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Abstract

Wireless sensor networks (WSN) provide a versatile monitoring infrastructure to
track physical processes for autonomous and manual decision-making. In WSN
and wireless networked control systems, sensors observe physical processes and
transmit measurements to remote estimators or a fusion center that tracks process
parameters. The information update rate from sensors is limited by the number of
communication channels and the sensor nodes’ energy storage capabilities. Com-
monly, sensors share a limited number of communication channels, and if the num-
ber of transmitting sensors exceeds the number of channels, interference occurs.
Furthermore, sensor nodes in WSN are usually not supported by power grids, and
instead, they rely on small batteries, from which radio communication consumes
a significant amount of energy. Therefore, to prolong the lifetime of sensor nodes,
there is a need for approaches that reduce the number of data transmissions from
the sensors without compromising the data accuracy. Also, given the limited re-
sources for communication channels, the data transmission should be coordinated
to maximize system utility.

This thesis develops transmission schemes that determine when a sensor should
transmit an observation to achieve a high level of state-estimation in channel- and
energy-constrained WSN for remote estimation. For a channel-constrained WSN,
we exploit spatio-temporal dependencies among sensors to improve the overall es-
timation accuracy for remote estimators tracking different processes. We derive
an optimal scheduling policy that minimizes the time average mean squared error
(MSE) by modeling the scheduling problem as a Markov decision process. We also
consider event-triggered transmission schemes, where a sensor transmits a meas-
urement if it exceeds a predefined threshold. As an extension of the dual prediction
scheme framework, a cost-aware dual prediction scheme is presented to further re-
duce data transmission in a WSN where sensors observe non-stationary processes.
Finally, we consider a system of multiple sensors implementing threshold-based
transmission over a limited number of shared channels, resulting in collisions.
From statistical parameters, we derive optimal thresholds minimizing the MSE.
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Chapter 1

Introduction

Wireless sensor networks (WSN) enhance our ability to monitor physical processes
and is an essential technology in the internet-of-things (IoT) [1]. In WSN and wire-
less networked control systems (WNCS), sensors observe physical processes and
transmit their measurements to remote estimators or a centralized fusion center
(FC) that track process parameters to form decisions to maximize the utility of the
system application. This data collection infrastructure provides the backbone of
IoT technologies, such as autonomous driving cars, smart cities [2], industry 4.0
[3], smart healthcare [4], and modern-day distributed WNCS [5], that will impact
our daily lives and a wide range of industries. Recent technological advancements
in component development and wireless communications have led to sensors be-
coming cheaper, smaller, increasing their communication capabilities, and even
making them mobile, e.g., sensors attached to unmanned aerial vehicles (UAVs)
[6]. This trend will enable larger and more versatile WSNs, allowing better mon-
itoring capabilities to support future IoT applications. Another critical factor in
the evolution of WSN and IoT is the widespread accessibility of the internet. This
allows for applications to be supported by a cloud-based fusion center, providing
vast computational resources to process large amounts of data quickly. Hence, in
the era of data-driven decision-making and big data, any additional sensor meas-
urement registered at a central unit could be of use in improving the utility of the
IoT application. However, in WSN, the information update rate is constrained by
the sensors limited energy resources and the number of communication channels
over which they communicate.

Firstly, sensor nodes in WSN are usually not supported by power grids and rely
on small batteries with limited energy storage capabilities. In some WSNs, sensor
nodes can re-charge their batteries from energy harvesting, e.g., solar energy [7].
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2 Introduction

Unfortunately, such renewable energy sources are unpredictable and fluctuating,
complicating energy resource planning [8]. In general, radio communication con-
sumes significantly more energy than other sensor tasks, e.g., sensing and data
processing [9]. Empirical data shows that roughly 80 percent of the node energy
is consumed when transmitting and receiving data [10]. Excessive measurement
transmission significantly reduces sensor lifetime, which can be critical for applic-
ations that depend on long-lasting and durable WSN. For many WSN applications,
due to the placement of the sensor node, it can be a demanding, complicated and
costly procedure to manually change batteries, e.g., in rural areas [11], in-body
[12], or built into concrete [13]. Furthermore, applications made to prevent acci-
dents require stable and reliable WSN, e.g., avalanche detection [14] or healthcare
emergency event detection [15].

Secondly, the information update rate is also limited by the number of available
communication channels in a WSN. Commonly, sensors share communication
channels, and if the number of transmitted data packages exceeds the number of
available communication channels, a packet collision occurs, and information is
lost due to interference. Over the years, communication protocols have been de-
veloped, e.g., ALOHA [16], or hybrid automatic repeat request (HARQ) [17], that
facilitate that packet losses are acknowledged by the sender and re-transmitted.
However, the primary purpose of these protocols is to enable the transmitted pack-
ets to be delivered, and they are not designed to schedule or prioritize measure-
ments based on the information that the transmitted packets carry. Consequently,
simply queuing or re-transmitting failed measurement packages until they finally
arrive can result in the staleness of information. Hence, the utility of a channel-
constrained WSN can be further enhanced by coordinating the sensor transmis-
sions based on the contributing information of their measurements.

Today, there is a need for approaches that can maximize the system utility and
prolong the lifetime of sensors with consideration for limited energy and commu-
nication resources. One method is to design transmission schemes that reduce the
number of data transmissions from the sensors without compromising the data ac-
curacy. Alternatively, to focus on reducing the size of data packets transmitted
from sensors. Since larger data packets consume more energy for radio transmis-
sion and require more channel capacity for communication. Another approach
would be to coordinate the sensor transmissions by selecting sensors that contrib-
ute the most information to enhance the overall estimation accuracy while consid-
ering the available resources. One way to achieve these approaches is to exploit
redundancy in sensor measurement data.

Sensors often observe processes, e.g., temperature, or humidity, that follow trends,
seasonalities, or periodicities [18]. As a result, sensor measurement data tend to
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Estimators/
Fusion centre

Communication
medium

SensorsProcesses

Figure 1.1: WSN topology considered for this thesis.

be redundant, demonstrate pattern-like behavior or even spatio-temporal correla-
tion across sensors [19], [20]. These properties can be exploited to develop data
reduction approaches in channel- and energy-constrained WSNs. Instead of trans-
mitting all the raw sensor data directly to remote estimators or a fusion center, it
can be locally aggregated [21] or compressed [22] at a cluster-head node appoin-
ted to a cluster of neighboring sensors, which reduces the data package size before
transmitting the data. Other approaches are based on adjusting the sample rate
with respect to statistical properties of the measurement distribution, e.g., adaptive
sensing [23], [24], or compressed sensing [25], which gives the lowest possible
sample rate such that the complete measurement time series can be reconstructed.

Although the methods above can be beneficial in reducing the transmitted data
packet size or even the transmission rate, i.e., the average number of transmitted
measurements per time instant, they have implications for the privacy and latency
of the system. For example, if a cluster-head collects all measurements before
performing compression, it can be targeted by an eavesdropper or malicious at-
tacker that wants to sabotage the system [26]. Furthermore, it is essential to satisfy
real-time monitoring requirements with a given information update rate in delay-
sensitive and safety-critical applications, where compressing or aggregating data
is not an option. Another vital aspect to acknowledge is that compressing or ag-
gregating data requires specific topology solutions of routing or communication
among sensors, which can not be generalized to sensors transmitting directly to
the end receiver.

1.1 Scope and Objective
This thesis aims to design transmission schemes that determine when an individual
sensor should transmit an observation to facilitate high data quality in resource-
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constrained wireless sensor networks. We focus on WSN for remote estimation,
where the system utility depends on the estimation accuracy at the remote estimat-
ors or a centralized FC. The two primary goals are achieving the highest possible
estimation accuracy and prolonging the lifetime of sensor nodes.

We consider the two following approaches when designing transmission schemes
to achieve our goals:

• Reducing the number of transmissions or transmitted data packet sizes from
sensors

• Coordinating the measurement transmission from all sensors to maximize
the estimation accuracy

We aim to design transmission schemes suitable to an arbitrary WSN topology
and do not require distributed calculations among sensors, where sensors need to
share measurements with each other. We consider a WSN topology, as depicted in
Figure 1.1, where sensors communicate their measurements directly to the remote
estimators or a fusion center via a communication medium, not via other sensors.

1.2 Contributions
The contributions of this thesis apply to two different approaches of transmission
schemes, defined by their transmission triggering mechanisms; time-triggered,
i.e., scheduled time slots, or event-triggered, e.g., a measurement breaching a
threshold. The main contributions of this thesis are summarized as follows.

C1 The first contribution of this thesis applies to time-triggered transmission
schemes, for which we study the scheduling of dependent sensor meas-
urements in a channel-constrained WSN. We design an optimal scheduling
policy for a system where a network manager is responsible for scheduling
multiple sensors observing spatio-temporally correlated observations. At
each time instant, the scheduling decision is based on the age-of-information
(AoI, introduced in Chapter 2), representing the time elapsed since the last
received measurement. Although AoI-based scheduling policies have been
previously studied for remote estimation, only a few works deal with de-
pendent observations. Our work extends the previous literature on AoI-
based scheduling of dependent processes, and our results demonstrate that
the performance can be improved by exploiting spatio-temporal dependency
in a channel-constrained system. The main contributions of Publications III
and IV can be summarized as follows:
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• We prove the existence and derive an optimal scheduling policy for a
system of multiple spatio-temporally dependent observations based on
age-of-information. An optimal policy minimizes the average mean
squared estimation error over an infinite time horizon.

• We show that a policy can be derived by formalizing the problem as
a finite-state MDP. The finite-state MDP is possible by exploiting the
property that increasing time-distance between consecutive transmis-
sions from a single source decreases spatio-temporal correlation to ob-
servations from other sources.

• We show that an optimal policy yields a periodic scheduling pattern,
which has earlier been demonstrated for single-sensor scheduling [27]–
[29]. This property simplifies the practical implementations and saves
data storage at the network manager.

• We show that the finite state space implies that any deterministic policy
results in a periodic structure. The performance of any periodic schedul-
ing policy can be easily calculated using the theoretical framework
given in the paper.

• For the particular case of two sensors and one communication chan-
nel, we include a transmission constraint and present a low-complexity
method of deriving an optimal scheduling policy for a given time hori-
zon.

C2 The second contribution of this thesis applies to event-triggered transmis-
sion schemes, for which we address the implications of sensors observing
non-stationary measurement processes and the importance of implement-
ing updating protocols in a dual prediction scheme (DPS, introduced in
Chapter 2) to avoid excessive transmission. We develop a cost-aware dual
prediction scheme (CA-DPS) for deciding when to update the prediction
model or transmit a set of measurements from the sensor to the fusion cen-
ter (FC) to achieve minimal data transmission in a DPS. In a CA-DPS, the
sensors choose among a set of transmission strategies and decide the one
that achieves minimum expected transmission cost within a given forecast
horizon. In a practical setting, statistical information of the measurements
might be limited, and to derive a robust estimate of the future transmission
cost, we apply model-based bootstrapping. The main contributions of Pub-
lication V can be summarized as follows.

• We present a CA-DPS where a sensor evaluates several strategies at
each transmission instance, and select the best transmission strategy to
reduce future transmission costs.
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• We introduce model-based bootstrapping in a DPS framework to es-
timate future transmission costs.

C3 The third contribution of this thesis also applies to event-triggered transmis-
sion schemes, where a sensor transmits a measurement to a remote estimator
if it exceeds a pre-defined threshold. All sensors share a limited number of
communication channels. The sensors are divided into spatially distributed
clusters, each assigned a set of communication channels. The measurement
distributions among the different clusters are assumed heterogeneous. We
develop a method to find optimal transmission thresholds and channel alloc-
ation for each cluster. Furthermore, we numerically compare the perform-
ance of assigning collision channels for each cluster to having all clusters
sharing collision channels. The main contributions of Publication VI can be
summarized as follows.

• We present a method to find optimal transmission thresholds and chan-
nel allocation for sensors transmitting observations to remote estimat-
ors over multiple collision channels.

• We show that by allowing for both single- and double-sided thresholds,
our decentralized scheme can outperform the centralized scheme presen-
ted in [30].

• We also derive an optimal performance upper boundary for any given
number of channels.

1.3 Thesis Outline
This thesis begins by introducing the background and motivation for develop-
ing transmission schemes to enhance the utility and prolong sensor lifetime in
resource-constrained WSN. Chapter 2 presents an overview of the general sys-
tem model, together with some important technical concepts and mathematical
tools used to develop our transmission schemes. Chapter 3, considers time-
triggered transmission schemes and presents the results from Publications I-IV,
where we derive an optimal AoI-based scheduling policy for sensors observing
spatio-temporally dependent measurements. After that, in Chapter 4, we consider
event-triggered transmission schemes. In the first part of Chapter 4, we summarize
the main results from Publication V, where we present the CA-DPS. In the second
part of Chapter 4, we present the results from Publication VI, where we develop a
method to find optimal transmission thresholds and channel allocation for sensors
transmitting observations to remote estimators over multiple collision channels.
Finally, in Chapter 5, we discuss our main contribution, implications of our work,
and future extensions.



Chapter 2

Background

This chapter introduces parts from the theoretical framework, specifically our sys-
tem model, technical concepts from relevant literature, and necessary mathemat-
ical tools to derive our protocols. We begin this chapter by presenting a general-
ized system model. Later on, we present two important technical concepts from
the related literature; the age-of-information and the dual prediction scheme. Fi-
nally, we present two mathematical frameworks; Markov decision processes and
bootstrapping, used to design our transmission schemes.

2.1 The General System Model
In this thesis, we consider a WSN topology where sensors observe individual pro-
cesses and transmit their measurements via a communication medium to remote
estimators, or a centralized fusion center, as depicted in Figure 2.1. Sensor i ob-
serves the stochastic process θi[k] ∈ R, i = 1, ..., N , and at time instant k ∈ N
acquires measurement xi[k] ∈ R, which is modeled as

xi[k] = θi[k] + wi[k], k ∈ N, i = 1, 2, ..., N, (2.1)

where wi[k] ∈ R denotes independent identically distributed (iid) stochastic meas-
urement noise, following a Gaussian distribution wi[k] ∼ N (0, ξ2). For each pro-
cess θi[k], there is a remote estimator or a fusion center that tracks the process
and forms an estimate θ̂i[k] based on received sensor measurements. The number
of remote estimators P can be less than or equal to the number of sensors, i.e.,
P ≤ N .

