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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We developed a geospatial method for 
modelling visual exposure to urban 
greenery. 

• Implementing the method in GRASS GIS 
ensures its wide applicability and 
flexibility. 

• High computational efficiency enables 
city-wide assessment on commodity 
hardware. 

• Viewshed parametrisation and high- 
quality data needed for high modelling 
accuracy.  
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A B S T R A C T   

Quantifying green visual exposure is necessary to assess aesthetic, social and health benefits from urban 
greenery. Viewshed analysis has been successfully used to model and map green visual exposure from human 
perspective in continuous representation and in places where street view imagery for widely-used photography- 
based methods is not available. However, current viewshed-based methods for modelling green visual exposure 
are often difficult to generalise beyond their specific application purpose, inefficient in processing large spatial 
extents and have limited use due to demands on technical knowledge. This hampers their wider use in research 
and practice. In this paper, we develop a viewshed analysis-based method for modelling visual exposure to urban 
greenery with special focus on the method’s applicability in research and practice. The method is implemented as 
a tool in GRASS GIS which makes it available as a practical and flexible tool. Extensive validation and assessment 
of the method on the specific case of urban trees confirm that the method is a highly accurate alternative to 
modelling visual exposure from street view imagery (ρ = 0.96) but that data quality and viewshed para
metrisation are essential for achieving accurate results. Thanks to parallel processing and effective imple
mentation, the method is applicable for city-wide scale analysis with high-resolution data on commodity 
hardware (here illustrated on the case of Oslo, Norway). Therewith, the method has potential application in 
many areas including strategic tree planting, scenario modelling and urban ecosystem accounting, as well as 
ecosystem service research.  
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1. Introduction 

Urban greenery has the potential to mitigate urban issues associated 
with rapid urban growth and climate change (Demuzere et al., 2014) by 
providing numerous ecosystem services (Millennium Ecosystem 
Assessment, 2003; TEEB, 2010), including temperature regulation, air 
and noise pollution mitigation, recreation opportunities and habitat for 
biodiversity (Bolund & Hunhammar, 1999; Gomez-Baggethun & Barton, 
2013). This leads to economic, social, physical and mental health ben
efits and increases the wellbeing of urban citizens (Keniger et al., 2013; 
Office for National Statistics (ONS), 2019). An important pathway in 
receiving many benefits from urban greenery is visual exposure. Green 
visual exposure contributes to psychological, cognitive and physiolog
ical wellbeing (Kaplan, 2001; Lottrup et al., 2015; Ulrich, 1984). 
Further, visible greenery has aesthetic and amenity benefits (e.g., 
Schroeder & Cannon, 1983; Thayer & Atwood, 1978), thereby 
increasing neighbourhood walkability and property prices (Ki & Lee, 
2021; Tyrväinen & Miettinen, 2000). Finally, green visual exposure 
leads to numerous social benefits, including reduced crime rates and 
increased perceived safety (e.g. Troy et al., 2012; Wolfe & Mennis, 2012; 
Mouratidis, 2019). Central to better understanding the relations be
tween green visual exposure and associated benefits and applying these 
findings in practice is the possibility to quantitatively assess green visual 
exposure. 

1.1. State of the art in quantitative assessment of green visual exposure 

The amount of green visual exposure has traditionally been assessed 
manually. For instance, to study how street greenery affects health, De 
Vries et al. (2013) quantified visible greenery by direct observation in 
the field, while in the studies of Hazer et al. (2018) and Lottrup et al. 
(2015), the amount of visible greenery was self-reported by the study 
participants. Such manual approaches have been discussed as labour 
intensive and thus inefficient in large-scale field assessments and prone 
to human errors and bias due to observer subjectivity (Helbich et al., 
2019). This hampers applying these approaches in e.g. dynamic green 
visual exposure assessment across space and time (Helbich, 2018) or 
urban planning applications. 

In recent years, automatic methods for quantitative assessment of 
green visual exposure have been developed, focusing mainly on 
assessment from photographs and geospatial modelling. To our best 
knowledge, Aoki et al. (1985) were the first to measure the proportion of 
vegetation pixels in street photographs obtained from a human 
perspective and finding that it is an efficient measure of how much 
urban greenery people observe from a fixed observation point. The 
method has later been referred to as a Green View index (Yang et al., 
2009) and gained attention and has been technically further developed 
thanks to the increased availability of street view images from databases 
of Google, Tencent or Baidu that minimise the need for manual 
photography (Helbich et al., 2019; Larkin & Hystad, 2019; W. Wang 
et al., 2019). However, the dependency on street images hinders 
applying the method in places and regions where street view imagery is 
not yet available (Rzotkiewicz et al., 2018) or where it usually is not 
obtained, such as backyards (Villeneuve et al., 2018). Because the green 
view index values are only available at photography points, the method 
is not suitable for purposes where continuous representation of green 
visual exposure is desired. Moreover, although the type of greenery af
fects the benefits obtained (Reid et al., 2017), photography-based 
methods usually do not enable such differentiation (Sun et al., 2021). 

