
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Cassandra Berdahl

Human-MPC Interface for Smart
Houses

Development of a customized web application
for a smart heating system controlled by a Model
Predictive Control algorithm, with the intent of
facilitating the average user to interact with and
understand the smart control.

Master’s thesis in Industrial Cybernetics
Supervisor: Sebastien Gros
June 2022

M
as

te
r’s

 th
es

is

Cassandra Berdahl

Human-MPC Interface for Smart
Houses

Development of a customized web application for a
smart heating system controlled by a Model
Predictive Control algorithm, with the intent of
facilitating the average user to interact with and
understand the smart control.

Master’s thesis in Industrial Cybernetics
Supervisor: Sebastien Gros
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis is the final part of the Master’s degree in Industrial Cybernetics and was written during
the spring semester of 2022 at the Norwegian University of Science and Technology (NTNU) in
Trondheim, Norway. The Master’s degree belongs to the Faculty of Information and Electrical
Engineering and the Department of Engineering Cybernetics.

This report is a continuation and supplement to a larger project (POWIOT), which investigate
the implementation of an IoT-based smart house system with a Model Predictive Control (MPC)
algorithm for controlling heat pumps. Prior to writing this thesis, the IoT structure and control
algorithm has been implemented in the house. This thesis investigates the feasibility of imple-
menting a JavaScript web application for the MPC scheme.

During the course of this project, I have gained a lot of experience with application development,
which I initially had little experience with. Furthermore, I have also developed a better under-
standing of the usage of MPC algorithms in smart energy management in households and the
challenges associated with implementing such a system.

The project is initiated and supervised by Professor Sebastian Gros at NTNU. I would like to
show my appreciation by thanking my supervisor for allowing me to write this thesis, and for
testing the software on the real-time system installed in his house. I would also like to thank him
for valuable discussions about the control algorithm and for providing feedback on the report.

Cassandra Berdahl
6th of June 2022, Trondheim

i

Abstract

Smart house technologies are rapidly developing, with a focus on more advanced control strate-
gies, such as Model Predictive Control (MPC), for optimizing heating systems to enable smart
energy management. As digitization and the Internet of Things (IoT) become more prevalent, this
installation has become more viable in households. The practical application, however, is still in
its infancy due to challenges related to user adoption.

This thesis seeks to evaluate the feasibility of developing and implementing a human-MPC inter-
face for an intelligent heating system controlled by an MPC algorithm. In the efforts to ease the
adoption of more complex control strategies, a web application is developed with the intent of
explaining concepts related to the MPC scheme. This will allow for monitoring, interacting, and
potentially understanding the optimal control of the heating system.

The perceived challenges related to the implementation are having highly customized elements
and graphical displays to explain the MPC behavior in a simple non-control-related language. The
results obtained in this thesis show that developing a web interface is a viable implementation for
this case study of a smart house located in Trondheim, Norway. The web application is developed
using JavaScript and represents a full-stack application with a server and a client-side. This web
interface provides customized functionalities for explaining and visualizing important concepts
related to the predictive control algorithm. Eventually, the findings in this report serve as the basis
for further development of the application and eventually completely integrate it with the existing
smart house system.

Further work should focus on improving the software for data processing on both the server and
client-side. Eventually, include more functionalities to further exploit the predictive capabilities
of the MPC scheme and to accommodate more customized elements.

ii

Sammendrag

Smarthusteknologier er i rask utvikling, der mer fokus er rettet mot avanserte kontrollstrategier
som Modell Prediktiv Kontroll (MPC), for å optimalisere varmesystemer som kan muliggjøre
smart energistyring i bygg. Ettersom digitalisering og Tingenes Internett (IoT) blir mer utbredt,
har denne installasjonen blitt mer levedyktig i husholdninger. Den praktiske anvendelsen er dog
fortsatt i sin spede begynnelse på grunn av utfordringer knyttet til brukeradopsjon.

Denne oppgaven vil evaluere muligheten for å utvikle og implementere et menneske-MPC grense-
snitt for et intelligent varmesystem kontrollert av en MPC-algoritme. I arbeidet med å lette bruken
av mer komplekse kontrollstrategier, utvikles en web applikasjon med den hensikt å forklare
konsepter knyttet til MPC algoritmen. Dette vil tillate overvåking, samhandling og potensielt
forståelse av den optimale kontrollen av varmesystemet.

Utfordringene knyttet til implementeringen er å utvikle svært tilpassede elementer og grafiske
illustrasjoner for å forklare MPC på et enkelt ikke-kontrollrelatert språk. Resultatene oppnådd i
denne oppgaven viser at å utvikle et webgrensesnitt er en levedyktig implementering for denne
case-studien av et smarthus lokalisert i Trondheim, Norge. Web applikasjonen er utviklet med
JavaScript og representerer en fullstack-applikasjon med en server og en klientside som gir tilpassede
funksjoner for å forklare og visualisere viktige konsepter knyttet til kontrollalgoritmen. Funnene
i denne rapporten vil til syvende og sist fungerer som et grunnlag for videreutvikling av smart hus
applikasjonen og integreres fullstendig med det eksisterende smarthussystemet.

Videre arbeid bør fokusere på å forbedre programvaren for databehandling på både server- og
klientsiden. Til slutt, inkludere flere funksjoner for ytterligere å utnytte de prediktive egenskapene
til MPC algoritmen og for å imøtekomme mer tilpassede elementer.

iii

List of Acronyms

Term Definition

AMS Advanced Metering System.

API Application Programming Interface.

COP Coefficient of Performance.

CSS Cascading Style Sheets.

HAN Home Area Network.

HMI Human Machine Interface.

HP Heat Pumps.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

HVAC Heating, Ventilation and Air Conditioning.

IoT Internet of Things.

JS JavaScript.

JSON JavaScript Object Notation.

MET Norwegian Metrological Institute.

MHE Moving Horizon Estimation.

MPC Model Predictive Control.

NLP Non-Linear Programming.

PID Proportional-Integral-Derivative.

REST Representational State Transfer.

SCADA Supervisory Control And Data Acquisition.

SYSID System Identification.

UI User Interface.

URL Uniform Resource Locator.

VAT Value Added Taxes.

iv

List of Symbols

Symbol Definition

Cbase BasePrice.

Cdiff Difference in cost.

Cdiff,high High difference in cost.

Cgrid Grid rent.

Cspot Spot price.

Cspot,avg Average of spot prices.

Cspot,high High spot prices.

C24h 24 hour cost.

Conv Convection.

Fan Fan level on heat pumps.

∆Fan Difference in fan level.

k Time step.

N Prediction horizon.

Pcorr Power correction.

PHP Heat pump power.

Sdiscomfort Slack variable for the reference temperature.

Smin Slack variable for the minimum temperature.

Tdiff Difference between reference and room temperature.

Tdiff,high High difference between reference and room temperature.

Tmin Minimum temperature.

Tref Reference temperature.

Troom Room temperature.

Ttarget Target temperature.

Tout Outside temperature.

Twall Wall temperature.

∆Ttarget Difference in target temperature

w Weight.

wspot SpotGain weight.

wtemp.above Temperature above weight.

v

Table of Contents

Preface i

Abstract ii

Sammendrag iii

List of Acronyms iv

List of Symbols v

List of Figures x

List of Tables xiii

List of Code xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 4
1.3 Structure of the thesis . 4
1.4 Limitations . 5

2 Theory 6
2.1 Power consumption . 6

2.1.1 Heat pumps . 7
2.1.2 Demand response . 8

2.2 Spot price market . 9
2.2.1 Nord Pool . 9
2.2.2 Electricity cost . 10

2.3 Model Predictive Control . 11
2.4 State of the art of energy management in smart houses 13

vi

2.4.1 IoT devices . 13
2.4.2 Smart temperature control . 14
2.4.3 Smart house applications and software 16

3 Smart house system description 21
3.1 Components . 21

3.1.1 API services . 22
3.2 Smart house model . 24

3.2.1 Dynamic model . 24
3.2.2 Moving Horizon Estimation . 25
3.2.3 Physical description . 26

3.3 MPC description/implementation . 27
3.3.1 Tuning factors . 28
3.3.2 MPC constraints . 28
3.3.3 Cost function . 31

3.4 MPC interaction . 34
3.4.1 Temperature settings . 34
3.4.2 Limit 24 hour predicted cost . 34
3.4.3 Spot price weight . 35
3.4.4 BasePrice . 35

4 Software tools 36
4.1 Web application . 36
4.2 Server-side ExpressJS . 37

4.2.1 HTTP request . 37
4.2.2 File watcher Chokidar . 39

4.3 Client-side React . 39
4.3.1 Connecting ExpressJS and React . 40
4.3.2 Charting library Recharts . 41

5 Software implementation and data processing 42
5.1 Data pipeline . 42
5.2 MPC comparison . 44
5.3 REST API server . 46

5.3.1 Data handling . 46
5.4 Web interface structure . 47
5.5 Quick installation guide . 49

vii

5.5.1 Installing and running the software . 49
5.5.2 Python (Optional) . 50

6 Results 51
6.1 Dynamic arrangement of data . 52

6.1.1 Navigation bar . 52
6.1.2 Show different graphs in the same display 53
6.1.3 Additional information . 53
6.1.4 Submit user requests . 54

6.2 Graphical display . 55
6.2.1 Graphical MPC comparison . 55
6.2.2 Day-ahead spot prices and weather forecasts 60

6.3 Detection mechanisms . 61
6.3.1 Detect high spot prices . 61
6.3.2 Detect significant deviation from reference temperature 63
6.3.3 Detect significant difference in electricity cost 65
6.3.4 Detect heat storage . 67

6.4 Human-MPC interaction . 69
6.4.1 Interactions with weights . 69
6.4.2 Reference temperature . 72
6.4.3 Minimum temperature . 73
6.4.4 Experimental results . 74

7 Discussion 79
7.1 Evaluation of software implementation . 79

7.1.1 Graphical comparison . 80
7.1.2 Selecting the appropriate trade-off . 81
7.1.3 Improve detection mechanism . 83
7.1.4 Further implementations . 84

7.2 Data processing . 87
7.2.1 Data flow between the server and MPC 87

7.3 Professional development and deployment . 89
7.3.1 Security . 89
7.3.2 Scalability and availability . 89
7.3.3 Smartphone app . 90

7.4 User testing . 91
7.5 Future of smart homes . 91

viii

8 Conclusion 93
8.1 Further work . 94

References 95

Appendix A Smart house system overview A-1

Appendix B JSON data structure on server-side B-1

ix

List of Figures

1.1 Illustration of a web interface for a smart control enabled by IoT. 3

2.1 Measured consumption of home appliances [W] in the smart house during the
30th of March 2021. 7

2.2 Measured consumption of heat pumps [W] in the smart house during the 30th of
March 2021. 8

2.3 Illustration of the five geographical elspot areas in Norway [10]. 9
2.4 Tibber smartphone application [15]. 13
2.5 Sensibo smartphone application [16]. 13
2.6 Potential benefits of implementing MPC into the controller design of a heating

system. 15
2.7 Smart home application (SmartThings) developed by Samsung [28]. 18
2.8 IoT smart home application dashboard [29]. 18
2.9 Flowchart of wireless data transfer from IoT devices to a user interface. 20

3.1 Illustration of the heat pumps system. 22
3.2 Simplified illustration of the modeling problem of a room environment, where

Toutside, Twall, and Troom, represents temperatures and PHP is the heating power
from the heat pump. The arrows indicate the flow of energy. 24

3.3 Schematic illustration of the MPC control in the smart house. 27

5.1 A basic illustration of the data flow between the data collection point and control
algorithm to the server and client-side. The arrows represent the direction of the
data and are explained at the bottom. 43

5.2 A simplified flowchart illustrating how the user requests are implemented in the
MPC scheme to present a comparison. 44

5.3 Flowchart describing the server developed in ExpressJS as a REST API. 46
5.4 Overview of main components in the web interface. 47

x

5.5 A basic illustration of the client-side framework presenting the main components
and communication between REST API and web interface. 48

6.1 Overview of the interactive user interface components in the web application. . . 51
6.2 A navigation bar component that allows for selecting a room environment and

day to view the prediction from MPC. 52
6.3 Three options in the left corner for displaying different temperature related graphs

in the same component. 53
6.4 Two options in the left corner for displaying different cost related graphs in the

same component. 53
6.5 Component for displaying additional information. 54
6.6 Component handling submit to MPC to implement action. 54
6.7 Graphical display of the predicted temperatures trajectories for comparison. . . . 56
6.8 Graphical display of the predicted cost trajectories for comparison. 57
6.9 Graphical display of the predicted cost trajectories for comparison. 58
6.10 Graphical display for the total cost over the whole prediction horizon. 59
6.11 A timer component informing the user when new predictions are available in the

application. 59
6.12 Graphical display of day-ahead spot prices. 60
6.13 Graphical display of weather forecast. 60
6.14 Detection component for explaining the concepts related to high spot prices. . . . 62
6.15 Graphical highlight of high spot prices. 63
6.16 Detection component for explaining deviations from reference temperature. . . . 64
6.17 Graphical highlight of period with significant difference from the reference tem-

perature. 65
6.18 Detection component for explaining high difference in electricity costs. 66
6.19 Graphical highlight of period with significant difference between costs in com-

parison. 66
6.20 Detection component for explaining the MPC scheme storing heat. 67
6.21 Graphical display of low spot prices. 68
6.22 Graphical highlight of period when the MPC scheme stores heat in the house. . . 68
6.23 UI component for the user to select a reasonable trade-off between thermal com-

fort and cost savings. 70
6.24 UI component for the user to interact with the spot price weight in the MPC

scheme according to their preference. 71
6.25 UI component for the user to decide the calculation of the BasePrice. 72
6.26 Temperature schedule component for setting reference temperature. 73

xi

6.27 Temperature component for setting the minimum temperature. 74
6.28 Spot prices on the day the experimental tests were performed. 74
6.29 Illustration of the predicted temperatures with maximum spot price priority. . . . 75
6.30 Illustration of the predicted temperatures with minimum spot price priority. . . . 75
6.31 The influence of maximum spot price priority on the 24 hour electricity cost. . . . 75
6.32 The influence of minimum spot price priority on the 24 hour electricity cost. . . . 75
6.33 Illustration of the predicted temperatures with high spot price priority. 76
6.34 Illustration of the predicted temperatures with low spot price priority. 76
6.35 Illustration of BasePrice equal 1, i.e subtracting the minimum. 77
6.36 Illustration of BasePrice equal 2, i.e subtracting the average. 77
6.37 Illustration of increasing the reference temperature to 25 degrees. 78
6.38 Illustration of decreasing the reference temperature to 15 degrees. 78

7.1 Potential implementation for user to restrict the MPC scheme to store heat in the
house. 82

7.2 Potential implementation of "turn off" the smart house. 84
7.3 Illustration of a potential remote configuration by communicating with the Rasp-

berry Pi. 88
7.4 Web interface design for smartphone browser or a potential smartphone application. 90

A.1 A detailed flowchart of the smart house system and components. All arrows are
described on the bottom of the figure [39]. A-1

B.1 JSON data structure on the server. B-1

xii

List of Tables

2.1 Simplified output feedback algorithm for MPC [14]. 12

3.1 Data from APIs used in the MPC scheme. 23
3.2 Measurements from APIs used in the MPC scheme. 23
3.3 Physical description of MPC . 26
3.4 The MPC weights for equation 3.8. 31
3.5 The MPC weights for equation 3.13. 31
3.6 MPC interactive elements. 34

4.1 Routes for accessing data from the MPC scheme on the server. 38

5.1 Routes for accessing user requests in the MPC scheme. 45

6.1 Control options for interacting with the MPC scheme. 69

xiii

List of Code

4.1 HTTP methods for GET. 38
4.2 HTTP methods for POST. 38
4.3 Chokidar with GET request. 39
4.4 Fetch the server data in React. 40
4.5 Post request from React to server. 40

xiv

Chapter 1

Introduction

The recent development within smart house solutions has accelerated the adoption of Internet of
Things (IoT) devices and contributed to facilitating smart energy management in buildings. In
terms of smart heating control, research papers published in the last decade have investigated
the possibilities of more complex approaches such as optimal predictive control. The application
of advanced building controls, such as Model Predictive Control (MPC), has been shown to en-
hance energy efficiency in buildings, by optimizing heating. Nevertheless, the implementation
and adoption of this technology in the average household are still in the early stages, regardless
of the abundance of research papers. This is related to the average user’s limited perception of
more advanced control strategies. Albeit MPC can provide several advantages in terms of predic-
tive capabilities, thermal comfort, energy savings, and cost savings, the user tends to be hesitant
regarding implementing complex systems in their households. As a result, more user-friendly
approaches have to be investigated to sustain the development without compromising the under-
standing. [1]

1.1 Motivation

Modern alternatives to reduce energy consumption is necessary for the power grid to withstand
the increased electrification. More specifically reduce the power peaks that contribute to over-
loading the capacity of the grid. The management of heat consumption and the implementation
of effective heating strategies have become a key facet of energy management in residential build-
ings since, generally, household appliances are powered by electricity and contribute to a large
proportion of the energy demand. [2]

1

1.1 Motivation NTNU

Today, buildings account for approximately 40% of the energy demand in Norway, whereas
households account for 30% [3]. Although more energy-efficient technologies such as heat pumps
have become a common heating device in Norwegian households, the energy demand is expected
to increase, whereas approximately 80% of the household heating comes from electricity [3].
Increased electrification can challenge the existing grid infrastructure. To avoid expensive grid
investments new alternatives to handle the expected increase in electricity demand is essential for
a sustainable energy transition. Peak power demand can incur high investment costs in the grid
infrastructure, due to the constant need to upgrade the electrical components in the power grid.

The Norwegian government has made a proposal for directives considering the energy perfor-
mance of buildings, which mainly contains provisions on energy requirements [4]. These direc-
tives are related to buildings’ energy performance and energy efficiency which are stated as the
following:

■ All new buildings must have self-regulating equipment for temperature in each room /
each heating zone. Existing buildings require the installation of such equipment when heat
generators are replaced. The requirements only apply if it is technically and economically
feasible.

■ By 2025, all commercial buildings with heating and air conditioning systems over 290 kW
must have automation and control systems if this is technically and economically feasible.

To comply with new regulations in building energy management, more advanced control strate-
gies for regulating consumption will become essential. However, today, buildings tend to adopt
classic control strategies with limited energy-saving capabilities. Albeit classic control strategies
such as thermostats are easy to implement, they only provide simple regulation of temperature.
One of the concern in regards to implementing modern control strategies in buildings are the re-
quirement of expensive equipment and set-ups. This has sequentially led to the average user not
being able to install such a system or understand it.

The MPC control method has been studied since the 1970s and has been extensively used in pro-
cess control and is now becoming an interesting control methods for building energy management.
MPC has been investigated for optimizing the control of energy-consuming units in households
and typically relies on the spot prices to reduce the heating. Implementing optimal control in
buildings has proven to reduce energy consumption and/or related electricity costs without com-
promising thermal comfort completely. Thus, optimal control is not only beneficial in terms of
improving energy efficiency, another significant driving factor for the integration of MPC is the
potential of reducing costs related to electricity. In December 2021, a new power price record
was observed as a result of high power prices in major parts of Europe, partly due to increased

2

1.1 Motivation NTNU

prices for gas, coal, and CO2 emissions [5]. In addition, the integration of intermittent renew-
able energy sources can increase the price volatility. With MPC, additional information such as
weather forecasts and spot prices can be included in the controller design in order to predict and
optimize the heating and automatically shift the consumption to lower-priced hours. As such the
consumer will experience a lower electricity bill. However, modern optimal control strategies can
be complicated for the average user to understand.

As a response to the challenges with implementation and understanding of more complex control
strategies, the user perspectives have to be considered. The success of smart house solutions
ultimately depends on how easily people can integrate them into their daily lives. A key element
of any control implementation is the communication of data from the smart system to the user. In
order for the average user to adopt smart house solutions, the user should be able to understand
the system and interact with the devices installed.

A potential solution to integrate the user into the system is by developing more intuitive smart
home applications to sustain the technological transition. The current development in smart
home applications and services are expanding, however, with more modern alternatives to control
strategies, these applications will require more functionalities, customization, and information to
maintain a good user experience. This relates to concepts of how to understand and interact with
higher complexity systems without compromising the understanding of the user. [6]

Figure 1.1: Illustration of a web interface for a smart control enabled by IoT.

With IoT, customizing your own software to fit the system has become more viable. The emer-
gence of commercial IoT devices along with the installation of the Advanced Metering System
(AMS) in the majority of Norwegian households, has introduced intelligence and real-time data

3

1.2 Problem statement NTNU

gathering and the potential for optimized electricity usage. With the development of home au-
tomation, digitization, and IoT, other technologies such as smart home application for including
the user is necessary for a successful implementation of MPC solutions in residential homes. In
figure 1.1, an illustration of a user interfaces for controlling heat pumps with IoT is presented.

Today, there are few smart home applications and services that support MPC, which contributes to
maintaining the gap between the development of home automation technologies and user adop-
tion. Thus, by investigating how smart home applications can accommodate modern control
strategies and users, some of the problems related to adoption can potentially be resolved.

1.2 Problem statement

The main objective is to develop and implement a customized web application for a smart house
control algorithm in order for the average user to interact with an advanced control strategy such
as MPC. A simplified language is provided for the purpose of explaining control concepts related
to the modern optimal control strategy. The MPC scheme is able to predict future temperature
trajectories to perform optimal control of heat pumps.