Remark 2.1. In Chapter 4, to simplify the mathematical calculations, we do not
assume that the remote estimators have knowledge of the distribution of the meas-
urement noise wi[k] in (3.2). Instead, the estimator forms an estimate of the meas-

7
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Figure 2.1: Schematic of a generalized WSN system model considered in this thesis.

urement x̂i[k]. Thus, in Chapter 4, the estimate at time instant k is denoted as x̂i[k]
and not as θ̂i[k].

Transmission Triggering Mechanisms
For all transmission schemes, a sensor must know when it should transmit a meas-
urement. In this thesis, we consider the following two types of triggering mechan-
isms that determine when a transmission instance occur:

• Time-triggered, i.e., allocating time slots for each sensor transmission.

• Event-triggered, i.e., transmitting an observation in case of an event, e.g., a
measurement exceeds a predefined threshold.

Both these approaches have their advantages when designing transmission
schemes. In channel-constrained WSN, time-triggered transmission can result in
collision-free communication [29], [31]. It also makes energy resource-planning
for measurement transmission easier than event-triggered transmission, which in-
volves stochastic transmission.

Basically, in event-triggered transmission, a sensor only transmits an observation
when it provides sufficiently valuable information. If a triggering event rarely oc-
curs, event-triggered transmission schemes can result in a low transmission rate
and, thereby, save energy due to reduced communication. Another benefit of
event-triggered transmission is that it can result in a fast detection time, compared
to scheduling sensors, if a crucial or unexpected event occurs. Event-triggered
transmission schemes for remote-estimation WSN are usually designed such that
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a sensor should only transmit if an observation deviates beyond a pre-defined
threshold from the estimated value at the current time instant [30]–[34]. As will be
discussed in Chapter 4, the transmission rate depends on how well the model for
estimation fits the physical process.

2.2 Technical Concepts
This section introduces two technical concepts from related literature. We begin
by presenting age-of-information (AoI), which we exploit to derive time-triggered
transmission schemes in Chapter 3. Later on, we present the dual prediction
scheme (DPS) framework, which we present an extended version of in Chapter
4.

Age-of-information

The AoI refers to the freshness of information [35], i.e., the time elapsed since the
information received was generated at the source. Recently, the AoI has gained
increased attention as a system performance metric to optimize with respect to
system settings. Commonly, a WSN is modeled as a queuing system, defined by a
queuing model, e.g., first-come, first-served [36], where the AoI is influenced by
stochastic arrival processes and service times of transmitted packets. In general,
due to factors such as collisions, queuing, packet dropouts, and random arrival and
service times, the AoI is modeled as a stochastic process. Hence, it can become
complicated to derive the relationship between the AoI and other system paramet-
ers of a WSN. As seen in [35], for various communication system set-ups, simply
maximizing the transmission rate does not result in a minimum average AoI. Over
time, several performance metrics of the AoI have been introduced, e.g., peak and
average, which have been studied under different system settings [35], [37]–[43].

In many WSN applications, the AoI is an important factor that directly or indirectly
impacts the main utility of the system. For this reason, the AoI has been utilized
as a state variable to assist in designing and evaluating scheduling policies for
a variety of tasks. For example, in [44], the AoI is used to determine an optimal
scheduling policy for updating model parameters for federated learning in a mobile
edge network. Whereas, in [45], the AoI is used to decide content to multicast in
a cache-enabled content-centric wireless network. Terms such as the value-of-
information, or the cost-of-delay [46], [47], have been used to quantify the utility
cost of the AoI, represented by a non-linear function of the AoI. In some cases,
the utility cost of the AoI is not static over time, but depends on the current state
of the monitored process. For example, in [48], a sensor monitors and transmits
status updates of a two-state stochastic process, where each state is associated with
a different cost. In remote estimation, the object is to maximize the estimation
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accuracy at the estimators, where usually the performance metric of the system
utility is the overall mean squared error (MSE) of the estimation error. Although
an increasing AoI results in reduced estimation accuracy, minimizing the average
AoI across sensors does not always result in a minimum overall MSE.

Scheduling with AoI in remote estimation and networked control has been con-
sidered in several previous works, e.g., [5], [47], [49]–[54], wherein the AoI has
been used as a state variable to assist in designing scheduling policies. In [5],
[47], [51], the authors investigate scheduling for state estimation of discrete-time
linear time-invariant (LTI) systems in which multiple sensors transmit their local
state estimates to a remote estimator over a limited number of time-varying wire-
less communication channels resulting in occasional packet drops. The task is to
determine the system conditions in terms of LTI system parameters and channel
statistics that guarantee stability conditions for remote estimation applications or
WNCS, i.e., the existence of a scheduling policy that results in a bounded process
variance or average estimation MSE. Most works regarding AoI-based schedul-
ing for remote estimation consider systems where multiple sensors share a single
communication channel, and only one sensor can be scheduled at each time in-
stant. Adding more communication channels improves the overall real-time accur-
acy but also adds complexity to finding optimal scheduling policies as the number
of possible scheduling decisions increases. Recently, there has been an increas-
ing amount of work regarding scheduling multiple devices, including sensors and
controllers, that share multiple communication channels [5], [51].

The majority of work that regards AoI-based scheduling for remote estimation deal
with independent sensor observations [5], [47], [49]–[54]. As mentioned earlier,
sensor observations tend to be dependent that can be exploited to improve the
remote estimators’ overall accuracy. In Chapter 3, we extend the current literature
on AoI-based scheduling by designing an optimal scheduling policy for a WSN
where sensors observe spatio-temporally correlated measurements.

Dual Prediction Scheme

A dual prediction scheme (DPS) is an event-triggered transmission scheme based
on the idea of reducing the number of transmissions from sensors to an FC, or a
remote estimator, by replacing missing transmissions with predictions. In a DPS,
both the sensor and FC store an identical prediction model of future values of
the sensor measurement process. Hence, the term dual prediction. Each time a
sensor observes a measurement and compares it with the predicted measurement.
If the measurement lies within a pre-defined error-tolerance from the predicted
measurement, the sensor does not transmit the measurement, and the FC registers
the predicted measurement as the most recent measurement. Suppose the sensor
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measurement deviates beyond the pre-defined error-tolerance level. In that case,
the sensor transmits the measurement, and the FC registers the received measure-
ment. For a DPS to work, the sensor and the FC must store and apply the same
prediction model and input data to create identical predicted measurements.

The benefit of using a DPS is that it can result in a bounded measurement error with
low latency. Thus, it provides a suitable data-reduction approach in applications
where compressing or aggregating data is not an option. A DPS can be generalized
to any prediction model as long as the following criterion is satisfied; that the
sensor and the FC can recreate the same predicted and registered measurements.
In the literature, the prediction models can vary from simple linear models, e.g.,
the form of time series models [55], adaptive filters [33], [56], a weighted average
[18], [57], to more complex non-linear models, e.g., deep learning long short-term
memory (LSTM)-model [58], or a hybrid of two prediction models [59].

In Chapter 4, we discuss the implications of applying a DPS for non-stationary pro-
cesses, where the prediction model parameters need to be re-estimated and updated
each time the measurement distribution changes to avoid excessive measurement
transmissions due to threshold breaches. We present a cost-aware DPS, where the
sensor evaluates transmission strategies each time a threshold breach occurs, which
includes the alternative of transmitting re-estimated model parameters or not.

2.3 Mathematical Tools
This section presents two mathematical frameworks, bootstrapping and Markov
decision processes, relevant to the proposed methods presented in Chapters 3 and
4.

Bootstrapping

Bootstrapping is a numerical method to estimate a statistic of a stochastic variable
by random resampling with replacement from observed data [60]. For this pur-
pose, we first generate synthetic samples of the statistic using the observed data
by sampling from the empirical probability distribution. Thereafter, we estimate
the statistic as the mean of the generated samples. Following is a mathematical
representation of bootstrapping.

Let X ∈ Rn, n ∈ N++, and Y ∈ R, be two stochastic variables, where Y is a
function of X , i.e., Y = g(X). The expected value of Y is denoted as µY , where
µY = E[Y ] = E[g(X)]. Now, let X be a set of m realized data points of variable
X , i.e., X = {x1,x2, ...,xm}, xi ∈ Rn. With the bootstrapping method, we
estimate µY as µ̂Y , by generating a set of L values of Y by re-sampling L values
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of X as Z = {z1, z2, ..., zL}, zi ∈ X , i = 1, 2, ..., L, and taking the average, i.e.,

µ̂Y = 1
L

∑
zi∈Z

g(zi).

Two practical benefits of using bootstrapping are, firstly, it provides a straightfor-
ward numerical method to estimate any statistic when a closed-form expression
of an estimator is not available. This can occur if a closed-form expression of the
statistic is intractable to derive analytically. Secondly, it provides a robust estim-
ator where one does not have to rely on assumptions of parametric distributions of
the observed data [61]. In practice, model-fitting is time-consuming and becomes
arbitrary when the observed data is sparse, and the empirical distribution has a
non-smooth shape.

Bootstrapping can also be applied to generate stochastic processes that are tem-
porally dependent. A common way to model stochastic processes x[k] ∈ R is to
assume that the process value at a given time instant, k, is a deterministic function,
h, of p+ 1 previous values with an additive stochastic term, i.e.,

x[k] = h(x̃[k − 1]) + e[k], e[k] ∼ Fe (2.2)

where x̃[k − 1] =
[
x[k − (p + 1)], ..., x[k − 1]

]T and e[k] is the model residual.
To generate a trajectory of the process x[k] in (2.2), one can apply model-based
bootstrapping [62], in which only the stochastic component of the process, e[k],
is re-sampled and added to the deterministic part, given by h(x̃[k]). These steps
are then repeated to generate a complete sequence. Following is a mathematical
representation of model-based bootstrapping.

Given a set of previous observations X = {x[0], x[1], ..., x[k]}, we can generate L
future trajectories of x[k] of length T ∈ N++ as

[
x(l)[k+1], x(l)[k+2], ...., x(l)[k+

T ]
]
, l = 1, ..., L. We begin by first extracting a set of historical model residuals

E [k] = {ep+2, ep+3, ..., ek}, using (2.2) and X as

ei = x[i]− h(x̃[i− 1]), i = p+ 2, p+ 3, ..., k.

To generate process value x(l)[k + 1] for trajectory l, we first randomly draw
e(l)[k + 1] from E [k], i.e., e[k + 1] ∈ E [k], and then calculate

x(l)[k + 1] = h(x̃(l)[k]) + e(l)[k + 1],

and finally update x̃(l)[k + 1] =
[
x(l)[k − p], ..., , x(l)[k]

]T, where x(l)[t] = x[t],
∀t ≤ k, l = 1, 2, ..., L. The same process is then repeated to generate

[
x̃(l)[k +

2], x̃(l)[k + 3], ..., x̃(l)[k + T ]
]
.
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Another bootstrapping approach to simulate temporally correlated stochastic pro-
cesses is to re-sample from the observed data in a restricted order, for example,
by following the maximum entropy bootstrap algorithm (with scale adjustment)
described in [63], [64]. In Chapter 4, we use a combination of model-based boot-
strapping and the maximum entropy bootstrap algorithm (with scale adjustment)
to generate simulated trajectories of sensor measurement data.

A real-world application of bootstrapping is in quantitative finance when the task
is to price financial derivatives, i.e., financial instruments where the monetary pay-
out is a function of an underlying asset, e.g., a stock price [65], [66]. Take, for ex-
ample, an Asian option, where the payout is the positive difference between time
average stock price and a fixed value. For many derivatives, deriving closed-form
functions of the expected future pay-out is prohibitive, and bootstrapping provides
a straightforward method by simply re-sampling historical prices. Also, financial
markets tend to be highly dynamic and non-stationary. Therefore, statistical mod-
els are based on short historical windows to capture current market states. For this
reason, empirical distributions are based on small-sized data sets that demonstrate
properties of non-smoothness and thick tails of the probability distribution, which
can be difficult to fit to parametric distributions. Thus, re-sampling and bootstrap-
ping provide a practical method to overcome these issues.

Markov Decision Process and Dynamic Programming

In Chapter 3, we consider a WSN where sensors observe spatio-temporally de-
pendent measurements that are transmitted to remote estimators that track the pro-
cesses. We derive an optimal AoI-based scheduling policy that minimizes the
overall time average MSE. For this scenario, as in most cases regarding schedul-
ing, finding an optimal scheduling policy involves solving a sequential decision-
making problem. To derive an optimal policy, we first model the problem as a
Markov decision process (MDP) [67], being a discrete-time stochastic control
process. We then use dynamic programming to solve the optimization problem
numerically.

A Markov decision process is a mathematical framework that can be applied to
study and solve recursive optimization problems, i.e., path-dependent optimization
problems. An MDP is an extension of a Markov chain process, which is defined
by a set of states and transition probabilities between states. The fundamental
property of a Markov chain is that the probability of transitioning from a particular
state to another is independent of previous states. In contrast to a Markov chain,
an MDP involves a decision-maker who, for each current state, takes an action
that determines the transition probabilities to the next possible state, which then
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results in a reward. When solving a sequential decision-making problem, the goal
is to determine a state-action policy for the decision-maker that maximizes the
accumulated reward over time.

Reinforcement learning [68] is a machine learning approach based on the MDP
framework to derive a state-action policy when there does not exist full knowledge
of the transition probabilities and the reward function beforehand. In reinforce-
ment learning, the transition probabilities and the reward function are continuously
accessed after each time instant a state-action occurs. For this reason, each time the
transition probabilities and the reward function are updated, the state-action policy
is re-calculated. In the literature of WSN [69], reinforcement learning has gained
an increasing amount of interest, motivated by the fact that sensors can learn com-
plex tasks, where transition probabilities and the reward functions are difficult to
model beforehand. However, training a reinforcement learning model often re-
quires an extensive amount of training data [68], which is not always feasible in
practical settings.

A given MDP, M, is formally defined by a 4-tuple, {S,A,P(·|·), r(·)}, which
represents the following components.

• State space S: The set of all possible states inM, where at time instant k
the state is given by s[k] ∈ S .

• Action space A: The set of all possible actions inM, where at time instant
k the state is given by a[k] ∈ S .

• Transition probabilities P(·|·): The probability distributions of trans-
itioning from a particular state s[k] to s[k + 1] given action a[k], i.e.,
P (s[k + 1]|s[k],a[k]) ∈ [0, 1].

• Reward function r(s[k],a[k]) ∈ R: The function that determines the re-
ward at instant k given state s[k] and action a[k].

