φi+1/2d t. (4.74)

Combine the second and fourth term
M−1
∑

i=0

�

sign (ρi − c)ρi∆+
�

vi−1/2

�

+ vi+1/2∆+ (µi)
�

φi+1/2

=
M−1
∑

i=0

�

sign (ρi − c) c∆+
�

vi−1/2

�

+∆+
�

µi vi−1/2

��

φi+1/2

=
M−1
∑

i=0

�

c∆+
�

sign (ρi − c)
�

vi−1/2 − v(c)
��

+∆+
�

µi vi−1/2

��

φi+1/2

+
M−1
∑

i=0

−c∆+ (sign (ρi − c))
�

vi+1/2 − v(c)
�

φi+1/2

=
M−1
∑

i=0

∆+
�

Fi−1/2

�

φi+1/2 +
M−1
∑

i=0

−c∆+ (sign (ρi − c))
�

vi+1/2 − v(c)
�

φi+1/2. (4.75)

Consider i ∈ {1, ..., M − 1}\{k− 1, k}, where xk−1/2 is NVtP. Then

− c∆+ (sign (ρi − c))
�

vi+1/2 − v(c)
�

= c |vi+1 − v(c)| (1− sign (ρi+1 − c) sign (ρi − c))≥ 0. (4.76)

The case c ≤ 0 is implied by the fact that ρi ≥ 0 ∀i ∈ {1, ..., M − 1}. For i ∈ {k − 1, k}, the
terms can be bounded as in (4.76), if vi+1/2 = v (ρi+1). If not, then either (or both) of the
terms equal

−c∆+ (sign (ρk − c)) (v̂ − v(c)) for i = k,

−c∆+ (sign (ρk+1 − c)) (v̂ − v(c)) for i = k+ 1, (4.77)

respectively. In any case, the second sum on the right-hand side of (4.75) can be bounded
below by

−2 |c| |v̂ − v(c)|φ(0, t)− C
�

�φ(0, t)−φk+1/2

�

�− C
�

�φ(0, t)−φk−1/2

�

� , (4.78)
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for some uniform finite positive C > 0. Next, let F l = F
�

ρl
�

and consider

ˆ
R×R+

F lφx d xd t =
ˆ ∞

0

M
∑

i=0

Fi∆
�

φi−1/2

�

=
ˆ ∞

0

M−1
∑

i=0

−∆+ (Fi)φi+1/2. (4.79)

Add (4.74) and (4.79), and use Eq. (4.75) and Ineq. (4.77).
ˆ

R×R+
µlφt + F lφx d xd t +

ˆ
R
µl(x , 0)φ(x , 0)d x + 2

ˆ ∞
0
|c| |v̂ − v(c)|φ(0, t)d t ≥ A. (4.80)

The right-hand side can be split

A= A1 + A2, (4.81)

with
(

A1 :=
´∞

0

∑M−1
i=1 sign (ρi − c)ρi∆+

�

vi−1/2

�ffl x i+1/2
x i−1/2

�

φ −φi+1/2

�

d xd t,

A2 :=
´∞

0

∑M−1
i=0

�

∆+
�

Fi,i−1/2 − Fi

�

φi+1/2

�

− C
�

�φ(0, t)−φk+1/2

�

�− C
�

�φ(0, t)−φk−1/2

�

� d t. (4.82)

First, consider the case where q is bounded away from zero.

|A1| ≤
ˆ T

0

M−1
∑

i=1

ρi

�

�∆+
�

vi−1/2

��

�

�

�

�

�

�

 x i+1/2

x i−1/2

�

φ −φi+1/2

�

d x

�

�

�

�

�

d t

≤
ˆ T

0

¨M−1
∑

i=1

ρ2
i

�

∆+
�

vi−1/2

��2
«

1
2
¨M−1
∑

i=1

‖φx‖
2
∞

�

x i+1/2 − x i−1/2

�2
«

1
2

d t

≤ C1

ˆ T

0

¨M−1
∑

i=1

ρ2
i

�

∆+
�

vi−1/2

��2
«

1
2

d t max
i∈{1,...,M−1}

(l yi)
1
2

≤ C max
i∈{1,...,M−1}

(l yi)
1
2 → 0 as l → 0. (4.83)

The second inequality is an application of Hölder’s inequality. The constant

C1 = ‖φx‖∞ (xmax + T − xmin)
1
2 > 0, (4.84)

comes from application of Lemma 4.4. The final estimate is an application of Jensen’s inequal-
ity and Lemma 4.5. Let q be zero on Q non-degenerate intervals, where Q is a finite number.
For each l > 0, there may exists a finite number of vacuum regions i ∈ {i1, ..., iQ}. Any term in
the sum of A1 goes to zero, as can be seen by

