
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Mads Adrian Simonsen

Approximate Filtering Approaches
for Switching
Linear Dynamical Systems

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jo Eidsvik
June 2022

M
as

te
r’s

 th
es

is

Mads Adrian Simonsen

Approximate Filtering Approaches for
Switching
Linear Dynamical Systems

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jo Eidsvik
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Preface

This thesis concludes my Master of Science degree in Industrial mathematics at the
Norwegian University of Science and Technology (NTNU). First of all, I would like to
thank my supervisor Jo Eidsvik for support and guidance, and in limiting the scope
of the work. Secondly, I would like to thank Ariel Sk̊ar, for all her love and support
throughout the years. I would also thank my friend Rasmus Erlemann for insipring me
to specialize in statistics. Finally, I am grateful for all the interesting discussions with
my brother Une André Simonsen regarding the topic of this thesis.

Mads Adrian Simonsen
Trondheim, June 2022

i

ii

Abstract

The state-observation model is a dynamic Bayesian network (DBN) that contains two
set of variables that evolves over time; a hidden set of variables, and an observed set
of variables. The most common state-observation models are the hidden Markov model
(HMM) and the linear dynamical system (LDS) where the well known Kalman filter is
used for inference. Switching linear dynamical system (SLDS) models are an extension
of LDSs, that contain both discrete and continuous hidden variables, whereas the obser-
vation variable is continuous. The main idea behind SLDSs is that we can break down
complex dynamical behavior into more comprehensible pieces. For instance, we can
categorize the motions of an aircraft into the states climbing, descending and maneuver.

The problem with SLDS is that due to the DBN containing both discrete and con-
tinuous variables, when we compute the posterior probabilities conditioned on the ob-
servations, a process called filtering, we end up with a Gaussian mixture which increases
exponentially at each time step. Therefore we must look for alternative approximate
filtering approaches.

In this thesis we develop the statistical framework for SLDSs and DBNs generally,
where the main focus is filtering. We then compare approximate filtering approaches
where the deterministic approaches solves the problem by constraining the size of the
mixture while preserving the first two moments, (mean and variance), and the stochastic
approach solves the problem by particle filtering. Finally we show an application of the
SLDS, where the goal is to detect when we are walking, and when we are on the bus
given GPS (Global Positioning System) data.

iii

iv

Sammendrag

State-observation model er et dynamisk Bayesiansk nettverk (DBN) som inneholder to
mengder stokastiske variabler som utvikler seg over tid; en skjult mengde og en ob-
servert mengde. De mest kjente “state-observation” modellene er hidden Markov model
(HMM) og lineære dynamiske system (LDS), hvor den velkjente Kalmanfilter-metoden
er brukt for statistisk inferens. Switching linear dynamical system (SLDS) modeller er
en utvidelse av LDSer, som inneholder b̊ade diskrete og kontinuerlige skjulte variabler,
og hvor den observerte variabelen er kontinuerlig. Hovedidéen bak SLDSer er at vi kan
bryte ned kompleks dynamisk atferd i mer forst̊aelige stykker som vi kan kategorisere,
f.eks. s̊a kan vi kategorisere bevegelsene til et fly inn følgende tilstander: letter, senker
og svinger.

Problemet med SLDS er at siden DBNet inneholder b̊ade diskrete og kontinuerlige
variabler, n̊ar vi regner ut posterioirisannsynlighetene gitt observasjonene, en prosess som
kalles filtrering, s̊a ender vi opp med en Gaussisk miksfordeling, som øker eksponensielt
hvert tidssteg. Vi må derfor søke etter alternative approksimasjoner for filtreringen.

I denne oppgaven, utleder vi det statistiske rammeverket for SLDSer og DBNer
generelt, hvor hovedfokuset er filtrering. Deretter sammenligner vi approksimative
filtreringsmetoder hvor de deterministiske metodene løser problemet ved å begrense
størrelsen til miksen samtidig som vi bevarer de to første momentene, (forventingsverdi
og varians), mens den stokastiske metoden løser problemet med en teknikk som kalles
partikkelfiltrering (“particle filtering”).

Til slutt viser vi en anvendelse av SLDS, hvor m̊alet er å detektere n̊ar vi g̊ar, og n̊ar
vi er p̊a bussen, gitt GPS-data (Global Positioning System).

v

vi

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Outline . 3
1.3 Abbreviations and notations . 3

2 Model 7
2.1 Bayesian Networks . 7
2.2 Dynamic Bayesian networks . 14

2.2.1 Assumptions . 14
2.2.2 Definition . 16

2.3 State-observation models . 17
2.3.1 HMMs . 19
2.3.2 LDSs . 20
2.3.3 SLDSs . 22

3 Methods 25
3.1 General filtering algorithm . 26
3.2 Discrete - HMM . 30
3.3 Continuous - KF . 32
3.4 Hybrid - SLDS . 36

3.4.1 The problem with hybrid DBNs 37
3.4.2 Exact inference . 39
3.4.3 Approximate deterministic inference 45
3.4.4 Approximate stochastic inference - Particle filtering 52
3.4.5 Comparison . 53

3.5 Linearization of Nonlinear Dynamical Systems 57

4 Application in motion states 61
4.1 Deriving the dynamical system . 61
4.2 Bus and Walk Example . 74

5 Closing remarks 83

Bibliography 85

vii

viii CONTENTS

Chapter 1

Introduction

1.1 Background and motivation

When we want to understand a complex dynamical system, it helps to break it down
into smaller chunks. If we wish to learn the chord progression of a song, we may first
want to break it down into sections such as verse, pre-chorus and chorus, and study
each section individually, but also the relationship between the sections. Or we may
be interested in studying the motion of an aircraft. Then it helps to break the motion
down into specific groups of maneuver such as climbing, descending and turning as well
as constant uniform motion, and the relationships between each maneuver.

Switching Linear Dynamical System (SLDS) models are probabilistic models that
combines each “chunk” which we call mode or switching state. Each mode is modeled as
a Linear Dynamical System (LDS) where we have a hidden/latent (continuous) dynamic
state and an observed (measured) state. In the aircraft motion example, the hidden
dynamic state may be the exact position of the aircraft and its velocity, and the observed
state may be global positioning system (GPS) data collected every tenth second.

SLDSs are a variant of the more general state-observation models, which combines
a dynamic hidden model and an observation model which we can represent using the
language of graphs. These graphs are called Bayesian networks (BNs). BNs consist of
nodes where each node represents a random variable with with a set of possible outcomes.
The BN also have edges between some of the nodes, that represent the probabilistic
dependencies between the variables. An example is shown in Figure 1.1, where we have
three variables Sunny, Ice cream and Sunburn where each variable may be true or false.
That is, if Sunny is true, it means that it is sunny outside at a given day, if Ice cream
is true, it means that you were eating ice cream that day, and if Sun burn is true, it
means that you got a sunburn. In this BN we assume that getting a sunburn depends
on whether it is sunny outside or not. Similarly, we may assume that the probability of
eating an ice cream that day changes depending on whether it is sunny or not.

The SLDS is dynamical which means it incorporates time, or have a certain “order-
ing”. The graphical structure of SLDS models is therefore a BN that expands as time
passes, that we call a dynamic Bayesian network (DBN), shown in Figure 1.2. Here the

1

2 CHAPTER 1. INTRODUCTION

Sunny

SunburnIce cream

Figure 1.1: BN example. Each node represents a random variable with possible outcomes
being true or false. The arrows are called edges and encodes the dependence between
the variables.

hidden states are S(t) and Y(t) at time step t, where the former is the discrete switching
state and the latter is the dynamic (continuous) state, and O(t) is the observed state.

. . . S(t−2) S(t−1) S(t) S(t+1) S(t+2) . . .

Y(t−2). . . Y(t−1) Y(t) Y(t+1) Y(t+2) . . .

O(t−2) O(t−1) O(t) O(t+1) O(t+2)

Figure 1.2: SLDS, where S(t) is the switching state, Y(t) the dynamical state, and O(t)

the observation at time t. Dashed edges are optional dependencies.

We see that the DBN is simply a BN with the same variables in each time step.
Other state-observation models include the hidden Markov model (HMM) which has
been successfully applied in various areas such as speech recognition (Rabiner, 1989),
gesture recognition (Starner & Pentland, 1997) and bioinformatics (Li & Stephens, 2003).

SLDS models have applications in macroeconometrics, where the model has the name
Switching regime models (Durlauf & Blume, 2016). Here the goal is to detect when we
are in a financially stable period with economic growth versus an unstable period with
economic decay. SLDSs are also used in Stop-and-Go situations where we want to
detect whether a car is not moving, driving at constant velocity or driving at constant
acceleration (Kaempchen et al., 2004). Other applications include classification of tempo
of a musical piece (Gu & Raphael, 2012) or prediction of human motion trajectory
(Rudenko et al., 2020).

In this thesis, after exploring some possible approximations to the filtering problem,
we show an application where the goal is to detect whether we are on the bus or walking
when on a trip, where we use GPS data as observations.

1.2. OUTLINE 3

1.2 Outline

In Chapter 2, we start by introducing BNs and their most important properties with
regards to conditional independence. Then we introduce DBNs and common variants of
state-observation models, and their representations.