For a system to be modeled as an MDP, it should satisfy the Markovian property
that at instant k, the next state s[k + 1] only depends on the current state s[k] and
the action a[k].

A state-action policy γ = (γ0, γ1, , ..., γT ), where γk : S → A, provides a map-
ping between a state and an action at instant k over time-period k = 0, 1, ..., T ,
i.e.,

a[k] = γk(s[k]).
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In an MDP, the objective is to find an optimal policy γ∗ that maximizes the cu-
mulatitive sum of rewards over a finite or infinite time-horizon. Commonly, an
optimal policy γ∗ is defined such that it satisfies

max
γ∈Γ

gγ(s[k]).

where gγ is a function defined by

gγ(s[k]) = lim
T→∞

T∑
i=k

λ(i−k)E
[
r(s[i],a[i])

∣∣∣γ, s[k]
]
, (2.3)

and λ ∈ [0, 1] is a discount factor. The function gγ in (2.3), is often referred to as
the value function, since it refers to the current value of discounted future rewards.
For a given policy γ, the value function is equivalent to

gγ(s[k]) = r(s[k],a[k]) + λ
∑

s[k+1]∈S
P (s[k + 1]|s[k],a[k])gγ(s[k + 1]). (2.4)

Based on (2.4), an optimal policy γ∗ should satisfy maximizing the value function
at the current state as

max
γ∈Γ

{
r
(
s[k],a[k]

)
+ λ

∑
s[k+1]∈S

P (s[k + 1]|s[k],a[k])gγ(s[k + 1])
}
,

where Γ is the set of all feasible policies.

An optimal policy γ∗ can be derived numerically using dynamic programming,
e.g., policy iteration or value iteration [67].

Remark 2.2. For simplicity, in this presentation of the MDP framework, we as-
sume that the reward function is deterministic and that the state-transitions, reward
function and set of actions are independent of the time instant k. Also, that the se-
quential optimization problem concerns an infinite time horizon, i.e., k = 1, ..., T ,
where T →∞. For a more extensive introduction to MDPs, see [67].
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Chapter 3

AoI-based Scheduling of
Spatio-temporally Dependent
Measurements

This chapter presents our contributions in AoI-based scheduling for remote estim-
ation. In practice, sensor measurements tend to be spatio-temporally dependent,
which has been exploited in resource-constrained WSN to achieve energy-efficient
routing [70], [71], optimal sensor location selection [72], missing data inference
in environmental mobile crowdsensing [73], and reducing traffic load [74]. Al-
though there exists work considering the scheduling of dependent measurement
for remote estimation, this body of work is small compared to the amount that
has been studying the scheduling of independent sensors observations. In Pub-
lications I-IV, we demonstrate how spatio-temporal dependencies can be further
exploited to improve the performance in sensor scheduling for remote estimation
in a channel-constrained WSN.

This chapter summarizes Publications III and IV, which are, respectively, the ex-
tended journal work of the conference papers I and II. We consider a system of
sensors observing spatio-temporally dependent measurements that are broadcasted
to remote estimators, each tracking one process, over a resource-limited broadcast
channel. At each time instant, a measurement-blind network scheduler broadcasts
a limited number of measurements to remote estimators. The network scheduler
is responsible for scheduling the sensor observations to broadcast. The scheduler
cannot observe the measurements and decides the scheduling policy based on the
age-of-information. In our work, we model the scheduling problem as a Markov

17



18 AoI-based Scheduling of Spatio-temporally Dependent Measurements

decision process (MDP), presented in Section 2.3, to derive an optimal scheduling
policy that minimizes the time average MSE across the remote estimators over an
infinite time horizon. We also present a low-complexity numerical method for de-
riving an optimal scheduling policy for a system of two sensors sharing a single
communication channel, where the number of scheduling instances for each sensor
is constrained due to limited energy resources.

3.1 Prior work
Optimal scheduling schemes for remote estimation where sensors observe inde-
pendent processes have been studied under a variety of different system scenarios
and various resource constraints, e.g., limited packet sizes for different source pro-
cesses [75], limited battery [76], single or multiple communication channels [29],
[77], and in the presence of eavesdroppers [78]. As of today, only a few work
focused on scheduling for remote estimation have exploited dependence among
sensor measurements to enhance the overall estimation accuracy in resource-
constrained WSN.

In [79], an optimal scheduling policy is presented for a system of two sensors
observing dependent processes where a network manager, responsible for the
scheduling, can observe measurements before scheduling. Optimal observation-
driven scheduling of sensors observing independent measurements have earlier
been derived with consideration for energy-harvesting [76], temporally-correlated
measurements [80], and multiple communication channels [81]. A WSN where
a scheduler can observe measurement before scheduling provides more inform-
ation to base every scheduling decision and can benefit in improving the overall
estimation accuracy, compared to not observing. However, such a system setup
has implications on both the system privacy and latency.

Instead of an observation-driven scheduling policy, one approach is to apply AoI-
based scheduling, which has been studied for scheduling of independent measure-
ments [5], [47], [49]–[54]. Recently, a number of works have studied AoI-based
scheduling of dependent observation. In [19], [82], the authors consider a sys-
tem of energy-constrained sensors observing a spatio-temporally correlated ran-
dom field and determine the transmission rate that maximizes the battery life-time
for a given estimation accuracy. The same spatio-temporal model was considered
in [83], which focuses on deriving the jointly optimal transmission rate and the spa-
tial density among sensors to minimize the overall MSE. In [84], [85], the average
AoI is minimized for a system where individual sensors observe multiple overlap-
ping sources, whereas in [85], sensors only observe partial information from each
source, and multiple status packet updates are required at the receiver for proper
reconstruction. The system scenarios considered in [84], [85], are more applic-
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Figure 3.1: Schematic of WSN scheduling problem with D = 2.

able to a video-surveillance IoT security application than for remote estimation, in
which the system utility depends on the estimation accuracy of the controllers and
estimators.

Given the benefits of exploiting dependency among sensors to improve the overall
estimation accuracy in remote estimation, we intend to extend the body of work
concerning AoI-based scheduling of dependent observations. In the rest of this
chapter, we present a summary of the works Publications III and IV, in which we
derive an optimal AoI-based scheduling policy for a system of multiple sensors
observing spatio-temporally dependent observations. Our work resembles that of
[19], [82], [83], assuming a similar model for spatio-temporal dependency. The
difference to the related works [19], [82], [83], can be summarized as follows.

• We allow for multiple sensors to be scheduled over multiple communication
channels at each time instant.

• We do not assume periodic measurement scheduling. Therefore, in contrast
to [19], [82], [83], we do not focus on finding update rates for individual
sensors or learning the average transmission frequency for all sensors.

• We do not assume homogenous distributions among the processes.

The main contributions from Publications III and IV can be found in Contribution
C1 in Section 1.2.

3.2 System Model and Problem Formulation
We consider a WSN as presented in Section 2.1 that consist of N sensors, one
scheduler, and N remote estimators as depicted in Fig. 3.1. The sensor observa-
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tions are communicated to the remote estimators via a network scheduler. At time
instant k, due to limited channel capacity, the scheduler broadcastsD ≤ N , sensor
observations to the remote estimators over D orthogonal channels. In our system
model, we consider error-free parallel communication channels and assume that
packet losses are addressed by retransmission through higher layers of the com-
munication protocol.

Source Processes

Each process θi[k] follows a Gaussian distribution θi[k] ∼ N (0, σ2
i ). The pro-

cesses {θi[k]}Ni=1 are correlated over space and time with the cross-covariance
given by a positive-definite function [86], [87]

E[θi[k]θj [l]] = σiσjρijϕ(|k − l|), i, j ∈ {1, ..., N}, (3.1)

where ρij ∈ [−1, 1] represents the spatial correlation and ϕ : R+ → (0, 1] is the
temporal correlation, which is a strictly decreasing function with ϕ(0) = 1 and
limn→∞ ϕ(n) = 0.

At time instant k, the ith sensor acquires measurement xi[k] ∈ R, i.e.,

xi[k] = θi[k] + wi[k], k ∈ N, i = 1, 2, ..., N, (3.2)

where wi[k] ∈ R denotes independent identically distributed (iid) measurement
noise with distribution wi[k] ∼ N (0, ξ2).

Scheduler

Let π[k] ∈ {1, ..., N}D be a scheduling variable denoting an index set of sensors
to be scheduled at time k. The AoI of the ith sensor is denoted by ∆i[k] ∈ N+, i =
1, ..., N, and defined as the time elapsed between two measurement transmissions,
i.e.,

∆i[k] =
{

0, if i ∈ π[k],
∆i[k − 1] + 1, if i /∈ π[k]. (3.3)

The scheduler is not allowed to observe the measurements, x[k] =
[x1[k], x2[k], ..., xN [k]]T, but can keep track of the previous AoI at each sensor
through vector ∆[k−1], where ∆[k−1] = [∆1[k−1],∆2[k−1], ...,∆N [k−1]]T.
Let γk : ∆[k − 1]→ {1, ..., N}D denote the scheduling strategy at time k, i.e.,

π[k] = γk(∆[k − 1]), (3.4)

which provides a mapping from ∆[k − 1] to the scheduling decision at instant k.
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Remote Estimators

The data available at the ith remote estimator at time instant k consists of ∆[k]
and y[k] = [y1[k], y2[k], ..., yN [k]]T, where yi[k] is the most recently broadcast
measurement from Sensor i, i.e.,

yi[k] = xi[k −∆i[k]], i = 1, ..., N. (3.5)

The estimate θ̂[k] = [θ̂1[k], θ̂2[k], ..., θ̂N [k]]T is the linear minimum mean square
error (MMSE) estimate [88] given as a function of ∆[k] and y[k] as follows,

θ̂[k] = E[θ[k]|∆[k],y[k]] = Cθy[k]C−1
yy [k]y[k], (3.6)

where the elements of the cross-covariance and covariance matrices are given by

[Cθy[k]]i,j = σiσjρijϕ(∆j [k]), i = 1, ..., N, j = 1, ..., N,
[Cyy[k]]i,j = σiσjρijϕ(∆ij [k]) + ξ2δ(i− j), (3.7)

with ∆ij [k] = |∆i[k] −∆j [k]| ∈ N+ being the AoI differences between the two
processes, and δ(·) the Dirac delta function.

Scheduling Policy

The scheduling policy γ is defined as the collection of scheduling strategies from
time instant k = 1 to k = T , i.e., γ = (γ1, γ2, . . . γT ). As performance measure
(cost), we adopt the total mean squared error (MSE) of the estimate (3.6) over T
time slots, given by

J(γ, T ) = 1
TN

T∑
k=1

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣γ,∆[k − 1]
]
, (3.8)

where ∆[0] is known at the scheduler.

Problem Statement

Our objective is to find an optimal scheduling policy γ∗ that minimizes the average
cost in (3.8) over an infinite time horizon

min
γ∈Γ

lim
T→∞

J(γ, T ), (3.9)

where Γ is the set of all feasible policies.

3.3 Optimal Scheduling of Multiple Sensors
In this section, we show how (3.9) can be solved by modeling the problem as a
Markov decision process (MDP). A mathematical introduction to MDPs can be
found in Section 2.3.



22 AoI-based Scheduling of Spatio-temporally Dependent Measurements

3.3.1 Theoretical Results

To solve (3.9), we must be able to calculate the cost in (3.8), which depends on the
process ∆[k] during interval k ∈ [1, T ]. The MSE at instant k can be expressed as
a function f : ∆[k]→ R+, i.e.,

f(∆[k]) =
N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆[k]
]

= tr
(
Cθθ −Cθy[k]C−1

yy [k]CT
θy[k]

)
, (3.10)

where Cθθ is the covariance matrix of θ[k] and tr(·) denotes the trace of its argu-
ment matrix.

From (3.3) and (3.10) we see that the MSE at instant k depends on ∆[k], which in
turn depends on ∆[k − 1] and π[k]. For this reason, the problem in (3.9) can be
modeled as the Markov decision process, where at instant k, the state is ∆[k− 1],
the action is π[k] and the reward is −N−1f(∆[k]). The mathematical model
fulfills Markovian properties (see Section 2.3) such that the state transition and
reward at time k only depend on the previous state and the current action.

Markov Decision Process Formulation

Before defining the MDP, we present the set of all feasible values of ∆[k] that will
represent the state-space. If a round-robin scheduling policy [77] is applied, there
would be a maximum AoI across all sensors, denoted as ∆̄ ∈ N+, i.e.,

∆̄ = min
γ∈Γ

lim
k→∞

sup E
[
∆i[k]

∣∣γ], ∀i = 1, 2, ..., N,

=
{

N/D − 1, if 0 = N mod D,
bN/Dc, else,

(3.11)

where b·c is the floor operator. For a round-robin scheduling policy, at each time
instant k, there will be N̄ sensors with an AoI equal to ∆̄. The value N̄ is given
by

N̄ =
{
D, if 0 = N mod D,
N mod D, else.

(3.12)

Let c : NN+ × N+ → N+ be an operator counting the number of elements in a
vector u = [u1, u2, ..., uN ]T that equal to l ∈ N+, i.e.,

c(u, l) =
N∑
i=1

1(ui = l),



3.3. Optimal Scheduling of Multiple Sensors 23

where 1(·) is an indicator function having value 1 if the condition in the argument
is true and 0 otherwise.

Given N , D, (3.11) and (3.12), the set of possible AoI values S , ∆[k] ∈ S ,
k ∈ N+ generated by any policy γ ∈ Γ becomes

S =
{
u ∈ NN+ | c(u, 0) = D,

c(u, l) ≤ D, l ∈ N++, (3.13)

c(u, ∆̄) ≥ N̄
}
.

Assumption 3.1. We assume ∆[k] ∈ S , for k ∈ N+

Definition 3.1. We define the MDPM in the following way;

• State at instant k is ∆[k − 1] and state space S .

• Action at instant k is π[k] and the action space A = {1, ..., N}D.

• Transition probabilities P (∆[k] | ∆[k − 1],π[k]), given state and action
at instant k, can be derived using (3.3).

• Reward r(∆[k−1],π[k]) ∈ R− at instant k equals−N−1f(∆[k]) in (3.10)
and is given by the reward function r : {S,A} → R−.