The optimized output seeks to make a compromise between thermal comfort and monetary cost.
One of the key challenges related to developing this human-MPC interface is to present the MPC
data intuitively. This will encompass explaining concepts such as, why the thermal comfort level
is not attained, explaining how different elements are influencing the MPC scheme and how the
user can choose the outcome according to comfort and economic preferences. Furthermore, con-
tribute to evaluating how a human-MPC interface can reduce the challenges related to the adoption
of complex control strategies in the average household.

1.3 Structure of the thesis

This thesis contains a total of eight chapters, including the chapter 1, which presents the introduc-
tion. Chapter 2, describes the relevant theory for the project such as smart energy management in
households, MPC, and the state of the art in smart houses and software. Chapter 3 describes the
system overview with a focus on the MPC scheme. Chapter 4 presents the software tools used
to develop the web application and chapter 5 describes an overview of the software implementa-
tion. Chapter 6 demonstrates the results obtained from developing the interactive web application
components. Chapter 7 presents a discussion of mainly the software implementation and poten-
tial improvements. Finally, chapter 8 draws conclusions based on the discussion and presents
suggestions for further development of the application.

4

1.4 Limitations NTNU

1.4 Limitations

The web application presented in this thesis is developed to solely support controlling and mon-
itoring the heat pumps regulating the temperature in a smart home located in Trondheim. Other
IoT devices installed in the house are not covered in this thesis. The web application is designed
specifically for the case study and will not work correctly for other smart homes.

Furthermore, the application is developed locally which refers to the whole application running
on the local computer. This entails that to access the web interface, the user is required to have
the software installed and running on their computer.

The thesis report is not concerned with providing a complete description of the control design of
the smart house algorithm. The software implemented prior to writing this thesis is assumed to
work correctly. Thus, further considerations for the house control algorithm are not investigated in
this thesis. Instead, the thesis attempts to demonstrate how an easy understanding of the specific
MPC schemes operating the heat pumps in the smart house can be gained by implementing a web-
based software solution. Eventually, the development of the application has the goal of creating a
foundation that can be used to further customize the environment for the smart house featured in
this study.

Albeit this thesis focus on the user perspective, the web application has not been tested on average
users. The user perspective can to some degree have been influenced by the author’s knowledge of
control concepts such as MPC and optimization in general. The assumption in this thesis is based
on how the author views how the average user can understand modern optimal control strategies
such as MPC.

5

Chapter 2

Theory

This chapter provides relevant background information for understanding concepts related to
smart control of heating systems in buildings and home automation. In sections 2.1 and 2.2
the power consumption related to Norwegian households and the spot price market is explained.
Furthermore, in section 2.3 the relevant theory behind MPC is provided. Section 2.4 presents the
state of the art in smart home technologies with a focus on advanced control algorithms, such as
MPC, and potentials for home automation software and services.

2.1 Power consumption

Considering that the power grid is designed to tolerate the highest power consumption, the in-
creased electrification can result in more frequent upgrades of the grid infrastructure. The power
grid components must have sufficient capacity to handle the highest peaks and the operation of
upgrading these are considered expensive and should be avoided. The power consumption varies
throughout the year, depending on the outside temperature. In terms of heating consumption,
especially during colder months can contribute to peak demand periods. When numerous house-
holds consume energy simultaneously the capacity of the grid is challenged.

Figure 2.1 shows the hourly power consumption of appliances in the smart house investigated
in this thesis during a day at the end of March 2021. Higher demands can be observed in the
morning around 8:00-11:00 and late afternoon around 17:00-20:00. A similar trend is evident in
average Norwegian households, where the majority of energy consumption comes from house-
hold heating.

6

2.1 Power consumption NTNU

Figure 2.1: Measured consumption of home appliances [W] in the smart house during the 30th of
March 2021.

Accordingly, introducing smart energy management can contribute to reducing the strain on the
grid and perform load shifting, such that the user can even out their consumption and enhance
their flexibility. Since the majority of the energy demand is related to electricity-generated heating
there is a great potential for further reducing the consumption in the energy sector by optimizing
heating in households. [2]

2.1.1 Heat pumps

The prevalence of heat pumps has increased, especially in recent years. In Norway, heat pumps
have become one of the most common heating systems installed in households. While heat pumps
are electric-driven, the energy efficiency is considered to be higher than other heating systems.
Generally, heat pumps are considered energy efficient because they are capable of extracting heat
from an environment that is cooler by using moderate amounts of energy. In order to measure the
efficiency, the ratio between the electrical input and the heat output is calculated and referred to
as the Coefficient of Performance (COP). On the other hand, electric-heated systems contribute
to power peaks. With the increased use of electricity as an energy carrier, more energy-efficient
technologies are required. Developing and implementing effective heat pump control techniques
is essential to enable more energy-efficient and flexible use of electricity. [7]

7

2.1 Power consumption NTNU

Figure 2.2: Measured consumption of heat pumps [W] in the smart house during the 30th of
March 2021.

In figure 2.2, the heat pump consumption is optimized by implementing a modern control strategy
into the controller design. To a large extent, the consumption is minimized during the peak hour
demand. By optimizing the control of heat pumps, buildings can further reduce their energy
consumption by improving their efficiency, thus there are several benefits of implementing energy
and cost-saving actions into the controller design of heat pumps.

2.1.2 Demand response

Smart buildings with optimal heating control can exploit the electricity prices to perform demand-
response. This term refers to balancing the consumer electricity consumption during peak demand
periods. Moreover, with the increased usage of electricity from renewable energy sources, the
grid can experience disturbances due to intermittent generation, and the supply and demand are
reflected in the spot price market, further explained in section 2.2. As such, the consumers should
become a flexible part of the power grid and participate in a demand-response program according
to the spot prices. [8]

Reducing the electricity bill can be an important motivation for consumers to use energy in a
more conscious manner. However, with the advancement in smart house technology, the system

8

2.2 Spot price market NTNU

can react automatically to the variations in the spot market. Considering heating systems, such
as heat pumps, can have the ability to take advantage of lower electricity prices, e.g. increase
the temperature to heat the thermal mass of the building in advance of peak spot prices, the heat
pumps can avoid high electricity costs and contribute to enhancing the flexibility. Typically, the
highest spot prices occur during peak hour demand, hence price-based demand response is able
to reduce the consumption with the purpose of reducing the cost. [9]

2.2 Spot price market

This section provides information regarding the spot price market Nordpool and electricity costs
for households in Norway. In this project, the smart control of heat pumps takes into account
the optimization of the electrical consumption against the electricity spot market. As such, the
consumption is adjusted according to electricity prices, and the supply and demand in the power
grid are better utilized.

2.2.1 Nord Pool

The Norwegian power grid operates under the European power exchange market Nord Pool,
which offers both day-ahead and intraday electricity markets across the Nordic regions. In this
project, the day-ahead spot prices are used, where the spot price refers to the hourly price of
electricity. The day-ahead market is an auction-based exchange of electricity.

Figure 2.3: Illustration of the five geograph-
ical elspot areas in Norway [10].

In order to maintain a balance between production
and consumption of power, Norway can import and
export power between the connected countries and
regions, depending on the power supply and de-
mand. The power exchange flows from areas with
low prices to areas with high prices.

Norway is divided into different price areas (elec-
tricity spot areas), and electricity prices are based
on which area the consumer belongs to. Purchases
and sales of electricity are made per area, where the
spot prices are higher if there is an imbalance be-
tween the anticipated supply and demand in that
region. The regions in Norway are divided into
five geographical elspot areas, illustrated in figure
2.3. [11]

9

2.2 Spot price market NTNU

2.2.2 Electricity cost

The electricity cost a private consumer pays is depending on the type of the power agreement with
the power suppliers. There are three types of agreements, fixed-, variable- or spot-based power
agreements. In this project, the power agreement is based on spot prices.

The electricity bill varies with both the consumption and prices - hour by hour. Having a spot
price-based electricity agreement has proven to be the most affordable option for consumers, in
particular, if the consumer uses electricity when the spot prices are low.

The private consumer is required to pay a monthly electricity bill that consists of two parts;
the electricity price paid to the power supplier, and the grid rent paid to the network company,
including taxes (VAT of 25%, statutory payment to the Energy Fund (Enova) of 0.125 NOK / kWh
and consumption tax on electric power of 0.1926 NOK / kWh). The first part is measured in kWh,
which is based on the spot prices from Nord Pool. This is registered by a home-installed AMS.
In the second part, the grid rent is divided into a fixed part determined by the network company
and a variable part determined by the power consumption in kWh. [12]

In 2022 there is proposed a new grid rent which will reward customers who cut the peaks in their
electricity consumption, by price incentives in grid tariffs or other economic incentives. This
will be formally introduced on the 1st of July, 2022. By introducing a power tariff to limit the
congestion, the consumption is evened throughout the day. The goal is to provide better utilization
of the power grid. These changes will affect the grid rent, such that the fixed part will change to
depend on the maximum power consumption in kW and the variable part will depend on when,
during the day and week, the power is used. [13]

Accordingly, the consumer pays for the actual energy use in kWh and the power in kW. This will
primarily be beneficial for the power suppliers and the transmission grid operators, however, the
consumers need to adopt a more conscious consumption behavior. By allowing a smart energy
management system to account for this regulation, the consumers can better control their power
consumption and avoid high electricity bills. There might be an increase or decrease in the grid
load during different periods, reflected in the spot prices, hence this information can contribute to
the smart energy management of heating. In regards to these proposed changes, reducing energy
consumption when the spot prices are high can contribute to economic and operational advantages
for the consumer and the transmission grid operator.

10

2.3 Model Predictive Control NTNU

2.3 Model Predictive Control

The MPC principle is described as an advanced control strategy that optimizes an objective to
control and predict future outputs of a dynamic process. By using the current measurement of the
states, the MPC scheme calculates an optimal control sequence over a finite prediction horizon
while satisfying a set of constraints. By predicting future outputs of the system, the algorithm is
able to compute the optimal control input to drive the predicted output to the desired reference,
where only the first step of the control input is implemented. Hence, for the next given time
horizon, a new control input sequence is generated. [14]

min
x

f(x) (2.1)

subject to ci(x) = 0 i ∈ E (2.2)

ci(x) ≤ 0 i ∈ I (2.3)

An MPC algorithm is based on solving an optimization problem at each time step to determine
the optimal control action by minimizing the objective. In equation 2.1 a general cost function
f(x) is minimized, where x is the decision variable that minimizes the objective. The minimum
needs to satisfy a set of constraints, described by equality constraints in equation 2.2, and in-
equality constraints in equation 2.3 (where E and I are sets of indices for equality and inequality
constraints). An optimized-based algorithm is iterative methods that starts with an initial guess
and seeks to improve the solution based on the objective.

The MPC can predict the dynamic evolution of the system and the changes in the temperature
dynamics. However, to implement MPC in buildings, a good dynamic temperature model have
to be established. A technique classified as gray-box modeling is most suitable and well adapted
to perform optimization. A gray box model is essentially a combination of white and black box
models. The model is formed from physics-based methods while the parameters are based on
estimation algorithms. Such control algorithms use mathematical models, where thermal inertia
is computed and used to avoid undershoot or overshoot of temperatures. [1]

A general output feedback MPC algorithm is demonstrated in table 2.1. Output feedback refers
to the states being estimated by using available measurements of the states, instead of direct feed-
back from raw measurements, further detailed in section 3.2.2. Based on the currently estimated
states and the dynamic model, the MPC is responsible for calculating, for each instance, the
predictions of the dynamic evolution of the process. The prediction horizon changes due to the
moving horizon and a new control problem are solved at time t + 1, discrete-time.

11

2.3 Model Predictive Control NTNU

Table 2.1: Simplified output feedback algorithm for MPC [14].

Algorithm Output Feedback

for t = 0, 1, 2, ... do

Compute an estimate of the current state x̂t based on the measured data

up until time t.

Solve a dynamic optimization problem on the prediction horizon from t

to t+N with x̂t as the initial condition.

Apply the first control move ut from the solution above.

end for

The objective of an MPC scheme in buildings is commonly related to the thermal comfort of the
user, however, other desired objectives can include minimizing energy use and monetary costs.
Due to the predictive behavior of the control algorithm, additional information such as day-ahead
spot prices and weather forecasts can be included, further explained in section 2.4.2.

Accounting for spot prices in the optimization is advantageous since the MPC can be used to op-
timally control the efficiency of energy use in a smart house and further contribute to performing
local automated load shifting. Although minimizing consumption can contribute to minimizing
the monetary costs, it is not necessarily the case since the electricity prices are volatile. As a
result of the predictive behavior of the MPC, the control algorithm is able to make an informed
decision on how to regulate the heating in a smarter way based on additional information such as
spot prices and weather forecasts. [8]

12

2.4 State of the art of energy management in smart houses NTNU

2.4 State of the art of energy management in smart houses

Smart homes have been researched for nearly a couple of decades and the concept has gained
widespread recognition in the society. In particular, research considering improving the energy
efficiency of heating systems has gained significant attention. The approach to optimizing the
operation of heating systems, such as heat pumps, requires more sophisticated control methods,
posing challenges in terms of implementation. Nevertheless, advancements in home automation
and the introduction of IoT have made it easier for homeowners to implement such systems to
enable smart energy management.

2.4.1 IoT devices

The installation of AMS in Norwegian households has become a key enabler for IoT and the
adoption of smart home technologies. An IoT device allows for sensors, actuators, and con-
trol strategies to be connected and transfer data through the Internet. Furthermore, allowing for
optimized energy usage of appliances and improving energy efficiency by having a centralized
system that controls for instance heating. In the context of controlling heating systems, sensors
are typically low-powered devices that detect temperature conditions.

In regards to recent advancements in digitization and IoT, implementing smart home devices has
become less expensive and easier to install. Smart houses can benefit from temperature control
through IoT devices that utilize AMS. A Norwegian electricity company called Tibber offers
commercial IoT devices and services which allow the consumer to monitor and control their real-
time energy consumption. Tibber pulse is designed to fit all new AMS meters in Norway that
have a Home Area Network (HAN) port. [15]

Figure 2.4: Tibber smartphone application [15]. Figure 2.5: Sensibo smartphone application [16].

13

2.4 State of the art of energy management in smart houses NTNU

In regards to heating systems, there are currently IoT services that allow control of heat pumps.
These are often referred to as smart thermostats, such as Nest, Ecobee, and Honeywell Lyric that
allow the consumer to control the temperature remotely [17]. For homes with installed air-to-air
heat pumps, a company named Sensibo offers access to heat pump settings and control settings. In
addition, the Sensibo device provides information about the measured humidity and temperature
in the house and functions both as a sensor and a smart thermostat [16].

The information from commercial IoT services, such as Tibber and Sensibo, can be accessed
through Application Programming Interfaces (APIs). They also offer to monitor and control the
connected devices through their apps, shown in figure 2.4 and 2.5. The implementation of such
devices is considered simple for the average user and can facilitate smart energy management.
Tibber claims that by installing heat pumps that are compatible with Sensibo, it is possible to
reduce both electricity costs and consumption through smarter heating, and in total reduce the
power consumption by an average of 9.3% [18].

In addition to integrating IoT devices and software services, sophisticated control techniques can
be implemented to control the smart appliances in the house to further improve the energy man-
agement in buildings. To further optimize the temperature control of heat pumps more advanced
control strategies have to be considered.

2.4.2 Smart temperature control

Over the past decades, building heating controllers have seen significant advancements. Various
articles suggest different control strategies, algorithms, and equipment to optimize the heating to
enhance energy efficiency. The control methods vary from classic approaches such as thermostat
controllers to modern predictive and optimization algorithms such as MPC. [19]

Today, thermostats are the most common type of temperature controller installed in residential
buildings. The thermostats are still extensively used for regulating temperature in households
because they are simple and cheap to install. However, thermostats are typically implemented
without considering the thermal dynamics of the house and the user, which can result in inefficient
regulation of the temperature.

A heating system’s primary purpose is to provide thermal comfort for its occupants. However, op-
timal management of heating systems can be achieved where both thermal comfort and efficiency
criteria are met. There are several studies related to improving the efficiency of Heating, Venti-
lation, and Air-Condition (HVAC) by implementing smart controller designs. In the following, a
literature review has been conducted to evaluate the advantages and disadvantages of implement-
ing more advanced control strategies for heating systems, with a focus on MPC schemes.

14

2.4 State of the art of energy management in smart houses NTNU

In [20, 21], reviews of several modeling techniques and control strategies are investigated for
HVAC systems, where more advanced control strategies such as MPC are discussed in relation to
the classic controllers such as thermostats and Proportional-Integral-Derivative (PID) controllers.
Overall, the MPC outperforms other control strategies in terms of energy and cost savings while
maintaining thermal comfort. The optimal control strategies rely on improving indoor comfort
and reducing building energy consumption. However, the articles also highlight the challenges
related to having the appropriate application of HVAC controller design, which is very dependent
on establishing and good dynamic model of the building and heating system.

A relatively new study, [22], investigated an IoT-based architecture for MPC of HVAC systems in
smart buildings. One of the interesting elements of this article is that it mentions approaches for
integrating the user into the system by developing a user interface. This is one of the few reviewed
literature that discusses this aspect in relation to MPC, where they consider the possibility of
developing a device/dashboard dedicated to the user to allow monitoring of the environment and
setting the control system mode. This highlights the importance of the user being included in the
system in order to ease the adoption of such control strategies.

Other research projects, [23–25], have demonstrated that MPC can provide substantial cost sav-
ings, by including electricity prices and improve indoor comfort as compared to traditional control
approaches. Smart temperature control can take advantage of the price signals in order to offer
flexibility, as mentioned in 2.1.2. From the reviewed literature, implementing an MPC as the
controller design for HVAC, both thermal comfort and electricity cost can be variables in the
optimization and potentially contribute to active demand response and reduce the overall con-
sumption. The benefits of smart temperature control such as MPC are illustrated in figure 2.6.

Figure 2.6: Potential benefits of implementing MPC into the controller design of a heating system.

However, the advancement in control strategies poses some challenges in relation to adoption.
Most of the literature focus on buildings in general, however, the implementation of MPC in the
average households can contribute to more challenges. In particular, this relates to the fact that
these systems tend to require complex and expensive equipment which is hard to implement for

15

2.4 State of the art of energy management in smart houses NTNU

the average person. In addition, the implementation and understanding of such systems also re-
quire people with specialized knowledge. Furthermore, it is challenging to assess how the user can
interact with higher complexity systems. Appropriate hardware and software are also considered
important for developing compatible communication interfaces. Albeit MPC implementation tra-
ditionally has required an expensive and complicated set-up the smart house system in this project
uses a combination of heat pumps, IoT, and MPC to optimize the temperature in the house, with
the intent of having a simple and cost-effective implementation. This approach has proven to be
a viable implementation in an average household. [1]

2.4.3 Smart house applications and software

The adoption of smart home solutions depends ultimately on how easily people can integrate
them into their daily lives. The development of smart home applications such as web interfaces
and smartphone apps has grown in popularity and can play a key role in facilitating the adoption
of more complex controller designs, such as MPC.

However, currently, there are few studies or research projects that have investigated the possibility
of developing a human-machine interface for MPC schemes. Albeit there are other approaches
that relate to implement Supervisory Control and Data Acquisition (SCADA) systems, these sys-
tems are commonly used in process control, and power system operation and are currently gaining
importance in smart building control. However, these are more applicable in commercial build-
ings than households. [1]

User perspectives

To solve the challenges with adoption, one must understand how users can comprehend and inter-
act with more complex systems. The user perspective and experience is of paramount importance.
In this project, the user interface is intended to work as a tool for the user to interact with the MPC
scheme controlling heat pumps.

One of the primary barriers to adopting smart home technologies can be related to the lack of
trust from the users in terms of the learning process, confidence in technology, and cost of the
technology. In regards to MPC, the user might experience a limited perception when lacking an
understanding of basic optimization concepts. Hence, providing an intuitive user interface can
create a user-friendly experience without the need for in-depth knowledge. When the user does
not understand the system they tend to fight it or try to control it in ways that are not ideal. Also
taking into account that the user can also have a limited perception in terms of the usefulness
and value of the technology. Another important factor is related to the security of IoT devices

16

2.4 State of the art of energy management in smart houses NTNU

and the collection of data. The user can have concerns about the leakage of sensitive personal
information. [26]

Today, there are few people on average that have experience and understanding of modern optimal
control methods, such as MPC. As such, the applications and services supporting MPC will rely
on easy formulation and approaches that are understood by users in general. In this manner, the
user can to a certain degree understands the system, by including simplified language, although
the concept, in general, is complex.

With MPC there are concepts that can be communicated intuitively to the average person, further
explained in section 3.4. These present some of the basic concepts behind control systems. Since
most people are familiar with temperature control such as thermostats, regulating and setting
reference temperature is considered easy to understand. However, understanding the concept of
why the reference temperature is not reached or why the predictions change, is another problem.

According to the results from the article, [27], the reviews on opinions and perceptions of smart
thermostats from users suggest that the users prioritize comfort over energy efficiency. The article
also noted that users do not necessarily understand how the smart choices are made and interaction
with the control can contribute to disturbing the potential savings.

However, developing user interfaces that can make the user aware of the benefits of maintaining
a balance between comfort and energy savings/cost savings can be included. Thus, an increased
level of technological literacy and better user interface design may reduce concerns and negative
commentary about installation and usability.

Existing IoT applications and platforms

More and more people will integrate home automation solutions leveraging IoT into their homes,
resulting in an increase in demand for smart house application development. A user interface can
be developed as web applications, dashboards, or smartphone applications.