In Chapter 3, we tackle the inference problem of state-observation models. We take
advantage of the conditional independence properties of BNs to efficiently compute the
probability distribution over the hidden states conditioned on the observation data.
The procedure is a recursive algorithm called the forward algorithm. We show how
to apply the forward algorithm to HMMs, LDSs, and finally SLDSs. Then we show
alternative approximations that reduces the running time of the algorithm and compare
their performances.

In Chapter 4, we derive the equations of the motion dynamics in a 2-dimensional
plane and show an application of the SLDS for the bus and walk-example, and in Chap-
ter 5, we summarize and suggest possible future work.

1.3 Abbreviations and notations

There are several technical terms within BNs and SLDSs, and we summarize the ter-
minology and notation used in this thesis. Table 1.1 shows a list abbreviations, and
Table 1.2 to 1.7 show the mathematical notations used.

Table 1.1: List of abbreviations

Abbreviation Meaning

BN Bayesian network
CLG Conditional linear Gaussian
CPD Conditional probability distribution
CPT Conditional probability table
DAG Directed acyclic graph
DBN Dynamic Bayesian network
EKF Extended Kalman filter

GPS Global positioning system
HMM Hidden Markov model
KF Kalman filter
LDS Linear dynamical system
PDF Probability density function
PMF Probability mass function
SLDS Switching linear dynamical system

4 CHAPTER 1. INTRODUCTION

Table 1.2: List of general notations

Symbol Meaning

X The set of all random variables in a given BN
P (S = s) PMF of discrete random variable S
pY(y) PDF of continuous random vector Y
f(y;µ,Σ) PDF of Y with multivariate Gaussian distribution N (µ,Σ)

P(X = x) PMF, PDF or a combination depending on X, conveniently used
when X = {S,Y}, where S is discrete and Y is continuous

P(x) Shorthand notation for P(X = x)
P(X) Shorthand notation for P(X = x) for all possible x

Pa(X) The parents of X, i.e. the set of random variables that
X directly depends on

NonDesc(X) The non-descendants of X, i.e. the subset of X that
are not descendants of X

(X ⊥ Y | Z) X and Y are conditionally independent given Z

Table 1.3: List of notations in state-observation models

Symbol Meaning

t Natural number denoting the time step of DBNs

X (t) The set of all random variables in a given DBN at time t

X(t) (Hidden/latent) state variable(s) at time t,

O(t) Observed variable(s) at time t

o(1:t) Observation sequence {O(1) = o(1), . . . ,O(t) = o(t)}
P(X′ | X) Transition model P(X(t+1) | X(t)) for t = 1, 2, . . .

P(O | X) Observation model P(O(t) | X(t)) for t = 1, 2, . . .

σ(t)(x) Filtered estimate P(X(t) = x | o(1:t))
σ(·t+1)(x) Predicted estimate P(X(t+1) = x | o(1:t))

1.3. ABBREVIATIONS AND NOTATIONS 5

Table 1.4: List of notations in HMMs

Symbol Meaning

S(t) (Switching) state variable with possible outcomes 1, . . . ,M

O(t) Observation variable with possible outcomes 1, . . . , L

π Initial probability vector P (S(1)) = (πi) ∈ RM
where πi = P (S(1) = i)

P Transition probability matrix P (S′ | S) = (pij) ∈ RM×M

where pij = P (S′ = j | S = i)
E Emission probability matrix P (O | S) = (eij) ∈ RM×L

where eij = P (O = j | S = i) for i = 1, . . . ,M and j = 1, . . . , L

Table 1.5: List of notations in LDSs

Symbol Meaning

Y(t) (Dynamic) state variable with support RN

O(t) Observation variable with support RL
N (ν,Γ) Probability distribution of initial distribution model pY(1)(y(1))
N (Ay + b,Q) CPD of the transition model pY′(y′ | y)
N (Cy + d,R) CPD of the observation model pO(o | y)

Table 1.6: List of notations in SLDSs

Symbol Meaning

S(t) Switching state variable with possible outcomes 1, . . . ,M

Y(t) Dynamic state variable with support RN

O(t) Observation variable with support RL
π Initial probability vector P (S(1)) = (πi) ∈ RM

where πi = P (S(1) = i)
P Transition probability matrix P (S′ | S) = (pij) ∈ RM×M

where pij = P (S′ = j | S = i)

N (νs(1) ,Γs(1)) Initial distribution model p(y(1) | s(1))
N (As′y + bs′ ,Qs′) CPD of the transition model pY′(y′ | s′,y)
N (Csy + ds,Rs) CPD of the observation model pO(o | s,y)

6 CHAPTER 1. INTRODUCTION

Table 1.7: List of notations in EKFs

Symbol Meaning

ϵ(t) Alternative representation of the random noise added to

the transition model such that ϵ(t) ∼ N (0,Q)

f(y(t), ϵ(t+1)) Nonlinear function for the dynamic state Y(t+1)

∇fT(y(t), ϵ(t+1)) The Jacobian of the nonlinear function f

Chapter 2

Model

In Section 2.1, we define BNs, how we graphically represent them and their distributional
properties. In Section 2.2, we define DBNs, the temporal variant of BNs with a set of
additional assumptions. Furthermore, we introduce a special representation of DBNs
which is called state-observation models. We include some common examples of state-
observation models such as HMMs, LDSs and SLDSs.

2.1 Bayesian Networks

A BN B = (X , E) is a directed acyclic graph (DAG) where the nodes X = {X1, . . . , Xn}
represent random variables, and the directed edges E going from one node to another
represent probabilistic dependence between the variables, i.e. if (Xi → Xj) ∈ E , then
the variable Xj depends on Xi. Conversely, Xi depends on Xj , but when building the
model, we typically choose the direction of an edge to represent a causation, e.g. sunny
weather (Sunny = 1) may cause sunburn (Sunburn = 1), which gives us the edge
Sunny → Sunburn. Being acyclic means that when following the direction of the edges
from node to node, we can never form a closed loop, e.g. the graphX1 → X2 → X3 → X1

is not a DAG. Pedigree charts or family trees are examples of DAGs, where each node
represent a family member, and the edge (Xi → Xj) means that Xi is a parent of Xj ,
and that Xj is a child of Xi. Intuitively, the family tree must be acyclic as no person
can be its own ancestor.

Because of the close relationship between family trees and DAGs, we stick with the
family tree terminology. That is, the parents of Xi ∈ X are all the variables that have an
edge going directly to Xi, which we denote by Pa(Xi). If X1, . . . , XN are topologically
sorted (parents come before children), and there exists a directed path from Xi to Xk,
e.g. Xi → Xi+1 → · · · → Xk, we say thatXi is an ancestor ofXk, andXk is a descendant
of Xi. We also define the non-descendants of Xi to be all variables in X that are not
descendants of Xi, and denote it by NonDesc(Xi). The probability distribution over the
network is defined by the conditional probability distributions (CPDs) for each variable

7

8 CHAPTER 2. MODEL

Xi conditioned on its parents Pa(Xi):

P(Xi = xi | Pa(Xi) = pa(Xi)), i = 1, . . . , n, (2.1)

where pa(Xi) denotes some outcome of the parents of Xi.

Consider the BN Bsprinkler that consist of the four random variables Cloudy (C),
Sprinkler (S), Rainy (R) and Wet grass (W), shown in Figure 2.1, where the sample
space of each variable is {0, 1} where 0 means false and 1 means true. That is, C = 0
means no clouds (or sunny), and C = 1 means that it is cloudy. The outcome S = 1
means that the sprinkler is running, W = 1 means that the grass is wet and R = 1
means that it is rainy outside. Here we have for instance assumed that cloudy weather
may cause rain indicated by the edge C → R, and the sprinkler and rainy weather may
cause wet grass, indicated by S → W and R → W , respectively. If we think of cloudy
weather more as a season, it makes sense that the sprinkler is more likely to run during
hot seasons (C = 0), giving us the edge C → S.

Cloudy

Sprinkler Rainy

Wet grass

Figure 2.1: Simple example of the BN, Bsprinkler, adapted from Russell and Norvig
(2021). The nodes represent random variables, and the edges represent the probabilistic
dependencies between the variables.

Since the variables in Bsprinkler are discrete, we can write the CPDs given by Ex-
pression (2.1) as conditional probability tables (CPTs) as shown in Table 2.1. In Ta-
ble 2.1a we see that it is more probable having a cloudy weather than sunny, i.e.
P (C = 1) = 0.6, and in Table 2.1d in the second row we see that given that the
sprinkler is not running but it is rainy, it is more probable of the grass being wet than
dry, i.e. P (W = 1 | S = 0, R = 1) = 0.9. We also notice that each row sum to one, as it
is guaranteed for each variable to be either true or false (1 or 0).

2.1. BAYESIAN NETWORKS 9

Table 2.1: CPTs for the BN Bsprinkler. In each table, the probability of the child node is
shown for each possible outcome for each possible outcome of its parents. As C has no
parents, (a) only shows the marginal probabilities.

