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Abstract: Rapid eye movements (REM) during sleep is a descriptor of the REM sleep stage.
Parameters associated with REM sleep, such as REM sleep numbers, REM density, REM
latency, and pre-REM negativity have been associated with the functional role of REM sleep.
The temporal properties of these parameters appear to play an essential role in REM sleep,
so precise knowledge of these temporal properties, particularly REM onset, can help elucidate
the temporal dynamics of neural activity related to REM sleep. However, manual detection of
this event is a time-consuming and subjective process that can be facilitated by an automatic
detection tool. We developed an automatic REM onset detection algorithm based on features
describing rapid eye movements and compared the results obtained with human detection by a
sleep expert.
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1. INTRODUCTION

The first description of eye movements associated with
low-voltage EEG and simultaneous dreaming was made in
1953 by Aserinsky and Kleitman and it is a characteristic
that defines the REM sleep stage (Gottesmann (2009)).
Parameters associated to REM sleep, such as number of
REM sleep, REM density (Smith and Lapp (1991)), REM
latency (Ansseau et al. (1985); Pace et al. (2018)), and
pre-REM negativity (Abe et al. (2004, 2008a)) have been
associated with the functional role of REM sleep. This
functional role has been associated with brain plasticity
and memory (Stickgold et al. (2000)), and emotional pro-
cessing (Maquet et al. (1996)). Many studies have also
suggested a link between behavioural dysfunctions such
as depression, post-traumatic stress disorder and chronic
sleep deprivation with alterations in the REM sleep pat-
tern (Gillin et al. (1981); Lahmeyer et al. (1983); Mellman
et al. (1997); Feinberg et al. (1987)). Of particular interest
to this work, are the temporal properties of REM before
and after the onset of REM, which have been linked to
specific neural activation in the brain (Abe et al. (2008a,b,
2004)). These works, clearly point out the relevance of
identifying the exact timing of the rapid eye movement on-
set, and how the neural paths around the time immediately
before and after onset, can illuminate on the potential
functional role of REM sleep. Despite more than 60 years
since the discovery of REM, and the clear indications of
the important role this sleep stage seem to play in the

emergence of pychopathologies, the specific mechanism
linking these dysfunctions and alterations in REM sleep
remains unclear, as research on this mechanism and its
functional significance has not progressed sufficiently (Abe
et al. (2008b)). We presume that this can partly be at-
tributed to the long time and effort required for manually
detecting REMs and REM onsets. Precise knowledge of the
onset of REM can help elucidate temporal dynamics of the
neural activity related to REM sleep and contribute with
more insights into this mechanism. Research in this topic
would highly benefit from the development of an automatic
algorithm that can accurately detect the onset of rapid
eye movements during REM sleep. This paper offers an
automated alternative to the detection of this event during
REM sleep. The algorithm is based on precise character-
ization of the magnitude of rapid eye movements occur-
ring during REM sleep, first presented in (Takahashi and
Atsumi (1997)), which are used as features for designing
the search algorithm. The performance of this algorithm
is first visually examined and validated by a sleep expert
and based on this evaluation, specific performance indexes
show that a Precision of 0.68 a Recall of 0.96, and an
F1 score of 0.79 were attained by the proposed algorithm.
This algorithm for automatic detection of the precise onset
of eye movement could assist EEG brain imaging studies
of REM sleep in elucidating the functional role of REM
sleep by shedding light on the mechanism of neural path
activation at the onset of REM. At the same time, this
algorithm can be used for purposes such as automatic sleep
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stage scoring, calculation of REM density, and numbers of
REMS, etc. Examples of such applications are provided in
this paper.

2. METHODS
2.1 Dataset

The data set was obtained from Polynomnography record-
ings in 8 participants. The recordings were carried out
at the Human Sleep Lab of the International Institute
of Integrative Sleep Medicine. The data consist of an
electroencephalogram (EEG) recorded from 128 scalp sites
using an electrode cap (ActiveTwo system, BIOSEMI), a
electrooculogram (EOG) was recorded from three elec-
trodes (lower, left and right of eyes) and sub-mental
electromyograms (EMG) recorded from three electrodes.
Figure la illustrates the positions of the horizontal EOG
electrodes EOG-R and EOG-L, that were used for the
onset detection.
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Fig. 1. (A) Positioning of the EOG electrodes on the left
and right outer canthi. (B) Participant during PSG
recording with EOGs and EMG-C electrode positions
indicated

The recording period was approximately 8-hour of sleep
for each participant, with a sampling frequency of 1024Hz.
In this study, only the horizontal EOGs were used to
detect the EM onset with the algorithm. A participant
during the sleep PSG recordings is depicted in figure 1b.
The study was approved by the Clinical Research Ethics
Review Committee, University of Tsukuba Hospital (ID:
R02-213). Written informed consent was obtained from
each participant.