Some of the most commonly used smart home apps are Amazon Alexa, Apple home, and the
Samsung Smart Homes app. The Samsung application called SmartThings can assist the user
to regulate for instance the temperature remotely, as presented in figure 2.7. These smart home
applications and services do not directly enable smart energy management in houses, rather they
allow for simple remote control. The functionalities are typically limited to only adjusting tem-
perature settings. However, by reviewing the state of the art in app development for smart homes
it is possible to gain insight into different types of functionalities and user-interface elements that
are important for achieving a good user experience.

17

2.4 State of the art of energy management in smart houses NTNU

Figure 2.7: Smart home application (SmartThings) developed by Samsung [28].

Figure 2.8: IoT smart home application dashboard [29].

Other alternatives to smartphone applications are dashboards and web applications. These user
interfaces allow the user to a greater extent view of graphical displays due to typically bigger

18

2.4 State of the art of energy management in smart houses NTNU

screens. A dashboard/web application interface is presented in figure 2.8, which highlights the
current room temperature and power consumption.

■ Microsoft Azure IoT Suite

■ Amazon Web Services

■ Apple HomeKit

■ Google Cloud IoT

■ Android Things

In addition to commercially available applications,
there are platforms that allow people to create their
own content, given that the platform supports the
devices intended for the smart home. Currently,
there are various IoT systems that can offer a plat-
form for developing applications for smart homes.
[30] These software services support the adoption
of home automation by choosing a reliable IoT
platform. Some of the most popular platforms are
listed to the right. Such services typically pro-
vide generalized software to accommodate differ-
ent sensors and actuators.

Some of the existing platforms are to some degree constrained in terms of options. In addition,
building a custom system on top of an existing platform can bring uncertainties such as updates
and changes to the software. For more advanced algorithms such as MPC, the commercially
available platforms and applications are not specifically designed for implementing such a system.
As a result of this, a customized application is required in order to gain control of the system and
support the MPC scheme.

Creating customized software

An alternative to utilizing the platforms is rather to utilize the APIs that various IoT services
provide. These can further provide the necessary information to create specialized software for
the smart house environment and the user can gain more control. Through APIs, it is possible to
access information from the IoT devices and possibly develop a customized application for the
smart house environment. Developing a custom IoT solution allows for originality and highly
custom-built interfaces.By creating a custom solution, the compatibility, performance, and user
experience can be increased. By developing a custom application designed to fit the environment,
more functionalities, flexibility, and tailored features can be integrated. However, developing
customized software for a smart house can be time-consuming and difficult. In the beginning, the
application should be designed to manage only one device.

Since IoT enables smart home devices to be connected to the same ecosystem, the users can ac-
cess the information retrieved from API and the data collection point through a user interface.
This requires the data to be processed into a human-readable form, such as graphical displays.

19

2.4 State of the art of energy management in smart houses NTNU

Figure 2.9: Flowchart of wireless data transfer from IoT devices to a user interface.

Home automation systems typically include a centralized entity that functions as the main con-
troller. This main controller is commonly referred to as the hub and facilitates the process of data
management by implementing control strategies to handle the data collected from the IoT devices
transferring information through APIs. In addition, the output from the hub and the controller
can be visualized through a user interface, as illustrated in figure 2.9. The data retrieved from the
house hub does not directly provide any meaningful information to the user. However, this data
can be directly used to control the appliance as well as transform the output into meaningful data
through data processing and analyses. A control algorithm operating the hub performs actions
according to the information received from the sensors and user. For instance, the hub can decide
to change the temperature by increasing the power usage of the heat pumps. To further improve
the user experience, a back-end server connected to a client app can be developed to organize and
present the data received from the hub.

20

Chapter 3

Smart house system description

In this chapter, a general description of the smart house system is presented with a focus on the
MPC scheme. The smart house is located in Trondheim and provides a real experimental setup.
The first section 3.1 presents the components in the smart house. In section 3.2, information
regarding the dynamic and physical model of the house is provided. Furthermore, section 3.3
describes the MPC scheme implemented in the smart house for controlling the heating system.
Finally, section 3.4, introduces how the user can interact with the control algorithm.

3.1 Components

This section presents the components of the smart house system, including sensors, actuators,
IoT devices, and API services. The components in this thesis are restricted to include the relevant
components for the heating system and MPC. This entails heat pumps as the heating system,
IoT devices such as Tibber and Sensibo, and API services for accessing data for forecasting. A
complete overview of the system and components is provided in appendix A.

Heat pumps

The smart house as has four installed air-to-air heat pumps, where one heat pump in installed in
each room. The four rooms are namely, Main, Living, Livingdown, and Studio. The heat pumps
installed in the smart house include both an outdoor and indoor unit with a refrigerant as medium.
Three indoor units main, livingdown, and studio, is connected to one outdoor unit, one indoor
unit living, is connected to another outdoor unit, illustrated in figure 3.1.

21

3.1 Components NTNU

Figure 3.1: Illustration of the heat pumps
system.

The heat pump are responsible for generating heat,
however, cooling mode cannot be triggered by the
MPC code. The MPC scheme controls the heat
pump settings, mainly referring to the target tem-
perature, fan level and heating mode. The COP is
assumed to be equal for all heat pumps and mod-
eled as a function of the outdoor temperature. The
individual heat pump power is not directly mea-
sured and need to be estimated in order for each
room temperature to be controlled. The procedure
of estimating the individual power is not included
in this thesis.

3.1.1 API services

The smart house system gathers data from several API services. These include the additional
data received from online APIs such as weather forecasts and day-ahead spot prices. Various IoT
devices are installed in the smart house, including 2 Tibber pulse devices, 4 Sensibo Sky devices,
3 Mill air sensors, and 3 IoT-enabled heating panels. In this thesis, the focus is aimed at the Tibber
Pulse and Sensibo sky devices, which are related to the heating system in the house.

Norwegian Meteorological Institute’s API service

In order to collect information about the outside temperature, data from the online Norwegian
Metrological Institute (MET) is used. This API allows anyone to access weather information
about the current weather, including forecasts and historical weather data. The MPC utilizes this
API service to collect weather forecast data about the outdoor temperature.

Nord Pool’s API service

In order to collect information about the day-ahead spot prices, data from the online Nord Pool
API is used. The day-ahead spot prices are published around 12:00 AM. The MPC scheme utilizes
the spot prices in the cost function in order to minimize the cost related to the energy consumption
of the heat pumps.

Tibber Pulse

Tibber Pulse is an IoT device that provides information about power consumption through the
AMS meters in the house. The power consumption is measured with two separate AMS, whereas
one is dedicated to measuring the heat pump consumption, and the second measures other energy-

22

3.1 Components NTNU

consuming devices in the house. The sampling rate for real-time power is two seconds and is
accessed through the Tibber Pulse API.

Sensibo Sky

Sensibo Sky is an IoT device that provides information about the heat pump settings. The heat
pump settings receive control actions from the MPC scheme. In addition, the Sensibo device
works as a sensor providing information about the humidity and temperature. The sampling rate
for updated measurements is 90 seconds, however, the temperature and heat pump settings from
Sensibo Sky are measured at a 5 minutes interval and are accessed through the Sensibo Sky API.

Raspberry Pi and measurements

The Raspberry Pi installed in the house serves as the central hub and data collection point. A
smart home hub is typically hardware that connects all smart devices and controls communication
between them. This represents a relatively easy set-up where the aim is to have a system that is
simple to install in average households, with the intent to optimize heating. The data collected
from the heat pumps and online APIs are presented in table 3.1

Table 3.1: Data from APIs used in the MPC scheme.

Data Accessed through

Heat pump states Sensibo API

Weather forecast MET API

Spot prices Nordpool API

The smart house sensors provide measurements from APIs, presented in table 3.2. The control
algorithm receives the data and measurements that allow it to control the heat pumps and perform
a low-cost smart house modeling on the house.

Table 3.2: Measurements from APIs used in the MPC scheme.

Measurements Measured by Accessed through

Room temperature Sensibo Sky Sensibo API

Outside temperature MET MET API

Consumption Tibber Pulse Tibber API

23

3.2 Smart house model NTNU

3.2 Smart house model

In this section, an overview of the dynamic model is presented, nevertheless, a complete descrip-
tion is not provided due to the limitations of this thesis. A physical description of the system,
including the states, inputs, and dynamics, is required to understand the MPC formulation.

In this project, System Identification (SYSID) is used to generate an approximate dynamic model
of the temperatures in the house, where the parameters are generated based on measurements.
A large amount of data has been collected on the house to perform an accurate identification of
parameters. To solve numerical optimization problems a software tool, CasADi, has been used,
which offers Non-Linear Programming (NLP) solvers.

3.2.1 Dynamic model

The smart control is based on a dynamic optimization, which takes into account the thermal inertia
of the house. Generating a dynamic temperature model is important for the MPC scheme to
work optimally and will also include estimating unknown parameters in the house. The unknown
parameters are generated by SYSID, the current states are estimated and further supplied to the
MPC scheme. The temperature dynamics are based on the heat transfer inside the house. Heat
transfer encompasses the losses and gains of heat within a room environment and can be classified
in three ways; conduction, convection, and radiation. A basic illustration of the modeling problem
is presented in figure 3.2.

Figure 3.2: Simplified illustration of the modeling problem of a room environment, where
Toutside, Twall, and Troom, represents temperatures and PHP is the heating power from the heat
pump. The arrows indicate the flow of energy.

24

3.2 Smart house model NTNU

In buildings, the temperature difference between the inside and outside is important to consider.
Due to the fact that heat transfer happens from hot areas to cold areas, the thermal comfort in the
building might be affected by the conduction through the walls, as a result of temperature differ-
ences. Air movement causes heat transfer by convection in buildings as a result of air moving
between different temperature zones. While radiation is typically induced by the sun. [31]

Establishing a thermal dynamic model of a building is necessary to estimate the energy consump-
tion under different operating conditions. Other factors that need to be considered are windows,
external heating, sun radiation, outside temperature, etc. The house model parameters include the
thermal inertia and the losses of the rooms.

A simplified calculation to describe the heat transfer is demonstrated in equation 3.1. This equa-
tion models the heat transfer by conduction through the walls for a single volume in the house.

Twall,k+1 = ρout(Tout,k − Twall,k) + ρroom(Troom,k − Twall,k)

Troom,k+1 = ρroom(Twall,k − Troom,k) + ρdir(Tout,k − Troom,k) + PHPCOP
(3.1)

Where Twall,k+1 and Troom,k+1 represent the temperature of the wall and room, respectively,
for the next iteration, in discrete time, k. The temperature inside the room, is influenced by the
wall temperature and heat generated from the heat pumps PHP, while the wall temperature, is
influenced by the difference in the inside and outside temperature, Tout. The heat preserved by
the wall is lost to the air around the wall and direct heat loss from the windows. The variables,
ρout ρroom and ρdir describe the unknown parameters estimated by SYSID which represents the
gain and losses. In other words, these are the coefficients of heat transfer of the temperature
differences. The effect of heat transfer by radiation is difficult to model, however for this model
the radiation is considered as a positive disturbance in the system for simplicity.

3.2.2 Moving Horizon Estimation

For dynamic processes, estimating the current states can be more reliable than the direct mea-
surements. The MHE uses the history of previous measurements to estimate the current states in
the system based on solving an optimization problem. This optimization approach can work for
nonlinear and constrained systems. The MHE cost function attempts to minimize the difference
between the calculated trajectory and the household measurements. Contrary to the MPC, the
MHE uses a backward time horizon. In this project, the MHE will estimate the room tempera-
ture, wall temperature, and heat pump power. At each iteration, the current states are estimated in

25

3.2 Smart house model NTNU

order to update the dynamic model, where the MHE is used to clean up the raw data and estimate
the unmeasured states. The unknown variables are wall temperature, convection, and power cor-
rection. To collect the data, the MHE requests data from the Raspberry Pi interface. The currently
estimated states are then supplied to the MPC. [14]

3.2.3 Physical description

In addition to defining the dynamic model of the smart house, the physical description of the MHE
and MPC includes states and input as decision variables to generate the control input sequence
to the heating system. The states are defined as discrete points in time for the entire prediction
horizon, N, of 48 hours.

The MHE is responsible for estimating the states: Troom, Twall, Conv, and PCorr. Where PCorr

refers to the power correction on the estimated heat pump power and Conv refers to convection
through the walls describing the gains or losses of heat in the rooms, which are not explained by
the model and added to the room dynamic. These states are directly fed into the MPC scheme.
In the optimization, additional states for controlling the heat pump settings include the target
temperature, Ttarget, and fan level, Fan, in the MPC scheme.

Both states and inputs are included as constraints and cost terms in the optimization problem in
order to control the dynamics further detailed in section 3.3. Variations in the ∆Ttarget and ∆ Fan
are the parameters used to steer the heating system, also referred to as the input. Further, the de-
sired temperature settings, including the reference temperature, Tref , and minimum temperature,
Tmin, are included to account for thermal comfort. Finally, two slack variables are introduced as
Sdiscomfort, Smin, respectively in order to relax the MPC scheme, further explained in equation
3.7. All decision variables are listed in table 3.3.

Table 3.3: Physical description of MPC

Notation MPC decision variables

x States Troom, Twall, Conv, PCorr, Ttarget, Fan

u Inputs ∆Ttarget , ∆ Fan

a Actuator HP

m Measurements HP settings, Troom

r References Tref , Tmin

s Slack variables Smin, Sdiscomfort

26

3.3 MPC description/implementation NTNU

3.3 MPC description/implementation

This section describes the MPC algorithm that controls the heat pumps in the smart house, in-
cluding the tuning factor, constraints, the cost function and a description of each cost term.

The MPC scheme utilize the estimated states and additional information from weather forecasts
and day-ahead spot prices to predict and optimize the future temperature trajectories of the house.
This information includes indoor and outdoor temperature, power consumption, and day-ahead
spot prices, which is available from the Raspberry Pi, MHE and APIs. Furthermore, a minimum
temperature and a reference temperature are specified by the user.

Figure 3.3: Schematic illustration of the MPC control in the smart house.

A simplified illustration of the closed-loop operation of the MPC is presented in figure 3.3. As
mentioned in the section 3.2.2, the states are estimated with MHE based on the current measure-
ments to provide the MPC with feedback for a closed-loop operation. Since the direct measure-
ments are not used in the optimization, the feedback is referred to as output feedback. In essence,
the MPC scheme is responsible for computing optimized settings for the heat pumps, where the
optimal temperature trajectory serves as input to the system. The main objective of the MPC
scheme is to perform optimal control of the temperature in the smart house in relation to the ther-
mal comfort of the user and the spot prices. This is achieved by seeking to compromise between
reduced monetary costs and increased comfort.

27

3.3 MPC description/implementation NTNU

Commonly optimization problems have the main objective of driving the predicted output to the
reference. In this case, the reference is the desired temperature of the user, however, the optimal
control takes into account additional information in order to achieve the compromise between cost
and comfort. Accordingly, the MPC scheme attempts to optimize a given performance objective
rather than penalizing the distance from a reference.

3.3.1 Tuning factors

There are some parameters in the MPC scheme that have a considerable influence on the over-
all performance of the system and are required to be tuned such as the prediction horizon, the
sampling interval, and weights. The MPC scheme complexity can increase when the prediction
horizon increases or the sampling interval is shorter. The weights are responsible for giving cer-
tain preferences to cost terms in the cost function. Essentially, the weight determines how much
the cost term should be penalized, further described in 3.3.3. All factors are tuned prior to writing
this thesis and are therefore not extensively detailed.

■ MPC Horizon (N): The MPC scheme solves a finite horizon open-loop optimal control
problem with a prediction horizon of 48 hours. The prediction horizon is denoted N and
is typically selected in order to prevent discrepancy between open-loop and closed-loop
profiles. The horizon is relatively long horizons which increases the computational speed,
and subsequently increases the uncertainties in predictions.

■ Sampling interval (k): The MPC scheme has a 5 minute sampling interval corresponding
to the measurements in the smart house. During the sampling intervals, the control actions
stay constant. In total, the MPC computes 576 steps, k, during the prediction horizon.

3.3.2 MPC constraints

The MPC is exposed to a set of constraints, which include the constraints on the dynamic model.
In the MPC scheme, there is a difference between hard constraints and soft constraints. Hard
constraints refer to the constraints that require to be satisfied, typically referring to the model dy-
namics. While soft constraints can be violated by introducing slack variables which are included
in the cost function as upper and lower bounds, typically referring to comfort violations.

The equality constraints for the temperature dynamics are equal for the MHE and the MPC. The
dynamic temperature constraints are presented in equation 3.2, describing the next iteration for
the wall temperature and the room temperature in discrete time.

28

3.3 MPC description/implementation NTNU

Dynamic Temp Constraint


Troom,k+1 = Troom,k+1 +Convk

Twall,k+1 = Twall,k+1

(3.2)

In order to control the dynamics, the inputs to the system (variation in Ttarget, Fan) and convec-
tion is included as equality constraints in the MPC. The dynamic input constraints are presented
in equation 3.3. Where Ttarget,k+1, Fank+1, and Convk+1 describe the next iteration in discrete
time. Here the convection is weighted by wconv equal to 0.97.

Dynamic Input Constraint


Ttarget,k+1 = Ttarget,k +∆Ttarget,k

Fank+1 = Fank +∆Fank

Convk+1 = wconv · Convk

(3.3)

Heat pumps

Physical limitations for the total amount of power the heat pumps can draw are included as con-
straints in the MPC scheme. The rooms main, livingdown, studio, and living are denoted, M,LD,
S, and L, respectively. Since three indoor units are connected to a single outdoor unit, the total
power consumption for all three is limited to 3 kWh, denoted PM,LD,S, while for the other one
the limit is 2 kWh, denoted PL. These enter the optimization as inequality constraints, shown
in the equation 3.4. The power usage of each heat pump is not directly measured and has to be
estimated, however, this is not detailed in this thesis.

HP Power Constraint


PL ≤ 2 [kW]

PM,LD,S ≤ 3 [kW]

(3.4)

Limit 24 hour electricity cost

The MPC scheme includes a constraint that applies to the monetary cost related to the total heat
pump consumption. This constraint is implemented in order to restrict the electricity cost within
24 hours. The restriction is defined as a maximum value that the MPC scheme aims to keep the
costs beneath. The calculation of the 24 hour costs is described in equation 3.5.

29

3.3 MPC description/implementation NTNU

C24h =
24

N

N−1∑
k=0

Cspot,k + Cgrid · PHP
5

60/100
(3.5)

Where C24h is the 24 hours cost predicted by the MPC over the prediction horizon. The spot
prices denoted Cspot, are hourly values from Nord Pool accessed through their API. The VAT is
included in the spot prices. The Cgrid refers to the grid rent the private consumer pays to the grid
companies, which is set to a 44 NOK/kWh according to the current pricing policy in Trondheim.
The total spot price is further multiplied by the heat pump consumption, denoted PHP. The
scaling factor 24

N = 0.5 aims at computing the average cost per 24h over the MPC horizon. The
sampling interval of 5 minutes is converted to an hourly basis by dividing 60 to determine the
kWh. The spot price conversion from øre/kWh to NOK/kWh requires dividing by 100.

C24h − LNOK ≤ 0 (3.6)

The inequality in equation 3.6 represents the difference between the calculated 24 hour cost and
the defined limit, LNOK. This implies that the total predicted cost has to remain under this speci-
fied limit for the inequality to be respected.

Slack variables

In this MPC scheme, two slack variables are introduced, Sdiscomfort and Smin in equation 3.7.
These slack variables are introduced to represent the violation of additional algebraic constraints
and are responsible for compensating when the temperatures are below the reference tempera-
ture, Tref and the minimum temperature, Tmin. Occasionally, it may not be possible to meet the
temperature demand. Therefore, the MPC problem is relaxed by these slack variables. The lower
bounds are equal to (-inf) and the upper bounds are equal to 0.

Slack Variables


Tref,k − Troom,k − Sdiscomfort,k ⩽ 0

Tmin,k − Troom,k − Smin,k ⩽ 0

(3.7)

If the inequality is satisfied, hence the room temperature is higher or equal to the reference temper-
ature, the slack variable is zero. However, when the room temperature is lower than the reference
temperature the slack variable is responsible for maintaining the inequality. The same applies to
the minimum temperature. The minimum temperature, Tmin, refers to the temperature the MPC
aims strictly aims to not heat under.

30

3.3 MPC description/implementation NTNU

3.3.3 Cost function

Given the optimization problem, the resulting objective function to minimize is described by
equation 3.8. The decision variables in this optimization are states, inputs, and disturbances that
influence the house dynamic. This MPC scheme optimizes essentially for achieving a compro-
mise between thermal comfort and electricity cost related to heat pump consumption.

J = min

N−1∑
k=0

w1Ccost,k + w2C
2
temp.above,k + w3C

2
discomfort,k + w4C

2
min,k + Cinput,k

s.t. (3.2), (3.3), (3.4), (3.6), (3.7)
(3.8)

In this thesis, the cost function is referred to as a multi-objective optimization, where there is more
than one target included. A compromise has to be obtained in order for the cost function to be
minimized while satisfying the constraints. The cost terms, Cdiscomfort,k and Cmin,k are described
by the slack variables in equation 3.7. The cost terms Ccost,k, Ctemp.above,k, and Cinput,k are
described further below. Where k is the number of sampling intervals during the time horizon N
equal to 48 hours. The weights denoted wi, where i = 1...8, will define how the states and inputs
are prioritized in the optimization problem. Considering larger weights on the state errors, the
deviation is penalized more. The compromise is obtained by determining the weights for each
cost term in order to provide priorities. The weights corresponding to the different cost terms are
listed in table 3.4 and 3.5.