(a) P (C)

C
0 1

0.4 0.6

(b) P (S | C)

C
S

0 1

0 0.4 0.6
1 0.9 0.1

(c) P (R | C)

C
R

0 1

0 0.9 0.1
1 0.3 0.7

(d) P (W | S,R)

S R
W

0 1

0 0 1 0
0 1 0.1 0.9
1 0 0.1 0.9
1 1 0.01 0.99

All BNs encode information about conditional independence between the variables.
That is, each child (variable) is conditional independent of any of its non-descendants
given the outcome of its parents. Here we can think of the family tree again. Alice
wants to figure out the probability of her grandfather having a certain pair of genes for
eye color, and already knows what pair of genes her parents have. Then any knowledge
about Alice’s own pair of genes for her eye color will not give any additional information
about her grandfather’s. That is, Alice’s and her grandfather’s pair of genes for eye
color are conditionally independent given information about her parents’ pair of genes.
In general, a BN with variables X1, . . . , Xn encodes the property:

(Xi ⊥ NonDesc(Xi) | Pa(Xi)), i = 1, . . . , n, (2.2)

which says that Xi is conditionally independent of its non-descendants given its parents.
Here the symbol ⊥ makes an easy shorthand notation for denoting independence. It is
equivalent to writing

P(Xi = xi | NonDesc(Xi),Pa(Xi)) = P(Xi = xi | Pa(Xi)), i = 1, . . . , n, (2.3)

for all xi in the sample space of Xi and for all possible outcomes of NonDesc(Xi) and
Pa(Xi). Conditional independence is symmetric, which means that for the random
variables variables X, Y and Z, we have that (X ⊥ Y | Z) is equivalent to (Y ⊥ X | Z).
This is intuitive and may be shown as follows:

P(Y = y | X = x, Z = z) =
P(X = x, Y = y, Z = z)

P(X = x, Z = z)

=
P(Z = z)P(Y = y | Z = z)P(X = x | Y = y, Z = z)

P(Z = z)P(X = x | Z = z)

=
P(Y = y | Z = z)P(X = x | Z = z)

P(X = x | Z = z)

= P(Y = y | Z = z),

for valid outcomes x, y and z, where we in the third equality used that (X ⊥ Y | Z).

10 CHAPTER 2. MODEL

Consider the BN Bsprinkler, then Expression (2.2) tells us that for each variable we
have:

(C ⊥ ∅ | ∅) No information, C has no non-descendants or parents,

(S ⊥ R | C) S and R are conditionally independent given C,

(R ⊥ S | C) Equivalent to above due to symmetry,

(W ⊥ C | S,R) W and C are conditionally independent given S and R,

(2.4)

where ∅ is the empty set. In other words, the last line of Expression (2.4) claims that
knowing whether or not the sprinkler is running and if it is raining, any information about
the grass being wet gives no additional information to the probability of the sky being
cloudy. Conversely, knowing whether or not the sprinkler is running and if it is raining,
any information about the sky being cloudy gives no extra additional information to the
probability of the grass being wet.

Assume a BN with topologically sorted variables X = {X1, . . . , Xn}. Using the chain
rule, the joint probability of all the variables in the BN is equal to

P (X) = P (X1)

n∏

i=2

P (Xi | X1, . . . , Xi−1) =

n∏

i=1

P (Xi | Pa(Xi)), (2.5)

where we in the last equality used the conditional independence property given by Ex-
pression (2.2), since X1, . . . Xi−1 ∈ NonDesc(Xi)∪Pa(Xi) and Pa(Xi) ⊆ {X1, . . . , Xi−1}.
This factorization of the joint probability distribution is called the Bayesian chain rule.

The most common task we wish to solve using BNs is inference. In Bsprinkler, we know
the probability of the grass being wet given conditions of the sprinkler and rainy weather,
but we do not know the probability of the sprinkler is running given that the grass is
wet. This can easily be computed using Bayes’ rule and the law of total probability

P (S = 1 |W = 1) =
P (S = 1,W = 1)

P (W = 1)
∝ P (S = 1,W = 1)

=

1∑

c=0

1∑

r=0

P (C = c, S = 1, R = r,W = 1)

=
1∑

c=0

1∑

r=0

P (C = c, S = 1, R = r,W = 1)

=
1∑

c=0

P (C = c)P (S = 1 | C = c)
1∑

r=0

P (R = r | C = c)P (W = 1 | S = 1, R = r)

= 0.4 · 0.6(0.9 · 0.9 + 0.1 · 0.99) + 0.6 · 0.1(0.3 · 0.9 + 0.7 · 0.99)
= 0.27594,

which we must divide by the normalizing constant

P (W = 1) =
1∑

s=0

P (S = s,W = 1) = P (S = 0,W = 1) + 0.27594 = 0.63054,

2.1. BAYESIAN NETWORKS 11

that is,
P (S = 1 |W = 1) = 0.44.

When computing the normalizing constant, we also found the marginal probability of
the grass being wet.

We mentioned the simplest conditional independence property of BNs given by Ex-
pression (2.2), which is used for the Bayesian chain rule in Expression (2.5). However,
there may be more conditional independencies encoded in the BN. The following ad-
dresses how we can determine these conditional independencies by analyzing the graph-
ical structure of the BN. Most of the derivation and terminology are taken from Koller
and Friedman (2009, pp. 68–74) which provides excellent literature on the topic. Other
sources include Pearl (1988, pp. 116–122) and Russell and Norvig (2021, pp. 436–438).

First, we define a trail to be any sequence of nodes in the graph where all adjacent
nodes in the sequence have an edge between them. For instance, in Bsprinkler, there exists
two trails between C and R; C → R and C → S → W ← R. To avoid dealing with
unnecessary special cases, we assume in this thesis that all BNs are connected DAGs,
meaning there always exists a trail between any two nodes in the graph.

If we consider a graph consisting of only two nodes, they must be dependent, by
assumption of the edge between them, i.e. that one variable cause a potential change in
the other. Now, consider the variables X = {X1, X2, X3}. Then there are four possible
trails between the variables, which is shown in Figure 2.2. The first trail, X1 → X2 → X3

X1

X2

X3

(a)

X3

X2

X1

(b)

X2

X1 X3

(c)

X1

X2

X3

(d)

Figure 2.2: Four possible two-edge trails in BNs from X1 to X3, where (a) represents a
causal trail, (b) an evidential trail, (c) a common cause, and (d) a common effect.

is the one we are familiar with, X1 causes X2 which again causes X3. Consider the BN
Bsprinkler, but now without the sprinkler, leaving us with the graph C → R → W .
Assume that we observe that it rains (R = 1), then any information about whether or
not it is cloudy, does not give any additional information about the grass being wet.
Knowing that it is rainy is enough to determine the probability that the grass is wet.
On the contrary, if we do not observe R, then any information about clouds would be
very helpful, as we may use that information to influence our belief about whether or
not it is rainy, and use this belief to further influence our belief of whether or not the
grass is wet.

12 CHAPTER 2. MODEL

The second trail, is when we flip things around and go backwards against the causal
flow. Using the same example (without the sprinkler), we have the trail W ← R ← C.
Assume that we observe R. Then any information about the grass being wet is useless
when we are interested in whether or not it is cloudy, as we already have a superior
evidence from R. If we do not observe R, then any information about the grass being
wet is useful, because it gives us some evidence about whether it or not it is rainy, which
again gives us evidence of whether or not it is cloudy.

The third trail, where we have a common cause, we can consider Bsprinkler, where we
have the trail S ← C → R. Assume that we observe C, then knowing whether or not if
the sprinkler is running, does not affect our belief about whether or not it is rainy, since
R depends on C, and C is what directly causes R, whereas S is only evidence of what
C may be, which is useless. However, when we do not observe C, then the evidence of S
is useful, because then we can update our belief of whether or not it is cloudy, and this
influences our belief about whether or not it is rainy.

The fourth and final trail, where we have a common effect, we can consider Bsprinkler
but without C. Here we may assume that the sprinkler is ran at random independent of
the season. Then we have the trail S →W ← R. Observing W , gives us some evidence
of what S and R may be. If W = 1, then we know that the grass is wet, then we have
evidence that it either rained, or the sprinkler ran (or both). Learning that the sprinkler
in fact was not running, causes us to conclude that it must be rainy, as we had evidence
that at least one of R and S must have caused wet grass. On the contrary, if we do not
observe W , then we have no evidence to help us telling whether the grass is wet or not.
Even if we know S, then it does provide any extra information whether or not it is rainy,
as it runs at random, and we have no evidence of their common effect, W .

To summarize, when we have an indirect influence from X1 to X3 through X2, we
say that the trail X1 ⇌ X2 ⇌ X3 is active. Here ⇌ indicates an edge either pointing
left or right. For two-edged trails, we have justified the following result:

• Causal trail X1 → X2 → X3: active if and only if X2 is not observed.

• Evidential trail X1 ← X2 ← X3: active if and only if X2 is not observed.

• Common cause X1 ← X2 → X3: active if and only if X2 is not observed.

• Common effect X1 → X2 ← X3: active if and only if X2 is observed.

This can be generalized to a case with a longer trail X1 ⇌ · · · ⇌ Xn. Let Z be a
subset of the variables in the graph that are observed. Then the trail is active if the
following two conditions hold:

• Whenever we have the structure Xi−1 → Xi ← Xi+1 (called a v-structure), then
Xi or any of its descendants exists in Z.

• No other variables along the path exists in Z.