2.2 REM sleep scoring

The sleep stage scoring of the 8 participants was performed
visually in continuous 30s epochs by sleep experts based on
the criteria of the AASM (Berry et al. (2018)). The scoring
for all participants resulted in 740.5 minutes of REM
sleep in 1481 epochs. The algorithm was developed and
optimized to detect the exact timing of the Eye Movement
(EM) onset during the REM sleep portion of the data.
The eye movements (EM) were defined according to the
fulfillment of three basic criteria presented inTakahashi
and Atsumi (1997). However, besides the pre-scored data,
the algorithm has been tested on different sleep stages
to investigate its potential as a sleep stage classifier by
identifying REM sleep first. Running the algorithm on
non-REM sleep is very different from REM sleep and
should be further investigated as a sleep stage classifier.

2.8 Algorithm goal

The goal of the algorithm is to mark the onset of eye
movements (EMs) in REM sleep. An example of EMs
can be seen in figure 2 where the EM is marked with the
dashed line. EMs are defined by sudden voltage deflections
in the recordings of EOG-L and EOG-R channels suddenly
spiking in opposite directions.

EM Onset
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Fig. 2. Example of an EM spike, the dashed line indicates
the EM onset in the raw data

2.4 Base algorithm

The detection of the EM in the base algorithm, originally
reported in Takahashi and Atsumi (1997), is based on the
definition of three basic REM-related EOG parameters:
amplitude, duration, and slope of the EOG trace. The
algorithm starts by pre-processing the data, re-sampling
it to 80Hz, and smoothing it by applying a 7-point linear
weighted moving average. Afterward, a double derivative
is calculated to identify spikes such as seen in the figure
3. Where point A is the starting point of the slope and
is found by the double derivative’s first spike. Point B is
the ending point of the slope and is a spike in point A’s
opposite direction. With all points A and B identified, the
following three criteria are observed for the definition of
EM onset:

e All points pairs (A and B) with an absolute value
of point B minus point A higher than 30uV are
accepted.

e The slope between the point pairs has to be higher
than 248.3uV/s.

e The slope duration has to be lower than 0.5s

Point A Point B

Teoretical raw
data

Derivative

Double
derivative

Fig. 3. Example of an idealized EOG signal, the derivative
and double derivative of the signal. The points A and
B correspond to the beginning and the end of the
slope respectively. Notice that the ideal signal intends
to show how the double derivative is useful to identify
the two points

The points that fulfill the three criteria are then saved as
EMs. An overview of the base algorithm is presented in
figure 4.
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Due to the presence of noise, the double derivative of
the signals will lead to many unwanted spikes. Therefore,
the base algorithm can mistakenly accept as EM points
many of the spikes, leading to a large amount of unwanted
confirmed EMs. A Low-pass filter was initially evaluated
instead of the linear weighted moving average to attenuate
the spikes, and a mixed technique with a low-pass filter
and moving average were also tested. Despite these efforts,
the results obtained with those approaches in the base
algorithm were still ineffective in capturing the EM onsets
correctly, and this was confirmed by visual inspection of
the EMs detected. As a consequence of smoothing the
signal with the low-pass filter, the spikes in the double
derivative were misplaced compared to the raw signal.
This misplacement leads to point A being marked close
but not exactly on the actual EM starting point. The lack
of efficacy in the results and the noise issues have led us to
propose a new version of the algorithm to detect the EMs
onset more accurately.