Table 3.4: The MPC weights for equation 3.8.

Weight Name Value

w1 SpotGain 0.1

w2 TempAbove 0.005

w3 TempBelow 0.2

w4 MinTemp 50

Table 3.5: The MPC weights for equation 3.13.

Weight Name Value

w5 ∆ Target 0.5

w6 HUB 0.5

w7 ∆ Fan 1

w8 ∆ Temp 0

31

3.3 MPC description/implementation NTNU

The economic aspect of the MPC scheme takes into account the spot prices in order to optimize
the cost related to the consumption of the heat pumps, described in equation 3.9. Albeit the
prediction horizon is set to 48 hours, the day-ahead spot prices are only available for the next 24
hours. In order to solve this problem, the spot prices after 24 hours are assumed to be constant
for the remaining horizon and equal to the last available spot price.

Ccost,k = (Cspot,k + Cgrid − Cbasei)PHP (3.9)

.

The BasePrice denoted Cbasei (where i = 1, 2), is introduced to the cost function in order for
the MPC scheme to account for variations in the spot prices and optimize according to these
variations by subtracting (either the minimum or average) from the spot price at time instant k.
Accounting for variation refers to subtracting a baseline and only penalizing cost in relation to this
base. The BasePrice is calculated as a scalar based on the historical data (day-before), day-ahead
spot prices, and the grid rent. Including both historical and future spot prices provides a larger set
of data and the variations are to a greater extent accounted for. There are three ways of calculating
the BasePrice, depending on the selected BasePrice value. If the value is zero the BasePrice is
not considered in the optimization. If the value is one, the minimum spot price is subtracted,
described in equation 3.10 and if the value is two, the average is subtracted, described in 3.11.
Where t is the time instant 24 hours back in time, implying that the summation is summing up
the past 24 hours and the future 24 hours.

Cbase1 = min

48∑
t=1

Cspot,t + Cgrid (3.10)

Cbase2 = mean

48∑
t=1

Cspot,t + Cgrid (3.11)

The cost term Ctemp.above, evaluates the difference between the reference temperature and the
measured temperature in the room, described in equation 3.12. The corresponding weight is set
relatively low since the MPC should not penalize the deviation too much when the temperature is
above the reference. This is done in order to allow the MPC to store heat in the thermal mass of
the house.

Ctemp.above,k = Tref,k − Troom,k (3.12)

32

3.3 MPC description/implementation NTNU

The cost term Cinput refers mainly to cost terms penalizing the input parameters in the optimiza-
tion, presented in equation 3.13. Albeit they are not the focus of this thesis, they are included to
provide a complete description of the system.

Cinput,k = w5C∆Ttarget,k + w7C∆Fan2,k + w8C
2
∆T,k (3.13)

The target temperature and fan level serve as input to the system, where the first control step is
sent to the heat pump settings. Both cost terms are designed to add cost when the ∆Ttarget and
∆Fan are high in order to restrict the input to the heat pumps and limit large variations.

The first cost term, C∆Ttarget
, will restrict the target temperature to drastically change all the time,

making sure the MPC scheme outputs a more consistent target temperature to the heat pumps, as
described in equation 3.14 (also referred to as the Hubber penalty function).

C∆Ttarget,k = w2
6

√
1 + (

∆Ttarget

w6
)2 − 1 (3.14)

The w6 refers to constant value of 0.5. In a way, this penalty function will promote larger devia-
tions if zero is not possible to maintain. This will cause the target temperature to increase more
when this is considered necessary.

The second cost term, C∆Fan will prompt the fan level to be as negative as possible and serve as
input to the heat pumps, described in equation 3.15.

C∆Fan,k = ∆Fan (3.15)

Lastly, the cost term C∆T is added in order to limit very high temperatures and prompt the dif-
ference between the target temperature and the room temperature to be as negative as possible,
described in equation 3.16. However, the weight corresponding to this cost term is currently zero,
thus, not included.

C∆T,k = Ttarget − Troom (3.16)

33

3.4 MPC interaction NTNU

3.4 MPC interaction

In this section, user interaction is introduced to the MPC scheme. In particular, the aim is to
demonstrate the elements the user can change to influence the optimization problem in the user
interface, described in table 3.6.

Table 3.6: MPC interactive elements.

Element Type Interaction

Weight SpotGain Select priority

BasePrice 1 or 2 Select calculation

Constraint Cost24h Select limit of 24 h monetary cost

Temperature
Reference Select reference

Minimum Select minimum

3.4.1 Temperature settings

In order for the user to adjust the room temperature, the first parameter that needs to be considered
is the reference temperature. This temperature is decided by the user in terms of the ideal level
of comfort and the room temperature is measured to adjust the difference. This difference can
vary significantly under certain circumstances depending on the spot prices. Although, the MPC
scheme attempts to reach the desired temperature other factors are influencing the system. This
is the difference between the MPC scheme attempting to solely penalize the distance from a
reference, rather it attempts to directly optimize a given performance objective. By allowing the
user to decide the reference temperature and minimum temperature, the user can influence the
optimization.

3.4.2 Limit 24 hour predicted cost

As mentioned in section 3.3.2, a constraint is implemented to restrict the electricity cost within 24
hours, where the calculation is defined by the spot prices and a defined value. This defined value
can be changed by the user and will be the only constraint the user can interact with. Initially, this
limit was set to 80 NOK, however, this can be changed by the user to lower the cost further. This
limit can give the user the opportunity to have the MPC operating under controlled conditions.

34

3.4 MPC interaction NTNU

3.4.3 Spot price weight

Taking into account the proper weights of the cost functions, the system is assumed to be opti-
mized. The weights are responsible for giving a certain preference to the cost terms, such that the
cost term is penalized in the overall cost function. Although the MPC scheme has several weight-
ing elements and costs terms, only the relevant weights for the user interaction are implemented
in the web application, namely the SpotGain weight, wspot.

All weights in the cost function influence the temperature, however, tuning wspot will scale the
linear cost term related to the spot market and the user can directly choose how important cost
savings are. Adjusting the value of the weights will directly influence the behavior of the op-
timization, however, selecting the priority of the wspot is an intuitive approach for the user to
regulate the temperature and have better control over the system. To some extent the user will
need to understand the influence of changing the weights. Thus, the term weights, are transformed
into more understandable concepts such as priority, saving money, and increasing comfort, further
detailed in section 6.4.1.

3.4.4 BasePrice

As presented in equation 3.9, the BasePrice is subtracted from the current spot price, and is
calculated depending on the minimum or average. By allowing the user to select the BasePrice
calculation the user can decide how to heat in reference to a base. Accordingly, the the spot prices
enter the cost function relative to the minimum or average. This user interaction is considered
an intuitive approach to working with the spot market since it provides an opportunity to work
directly with the spot market variations to regulate the temperature. This will allow the MPC
scheme to a greater extent adjust the temperature in relation to the variations and achieve a higher
thermal comfort overall.

35

Chapter 4

Software tools

This chapter describes the software tools used to develop a full-stack web application for mon-
itoring and controlling the heating system in the smart house. A full-stack application refers to
having a dedicated back-end and front-end. The first section, 4.1, introduce the web application
development. The following sections 4.2 and 4.3 presents the software technologies and methods
used for developing the server and client-side of the web application, respectively.

4.1 Web application

Smart home applications should provide the necessary and relevant information, with functional-
ities customized to the environment and the user, in order for the user to experience convenience.
In particular, understanding advanced control strategies such as MPC will require a framework
that is simple, flexible and customizable.

As mentioned in section 2.4.3, the available platforms are not able to offer the necessary function-
alities for the case study presented in this thesis. Accordingly, a customized software is developed
to provide a human-machine interface (HMI) for the MPC scheme. The application is developed
to support the IoT devices in the smart house for controlling the heat pumps, for monitoring and
controlling the temperature. More specifically, it is necessary for the user to understand how the
heat pumps are controlled by the MPC scheme. Other IoT devices can be connected to the same
application, however, this is beyond the scope of this thesis.

In this thesis the server-side and client-side is developed using JavaScript (JS), which is the most
popular programming language for developing dynamic and interactive web application. A web

36

4.2 Server-side ExpressJS NTNU

application is a software or program which is accessed through a web browser. The reason for
choosing to develop a web application is due to its simplicity and ability to be easily integrated
with the existing system. This approach allow for local storage between the control algorithm and
the server, which makes the data processing uncomplicated.

Considering the fact that the system is running locally on a computer, the web application is not
required to be deployed for universal access. As such, the web application is accessed through
localhost which is the a host address of the local computer. As such, the front-end is accessed
through http://localhost:3000 which is the web interface, and the back-end is accessed through
http://localhost:3001 which is the server. Other alternatives is not considered further in this report.

4.2 Server-side ExpressJS

The back end is developed using ExpressJS, which is responsible for the server-side of the appli-
cation. Express is a web application framework written in JS and is the most common framework
used for developing fast Node.js applications. Node.js is an open-source server environment with
different frameworks and tools to simplify the development of building back end services like
APIs and web applications.

ExpressJS is a framework built on top of Node.js and is one of the most popular HyperText
Transfer Protocol (HTTP) server libraries and is commonly used to develop Representational
State Transfer (REST) API. This provides a communication tool for web services where data can
be represented as JavaScript Object Notation (JSON). A REST API works similar to a regular
API, the only difference is that REST API interacts and correspond via an HTTP protocol. [32]

4.2.1 HTTP request

HTTP is the communication interface between the server and client-side, that allows requests and
responds to data. The server is essentially responsible for sending and receiving data through
these requests. Moreover, this communication is also used for communication between the server
and the MPC algorithm, further explained in section 5.1.

Different resources can be requested by the client, and the server returns a response to these
requests. In other words, the HTTP method is a request/response protocol. There are various
HTTP methods that can allow information to flow between the client and the server, where the
most common are GET and POST. A GET request returns data in order to access it from a
specified resource on the server, demonstrated in code 4.1. Requesting data through GET from
APIs is standard for both JS and Python. A POST request will send data to the server to update a

37

4.2 Server-side ExpressJS NTNU

specific resource, demonstrated in code 4.2. The user can input the specified data and the server
responds to this request. Sending requests over HTTP is most commonly accomplished by using
the POST method. The data needs to be parsed into a format that is easily accessible on the server-
side through a middle-ware called the body-parser package before it can be easily accessed. In
the request object, the body property allows you to access the data parsed from the raw HTTP
request.

1 app.get(’/route’, (request, respond)

=> {

2 console.log(function())

3 respond.json(function())

4 })

Code 4.1: HTTP methods for GET.

1 app.post(’/route’, (request, respond)

=> {

2 console.log(request.body)

3 let req = request.body

4 })

Code 4.2: HTTP methods for POST.

Routes

In order to retrieve data from the server, different routes are created to access the specified re-
source. The web application can receive a request to the specified route or endpoint with HTTP
methods. The particular resource is accessed by an endpoint that performs an action on the Uni-
form Resource Locator (URL) path to the endpoint. The resources contain JSON data and a route
is a way to locate a resource.

Creating different routes provides a better structure of the data on the server and the data is easy to
handle when user requests are prompted. Eventually, more routes can be created to accommodate
more functionalities in the web application or other IoT devices. The different routes created
between the server and the client-side are presented in table 4.1, while the routes from the server
back to the MPC scheme are listed in section 5.2.

Table 4.1: Routes for accessing data from the MPC scheme on the server.

Data Accessed through

MPC data http : //localhost : 3001/MPC

API data http : //localhost : 3001/API

38

4.3 Client-side React NTNU

4.2.2 File watcher Chokidar

The server environment uses a file watching system called Chokidar to trigger a new GET request
when new data is added or a data file is changed in the folder containing the data from the MPC
scheme, demonstrated in code 4.3. Chokidar is a minimal and efficient file watching library for
Node.js servers. This library is responsible for watching folders and files and reacting to updates
or changes. Chokidar can monitor the folder for file additions or updates inside JSON files and
use the path created to receive the data.

1 const chokidar = require(’chokidar’)

2 const watcher_MPCcomp = chokidar.watch(’./FolderName/MPC-data’, {})

3 watcher_MPC-data.on(’add’, (path) => {

4 app.get(’/MPC’, (req, res) => {

5 const newMPCcomp = require(’../’ + path)

6 return res.json(MPC-data-file)

7 })

8 })

Code 4.3: Chokidar with GET request.

The folder ’MPC-data’ contains all relevant data retrieved from the MPC scheme such as weights,
temperature, heat pump settings, consumption, etc. Depending on how the data is updated, the
newest data is locally stored in this folder and the updates are further requested with a fetch
in the front end. When the MPC scheme stores a new solution, the content within that file is
updated. [33]

4.3 Client-side React

The front-end is developed with React which is responsible for building the user interface (UI)
that allows the user to interact with the MPC scheme. React is a popular and simple component-
based JS library and is widely used for building UIs. React is both efficient and flexible, which is
advantageous in terms of handling dynamic data and a potential up-scaling of the application. [34]

In order to create the web interface, HTML (HyperText Markup Language) and CSS (Cascading
Style Sheets) are used, which are generally the standard markup and styling languages for creating
web applications. While HTML creates the main structure of the web page, CSS is used to format
and design the layout. There are several CSS frameworks that can be integrated in order to make
the styling considerably easier. In this project, Tailwind CSS is used, which is a modern and
highly customizable framework.

39

4.3 Client-side React NTNU

4.3.1 Connecting ExpressJS and React

In order to develop a full-stack application, the Express back-end is required to be connected to the
React front-end. Two important methods are used to achieve this; Fetch and HTTP requests. The
Fetch API provides a JS interface for responses and requests between the server and client-side.
Since fetch allows to make GET and POST requests on the client-side, it is able to communicate
and retrieve data directly from the server (’http://localhost:3001/’) demonstrated in code 4.5.

1
2 useEffect(() => {

3 fetch(’http://localhost:3001/’)

4 .then((res) => {

5 return res.json()

6 })

7 .then((json) => {

8 setData(json)

9 })

10 .catch((error) => {

11 console.log(error)

12 })

13 }, []

14)

Code 4.4: Fetch the server data in React.

1
2 fetch(’http://localhost:3001/’, {

3 method: ’POST’,

4 body: JSON.stringify(data),

5 headers: { ’Content-Type’: ’

application/json’ },

6 })

7 .then((res) => {

8 return res.json()

9 })

10 .then((json) => console.log(json))

11 .catch((error) => {

12 console.log(error)

13 })

Code 4.5: Post request from React to server.

The Fetch method can access resources on the server where the response is requested as a stream
of data, typically stored as JSON. Moreover, the Fetch API becomes part of the HTTP pipeline
by using GET and POST methods to request and send resources on the server. [35]

Moreover, React has introduced a new way of handling states referred to as React hooks. The two
React hooks used extensively in the application are; useState and useEffect. With useState, the
React state is added to a function component, where the state can be updated based on a setState
call inside a function.

With useEffect the state will perform a re-render or update in relation to the stated dependencies.
If the dependency is an empty array, the useEffect will only update during the first render, while
having a state dependency will cause a re-render every time the state is updated. The useEffect is
commonly used to re-render depending on a state with for instance a Fetch method, described in
code 4.4. By having a fetch inside the useEffect, the state can be updated with the data from the
resource, where the resource is typically the server. [36]

40

4.3 Client-side React NTNU

4.3.2 Charting library Recharts

In this thesis, a JS charting library called Recharts is used as the data visualizing tool, due to its
intelligent, effective and neat graphical presentation. This library is built on React components
and can present a variety of different charts as SVG elements. The web application utilizes three
specific charts: LineCharts, AreaCharts, and ComposedfCharts. [37]

The web application is responsible for visualizing the MPC data intuitively. With large data sets,
graphical displays are considered the optimal choice also taking into consideration that the data is
updated in real-time. Accordingly, implementing a live chart allows for monitoring the real-time
system, where the predicted trajectories can be displayed. This will also allow the data to be
structured and customized, such as adding areas in the graph for highlighting a specific period or
coordinates in the graph.

Limitations to charting library

There are some limitations to the Recharts library in terms of adding special features and cus-
tomization. The charts are coded inside a Recharts component, which decides the type of charts
that is rendered. In addition to these containers, other elements can be added, such as reference
lines and reference areas. The reference elements can give some level of customization to the
graphs, however, this can only reference one particular x-value or/and y-value or an area between
coordinates. Thus, there is a limited amount of customization tools that are offered. For the par-
ticular system in this thesis, the library lacked some features needed to fulfill the customization
in the graphical displays. Firstly, the data structure has to be in a specific format in order for the
charts to read the values. This was a restriction since it required the server to handle the data
in a non-generalized way. Secondly, highlighting parts of the graph is considered very helpful
for the user. However, this customization has restrictions since it only allows to specify certain
coordinates. Lastly, there are no additional hover effects that can highlight and explain certain
periods in the graph.

Developing customized solutions that are not based on an existing library is time-consuming and
difficult. Creating your own customized features inside the library is complex since the library
is built on top of D3.js and React [38]. A possibility is to explore other charting library such as
Charts.JS. Another alternative is to build customized SVG charts in React from scratch.

41

Chapter 5

Software implementation and data
processing

In this chapter, an overview of the software implementation for the web application is presented,
along with current adjustments to the MPC algorithm. In section 5.1, the data flow is explained,
in which the data extracted from the control algorithm is processed. The following section, 5.2,
presents the implementation of user interaction in the MPC scheme. Furthermore, section 5.3,
presents the server framework for the REST API and section 5.4 presents the main components
of the client-side development. Finally, section 5.5 demonstrates a quick guide for installing and
using the web application on a local computer.

5.1 Data pipeline

The data pipeline represents the data flow from the collection point to the web interface, which in-
cludes the control algorithm, the server and the client-side framework. The smart house algorithm,
which is dynamic system, is developed using Python. The data retrieved from measurements and
house control algorithm must be processed by both the server and client-side in order to present
the relevant data to the user. Since the MPC data is real-time, the pipeline requires a continuous
flow and updating of data. The data pipeline is illustrated in figure 5.1.

The house data is collected by the Raspberry Pi and fed into the MHE and MPC scheme. The
output data from the MPC scheme is acquired and stored in dictionaries and serialized in order
to compress the data memory with Pickle, which is a Python built-in module. Due to the fact

42

5.1 Data pipeline NTNU

Figure 5.1: A basic illustration of the data flow between the data collection point and control
algorithm to the server and client-side. The arrows represent the direction of the data and are
explained at the bottom.

that the web application is developed using JS, the dictionaries are converted into JSON objects
in order to read and utilize the data. Another approach can be to directly store the dictionaries
as JSON objects in order to have a standardized and language-independent storage format that is
compatible with both Python and JS.

The MPC receives the user request from the web interface, through the server as JSON objects
where these are loaded into the Python script as dictionaries. Accordingly, the MPC algorithm
is only receiving information from the REST API server, while the server and client-side receive
and respond to HTTP requests between them. The data structure on the server is presented in
appendix B. This allows the server to further process and transform the data into objects such that
the client-side can perform data analysis to visualize the live data in the graphical and interactive
components.

Currently, data is stored locally every 5 minutes according to the sampling time, under a folder
named MPC-data, so there is no database included in the pipeline. A database can be conve-
nient for persistent storage, however, in this thesis, this is not further investigated. The server
is developed as a REST API in order to have easy access from both the MPC algorithm and the
client-side. All communication between the different elements in the pipeline is enabled by HTTP
methods as mentioned in section 4.2.

43

5.2 MPC comparison NTNU

5.2 MPC comparison

Among the most important aspects of MPC, is the ability to predict future outputs. The predictions
provide valuable information about how the heating is optimized. Moreover, the user can observe
the anticipated heating and electricity cost through the web application and decide to change the
optimization on occasions where the user is not satisfied with the performance, further detailed
in section 6.2. However, the user might be oblivious to the effects of changing the optimization.
Therefore, a comparison can be presented to inform the user of how the expected temperature and
cost trajectories change according to the request made by the user.

Figure 5.2: A simplified flowchart illustrating how the user requests are implemented in the MPC
scheme to present a comparison.

44

5.2 MPC comparison NTNU

In figure 5.2, a flowchart of how the comparison can be implemented in the house control algo-
rithm is illustrated. This demonstrates how the MPC scheme reacts and responds to user interac-
tion. The MPC and MHE are only required to be built once, which is advantageous in regard to
computational time.

With the purpose of demonstrating a comparison of optimized outputs, the MPC scheme is run
twice sequentially with different parameters. A sequential implementation is considered reason-
able since the first solution can be used as the initial guess for the second MPC scheme. The
original MPC scheme is made prior to this thesis and is considered ’optimal’ with tuned values.
The comparison is based on calculating a second MPC scheme based on user-specified values and
presents the difference between the two solutions. Throughout the report, the comparison use the
terms original MPC scheme and second MPC scheme to differ between the values in the web
application.

At first, the user is presented with the original MPC scheme which allows the user to evaluate the
performance of the optimal control. If the user decides to request a change in the optimization (e.g
change weights or reference temperature), the second MPC scheme is executed with the values
specified by the user. Further, the second solution is stored in order to present a comparison of the
temperature and cost trajectories to the user. The comparison is initially presented as a potential
output from the MPC, however, this is not implemented. After the comparison is presented, the
user can decide to implement actions. Thus, three options are presented in order to implement
the desired action to the MPC scheme after being presented with the comparison. A further
description of the UI components responsible for handling the comparison in the web application
is provided in section 6.1.4.

Table 5.1: Routes for accessing user requests in the MPC scheme.