2.1. BAYESIAN NETWORKS 13

Here, the only “difference” we added in the general case, is that we do not necessarily
need the direct common effect to be observed, for the trail to be active, but any descen-
dants may suffice, as they are also an effect, only a bit further down in the chain, but
can still be used as evidence.

Now we are ready to state a more powerful property on BNs regarding conditional
independence. Assume a BN with the set of variables X = {X1, . . . , Xn}, and let Z ⊂ X
be observed variables. Then if there exists no active trail between two variables Xi ∈ X
and Xj ∈ X given Z, we say that Xi and Xj are d-separated given Z. Here the “d”
in d-separated means “directional”. We say that Z d-separates Xi from Xj , and this
implies that Xi and Xj are conditionally independent given Z.

X1

X3

X2

X5 X6

X7

X4

X8

(a) (X5 ⊥ X1, X2, X4, X6 | X3)

X1

X3

X2

X5 X6

X7

X4

X8

(b) (X5 ⊥ X6 | X3, X8)

Figure 2.3: Example showing d-separation in action. Here the variables in blue are
conditionally independent of the variable in violet given the variable in orange.

Consider the BN shown in Figure 2.3. To the left, we have that the observation
X3 d-separates X5 from X1, X2, X4 and X6, whereas in (b) we have that the ob-
servations X3 and X8 d-separates X5 only from X6. Let us find out why this is the
case. In Figure 2.3a, we see the effect of Expression (2.2), since Pa(X5) = {X3} and
NonDesc(X5) = {X1, X2, X3, X4, X6}. However, when we additionally observe X8 as
in Figure 2.3b, we may no longer guarantee conditional independence between X5 and
any of X1, X2 or X4. This is because of the trail X5 → X7 ← X4 ← X1 → X3 ← X2

suddenly becomes active. This is because X7 is the middle node in a v-shape of the trail
and its child, X8, is observed. Similarly, X3 is the middle node in a v-shape of the trail
and is observed. There are no other v-shapes in the trail, and no other observed nodes,
meaning that the trail is active.

14 CHAPTER 2. MODEL

2.2 Dynamic Bayesian networks

DBNs or temporal BNs are networks that that contain the same variables at each time
step, where there are additional edges between the variables across adjacent time steps.
Figure 2.4 shows a suggested temporal version of the original BN Bsprinkler in Figure 2.1.
Here, a time step has the length of one day, and we have assumed wet grass today may

C(1)

S(1) R(1)

W (1)

C(2)

S(2) R(2)

W (2)

C(3)

S(3) R(3)

W (3)

. . .

. . .

Figure 2.4: DBN, a temporal version of the original BN Bsprinkler example. The super-
script in the variables indicate what day it is, starting at day 1.

cause wet grass tomorrow, so we have the edge C(t) → C(t+1) for t = 1, 2, Similarly
for the cloudy variable C(t), we assume that the sky being cloudy today may cause the
sky being cloudy tomorrow. Murphy (2002) provides excellent literature on DBNs, their
representations and inference techniques. Other good sources on DBNs include Koller
and Friedman (2009, pp. 200–212) and Russell and Norvig (2021, pp. 479–515).

2.2.1 Assumptions

The first assumption we make is that the time can be discretized into time steps t =
1, 2, . . . , where the time difference between any two adjacent time steps t and t + 1 is
constant, e.g. 1 second.

We use X (t) to denote the set of random variables in time step t. The probability
distribution over the whole system until some time step T , P(X (1),X (2), . . . ,X (T)) will
often be abbreviated using the shorthand notation P(X (1:T)). Using the chain rule, we
can write this as

P(X (1:T)) = P(X (1))
T−1∏

t=1

P(X (t+1) | X (1:t)). (2.6)

The second assumption we make, the Markov assumption, is that knowing precisely
the current state of the system, any additional information about the history of the
system provides no extra information to infer the state at the next time step. We write
this as (X (t+1) ⊥ X (1:(t−1)) | X (t)), for t ≥ 1, which says that the state at the next
time step X (t+1), and the history of the system except the current state X (1:(t−1)), are
conditionally independent, given the current state X (t). We call such systemsMarkovian.
With this extra assumption, we can simplify Expression (2.6) to

P(X (1:T)) = P(X (1))

T−1∏

t=1

P(X (t+1) | X (t)). (2.7)

2.2. DYNAMIC BAYESIAN NETWORKS 15

The Markov assumption also has the advantage of few parameters, as P(X (t+1) | X (t))
is often “easier” to formulate than P(X (t+1) | X (1:t)). For many dynamical systems,
this is a reasonable assumption, which vastly reduce complexity of the model. Indeed,
if X (t) = {S(t)}, where the set of possible outcomes have a cardinality of M states, and
we want to know the marginal probability distribution P (S(t)), we have to sum over all
the possible combinations of the previous states:

P (S(t) = s(t)) =
∑

s(1)

· · ·
∑

s(t−1)

P (s(1:t)) =
∑

s(1)

· · ·
∑

s(t−1)

P (s(1))
t−1∏

i=1

P (s(i+1) | s(1:i)),

for every s(t) giving us a total cost of O(M t). For Markovian systems however, the
computation can be reduced as follows

P (S(t) = s(t)) =
∑

s(1)

· · ·
∑

s(t−1)

P (s(1))
t−1∏

i=1

P (s(i+1) | s(i))

=
∑

s(t−1)

P (s(t) | s(t−1)) · · ·
∑

s(2)

P (s(3) | s(2))
∑

s(1)

P (s(2) | s(1))P (s(1))
︸ ︷︷ ︸
M mult. +M−1 summ.

=
∑

s(t−1)

P (s(t) | s(t−1)) . . .
∑

s(2)

P (s(3) | s(2))P (s(2))
︸ ︷︷ ︸
M mult. +M−1 summ.

=
∑

s(t−1)

P (s(t) | s(t−1))P (s(t−1))

︸ ︷︷ ︸
M multiplications +M−1 summations

,

for every s(t) ∈ {1, . . . ,M}, giving a total cost of M(t− 1)(2M − 1) = O(M2t).
The Markov assumption may not always be reasonable, for instance if we are tracking

the position of a moving object. Knowing the position of the object at a given time,
does not tell us how fast the object is moving. Maybe the object is not moving at all.
If we knew the two last positions however, we can estimate its velocity and therefore
its next position, so we can relax the Markov assumption to a second order Markovian
system. This is an improvement, but we cannot tell if the object is increasing in speed,
or decreasing, unless we know the three last positions of the object, but then we have
a third order Markovian system. Another way of getting around this problem, is to let
X (t) = {Y (t), Ẏ (t)}, where Y (t) is the position of the object and Ẏ (t) is the velocity (or
even add acceleration, Ÿ (t)). With this approach, we can stick to the original Markovian
system where we only have a direct dependence on the previous time step.

The third assumption we make, the stationary assumption, is that it does not matter
what t is. The CPD P(X (t+1) | X (t)) is the same for all t ≥ 1. This makes sense if we
think of the moving object again. That is, knowing the position and velocity of the object
at some time t = t∗, the probability of the object having a certain position at time t+1
is independent of what t∗ is, if we are tracking e.g. the position of a person riding down

16 CHAPTER 2. MODEL

a water slide. If we are tracking the position of a car, however, it might matter what t
is, since at certain hours it his more likely to be rush hour. A workaround, is to add a
variable R(t) to X (t), to tell the model whether there is rush hour or not, and proceed
with the stationarity assumption. Since the time t does not matter, we often use the
notation P(X ′ | X) to denote what we call the transition model P(X (t+1) | X (t)), t ≥ 1.

2.2.2 Definition

With the three basic assumptions, we can, with only a few parameters construct a BN
which keeps on growing as time passes. The Markov assumption reduces the number
of parameters needed for the model since P (X (t+1) | X (1:t)) = P (X (t+1) | X (t)), and
the stationarity assumption further reduces the number, since t does not matter for the
CPD P (X (t+1) | X (t)).

A DBN is a pair ⟨B1,B→⟩ over the variables X (1),X (2), . . . , where B1 is the BN over
the variables in the first time step X (t), and B→ is a conditional BN over the variables

X (t+1) given the variables X (t)
I = {X(t) : X(t) ∈ X (t)∩Pa(X (t+1))} for t = 1, 2, That

is, the distribution over B→ is P(X ′ | XI). The variables XI are called the interface
variables (Murphy, 2002; Koller & Friedman, 2009), as they are the variables in the
current time step that directly influences variables in the next time step. Since the
transition model P (X ′ | XI) only needs information from two adjacent time-steps, the
BN B→ is commonly called a 2-time step Bayesian network (2-TBN) (Murphy, 2002;
Koller & Friedman, 2009).

The most simple example of a DBN, is a HMM, where X (t) = {S(t), O(t)} as shown
in Figure 2.5. Here, S(t) is the hidden variable that we are interested in, and O(t) is
an observed variable that depends on S(t). Figure 2.5a and 2.5b show the components
needed to define the whole network, where Figure 2.5c shows how we use the components
to unroll DBN, starting with B1 and add B→ repeatedly. Here, we see that the interface

S(1)

O(1)

(a) HMM B1.

S S′

O′

(b) HMM B→.

S(1)

O(1)

S(2)

O(2)

S(3)

O(3)

S(4)

O(4)

(c) HMM unrolled for four time steps.