An alternative method that addresses many shortcomings of the 
photography-based methods is geospatial modelling of green visual 
exposure. It is not dependent on the availability of street view imagery 
and scales easily to large spatial extents. Raster-based geospatial ana
lyses enable continuous representation of green visual exposure and can 
be used to analyse various types of urban greenery e.g., available from 
landcover maps provided by remote sensing (Yan et al., 2018). 

Numerous studies modelled green visual exposure with geospatial 
analysis as green coverage within properties, within specific radii from 
residence place or within census tracts (e.g., Troy et al., 2012; Ward 
Thompson et al., 2016; Wolfe & Mennis, 2012). Unlike photography- 
based methods, such aerial-perspective approaches however often fail 
to capture the amount of urban greenery visible from the perspective of 
people at ground level. The correlation between the amount of urban 
greenery observed from human versus aerial perspective is likely low 
(Helbich et al., 2019; Larkin & Hystad, 2019) or insignificant (R. Wang 
et al., 2019), and these two measures might capture different aspects of 
urban greenness (Falfán et al., 2018; Villeneuve et al., 2018). 

A potentially powerful tool to reflect human visual perspective in 
geospatial modelling is viewshed analysis, which delineates the area 
visible from a given observation point, taking into account the sur
rounding terrain features (Petrasova et al., 2015). However, in green 
visual exposure modelling, viewshed analysis has been used sparsely (e. 
g., Łaszkiewicz & Sikorska, 2020; Nutsford, Pearson, Kingham, & 
Reitsma, 2016; W. Wang et al., 2019), and the potential for modelling 
green visual exposure in continuous representation remained largely 
unused, likely due to high computational workloads and dependency on 
high-resolution spatial data (Qiang et al., 2019; Tabrizian et al., 2020). 
Only recently have first studies begun experimenting with viewshed 
analysis to model green visual exposure in continuous representations 
and large-scale study areas. For example, Tabrizian et al. (2020) ana
lysed the visibility of various vegetation classes from 39,321 viewpoints 
regularly displaced in a grid, and Labib et al. (2021) used viewshed 
analysis to assess visibility of greenery at all 86 million pixels of a 
region-wide raster map. The latter approach has recently been made 
available as an R-package (Brinkmann & Labib, 2021). These studies 
showed that geospatial modelling with viewshed analysis can success
fully be used to model green visual exposure from human perspective, in 
continuous representation, in large spatial extents and at places where 
street view imagery is unavailable. 

However, several challenges hinder wider applicability of these 
novel methods. First, the method settings (e.g., exposure range) have 
often been fixed for specific application purposes, which hampers their 
generalisation outside the original scope. In addition, the sensitivity of 
modelling accuracy to those settings has not been systematically studied 
(Labib et al., 2021), and current methods do not offer the flexibility to 
conduct such assessment. Second, the methods are often provided as 
scripts, and their usage requires a higher degree of technical knowledge, 
which limits their practical applicability. Third, analysing large spatial 
extents, such as entire cities, in large detail can take significant amount 
of time, even when using high-performance computing systems which 
are not commonly available to practitioners and require significant 
technical skills (Labib et al., 2021). 

1.2. Paper objectives 

Our aim in this paper is to build on the work of Labib et al. (2021) 
and Tabrizian et al. (2020) and develop a viewshed-based method for 
modelling visual exposure to urban greenery with special focus on the 
method’s general applicability in research and practice. In particular, 
the method should be (i) integrated as a tool in open-source geograph
ical information system (GIS) to lower the threshold for usage and to 
increase the method’s flexibility, thus enabling adjusting the method to 
different application purposes and simplifying empirical assessment of 
the method’s settings in relation its performance, (ii) empirically 
assessed against ground-truth to demonstrate how the settings influence 
the method’s performance in terms of accuracy and processing time, 
which also provides guidelines for application of the method in praxis 
and (iii) computationally efficient so that large spatial extents and high- 
resolution datasets can be analysed on commodity hardware. 

The method is assessed on the specific case of urban trees but can be 
applied similarly to analyse visual exposure to other types of urban 
greenery. Urban trees are used for three reasons. First, trees are an urban 
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asset often managed and valued separately from other greenery (Nowak, 
2017). Second, the benefits obtained by visual exposure to trees might 
be different from those of other types of urban greenery (Reid et al., 
2017). Finally, trees significantly impact green visual exposure due to 
their vertical dimension and are thus an effective way of creating green 
views in urban areas where space is often limited (Yang et al., 2009). 

2. Methods 

2.1. Background of visibility modelling in geospatial analysis 

The method for modelling visual exposure to urban greenery is based 
on viewshed analysis, a geospatial analysis method applied to a digital 
surface or terrain model that delineates the area (viewshed) visible from 
a given pixel (observation point) by determining whether the view be
tween the observation point and all other pixels (target points) within a 
given radius is obstructed. The analysis returns a map where visible and 
non-visible pixels are usually coded as 1 and 0, respectively (Petrasova 
et al., 2015). 