Comparing (3.3) and (3.9) with Definition 3.1, we can see that an optimal schedul-
ing policy γ∗ also satisfies maximizing the time average reward inM, i.e.,

min
γ∈Γ

lim
T→∞

1
T

T∑
k=1

E
[
r(∆[k − 1],π[k])

∣∣∣γ,∆[0]
]
. (3.14)

One way to find γ∗ is to use dynamic programming to derive an average reward
optimal policy inM that satisfies (3.14) for all possible initial states, i.e., ∀∆[0] ∈
S . However, as shown in (3.13), the MDPM has an infinite countable state-space
S , for which an average reward optimal policy γ∗ may not exist or is prohibitively
complex to derive [67]. Therefore, we shall introduce another state-variable for
the MDP that corresponds to a finite state-space.

Finite-state MDP

Following are two important properties of the function f(∆[k]) in (3.10) that en-
ables the finite-state MDP model. Firstly, due to the declining temporal correlation
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in (3.1), the MSE increases with respect to the AoI, i.e.,

f([∆1[k], ...,∆i[k], ...,∆N [k]]T) ≤ (3.15)

f([∆1[k], ...,∆i[k] + 1, ...,∆N [k]]T), i = 1, ..., N.

Secondly, the function is upper bounded by the sum of the marginal variances, i.e.,

f(∆[k]) ≤ tr
(
Cθθ

)
=

N∑
i=1

σ2
i . (3.16)

From (3.10), (3.15) and (3.16), we see that as the AoI grows, the temporal cor-
relation becomes negligible, and the MSE does not increase with respect to the
marginal AoI, i.e.,

lim
∆i[k]→∞

|f([∆1[k], ...,∆i[k] + 1, ...,∆N [k]]T)

− f([∆1[k], ...,∆i[k], ...,∆N [k]]T)| = 0, i = 1, ..., N.

This implies that the growth of MSE decreases with each instant the same sensors
are consecutively scheduled, and, secondly, that many AoI states in S correspond
to approximately the same MSE values. Following, we will demonstrate that some
states inM can be merged to model the scheduling problem as a finite state-space
MDP. Since ϕ in (3.1) is continuous, we restrict the set of possible correlation
functions ϕ as stated in Assumption 3.2.

Assumption 3.2. The temporal correlation function ϕ : R+ → [0, 1] in (3.1),
satisfies ϕ(x) = 0, for all x ≥ m, m ∈ N++.

Assumption 3.2, together with (3.7), gives that the information at Estimator j,
yj [k], whose AoI exceeds m, i.e., ∆j [k] ≥ m, is uncorrelated with all processes
at time k, i.e., E

[
θi[k]yj [[k]

]
= 0, ∀i = 1, ..., N . As a consequence, the infinite

state space S maps to a finite-set of MSE values, i.e., f : S → Y with |Y| < ∞.
This gives that any of the elements ∆̃i[k], ∆̃ij [k] ∈ {0, 1, ...,m}, ∀i, j = 1, .., N ,
belonging to the AoI vector ∆[k] can be truncated to m while still corresponding
to the same MSE value in (3.10).

Based on the former mentioned properties, we introduce a variable that pertains to
all possible MSE values and belongs to a finite set. Let ∆̃[k] ∈ {0, 1, ...,m}N2

contain the elements ∆̃i[k], ∆̃ij [k] ∈ {0, 1, ...,m}, ∀i, j = 1, .., N , i.e.,

∆̃i[k] =
[
∆i[k]

]m
+ , i = 1, ..., N, (3.17)

∆̃ij [k] =
[
|∆i[k]−∆j [k]|

]m
+ =

[
∆ij [k]

]m
+ , i, j = 1, ..., N,
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where m ∈ N+,
[
·
]m
+ is defined as the truncation operator

[
x
]m
+ , min{x,m},

x ∈ R+ and ∆̃[k] denotes the truncated AoI [89].

Let b̃ : NN+ → {0, 1, ...,m}
N2

be a mapping from ∆[k] to ∆̃[k], i.e., ∆̃[k] =
b̃(∆[k]). Applying b̃ on the set of possible AoI values S in (3.13), gives the finite
set of possible truncated AoI values

S̃ = {b̃(∆) |∆ ∈ S}. (3.18)

We can express the MSE as a function of ∆̃[k] as follows

f̃(∆̃[k]) =
N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆̃[k]
]

(3.19)

= tr
(
Cθθ − C̃θy[k](C̃yy)−1[k](C̃θy[k])T

)
,

with C̃yy[k] and C̃θy[k] calculated using ∆̃[k] as

[C̃yy[k]]i,j = σiσjρijϕ(∆̃ij [k]) + ξ2δ(i− j),
[C̃θy[k]]i,j = σiσjρijϕ(∆̃j [k]), i, j ∈ {1, ..., N}. (3.20)

Proposition 3.1. Under Assumption 3.2, the following relationship holds

f(∆[k]) = f̃(∆̃[k]), ∀∆[k] ∈ NN+ . (3.21)

Proof. The proof is given in Publication III.

In the following proposition, we show that the truncated AoI, ∆̃[k], satisfies the
Markovian property that it can be expressed as a function of the previous value
∆̃[k − 1] and scheduling variable π[k].

Proposition 3.2. The truncated AoI ∆̃[k] can be expressed as a function of ∆̃[k−
1] and π[k] as

∆̃i[k] =
{

0, if i ∈ π[k],[
∆̃i[k − 1] + 1

]m
+ , if i /∈ π[k], (3.22)

∆̃ij [k] =


0, if i, j ∈ π[k],[
∆̃ij [k − 1]

]m
+ , if i, j /∈ π[k],[

∆̃i[k − 1] + 1
]m
+ , if i /∈ π[k], j ∈ π[k],[

∆̃j [k − 1] + 1
]m
+ , if i ∈ π[k], j /∈ π[k].

(3.23)



26 AoI-based Scheduling of Spatio-temporally Dependent Measurements

Proof. The proof is given in Publication III.

Proposition 3.1 and Proposition 3.2 demonstrate that ∆̃[k] and ∆[k] corresponds
to the same MSE and, if either ∆[k], or ∆̃[k], is known, any given scheduling
sequence that follows after k will result in the same sequence of MSE values.
Thus, if Assumption 3.2 holds, we can model the scheduling problem as finite
state space using the truncated AoI.

Definition 3.2. We define the finite state-space MDP, M̃, as follows;

• Action at instant k is the scheduling decisionπ[k] belonging to action-space
A = {1, ..., N}D.

• State at instant k is the truncated AoI ∆̃[k − 1] belonging to state-space S̃
in (3.18).

• Transition probabilities P (∆̃[k] | ∆̃[k − 1],π[k]) ∈ {0, 1} are binary and
given by (3.22) and (3.23) in Proposition 3.2.

• Reward r̃(∆̃[k − 1],π[k]) ∈ R at instant k equals r̃[k] = −N−1f̃(∆̃[k])
in (3.19) given by the reward function r̃ : {S̃,A} → R−.

Similar to (3.4), let γ̃k : S̃ → A be a scheduling strategy based on ∆̃[k] as

π[k] = γ̃k(∆̃[k − 1]),

where γ̃ = (γ̃1, γ̃2, ..., γ̃T ) is a scheduling policy γ̃ ∈ Γ̃. We define an optimal
truncated scheduling policy γ̃∗ as a policy that maximizes the time average reward
in M̃ for all possible initial states ∆̃[0], i.e,

max
γ̃∈Γ̃

lim
T→∞

1
T

T∑
k=1

E
[
r̃(∆̃[k − 1],π[k])

∣∣∣γ̃, ∆̃[0]
]
, ∀∆̃[0] ∈ S̃.

Since the state-space S̃ is finite, an optimal truncated scheduling policy γ̃∗ possible
to derive numerically using dynamic programming. In the following theorem we
present the relationship between γ̃∗ and an optimal scheduling policy γ∗.

Theorem 3.1. Under Assumption 3.1 and Assumption 3.2, there exists a sta-
tionary optimal scheduling policy γ∗ = (γ∗0 , ..., γ∗0), where γ∗0 = γ̃∗0 ◦ b̃ and
γ̃∗ = (γ̃∗0 , γ̃∗0 , ..., γ̃∗0), which can be derived in a finite number of iterations us-
ing policy iteration. The policy results in a periodic scheduling sequence.
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Algorithm 1 Finding scheduling policy γ∗

1: Define M̃ = {A, S̃, r̃, P (· | ·)}, given N , D, Cθθ, ξ, ϕ and m
2: Set n = 0 and select arbitrary policy γ̃n ∈ Γ̃S
3: Obtain g ∈ R and h ∈ R|S̃|, [h]i = h(∆̃i), ∀∆̃i ∈ S̃ , by solving below

equation

r̃γ̃n + [−1 | (Pγ̃n − I)]
[
g
h

]
= 0,

where r̃γ̃n ∈ R|S̃|, [r̃]i = r(∆̃i, γ̃
n(∆̃i)), ∀∆̃i ∈ S̃ , is a reward vector,

1 = (1, 1, ..., 1)T, 1 ∈ R|S̃| is a vector of ones, Pγ̃n ∈ R|S̃|×|S̃|, [Pγ̃n ]i,j =
P (∆̃j |∆̃i, γ̃

n(∆̃i)) is the transition matrix..
4: Get policy γ̃n+1 = (γ̃n+1

0 , γ̃n+1
0 , ..., γ̃n+1

0 ), ∀∆̃ ∈ S , by solving

γ̃n+1
0 (∆̃) = arg max

π∈A

{
r
(
∆̃,a

)
+
∑

∆̃′∈S̃

P (∆̃′|∆̃,a)h(∆̃′)
}

5: if γ̃n+1 = γ̃n then
6: Stop and set γ̃∗ = γ̃n+1

7: else
8: Return to Step 2 using γ̃n+1

9: end if
10: Obtain γ∗ = (γ∗0 , ..., γ∗0) as γ∗0 := γ̃∗0 ◦ b

Proof. The proof is given in Publication III.

Theorem 3.1 states that γ∗ results in a periodic scheduling sequence. In Publica-
tion III, due to the finite-state space, we prove that applying a periodic scheduling
sequence results in the same periodic sequence of truncated AoI states, regard-
less of the initial truncated AoI. This result can be utilized to save data storage at
the scheduler, as it only needs to store the periodic scheduling pattern and not the
entire policy, mapping every truncated AoI value to a scheduling decision. Fur-
thermore, as shown in Publication III, it becomes straightforward to calculate the
performance of any periodic scheduling policy.

Although the state-space is finite, the dimensionality grows rapidly with the num-
ber of sensors N and the truncation value m. As N and m grows, it can quickly
become prohibitively complex to derive an optimal policy γ∗. In the next sec-
tion, we compare the performance of an optimal scheduling policy to periodic
sub-optimal policies that can be derived with less computational effort.
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3.3.2 Numerical Results

We assume a system where N sensors observe dependent processes with equal
marginal variances, i.e., σi = 1, i = 1, ..., N , measurement noise ξ = 0.5 and the
spatio-temporal dependency components in (3.1) are given by [86], [87]

ρij = e−r0|i−j|, ϕ(x) = e−λtx1(e−λtx ≥ 0.1), x ∈ R+,

where λt ∈ R+, is the temporal correlation decay factor, and r0 ∈ R+, is the
spatial correlation decay factor.

We compare the results of an optimal policy to a set of sub-optimal policies,
presented in Definition 3.3 below. A more detailed mathematical presentation for
each sub-optimal policy can be found in Publication III.

Definition 3.3. Sub-optimal policies;

• Random (RANDOM) - Randomly selecting D sensors at each time instant.

• Round robin (RR) - Scheduling the D sensors with the highest AoI in a
round-robin fashion.

• Optimized round robin (ORR) - Applying a round-robin periodic scheduling
sequence that is organized in an optimal way to minimize the time average
MSE.

• Finite horizon minimization (FHM-L) - The scheduler minimizes the time
average MSE over L time steps given the current truncated AoI.

Notably, all the sub-optimal policies in Definition 3.3, except for RANDOM, result
in a periodic scheduling sequence that can be efficiently executed at the network
scheduler.

Figure 3.2 shows the asymptotic average cost versus λt for different scheduling
policies, where N = 5, D = 2, and r0 = 0.5. Solid lines show theoretical res-
ults, whereas dots represent numerical simulations, calculated by averaging 200
ensembles for a time horizon of T = 100. We see that as the correlation increases,
i.e., λt → 0, all policies results in a decreasing cost. We see that for a higher tem-
poral correlation, both FHM policies and ORR, performs close to optimal. Most
interestingly, for λt > 0.5, a RANDOM policy outperforms RR, whereas ORR
consistently outperforms RANDOM. This indicates the performance improvement
of selecting an optimal scheduling order for a RR-policy that takes into account the
spatial correlations between the sensors.
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Figure 3.2: Asymptotic average cost,
limT→∞ J(γ, T ), vs λt with N = 5, D =
2, σi = 1, ∀i = 1, 2, ..., N , ξ = 0.5, and
r0 = 0.5.

0.4 0.9 1.4 1.9 2.4 2.9

0.41

0.45

0.49

0.53

0.57

0.61

0.65

Figure 3.3: Asymptotic average cost,
limT→∞ J(γ, T ), vs r0 with N = 5, D =
2, σi = 1, ∀i = 1, 2, ..., N , ξ = 0.5, and
λt = 0.8.

Figure 3.3 shows the asymptotic average cost versus the distance between neigh-
boring sensors for N = 5, D = 2, and T = 0.8. Similar to Figure 3.2, we see that
as the spatial correlation increases, i.e., r0 → 0, all policies results in a decreas-
ing cost. Both FHM policies and ORR performs near-optimal, and consistently
outperforms RANDOM and RR. At r0 < 0.8, RR is outperformed by RANDOM,
since the temporal correlation is surpassed by the spatial correlation, which an RR
does not exploit efficiently.

3.4 Scheduling of Two Sensors with a Transmission Con-
straint

In this section, we study a particular case of the scheduling problem presented in
Section 3.2. We consider a system scenario of two sensors, i.e., N = 2, scheduled
over a finite time horizon, i.e., T < ∞ in (3.9), where the number of schedul-
ing instances for each sensor is limited by an individual transmission constraint.
Commonly, sensor have limited energy resources and so, the transmission rate of
observations and estimators are not only limited by the number of communication
channels but also by their energy supplies.

In general, adding transmission constraints and assuming a finite time horizon adds
complexity to the scheduling problem. However, for non-stationary processes or
stochastic energy supply, e.g., energy harvesting, optimal scheduling policies for
finite horizons can offer better performance. Fortunately, as we will demonstrate
for the N = 2 and D = 1 system scenario, we are able to derive an optimal policy
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for a given horizon using a low-complexity numerical method presented in this
section.