Resampling to 80Hz, Double derivative,
Ra\évalt:{aEM Weighted moving Identify points Calc:l:éesﬁ)bséB-A)
average (7pt) AandB P
Criterion 1 Criterion 2 Criterion 3 Storage EMs|
abs(B-A)>30uV slope > 248.3uV/s Slope duration <0.5s Onset

Fig. 4. Overview of Base Algorithm procedures according
to Takahashi and Atsumi (1997)

2.5 Proposed algorithm

With the aim to improve the base algorithm efficacy in
accurately identifying the EM onsets, more information
from the shape and morphology of eye movements was
incorporated into the proposed algorithm. The algorithm
starts with subtracting signal EOG-R from EOG-L and
then re-sampling the data to 300Hz. Afterward, it uses a
linear weighted moving average with a 26-points to smooth
the data. The linear weighted moving average limits the
noise and gives better results than a low pass filter. After
smoothing the signal, the derivative and double derivative
are calculated. Notice that this version avoids the use of
the double derivative to find the start and stop points of
the EMs, instead, all the sample points are considered, and
the double derivative is used to estimate the EM onset.

The first criterion to approve a sample as an EM point is
that the change in the amplitude has to be greater than
80uV in less than 400ms. The second criterion is that
the slope has to be higher than 500uV/s in the slope’s
starting point. The third criterion is that the average
slope after the starting point has to be over 500uV for
the following 125ms (37 samples). Then points that are
approved by all three criteria are added to a list. These
criteria are re-derived for this case from the individual
EOG parameters and threshold values that constitute a
well-defined REM-related EOG deflection according to
Takahashi and Atsumi (1997). As the algorithm checks
every point (300 per second), more than one point per
actual EM might be accepted. As it is undesirable, the
algorithm checks the gap between the approved EM points.
For all EM points approved except the absolute first, it
must have a 200ms gap from the last EM where the criteria
are not met.

After the algorithm has identified only one EM point per
actual EM, the position of the EMs is estimated by moving
the points to a local maximum of the double derivative.
The maximum movement of an EM point is 62ms forward
or backward in time. In the next step, the algorithm
checks for sudden deflections in the recordings of EOG-
L and EOG-R channels in opposite directions. The slope
from 21ms before the EM onset to 80ms after the EM
onset is calculated for EOG-L and EOG-R channels. If
the slope is more than 139V /s, the EM will be accepted
by the algorithm. 21ms before the EM onset was chosen
to avoid the influence of the negative spike the EMs has
at the onsets. Some EMs have such a significant negative
spike that the slope calculated from the EM onset to
80ms forward will give no slope. Moreover, checking 80ms
after the onset is done to capture enough portion of the
slope to identify the direction of deflection of the EOG
channels, even if the channels spikes are unsynchronized.
An example of these unsynchronized spikes can be seen
in figure 2 where EOG-R moves upwards for about 20ms
before moving down.
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Fig. 5. EMs detected in(A) REM stage, (B) NREM stage,
and their respective PSD from -5s to 5s from the
onset.

Finally, to discriminate between EMs produced in REM
sleep and the EMs miss-detected due to high EMG activity
or at NREM stages, the algorithm calculates the power
spectral density (PSD) of the EMG-¢c channel and the
average PSD between 55 to 95Hz, then this value is
compared with a threshold of -11dB, if the average is
higher than -11dB the detected EMs was most likely from
EMG high- frequency activity rather than and actual
REM. To explain this matter, figure 5 shows an example
of two EOG windows, one in which the EMs detected
by the algorithm agrees with the REM expert’s scored
windows Ha, and one in which the EMs detected by the
algorithm does not agree with the REM scored windows
5b, the PSD of the signals are plotted at the right of the
respective segment. From visual inspection of the PSD and
its average between 55 to 95Hz on the right, it can be seen
that the EMG activity has lead to the detection of an EM
in a NREM stage, and the PSD threshold can remove the
miss-detected point from the EMs.

To attenuate the effects of the high noise and the lack
of a low pass filter, the algorithm evaluated the criteria
using the mean of 5 points instead of the specific point.
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This eliminates some of the noise spikes that randomly
get accepted by all the criteria. In 6 an overview of the
proposed algorithm is presented.
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Fig. 6. Overview of the proposed algorithm

2.6 Comparison between the two algorithms

There are two important differences between the algo-
rithms. The first is the method the algorithm uses to find
points to check for the criteria. The base algorithm uses
the double derivative to find the start and stop points,
while the second checks the criteria on all points. This
difference makes the base algorithm much faster but much
more sensitive to noise. The base algorithm also tends to
misplace some of the EM points. For example, if there is
a noise spike before an EM, the base algorithm will set
the noise spike and the actual EM spike as start and stop
points respectively, and as the close points are removed
afterward, the real EM onset will be removed. In contrast,
the proposed algorithm will accept the same 2 points and
remove the correct EM, but during the estimation of the
EM position, it will move the noise point to the actual EM
start.