�

�

�

�

�

ρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ −φi+1/2

�

d x

�

�

�

�

�

≤ ‖φx‖L∞ l → 0. (4.85)

The sum over {i1, ..., iQ} therefore converges to zero, and can be removed before using Hölder’s
inequality in (4.83),

|A1| ≤
�

C max
i∈{1,...,M−1}\{i1,...,iQ}

(l yi)
1
2 +Ql

�

‖φx‖L∞ → 0 as l → 0. (4.86)
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Next, consider

|A2| ≤
ˆ ∞

0

k+1
∑

i=k

�

�∆+
�

φi−1/2

� �

Fi,i−1/2 − Fi

��

� d t + C
�

�φ(0, t)−φi−1/2

�

� d t, (4.87)

where k, k+ 1 correspond to NVtP and NVP at time t ≥ 0, respectively. First,
�

�∆+
�

φi−1/2

� �

Fi,i−1/2 − Fi

��

�=
�

�ρi

�

vi−1/2 − vi

�

∆+
�

φi−1/2

��

�≤ ‖φx‖∞ l. (4.88)

If q is zero, both vk−1/2 = vk+1/2 = 0. A vacuum region is always created between NVP and the
next vehicle. Therefore, the estimate in Lemma 4.3 holds for all distances between vehicles to
the left of NVP, for any t ≥ 0.

|A2| ≤ 2‖φx‖∞
�

l + C max
t∈[0,T],i∈{1,...,k(t)}

(l yi)
�

→ 0 as l → 0. (4.89)

It has been shown that

lim inf
l→0

ˆ
R×R+

µlφt + F lφx d xd t + 2
ˆ ∞

0
|c| |v̂ − v(c)|φ(0, t)d t

+
ˆ

R
µl(x , 0)φ(x , 0)d x ≥ 0. (4.90)

Let ρ be the weak solution of Lemma 4.7. As ρl → ρ in L1 (R × [0, T]), µl → µ(ρ) and
F l → F(ρ) in L1 (R × [0, T]), by continuity of µ and F . Furthermore, if (4.51) holds, then
Ineq. (4.52) is proven. To prove (4.53), a weak characterisation of the flux trace at {x = 0} is
used.3 It is to be shown that

∓
ˆ T

0

ˆ
R±
ρ∂t (ψξ) + f (ρ)∂x (ψξ) d xd t ≤

ˆ T

0
qξ(t)d t, (4.91)

where ξ ∈ C∞c
�

R+
�

, ξ(t)≥ 0 and ψ ∈ C∞c (R) ,ψ(x)≥ 0, ψ(0) = 1. For i ∈ {0, ..., M},
ˆ x i+1/2

x i−1/2

ρiφt +ρi vi−1/2φx d x

=
d
d t

�ˆ x i+1/2

x i−1/2

ρiφ(x , t)d x

�

+ρi∆+
�

vi−1/2

�

 x i+1/2

x i−1/2

�

φ(x)−φi+1/2

�

d x , (4.92)

for a general test function φ ∈ C∞c
�

R ×R+0
�

. Let xk+1/2 be NVP for some t ≥ 0. After some
work, it can be seen that

−
ˆ xk+1/2

0
ρkφt +ρkvk−1/2φx d x

= −
d
d t

�
ˆ xk+1/2

0
ρkφ(x , t)d x

�

−ρkvk−1/2

�

φk+1/2 −φ(0)
�

+
�

(1− Tk(t))vk+1/2 + Tk(t)vk−1/2

�

ρkφk+1/2

−ρk∆+
�

vk−1/2

� xk+1/2

xk+1/2 − xk−1/2

 x i+1/2

0

�

φ(x)−φi+1/2

�

d x , (4.93)

3See [3, Rmk. 2].
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where the relative closeness function Tk has been introduced

Tk(t) =
xk+1/2(t)

xk+1/2(t)− xk−1/2(t)
∈ [0, 1]. (4.94)

The sum over Eq. (4.92) for i = {k+ 1, ..., M} and Eq. (4.93) gives

−
ˆ

R+
ρlφt + f (ρl)φx d x

=
d
d t

�

−
ˆ

R+
ρlφd x

�

+
�

(1− Tk(t))vk+1/2 + Tk(t)vk−1/2

�

ρkφ(0, t) + r(l), (4.95)

where r(l) goes to zero as l → 0, by Ineq. (4.86) and Ineq. (4.89). Let φ(x , t) = ξ(t)ψ(x).
Since ξ(0) = 0, the integral over the first term is zero. A similar calculation shows that the
integral over R− gives the same second term as in Eq. (4.95), with a remainder term which
converges to zero. This proves that the Rankine-Hugoniot condition holds across the interface.
The velocity function (4.5) was chosen such that second term of Eq. (4.95) is bounded above
by q(t)ξ(t).