To include a transmission constraint in the scheduling problem in (3.9), we must
first introduce some additional notations. Assume that ∆[0] = [1, 0]T when ini-
tializing the system and let ∆γ [k] = [∆γ

1 [k],∆γ
2 [k]]T denote the AoI at time k

generated by policy γ. Let nγ1 and nγ2 , respectively, denote the number of instants
Sensor 1 and Sensor 2 are scheduled using policy γ. The values of nγ1 and nγ2 can
be computed as

nγ1 =
T∑
i=1

1(∆γ
1 [i] = 0), nγ2 =

T∑
i=1

1(∆γ
2 [i] = 0), (3.24)

where nγ1 , nγ2 ∈ {0, 1, ..., T}, n
γ
1 + nγ2 = T .

Without loss of generality, let us assume each transmission costs unit energy. Also,
let n̄1, n̄2 ∈ N++, be the energy resources available for transmitting data, i.e.,
Sensor i can transmit n̄i measurements. We assume that the total energy available
at the sensors satisfies n̄1 + n̄2 ≥ T .

Our objective is to find an optimal scheduling policy γ∗ that minimizes the average
cost in (3.8) over any time horizon

min
γ∈Γ

J(γ, T ), (3.25)

s. t. nγi ≤ n̄i, n̄i ∈ N++, i = 1, 2,
nγ1 + nγ2 = T,

where Γ is the set of all feasible policies.
Remark 3.1. In Section 3.4, for the temporal correlation ϕ in (3.1), we do not
restrict the set of feasible functions to Assumption 3.2. Instead, ϕ can either be
continuous, or satisfy Assumption 3.2.

3.4.1 Theoretical Results

In this section, we present a summary of the theoretical results presented in Pub-
lication IV and demonstrate how to derive γ∗ that solves (3.25). We begin by
deriving an optimal scheduling policy for the specific case; having no transmis-
sion constraints, i.e., n̄i > T , i = 1, 2, and the number of transmission instances
for the ith sensor must equal ni ∈ N+, i = 1, 2. This results in the following
optimization problem

min
γ∈Γ

J(γ, T ), (3.26)

s. t. nγi = ni, i = 1, 2, n1 + n2 = T.
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Later on, we show how to derive an optimal number of scheduling instances for
each sensor, n∗i , i = 1, 2. To simplify the calculations, we present a numerical
method to reduce the feasible set of n∗i , i = 1, 2, to a set of two pairs to evaluate.
In the following theorem, we present a solution to (3.26). Before doing so, we
need to introduce some additional notations.

Similar to (3.11), let ∆̄i : N+ → {0, 1, ..., T + 1}, represent the lowest maximum
AoI (minmax) for Sensor i, given that Sensor i is scheduled l instances during
interval k ∈ [1, T ], and be defined as

∆̄i(l) = min
γ∈Γ

sup
k=1,...,T

{
∆γ
i [k]

∣∣∣nγi = l
}
, i = 1, 2.

The value ∆̄i(l) can be expressed as the following function

∆̄1(l) =
⌈
T + 1− l
l + 1

⌉
, ∆̄2(l) =

⌈
T − l
l + 1

⌉
, l = 0, ..., T − 1

∆̄1(T ) = ∆̄2(T ) = 0, (3.27)

where d·e is the ceil operator.

Finally, let gγi : N+ → N+, i = 1, 2, represent the number of instances the ith
sensor reaches AoI l ∈ N+ given policy γ ∈ Γ, and be defined as

gγi (l) =
T∑
k=1

1(∆γ
i [k] = l). (3.28)

Theorem 3.2. i) A policy γ ∈ Γ is a solution to (3.26), if it minimizes the maximum
AoI as

∆γ
i [k] ≤ ∆̄i(ni), k = 1, ..., T, i = 1, 2, (3.29)

and the number of instances the AoI equals ∆̄i(ni) and ∆̄i(ni)−1, i =, 1, 2, given
in (3.27), can be computed as; if ni = T and nj = 0, i 6= j, then ∆̄i(ni) = 0, and

gγi (0) = ni, gγj

(
∆̄j(0)

)
= 1, (3.30)

else, if 1 ≤ nj ≤ ni, then ∆̄i(ni) = 1, and

gγi (1) = nj , gγi (0) = ni (3.31)

gγj

(
∆̄j(nj)

)
= ni − (nj + 1)

(
∆̄j(nj)− 1

)
+ 1(j = 1),

gγj

(
∆̄j(nj)− 1

)
= nj + 1− 1(j = 1)1

(
∆̄j(nj) = 2

)
− 1

(
∆̄j(nj) = 1

)
.
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ii) For problem (3.25), the optimal number of scheduling instances satisfies

n∗1 = n̄1, if n̄1 ≤ T/2 (3.32)

n∗1 ≥ T/2, if n̄1 > T/2,
and n∗2 = T − n∗1.

Proof. The proof is given in Publication IV.

Theorem 3.2 implies that if the number of scheduling instances n∗1 and n∗2 are
known, we can use expressions (3.29) -(3.31) to derive an optimal policy γ∗. The
criteria for an optimal policy is that; for Sensor i, i = 1, 2, the maximum AoI must
be minimized, i.e., being equal to ∆̄i(n∗i ) in (3.29), and the number of instants the
AoI reaches ∆̄i(n∗i ) and ∆̄i(n∗i )− 1 during time interval [1, T ] must satisfy (3.30)
and (3.31). Hence, we conclude, that there can be one or more optimal policies as
long as they satisfy (3.29) to (3.31).

From (3.32), we know that if n̄1 ≤ T/2, then n∗1 = n̄1 = T −n∗2 and we can again
use (3.29)–(3.31), to obtain γ∗.

We will now show how to derive optimal number of transmission instances for
each sensor, n∗1 and n∗2, for the case n̄1 > T/2 in (3.32), to later obtain γ∗. For
n̄1 > T/2, let L be the set of feasible values of n∗2, n∗2 ∈ L, given by

L =
{
n ∈ N+

∣∣max{T − n̄1, 0} ≤ n ≤ min{n̄2, bT/2c}
}
.

Lemma 3.1. For n̄1 > T/2, the optimal number of transmission instances for
Sensor 2, n∗2, should be equal to the value n, n ∈ L, satisfying

min
n∈L

p(n) = J(γ∗, T ), (3.33)

with p : L → R+ defined as

p(n) =
{
f̄(2), if n = T/2,
ν(n)f̄(m̄) + ω(n)f̄(m̄− 1) + w0, else,

(3.34)

where f̄(m̄), ν(n), ω(n) and m̄ are given as

m̄ =
⌈
T + 1
n+ 1

⌉
, w0 = −f([1, 0]T)

T
,

ν(n) = m̄

T

(
T + 1− (n+ 1)(m̄− 1)

)
,

ω(n) = m̄− 1
T

(
n+ 1− ν(n) T

m̄

)
,

f̄(m̄) =
∑m̄−1
i=1 f([0, i]T) + f([1, 0]T)

m̄
,
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with ν(n) +ω(n) = (T + 1)/T for all n ∈ L, and f(·) is the function for the MSE
given in (3.10).

Proof. The proof of Lemma 3.1 follows from the mathematical derivations presen-
ted in Publication IV in Section III.A. Note that some considered notations in this
thesis and Publication IV differ.

Lemma 3.1, shows that n∗2 can be derived by evaluating all possible values of L
to see which minimizes (3.33). However, depending on the system parameters,
the number of possible values of L can be substantially large. In the following
theorem, we present a formula to reduce the set of feasible values of n∗2 to only
two values.

Theorem 3.3. For n̄1 > T/2, the optimal number of scheduling instances for
Sensor 2, n∗2, belongs to set n∗2 ∈ {n−, n+}, where

n− = sup
{
n ∈ L

∣∣∣ ⌈T + 1
n+ 1

⌉
> m̂

}
,

n+ = inf
{
n ∈ L

∣∣∣ ⌈T + 1
n+ 1

⌉
≤ m̂

}
, (3.35)

and where the value m̂ is m̂ =∞ if

lim
∆2[k]→∞

∞∑
i=1

(
f([0,∆2[k]]T)−f([0, i]T)

)
≤ f([1, 0]T)−f([0,∆2[k]]T), (3.36)

else

m̂ = inf
{
m̄ ≥ 2

∣∣∣∑m̄−1
i=1 f([0, i]T) + f([1, 0]T)

m̄
≤ f([0, m̄]T)

}
. (3.37)

Proof. The proof can be found in Publication IV. Note that some considered nota-
tions in this thesis and Publication IV differ.

Using Theorem 3.3, we now have low-complexity numerical method to derive γ∗.
For n̄1 > T/2, Theorem 3.3 implies that γ∗ can be derived by, firstly, calculating
m̂ from expressions (3.36) and (3.37). This can be done in a straightforward way
using the recursive method presented in Algorithm 2. Secondly, by deriving n−

and n+ in (3.35) and evaluating the value that minimizes (3.33) as

n∗2 = arg min
n∈{n−,n+}

p(n). (3.38)

Finally, deriving γ∗ by applying n∗2 to Theorem 3.2.
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Algorithm 2 Finding m̂

1: if Inequality (3.36) is satisfied then
2: set m̂ =∞
3: else
4: Initialize m̄ = 2
5: while f̄(m̄) > f([0, m̄]T) do

6: f̄(m̄+ 1) = m̄f̄(m̄) + f([0, m̄]T)
m̄+ 1

7: m̄ = m̄+ 1
8: end while
9: set m̂ = m̄

10: end if

3.4.2 Numerical Results

We assume a system with statistical parameters σ1 = 2, σ2 = 1, ρ12 = −0.5, and
ξ = 0.5. For the temporal correlation ϕ in (3.1), we use ϕ(x) = e−λtx, x ∈ N+,
where λt ∈ R+ [86].

Fig. 3.4 shows the average cost J(γ) versus nγ1 for λt = (0.1, 0.2, 0.4) with time
horizon T = 100 and n̄i = T , i = 1, 2. Given the value nγ1 , an optimal policy
is derived from the results in Theorems 3.2, referred to as OPTIMAL. Solid lines
depict theoretical values and markers show Monte Carlo simulations of 1000 se-
quences with T = 100, which matches the theory. The red markers show the per-
formance given the optimal number of transmission instances n∗1 = (76, 84, 100)
given by Theorem 3.3 together with (3.38). The results show that for λt ≤ 0.2, an
optimal performance is achieved for n∗1 < n̄1 = T .

In Fig. 3.4, the optimal performance is compared to a policy where Sensor 1 is
scheduled nγ1 instances in a random order during interval [1, T ], referred to as
RANDOM, similar as in Definition 3.3. The performance of RANDOM is cal-
culated as the average MSE after simulating 1000 scheduling sequences for each
value nγ1 . We see that an optimal scheduling order outperforms a random schedul-
ing policy for every value of nγ1 . Furthermore, we see that the optimal number
of scheduling instances for Sensor 1 for policies OPTIMAL and RANDOM lies
close to each other.

Fig. 3.5 shows the optimal number of scheduling instances for Sensor 1, n∗1, versus
the spatial correlation ρ12 for λt = (0.01, 0.05, 0.1, 0.14). The results show that
n∗1 is lower bounded at ρ12 = 0, with values respectively n∗1 = (75, 75, 88), and
then increases with ρ12. We see that as the temporal correlation increases, i.e.,
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Figure 3.4: Average cost J(γ) versus nγ1 for system parameters σ1 = 2, σ2 = 1, ρ12 =
−0.5, n̄i ≥ T, i = 1, 2, and ξ = 0.5 and T = 100. Solid lines show results derived from
theory and markers show simulation results. Red asterix show optimal performance at n∗1.

λt → 0, n∗1 decreases. This implies that optimal performance can be achieved at
transmission constraint n̄2 ≤ 25, for all ρ12 ∈ [0, 1] .

3.5 Discussion
In this chapter, we considered a scheduling problem in a WSN where sensors
observe spatio-temporally dependent processes and transmit their measurements
over a limited number of commutation channels to corresponding remote estimat-
ors. The system involves a measurement-blind network scheduler responsible for
scheduling the sensors that broadcast every measurement to all remote estimators
to improve the overall estimation accuracy. The task was to derive an optimal AoI-
based scheduling policy that minimized the time average MSE over an infinite time
horizon. By modeling the scheduling problem as a finite-state MDP, we proved the
existence of an optimal policy resulting in a periodic scheduling sequence. We also
presented a numerical method for deriving an optimal policy.

Our work extends the minority of work regarding AoI-based scheduling of de-
pendent observation for remote estimation in WSN and WNCS. Numerical results
show that spatio-temporal dependencies can be exploited in AoI-based schedul-
ing for both channel and transmission constrained WSN to improve the overall
estimation accuracy. Most previous work concerning the AoI has been focused
on designing scheduling schemes or optimizing system parameters to minimize
the AoI [35], [90]. In our work, numerical results showed that when designing
policies that minimize the AoI, the estimation accuracy varied from worse than a
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Figure 3.5: Optimal number of scheduling instances of Sensor 1, n∗1, versus spatial cor-
relation ρ12 for system parameters σ1 = 2, σ2 = 1, ρ12 = −0.5, n̄i ≥ T, i = 1, 2, and
ξ = 0.5.

randomized scheduling approach to near-optimal. To maximize performance, the
intrinsic order of a round-robin scheduling policy should be designed with consid-
eration for the marginal variances and the spatial dependencies.

By modeling the scheduling problem as finite-state MDP, we were able to show
that any stationary scheduling policy results in a periodic scheduling pattern. Fur-
thermore, regardless of the initial AoI, executing the periodic scheduling pattern
would achieve the same time average MSE. A practical benefit of these results is
that it can save data storage at the scheduler that only needs to execute the periodic
scheduling sequence instead of keeping track of the current AoI while storing a
lookup table for every possible AoI state.

We also studied the particular case of two sensors sharing a single communication
channel where the number of transmission is limited by individual transmission
constraints to account for limited energy resources. A low-complexity numerical
method was presented for deriving an optimal scheduling policy for a finite time
horizon. Although including a transmission constraint and defining a finite time
horizon for the scheduling problem adds additional complexity, our method does
not rely on dynamic programming, and the computational complexity does not be-
come prohibitive beyond a given time horizon. A benefit of the presented numer-
ical method is that it allows to quickly derive scheduling policies that minimize
the estimation error over shorter time horizons when considering non-stationary
processes or stochastic energy resources, e.g., energy harvesting. Our theoretical
result can also be used to derive necessary energy resources to achieve optimal
performance in similar systems.