The second difference is that the proposed algorithm
evaluates the EOG-L and EOG-R channels individual
spikes. This check makes sure that an EM is not triggered
by only one of the channels spiking. A spike in one of
the channels can be due to muscle movements which
are considered noise. The algorithm also checks that the
deflections after the spikes are in opposite directions. An
opposite direction of the deflection is essential as the EM
triggers the channels to move in opposite directions, while
other movements such as heartbeat cause deflections in the
same direction. Both these differences make the second
algorithm slower but much more reliable,accurate and
precise.

2.7 Algorithm performance

To evaluate the performance of the improved algorithm
the following performance measures are used: precision,
recall, and Fl-score. Precision is the ratio of correctly
predicted positive observations to the total predicted pos-
itive observations. In this case, how many of the positively
rated EMs are correct. Recall or Sensitivity is the ratio
of correctly predicted positive observations to the actual
correct observations. In this case, how many of the actual
positive EMs are rated positively. Combining these two
parameters gives us the Fl-score, which is the weighted
average of Precision and Recall. Therefore, this score takes
both false positives and false negatives into account and
shows the overall performance. The parameters can be
calculated by using the following equations:

Precisi TruePositive (1)
recision =
TruePositive + FalsePositive
Recall — TruePositive @)

TruePositive + FalseNegative

Precision x Recall
Fl1=2
* Precision + Recall (3)

All three parameters are between 0 and 1, where 0 is the
lowest performance, and 1 indicates perfect precision and
recall. These parameters were selected because they do not
consider the number of true negatives, then the bias from
the number of possible points compared to the number of
actual points is removed.

3. RESULTS

The performance of the proposed algorithm compared
against the professionally marked EMs during REM sleep
is presented in Table 1. Where P represents the participant
number, TP true positive, FP false positive, and FN false
negative. D is the average distance between professionally
marked points and proposed algorithm points in the true
positive cases. It is noticeable that in the mean F1 score a
value of 0.79 was obtained, moreover, a mean recall value of
0.96 was achieved. It indicates that the algorithm detected
96% of the correct EMs with a mean distance of 6.7ms
across participants.

P | TP | FP | FN | Recall | Precision | F1 | D (ms)

1 44 10 6 0.88 0.81 0.85 7.5

2 | 389 97 4 0.99 0.80 0.89 5.0

3 | 361 | 151 3 0.99 0.71 0.82 6.4

4 | 481 | 154 1 1.0 0.76 0.86 7.3

5 | 107 | 168 4 0.96 0.39 0.55 8.5

6 | 595 | 162 12 0.98 0.79 0.87 5.3

7 | 168 | 115 4 0.98 0.59 0.74 5.4

8 | 518 | 367 | 40 0.93 0.59 0.72 8.5
Mean 0.96 0.68 0.79 6.7

Table 1. Algorithm Performance

The precision is relatively high with a value of 0.68,
indicating that only 32% of the detected EMs were not
considered by the professional scorer as EMs. The precision
value was clearly attenuated by the large number of false
positives obtained for some participants. E.g participant 5,
the algorithm detected a larger number of false positives
than true positives, however, 96% of the correct EMs were
detected.

Visual inspection of the output of the algorithm shows
to be promising. An average of 512 EM points (including
false and true positives) from one of the participants is
shown in figure 7b. Here a large negative spike in both
the EOG channels can be observed. This negative spike
is observed in previous works e.g. Abe et al. (2008Db).
After the negative spike, a positive overshoot with different
amplitudes for the two channels is present. EOG-R does
always have a higher overshoot after EM than EOG-left.
If the EMs detected by the algorithm were very imprecise,
the negative spike shown would be less sharp and with
lower amplitude. Overall, the worse the EM detection
accuracy is, the more flat the curve would appear. Figure
8a shows the algorithm EM detection when processing the
whole night data, it shows that the detection appears to
be reasonably good when compared to the REM stages



Andres Soler et al. / IFAC PapersOnLine 54-15 (2021) 257262 261

scored by a sleep expert, and 8b shows the improvement
by adding the PSD criterion to remove EMs miss-detected
due to EMG activity or during NREM stages. However,
there are windows in which the algorithm does not detect
actual EMs, especially when the EMs per window remain
below 5. It can be seen from figure 8b, that these windows
indeed are not in agreement with the sleep expert REM
scored windows.
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Fig. 7. (A) REM density (EMs in REM period / REM
period length) in the REM periods over the night.
(C) Average of EOG-R and EOG-L based on the EM
points identified by the improved algorithm, average
based on 515 EM points