Research suggests that a binary viewshed representation – with 
visible and non-visible pixels – does not accurately reflect visibility from 
human perspective because it fails to account for the variable visual 
significance of the observable objects from the observer’s point of view 
(Chamberlain and Meitner, 2013; Ervin and Steinitz, 2003; Nutsford 
et al., 2015; Ogburn, 2006). The visual significance is affected by the 
properties of the observed objects (e.g. size, contrast between the object 
and surroundings), observer’s characteristics (e.g. visual acuity and 
resolving capacity of human eye), the environment between the 
observed objects and the observer (e.g. light and atmospheric condi
tions) and their relative spatial configuration (e.g. distance, slope and 
aspect) (Domingo-Santos, 2017; Groß, 1991; Ogburn, 2006). 

Therefore, various viewshed parametrisation functions have been 
developed, where focus was put mainly on accounting for the effect of 
spatial configuration between the observed objects and the observer (e. 
g. Chamberlain and Meitner, 2013; Domingo-Santos et al., 2011; Grêt- 
Regamey et al., 2007; Nutsford et al., 2015). These functions build on 
the concepts of solid angle (Groß, 1991), visual magnitude (Iverson, 
1985; Travis et al., 1975) and vertical visual angles (Llobera, 2003). 
Visual magnitude and vertical visual angle quantify the portion of the 
observer’s field of view occupied by the observed object, depending on 
its slope, aspect and distance relative to the observer. Solid angle is a 
direct measure (in steradians) of the surface area of the observer’s eye 
retina covered by the projection of the observed object. Another 
approach is fuzzy viewshed analysis which simulates the decreasing 
clarity of the observed objects with increasing distance from the 
observer due to atmospheric and lighting conditions (Fisher, 1994; 
Ogburn, 2006). 

In this paper, we implement the visual magnitude algorithm of 
Chamberlain and Meitner (2013) and the solid angle algorithm of 
Domingo-Santos et al. (2011). We further implement a simple expo
nential distance decay function used in the visual magnitude algorithms 
of Chamberlain and Meitner (2013) and Grêt-Regamey et al. (2007) to 
see whether the sole effect of distance (i.e. omitting slope and aspect) 
can adequately capture the visual impact of greenery. We do not 
implement the fuzzy viewshed function because atmospheric extinction 
is likely a minor issue for green visual exposure in urban areas. The 
individual viewshed parametrisation functions are described in the 
Supplementary Material. 

Of specific relevance for modelling visual exposure is analysing the 
composition of the viewshed, i.e. the portion of viewshed made up by 
the studied exposure source, here urban greenery. This analysis, also 
referred to as viewscape analysis (Tabrizian et al., 2020), has been used 
previously in landscape aesthetics assessment (Grêt-Regamey et al., 
2007), hedonic pricing studies (Bishop et al., 2004) or to study how view 
characteristics affect mental health (Nutsford et al., 2016; Tabrizian 
et al., 2020). To achieve an area-wide, continuous representation of 

visual exposure, the analysis of viewshed composition is usually calcu
lated for all possible observation points (pixels) that make up the study 
area (Labib et al., 2021; Tabrizian et al., 2020). However, such a pro
cedure is computationally intensive, especially if the spatial extent or 
resolution of the analysed area is large. If the number of possible 
observation points is larger than the number of pixels representing the 
exposure source, the computational efficiency can be increased by 
reversing the perspective and taking the observation points as targets 
and the exposure source pixels as observers, assuming their mutual 
visibility. Viewsheds calculated from the exposure source pixels repre
sent the areas visually exposed to that pixel. Such an approach is often 
used in visual impact assessment (e.g. Minelli et al., 2014; Ogburn, 
2006). Adding up the individual viewsheds then results in a continuous 
representation of visual exposure, referred to as a cumulative viewshed 
(Wheatley, 1995). Such modelling approach also seems suitable for the 
method developed in this paper, as in urban areas, the number of 
possible observation points is often larger than the number of green 
pixels. In addition, we hypothesise that computing visual exposure from 
a random sample of all exposure source pixels can yield adequate ac
curacy while decreasing processing times significantly, especially when 
analysing large-extent, high-resolution datasets. 

2.2. Method development 

2.2.1. Processing workflow 
Input spatial datasets to the developed method are (i) a raster map of 

urban greenery and (ii) a high-resolution digital surface model (DSM). A 
DSM is a continuous representation of surface heights, including built 
and natural structures such as trees. Importantly, a DSM is a 2.5D rep
resentation of space, i.e. all surface locations have single elevation in
formation. The processing workflow of the method consists of four steps 
(Fig. 1). First, the input map of urban greenery is randomly sampled by 
vector points in specified sampling density. The second and third step 
are executed iteratively for each sampling point. In the second step, a 
binary viewshed is generated from the sampling point. The point height 
above the DSM is 0 m (i.e. the viewshed is generated from surface of the 
greenery). The user can control the height of the observer on the ground 
and viewshed radius (i.e. range of visual exposure). In the third step, the 
binary viewshed can be parametrised by one of the three implemented 
viewshed parametrisation functions (solid angle, visual magnitude, 
distance decay). Finally, visual exposure values from viewsheds gener
ated from all sampling points are added, resulting in a continuous raster 
map of visual exposure to urban greenery. 