User request Accessed through Contains

Request
http : //localhost : 3001/Request Comparison (Boolean)

http : //localhost : 3001/ReviseMPC Final Submit (Boolean)

Values

http : //localhost : 3001/TempSetting Reference temperature

http : //localhost : 3001/MPCWeights SpotGain and Cost24h

http : //localhost : 3001/ExtWeights BasePrice

The user requests have different routes and are loaded into the MPC scheme through HTTP meth-
ods. The response will create a python dictionary from the JSON format and extract the necessary
information. Routes for posting data from web application through the server and finally to MPC
scheme are provided in table 5.1.

45

5.3 REST API server NTNU

5.3 REST API server

The server consists of different libraries and functions that allow data to be accessed through the
web interface. Since the data is stored locally under the Express folder, it can be directly extracted
from the files and further processed through functions that transform the data into a readable JSON
object for the graphical interface. Eventually, the processed data is made available on the REST
API routes by HTTP requests. A flowchart demonstrating the structure of the Express server is
visualized in figure 5.3.

Figure 5.3: Flowchart describing the server developed in ExpressJS as a REST API.

5.3.1 Data handling

In general, there are two alternatives to establishing a 2-way communication between the MPC
and the web application.

■ The server receives information locally and directly from the Python script and the MPC
receives information from the user through the REST API using HTTP requests.

■ The server receives information about the MPC from the Raspberry Pi and the MPC re-
ceives information from the Raspberry Pi through the REST API using HTTP requests.

The first alternative requires the whole system to run on the local computer including the smart
control algorithm and the web application. The second alternative focus on utilizing the Raspberry
Pi to communicate the information between the MPC and the user, which can allow for remote
handling of data. The current solution utilize the first approach for simplicity of operating a local
data storage system.

46

5.4 Web interface structure NTNU

Another element to consider is how often the server receives new information and updates from
the MPC scheme.

■ Update the data and predictions only when a user request is submitted.

■ Update the data and predictions at every sampling instant corresponding to 5 minutes.

The first approach requires fewer updates due to the fact that the predictions will stay the same
unless the user requests new data. The second approach is more accurate than the first in the sense
that the MPC prediction do actually change at every sampling instant due to the MPC revising the
plan. The user will, nevertheless, experience more frequent updates in data, and the predictions
will change regardless of submitting new requests, which can cause confusion for the user. The
current solution utilize the second approach, due to ease the data structure on the server-side of
the application.

5.4 Web interface structure

All the UI elements belong to a parent container/component which makes up the main structure
of the web interface. The simplified version of the application design is illustrated in 5.4. This
represents the main components and provides an introduction to the functionalities of the web
application. The main components are Navigation bar, Sidebar, Filecontainer and File.

Figure 5.4: Overview of main components in the web interface.

47

5.4 Web interface structure NTNU

The navigation bar is responsible for arranging the data displayed in the filecontainer, such as
selecting the room environment. The sidebar is responsible for presenting different ways the user
can interact with the optimization (control options) in the MPC scheme. Finally, the filecontainer
and file is responsible for presenting the graphical displays and other visualizing tools.

The data displayed in each component is fetched from the REST API, processed, and rendered to
the interface with interactive functionalities. The data extracted from the server is processed in a
downstream fashion through the different components, illustrated in figure 5.5.

Figure 5.5: A basic illustration of the client-side framework presenting the main components and
communication between REST API and web interface.

48

5.5 Quick installation guide NTNU

5.5 Quick installation guide

In this section, a quick installation guide is provided with the intent of demonstrating the ap-
plication to the reader and/or to a person developing the application further. The application is
developed specifically for the case study in Trondheim and you will need the entire software on
your computer to run a complete simulation. There are no requirements to run the entire software
for the smart house system (the software for running the house control e.g MPC scheme) if you
only want to check out the web application. However, there will be no dynamic data or content
displayed in the web application that is related to the smart house. A quick demonstration of the
web application is provided in this link.

5.5.1 Installing and running the software

You will need to have the software running on your local computer in order to test it. The project
folder is uploaded to Github and in order to clone the repository from Github, an account is re-
quired. The repository is named POWIOT-WebApp and contains all relevant information about
the web application developed with JS. The front-end folder is named app-React and the back-
end folder is named app-Express. A more detailed explanation of software installation is pro-
vided below.

ExpressJS and React

In order to run the web application, Node.js has to be installed. Node.js is a run-time environment
that includes everything you need to execute a program written in JavaScript. In a web browser,
navigate to https://nodejs.org/en/download/ and click the Installer button to download the latest
version.

For JS applications, in general, a package.json file is included under the application folder. This
file is responsible for containing all the dependencies needed to execute and run the code. All de-
veloper dependencies are not required for a regular user (only required for further development).
By default, npm install will install all modules listed as dependencies in package.json. The list
below provides the necessary steps to run the server Express JS and the frontend React in the
browser on your computer. The procedure has to be executed once for the server and once for the
client-side which are located under different folders.

■ Open the terminal in the preferred code editor (e.g Visual Studio Code).

■ Navigate to the application folder (app-React/app-Express) which should at least contain a
/src folder and a package.json file.

49

https://youtu.be/Q67aBJszLY0

5.5 Quick installation guide NTNU

■ Write npm install in the command line interface, this will install all dependencies.

■ To run the application write npm run dev in the command line interface.

■ Now the front-end should be available on http://localhost:3000/ and the server (REST API)
is available on http://localhost:3001

5.5.2 Python (Optional)

In addition to the web application folder, the house control algorithm is provided under the folder
named POWIOT copy, which is developed using Python. If the reader wants to test the web
application with real-time data from the smart house, they need to navigate to a file inside the
House-Control folder, named HouseControl.py, and install all dependencies.

Connecting MPC to server

All software implementations described in this thesis need to run on a local computer. In order
to access the MPC data, the JSON files are stored directly on the Express server. Hence, the
path is required to be replaced with where the application folder is located on your local com-
puter: "/Users/.../.../app-Express/MPC-data/" to access the MPC data (lines 3486 and 3505) and
"/Users/.../.../app-Express/API/" to access the API data (line 2917).

50

Chapter 6

Results

This chapter presents a demonstration of the UI components in the web application and provides
explanations relative to the control aspect these components are responsible for communicating
to the user. In figure 6.1 an overview of the human-MPC interface before user interaction is
introduced is illustrated. The results focus on the perspective of the user, presenting the challenges
related to communicating the relevant information from the MPC scheme. In section 6.1, the
dynamic arrangement of data is demonstrated. Further, in section 6.2, the graphical displays for
the predictions are provided. In section 6.3, the detection mechanism for displaying certain MPC
behavior is explained. Finally, the human-MPC interaction is presented in section 6.4.

Figure 6.1: Overview of the interactive user interface components in the web application.

51

6.1 Dynamic arrangement of data NTNU

6.1 Dynamic arrangement of data

The output from the MPC contains large amounts of data and the components presented in this
section are responsible for dynamically arranging this data. Considering the user, these compo-
nents will allow the data to be organized intuitively when navigating the web application. The
main challenge relates to how to present different content based on user interaction.

6.1.1 Navigation bar

Taking into account that the smart house consists of four rooms with an individual heat pump
controlling the temperature, the application should provide an environment for each room. Ac-
cordingly, the data is arranged into different objects for each room, allowing the user to filter
the data by selecting the room in the navigation bar, illustrated in figure 6.2. The corresponding
object contains all relevant information for that particular room, such that the environment can be
monitored and controlled by the user independently.

Figure 6.2: A navigation bar component that allows for selecting a room environment and day to
view the prediction from MPC.

The navigation bar is a responsive header placed at the top of the page providing an overview
of the system. Four buttons are implemented for room selection; Room1:Main, Room2:Living,
Room3:Studio, and Room4:LivingDown. By making the navigation bar interactive, the user is
able to have four different environments to manage the heating in the smart house. In general,
the different environments will have different settings depending on the preference of the user.
Typically, the living room is warmer than the basement, hence the thermal comfort criteria vary
between the rooms.

Another element in the navigation bar allows the user to select between days, showing different
predictions. Since the MPC provides predicted trajectories for the next 48 hours, the user is
instantly presented with a lot of data. In order to arrange and structure the data, the user can
request to separate the predictions by three buttons; Today, Tomorrow, and After. In this manner,
the data is structured intuitively and provides relevant information depending on the preference
of the user.

52

6.1 Dynamic arrangement of data NTNU

6.1.2 Show different graphs in the same display

The graphical displays can visualize predictions of different types of data such as reference tem-
perature, room temperature, target temperature, electricity cost, and comparisons. In order to sort
the data and avoid presenting all graphs in the same plot at all times, the user can choose to in-
clude or not include certain elements in the graph. Thus, the graphical displays have buttons in
the left corner in every graph with different options for displaying data.

Figure 6.3: Three options in the left corner for
displaying different temperature related graphs
in the same component.

Figure 6.4: Two options in the left corner for
displaying different cost related graphs in
the same component.

In figure 6.3, all available data is displayed in the same graphical temperature component. Troom1
and Troom2 describe the predicted temperature between the original MPC and the second MPC,
respectively. Ttarget1 and Ttarget2 describe the target temperature input to the heat pump, while
Tref1 and Tref2 describe the reference temperature.

In figure 6.4, the predicted cost is displayed, where COST1 and COST2 describe the predicted
cost between the original MPC scheme and the second MPC, respectively. The Dcost explicitly
displays the difference in cost between COST1 and COST2.

6.1.3 Additional information

This component is responsible for making the additional information accessible to the user. This
includes four main components: Heat pump settings, Spot prices, Weather forecasts, and Detec-
tion mechanism, presented in figure 6.5. The heat pump settings inform the user of the current
mode, fan level, and target temperature. The other components are further detailed in section
6.2.2 and 6.3.

53

6.1 Dynamic arrangement of data NTNU

Figure 6.5: Component for displaying additional information.

6.1.4 Submit user requests

The web application is responsible for handling requests from users. Considering that the user
wants to change the optimization, a request must be submitted through the web interface. The
application includes several functionalities which provide the user with different components to
interact with, where some are responsible for sending requests to the server. The submit but-
tons are essential for the data flow between the MPC scheme, server, and client-side. The server
continuously updates data according to the user such that the MPC scheme can receive this infor-
mation and act accordingly. The submit buttons correspond to the elements listed previously in
table 5.1.

Revise the MPC

Figure 6.6: Component handling
submit to MPC to implement
action.

After the user has submitted the first user request for com-
parison, the user is able to make an educated decision on
how to proceed forward with the control of the heat pumps.
This decision will determine how the MPC will progress.
The user is prompted with a pop-up for revising the MPC
scheme, illustrated in figure 6.6. In this component, three
options are presented; Return to default, Revise the MPC
and Keep the values. The first option will disregard the
changes made during the comparison, the second option al-
lows the user to be presented with a new comparison and
the third option will implement the changes made during
the comparison.

54

6.2 Graphical display NTNU

6.2 Graphical display

The graphical displays are one of the central components of the web application since they are
responsible for visualizing the predictions from the MPC scheme. Two main graphical displays
are developed to facilitate monitoring of the anticipated heating in each of the room environments.
In regards to the user, there are two elements of importance; the comfort related to the tempera-
ture of the house and the monetary cost related to the heat pump consumption. Since these are
occasionally conflicting elements in the optimization, the user has to decide what to prioritize;
comfort, monetary cost, or a reasonable trade-off between them. Thus, visualizing the prediction
of the temperature in the room and the related electricity cost is considered one of the essential
elements in the web application.

The graphical components are presented in this section to demonstrate the visualization of MPC
data. Throughout the results, tests are performed to demonstrate and validate the performance of
the web application. All tests are performed on the Main room. Due to the fact that the MPC
scheme is a real-time system the tests will vary from day to day, thus, the graphical displays
presented will differ depending on the day the test was performed.

6.2.1 Graphical MPC comparison

The MPC scheme will receive updated information about the smart house and predict the tra-
jectories by revising the plan at every time instant. As mentioned in section 5.2, the MPC will
in addition receive user requests from the web application and possibly update the optimization
problem relative to these requests. In order to provide information about how these requests ulti-
mately affect the optimization and output of the MPC scheme, a comparison is visualized. This
allows the user to evaluate if the performance has improved in terms of thermal comfort or cost.

Temperature

The comparison between the temperature trajectories informs the user of the anticipated tempera-
ture in the house. The temperature is decided by the user in terms of the ideal level of comfort and
the room temperature is measured to adjust the difference. This difference can vary significantly
under certain circumstances. Although, the MPC scheme tries to reach the desired temperature
other factors are influencing the system. By visualizing the predicted room temperature in rela-
tion to the reference temperature the user can observe where deviations occur. In addition, the
comparison can visualize whether the new trajectories perform better in terms of the preference
of the user.

55

6.2 Graphical display NTNU

Figure 6.7: Graphical display of the predicted temperatures trajectories for comparison.

In figure 6.7 the graphical component for the temperature trajectories is presented. The compari-
son consists of Troom1 (blue) describing the predicted room temperature from the original MPC
scheme and Troom2 (green) describing the predicted room temperature after submitting a user re-
quest. Additional information is displayed for the reference temperature and target temperature.
On the right side, the current room temperature is displayed in order for the user to get direct
information about the room temperature.

Electricity cost

The monetary cost is a result of the consumption related to the heat pumps and the spot prices.
This is considered an essential element to visualize to the user. However, consumption and spot
prices alone are not necessarily interesting parameters for the user. Thus, the graphical com-
ponent presents the resulting electricity cost of multiplying these factors at every time instant.
By visualizing a cost comparison, the user can become aware of the economic benefits of opti-
mal temperature control. Furthermore, making the user aware of the cost related to for instance
increasing the temperature.

In figure 6.8 the graphical component for the electricity cost trajectories is presented. The com-
parison consist of COST1 (blue) describing the predicted costs from the original MPC scheme
and COST2 (green) describing the predicted costs after submitting a user request. In addition,
Dcost (red) is plotted to highlight the difference in cost between the compared values.

56

6.2 Graphical display NTNU

Figure 6.8: Graphical display of the predicted cost trajectories for comparison.

Furthermore, the current predicted 24 hour costs is displayed in a component besides the graph,
which is the only MPC constraint the user can interact with. The predicted 24 hour cost, introduce
a daily limit the user can specify to keep the electricity costs under. Another helpful element the
expected 24 hour electricity cost can provide is how the comparison is affecting the overall cost.
A new predicted 24 hour cost is presented when a new request is submitted for comparison.

The default value is 80 NOK, however, the MPC is rarely exceeding a daily cost of 50 NOK.
If the user decides to submit a considerably low value for the constraint, the MPC may behave
poorly to maintain this constraint/limit. This can result in the temperature being strictly lowered.
Accordingly, the lowest value the user can submit is 20 NOK.

Currently, there are two options for presenting the cost; a 5 minute basis and an hourly basis.
Displaying the cost every 5 minutes results in practically insignificant values. For the purpose
of visualizing the cost in a more realistic manner, the hourly cost is calculated and presented in
figure 6.9. Since the spot prices are hourly based, which means that the spot prices remain the
same within one hour it more intuitive to present the hourly cost, however both approaches are
included in the application.

Considering the MPC scheme is operating on a 5 minutes basis, the consumption is converted into
an hourly basis by summing up the consumption. The number of samples per hour is 60

5 = 12,
hence the hourly basis will consist of the sum of 12 samples. Normally, the graphs are displayed

57

6.2 Graphical display NTNU

Figure 6.9: Graphical display of the predicted cost trajectories for comparison.

by selecting the day and room environment, however, for the hourly cost a different data structure
is used. Therefore, the component is build differently than the other graphs and requires an
additional function to be triggered in order to display the hourly values.

In addition to displaying the monetary cost for each room, the user might find it interesting to
monitor the total electricity cost related to the four heat pumps, illustrated in figure 6.10. A
comparison is provided for the total electricity costs as well. However, there are no options to
view the total depending on the day. Instead the total cost is displayed for the entire prediction
horizon. This will provide the user with an overview of the total costs related to the predicted
heating in the house which can be beneficial in order to gain perspective of how the MPC scheme
behaves. However, similarly to displaying the hourly cost the total electricity cost is triggered by
an additional function.

58

6.2 Graphical display NTNU

Figure 6.10: Graphical display for the total cost over the whole prediction horizon.

Change in predictions

The ability to predict future trajectories is one of the essential benefits provided by the MPC.
However, the predictions will evidently change when the MPC revise the plan at every time in-
stant. By presenting the predictions to the user, these will contain uncertainties and can noticeably
change.

Figure 6.11: A timer component
informing the user when new predic-
tions are available in the application.

This concept should be explained to the user in order to
avoid confusion as to why this occurs. As mentioned
in section 5.3, the predictions are updated every 5 min-
utes corresponding to the sampling interval. Also taking
into account that whenever a user request is submitted
the MPC scheme will not immediately display the com-
parison. Increasing the sampling time will only result
in higher computational time of building the MPC with
more time steps and is avoided. To inform the user, a
timer is implemented to explain that the MPC scheme is
delayed and when the next update is expected, illustrated in figure 6.11.

59

6.2 Graphical display NTNU

Further information on why the interval is set to 5 minutes is not directly explained to the user.
Nevertheless, this component will inform the user on when the comparison will be displayed and
that new predictions are displayed regardless of submitting user requests. The component will be
updated every 5 minutes and new trajectories can be expected. Another explanation is provided as
a hover effect on the timer component, to inform the user about potential changes in predictions
due to MPC revising at every time instant.

6.2.2 Day-ahead spot prices and weather forecasts

Aside from the main graphical components, additional information such as spot prices and weather
forecasts are presented. The MPC’s ability to take into account additional data such as day-ahead
spot prices and weather forecasts in the optimization is considered helpful information to visualize
to the user.

Figure 6.12: Graphical display of day-ahead spot
prices.

Figure 6.13: Graphical display of weather fore-
cast.

The user can potentially view historical, current, and day-ahead spot prices in figures 6.12 and
the weather forecasts of the outside temperature in figures 6.13. The data will depend on the
available hourly spot prices from Nord Pool’s API. The average is calculated and highlighted in
red to indicate higher or lower values relative to the average. As such, the components provide
an intuitive presentation of the data, in particular, understanding the spot prices is considered
important for the user.

60

6.3 Detection mechanisms NTNU

6.3 Detection mechanisms

This functionality is implemented in order for the web application to detect different aspects of
the optimization and prediction that can be helpful for the user. Essentially, taking advantage
of the predictive capabilities of the MPC scheme. By detecting significant differences in the
comparison, the web application can highlight areas to inform the user of consequences related
to adjusting weights and/or increasing temperature, further explained in section 6.4.

The web application can detect possibly unwanted behavior such as significantly lower temper-
atures and provide information as to how predicted temperatures and related costs are evolving.
Based on what the application is able to detect from the predicted trajectories, the application is
able to provide simple recommendations for the user. This functionality is implemented in order
to inform the user on what type of actions they can implement to change the particular behavior,
listed below. Accordingly, the user can potentially understand why this behavior occurs in the first
place and further understand how to interact with the MPC scheme based on the recommendation.
In addition, the components are responsible for transforming difficult language related to control
and optimization into relatively simple concepts that are familiar to the user. This functionality is
only implemented in the Main room for simplicity.

■ Detect high spot prices

■ Detect significant deviations from reference temperature

■ Detect significant difference in electricity cost

■ Detect heat storage

6.3.1 Detect high spot prices

In order to detect high spot prices, the application will need information on what is considered
a high spot price. One potential approach could be to check for spot prices that are higher than
the average. However, the likelihood of this occurring frequently is considered high. This will
not necessarily provide the user with helpful information. Hence, a better approach would be to
consider the specific times when the spot prices are significantly high during the day.

The current solution to detect high spot prices is to create a set containing values for when the
difference between the current spot price and the average spot price is higher than 10 øre/kWh,
described in equation 6.2. The array will contain the hours when the spot prices are significantly
high. The calculation of the average spot price is provided in equation 6.1.

61

6.3 Detection mechanisms NTNU

Cspot,avg =
1

N

N∑
k=1

Cspot,k (6.1)

Where the average spot price is denoted, Cspot,avg. The N will vary depending on the available
hourly spot prices on the Nord Pool site, using both the past spot prices and potentially the day-
ahead spot prices. If the day-ahead spot prices are available N will be equal to 48. The high spot
prices, denoted Cspot,high.

Cspot,high = {Cspot ∈ R | Cspot > Cspot,avg + 10, SP > 0} (6.2)

Figure 6.14: Detection component for explaining the concepts related to high spot prices.

The user is able to activate the detection by "checking" the spot prices as illustrated in figure 6.14.
In this component, the user is presented with the hours the spot prices are considered high and
information about how the MPC scheme will act accordingly. In addition, the user is presented
with a recommendation on how to interact with the MPC scheme to potentially reduce the cost
further or increase the thermal comfort.

In figure 6.15 an illustration of highlighting high spot prices in the graphical spot price component
is illustrated. The highlight is activating by the detection mechanism. Albeit this alert component
can detect high spot prices it is relative to the average. Occasionally, the spot prices are high
and constant, which implies that the alert system will not detect any high spot prices relative
to the average. Thus another component responsible for detecting deviation from the reference
temperature is implemented and explained in the next section.

62

6.3 Detection mechanisms NTNU

Figure 6.15: Graphical highlight of high spot prices.

6.3.2 Detect significant deviation from reference temperature

The user will experience deviations from the reference temperature as a result of the MPC scheme
seeking a compromise between comfort and cost. There are several factors influencing the
decision-making algorithm as mentioned in section 3.3.3. One of the most important concepts
to communicate to the user is why the reference temperature is not achieved by the MPC. Ac-
cordingly, the web application is required to communicate how different elements are influencing
the temperature trajectories and provides relevant information to the user, by using simple lan-
guage to describe a relatively complex concept.