Chapter 4

Optimized Threshold-triggered
Transmission Schemes

This chapter presents our work regarding event-triggered transmission schemes,
specifically threshold-based transmission schemes, where a sensor transmits a
measurement if it surpasses a pre-defined threshold. In the first part of this chapter,
we present our work regarding dual prediction schemes (DPS), introduced in 2.2.
First, we discuss the implications of non-stationarity in measurement processes.
Each time a change in measurement distribution occurs, we must update the DPS
prediction model to avoid excessive transmission. Then, we present the results
from Publication V, a cost-aware dual prediction scheme (CA-DPS), which ex-
tends the DPS framework to further reduce the data transmission energy cost. The
CA-DPS framework is based on the idea that a sensor is given a set of options, re-
ferred to as transmission strategies, that determine whether or not an update should
be transmitted.

In contrast to time-triggered scheduling schemes, event-triggered schemes can res-
ult in collisions due to a lack of centralized coordination preventing the number of
simultaneous transmissions from exceeding the number of communication chan-
nels. In the second part of this chapter, we present the results from Publication
VI, which considers a system of multiple sensors implementing event-triggered
transmission over a limited number of shared channels. The sensors are divided
into spatially distributed clusters assigned to a set of channels. The sensor meas-
urement distributions are assumed heterogeneous among the clusters. The task is
to derive optimal transmission threshold and channel allocation strategies for each
cluster.

37
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4.1 Cost-Aware Dual Prediction Scheme
In a DPS framework, the number of transmission instances depends on the pre-
diction accuracy of future sensor measurements, which depends on the prediction
model and the input data used for the predictions. Over time, the prediction ac-
curacy may decline if; the measurement distribution changes or the input data
set chiefly consists of previously predicted values. In practice, sensors often ob-
serve processes that are non-stationary and dynamic. Even physical processes that
demonstrate clear periodicities over more extended periods, e.g., daily or weekly
cycles, tend to show properties of non-stationarity at a more granular level.

To maintain an acceptable prediction accuracy in a DPS when the measurement
distribution changes, the model parameters need to be re-estimated and updated at
both the sensor and the FC. Otherwise, it will result in extensive threshold breaches
and measurement transmission that drains the sensor battery. Furthermore, the
predicted input variables need to be replaced with true measurements over time.

4.1.1 Prior Work

Previous works have incorporated similar protocols to update the prediction model
and reset the input data in a DPS. In [33], [91], an update is triggered each time a
measurement breaches a pre-defined error-tolerance level over a fixed number of
instances. The works [18], [33], [57] consider an adaptive filter in a DPS, where
the predicted measurement is solely based on previously registered measurements,
including both predicted and true measurements, and do not depend on estimated
model parameters. Specifically, in [18], [57], the sensor transmits a measure at
every threshold breach but never refreshes all the input data with true measure-
ments. Whereas in [33], once an error threshold is breached, measurements are
transmitted at every time instant until the prediction error is below the error tol-
erance a fixed number of times. A linear prediction model is applied in [92],
wherein the sensor re-estimates and transmits updated model parameters together
with a recent measurement every time the prediction error is breached a consec-
utive number of time instances. In [91], the DPS is based on an ARIMA model
where the model parameters are re-estimated and transmitted together with a true
measurement each time the prediction error is breached.

Although previously mentioned works include protocols for updating the predic-
tion model and transmitting sensor measurements, they do not evaluate whether
such an update reduces the number of future transmission instances. Neither do
they consider the additional energy cost of transmitting new model parameters.
If the mathematical structure of the prediction model provides a poor fit for the
measurement distribution, transmitting re-estimated model parameters might have
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a marginal effect on reducing future transmission instances. Therefore, energy ef-
ficiency for communication can be enhanced by protocols that are selective in the
transmission of measurement data and model parameters.

In Publication V, we introduce a cost-aware dual prediction scheme (CA-DPS)
to reduce the data transmissions in the sensor-to-FC communication link in a
DPS. Before each transmission instance, the sensor evaluates several transmission
strategies and decides on the one that minimizes the expected future transmis-
sion cost. To estimate the expected future transmission cost for each strategy, we
generate measurement trajectories by bootstrapping model residuals and estimate
the future transmission costs. As discussed in Section 2.3, the bootstrap method
provides a robust estimator based on resampling from the empirical distribution
[93], [94], which resolves to rely on assumptions of the measurement distribu-
tion. To preserve critical stochastic properties of the empirical distribution, e.g.,
temporal correlation, when doing the resampling, we apply model-based bootstrap
and resample the model residuals using the maximum entropy bootstrap algorithm
[63], [64]. Our approach to estimating the transmission cost is inspired by pricing
financial derivatives in quantitative finance, where the future pay-out is a path-
dependent function of an underlying financial asset [65], [66].

The main contributions from Publication V can be found in Contribution C2 in
Section 1.2.

4.1.2 System Model

We consider a system of a sensor and an FC, where a DPS coordinates the sensor
measurement transmission. At each time-instant, k ∈ N, the sensor observes the
measurement process x[k], which has been predicted as x̂[k] using a model stored
at both the sensor and the FC. The sensor only transmits a measurement if the
prediction error |x[k] − x̂[k]| exceeds pre-defined the accuracy threshold β. The
measurement registered at the FC can be expressed as

xFC [k] =
{
x̂[k], if |x[k]− x̂[k]| ≤ β,
x[k], if |x[k]− x̂[k]| > β.

(4.1)

The predicted value x̂[k] at the FC and sensor is obtained using the prediction
model given by

x̂[k] = h(κ[k],xFC [k − 1]), (4.2)

where the function h : Rq × Rp → R defines the model, κ[k] =
[κ1[k], κ2[k], . . . , κq[k]]T ∈ Rq denotes the prediction model parameter of dimen-
sion q and xFC [k] = [xFC [j1], xFC [j2], . . . , xFC [jp]]T ∈ Rp is the input data
available at the FC for predictions, where ji ∈ {1, 2, . . . , k − 1} and p is the
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Table 4.1: Transmission strategies t and cost Mk(t) for current time k.

Strategy t Transmit Current Transmission Cost Mk(t)
0 - 0

1 x[k] 1

2 x̃[k] s

3 κ̂[k] q

4 x̃[k] and κ̂[k] s+ q

number of registered measurements. Note that xFC [k] can consist of both meas-
urements and predictions according to (4.1).

From (4.1) and (4.2), we see that a measurement x[k] is transmitted due to: volatil-
ity of the process x[k], outdated model parameter κ[k], or, inaccurate predictor in-
put xFC [k]. Therefore, the model parameters κ[k] and input variables xFC [k− 1]
must occasionally be updated to reduce the number of future transmissions. The
model parameters are continuously re-estimated at the sensor node and can be
transmitted to the FC to replace the model parameters currently used by the pre-
dictor. The input variables can be updated by having the sensor transmit a set x̃[k]
of s, s ≤ p, of missing measurements, such that all the input variables for the
upcoming prediction are true measurements.

Let d[k] ∈ T denote the decision by sensor at time k and T = {0, 1, 2, 3, 4} denote
the set of transmission strategies available at the sensor. If the prediction error
magnitude is below the accuracy tolerance level β, no transmission takes place
and d[k] = 0. Otherwise, the sensor either decides to transmit the measurement
x[k], i.e., d[k] = 1, or to improve the prediction accuracy by transmitting a set
of missing measurements x̃[k], i.e., d[k] = 2, or re-estimated model parameters
κ̂[k] to the FC, i.e., d[k] = 3 or transmit both x̃[k] and κ̂[k], which is represented
by d[k] = 4. The transmission strategies available at the sensor is summarized in
Table 4.1.

After a sensor transmission is triggered according to (4.1), the sensor-to-FC com-
munication protocol decides on the strategy that leads to the lowest future trans-
mission cost. The transmission cost for the current time Mk(t) that is associated
with each strategy t ∈ T is summarized in Table 4.1.
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4.1.3 Bootstrap-based Cost-Aware Dual Prediction Scheme

Given that a transmission is triggered at time k according to (4.1), the expected
number of transmission instances in future Nk(t) during time period (k, k + T ] is
given by

Nk(t) =
k+T∑
k=k+1

E[1(|x[k]− x̂[k]| > β) | d[k] = t]. (4.3)

The expected total transmission cost for time period [k, k + T ] in future due to
choosing strategy d[k] = t at time k is given by

Ck(t) = Mk(t) +Nk(t),

where Mk(t) is the current transmission cost at time k as described in Table 4.1.
In a CA-DPS, the threshold strategy chosen at triggering time k, d[k] = t∗, is the
one that minimizes the expected total transmission cost

t∗ = arg min
t∈T

Mk(t) +Nk(t).

Since Mk(t) is known a priori, we only need to determine Nk(t) from (4.3).

However, evaluating (4.3) is not straightforward. Firstly, it requires knowledge
of the distribution of x[k] and secondly, it can be intractable to derive a close-
form function given the prediction model and distribution of x[k]. To overcome
this, we estimate N̂k(t) of the number of future transmissions Nk(t) using the
bootstrap paradigm [60]. An introduction to bootstraping can be found in Section
2.3. At instant k, the estimate Nk(t) is used to determine the decision criterion as
t∗ = arg mint∈T Mk(t) + N̂k(t).

To estimate Nk(t), we first generate L future trajectories of the measurements
[x(l)[k + 1], x(l)[k + 2], . . . , x(l)[k + T ]]T, l = 1, 2, . . . , L, in the time interval
[k + 1, k + T ] by drawing resamples from the empirical distribution of measure-
ment process x[k]. Thereafter, for each trajectory l, we simulate a DPS for the
given model parameters and input variables corresponding to each strategy t ∈ T
to compute the number of transmissions, which is denoted by N (l)

k (t). We then
estimate Nk(t) by taking the average of N (l)

k (t), i.e.,

N̂k(t) = 1
L

L∑
l=1

N
(l)
k (t), ∀t ∈ T .

We use model-based bootstrap [62] to draw the resamples of x[k]. The future
trajectories of x[k] are obtained by using the estimated prediction model in (4.2),
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Figure 4.1: Percentage of data transmitted versus accuracy β for CM and CA-DPS with
sliding window length η = 10, forecast horizon T = 10 and L = 50 trajectory simula-
tions.

with re-estimated model parameters κ̂[k], and adding resampled residuals from the
empirical distribution of the estimated model residuals. To achieve this, we define
the model residual ei as

ei = xi − h(κ̂[k],xi−1),

where xi is a set xi = [x[j1], x[j2], . . . , x[jp]]T ∈ Rp and ji ∈ {1, 2, . . . , k − 1}.
Starting from measurement x[k], we generate the next time step x(l)[k + 1] of the
lth simulated trajectory as

x(l)[k + 1] = h(κ̂[k],x[k]) + e(l)[k + 1],

where e(l)[k + 1] is resampled from the empirical distribution of model resid-
uals. The model residuals are resampled using the maximum entropy bootstrap
algorithm (with scale adjustment) described in [63], [64], which preserves crit-
ical statistical properties from the empirical distribution, such as temporal correla-
tion, variance and mean. We repeat the same procedure to create a full trajectory
[x(l)[k + 1], x(l)[k + 2], . . . , x(l)[k + T ]]T.

4.1.4 Numerical Results

Synthetic Data − Gaussian Random Walk with Drift

The synthetic data set follows a Gaussian random walk with drift, x[k + 1] =
x[k] + κ[k] + z[k], κ[k] ∈ R, where z[k] ∼ N(0, σ2) and σ = 0.1. The drift
parameter κ[k] gives the linear trend of the process and was simulated as constant
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Figure 4.2: Percentage of data transmitted versus accuracy β for Mote ID 30 for CA-DPS
with sliding window length η = 30, forecast horizon T = 20, and L = 40 trajectory
simulations, LMS [56] with filter lengthN = 4, and step-size µ = 10−5 and AM-DR [33]
with fixed window size ηf = 4, slow window size ηs = 8, and learning rate α = 10−7.

until it made random normal distributed jumps σκ ∼ N(0, 1) with a probability
of 0.02 at each time instant k. The assigned predictor h has the form x̂k+n =
x[k] + nκ̂FC [k], n ∈ N+, where κ̂FC [k] is the estimate of κ[k] available at FC.
The maximum likelihood estimate of κ[k], computed at the sensor whenever a
transmission is triggered, is given by [95]

κ̂[k] = x[k]− x[k − η + 1]
η − 1

where η is the window size. Consequently, we have κ̂FC [k] = κ̂[k] for trans-
mission strategies t = 3 and t = 4 whenever the error bound is violated, and
κ̂FC [k] = κ̂FC [k − 1] otherwise.

We compare the method to an oracle solution (ORACLE), where the sensor knows
the distribution of x[k] and transmits the model parameters every time the distri-
bution changes. We also compare the proposed method to a constant prediction
model (CM), where the prediction is the most recently transmitted measurement
for which the registered measurement at the FC is [32]

xFC [k] =
{
xFC [k − 1], if |x[k]− xFC [k − 1]| ≤ β,
x[k], if |x[k]− xFC [k − 1]| > β.

Figure 4.1 shows the percentage of data transmitted versus accuracy β for OR-
ACLE, CM, and CA-DPS with window size η = 10 to estimate κ[k], T = 10
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Figure 4.3: Percentage of data transmitted with accuracy set to β = 0.1 for all temper-
ature sensors in the Intel office data set, between March 6 and 9, for CM and CA-DPS
with sliding window length η = 30, forecast horizon T = 20 and L = 40 trajectory
simulations. Numbers represent Mote IDs.

time steps, and L = 50 bootstrapped trajectories. We see that CM performs poorly
since the model does not capture the drift component κ[k] in the measurement
process x[k]. For CA-DPS, the FC model parameter is updated in line with the
ORACLE method.

Real World Data and Benchmarks

We also test CA-DPS on a real-world data set containing the readings from 54
Mica2Dot sensors in the Intel Berkeley Research lab between March 6 and 9,
20041. Each sensor is identified by a Mote ID number and has humidity, temper-
ature, light, and voltage readings every 31 seconds. This data set has repeatedly
been used as test data in the literature on prediction-based data reduction [33],
[56], [92], [96].