Figure 2.5: HMMs represented in two ways. (a) and (b) shows the minimal representa-
tion ⟨B1,B→⟩, while (c) shows the complete network unrolled for four time steps. White
nodes are hidden and shaded/gray nodes are observed.

variable is XI = {S}, since S → S′ is the only edge going from one time step to the
next.

Another example adapted from Russell and Norvig (2021) is shown in Figure 2.6,
which models the motion of a robot in the X-Y plane. The hidden variables areBattery(t)

2.3. STATE-OBSERVATION MODELS 17

which is the true battery level at time t, andY(t) is a vector containing information about
the position and velocity of the robot. The observed variables are BMeter(t) which is
the estimated battery level and Z(t) which is the observed position collected from GPS
data.

BMeter(1)

Battery(1)

Y(1)

Z

(a) B1.

Battery

Y

Battery′

BMeter′

Y′

Z′

(b) B→.

Figure 2.6: Another DBN adapted from Russell and Norvig (2021), represented in two
ways. (a) and (b) shows the minimal representation ⟨B1,B→⟩.

Finally, we show in Figure 2.7 the 2-TBN of the temporal version of the sprinkler
example from Figure 2.4. Here, we have also assumed that we only observe if the grass
is wet, whereas the other variables are hidden.

Cloudy Cloudy′

Sprinkler′ Rainy′

Grass wet′Grass wet

Figure 2.7: 2-TBN of the temporal version of the sprinkler example.

2.3 State-observation models

When introducing the DBNs, we saw that some of the variables were observed, while
others were hidden. There is a very special class of DBNs that we are particularly
interested in, and will be the topic for the rest of the thesis. That is, when we are tracking
a dynamical process where we do not know its true state, we can do indirect observations
to estimate its state. This is called the state-observation model. Here, we can think of

18 CHAPTER 2. MODEL

X(1)

O(1)

X(2)

O(2)

X(3)

O(3)

X(4)

O(4)

. . .

Figure 2.8: State-observation model representation. Here, X(t) is a set of hidden vari-
ables and O(t) is a set of observed variables.

the DBN as a combination of two processes. The variables are X (t) = X(t) ∪O(t), where
X(t) and O(t) are disjoint sets. The variables in X(t) are part the dynamical system that
evolves on its own, while the variables in O(t) are part of the observation process, that
depends on X(t). That is, the hidden variables X(t) contain all the interface variables

X (t)
I . The transition model is P(X′ | X) and the observation model is P(O | X).

The graphical representation of state-observation models is shown in Figure 2.8. This
looks almost identical to the HMM, so it may come as no surprise to reveal that the
HMM is a state-observation model. Out of the three DBN examples we have shown this
far, two of them can be represented as a state-observation model. The HMM is trivial,
where the hidden variable is X(t) = {S(t)} and the observed variable is O(t) = {O(t)}.
The robot example in Figure 2.6 can also be classified as a state-observation model
where the hidden variables are X(t) = {Battery(t),Y(t)} and the observed variables are
O(t) = {BMeter(t),Z(t)}. We see that the observed variables depend only on variables

within the same time step, and X(t) = X (t)
I .

Cloudy Cloudy′

Sprinkler′ Rainy′

Grass wet′

˜Grass wet
′

Grass wet

Figure 2.9: The sprinkler example rerepresented as a state-observation model, where we
split the Wet grass variable in two separate variables.

In the sprinkler example in Figure 2.7 however, we have a problem with theWet grass
variable. It is both an interface variable, and an observed variable. This DBN would
then not be classified as a state-observation model. This can easily be solved however.
In fact, any DBN can be represented as a state-observation model. Indeed, if we in-

troduce a new variable ˜Wet grass ∈ O, which is the observation that the grass is wet,

2.3. STATE-OBSERVATION MODELS 19

and the original Wet grass ∈ X is hidden and part of the dynamical process. See Fig-

ure 2.9. We let them be deterministically equal, that is P (˜Grass wet | Grass wet) =

I{ ˜Grass wet = Grass wet}, where I{A} is the indicator function that evaluates to 0 if
the event A is false, and 1 if A is true. Representing the DBN as a state-observation
model is convenient so we can apply the same inference techniques which require this
form.

2.3.1 HMMs

As mentioned, the simplest form of a state-observation model is the HMM, where each
time step only consist of two variables: X(t) = {S(t)} and O(t) = {O(t)}, see Figure 2.5.
Here S is discrete, and O is usually discrete too, but can be continuous, usually Gaussian
distributed, given the S outcome (Scott, 2002; Murphy, 2002; Zucchini & MacDonald,
2009). Assuming discrete O, the transition model and observation model can be repre-
sented by CPTs. Often, it is convenient to write the CPTs as vectors and matrices so
we can take advantage of the operations in linear algebra when we perform inference.
We have

P (S(1)) = π = (πi) ∈ RM

P (S′ | S) = P = (pij) ∈ RM×M

P (O | S) = E = (eij) ∈ RM×L

(Initial distribution)

(Transition model)

(Observation model),

(2.8)

where πi = P (S(1) = i), pij = P (S′ = j | S = i) and eij = P (O = j | S = i). The matrix
P is called the transition probability matrix, and E is called the observation probability
matrix (or emission probability matrix).

Consider a HMM with S ∈ {1, 2, 3, 4} and O ∈ {1, 2} with the following parameters:

P (S(1)) = π =
[
0.9 0 0.1 0

]T
;

P (S′ | S) = P =

0.8 0.2 0 0
0 0.7 0.3 0
0 0 0.5 0.5
0.9 0 0 0.1

 ;

P (O | S) = E =

0.2 0.8
0.3 0.7
0.9 0.1
0.6 0.4

 ,

(2.9)

As with the CPTs, we see that the rows sum to one, and the elements in the initial
distribution also sums to one.

If the probability matrices are sparse, it may be more convenient to represent them
as a graph, a different graph not to be confused with BNs. Here, the nodes correspond
to the different values the state variable and observation variable can take, and where
the edges represent the probabilities of the transition process and observation process.

20 CHAPTER 2. MODEL

If there is no edge going from one state to another, it means that the probability is
zero of making that transition. Figure 2.10 shows such a graphical representation of
Expression (2.9). As we see, there are no edges going from e.g. S = 2 to S = 1, meaning

1 2 3 4

0.2

0.8

0.3
0.7

0.5
0.5

0.9

0.1

Start
0.9

0.1

1 2

0.2

0.8

0.3
0.70.9

0.1

0.6

0.4

Figure 2.10: A complete graphical representation of an HMM. The node at the top which
is labeled ”Start”, indicates the start of the process, where the dotted edges represents
the initial probabilities. The blue nodes labeled 1, 2, 3, 4 represent the different states
of the state variable, and the solid edges represent the transition probabilities. The red
nodes labeled 1 and 2 represent the observed values where the dashed edges represent the
observation probabilities. The model is mathematically described in Expression (2.9).

that there is a zero probability of transitioning from 2 to 1 directly. It actually has to
transition via 3 and 4 before it can reach 1.

As mentioned, the observed variable can also be continuous, typically Gaussian.
Then the observation model has the form

O | {S = s} ∼ N (µs, σ
2
s), s = 1, . . . ,M.

That is, the mean and variance may change depending on S. We will come back to
hybrid models in Section 2.3.3. More complex HMMs exist. Some common HMMs that
are also state-observation models are shown in Figure 2.11.

2.3.2 LDSs

LDSs, also called state space models can be thought of as the continuous equivalent of
HMMs (West & Harrison, 2006; Koller & Friedman, 2009; Särkkä, 2013). The hidden
variable is a continuous N -vector Y, and the observed variable is a continuous L-vector
O. The LDS is shown in Figure 2.12, where we see that the structure is identical to
HMMs and the general form of state-observation models.

2.3. STATE-OBSERVATION MODELS 21

S′
1

O′
1

S′
2

O′
2

S′
3

O′
3

S1

S2

S3

(a) Coupled HMM with
three chains

S′
1

S′
2

S′
3

O′
1

S1

S2

S3

(b) Factorial HMM with
three chains

S′
1

S′
2

O′
1

S1

(c) HMM with mixture of
Gaussian observations.

Figure 2.11: 2-TBN of more general HMMs (Murphy, 2002).

The transition model and the observation model are conditional linear Gaussians
(CLGs). That is, they have the following form:

Y(1) ∼ N (ν,Γ)

Y′ | {Y = y} ∼ N (Ay + b,Q)

O | {Y = y} ∼ N (Cy + d,R)

(Initial distribution)

(Transition model)

(Observation model),

(2.10)

where Γ and Q are N ×N (symmetric non-negative definite) covariance matrices, A an
N × N matrix, ν and b are length-N vectors, C is an L × N matrix, R is an L × L
covariance matrix and d is a length-L vector. The name linear comes from exactly that

Y(1)

O(1)

Y(2)

O(2)

Y(3)

O(3)

Y(4)

O(4)

. . .

Figure 2.12: LDS, where Y(t) is the dynamic hidden state, and O(t) is the observed
state.

22 CHAPTER 2. MODEL

each entry in Y′ is a linear function of the entries in the previous state Y = y, i.e.