2.2.2. Method implementation 
The method was implemented as a tool (“AddOn”) called r.viewshed. 

exposure to the Geographic Resources Analysis Support System (GRASS) 
GIS, which is a cross-platform multi-purpose GIS software offering more 
than 300 analytical tools and a growing number of AddOns that extend 
the core functionality. The source code of GRASS GIS is available under 
the GNU General Public License (Neteler et al., 2012). GRASS GIS offers 
the underlying functionality that makes it a suitable platform for 
implementing the method developed in this paper, namely an efficient 
tool for viewshed analysis r.viewshed (Toma et al., 2020) and a 
comprehensive Python API, including integration with NumPy. 

We wrote the algorithm of r.viewshed.exposure with computational 
efficiency in mind. For example, many operations of the algorithm are 
conducted in memory, reducing the time needed for writing and reading 
operations. Computational efficiency was further increased by paral
lelizing the iterative operations. To enable wide usage of r.viewshed. 
exposure in practical applications, sampling density, observer height, 
visual exposure range and viewshed parametrisation function were 
implemented as user-specified settings. 
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2.3. Method assessment 

The method was assessed on the specific case of urban trees from two 
perspectives. First, we assessed the method against ground-truth data to 
see how the method’s accuracy and processing time vary in response to 
the method’s settings. Second, we assessed the computational efficiency 
of the method in a city-wide application with high-resolution data. 

2.3.1. The effect of variation in the method’s settings 
The method was assessed by comparing values of visual exposure to 

urban trees modelled with r.viewshed.exposure against percentage of tree 
canopy manually delineated in full view (360◦ × 180◦) panoramas ob
tained at 94 validation points, randomly distributed in sampling areas 
stratified across 11 urban form types of Oslo, Norway. Measuring the 
percentage of greenery in photographs is a common method to assess the 
amount of greenery observed from a human perspective (Yang et al., 
2009). Each validation point was associated with accurate geographic 
coordinates to extract the modelled values of visual exposure and obtain 
the validation photographs at the same location. A detailed description 
of the process of obtaining validation data is provided in the Supple
mentary Material. 

The settings of r.viewshed.exposure (viewshed parametrisation func
tion, exposure range, sampling density, input data quality) were 

systematically tested in three steps (Table 1). In the first step, accuracy 
and processing time were recorded for all possible combinations of 
viewshed parametrisation functions and exposure ranges between 50 m 
and 300 m with 50 m steps. This was done to determine the method’s 
highest possible accuracy and see how these settings affect the trade-off 
between accuracy and processing time. Exposure ranges larger than 300 
m were not tested due to increased processing time and observable 
saturation with regards to accuracy. Sampling density was 100%. The 
input exposure source map was a tree canopy dataset in 1 m resolution 
obtained by laser scanning in 2017 (Hanssen et al., 2021). This is the 
most precise spatial representation of tree canopy currently available for 
the built-up area of Oslo. However, due to low accuracy at individual 
tree level, we manually corrected the dataset around the validation 
points using an updated orthophoto. 

In the second step, we varied sampling density between 0.1%, 1%, 
5%, 10%, 25%, 50% and 100% and observed its effect on the accuracy/ 
processing time trade-off. We used the combination of viewshed para
metrisation function and exposure range identified in the first step as a 
good trade-off between accuracy and processing time. For sampling 
densities lower than 100%, the modelling was repeated 50 times to 
account for randomness in sampling point distribution and provide a 
more robust accuracy estimate. The average accuracy and standard 
deviation across the 50 repeats were reported. 

Fig. 1. Processing workflow of the developed method for modelling green visual exposure. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 1 
Settings of r.viewshed.exposure used in method assessment.   

Viewshed parametrisation Exposure range Sampling density Tree canopy map 
resolution 

DSM 
resolution 

Step 1: Test of viewshed 
parametrisation & exposure range 

None; Distance decay; Visual 
magnitude; Solid angle 

50 m; 100 m; 150 m; 200 m; 
250 m; 300 m 

100% 1 m 1 m 

Step 2: Test of sampling density Determined by step 1 Determined by step 1 0.1%; 1%; 5%; 10%; 
25%; 50%; 100% 

1 m 1 m 

Step 3: Test of input data quality Determined by step 1 Determined by step 1 100% 10 m 1 m  
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Finally, in the third step, we run r.viewshed.exposure with a 10 m tree 
canopy map derived from Sentinel-1 and Sentinel-2 imagery (Venter and 
Sydenham, 2021) to assess how input data resolution affects accuracy. 
Sampling density was set to 100%, and except for the tree canopy map, 
the same settings as in the previous steps were used. 