Figure 4.2 shows the percentage of data transmitted for CA-DPS and benchmark
methods when applied to the temperature data of Mote ID 30, as was also done
in [33], [56]. We see that CA-DPS achieves the lowest transmission rate for β
between 0.1 and 0.5. At β = 0.1 it achieves a transmission rate of 17% with
a mean absolute error (MAE) of 0.05 between the true and predicted readings
|xFC [k]− x[k]|.

1Available at http://db.lcs.mit.edu/labdata/labdata.html
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Figure 4.3, shows the transmission rate for CA-DPS and CM for all 54 mote IDs,
at β = 0.1. We see that CA-DPS achieves a lower transmission rate than CM
for all 54 sensors, since all sensors are below the 45◦ line. CA-DPS was able to
achieve an average transmission rate of 8%, at threshold β = 0.1, for all sensors
using the settings (η = 30, T = 20, L = 40).

4.2 Optimal Threshold and Channel Allocation
In the second part of this chapter, we consider a system of multiple sensors fol-
lowing event-triggered transmission schemes while sharing a limited number of
collision channels. If the number of transmitting sensors exceeds the number of
available communication channels, a package collision occurs, resulting in inter-
ference. Thus, we cannot guarantee a bounded error for such a system scenario.
A statistic measure, the MSE, will represent the overall estimation accuracy per-
formance metric.

Intuitively, and as shown in Figures 4.1 and 4.2, for a single-sensor system, redu-
cing the accuracy threshold β in (4.1) will result in a lower bounded error, i.e., a
higher estimation accuracy. However, it will come at an energy expanse by trans-
mitting more frequently. For a multi-sensor system with a limited number of com-
munication channels, the relationship between the accuracy threshold and the es-
timation accuracy is not straightforward. A smaller threshold across sensors leads
to an increased transmission rate and a higher probability of a packet collision.
Thus, minimizing the MSE with respect to the transmission thresholds becomes a
function of the measurement statistics and the number of communication channels
and sensors.

Following, we present the results from Publication VI, where we derive a method
for finding optimal transmission thresholds and channel allocation for multiple
sensors observing heterogeneous processes and sharing a limited number of colli-
sion channels.

4.2.1 Prior Work

Previous work in event-triggered transmission schemes has focused on analyzing
how different system performance metrics depend on the accuracy threshold [32],
[33], [92]. As mentioned earlier, the accuracy threshold determines transmission
probability, which determines the transmission rate and energy consumption for
communication. In channels constrained systems, it also influences the likelihood
of a collision. Finding optimal transmission thresholds that maximize the over-
all estimation accuracy has been studied with consideration for energy-harvesting
[76], [97], presence of an eavesdropper [98] and multiple sensors sharing a limited
number of communication channels [30], [76], [99].
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The threshold values are often determined by a threshold strategy, which can be
either deterministic [30] or stochastic [100]–[102]. Commonly, the transmission
thresholds are two-folded and deterministic, with threshold values symmetrically
centered around the estimated value at the current time instant [30]–[34]. In the
works [76], [79], [99], authors study jointly optimal threshold values and estimator
models to minimize the average MSE across sensors.

In a centralized event-triggered transmission scheme [30], [76], [79], an agent ob-
serves measurements across sensors before deciding which measurements to trans-
mit to the estimators. The alternative approach is to apply a decentralized transmis-
sion scheme, in which sensors cannot communicate with each other before trans-
mitting their measurements. A centralized scheme can improve the performance
compared to a decentralized scheme since it allows for defining transmission re-
gions of multiple sensor measurements. For example, as shown in [80], for a WSN
of multiple sensors observing equally distributed independent Gauss-Markov pro-
cesses, an optimal strategy is always transmitting the sensor measurement furthest
from the current estimate of the corresponding remote estimator. Hence, this trans-
mission sequence would not be possible to execute in a decentralized scheme. An
optimal centralized transmission policy of a similar structure holds in [30], [103],
where multiple sensors observe independent measurements following symmetric
measurement distributions. For the system considered in [30], an optimal cent-
ralized scheme always outperforms a decentralized optimal symmetric two-sided
threshold strategy.

A centralized scheme where a cluster-head observes measurements before trans-
mitting has implications for privacy and latency. Furthermore, it requires a spe-
cific system topology. To support the claim in [30], there is a need to find optimal
transmission policies for decentralized schemes. We also see a limited number of
works studying optimal threshold strategies for sensors observing heterogeneous
processes.

In Publication VI, we consider a multi-sensor system that follows event-triggered
transmission schemes and shared collision channels. The sensors are divided into
spatially distributed clusters, each assigned a set of collision channels, where the
measurement distributions among the different clusters are assumed heterogen-
eous. Due to limited energy resources, the sensors’ transmission rates are restric-
ted by a transmission constraint. The goal is to allocate communication channels
and determine the optimal transmission thresholds for each cluster to maximize
the estimation accuracy.

The main contributions from Publication VI can be fund in Contribution C3 in
Section 1.2.
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Figure 4.4: Schematic of WSN channel allocation problem.

4.2.2 System Model

We consider an IoT system comprising N ∈ N+ sensors, spatially distributed into
P ∈ N+ clusters, with Ni ∈ N+ sensors in cluster i and N =

∑P
i=1Ni, as shown

in Figure 4.4. Sensors in cluster i, i = 1, ..., Ni observe independent Gaussian
processes xi,j ∼ N (0, σ2

i ), where i = 1, ..., P and j = 1, ..., Ni. The measure-
ment distributions among the different clusters are assumed heterogeneous, i.e.,
σ2
i 6= σ2

j , ∀i, j = 1, ..., P .

The sensors in cluster i, i = 1, ..., P transmit their measurements via an assigned
communication channel i, with Di ∈ N+ available channels, to a corresponding
remote estimator i. An event-triggered transmission scheme is set up such that a
sensor only transmits if the measurement value falls outside a predefined interval
xi,j /∈ (αi, βi), where αi ∈ R and βi ∈ R are the transmission thresholds.

The threshold values αi and βi depend on the threshold strategy for cluster i,
defined by the two parameters; pi ∈ [0, 1], representing the transmission rate,
which is equivalent to the transmission probability pi = P

(
xi,j /∈ (αi, βi)

)
, and

si ∈ {1, 2}, indicating either a single- or double-bounded threshold strategy, i.e.,

(αi, βi) =

 (−∞, Qi (pi)) , if si = 1,(
−Qi(

pi
2 ), Qi(

pi
2 )
)

if si = 2, (4.4)

where Qi(pi) = inf
{
x ∈ R|1− pi ≤ Φ(x/σi)

}
represents the (1− pi)-percentile

for Gaussian distribution x ∼ N (0, 1), with cumulative distribution function, Φ.

Similar to the system in [30], we assume that if more than Di ∈ N++ sensors
transmit through the channel allocated to cluster i, a packet collision occurs. In that
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case, the ith estimator does not receive the measurements but is able to decode the
sensor indices of the transmitting sensors [30]. Let Yi be the set of indices of the
transmitting sensors from cluster i, i.e., Yi =

{
j ∈ {1, ..., Di}|xi,j /∈ (αi, βi)

}
.

The output Ii from collision-channel i to estimator i is

Ii =


∅, if |Yi| = 0,
{j, xi,j |j ∈ Yi}, if 1 ≤ |Yi| ≤ Di,
{C,Yi}, if |Yi| ≥ Di,

(4.5)

where C is a collision indicator symbol. From (4.5), the estimate at the remote
estimators x̂i,j = E

[
xi,j

∣∣Ii] equals

x̂i,j =


E
[
xi,j

∣∣xi,j ∈ (αi, βi)
]
, if j /∈ Yi,

xi,j , if j ∈ Yi, |Yi| ≤ Di,
E
[
xi,j

∣∣xi,j /∈ (αi, βi)
]
, if j ∈ Yi, |Yi| > Di.

(4.6)

The mean squared error (MSE) at the ith estimator, as shown in (4.6), depends on
the threshold strategy si, the transmission rate pi and the channel allocation Di, is
given by

Ji(si, pi, Di) =
Ni∑
j=1

E
[
(xi,j − x̂i,j)2

]
. (4.7)

Our objective is to find an optimal joint transmission and channel allocation
strategy s = [s1, s2, ..., .sP ]T, p = [p1, p2, ..., .pP ]T andD = [D1, D2, ..., .DP ]T
that minimizes the total MSE across all sensors, i.e.,

min
s,p,D

P∑
i=1

Ji(si, pi, Di)

s.t.
P∑
i=1

Di = D, Di ≥ 1, (4.8)

0 ≤ pi ≤ p̄, i = 1, ..., P,

where D is the total number of available channels for the system and p̄ ∈ R+,
0 < p̄ ≤ 1, is a transmission probability constraint to account for the sensors
limited energy resources.

4.2.3 Theoretical Results

To solve (4.8), we need to calculate the cost in (4.7) based on si, pi and Di. We
begin this section by presenting a closed-form expression of the cost function



4.2. Optimal Threshold and Channel Allocation 49

Ji(si, pi, Di). We then present theoretical results of the optimal performance for
each individual cluster i, Ji(s∗i , p∗i , D∗i ). Finally, we present an algorithm of how
to step-wise derive {s∗,p∗,N∗}.

The Ni observations are i.i.d., and the distribution for the number of transmissions
|Yi| for cluster i follows a binomial distribution, i.e., |Yi| ∼ Bin(Ni, pi). From
the law of total expectation, we can express (4.7) as the probability weighted MSE
given the number of transmitted sensors, i.e.,

Ji(si, pi, Di) = (4.9)
Ni∑
y=0

P (|Yi| = y)
(

(Ni − y)E
[
(xi,1 − x̂i,1)2|xi,1 ∈ (αi, βi)

]

+ y1(y > Di)E
[
(xi,1 − x̂i,1)2|xi,1 /∈ (αi, βi)

])

= E
[
(xi,1 − x̂i,1)2|xi,1 ∈ (αi, βi)

]
︸ ︷︷ ︸

=Ai(si,pi)

(
Ni − E

[
|y|
])

︸ ︷︷ ︸
=ωi(pi)

+

E
[
(xi,1 − x̂i,1)2|xi,1 /∈ (αi, βi)

]
︸ ︷︷ ︸

=Bi(si,pi)

E
[
|y|1(|y| > Di)

]
︸ ︷︷ ︸

=ω̃i(pi,Di)

,

where E
[
|y|
]

= Nipi and 1(·) is an indicator function having value 1 if the con-
dition in the argument is true and 0 otherwise. Given that all sensors in Cluster i
observe i.i.d. distributions, the variable xi,1 in (4.9), represents the measurement
process from an arbitrary sensor in Cluster i.

As seen in (4.9), the cost can be expressed in the form

Ji(si, pi, Di) = Ai(si, pi)ωi(pi) +Bi(si, pi)ω̃i(pi, Di),

where the functions Ai(si, pi) and Bi(si, pi), respectively, represent the condi-
tional MSE for a non-transmitted measurement, and a collided measurement, and
the functions ωi(pi) and ω̃i(pi, Di), respectively, represent the expected number
of non-transmitted measurements and collided measurements from cluster i. The
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values of Ai(si, pi) and Bi(si, pi) can be calculated [104], [105] as

Ai(1, pi) = σ2
i

(
1− βi

σi

φ(βi/σi)
(1− pi)

−
(
φ(βi/σi)
1− pi

)2)
,

Bi(1, pi) = σ2
i

(
1 + βi

σi

φ(βi/σi)
pi

−
(
φ(βi/σi)

pi

)2)
,

Ai(2, pi) = σ2
i

(
1− 2βiφ(βi/σi)

σi(1− pi)

)
,

Bi(2, pi) = σ2
i

(
1 + 2βiφ(βi/σi)

σipi

)
,

where φ is the pdf of Gaussian N (0, 1).

An important property to acknowledge, is how the conditional MSE of collided
measurements, Bi(si, pi), depends on the threshold strategy si. As seen in (4.4)-
(4.6), for s1 = 1, the estimator always has information of the region where a
measurement lies, i.e., if xi,j ≤ αi or xi,j ≥ βi, regardless if a collision has
occurred or not. From (4.6), for si = 1, the estimate of a collided measurement,
x̂i,j = E

[
xi,j

∣∣xi,j /∈ (αi, βi)
]
, depends on the transmission rate pi, while for

si = 2, the estimate is independent of pi and always equals the distribution mean,
i.e., x̂i,j = 0, ∀p ∈ [0, 1]. For this reason, the conditional MSE for a collided
measurement in (4.9) is smaller for si = 1 than for si = 2, and results in the
inequality

Bi(1, pi) ≤ σ2
i ≤ Bi(2, pi), 0 ≤ pi ≤ 1.

Another property to acknowledge, is that the cost decreases with respect to Di, i.e,

Ji(si, pi, Di + ε) ≤ Ji(si, pi, Di), ε ∈ N+, (4.10)

which allows us to state the following lemma.

Lemma 4.1. For p̄ = 1, if the following inequality holds

min
pi∈[0,1]

Ji(1, pi, 0) ≤ min
pi∈[0,1]

Ji(2, pi, D̄),

then a single-sided strategy, si = 1, is optimal for any number of channels being
less than D̄, i.e.,

min
pi∈[0,1]

Ji(1, pi, Di) ≤ min
pi∈[0,1]

Ji(2, pi, D̄), ∀Di ≤ D̄. (4.11)

Proof. Lemma 4.1 follows from property (4.10).
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Theoretically, Lemma 4.1 implies that for a system with no transmission con-
straint, i.e., p̄ = 1, if a one-sided strategy using zero channels outperform a two-
sided strategy using D̄i available channels, Di = 0, a one-sided strategy is then
consistently optimal for all number of channels Di equal or less than D̄i.

In the following theorem, we present an upper bound of the optimal performance
for any given number of channels Di ≤ D. Before presenting the theorem, we
introduce J∗i (Di), i = 1, ..., P as the minimum cost for Cluster i, if assigned Di

channels, being defined as

J∗i (Di) = min
si∈{1,2},pi≤p̄

Ji(si, pi, Di). (4.12)

Theorem 4.1. For p̄ = 1, the optimal performance for any threshold strategy
using Di channels is upper bounded by

J∗i (Di) ≤ NiAi(1, 0.5), (4.13)

and, if the following inequality holds,

NiAi(1, 0.5) ≤ min
pi∈[0,1]

Ji(2, pi, D̄), (4.14)

then (4.11) holds, and a single-sided strategy, si = 1, is optimal for all Di ≤ D̄.