Y
(t)
i = ai1y

(t)
1 + ai2y

(t)
2 + · · ·+ aiNy

(t)
N + bi + ϵ

(t+1)
i , ϵ

(t+1)
i ∼ N (0, qii), i = 1, . . . , N,

where aij and qij are the entries in the ith row and jth column of matrices A and
Q, respectively. Figure 2.13 shows an example of a CLG in the univariate case. The

Figure 2.13: PDF of a CLG where pX(x | y) ∼ N (y + 4, 1).

advantage of parameterizing LDSs as CLGs is that no matter what variables in the
network we condition on, and no matter what variables we compute the PDF of, the
result is always a CLG, which we show in Chapter 3.3.

2.3.3 SLDSs

SLDSs extends LDSs to include a discrete switching state S(t) = 1, 2, . . . ,M , where
for each possible outcome, we have a distinct LDS. That is the hidden variables are
X(t) = {S(t),Y(t)}, where Y(t) is an N -vector, and the observed variable is the L-vector
O(t).

Figure 2.14 shows the graphical structure of the network. That is, the switching
state S′ depends only on the previous switching state S, where as the dynamic state Y′

depends on the current switching state S′ as well as the previous dynamic state Y. The
observed state O depends on the dynamic state Y and optionally, the switching state S
in the same time step.

2.3. STATE-OBSERVATION MODELS 23

S(1) S(2) S(3) . . .

Y(1) Y(2) Y(3) . . .

O(1) O(2) O(3)

Figure 2.14: SLDS, where S(t) is the (discrete) switching state, Y(t) is the (continuous)
dynamic state, and O(t) is the (continuous) observed state. Dotted edge means optional
dependence.

The initial, transition and observation model are given by

P (S(1)) = π = (πi) ∈ RM

Y(1) | {S(1) = s} ∼ N (νs,Γs)

P (S′ | S) = P = (pij) ∈ RM×M

Y′ | {S′ = s′,Y = y} ∼ N (As′y + bs′ ,Qs′)

O | {S = s,Y = y} ∼ N (Csy + ds,Rs)

(Initial distribution)

(Initial distribution)

(Transition model)

(Transition model)

(Observation model).

(2.11)

Notice that if S(t) has sizeM = 1, then the whole network collapses to a simple LDS.
Generally, the size of S(t) determines how many LDSs we are working with and their
possible interactions can be determined from the transition probability matrix P. This
way we can model a nonlinear dynamic behavior as piece-wise linear behavior, where we
assume that only one type of linear behavior happens at the time, such as the motion
of an aircraft (climbing, descending, maneuver).

Cases where the observation variable depends on the switching state could be when
the switching state includes an indicator variable which tells whether or not the sensor
we are receiving observations from is broken. For the rest of the thesis, we omit this
optional edge such that the observation model takes the form

O | {Y = y} ∼ N (Cy + d,R).

24 CHAPTER 2. MODEL

Chapter 3

Methods

There are three main inference task in state-observation models, filtering, smoothing
and prediction, see Figure 3.1. It is called filtering when for each time step we find the
probability distribution over the hidden variables given the observations up until that
time step, and it is called smoothing when for each time step we find the probability
distribution over the hidden variables given all observations. That is, we combine our
prior knowledge about the hidden states together with the observations to get a much
better estimate of what the hidden states might be at each time step. Our focus is
filtering, as this is excellent for monitoring or tracking something live, where we receive
data in real time. For offline analysis where the all the data already has been collected,
smoothing may be of interest.

Filtering

Smoothing

Prediction

t T

t T

t T

h

Figure 3.1: The three main types of inference that are performed on state-observation
models. The arrow indicate at what time step we perform inference on, and the blue
area indicate where we have data. T is the length of the sequence.

The term “filtering” comes from when we in the process of obtaining the “best
estimate” from noisy data, we are “filtering out” the noise (Bar-Shalom et al., 2004).

25

26 CHAPTER 3. METHODS

For instance, when we are trying to hear what is being said on a radio, but due to
bad signal, the sound that comes out is literally noisy. Then by combining our prior
knowledge about what is being said, i.e. we know the context, together with what we
hear, we are in our mind “filtering” out the noise in the radio and get more information.
The term “smoothing” comes from when after we first have done the filtering and go
backwards recursively to condition on all observations, the distribution usually becomes
much smoother, because of the additional data at later time steps.

Think of a scenario where we are monitoring whether or not a machine part mal-
functions. When we perform filtering, we carefully consider each observation, as it may
be the one that shows a malfunction. This makes the filtered estimate to look a bit
noisy. When the machine part actually malfunctions, we detect some “change” in the
observations, and the probability of a malfunction increases, but as this may also be
considered as just noisy data, this increase can be slow and noisy until more observa-
tions come in and we see that the “change” is persistent. When this is concluded, it
might be interesting to know at what time it broke. This is where smoothing helps, as
we can condition on later observations, and since we now know that the machine part
malfunctioned, it is easier to detect when it most likely happened, and thus it “smooths”
out the probability distribution.

The filtering algorithm (Pearl, 1988; Murphy, 2002; Lerner, 2003; Bar-Shalom et al.,
2004; Koller & Friedman, 2009; Särkkä, 2013) is a recursive algorithm, where we by
knowing the filtered estimate at some time t, we can use this estimate together with the
next incoming observational data at t + 1 to compute the filtered estimate at the next
time step t+ 1.

In Section 3.1 we first show the general approach to the filtering algorithm, then we
show specific examples for HMMs in Section 3.2 and for the KF for LDSs in Section 3.3.
Then we come to the more difficult case for SLDSs in Section 3.4. First we show how
to do exact filtering for SLDSs, before we explore some possible approximations and
compare them. Then in Section 3.5 we show the extended Kalman filter (EKF) (Bar-
Shalom et al., 2004) which is used when the dynamical process must be modelled as a
nonlinear process.

3.1 General filtering algorithm

We have the state-observation model X (t) = X(t) ∪O(t), t = 1, 2, . . . , where the hidden
variables X(t) and the observed variables O(t) may contain both discrete and continuous
variables. We recall that the state-observation model is given by the transition model
P(X′ | X) with initial distribution P(X(1)), and the observation process P(O | X). The
filtered estimate is defined as

σ(t)(x(t)) = P(X(t) = x(t) | o(1:t)), t = 1, 2, (3.1)

That is, we condition on the observation sequence O(1) = o(1), . . . ,O(t) = o(t), to get a
more precise estimate of the hidden state(s) X(t).

3.1. GENERAL FILTERING ALGORITHM 27

For now, when we compare the computational complexities, we assume that X con-
tain discrete variables only. The näıve approach to compute the filtered estimate, is to
straightforwardly apply Bayes’ rule and the law of total probability. We use the short-
hand notation

∑
x(1:t) to mean the sum over all possible combinations of X(1), . . . ,X(t)

in the sample space of X(t).

σ(t)(x(t)) ∝ P(x(t),o(1:t)) =
∑

x(1:(t−1))

P(x(1:t),o(1:t))

=
∑

x(1:(t−1))

P(x(1))P (o(1) | x(1))
t−1∏

t′=1

P(x(t′+1) | x(t′))P(o(t′+1) | x(t′+1)),

(3.2)

where we in the the last equality applied the Bayesian chain rule. Assuming X can take
M possible unique assignments, then for each x(t) we have M t−1 summations, and for
every summation we have 2t−1 multiplications, which results in a demanding complexity
of O(tM t) operations.

This motivates the search for an alternative approach that does not grow exponen-
tially, and lucky for us, such an approach exists, and is very efficient both in computing
and requires less memory. This is a recursive approach where we make use of the sta-
tionarity assumption and Markov assumption described in Section 2.2.1, in that you
only need the result from the previous time step to compute the next result. That is,
we assume we already know σ(t)(x(t)), and want to compute σ(t+1)(x(t+1)). We break
it down into two steps: the prediction step, and the condition step (or update step). In
the prediction step, we compute the probability distribution over x(t+1) given the same
observation sequence as for σ(t)(x(t)):

σ(·t+1)(x) = P(X(t+1) = x | o(1:t)). (3.3)

We call this the predicted estimate. Note that we added a dot in the superscript (·t+1),
to specify that we are conditioning on the observations up to time t. In the condition
step, we include the observation at time t+ 1 to get the filtered estimate at time t+ 1,
i.e. σ(t+1)(x). A schematic of the procedure is shown in Figure 3.2. We walk through
the steps in detail below.

Assume we know σ(t)(x(t)). Then

σ(·t+1)(x(t+1)) = P(x(t+1) | o(1:t))
=
∑

x(t)

P(x(t),x(t+1) | o(1:t))

=
∑

x(t)

P(x(t+1) | x(t),o(1:t))P(x(t) | o(1:t))

=
∑

x(t)

P(x(t+1) | x(t))σ(t)(x(t))

=
∑

x(t)

P(X′ = x(t+1) | X = x(t))σ(t)(x(t)),

(3.4)

28 CHAPTER 3. METHODS

X(1) X(2) X(3) . . .

O(1) O(2) O(3)

(a) Base case, P(X(1) = x).

X(1) X(2) X(3) . . .

O(1) O(2) O(3)

(b) Condition step, σ(1)(x).

X(1) X(2) X(3) . . .

O(1) O(2) O(3)

(c) Prediction step, σ(·2)(x).