In all three steps, the input surface model was a 1 m DSM obtained by 
laser scanning (Norwegian mapping authority, 2019) and exposure 
receiver height was 150 cm, consistently with the shooting height of 
validation panoramas. r.viewshed.exposure was run on 25 cores of an HPE 
ProLiant DL360 Gen10 server with two Intel(R) Xeon(R) Gold 6134 CPU 
@ 3.20 GHz Central Processing Units, 256 GB Random Access Memory 
and three 960 GB Solid State Storage Devices with 6Gbps bandwidth and 
ext4 file system running Ubuntu 18.04.5 LTS. Accuracy was assessed by 
Spearman correlation coefficient (ρ) between the percentage of tree 
canopy pixels in the validation panoramas and values extracted from the 
maps modelled with r.viewshed.exposure. Processing time was measured 
as a per-point elapsed time, i.e. the average elapsed time of running r. 
viewshed.exposure within the specified exposure range of one validation 
point, where the grid size to process in number of pixels is the square of 
exposure range. 

2.3.2. City-wide application 
To assess the method’s computational efficiency in a practical city- 

wide application with high-resolution data, we ran r.viewshed.exposure 
for the entire study area of Oslo. We used the same input data (1 m tree 
canopy map and DSM) and server as in the first assessment phase. The 
total extent of the study area was 19603 × 18486 pixels, covering 152 
km2, i.e. 152 million non-null pixels, out of which 49.5 million pixels 
was tree canopy. For viewshed parametrisation function, exposure range 
and sampling density, we used the combination identified as a good 
trade-off between accuracy and processing time in the first assessment 
phase. 

3. Results 

3.1. r.viewshed.exposure 

The developed tool r.viewshed.exposure (Fig. 2) is available through 
the GRASS GIS Addons repository. The default values of viewshed par
ametrisation function, exposure range and sampling density are set to 
the combination identified as a good trade-off between accuracy and 
processing time in the method assessment. Fig. 3 provides examples of 
maps of visual exposure to urban trees calculated with the tool using the 
different viewshed parametrisation options, 200 m exposure range and 
100% sampling density. While all three viewshed parametrisation 
functions lead to visually similar output, the map created without 
viewshed parametrisation is significantly different. The range of nu
merical values of visual exposure depends on viewshed parametrisation, 
exposure range, sampling density and spatial resolution of the analysis. 
We include detailed information about theoretical value ranges of the 
individual functions in the Supplementary Material. 

3.2. Method assessment 

3.2.1. The effect of variation in the method’s settings 
The highest Spearman correlation coefficient between values of vi

sual exposure to urban trees modelled with r.viewshed.exposure and the 
percentage of tree canopy in validation panoramas is 0.96 (solid angle 
function, 200 m exposure range, 100% sampling density). This means 
that the developed method captures visual exposure to urban trees 
almost as accurately as street view photographs. In Fig. 4, the modelled 
values are plotted against the tree canopy percentage. At visual in
spection, the relationship is clearly monotonic. The scatter plot also 
identifies cases where the modelled values considerably under- and 
over-estimate the tree canopy percentage (points O1 and O2). In these 
outlying validation points, tree canopy percentage was measured in 
photographs taken from under the tree canopy, while visual exposure 
was modelled on the surface of the tree canopy due to the 2.5D character 

Fig. 2. Graphical user interface of r.viewshed.exposure in GRASS GIS.  
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of the DSM. Fig. 4 further illustrates the range of modelled visual 
exposure values across the validation points, along with output maps 
and validation panoramas. 

Fig. 5A illustrates that the accuracy differs little between viewshed 
parametrisation functions (ρ = 0.94–0.96) while omitting viewshed 
parametrisation leads to significantly lower accuracy (ρ = 0.50–0.79). 
This underpins the importance of viewshed parametrisation when 
modelling visual exposure to urban trees. Solid angle and visual 
magnitude functions increase processing time roughly 1.6x compared to 
no parametrisation and distance decay function (Fig. 5A). Considering 
that both former functions do not significantly improve accuracy, the 
simpler distance decay function can be a good choice for many 
applications. 

Fig. 5A further shows that exposure range has minimal effect on 
accuracy if viewsheds are parametrised (ρ = 0.94–0.96), although 50 m 
exposure range has slightly lower accuracy in all three parametrisation 
functions. Yet, without viewshed parametrisation, accuracy clearly de
creases with increasing exposure range. This is likely caused by the 
disproportional increase in visual exposure due to increasing number of 
visible pixels at longer exposure ranges. The relationship between 
exposure range and per-point elapsed time follows a power function 
across all viewshed parametrisation options. Therefore, lower exposure 
ranges can be a good choice for reliable and efficient modelling of visual 
exposure to urban trees from human perspective. Considering the 
abovementioned findings, we used distance decay function and 100 m 
exposure range to assess the effect of sampling density and input data 
accuracy. 