−
ˆ

R+×R+
ρl (ξψ)t + f (ρl) (ξψ)x d xd t ≤

ˆ ∞
0

qξd t + r(l). (4.96)

Since the convergence to the limit is strong, Ineq. (4.96) implies Ineq. (4.53).

4.4 Further research

Several recent papers have investigated phenomenon related to capacity drop at exists, self-
organisation and other related concepts, by considering non-local point constraints on the flux.
See for example [2] and [6]. Two possible extensions of the results of this thesis is to consider
a constraint which depends non-locally on the solution, and a constraint which is not bounded
away from zero. The FC-FtL model would be improved if existence of the solution fo Prob.
(4.10)-(4.15) was established without explicitly bounding the number of state switches. The
current FC-FtL model also lacks a uniqueness result.
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Appendix A

Proofs from Chapter 4

Proof of Prop. 4.2

Proof. Two vehicles are adjacent to the bottleneck at t = 0, t, due to (4.11).The initial state is
defined as uncongested. By fixing this configuration, the FC-FtL reduces to a system of ODEs
with a Lipschitz continuous and bounded right-hand side, which has a unique globally defined
solution. By Lemma 4.1, one of three things may happen when t increases. One or both vehicles
can switch state, either immediately or for t > 0, the vehicle xk−1/2 may cross {x = 0}, or
neither happens on (0,∞). In the former case, let

t̃ := inf { t ≥ 0|NVP or NVtP switches state}, (A.1)

switch the appropriate state(s) at t̃ ≥ 0 and take the solution with switched state for t ≥ t̃, with
the solution at the previous state(s) as initial value. If q is continuous until the next stitching
time, then the constraints associated with state switches are uniformly continuous on compact
intervals. A cycle in transition diagram corresponds to a difference in the constraint by at least
ε fmax, and change in time by at least some δ > 0, where δ is independent of time. Hence, the
number of state switches is bounded on compact intervals. Since the number of discontinuous
jumps in q is bounded, the number of extra switches can be bounded as well. This process
can be continued until NVtP crosses the bottleneck or t → ∞. In the former case, k can
decremented by one and the process can be repeated, possibly until all vehicles have crosses
the bottleneck. In the latter case, the solution can be defined on all of R by stitching together
solutions of constant state. If all vehicles cross the bottleneck, the solution can be globally
defined the end-state that all vehicles are uncongested. Since v(ρi−1,ρi) is bounded by one,
the vehicle paths are globally Lipschitz continuous.

Proof of Lemma 4.3

Proof. The lower bound was proven in Lemma 4.1. Each time q jumps to zero, the NVP is
stopped and the next vehicle has an unconstrained velocity. The space density between the
NVP and the next vehicle cannot bounded above, a priori. The number of such occurrences are
bounded by Q, and are not considered further. Let xk−1/2 be the NVtP at t = 0. For i ∈ {1, ..., k},
define the crossing time t i−1/2 ≥ 0 for x i−1/2 at the interface. For 0≤ t < t i+1/2,

d yi

d t
=

v (ρi ,ρi+1)− v (ρi)
l

≤
1

l yσ−1
, (A.2)
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by assumption (4.12). Hence,

d (yi)
σ

d t
≤
σ

l
. (A.3)

Consider Mi = (t i+1/2, t i−1/2) and let ỹε correspond to the largest value of y which would trig-
ger a right-to-left transition in Figure 4.1, for constraint level q = ρ̃v (ρ̃) given in (4.15). For a
fixed ρ̃, such a ỹε exists for sufficiently small ε > 0. Hence, if yi(t)≥ ỹε on Mi , then the vehicle
is in the low-density regime and v(ρi−1,ρi) = v(ρi). Assume yi( t̂1) > max

�

ỹε, yi(t i+1/2)
�

for some t̂1 ∈ Mi . Then, by the intermediate value theorem, there exists some interval I =
(t1, t1+∆t1) ⊂ Mi , ∆t1 ≥ 0 such that yi(t1) =max( ỹε, yi(t i+1/2)), yi(t1+∆t1) = yi( t̂1) and
yi(t)≥max( ỹε, yi(t i+1/2)) on I . Therefore, v (ρi−1,ρi) = v (ρi), which implies

d (yi)
σ

d t
≤
σ

l
on I . (A.4)

Hence

(yi)
σ ( t̂1) = (yi)

σ (t1 +∆t1)≤
σ∆t1

l
+max( ỹε, yi(t i+1/2))

σ, (A.5)

which together with Ineq.(A.3) gives

(yi)
σ (t i−1/2)≤

σt i−1/2

l
+max( ỹε, yi(0))

σ. (A.6)

Assume that x i−1/2 in the left state of Figure 4.1 ∀t ∈ Mi−1, then

d (yi)
σ

d t
≤
σ

l
on Mi−1. (A.7)

and Ineq. (A.6) holds for t i−1/2 7→ t i−3/2. If not, then by assumption (4.15), there exist t̃ ∈ Mi−1
such that,

ρi−1v(ρi)≥ q(t)− ε fmax ≥ α > 0, (A.8)

for ε,α > 0 sufficiently small. This can be used to bound the distance between NVtP and the
interface.