X(1) X(2) X(3) . . .

O(1) O(2) O(3)

(d) Condition step, σ(2)(x).

X(1) X(2) X(3) . . .

O(1) O(2) O(3)

(e) Prediction step, σ(·3)(x).

X(1) X(2) X(3) . . .

O(1) O(2) O(3)

(f) Condition step, σ(3)(x).

Figure 3.2: The forward algorithm. The current variable that we compute the distri-
bution over is colored in magenta, and the variables we condition on are colored in teal
(blue/green).

3.1. GENERAL FILTERING ALGORITHM 29

. . . X(t−1) X(t) X(t+1)

O(t−1) O(t) O(t+1)

(a) Conditional independence used in the pre-

diction step, (X(t+1) ⊥ O(1:t) | X(t)).

. . . X(t−1) X(t) X(t+1)

O(t−1) O(t) O(t+1)

(b) Conditional independence used in the con-

dition step, (O(t+1) ⊥ O(1:t) | X(t+1)).

Figure 3.3: D-separation in the graph used in the forward algorithm.

where we are left with a sum over the product between the transition model P(X′ | X),
and the filtered estimate of the previous time step σ(t)(·). In the fourth equality we
used the BN property of conditional independence between X(t+1) and O(1:t) given X(t),
which is shown in Figure 3.3a. If there are continuous variables in X(t), the form is
the same, with the exception that we replace the summation with integration. The
prediction step ends up with 2M − 1 operations for every x(t+1).

Now we condition on the next observation o(t+1). In the following computation, it is
useful to split the observation sequence o(1:(t+1)) into two sets o(1:t) and o(t+1):

σ(t+1)(x(t+1)) = P(x(t+1) | o(1:t),o(t+1))

∝ P(x(t+1),o(t+1) | o(1:t))
= P(o(t+1) | x(t+1),o(1:t))P(x(t+1) | o(1:t))
= P(o(t+1) | x(t+1))σ(·t+1)(x(t+1))

= P(O = o(t+1) | X = x(t+1))σ(·t+1)(x(t+1)),

(3.5)

which is simply the product of the observation model P(O | X) and the prior belief state
σ(·t+1)(·). Again, for continuous variables in X(t), we integrate instead. The normalizing
constant is found by summing over x(t),

P(o(t+1) | o(1:t)) =
∑

x

P(O = o(t+1) | X = x)σ(·t+1)(x). (3.6)

In the fourth step, we again used the conditional independence property of the BN,
which is shown in Figure 3.3b. The condition step takes M operations (because of the
normalization step) for every x(t).

With the base case σ(·1)(x) = P(X(1) = x), computing σ(t)(x) now takes M2 +
Mt((2M−1)+M) = O(tM2) operations. Compare this to the näıve approach in Expres-
sion (3.2), which takes O(tM t) operations. This shows us the computational advantage
we get with BNs by taking advantage of their conditional independencies! Also, com-
puting σ(t)(x) naturally includes all the previous filtered estimates σ(1)(x), . . . , σ(t−1)(x),
since they are computed as intermediate steps. What is brilliant with this recursive ap-
proach, is that when we use this forward algorithm in a live setting, that is, we are

30 CHAPTER 3. METHODS

updating the filtered estimates as we obtain data, we only need to keep the current
filtered estimate in memory to compute the next filtered estimate. This means that we
can discard older filtered estimates to free up memory without losing information about
future states.

3.2 Discrete - HMM

Recall the HMM with the state variable S and observation variable O shown in Fig-
ure 2.5. Now, S and O are discrete random variables where the cardinality of the
possible outcomes are M and L, respectively. The full model description is given by
Expression (2.8), where the model parameters are π, P and E.

Here the filtered estimate is given by

σ(t)(s) = P (S(t) = s | o(1:t)), s = 1, . . . ,M.

The prediction step σ(·t+1)(·) is computed as

σ(·t+1)(s) =

M∑

j=1

P (S′ = s | S = j)σ(t)(j)

=
M∑

j=1

pjsσ
(t)(j), s = 1, . . . ,M,

which we can rewrite as the simple matrix vector product

σ(·t+1) = Pσ(t), (Prediction step) (3.7)

where σ(t) = (σ(t)(1), . . . , σ(t)(M)). The condition step σ(t+1)(·) is computed as follows:

σ̃(t+1)(s) = P (O = o(t+1) | S = s)σ(·t+1)(s)

= es,o(t+1)σ(·t+1)(s);

⇒ σ(t+1)(s) =
1

∑M
i=1 σ̃

(t+1)(i)
σ̃(t+1)(s), s = 1, . . . ,M

which we can rewrite as

σ̃(t+1) = E:,o(t+1) ⊙ σ(·t+1);

⇒ σ(t+1) =
1

∑M
i=1 σ̃

(t+1)(i)
σ̃(t+1).

, (Condition step) (3.8)

Here E:,j , means the jth column vector of matrix E, and ⊙ is the element-wise product
operator. The base case is simply

σ(·1) = π. (Base case) (3.9)

We illustrate with an example inspired by Ravindranath (2019). Alice and her friend
Bob live far away from each other, but they have a video call every day for a period of

3.2. DISCRETE - HMM 31

fifty days. They decided to have a guessing game, where Bob should guess whether it is
cold, mild or warm where Alice lives, based on which of her three sets of type of clothing
she is wearing; a t-shirt, a long sleeve, or a cardigan. Bob knows that the temperature
where Alice lives is very stable and have a low probability of changing, and he knows
that Alice is often cold and generally prefers to wear a long-sleeve or a cardigan, but
might occasionally wear a t-shirt on warm days. Bob has decided to use a HMM for this
problem and have come up with the following description: Let S(t) be the temperature
of where Alice lives where the sample space is {1, 2, 3} according to cold, mild and warm
weather, respectively, and let O(t) be the type of clothing Alice wears during their video
meetings with the sample space {1, 2, 3} according to t-shirt, long-sleeve and cardigan,
respectively. The parameters of the HMM are

π =

1/3
1/3
1/3

 , P =

0.97 0.02 0.01
0.01 0.98 0.01
0.01 0.02 0.97

 E =

0 0.05 0.95
0 0.2 0.8
0.2 0.5 0.3

 . (3.10)

Remember that, the rows of the probability matrices correspond to the condition, and
the column correspond to the outcome of the variable we compute the probability of,
e.g. the probability of the temperature being mild and warm tomorrow given that the
weather was mild today is 0.98 and 0.01, respectively. We also see that Alice only wears
t-shirt on warm days, as there is a non-zero probability of her wearing a t-shirt only
when it is warm.

Of course, Alice has kept track of the temperature every day, and also what type of
clothing she has had, so she can compare the truth with Bob’s estimate. This is shown
in Figure 3.4a. Here we see that it is warm the first sixteen days, and Alice is wearing
all types of clothing during this period. On day seventeen through day twenty-one, it is
mild, and Alice going back and forth wearing a long-sleeve and a cardigan. Then when
it is cold, she consistently wears a cardigan until it is mild again on day thirty-six, then
two of the remaining days, she wears a long-sleeve.

Bob has carefully computed the filtered estimate of the temperature at each day
using his a priori knowledge from π, P and E and his observations on what type of
clothing Alice has worn. This is shown in Figure 3.4b. Here Bob is very certain that it
is warm the first days (except for the second day where Alice wears a cardigan), and is
100 percent certain the days Alice was wearing a t-shirt. It is not before day twenty-
three Bob changes his opinion about the temperature where he believes it now is mild.
However, we also see that his belief about the temperature being cold starts to increase
on day twenty-one. It is not before day twenty-seven until Bob changes his belief about
the temperature from being mild to cold. This is a very typical behavior in filtering,
when something changes, we might still be a bit conservative and stick with our current
belief as the new observation might be a one-time-occurrence. It is not until we see that
the change is persistent, we change our belief.

32 CHAPTER 3. METHODS

O

S

0 10 20 30 40 50

cold
mild
warm

t-shirt
long-sleeve
cardigan

t (day)

(a) The true temperature on each day where Alice lives (S) and what type of clothing Alice is
wearing that day (O).

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
t (day)

σ
(t
) (
s)

temperature warm mild cold

(b) Filtered estimate on what the temperature is where Alice lives based on what type of clothing
she was wearing during her and Bob’s video meetings.

Figure 3.4: HMM example with Alice and Bob.

3.3 Continuous - KF

The continuous case looks a bit different, but the main idea remains the same. The
filtering algorithm for LDSs that are CLGs has a special name, Kalman filter (KF) which
is named after Kalman (1960) who was one of the primary developers of its theory.

CLGs are favorable to work with because of their nice properties of being both Gaus-
sian and linear. They are easy to combine, i.e. computing the joint distribution from
separate CLGs, they are easy separate, i.e. either marginalizing them, or computing the
posterior distribution. We start by showing the most important properties of multivari-
ate Gaussian distributions, followed by the most important properties of CLGs before
we show the filtering approach for LDSs.