Fig. 5B shows that low sampling density (0.1%, 1%) leads to low 
accuracy with high uncertainty due to the randomness in sampling point 
distribution (ρ = 0.42 + -0.079 and 0.72 + -0.051, respectively). 
However, with sampling density 25% and higher, accuracy is compa
rable to 100% sampling density and the uncertainty is low (ρ = 0.94 +
-0.009). Processing time increases exponentially with increasing 

sampling density and e.g. with 25% sampling density, the processing 
time is nearly four times shorter compared to 100% sampling density. 

Using a low-resolution tree canopy map, the accuracy dropped 
considerably (ρ = 0.53). This indicates that input data quality impacts 
the result accuracy even more than viewshed parametrisation and 
exposure range (except for extreme settings without viewshed 
parametrisation). 

3.2.2. Visual exposure to urban trees in Oslo 
The result of running r.viewshed.exposure for the extent of Oslo with 

distance decay parametrisation function, 100 m exposure range and 
25% sampling density is illustrated in Fig. 6 and also provided as an 
interactive map at http://urban.nina.no/maps/400/view. The total 
elapsed time was 133.8 h. 

4. Discussion 

In this paper, we built upon the work by Labib et al. (2021) and 
Tabrizian et al. (2020) and developed a viewshed-based method for 
modelling visual exposure to urban greenery. The method supports the 
potential of geospatial modelling to address shortcomings of 
photography-based methods for quantifying visual exposure to urban 
greenery (Helbich et al., 2019; Larkin & Hystad, 2019; W. Wang et al., 
2019; Yang, Zhao, McBride, & Gong, 2009). In particular, the method 
developed here can model visual exposure to various types of urban 
greenery (here illustrated on the case of urban trees), which usually is 
not possible with photography-based methods (Sun et al., 2021). In 
addition, the method enables modelling green visual exposure in 
continuous representation and in places and regions where street view 
imagery is not available (Rzotkiewicz et al., 2018; Villeneuve et al., 
2018). 

The method has been developed with particular focus on its usability 
in research and practical applications. It was implemented as a GIS tool 

Fig. 3. Visual exposure to urban trees modelled with r.viewshed.exposure (200 m exposure range, 100% sampling density). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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to lower the threshold for usage and with several user-specified settings 
to increase its flexibility, which is especially valuable for research. At the 
same time, the method was extensively assessed on the case of urban 
trees, which makes its applicability in practice easier. Furthermore, the 
general usability of the method is ensured by its high computational 
efficiency. In the following, we discuss this in more detail. 

4.1. Method implementation in GRASS GIS 

The method was implemented as a tool called r.viewshed.exposure in 
GRASS GIS. This lowers the technical demands on the users and enables 
direct integration of the method in the users’ GIS workflows. Further
more, user-specified settings like viewshed parametrisation function, 
exposure range, sampling density and observer height increase the 
method’s flexibility and thereby enable adjusting it to specific needs of 
various application purposes. This flexibility also facilitates systematic 
validation and assessment of the method in various contexts and thus 
contributes to building knowledge about the visual effects of urban 

greenery. The integration of the method in open-source GIS ensures that 
the method can be improved beyond the current state, for instance by 
implementing new viewshed parametrisation functions. 

4.2. Method assessment 

The method was empirically assessed to see how its settings influence 
the performance in terms of accuracy and processing time. The findings 
provide important insight for application purposes where a minor ac
curacy loss might be acceptable in return for shorter processing time – 
for instance for planning purposes on city scale, where the processing 
extent is often large but computational resources may be limited. 
Furthermore, the findings about individual settings provide information 
about the “default values” to use in practical applications. 

The assessment showed that the values of visual exposure to urban 
trees modelled with the developed method are highly correlated to tree 
canopy percentage in street view panoramas. Thus, the developed 
method is a reliable alternative for quantifying visual exposure to urban 

Fig. 4. Values of visual exposure to urban trees modelled with r.viewshed.exposure at validation points (solid angle function, 200 m exposure range), plotted against 
tree canopy percentage, and value range of modelling results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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trees. With a Spearman correlation coefficient of up to 0.96, the degree 
of correlation is significantly higher than the correlation reported for the 
method by Labib et al. (2021) (Pearson correlation coefficient 0.481). 
Apart from potential differences in viewshed computation and different 
correlation measures used, the lower correlation in Labib et al. (2021) 
may be attributed to different studied greenery types (all greenery vs 
only trees), lower input data resolution and different viewshed 

parametrisation function. The assessment further confirmed that the 
method is not suitable for modelling visual exposure under tree can
opies. This is due to the 2.5D character of the DSM, where all surface 
locations have single elevation information. In turn, visual exposure 
values at tree locations represent the amount of tree canopy visible from 
the surface of the trees, not from under them. For the same technical 
reason, the method cannot model green visual exposure from vertical 
surfaces (e.g., from building facades to assess the exposure of building 
occupants). In further development, the method could therefore be 
adjusted to operate with 3D models (Bishop, 2003) or to minimise the 
effect of trees on view obstruction (Murgoitio et al., 2013). 