To explain this matter, we use figure 5. In this figure,
the effect of EMG artifacts can be seen in the portion
of the raw EOG data, where muscle (EMG) and move-
ment artifacts result from facial activity (Boukadoum and
Ktonas (1986)). These artifacts, to affect the REM detec-
tion, might have had amplitudes higher than 30uV. The
frequency bandwidth of EMG activity is approximately
25 to 90 Hz and they are characterized by occurring in
bursts. These features were verified in the windows that
were not scored as REM by the sleep expert. The criterion
of the PSD average between 55 to 95Hz can be employed
to attenuate the influence of EMG signals on the EOG
to values higher than the EM detection thresholds. The
implementation of the PSD average has yielded the results
observed in figure 8b.

4. DISCUSSION

Besides the main purpose of automatically identifying EM
onsets during REM sleep, the algorithm developed in this
paper has been tested for other possible applications which
are discussed in the following:

4.1 Frequency of EM during REM periods

REM density measures the frequency of eye movements
during REM sleep and in healthy participants, it in-
creases over the course of the night and is highest when
sleep pressure is lowest (Aserinsky (1969, 1973)). Pre-
viously reported works associate differences in EM fre-
quency between healthy and depressive individuals (Goetz
et al. (1996)), reduced EM density in Parkinson disease
(Schroeder et al. (2016)), reduced EM density with aging
(Darchia et al. (2003)), and increased EM density during
learning (Smith et al. (2004)). In relation to these works,
access to an easy tool that obtains EM frequency dur-
ing REM sleep can prompt the use of EM frequency as
a biomarker in such studies. In this study, the plot in
fig 7a shows the changes in EM frequency across REM

periods during sleep for one of the participants. The EM
frequency has increased from period 1 to 2, decreased in
period 3, increased again in period 4 to decrease in the last
period. This inverted pattern has been reported before in
association with certain mental states (Kupfer (1978)).

4.2 Sleep stage scoring

The algorithm presented in this paper, which captures the
REM onset, can be used for detecting REM sleep periods
through the detection of the EM onsets. To achieve this,
additional information from the EMG electrodes such as
amplitude and frequency bandwidth were incorporated
into the algorithm to account for the influence of EMG
on the EOG data. This information is used to correct the
fictitious EM detections done by the algorithm in epochs
that are contaminated by EMG artifacts. With this EMG
artifact detector, accurate scoring of REM according to
the guidelines in AASM was possible. The result from
this implementation is shown in figure 8b, where the
REM scored windows are in very good agreement with
the scores done by the algorithm. The advantage of using
this algorithm for such purpose, compared to the Machine-
Learning (ML) based classifiers reported in the literature,
is the simplicity of the algorithm. The speed of detection of
REM periods is about 10 min. While it does not offer the
same speed as the machine learning based classifiers, it is
much faster than the scoring done by a sleep expert using
visual inspection.This algorithm can assist sleep experts
in performing faster sleep staging. In contrast to the ML-
based classifiers, it does not suffer from the problem of
unbalanced REM sleep data (25% of REM sleep during
the night), which affects the scoring accuracy of REM sleep
(Yamabe et al. (2019)).

5. CONCLUSION

This paper designed and developed an algorithm for au-
tomatic detection of rapid eye movements onsets during
REM sleep. The algorithm first developed a model of
REM based on parameters and thresholds previously pro-
posed on a heuristic basis and enhanced this model by
incorporating additional morphological properties of the
REM. The algorithm showed to be reasonably accurate in
detecting EM onsets when compared to the onset labeled
by a sleep expert. However, the heuristic or ”customized”
definition employed in this paper might not be sufficient
to detect EM in data sets from other laboratories. Better
characterization of REM parameters should be developed
across wider populations to allow standardization of the
detection process to enable comparative studies. Addi-
tional value of the algorithm is in its capability to extend
its use as a sleep stage classifier through the detection of
EM onsets. This proved to be feasible by the addition of an
EMG artifact detector that could suppress the influence of
EMG activity on the EOG recordings, and correctly detect
actual EMs. The algorithm has also been shown to have
practical value as an EM frequency counter, with potential
use as a biomarker in clinical studies.
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