The current solution to notify the user about significant deviations in temperature is to create an
set containing variables where the difference between the measured temperature and reference
temperature is lower than -3 degrees, described in equation 6.5. The set containing this informa-
tion is transformed into an array of objects, where the first element and last element are accessed.
This is done in order to present the period where the deviation is occurring. The temperature
difference are calculated as shown in equation 6.3 and 6.4.

Tdiff1,k = Troom1 − Tref1 (6.3)

63

6.3 Detection mechanisms NTNU

Tdiff2,k = Troom2 − Tref2 (6.4)

Where k is the time instant over the sum of the prediction horizon N equal to 48 hours. Tdiff,high

is the set containing the temperature differences, Tdiff1 and Tdiff2 that are considered significant.

Tdiff,high = {Tdiff1,k, Tdiff2,k ∈ R | Tdiff1,k < −3 ∪ Tdiff2,k < −3} (6.5)

As a result of high spot prices, the MPC seeks to lower the temperature to avoid high costs.
This information is considered important to provide to the user. As such the user can understand
that the temperature in the house will be lower during these times. The detection component,
presented in figure 6.16, provide information about how the MPC scheme will act when deviation
occurs. In addition, the user is presented with a simple recommendation on how to interact with
the MPC scheme to potentially avoid this behavior.

Figure 6.16: Detection component for explaining deviations from reference temperature.

If the alert component has detected a significant deviation, the graphical display will pinpoint
the period where the significant deviation is found by displaying an area as demonstrated in fig-
ure 6.17. A gray area is displayed in the period where the Troom2 is expected to be deviating
significantly from the reference temperature. This functionality can also detect deviations from
reference temperature in Troom1 from the original MPC scheme as well, however, this was not
the case during this test. The highlighted area can optionally be displayed or not by clicking on
the detection button related to the deviation.

64

6.3 Detection mechanisms NTNU

Figure 6.17: Graphical highlight of period with significant difference from the reference temper-
ature.

6.3.3 Detect significant difference in electricity cost

The electricity costs related to the consumption can also provide valuable information in terms
of cost savings and how the effects of changing the optimization influencing the costs. Similar
to detecting significant deviations in temperature, detecting a significant difference in the cost i a
set containing variables where the difference between the original MPC and the second MPC is
greater than -0,05 NOK, shown in equation 6.7. The cost difference is calculated in equation 6.6.

Cdiff,k = PHP1,k ∗ Cspot,k − PHP2,k ∗ Cspot,k (6.6)

Where k is the time instant over the sum of the prediction horizon N equal to 48 hours. Cdiff,high

is the set containing the temperature differences where Cdiff is considered significant.

Cdiff,high = {Cdiff,k ∈ R | Cdiff,k < −0.05} (6.7)

65

6.3 Detection mechanisms NTNU

The reason for choosing a negative value is to notify the user when the electricity cost is increasing
as a result of changing the optimization. This will make the user aware of the negative effects
of prioritizing thermal comfort. The negative value derive from either high spot prices or higher
consumption during that period.

Figure 6.18: Detection component for explaining high difference in electricity costs.

Figure 6.19: Graphical highlight of period with significant difference between costs in compari-
son.

66

6.3 Detection mechanisms NTNU

The most effective way of visualizing this comparison is to present a graph containing both predic-
tions. The cost difference may stem mostly from one specific hour. Accordingly, the application
should be able to pinpoint where the greatest difference occurs, such that the user can revise the
request to the MPC scheme and possibly avoid the high cost. The component in figure 6.18 will
explain to the user that the new requested values have resulted in a higher cost due to the user
wanting to achieve a higher thermal comfort increasing the consumption and related electricity
costs.

In figure 6.19, an area for displaying where the difference between COST1 and COST2 is sig-
nificant is presented. This area highlights the period with highest price difference between the
requested temperature and the MPC scheme. In addition, the user can keep the new reference
temperature in periods where the cost difference is not considered high.

6.3.4 Detect heat storage

The MPC scheme is able to store heat, by taking advantage of the thermal mass of the house and
the price-signals. This concept can be visualized to the user by highlighting the period when the
MPC scheme decides to store heat in the house before lowering the temperature in periods when
the spot prices are high. This is an important aspect of how the MPC scheme is able to plan ahead
and shift the load in the house to avoid heating when the spot prices are high.

Figure 6.20: Detection component for explaining the MPC scheme storing heat.

The current solution to detect this behavior is to observe when the predicted room temperature is
exceeding the reference temperature, explained in figure 6.20. When the user experience a higher
temperature, it is considered beneficial in terms of electricity cost, however, some user might not
prefer to have the house heated above the reference. However, there are no options for the user to
avoid the MPC scheme preheating the household by storing heat because it is considered solely
as an advantage of the MPC. In addition, this will require the user to interact with other weights
in the MPC scheme, which is beyond the scope of this thesis.

67

6.3 Detection mechanisms NTNU

Figure 6.21: Graphical display of low spot
prices.

This is considered a similar approach to load shift-
ing, where the smart control is able to heat more
when the spot prices are low in order to avoid heat-
ing when MPC can optimally choose to exploit this
to even out the consumption. When the the spot
prices increases the temperature in the house de-
creases. As presented in figure 6.21, the spot price
before 8 AM are considerably low. In figure 6.22
the application has detected that the MPC is stor-
ing heat by highlighting this period in the graph-
ical display. Troom1 is above the Tref, and after
storing heat the temperature is reduced below the
reference temperature. Storing heat when the spot
prices are relatively low is one of the important as-
pect the MPC is able to perform in order to save money. In regards to the thermal inertia of
the house, the room is able to maintain a relatively comfortable temperature although the MPC
scheme is shutting the heating off afterwards to save money.

Figure 6.22: Graphical highlight of period when the MPC scheme stores heat in the house.

68

6.4 Human-MPC interaction NTNU

6.4 Human-MPC interaction

The web application is responsible for abstracting complex control theory into simple concepts.
As mentioned in section 3.4, there are certain elements in the MPC scheme the user can change
to influence the optimization problem through the web application. The term optimal is directly
linked to the preference of the user, taking into account whether thermal comfort is more im-
portant than saving money and vice versa. This section presents the UI components responsible
for demonstrating how the user can interact and change the optimization in order to achieve the
desired output and to give the user the opportunity to decide the optimal performance.

6.4.1 Interactions with weights

The components presented in this section aim to explain how the user can interact and understand
the SpotGain and BasePrice in the MPC scheme. Accordingly, these components are respon-
sible for explaining how the changes in the optimization will affect the control of the heating
system. From a user perspective, selecting weights will be similar to determining how much the
user is willing to pay to achieve thermal comfort, giving the user the opportunity to select the
optimization according to comfort and economic preferences.

In this part of the web application, the user is provided with three different options to interact with
the MPC scheme, listed in table 6.1. These options will dictate how the spot market influences the
temperature control. In addition, an experimental approach is used to validate the performance of
using these control options, presented in section 6.4.4.

Table 6.1: Control options for interacting with the MPC scheme.

Option Control aspect

Control 1 Optimal compromise between comfort and monetary cost.

Control 2 Decide priority of SpotGain weight

Control 3 Decide the calculation of the BasePrice

By selecting one control option, the user can interact with the MPC scheme. Control 1 describes
the optimal compromise between thermal comfort and monetary cost, which is also referred to
as the original MPC scheme. Control 2 demonstrates how the wspot is adjusted to regulate the
temperature and will directly interact with SpotGain weight in the cost function. Control 3 has an
alternative way of regulating the temperature relative to the spot price market, where the calcu-
lated BasePrice determines the optimization. The three options will be detailed below.

69

6.4 Human-MPC interaction NTNU

Control 1 - Default

Figure 6.23: UI component for the
user to select a reasonable trade-off be-
tween thermal comfort and cost sav-
ings.

The first control option is referred to as the original
MPC scheme (default) which has predefined weights
(listed in table 3.4). In particular, the tuned wspot weight
is responsible for informing the MPC scheme how im-
portant cost savings are to achieve a certain trade-off
and is by default set to 0.1. The initial weight is tuned
specifically to achieve a reasonable compromise be-
tween thermal comfort and cost savings. In general,
the user will experience small deviations from the refer-
ence temperature. However, larger deviations can occur
when the spot prices are significantly high. This com-
ponent is responsible for explaining this to the user and
is considered important in order to describe the benefits
of maintaining this compromise. Generally, the MPC
scheme could optimize and manage the temperature of
the house without any human interaction and automat-
ically adjust. However, the application is responsible
for communicating that if the user is unsatisfied with
the original MPC scheme, then choose another control
option. The MPC scheme will always run this as the de-
fault scenario for comparison, however, the control op-
tion is included in order to explain to the user what the
MPC scheme is doing before the user decides to interact
and change the optimization.

Control 2 - SpotGain

One important implication of the optimal control of the heat pumps is the preference of the user.
Some users will prefer thermal comfort over cost and vice versa. Ultimately, the user will arbitrate
the optimal performance of the system. Accordingly, the user should have options to decide the
influence of the wspot, by providing the user with the proper tools. Without the proper knowledge
of how weights are determined in the cost function, the user might not achieve the desired output.
The challenge here is to convey the correct information about the effects of changing the values
in the optimization and allow the user to interact.

70

6.4 Human-MPC interaction NTNU

Figure 6.24: UI component for the user
to interact with the spot price weight
in the MPC scheme according to their
preference.

Thus, in order to simplify the concept of weights, the
user will have four options for setting the priority on
the spot prices in the optimization, presented in figure
6.24. The approach is based on sorting the weight val-
ues from low priority to high priority in an effort to
make the weight interaction more intuitive for the user.
The options are tuned to achieve the desired results (see
section 6.4.4), which entails that the user cannot directly
interact with the weights, but rather determine how the
MPC prioritizes depending on the weights to achieve
a certain trade-off. The range of values the user can
decide between is 0, 0.05, 0.5, and 1, where 0 is the
minimum value and 1 is the maximum value for wspot.
Each component provides an explanation of the effects
of choosing this priority e.g. "choosing high spot price
priority will result in experiencing generally lower tem-
perature by focusing on saving money", or "choosing
low spot price priority will increase thermal comfort,
experience higher costs". Selecting a weight value of
1 (i.e max priority), the optimization will significantly
reduce the temperature in the room to reduce the mone-
tary cost of heating. This is similar to setting the weight
to the largest value since the spot prices are dominating
the objective of the optimization. Thus, selecting values
larger than 1 is not considered interesting for the user
since it will provide the same results. Conversely, when
the weight is 0 the MPC is simply tracking the reference
temperature and disregarding the cost. Thermal comfort
is achieved regardless of the spot prices since the user
has neutralized the cost term by setting the weight to zero.

Control 3 - BasePrice

The BasePrice is not considered a weight, however, it is included as a control options determining
how the spot prices are influencing the optimization. The original MPC scheme can to some
degree resemble load shifting, nevertheless, the cost function is not designed to specifically shift
the load, but rather to avoid high spot prices to form a trade-off.

71

6.4 Human-MPC interaction NTNU

Figure 6.25: UI component for the
user to decide the calculation of the
BasePrice.

Optimally, the MPC attempts to avoid high spot prices
by reducing consumption, but reducing the consumption
at all times is a conflicting behavior because it directly
affects the thermal comfort. In the efforts to diminish
this behavior the user can choose to interact with the
BasePrice. If the cost function is adjusted to only pe-
nalize when the spot prices are high relative to the min-
imum or average, the user can, in general, experience a
higher thermal comfort. In addition, this will allow the
MPC scheme to perform a better load shifting by taking
into account the variations in the spot market better.

Interacting with the BasePrice is considered particularly
helpful when the spot prices are high and constant. The
user might not understand why the temperatures are
constantly low and how to avoid this behavior.

By selecting the BasePrice control, the MPC scheme is
to a greater extent able to neglect the effects of con-
stant high cost and aim to heat the house closer to the
reference temperature. Considering the calculation of
the BasePrice (e.g equation 3.10), with low variation
there will not be a large difference between the spot
prices in general and the minimum. Thus, subtracting
the BasePrice will result in the spot prices approaching
zero in value in the cost function.

6.4.2 Reference temperature

The main purpose of installing a heating system, such as heat pumps, is to regulate the tem-
perature. In order for the user to adjust the room temperature, the first parameter that needs to
be considered is the reference temperature. The application is responsible for providing a user-
friendly approach to setting reference temperatures for the individual rooms. The MPC scheme
uses the reference temperature as input to the cost function in order for the MPC scheme to add
cost when the room temperatures are below the reference. The temperature schedule is imple-
mented in the sidebar component in an effort to make the accessible and allow the user to plan
a daily heating schedule. The temperature component demonstrated in figure 6.26, is developed
such that the user can input and submit the reference temperature to the MPC scheme.

72

6.4 Human-MPC interaction NTNU

Figure 6.26: Temperature schedule component for setting reference temperature.

The desired temperature is submitted as an hourly value, since allowing the user to set a new
temperature every 5 minutes is considered unnecessary. This is based on the assumption that
homeowners prefer relatively stable temperatures. In addition, an option to select the default
temperature values is included as a default button. Considering the fact that the MPC scheme
operates with a 5 minute sampling time, the hourly temperature values are interpolated in order
for the MPC scheme to read the values. At every time step, the temperature setting closest to that
time step is applied.

The temperature schedule can help the user become aware of the consumption related to heating
by planning ahead. A potential challenge can be that the user consistently tries to increase the ref-
erence temperature since it is not achieved by the controller. However, increasing the temperature
will cause the heat pump to generate more heat, and increase the power consumption and cost ac-
cordingly. This should be avoided and the user needs to be provided with such information. Thus,
an information button is implemented to explain concepts related to the reference temperature.

6.4.3 Minimum temperature

The minimum temperature is decided by the user and can be implemented similarly to the refer-
ence temperature. The MPC scheme uses the minimum temperature as input in order for the cost
function to strictly penalize when the room temperatures are below the minimum.

73

6.4 Human-MPC interaction NTNU

Figure 6.27: Temperature compo-
nent for setting the minimum tem-
perature.

However, the minimum temperature is not required to be
specified hourly, based on the assumption that users will
have one minimum temperature. In cases where the spot
prices are high and the wspot is increased to avoid the
cost, the room temperature tends to approach the mini-
mum temperature. If the minimum temperature is consid-
erably low, the user will experience low temperatures in
the house overall. However, the user can decide to set the
minimum temperature relatively close to the comfort tem-
perature to avoid very low temperatures. This is related to
the weight for avoiding temperatures below the minimum
is considered high compared to other cost terms in the cost
function, resulting in the MPC scheme rarely heating be-
low this temperature.

6.4.4 Experimental results

In order to validate the performance of interacting with the MPC scheme, the temperature trajec-
tories are plotted accordingly. All trajectories are compared to control option 1 and tested on the
Main room, demonstrating the predictions 24 hour after initialization (Tomorrow).

Figure 6.28: Spot prices on the day the experimental tests were performed.

In figure 6.28, the spot prices during the day the tests were performed are presented. This also
highlights the period with low spot prices and high spot prices to give an indication of how the

74

6.4 Human-MPC interaction NTNU

MPC will predict the trajectories based on this information. In addition, taking into account that
the spot prices are generally above the average, it will ultimately restrict the MPC to heat less
when the spot prices are included in the optimization.

SpotGain

The first part of this analysis presents the influence of the spot market on the deviation of the
temperature from the reference at various steady-state of the MPC.

Figure 6.29: Illustration of the predicted temper-
atures with maximum spot price priority.

Figure 6.30: Illustration of the predicted temper-
atures with minimum spot price priority.

The maximum spot price priority (wspot = 1) in figure 6.29 will result in the temperatures ap-
proaching the minimum temperature to avoid high costs in general and the user will experience a
low thermal comfort. On the other hand, the minimum spot price priority (wspot = 0) in figure
6.30 will ignore the spot prices completely and simply achieve thermal comfort by following the
reference temperature.

Figure 6.31: The influence of maximum spot
price priority on the 24 hour electricity cost.

Figure 6.32: The influence of minimum spot
price priority on the 24 hour electricity cost.

75

6.4 Human-MPC interaction NTNU

The resulting 24 hour cost of changing the spot priority to maximum and minimum are illustrated
in figures 6.31 and 6.32, respectively. The 24 hours cost can give a good indication of the overall
changes in electricity cost. By having the maximum priority the costs decreased by 1 NOK (from
13 NOK to 12 NOK), while for the minimum the cost increased significantly by 17 NOK (from
13 NOK to 30 NOK). This should encourage the user to avoid heating at thermal comfort at all
times since the cost increases significantly.

Figure 6.33: Illustration of the predicted temper-
atures with high spot price priority.

Figure 6.34: Illustration of the predicted temper-
atures with low spot price priority.

Furthermore, selecting high spot price priority (wspot = 0.5), illustrated in figure 6.33, will result
in generally lower temperatures and focus on saving money. Selecting low spot price priority
(wspot = 0.05), illustrated in figure 6.34, will result in generally higher thermal comfort. Due
to the specific day the tests were performed, there can not be observed a significant difference
between the maximum and high spot price priority, or the minimum and low spot price priority
due to overall high spot prices.

BasePrice

The experimental results from interacting with the BasePrice are illustrated in figures 6.35 and
6.36. When the minimum spot price is subtracted it is economically advantageous for the user,
since the MPC scheme is to a greater extent able to heat the house when the spot prices are low.
Nevertheless, the 24 hour electricity cost will be slightly higher (increasing from 14 NOK to
18 NOK) compared to when the BasePrice is not accounted for. In terms of achieving thermal
comfort when this is convenient the minimum spot price is a good alternative. This approach is
considered the best option in regards to maintaining the compromise between comfort and cost.

On the other hand, when the average spot price is subtracted the user will to a great extent experi-
ence thermal comfort. The reference temperature is observed to exceed the reference temperature

76

6.4 Human-MPC interaction NTNU

Figure 6.35: Illustration of BasePrice equal 1, i.e
subtracting the minimum.

Figure 6.36: Illustration of BasePrice equal 2, i.e
subtracting the average.

significantly. The MPC will only add cost whenever the spot prices are above the average. This is
considered a good alternative, in theory, however, in practice the output is sub-optimal. The sys-
tem is encouraged to heat more when the prices are below the average since the value is negative
and interpreted as "earning money" in the cost function. The 24 hour cost increased significantly
(from 14 NOK to 44 NOK), as well as the MPC scheme decides to heat above the reference tem-
perature when the spot prices are below the average. By looking at the spot prices during the day
the tests were performed (figure 6.28) the spot prices are lower than the average, before increasing
significantly. However, the MPC is not able to decrease the temperature considerably albeit the
spot prices are high during the day. This is partially due to the fact the MPC does not have a
large penalty for temperatures above the reference and partially due to the MPC restricting rapid
changes in temperatures. As such, choosing the BasePrice equal 2 is not considered optimal and
therefore dismissed as a control option in the application.

Reference temperature

Finally, the experimental results for changing the reference temperature is illustrated to examine
the effects of increasing and decreasing the reference temperature. The default reference tem-
perature, Tref1, is 21 degrees. In figure 6.37, the effect of increasing the reference temperature
is illustrated. Around 8 AM the reference temperature, Tref2, increased from 21 degrees to 25
degrees, approximately around the time when the spot prices increased, as shown in figure 6.28.
The target temperature, Ttarget1, and Ttarget2 serve as input to the heat pumps and will decide
how much power is drawn from the heat pumps. Considering the MPC scheme seeks to optimally
choose the input, Ttarget 2 is increased before the reference temperature is increased in order to
avoid consuming as much power when the spot prices are high. However, the MPC scheme does

77

6.4 Human-MPC interaction NTNU

not increase the room temperature significantly regardless of the reference temperature. This be-
havior can be connected primarily to the spot prices, nevertheless, the MPC scheme is to some
extent failing to increase the temperatures. In order to reach the new reference temperature, the
priority on the spot prices has to be decreased in addition to increasing the reference temperature.

Figure 6.37: Illustration of increasing the refer-
ence temperature to 25 degrees.

Figure 6.38: Illustration of decreasing the refer-
ence temperature to 15 degrees.

The 24 hour cost is only predicted to increase by 1 NOK when increasing the reference temper-
ature considerably this day. Taking into account that the spot prices are relatively high this day,
increasing the reference temperature does not increase the thermal comfort significantly. Con-
versely, in figure 6.38, the effect of decreasing the reference temperature in the same period from
21 degrees down to 15 degrees is illustrated. The input Ttarget2 is observed to stay below the
Ttarget1 and is expected to consume less power during the high spot price period. Nevertheless,
the 24 hour cost is not predicted to decrease, due to the MPC scheme not penalizing temperatures
above the reference much. As a result the room temperatures are failing to decrease during this
period.

78

Chapter 7

Discussion

This chapter presents a discussion of the software implementation and evaluates potential im-
provements for further development of this smart house system with a focus on the user perspec-
tive. Essentially, the discussion will address the challenges related to the human-MPC interface
and how solutions to this can ease the adoption of complex control strategies in the average house-
hold.

7.1 Evaluation of software implementation

In this section, an evaluation of the software implementation is presented with regard to the graph-
ical displays and interactive components of the web application. This discussion will mainly
consider improvements to the current implementation, however, also considering alternative ap-
proaches to future development.