In line with previous studies (Domingo-Santos, 2017; Groß, 1991; 
Ogburn, 2006), the assessment further underpinned the importance of 
parametrising the binary viewshed to better reflect visual significance of 
observed objects. All three parametrisation functions implemented in r. 
viewshed.exposure significantly improved the method’s accuracy. 
Compared to the distance decay parametrisation function used in Labib 
et al. (2021), the functions in r.viewshed.exposure have significantly 
steeper slope. Given the high accuracy, we hypothesise that such steeper 
functions are more suitable for modelling visual exposure in urban areas. 
Further, we hypothesise that visual exposure to urban trees is mainly 
influenced by the distance between the observer and the observed object 
because including their relative slope and aspect did not significantly 
increase the accuracy. Larger exposure ranges did not increase accuracy 
but considerably increased processing time. Therefore, relatively short 
exposure ranges (100 m) might be sufficient for accurate and fast green 
visual exposure modelling in urban settings, where surrounding struc
tures often limit visibility at relatively low distances. This is in accor
dance with studies of Łaszkiewicz and Sikorska (2020), R. Wang et al. 
(2019) and W. Wang et al. (2019). On the other hand, longer ranges are 
often used in regional or landscape scales (Brabyn, 2015; Fisher, 1994). 
In general, further research is needed to systematically check how the 
shape of viewshed parametrisation functions and exposure ranges affect 
the results. 

Finally, the assessment underpinned the need for using high- 
resolution high-quality input spatial data because these influence the 

Fig. 5. (A) Effect of exposure range and viewshed parametrisation on method performance (100% sampling density). 0, D, S and V refer to no parametrisation, 
distance decay function, solid angle function and visual magnitude function, respectively. (B) Effect of sampling density on method performance (distance decay 
function, 100 m exposure range). X-axis is logarithmically scaled. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 6. Visual exposure to urban trees in Oslo (distance decay function, 100 m 
exposure range, 25% sampling density). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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underlying viewshed analysis (Ervin and Steinitz, 2003). The visibility 
of greenery in urban areas is often affected by relatively small details in 
the physical urban structure, which are only represented in high- 
resolution surface models (e.g., individual trees, walls). The availabil
ity of high-quality input data might limit the application of the method, 
however, access to such data from laser scanning or Unmanned Aerial 
Vehicles increases due to technical development. 

Photography-based methods to quantify green visual exposure 
(Helbich et al., 2019; W. Wang et al., 2019; Yang et al., 2009), here used 
to validate and assess the developed method, are based on the 
assumption that the amount of greenery measured from photographs 
reflects the amount of greenery observed by people. However, re
searchers disagree on the extent to which photographs really capture 
what people see (compare e.g., Aoki et al. (1985) and Falfán et al. 
(2018)), for instance due to observer characteristics (Falfán et al., 2018) 
or photograph distortion due to lens settings and panorama projections 
(Aoki et al., 1985; Zelnik-Manor et al., 2005). The values of visual 
exposure to urban greenery measured from photographs or modelled by 
r.viewshed.exposure, therefore, represent a measure of potentially visible 
greenery from human perspective (Falfán et al., 2018). An important 
next step would be to assess the correspondence between these objective 
modelled/measured values and subjective, self-reported perceived 
green visual exposure. Moreover, research suggests that quality of 
greenery also determines the benefits obtained (Reid et al., 2017). 
Therefore, the method could be further extended to enable weighting 
the individual viewsheds by quality of greenery, if such data are avail
able for instance from remote sensing (Yan et al., 2018). 

The findings regarding accuracy, viewshed parametrisation func
tions and exposure ranges are based on an assessment conducted across 
different urban form types in Oslo. However, the suitability of different 
combinations of the method’s settings might vary with urban form 
types. For instance, while a short exposure range might provide suffi
cient accuracy in a dense urban centre, longer exposure ranges might 
perform better in low-density suburbs. This might be important infor
mation to consider in application purposes targeted at specific urban 
form type. Caution should also be paid when generalising the findings to 
study areas with significantly different urban morphology than Oslo. An 
important next step would therefore be to systematically assess the 
sensitivity of the method’s setting to different urban form types and 
explore the method’s performance in other study areas. 

Similarly, caution needs to be paid when generalising the findings to 
other types of greenery than urban trees. Urban trees have a specific 
visual impact due to their vertical dimension, while other types of urban 
greenery (e.g. grass, low shrubs) are mostly horizontal, and their visual 
impact might be different. Future studies could therefore assess the 
developed method on other types of urban greenery. 

Future work should also focus on clarifying the range of numerical 
values of green visual exposure resulting from the modelling. The range 
can vary significantly, depending on viewshed parametrisation function, 
exposure range, sampling density and resolution of the underlying 
spatial data. This also hinders further interpretation of the numerical 
values. Previous studies expressed the modelled green visual exposure 
values as a proportion of total viewshed comprising urban greenery 
(Labib et al., 2021; Łaszkiewicz & Sikorska, 2020), which is easy to 
interpret, or as absolute values (Domingo-Santos et al., 2011; Nutsford 
et al., 2015), as in this study, where interpretation is more challenging. 