0− x i−3/2( t̃)≤
l
α

. (A.9)

If there exists I = (t2, t2+∆t2) ⊂ Mi−1∩[ t̃,∞) satisfying yi(t2) =max(y( t̃)), ỹε) and yi (t)≥
yi(t2) for t ∈ I , then there exists β > 0 sufficiently small such that if 1− β ≤ ρi−1 ≤ 1, then

dρi−1

d t
≤ −ρ2

i−1
v̂ − v (ρi−1)

l
≤ −(1− β)2

v̂ − v (1− β)
l

< 0. (A.10)

By the choice of ỹε, the corresponding velocity satisfies ṽε ≥ v̂. Due to (4.15), β > 0 can
be chosen sufficiently small such that v(ρi−2,ρi−1) = v(ρi−1) for ρi−1 ≥ 1 − β . In addition,
v̂ − v (1− β) ≥ α̃ > 0 for sufficiently small β . This shows that ρi−1 ≤ 1− β and ẋ i−1/2(t) ≥
v (1− β), after t2 +∆t3 where

∆t3 ≤
lβ

(v̂ − v (1− β)) (1− β)2
≤ C1(β)l, (A.11)
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for some uniform C1(β)> 0. Therefore,

∆t2 ≤
l

αv (1− β)
+∆t3 ≤ Cl, (A.12)

otherwise the NVtP will have crossed the bottleneck and I 6⊂ Mi−1.

d yi

d t
≤

1
l
, (A.13)

which implies that

yi(t)≤ C +max(y( t̃), ỹε) for t ∈ I (A.14)

Since σ > 1, the general inequality (x + y)σ ≤ 2σ−1 (xσ + yσ) for x , y ≥ 0 gives

yσi (t i−3/2)≤ 2σ−1 (Cσ +max(yi( t̃), ỹε)
σ)

≤ 2σ−1
�

σt i−3/2

l
+ (C + yi(0) + ỹε)

σ
�

. (A.15)

The estimate also holds when Ineq. (A.7) holds. For t ≥ t i−3/2, Ineq. (A.3) holds, which gives
the global bound

yσi (t)≤ 2σ−1
�σt

l
+ (C + yi(0) + ỹε)

σ
�

. (A.16)

The upper bound of Ineq. (4.19) is proven.

Proof of Lemma 4.5

Proof. The proof is essentially the same the proof of Lemma 3.3.

dρi

d t
+ D+

�

Q i−1/2

�

= vi+1/2D+
�

ρ2
i

�

− D+

�

2
ˆ ρi

0
ρv(ρ)dρ

�

=
−2
l

ˆ ρi+1

ρi

ρ (v(ρ)− vi+1) dρ

+
�

vi+1/2 − vi+1

�

D+
�

ρ2
i

�

, (A.17)

where

Q i−1/2 = ρ
2
i vi−1/2 −

ˆ ρi

0
2ρv(ρ)dρ ≤Q(ρi)≤ 0 (A.18)

For x , y ≥ 0,

QV (x , y) =
ˆ y

x
ρ (v (ρ)− v (y)) dρ ≥

x2 (v(x)− v(y))2

2 (1+ LV )
≥ 0, (A.19)

Insert

d
d t

�ˆ x i+1/2

x i−1/2

ρ2
i

2
d x

�

=
l
2

d
d t
ρi , (A.20)
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in (A.17), sum over i ∈ {1, ..., M − 1} and integrate in time.

ˆ T

0

M−1
∑

i=1

QVi−1/2d t = −
ˆ T

0

M−1
∑

i=1

d
d t

ˆ x i+1/2

x i−1/2

ρ2
i

2
d x +

1
2
∆+

�

Q i−1/2

�

+

�

vi+1/2 − vi+1

�

2
∆+

�

ρ2
i

�

≤ −
1
2





ρl(T )






2
L2(R) +

1
2
‖ρ0‖

2
L2(R) +

1
2

ˆ T

0
Q1/2 −QM−1/2d t +

1
2

T

≤
1
2
‖ρ0‖L1(R) +

1
2

T. (A.21)

The last inequality follows from 0 ≤ ρl ≤ 1, by Lemma 4.4 and Q1/2 ≤ 0,QM−1/2 = 0. To
show the second estimate, use (A.19) and replace vi by vi−1/2 for the two vehicles which are
adjacent the bottleneck. For the remaining vehicles, vi = vi−1/2. The potential error terms can
be bounded by (1+ Lv)6T .