Overall, the software implementation presented in chapter 5 and 6 demonstrate that a web appli-
cation developed using JS is a suitable HMI for this MPC scheme. Each UI element is responsible
for communicating the relevant information to the user, which required a simple and intuitive de-
sign approach. Albeit several functionalities and interactive components are implemented, there
is still room for improvements considering that there could be countless scenarios the user can
encounter. Thus, there are limitations to this discussion to remain within the scope of the thesis.

79

7.1 Evaluation of software implementation NTNU

7.1.1 Graphical comparison

The graphical comparison, presented in section 6.2, is considered a valuable implementation in
terms of visualizing the effects of changing the optimization. The graphs include customized
functionalities in order for the user to understand the anticipated heating in the house and the
related costs. This will automatically assist the user with explanations without directly explaining
(in text) the consequences of interacting with the MPC scheme. As such the user can make an
informed decision to proceed with the request or disregard the changes. However, the comparison
might be confusing to the user in terms of knowing what the current MPC scheme is optimizing
for. In order to clarify this, the application should clearly display the current MPC actions. In this
manner, the application could inform the user about whether the control algorithm is running the
original MPC scheme to control the heat pumps or if the user requests are implemented as MPC
actions.

Improve customization in graphical display

A potential implementation to improve the graphical display for electricity costs could be to
highlight the priciest hour. The web application is in fact able to detect high-cost differences,
however, detecting the priciest hour could give a good indication of when the highest spot prices
occur and/or when the consumption is highest. Further, give a good indication of which period the
user should tell the MPC to lower the temperatures considerably if the desire is to lower the costs.
However, the reason for not implementing this currently, is due to the limitations of the charting
library. Accordingly, highlighting without drawing a rectangle over the graph is not possible with
the current library.

Albeit the charting library is restricted, it is possible to highlight periods by displaying areas, as
demonstrated in section 6.3 (e.g significant difference between the room temperature and the
reference temperature). This is the current approach to solving the challenges related to the
charting library and is essentially provided as a potential solution although it is not optimal. As
such, the web application is to some extent able to explain concepts by visualizing/highlighting
and explaining.

In order to achieve more customization in terms of illustrations and explanations, the charting
library might have to be changed to have more flexibility or possibly develop the SVG elements
from scratch. However, as mentioned in section 4.3.2, this will require a lot of work since most
libraries are built on top of other elements in order to simplify the work. Selecting a different
library could potentially solve some of the related problems to displaying more information in the
graphs and hover functions to highlight specific parts.

80

7.1 Evaluation of software implementation NTNU

7.1.2 Selecting the appropriate trade-off

As presented in section 6.4.1, there are currently three control options implemented in the web
application that allows the user to select how the MPC scheme takes into account the spot price
market. Implementing intuitive tools for the user to interact with the MPC scheme has been one of
the priorities in this thesis. To provide a simplified language, the UI elements are implemented as
priorities rather than weights. Although it might be challenging for the user to understand exactly
what the MPC is doing to control the heating, there is no single solution to explain this concept
since the control will vary from day to day. Conveying the correct information for every single
scenario is difficult and almost impossible. However, this might originate from the data handling
not being generalized enough to accommodate more MPC-user scenarios.

Based on the experimental results in 6.4.4, the components are evaluated to provide sufficient
information through these simplified explanations. These results also demonstrate the effects
of adjusting the SpotGain and BasePrice. Selecting a low priority clearly shows that the thermal
comfort level has been obtained as well as increased costs related to the consumption. Conversely,
having a high spot price priority gives great ability to save money, however, this compromise the
thermal comfort considerably. Ultimately, the user will be the person who arbitrates the optimal
performance. Nevertheless, there should potentially be more information provided in terms of
promoting energy-saving capabilities, that have not been accounted for in this thesis.

The reason for implementing three options is for the user to simply distinguish between how the
spot prices are prioritized in the MPC scheme. Another reason for this particular approach is for
the user to only decide to interact with one of the control options at once. There are currently no
restrictions or guidance provided to the user, however, this should probably be implemented to
include further explanations for the user to distinguish between the interactions.

Considering the user is satisfied with the original MPC scheme, control option 1 is selected. Se-
lecting control option 2 will essentially let the user select how to prioritize the spot prices. By
prioritizing spot prices, the user is informed that thermal comfort is compromised. Accordingly,
the user can interact with the alternatives in control 2 to achieve the desired trade-off. By select-
ing control option 3, an alternative approach to account for the spot market is used, which allows
for regulating the temperature according to a base price. However, if the user decides to select
submitting more than one of the control options, the MPC might behave differently from what the
user expects. This is just a potential discrepancy with the current solution, however, this might
not have a major impact on the overall system. This is tested, however, all possible scenarios have
not been investigated.

81

7.1 Evaluation of software implementation NTNU

Another element to consider is the user confusing these control options with each other, which can
be a possibility considering that all regulate the temperature based on the spot price market. The
wspot determines the importance of cost savings in the optimization, while the base price is not a
weight, it is rather a tool for the user to regulate the heating relative to variations. Nevertheless,
having three options will allow the user to have different possibilities of influencing the weights,
which allows for more flexibility. It is assumed that the current implementation works well for
the given purpose. However, if flexibility cause confusion, an alternative to these control options
could be to have an even more simplified version, with three alternatives: low, neutral, and high.
Although this approach was evaluated, the current solution is considered a better approach.

Interaction with other weights

The current implementations in the web application seek to balance the interactive components
to provide sufficient information and flexibility as well as restrict the user interactions with the
MPC scheme. More specifically, the application is restricted to only interacting with the wspot,
thus other weights are not adjusted by the user. The reason is simply that the trade-off between
thermal comfort and cost savings is the main priority and requires only adjusting the priority of
wspot.

Nevertheless, one particular weight could be interesting to investigate, namely the wtemp.above.
This weight is considered intuitive for the user to interact with since it determines how the MPC
scheme heats above the reference temperature and stores heat. Depending on the preference of
the user, heating above the reference temperature might not be ideal. Taking this into account,
adjusting the wtemp.above can select the priority with options such as "Allow heat storage" and
"Avoid heat storage", demonstrated in figure 7.1.

Figure 7.1: Potential implementation for user to restrict the MPC scheme to store heat in the
house.

The first option will have a relatively low priority and the second option will have a high priority
to strictly avoid the heating above. In addition, this can be advantageous when the user decides
to decrease the reference temperature significantly (as shown in figure 6.38). Due to the temper-

82

7.1 Evaluation of software implementation NTNU

atures above not being penalized very heavily, the MPC is unable to track a decrease in reference
temperature and reflect that in the room temperature. This limits the ability of the user to lower
the temperature during high spot prices. On the other hand, increasing the wtemp.above, in general,
can reduce the MPC flexibility to store heat during low-cost hours. Subsequently, increasing the
electricity cost unnecessarily due to the inability of reducing consumption during high-cost hours,
which is required to be communicated to the user. If this was to be implemented, tests have to be
performed in order to evaluate the effects of changing this weight.

7.1.3 Improve detection mechanism

There are currently four different detection mechanisms that can inform the user about when the
MPC predicts the temperature or cost to behave in a particular way (explained in section 6.3).
The intention is to provide useful guidance by simply explaining what is happening in the current
MPC scheme. This functionality is considered a reasonable approach to informing the user about
the predicted output. However, the detection mechanism is based on identifying times where the
MPC scheme is behaving in a certain way relative to a static number. Considering that the system
is dynamic and changes all the time depending on the particular day, a static number to detect
may not be sufficient. The detection mechanism should be relative to the data that is entering the
web application in order to have a more dynamic functionality.

In addition, this functionality is able to provide some recommendations. If the web application
detects high spot prices the user can choose between saving money by increasing the priority
on the wspot or higher thermal comfort by decreasing the priority on the wspot. Although these
recommendations are simple they can provide some valuable information to the user in terms
of avoiding certain behaviors from the MPC, however, customized recommendations should be
further investigated, explained in section 7.1.4.

One noteworthy aspect to mention is that the detection is currently only applied to one of the
rooms, meaning the Main room is the only graphical display that can handle detecting capabilities
due to difficulties with data structures. This should be implemented in all rooms when considering
further development of the web application. Though there could be more intuitive and simpler
approaches, the current implementation is assumed to function well for the given purpose.

Detect high and constant spot prices

One detection mechanism that should be considered implemented is high and constant spot prices.
The reason for implementing this can be to inform the user that the temperatures will be constantly
low during this period. In addition, propose a suitable interaction for eliminating this effect. The
best solution to avoid constant low temperatures is for the user to interact with the BasePrice.

83

7.1 Evaluation of software implementation NTNU

An alert or detection mechanism is not established for this scenario. Nevertheless, it is possible to
detect high and constant spot prices by comparing the average historical spot price and the current
average to calculate the standard deviation. If the average is high and the standard deviation is
low the spot prices can be considered high with a low variation period/ constant. This could be
implemented to improve the interaction with the MPC and possibly avoid such behavior if the
user prefers thermal comfort during these periods.

7.1.4 Further implementations

There are several possibilities to implement new components and interactive elements in the web
application. In particular, a further implementation should take into account that the predictive
capabilities of the MPC scheme can be exploited further. However, with the current software, this
will require more data processing. Some potential implementations are described below.

Turn off the smart house

An alternative to reduce the cost and energy consumption further with smart control is to have a
functionality that allows the user to turn the heating system off or reduce the heating significantly.
The web application could remotely tell the MPC to reduce the heating when the user expects to
be away from home. By including a switch button in the web interface, the user can choose to
"turn the heating off". This could be a relatively easy implementation, however, the MPC scheme
is not currently designed to perform a shutdown, without stopping the code.

Figure 7.2: Potential implementation of "turn off" the smart house.

84

7.1 Evaluation of software implementation NTNU

Including a turn-on/turn-off button can give the user an alternative way to lower the consumption
by planning ahead. When the smart house is "turned off" the user can be prompted with a daily
schedule, shown in figure 7.2. For instance providing a default value for the temperature settings
to be 16 degrees or providing a button to tell the MPC to shut down the heat pumps completely.
By specifying the days away, the web application can make sure the consumption is reduced
during this period. Eventually, remote configurations of the heating system can also allow for the
system to preheat the house before arriving back home again.

Display how the MPC revise

One of the challenges related to explaining the MPC scheme is the fact that the predictions change
at every time instant. If the user expects a certain temperature in the room but experiences another
temperature, this might be conflicting for the user and potentially lead to the user not trusting the
system. Although the temperatures can be fairly accurate the uncertainties in the prediction apply,
in particular, to the predicted electricity costs.

The uncertainties in the predictions can possibly stem from the length of the prediction horizon.
However, the effects of reducing the prediction horizon to 24 hours are assumed to not have a
major influence on the uncertainties. Explaining and displaying this concept should be further
investigated. A potential solution can be to display past predictions of the MPC scheme to il-
lustrate to the user how the MPC is revising its predictions all the time and clearly explain the
uncertainties related to the predictions of the MPC.

Schedule for setting weights

Similar to the temperature schedule for setting reference temperatures, the control options for
setting weights could have the same approach to scheduling. Considering a scenario where the
user observes the temperature trajectories deviating significantly in the evening. During this pe-
riod, the user wants to achieve thermal comfort and wants to avoid the MPC scheme lowering the
temperature due to high costs. Allowing the weights to be scheduled can increase flexibility and
exploit the predictive capabilities of the MPC further. This will also let the user save more money
by potentially increasing the spot price priority during a short period of time during the day when
the spot prices are significantly high. Accordingly, the schedule can let the user have a reasonable
comfort temperature where this is feasible and let the user maximize cost savings in periods of
high spot prices.

Another interesting element is having four different cost functions for the rooms in the smart
house. Although the rooms have different temperature settings, there is only one cost function
defined for all rooms. Hence, changing the weights will evidently affect all the rooms. The user

85

7.1 Evaluation of software implementation NTNU

may desire to have a specific algorithm running in one room, where the preference is thermal
comfort, while in other rooms the user might want to focus on saving money. This could indeed
provide more flexibility, nevertheless, the user will have to interact with the MPC scheme more.

These approaches will require quite a few adjustments in the MPC scheme. The process of doing
so is assumed not trivial. However, it could be an interesting aspect to further examine and can
potentially provide more functionalities and improve the user experience.

Get customized recommendations

A possibility to enhance the smart control and take further advantage of the predictive capabil-
ities of the MPC is to provide customized recommendations. These recommendations could be
a functionality that provides explanations e.g. "here is the cost associated with your choices of
temperature for tomorrow". When the user is scheduling the reference temperature, there could
be implemented recommendations that inform the user of potential cost savings e.g "reducing the
temperature to the minimum temperature between 23:00 and 08:00 you can save 10 NOK" or
"choosing low spot price priority in this period will cost you 3 NOK". In response to recommen-
dations, customers may choose to adjust their consumption patterns.

Accordingly, this will allow the user to exploit the predictive capabilities of the MPC scheme
by providing recommendations. This can also contribute to the user acquiring a more conscious
approach to heating the house and hopefully contribute to reducing consumption further. By
quantifying the estimated cost savings between the original temperature trajectories and the al-
tered trajectories, the consumer can be made aware of the consequences of interacting with the
MPC prior to submitting requests.

Alternatively, to detect unusual behavior, the web application could have an alert system that is
able to send automatic notifications to keep users informed on the newest information regarding
the smart house. In addition, possibly be customized to what information the user wants to be
notified with. This is currently not implemented and requires a considerable amount of time to
create the appropriate data structure and functionalities.

Although there are some recommendations in the web application, these components are re-
stricted to only displaying static information whenever the application has detected a certain
behavior. A further improvement of these should be considered. The solution to include this
is not considered trivial and will require additional code in the MPC scheme, data processing in
the server, and client-side of the application. However, this is an interesting approach to consider
for further development.

86

7.2 Data processing NTNU

Other alternatives to calculate BasePrice

As mentioned in section 6.4.4, the calculation of the BasePrice based on the average of spot prices
is not considered an optimal approach. However, there could be other alternatives to calculating
a BasePrice. One possibility is to communicate to the MPC a relative spot market and divide the
spot prices by the average. In this way, the MPC does not use the price but rather a percentage that
explains e.g "the price now is 50% more expensive than the average". This could eliminate the
effects of having negative values in the cost function when the spot prices are below the average
because there will be no negative values. This might be a reasonable approach that has to be
properly tested, however, this is not within the scope of this thesis.

7.2 Data processing

The functions responsible for handling the data structures on the server-side of the application
are specific to the functionalities presented in the results of this thesis. However, these functions
are not generalized, subsequently, complicating further development of the web application, such
as adding more IoT devices to be monitored and controlled or adding functionalities. A number
of these functions were developed to have the MPC data transformed into structures that can be
understood by the charting library in React. In this way, the front-end development eliminates the
need for multiple functions to further process data coming from the server. However, the server
could be made more flexible by standardizing the structures further. As such, there are potentials
for improving the data flow, lower risks of failure, and handling increased amounts of data.

7.2.1 Data flow between the server and MPC

An improvement that needs to be considered is the HTTP requests between the web application
and the MPC. The current approach will have the comparison available at all times, due to updat-
ing the data every 5 minutes as mentioned in section 5.3.1. However, a better approach would be
to only include the comparison when the user wants to compare how the trajectories will change
if the user decides to change the parameters (e.g. weights). Due to difficulties with the server, it
is not able to differentiate between the user requests.

On the other hand, the MPC scheme is able to differentiate the output depending on the requests,
however, the data processing in the server is not general enough to handle different amounts of
data. In other words, the data structure should be made more general to solve this issue. The
current solution to this is to have a dynamic arrangement of data in the graph in order for the user
to select if the comparison should be displayed or not.

87

7.2 Data processing NTNU

Moreover, another important consideration is related to stopping and/or updating the server. In
these cases, the requests from the web application disappear. Whenever the server is not running
(either stopped/loss of Internet connection) the MPC scheme must include error handling for
reading empty data or undefined requests to the server. This is included in the MPC algorithm
since error handling is important in order to avoid failures in the house control algorithm. If the
user request changes in the MPC scheme with empty values, the MPC is able to respond to these
requests by using standard values, such that submitting empty values does not result in failure.

Run on Raspberry Pi

A potential approach to have more remote access is considering to run the MPC scheme directly
on the Raspberry Pi. Currently, the MHE/MPC schemes can run on the Raspberry Pi, however, es-
tablishing communication from the Raspberry Pi to the web application has not been investigated
in this report. Remote configurations, i.e the possibility to operate the system outside the house
(local area network (LAN)), and have data stored in different places, have several advantages and
should be further considered for optimal management of the smart house. These advantages are
related to increased flexibility. A potential improvement for the web application development is
to have it running on a separate computer and let the Raspberry Pi be responsible for retrieving
the user requests from the web application and sending them to the MPC scheme. Possibly create
an API from the Raspberry Pi in order for the server to get the latest outputs from the MPC and
the Raspberry Pi will get the latest user request from the server/REST API, as illustrated in figure
7.3.

Figure 7.3: Illustration of a potential remote configuration by communicating with the Raspberry
Pi.

88

7.3 Professional development and deployment NTNU

7.3 Professional development and deployment

In general, web applications and services have the ability to provide flexibility to the user. Al-
beit this is the general case, one shortcoming of the current development is related to the local
operation and storage system. To access the web interface, the current solution requires the user
to have the software running on their local computer with local storage, as mentioned in section
5.3.1. This is not ideal for making the web application available for everyone or accessing it
remotely. In order to make the web application run independently of the localhost, it should be
deployed either on a dedicated domain, through a platform, or use cloud web services.

7.3.1 Security

Considering the fact that the control algorithm is executed locally, the data is stored locally and
the web application runs on localhost there are no current security threats. Thus, security is not
accounted for based on the assumption that there are no current risks. However, if the application
was made commercial or public, the security aspect would be imperative. In general, for commer-
cial IoT applications, security is regarded as one of the essential elements when developing smart
home applications. For further development, the security aspect should be integrated in terms of
protecting against potential leakage of sensitive and personal information.

7.3.2 Scalability and availability

One of the concerns related to the future development of the software and web application is
the software scalability, referring to the measure and ability of the application to handle larger
amounts of data and support other IoT devices.

The application is solely developed to support monitoring and controlling the heat pumps in the
smart house. Nevertheless, the smart house includes various sensors and actuators which are not
accounted for in this thesis.As mentioned in section 3.1.1, other IoT devices are currently installed
in the smart house. Further development should consider including more devices to let the user
monitor and control more smart appliances in the house. Subsequently, the web application will
have to manage an increasing amount of data.

As mentioned in section 5.1, the data is stored locally on the server-side of the application. How-
ever, in order to access this data, the server has to be running with an Internet connection. An
external database to store data has not been evaluated in this thesis due to limited time, however,
the server resembles a nonrelational database. The advantage related to having a database is that
the data resources are stored locally when they are offline, so they can still be used when there

89

7.3 Professional development and deployment NTNU

is no server connection. Local databases are located on a dedicated computer or device, while a
cloud database can be accessed through the Internet by utilizing a web server.

A potential solution to resolve this issue is to investigate the possibility of developing a cloud-
based application with a dedicated database in order to scale according to the increasing load.
In addition, this can take into account the security levels when developing the application and
increase the availability. This could be further evaluated.

7.3.3 Smartphone app

Figure 7.4: Web interface design
for smartphone browser or a po-
tential smartphone application.

With a web-based application, there is a lower availability
compared to a phone-based application due to the require-
ment of having an Internet connection at all times. Addition-
ally, considering the user wants to interact and monitor the
system more frequently, a smartphone app is preferred over
a web application since it also requires the person to have a
computer. The reason for choosing to develop the user inter-
face as a web application is due to the simplicity of integrat-
ing the application with the current smart house system.

There are possibilities to create a responsive design, that will
allow the web interface to be compatible with the browser
on smartphones. This will entail that every component is
adjusted according to the size of the smartphone screen. Al-
though the design of the interface is not the main priority
in this thesis, design methods are considered one of the key
elements for improving user-friendliness. By including a re-
sponsive design the user can be able to access the application
through the phone for monitoring and controlling the smart
house system. Since smartphones have smaller screens than
computers some functionalities might be restricted on the
smartphone, in particular, the option for multiple graphical
displays and some options will be compressed inside com-
ponents.

An alternative to extending the functionalities and accessibility of the web application is to create
a native mobile app. This will require a whole different approach in terms of programming
language and software technologies and they tend to be more advanced in terms of features and

90

7.4 User testing NTNU

functionality. Another concern related to developing mobile apps is that they normally take more
time and the complexity is increased in terms of programming skills. This could potentially be a
suggestion for future work related to user interface development.

7.4 User testing

This thesis focus on a user-centered approach to identify challenges related to understanding
advanced control such as MPC schemes. However, the web application is developed by a person
with familiarity related to control and optimization which could have had an impact on how the
data is presented and explained. Thus, in this thesis, the user perspective is partially influenced by
the author’s knowledge of control theory and MPC. Nevertheless, the web interface is assumed to
provide a sufficient amount of explanations and understanding of the MPC scheme to the average
user.

An alternative to validate the software implementation and user experience further and indeed
get a complete picture of how the average user can understand such a system, a user test should
be conducted. Conducting user tests of the web application could also be a good alternative to
determine other functionalities to add to the application. This will further contribute to getting
a more correct understanding of the user perspectives and the ability to understand the system
through interacting with the web application. In particular, this is interesting as the more advanced
control methods are applied to optimize smart house appliances, and understanding the challenges
can provide information on how to solve these questions by directly including the user.

7.5 Future of smart homes

An essential part of this thesis is to analyze how the user can be integrated into the system to
facilitate the adoption of more complicated tools such as MPC. By developing a user interface,
this thesis focus on a more practical approach to considering the user perspectives and potential
adoption of such systems.