4.3. Computational efficiency 

The method can be efficiently run on a personal computer or server, 
which is especially beneficial in daily planning practice and small-scale 
studies. Its ability to efficiently process large spatial extents at fine detail 
is likewise advantageous in large-scale studies. Compared to the method 
of Labib et al. (2021), r.viewshed.exposure is significantly faster. Direct 
comparison to the performance of the method by Labib et al. (2021) is 
not possible due to different hardware and input data used. The city- 

wide applications however give some general hints. The amount of 
data processed for Oslo is roughly twice the amount in Labib et al. 
(2021) (152 and 86 million pixels, respectively), while processing time 
is less than half (5.6 and 11.5 days, respectively). As a rough estimate, 
assuming that the computer used in this study computes at the same 
speed as reported by Labib et al. (2021) (0.8 s per viewshed), processing 
time for their method applied to the Oslo dataset would have been 
~1680 h (or 70 days). Several factors contribute to computational ef
ficiency of r.viewshed.exposure. First, the processing workflow reduces 
the number of viewshed operations by only processing green pixels. 
Areas with little greenery are therefore processed faster than equally 
large areas with high green coverage. Second, the assessment showed 
that computational time can be significantly reduced by decreasing 
exposure range and sampling density of the input map, with limited 
effect on the accuracy. Finally, the method is implemented using 
effective in-memory operations and process parallelisation. For very 
large rasters, memory consumption might become a bottleneck, but this 
can be addressed by processing data in chunks (tiled processing). GRASS 
GIS offers off-the-shelf solutions for that if necessary. 

4.4. Relevance for urban planning and research applications 

The method developed in this paper is relevant for numerous urban 
planning and policy applications. First, urban foresters can use the green 
visual exposure map for awareness-raising amongst the public. Second, 
the method provides useful input into urban ecosystem accounting, as it 
enables documenting and reporting on the temporal changes of green 
visual exposure, for example following tree planting programs. The re
sults of green visual exposure modelling can also be aggregated and used 
in comparisons of neighborhoods or cities. Third, in strategic tree 
planting, the visual exposure maps can be used to identify areas with low 
green exposure, i.e. possible locations where tree planting will have the 
greatest effect in terms of increasing green visual exposure. Strategic 
tree planting is especially important in the light of ongoing densifica
tion, where space for establishing large green areas is often limited and 
where planting single trees can represent an efficient way of increasing 
the overall green views. Fourth, by manipulating the input data, the 
method is applicable in scenario modelling and impact assessment. 
Manipulating the input tree canopy map (adding or removing trees) 
enables planners to compare different tree planting or felling scenarios 
and select those which result in the largest increase or smallest decrease 
in green visual exposure, respectively. Manipulating the input DSM on 
the other hand facilitates assessing the effect of planned construction 
projects on green visual exposure in the surroundings. Finally, thanks to 
the method’s flexibility, application in areas beyond the scope of urban 
planning is also possible, for instance in landscape aesthetic and archi
tectural studies (e.g. modelling exposure to landmarks or buildings) 
(Dramstad et al., 2006) or in visual impact assessment (e.g. modelling 
the visual impact of quarries or power plants). 

The method developed in this paper further has the potential to 
further advance our knowledge on the relationship between green visual 
exposure and obtained benefits by providing reliable estimates of the 
amount of green visual exposure from human perspective. The contin
uous representation of the result can be combined e.g. with information 
on people’s daily movements in exposure studies to gain a more in-depth 
and detailed insight into green exposure of individual participants. In 
environmental psychology studies, the method can easily be adjusted to 
reflect e.g., studied exposure range or dose–response curves. Further, the 
method complements research on olfactory and auditive sensory map
ping (McLean, 2019). 

5. Conclusion 

The method developed in this paper underpins findings of earlier 
studies showing that geospatial modelling with viewshed analysis can be 
a reliable and highly accurate means of quantifying visual exposure to 
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urban greenery from human perspective. For the specific case of urban 
trees, the method achieves increased accuracy compared to previous 
studies. Systematic assessment of the method’s settings based on vali
dation data shows that it is essential for the accuracy of the results to 
parametrise the viewshed analysis according to the variable visual sig
nificance of observed greenery. It also identifies reasonable default 
settings and illustrates how those influence the trade-off between ac
curacy and processing time, providing important insight for application 
purposes where a minor accuracy loss might be acceptable in return for 
shorter processing time. Furthermore, the implementation of the 
method significantly improves its computational performance to a de
gree that makes it usable at city-wide scale with high-resolution data on 
commodity hardware. The tool developed in this study represents a 
major technical step forward as it makes the method available as a 
practical and flexible tool for a broad range of research and practical 
applications. While developing the method and the tool, an R-package 
with a similar functionality has been made available, which further 
underpins the relevance of the method (Brinkmann & Labib, 2021). 
Therewith, the method contributes to the emerging number of quanti
tative methods that enable easier modelling of cultural ecosystem ser
vices that otherwise often are challenging to include in ecosystem 
accounting or landscape management. 
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