Proof. The proof can be found in Publication VI.

Theorem 4.1 presents an upper bound of the optimal performance for any given
number of channels Di ≤ D. An additional lower performance boundary for an
optimal double-sided strategy si = 2 can be found in [30], where a cluster-head
observes all measurements from Cluster i before transmitting the Di largest meas-
urements. Let J̃i(Di) denote the MSE for the centralized transmission scheme,
being defined as

J̃i(Di) =
Ni∑

n=Di+1
E
[
x2
i,(n)

]
, (4.18)

where xi,(n) is the nth largest value in cluster i, i.e., {|xi,j |}Ni
j=1. Hence, for si = 2,

the cost is lower-bounded by

J̃i(Di) ≤ min
pi∈[0,1]

Ji(2, pi, Di). (4.19)

Remark 4.1. For the centralized scheme presented in [30], the output Ii from the
cluster-head to the remote estimator only includes the Di largest measurement
values in cluster i, i.e., Ii = {|xi,j |}Di

j=1, and does not include information of
measurements breaching any threshold values αi and βi.
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Algorithm 3 Deriving {s∗,p∗,D∗} step-wise

1: For each cluster i, i = 1, ..., P , and for all possible number of channels, ∀Di ≤
D, solve the two problems

min
pi≤p̄

Ji(1, pi, Di), and min
pi≤p̄

Ji(2, pi, Di). (4.15)

2: From step 1, calculate J∗i (Di) in (4.12), for all i, i = 1, ..., P , and Di, Di ≤
D.

3: From step 2, findD∗ = (D∗1, D∗2, ..., D∗P )

min
D

P∑
i=1

J∗i (Di), (4.16)

s.t.
P∑
i=1

Di = D,

4: Compute the corresponding parameters {s∗,p∗} as

(s∗i , p∗i ) = arg min
si, pi≤p̄

Ji(si, pi, D∗i ). (4.17)

The function Ji(si, pi, Di) is a continuous and well-behaving function, which
prove the existence of an optimal set {s∗,p∗,D∗} that can be derived by fol-
lowing the steps presented in Algorithm 3.

In the next section, we compare the performance to have all clusters sharing col-
lision channels. First, we present a method for deriving an optimal parameter
set for such a system scenario. Let Y = (|Y1|, |Y2|, ..., |YP |), Y ∈ NP+, be a
stochastic variable representing the number of transmitted measurements from all
P clusters. Since, |Yi| ∼ Bin(Ni, pi), the variable Y follows a multinomial dis-
tribution. From the law of total expectation, let f(Y , s,p) represent the total MSE
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Figure 4.5: Optimal MSE J∗1 and J̃1 for P = 1, N1 = 200 sensors with σ1 = 1 and
p̄ = 1.

given outcome Y and system setting {s,p}, s ∈ {1, 2}P , p ∈ [0, p̄]P ,

Ĵi(s,p) =
Ni∑
j=1

E
[
(xi,j − x̂i,j)2

]
=
∑
Y ′∈Y

P (Y = Y ′)
(
(Ni − |Y

′
i |)Ai(si, pi)

+ 1(
P∑
j=1
|Y ′j | > D)

P∑
i=0
|Y ′i |Bi(si, pi)

)
,

where Y is the set of all possible outcomes of Y .

An optimal pair {s∗,p∗}, is obtained by solving

min
s,p

P∑
i=1

Ĵi(s,p) (4.20)

s.t. 0 ≤ pi ≤ p̄, i = 1, ..., P.

We numerically derive approximated values of {s∗,p∗} using a greedy approach,
where we first discretize the range of p, p ∈ [0, p̄], into M ∈ N+ discrete values,
i.e., % = {0, %, 2%, ...,M%}, % = p̄/M , and then compare the performance for all
possible combinations of s,p ∈ {1, 2}P × %, to find which pair minimizes (4.20).

4.2.4 Numerical Results

We begin by considering a single-cluster system, i.e., P = 1, with size N1 = 200,
variance σ1 = 1 and without any transmission probability constrain p̄ = 1. Figure
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Figure 4.6: Optimal MSE vs total number of channels D for P = 3, Ni = 20, i = 1, 2, 3,
with σ1 = 1, σ2 = 1.2, σ3 = 1.4 and p̄ = 0.5.

4.5 shows Ji(1, pi, Di) in (4.7) minimized with respect to s1 = 1 and s1 = 2,
denoted as J∗1 , and J̃∗1 from (4.18) vsD1. As stated in (4.19), a centralized strategy
outperforms a decentralized double-sided threshold strategy s1 = 2, for all D1 ≤
200. However, a single-sided strategy s1 = 1 outperforms a centralized strategy
for all Di ≤ 38. As presented in Proposition 4.1 and Theorem 4.1 a single-sided
threshold strategy s1 = 1 is consistently optimal for D1 ≤ 52.

We now consider a system of P = 3, with respective cluster sizes of Ni = 20,
i = 1, 2, 3, with σ1 = 1, σ2 = 1.2, σ3 = 1.4 and p̄ = 0.5. Figure 4.6 displays
an optimal performance for the two approaches; allocating channels across cluster
as in (4.8) or having all clusters sharing all channels as in (4.20), vs total number
of channels D. For the case of sharing channels, the values {s∗,p∗} are obtained
using M = 50 discretization points. As can be seen, allocating channels across
clusters outperforms having all clusters sharing channels.

4.3 Discussion
This chapter has studied threshold-based event-triggered transmission schemes for
both a single- and a multi-sensor system. We discussed some implications of
sensors observing non-stationary measurement distributions. Also, if the num-
ber of sensors exceeded the number of communication channels. We developed
methods to address these issues and derived optimal system settings.

Firstly, to maintain a high prediction accuracy in a DPS, the sensors must transmit
re-estimated model parameters to account for changes in the measurement dis-
tribution and occasionally transmit historical measurements to re-fresh the input
data for future predictions. In previous literature, updating protocols are ad hoc,
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where an update is triggered at every or a given number of threshold breaches. We
presented our work in Publication V, in which we introduced a CA-DPS, which is
an extension of the DPS framework, where the sensor evaluated the transmission
cost among a set of transmission strategies. Using the empirical measurement dis-
tribution, we applied model-based bootstrapping to assess the different transmis-
sion strategies to avoid deriving closed-form estimators of the future transmission
cost based on parametric model assumptions. Our numerical results showed that
by applying a CA-DPS on both synthetic and real-world data, the amount of data
transmitted between IoT sensor nodes and a fusion center could be further reduced.
An essential aspect of our work is that we exploited the available computational
resources at the sensor to evaluate the transmission strategies. We allowed for the
decisions making of the transmission strategies to take place at the sensor and not
rely on a fusion center.

Later on in the chapter, we presented our work in Publication VI, in which we
presented a method to derive optimal transmission thresholds for multiple sensors
sharing a limited number of communication channels. Each time a collision oc-
curs, an estimator always has knowledge of the region a measurement lies in for
a single-sided strategy, which results in a lower MSE than if a collision occurred
using a double two-sided strategy. Analytical results showed that a single-sided
threshold strategy could outperform a double-sided strategy depending on the sys-
tem parameters; the number of channels, sensors, and statistical parameters. A
system engineer can use our theoretical results to set necessary energy resources
and the number of channels for a required MSE. Numerical results validated the
analytical results and showed that a single-sided strategy could outperform a cent-
ralized transmission scheme, where a cluster-head can observe all measurements
before deciding to transmit the ones that deviated the largest from the current es-
timate [30].
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Chapter 5

Conclusions and Future Work

In a WSN or WNCS, sensors transmit measurements to remote estimators or a
centralized FC that tracks physical processes to support decision-making and max-
imize the application utility. The information update rate from sensors is limited
by the sensor node’s energy resources and the number of available communica-
tion channels. This thesis has developed transmission schemes to support the data
collection infrastructure in resource-constrained WSN and pro-long sensor nodes’
battery lifetime. The two considered approaches have been to reduce the number
of transmissions and the amount of data from sensors and, secondly, to schedule
sensors in an optimal order to maximize estimation accuracy. The design of the
transmission schemes has been based on exploiting statistical patterns in the meas-
urement data, e.g., temporal and spatial correlation. We considered a simple WSN
topology where sensors transmit measurements directly to a remote estimator or a
fusion center via a communication medium to generalize our results to other WSN
topologies. The theoretical results from this thesis can be of value for a system
architect designing a WSN, e.g., choice of transmission scheme and determining
technical requirements.

Chapter 3 presented our work in AoI-based scheduling of dependent measure-
ments. We considered a channel-constrained WSN where sensors observed spatio-
temporally dependent measurements that were broadcasted to remote estimators
via a network manager. At each instant, the number of broadcasted measurements
was limited by the number of available channels. Therefore, we derived an op-
timal AoI-based scheduling policy that minimized the overall time average MSE
by modeling the scheduling problem as a finite-state MDP. We showed that an op-
timal policy resulted in a periodic scheduling sequence. This result has practical
benefits as it could be easily executed and save data storage at the network sched-

57



58 Conclusions and Future Work

uler. Later on, in Chapter 3, we considered the particular case for a system of two
sensors, where the sensor’s individual energy resources constrained the number of
measurement transmissions. We presented a low-complexity numerical method to
derive an optimal AoI-based scheduling policy for a finite horizon.

The AoI has previously been studied with consideration for queuing [35] and
stochastic arrival processes, e.g., due to packet losses [5], [51]. In our system
model, we consider parallel communication channels that solve the issue of packet
collisions and assume that packet losses are addressed by retransmission through
higher layers of the communication protocol, e.g., an ARQ protocol. As an ex-
tension of our work, one could design AoI-based scheduling policies for multiple-
access channels instead of parallel access channels. However, this type of study
requires incorporating queuing processes and random arrival times in the system
model. Consequently, the mathematical modeling would need to be re-designed
concerning the particular queuing system and the probability distribution of the
arrival time.

In our work, we have chosen a simple estimation model in the sense that the estim-
ate is only based on the most recently scheduled measurements from each sensor.
We adopt this model since it: i) renders the problem mathematically tractable,
ii) offers insights into the properties of an optimal scheduling policy for spatio-
temporally correlated processes; iii) helps in determining the necessary conditions
that an optimal scheduling policy must satisfy, and; iv) allows the derivation of
an optimal policy numerically through a manageable dimensionality of the MDP
finite state-space. The estimation model can be extended by including previous
measurements from the sensors to improve the estimation accuracy. However,
there is a trade-off between the simplicity of the estimation model and the com-
putational complexity of deriving an optimal policy. If more recent measurements
are included, the state variable must include the AoI for all the used measurements
and the absolute AoI differences between them. For this reason, the finite state-
space increases substantially for each additional measurement stored at the estim-
ators. Even for a small network, storing only the two most recent measurements
can make the numerical calculations prohibitive. For future work, a sequential es-
timator incorporating past measurements can be considered to derive the optimal
scheduling policies for estimating spatio-temporal processes. We cannot conclude
that the proposed mathematical framework and the ensuing results would hold for
this scenario.

Optimal scheduling policies for multiple sensors that observe independent
discrete-time linear time-invariant (LTI) processes and share a single communic-
ation channel have earlier been derived in [28], [29]. To the best of our know-
ledge, optimal scheduling policies of multiple sensors observing multiple spatio-
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temporally dependent Gauss-Markov processes have not earlier been presented.
We believe that this still is an open problem to derive necessary conditions for
the existence of an optimal policy for processes that follows a spatio-temporally
correlated Gauss-Markov model.

Chapter 4 focused on event-triggered transmission schemes, specifically,
threshold-based transmission schemes. In the first part of this chapter, we con-
sidered a system of one sensor and an FC, where a DPS was implemented to
save energy at the sensor by reducing the number of transmitted measurements to
the FC. In practice, sensors often observe non-stationary and dynamic processes,
which requires the prediction model in a DPS to be updated occasionally to main-
tain the prediction accuracy. A re-estimated prediction model and new input vari-
ables must be transmitted from the sensor to the FC when the measurement distri-
bution changes. We discussed the implications of using an ad-hoc event-triggered
updating protocol and introduced a CA-DPS. In a CA-DPS, the sensor evaluates
a set of transmission strategies at each transmission instance and decides on the
strategy that results in the lowest expected future transmission cost. The transmis-
sion cost for each strategy was estimated using model-based bootstrapping. By
exploiting the computational resources at the sensor, we showed that energy effi-
ciency for communication could be further improved by protocols that are selective
in the data transmitted.

The CA-DPS framework could be extended by allowing the sensor to evaluate sev-
eral prediction models among a set of prediction models to transmit. e.g., changing
from an AR(2)-model to an AR(3)-model. Another extension could be to have the
sensor decide on the transmission strategy that results in the largest expected num-
ber of transmissions until a threshold breach occurs, i.e., the stopping time [106].
Similarly, the expected stopping time can be estimated using model-based boot-
strapping from the empirical measurement distribution.

In the second part of Chapter 4, we stated the fact that event-triggered transmis-
sion can result in packet collision if the number of simultaneous transmissions ex-
ceeds the number of communication channels. We considered a system of multiple
sensors following event-triggered transmission schemes, sharing a limited number
of collision-channels. The sensors were placed into spatial clusters, observing
heterogeneous measurement distributions. We presented a method to derive op-
timal transmission threshold strategies and channel allocation for each cluster. We
considered a single-sided threshold strategy and demonstrated that it could outper-
form the centralized scheme presented in [30], where a cluster-head observes all
measurements before deciding which to transmit. We suggested exploiting spatio-
temporal dependencies for future work to improve the estimation accuracy of col-
lided measurements that the remote estimators do not observe. Further extensions
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would be to incorporate measurement noise in the system model. However, this
would require a different estimator model and additional mathematical derivations.

In summary, we have studied both time-triggered, i.e., scheduling sensors, and
event-triggered transmission schemes, which both have their advantages. By
scheduling sensors, we can coordinate the transmission of the sensor to avoid col-
lisions that result in packet drops. Scheduling also makes it easy to plan how long
available resources for communication will last. Suppose an estimation model of
the physical process provides a good fit in a threshold-based event-triggered trans-
mission scheme. In that case, it can result in a low transmission rate, saving en-
ergy for communication. For future work, a third option would be studying hybrid
transmission schemes, where sensors are scheduled time-slots to avoid collisions
but are not obliged to transmit if the measurement lies within some region.
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