In comparison with other available software services for smart homes, this application is consid-
ered more comprehensive and user-friendly. However, future services and applications for home
automation systems will rely on even more complex control strategies and require more data from
numerous sensors. Thus, smart home applications should be able to handle an increased amount
of data and functionalities.

An example of other applications with real-time graphical displays is Tibber. In addition to real-
time graphical displays, this application offers more customization and advanced functionalities

91

7.5 Future of smart homes NTNU

that provide valuable information beyond just energy consumption. In addition, the user can
specify high-level preferences to the MPC. Having a predictive algorithm can provide information
ahead of time and highlight areas e.g when the spot prices are significantly high. Tibber claims
that by following the consumption in real-time the user can reduce their energy consumption
and acquire a behavioral change by becoming aware of the consumption patterns. However, this
requires the user to shift their consumption.

With the MPC schemes’ ability to optimize energy consumption automatically based on energy
prices and weather forecasts, the user does not have to be burdened by shifting their consumption.
The MPC can aid consumers in improving their energy consumption patterns automatically. In
terms of efficient energy use, the household becomes an integrated part of the grid by installing
optimized controller design in heating systems. By minimizing the consumers’ electricity bills,
the control strategy is directly contributing to enhancing the flexibility in the grid, which is an
important implication of future smart homes and energy management systems.

Considering the MPC scheme in this thesis, future considerations for improving load shifting
could be to examine the potential for energy/heating storage. If consumers find the MPC scheme
helpful in reducing the overall electricity bill and the heating is used in a smarter way, it will have
both operational and economic advantages.

This study is considered valuable for the integration of future smart home solutions, such that
the current development of smart energy management systems and temperature controllers does
not compromise the understanding of the user. This can also contribute to reducing the current
gap between automation and adoption. The results obtained in this thesis can to some degree
also support the theory of reducing concerns related to the adoption of more complex tools for
controlling heating devices albeit there have not been conducted user testing methods in the scope
of this thesis. Optimistically, including user interfaces in smart homes can contribute to curtailing
the resistance from users and building trust. Accordingly, this thesis has addressed the main
challenges related to developing a human-MPC interface and how solutions can ease the adoption
of complex control strategies in the average household.

92

Chapter 8

Conclusion

The objective of this thesis was to evaluate the feasibility of implementing a web application
designed for an MPC-based smart home control algorithm. This thesis has a focus on the more
practical approach considering smart home implementation by supporting a user-friendly inter-
face between the MPC and the homeowner.

The software implementation consists of a web interface developed using JavaScript, where the
interactive components allow the user to monitor the predicted temperatures and related electricity
costs. The predictive capabilities of the MPC scheme pose certain challenges in terms of uncer-
tainties and intuitive communication, however, it offers valuable information to the user through
graphical displays. The application take advantage of these predictions and offer customization,
nevertheless, highly customized elements have been complicated to provide.

The web application can to a large extent explain, visualize and allow the user to influence the op-
timization of the MPC scheme by selecting a certain trade-off between comfort and cost savings
in regard to their preference. The results from developing this web application have answered
questions related to how the user should be integrated, potentially leading to easier user adoption
for MPC-based heating control in residential buildings. Essentially, the human-MPC interface
provides the user with the necessary functionalities to understand parts of the optimization, how-
ever, conducting user tests is recommended to get a more comprehensive measure of the web
application’s capability to effectively communicate the MPC data.

According to this thesis, future smart house solutions will be able to integrate more complex con-
troller designs into heat pumps, such as MPC, to regulate the temperature without compromising
the understanding of the user, by implementing customized interfaces. To conclude the thesis,

93

8.1 Further work NTNU

developing a human-MPC interface is viable for explaining and visualizing important concepts
related to the control algorithm.

8.1 Further work

The results obtained in this thesis serve as the basis for further developing a complete application
for the POWIOT project. Recommendations for further development of the software and related
work presented in this thesis are listed in the following.

• Further considerations for the MPC scheme:

– Develop a schedule for setting hourly weights.

– Having different cost functions for each room.

– Include an energy storage system to provide better demand response/load shifting.

• Improve and generalize data extraction and processing on the server-side to:

– Potentially include more IoT devices already installed in the smart house.

– Have a completely remote configuration or utilize the Raspberry Pi.

– Potentially develop a smartphone app to increase the interoperability.

– A cloud-based solution for better up-scaling and security.

• Develop more interactive and customized functionalities to:

– Improve the graphical display of MPC data.

– Provide more intuitive explanations such as customized recommendations that exploit
the predictive capabilities of the MPC scheme to a greater extent.

94

References NTNU

References

[1] Ján Drgoňa et. al. All you need to know about model predictive control for buildings. 2020.
URL: https:// www.sciencedirect.com/ science/article/ pii/ S1367578820300584 (visited on
03/03/2022).

[2] Energi Norge. Strømnettet i et fullelektrisk Norge. Oct. 31, 2019. URL: https : / / www.

energinorge.no/contentassets/74f33e5598d64578bda89c1fa864e83a/rapport---stromnettet-

i-et-fullelektrisk-norge.pdf (visited on 02/2022).
[3] Statistisk Sentralbyrå. Elektrisitet. 2020. URL: https://www.ssb.no/ statbank/ table/08311/

(visited on 02/2022).
[4] E24. Direktiv om endringer i bygningsenergidirektivet. Aug. 28, 2021. URL: https:// www.

regjeringen.no/ no/ sub/ eos- notatbasen/ notatene/ 2016/ des/ revisjon- av- direktiv- om-

bygningers-energiytelse/ id2540198/ (visited on 04/2022).
[5] E24. Ny strømprisrekord i Sør-Norge mandag. Dec. 19, 2021. URL: https : / / e24 . no /

privatoekonomi / i / Qy3jMx / ny - stroemprisrekord - i - soer - norge - mandag (visited on
01/2022).

[6] Gérôme Bovet et.al. Toward Web Enhanced Building Automation Systems. Mar. 2014. URL:
https:// link.springer.com/chapter/10.1007/978-3-319-05029-4_11 (visited on 04/2022).

[7] Energifaktanorge. Energy use by sector. 2020. URL: https://energifaktanorge.no/en/norsk-

energibruk/energibruken-i-ulike-sektorer/ (visited on 01/2022).
[8] Bomiao Liang et al. Economic MPC-Based Smart Home Scheduling With Comprehensive

Load Types, Real-Time Tariffs, and Intermittent DERs. 2020. URL: https:// ieeexplore.ieee.

org/document/9237994 (visited on 01/2022).
[9] BEN. Internet of Heat. 2020. URL: https: / / www.benuk.net / Internet - of - Things- Heat-

Pump-Controls.html (visited on 02/2022).
[10] NVE. Rapporter - vassmagasinstatistikk. 2021. URL: https:// www.nve.no/ nytt- fra-nve/

rapporter-vassmagasinstatistikk/ (visited on 01/2022).
[11] NordPool. Price formation. 2021. URL: https : / / www.nordpoolgroup . com/ the - power-

market/Day-ahead-market/Price-formation/ (visited on 01/2022).
[12] Tensio. Nettleiepriser privat fra 1. januar 2022 - 31. mars 2022. 2022. URL: https:// ts.

tensio.no/kunde/nettleie-priser-og-avtaler/2022-nettleie-privat (visited on 03/2022).
[13] Regjeringen. Justerer innføringen av ny nettleiemodell. May 6, 2022. URL: https:// www.

regjeringen.no/no/aktuelt/ justerer-innforingen-av-ny-nettleiemodell/ id2911788/ (visited
on 05/20/2022).

[14] Bjarne Foss and Tor Aksel N. Heirung. Merging Optimization and Control. Trondheim,
Norway: NTNU, 2016.

95

https://www.sciencedirect.com/science/article/pii/S1367578820300584
https://www.energinorge.no/contentassets/74f33e5598d64578bda89c1fa864e83a/rapport---stromnettet-i-et-fullelektrisk-norge.pdf
https://www.energinorge.no/contentassets/74f33e5598d64578bda89c1fa864e83a/rapport---stromnettet-i-et-fullelektrisk-norge.pdf
https://www.energinorge.no/contentassets/74f33e5598d64578bda89c1fa864e83a/rapport---stromnettet-i-et-fullelektrisk-norge.pdf
https://www.ssb.no/statbank/table/08311/
https://www.regjeringen.no/no/sub/eos-notatbasen/notatene/2016/des/revisjon-av-direktiv-om-bygningers-energiytelse/id2540198/
https://www.regjeringen.no/no/sub/eos-notatbasen/notatene/2016/des/revisjon-av-direktiv-om-bygningers-energiytelse/id2540198/
https://www.regjeringen.no/no/sub/eos-notatbasen/notatene/2016/des/revisjon-av-direktiv-om-bygningers-energiytelse/id2540198/
https://e24.no/privatoekonomi/i/Qy3jMx/ny-stroemprisrekord-i-soer-norge-mandag
https://e24.no/privatoekonomi/i/Qy3jMx/ny-stroemprisrekord-i-soer-norge-mandag
https://link.springer.com/chapter/10.1007/978-3-319-05029-4_11
https://energifaktanorge.no/en/norsk-energibruk/energibruken-i-ulike-sektorer/
https://energifaktanorge.no/en/norsk-energibruk/energibruken-i-ulike-sektorer/
https://ieeexplore.ieee.org/document/9237994
https://ieeexplore.ieee.org/document/9237994
https://www.benuk.net/Internet-of-Things-Heat-Pump-Controls.html
https://www.benuk.net/Internet-of-Things-Heat-Pump-Controls.html
https://www.nve.no/nytt-fra-nve/rapporter-vassmagasinstatistikk/
https://www.nve.no/nytt-fra-nve/rapporter-vassmagasinstatistikk/
https://www.nordpoolgroup.com/the-power-market/Day-ahead-market/Price-formation/
https://www.nordpoolgroup.com/the-power-market/Day-ahead-market/Price-formation/
https://ts.tensio.no/kunde/nettleie-priser-og-avtaler/2022-nettleie-privat
https://ts.tensio.no/kunde/nettleie-priser-og-avtaler/2022-nettleie-privat
https://www.regjeringen.no/no/aktuelt/justerer-innforingen-av-ny-nettleiemodell/id2911788/
https://www.regjeringen.no/no/aktuelt/justerer-innforingen-av-ny-nettleiemodell/id2911788/

References NTNU

[15] Tibber. URL: https:// tibber.com/no (visited on 02/2022).
[16] Sensibo. Sensibo. 2021. URL: https:// sensibo.com/ (visited on 01/2022).
[17] Mathew Kevin. Heat Pump Thermostat – Guide to Buy The Right Thermostat. Jan. 13,

2022. URL: https:// thermostatguide.com/heat-pump-thermostat/ (visited on 02/22/2022).
[18] Tibber. Sensibo Air - Smart termostat. 2022. URL: https:// tibber.com/ no/ store/ produkt/

sensibo-air (visited on 04/20/2022).
[19] Pervez Hameed Shaik et al. A review on optimized control systems for building energy and

comfort management of smart sustainable buildings. Jan. 31, 2020. URL: https: / / www.

sciencedirect.com/science/article/pii/S1364032114001889 (visited on 01/2011).
[20] Zakia Afroz et al. Modeling techniques used in building HVAC control systems: A review.

2018. URL: https : / / www. sciencedirect . com / science / article / pii / S1364032117314193

(visited on 02/22/2022).
[21] Abdul Afram et al. Theory and applications of HVAC control systems – A review of model

predictive control (MPC). 2014. URL: https://www.sciencedirect.com/science/article/pii/

S0360132313003363 (visited on 02/22/2022).
[22] Raffaele Carli et al. IoT Based Architecture for Model Predictive Control of HVAC Systems

in Smart Buildings. Jan. 31, 2020. URL: https : / / www. researchgate . net / publication /

338962263 _ IoT _ Based _ Architecture _ for _ Model _ Predictive _ Control _ of _ HVAC _

Systems_in_Smart_Buildings (visited on 02/2022).
[23] Rasmus Halvgaard et al. Economic Model Predictive Control for building climate control

in a Smart Grid. 2017. URL: https:// ieeexplore.ieee.org/ document/ 6175631 (visited on
03/20/2022).

[24] Gianni Bianchini et al. An integrated MPC approach for demand-response heating and

energy storage operation in smart buildings. 2018. URL: https : / / ieeexplore . ieee . org /

document/8264228 (visited on 03/25/2022).
[25] Hjørdis Amanda Schlüter et al. Economic Model Predictive Control for Energy Systems

in Smart Homes. 2019. URL: https:// ieeexplore.ieee.org/ document/ 8920663 (visited on
04/25/2022).

[26] Wenda Li et. al. Motivations, barriers and risks of smart home adoption: From systematic

literature review to conceptual framework. Oct. 2021. URL: https: / / www.sciencedirect .

com/science/article/pii/S2214629621003042 (visited on 04/20/2022).
[27] Diba Malekpour Koupaei et. al. An Assessment of Opinions and Perceptions of Smart Ther-

mostats using Aspect-Based Sentiment Analysis of Online Reviews. Dec. 2019. URL: https:

/ / www.researchgate.net / publication/ 338010221_An_Assessment_of_Opinions_and_

Perceptions _ of _ Smart _ Thermostats _ using _ Aspect - Based _ Sentiment _ Analysis _ of _

Online_Reviews (visited on 03/30/2022).

96

https://tibber.com/no
https://sensibo.com/
https://thermostatguide.com/heat-pump-thermostat/
https://tibber.com/no/store/produkt/sensibo-air
https://tibber.com/no/store/produkt/sensibo-air
https://www.sciencedirect.com/science/article/pii/S1364032114001889
https://www.sciencedirect.com/science/article/pii/S1364032114001889
https://www.sciencedirect.com/science/article/pii/S1364032117314193
https://www.sciencedirect.com/science/article/pii/S0360132313003363
https://www.sciencedirect.com/science/article/pii/S0360132313003363
https://www.researchgate.net/publication/338962263_IoT_Based_Architecture_for_Model_Predictive_Control_of_HVAC_Systems_in_Smart_Buildings
https://www.researchgate.net/publication/338962263_IoT_Based_Architecture_for_Model_Predictive_Control_of_HVAC_Systems_in_Smart_Buildings
https://www.researchgate.net/publication/338962263_IoT_Based_Architecture_for_Model_Predictive_Control_of_HVAC_Systems_in_Smart_Buildings
https://ieeexplore.ieee.org/document/6175631
https://ieeexplore.ieee.org/document/8264228
https://ieeexplore.ieee.org/document/8264228
https://ieeexplore.ieee.org/document/8920663
https://www.sciencedirect.com/science/article/pii/S2214629621003042
https://www.sciencedirect.com/science/article/pii/S2214629621003042
https://www.researchgate.net/publication/338010221_An_Assessment_of_Opinions_and_Perceptions_of_Smart_Thermostats_using_Aspect-Based_Sentiment_Analysis_of_Online_Reviews
https://www.researchgate.net/publication/338010221_An_Assessment_of_Opinions_and_Perceptions_of_Smart_Thermostats_using_Aspect-Based_Sentiment_Analysis_of_Online_Reviews
https://www.researchgate.net/publication/338010221_An_Assessment_of_Opinions_and_Perceptions_of_Smart_Thermostats_using_Aspect-Based_Sentiment_Analysis_of_Online_Reviews
https://www.researchgate.net/publication/338010221_An_Assessment_of_Opinions_and_Perceptions_of_Smart_Thermostats_using_Aspect-Based_Sentiment_Analysis_of_Online_Reviews

References NTNU

[28] Unified Info Tech. 10 Smart Home Apps That’ll Make Your Life Easier In 2021. Sept. 2019.
URL: https://www.unifiedinfotech.net/blog/ top-smart-home-apps/ (visited on 03/2022).

[29] Unified Info Tech. Investing in Smart Home App Development? Here’s Your Guide. Oct.
2019. URL: https:// www.unifiedinfotech.net/ blog/ smart-home-app-development-guide/

(visited on 03/2022).
[30] Mobindustry. How to Develop an App for the Internet of Things (IoT). Mar. 2021. URL:

https:// www.mobindustry.net/ blog/ how-to-develop-an-app-for-the-internet-of- things-

iot/ (visited on 03/2022).
[31] Majid Ghassemi et.al. Chapter 3 - Biosystems Heat and Mass Transfer. 2017. URL: https://

www.sciencedirect.com/science/article/pii/B9780128037799000030 (visited on 04/2022).
[32] Robin Wieruch. How to create a REST API with Express.js in Node.js. Apr. 24, 2020. URL:

https://www.robinwieruch.de/node-express-server-rest-api/ (visited on 03/20/2022).
[33] OpenBase. Chokidar. 2021. URL: https : / / openbase . com / js / chokidar / documentation

(visited on 03/15/2022).
[34] ReactJS. A JavaScript library for building user interfaces. 2022. URL: https:// reactjs.org/

(visited on 02/2022).
[35] MDN Web Docs. Using Fetch. 2021. URL: https:// developer.mozilla.org/ en- US/ docs/

Web/API/Fetch_API/Using_Fetch (visited on 03/2022).
[36] ReactJS. Introducing Hooks. 2022. URL: https:// reactjs.org/docs/hooks-intro.html (visited

on 02/2022).
[37] Jagreet Kaur. JavaScript Chart Libraries. Sept. 18, 2020. URL: https:// www.xenonstack.

com/blog/data-visualization-with-javascript (visited on 03/2022).
[38] D3js. D3.js - Data-Driven Documents. 2022. URL: https://d3js.org/ (visited on 03/2022).
[39] Eric Törn. IoT Software for Smart Houses. 2021. URL: https:// ntnuopen.ntnu.no/ ntnu-

xmlui/handle/11250/2828765 (visited on 01/2022).

97

https://www.unifiedinfotech.net/blog/top-smart-home-apps/
https://www.unifiedinfotech.net/blog/smart-home-app-development-guide/
https://www.mobindustry.net/blog/how-to-develop-an-app-for-the-internet-of-things-iot/
https://www.mobindustry.net/blog/how-to-develop-an-app-for-the-internet-of-things-iot/
https://www.sciencedirect.com/science/article/pii/B9780128037799000030
https://www.sciencedirect.com/science/article/pii/B9780128037799000030
https://www.robinwieruch.de/node-express-server-rest-api/
https://openbase.com/js/chokidar/documentation
https://reactjs.org/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://reactjs.org/docs/hooks-intro.html
https://www.xenonstack.com/blog/data-visualization-with-javascript
https://www.xenonstack.com/blog/data-visualization-with-javascript
https://d3js.org/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2828765
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2828765

Appendix A

Smart house system overview

A detailed system overview of the smart house located in Trondheim, Norway, is illustrated in
figure A.1. This illustration provides information about the abstracted layers of the system in
addition to all the relevant components for this thesis.

Figure A.1: A detailed flowchart of the smart house system and components. All arrows are
described on the bottom of the figure [39].

A-1

Appendix B

JSON data structure on server-side

A snippet of the data structure on the server/REST API is provided in figure B.1. This data
presents one sample, out of 576 samples, output from the MPC scheme on the Main room. This
data is updated every 5 minutes and further sent to the client-side to perform data analysis to
visualize the data.

Figure B.1: JSON data structure on the server.

B-1

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Cassandra Berdahl

Human-MPC Interface for Smart
Houses

Development of a customized web application
for a smart heating system controlled by a Model
Predictive Control algorithm, with the intent of
facilitating the average user to interact with and
understand the smart control.

Master’s thesis in Industrial Cybernetics
Supervisor: Sebastien Gros
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	List of Acronyms
	List of Symbols
	List of Figures
	List of Tables
	List of Code
	Introduction
	Motivation
	Problem statement
	Structure of the thesis
	Limitations

	Theory
	Power consumption
	Heat pumps
	Demand response

	Spot price market
	Nord Pool
	Electricity cost

	Model Predictive Control
	State of the art of energy management in smart houses
	IoT devices
	Smart temperature control
	Smart house applications and software

	Smart house system description
	Components
	API services

	Smart house model
	Dynamic model
	Moving Horizon Estimation
	Physical description

	MPC description/implementation
	Tuning factors
	MPC constraints
	Cost function

	MPC interaction
	Temperature settings
	Limit 24 hour predicted cost
	Spot price weight
	BasePrice

	Software tools
	Web application
	Server-side ExpressJS
	HTTP request
	File watcher Chokidar

	Client-side React
	Connecting ExpressJS and React
	Charting library Recharts

	Software implementation and data processing
	Data pipeline
	MPC comparison
	REST API server
	Data handling

	Web interface structure
	Quick installation guide
	Installing and running the software
	Python (Optional)

	Results
	Dynamic arrangement of data
	Navigation bar
	Show different graphs in the same display
	Additional information
	Submit user requests

	Graphical display
	Graphical MPC comparison
	Day-ahead spot prices and weather forecasts

	Detection mechanisms
	Detect high spot prices
	Detect significant deviation from reference temperature
	Detect significant difference in electricity cost
	Detect heat storage

	Human-MPC interaction
	Interactions with weights
	Reference temperature
	Minimum temperature
	Experimental results

	Discussion
	Evaluation of software implementation
	Graphical comparison
	Selecting the appropriate trade-off
	Improve detection mechanism
	Further implementations

	Data processing
	Data flow between the server and MPC

	Professional development and deployment
	Security
	Scalability and availability
	Smartphone app

	User testing
	Future of smart homes

	Conclusion
	Further work

	References
	Appendix Smart house system overview
	Appendix JSON data structure on server-side