The PDF of the multivariate Gaussian distribution with mean µ and variance Σ is
most commonly defined in moment form as follows:

f(y;µ,Σ) = |2πΣ|− 1
2 exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
, y ∈ RN , (3.11)

3.3. CONTINUOUS - KF 33

where |Q| is the determinant of a square matrix Q. Let Y be a random vector of length
greater than one. Then we can partition it, its mean and covariance matrix at as follows:

Y =

[
YA

YB

]
µ =

[
µA
µB

]
Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
, (3.12)

where the length of YA matches the length of µA and the number of rows and columns
of ΣAA. The first nice property of multivariate Gaussian distributions is they are easy
to marginalize. For instance, we have that YA ∼ N (µA,ΣAA). So by only inspecting
the relevant part of the full mean µ and covariance matrix Σ in Expression (3.12),
we automatically find the parameters of the marginal vector YA, with no computation
involved, and similarly for YB.

Not only is the marginal partition Gaussian, but one partition conditioned on the
other partition is also Gaussian. That is, let the random vector Y be Gaussian N (µ,Σ)
with length greater than one, and let it be partitioned according to Expression (3.12).
Then YA | {YB = yB} has distribution N (µA|B,ΣA|B) where

µA|B = µA +ΣABΣ
−1
BB(yB − µB),

ΣA|B = ΣAA −ΣABΣ
−1
BBΣBA.

(3.13)

Now, consider a simple CLG BN consisting of the variables X = {YA,YB}, where
YA is the parent of YB. That is, let

YB | {YA = yA} ∼ N (CyA + d,ΣB|A),

YA ∼ N (µA,ΣAA),
(3.14)

where C and d are fixed conformable matrix and vector, respectively. Then the joint
distribution of YA and YB is given by

Y =

[
YA

YB

]
∼ N

([
µA

CµA + d

]
,

[
ΣAA ΣAAC

T

CΣAA ΣB|A +CΣAAC
T

])
. (3.15)

We see that if we wish to marginalize YA from Y in Expression (3.15), we get back the
original distribution N (µA,ΣAA). We also now see the marginal distribution of YB:

YB ∼ N (CµA + d,ΣB|A +CΣAAC
T), (3.16)

which we can confirm by using the law of total expectation and variance:

E[YB] = E[E(YB | YA)] = E[CYA + d]

= CE[YA] + d = CµA + d

Var[YB] = E[Var(YB | YA)] + Var[E(YB | YA)],= E[ΣB|A] + Var[CYA + d]

= ΣB|A +CVar[YA]C
T = ΣB|A +CΣAAC

T.

We can also confirm the off-diagonal terms in the covariance matrix in Expression (3.15)
as follows

Cov[YB,YA] = Cov[E(YB | YA),YA] = Cov[CYA + d,YA] = CVar[YA] = CΣAA,

34 CHAPTER 3. METHODS

which coincides of the lower left partition of the covariance matrix in Expression (3.15).

Finally, we are interested in the conditional distribution YA | YB, which is the
opposite of what we are given in Expression (3.14). Here, we can think of YA being the
hidden state X, and YB is the observation O which depends on the hidden state. We
find the conditional distribution YA | {YB = yB} ∼ N (µA|B,ΣA|B) by combining the
result in Expression (3.13) and (3.15):

µA|B = µA +ΣABΣ
−1
BB(yB − µB)

= µA + (ΣAAC
T)(ΣB|A +CΣAAC

T)−1(yB − (CµA + d)) (3.17)

= µA +K(yB − (CµA + d))

ΣA|B = ΣAA −ΣABΣ
−1
BBΣBA

= ΣAA − (ΣAAC
T)(ΣB|A +CΣAAC

T)−1(CΣAA) (3.18)

= (I−KC)ΣAA

K = ΣAAC
T(ΣB|A +CΣAAC

T)−1, (3.19)

where I is the identity matrix.

We now show the KF approach for the LDS. That is, we assume a state-observation
model where the conditional distributions are all linear Gaussians. The dynamical state
is the N -vector Y(t) and the observation state is the L-vector O(t). The model is fully
described in Expression (2.10) and has the model parameters ν, Γ, A, b, Q, C, d and
R.

Now, since Y is continuous, the filtered estimate is given by the density

σ(t)(y) = pY(t)(y | o(1:t)) = f(y;µ(t),Σ(t)), y ∈ RN .

The prediction step σ(·t+1)(·) is computed as

σ(·t+1)(y) =

∫

z∈RN

pY′(y | Y = z)σ(t)(z) dz

=

∫

z∈RN

pY(t+1)(y | Y(t) = z,o(1:t))pY(t)(z | o(1:t)) dz

=

∫

z∈RN

f(y;Az+ b,Q)f(z;µ(t),Σ(t)) dz

= f(y;µ(·t+1),Σ(·t+1)), y ∈ RN ,

where

µ(·t+1) = Aµ(t) + b;

Σ(·t+1) = Q+AΣ(t)AT.
(3.20)

Here, we used the result from Expression (3.14), (3.15) and (3.16), together with the
conditional independence shown in Figure 3.3a.

3.3. CONTINUOUS - KF 35

The condition step σ(t+1)(·) is computed as

σ(t+1)(y) = pY(t+1)(y, | o(t+1),o(1:t))

∝ p(o(t+1) | Y(t+1) = y,o(1:t))pY(t+1)(y | o(1:t))
= f(o(t+1);Cy + d,R)f(y;µ(·t+1),Σ(·t+1))

⇒ σ(t+1)(y) = f(y;µ(t+1),Σ(t+1)), y ∈ RN ,

where

K(t+1) = Σ(·t+1)CT(R+CΣ(·t+1)CT)−1;

µ(t+1) = µ(·t+1) +K(t+1)(o(t+1) − (Cµ(·t+1) + d));

Σ(t+1) = (I−K(t+1)C)Σ(·t+1).

(3.21)

Here, we used the result from Expression (3.17), (3.18) and (3.19), together with
the conditional independence shown in Figure 3.3b. Notice the matrix K(t+1) in Ex-
pression (3.21). This is called the Kalman gain, and we can think of it as a weight
that determines how important the new observation o(t+1) is when estimating the mean
µ(t+1), e.g. if the Kalman gain is a zero-matrix, then we do not include the observation
in the calculation, we simply get µ(t+1) = µ(·t+1).

We illustrate the KF with an example, where we wish to track an object moving

in the xy-plane. We let Y(t) = (X(t), Y (t), V
(t)
x , V

(t)
y)T, where X(t), and Y (t) are (x, y)-

coordinates, and V
(t)
x and V

(t)
y are the x and y-component velocities such that the abso-

lute velocity is V (t) =

√
(V

(t)
x)2 + (V

(t)
y)2. Also, we let O(t) = (O

(t)
x , O

(t)
y)T, where O

(t)
x

and O
(t)
y are the observed (x, y)-coordinates originating from GPS data. The parameters

are

ν =

0
0
0
0

 , Γ =

502 0 0 0
0 502 0 0
0 0 202 0
0 0 0 202

 ;

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , b =

0
0
0
0

 , Q =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ;

C =

[
1 0 0 0
0 1 0 0

]
, d =

[
0
0

]
, R =

[
52 0
0 52

]
,

(3.22)

where ∆t is the time difference between each time step, which we set equal to 1. The
mean of Y(t+1) | {Y(t) = y} is thus

Ay + b =

x+∆t · vx
y +∆t · vy

vx
vy

 ,

36 CHAPTER 3. METHODS

which satisfies the assumption of a constant velocity model. But this is only an approx-
imation, as the covariance matrix is non-zero for vx and vy. This is to allow for some
Gaussian noise to the velocity-components account for the approximation we make. A
simulation of this model is shown in Figure 3.5a, where we see the moving object starting
from the right side, and moves towards the left side. The motion is quite straight as
expected because of the low variance of the velocity components in Q. We see that the

60

80

100

-300 -200 -100 0
x

y

observation true

(a) The true position in blue, and observed position in red.

60

80

100

-300 -200 -100 0
x

y

filtered .95 ellipse observation true

(b) Filtered estimate added, shown as 0.95 confidence ellipses.

Figure 3.5: KF example, where we are tracking the position of an object moving in the
xy-plane.

observations (red crosses) jumps on each side of the trajectory due to the noise in R.
The estimate from the KF is shown in Figure 3.5b where we have used 0.95 confidence

ellipses. The area of the ellipses are larger on the right side than the left side. This is
because we do not have any knowledge of the direction of the moving object yet. As
we start to get more observations, we are more certain in which direction the object is
moving, and the area of the ellipse is reduced.

3.4 Hybrid - SLDS

Getting the filtered estimates on HMMs and KFs are straight forward. For the discrete
case with HMMs we get a complexity of O(tM2), where t is the number of time step

3.4. HYBRID - SLDS 37

and M is the number of hidden states. For the continuous case with KFs we get a
complexity of O(tmax{N,L}3), where N is the length of the hidden vector Y and L
is the length of the observed vector O. For hybrid networks, where discrete variables
may only have discrete parents while continuous variables can have both continuous and
discrete parents, computing the closed form filtered estimate turns out to be problematic,
and one must instead turn to heuristic approaches.

3.4.1 The problem with hybrid DBNs

To demonstrate the problem, we use the DBN shown in Figure 3.6. The conditional

S(1)

Y(1)

S(2)

Y(2)

S(3)

Y(3)

S(4)

Y(4) . . .

Figure 3.6: Simple hybrid DBN, where S is discrete and Y is continuous.

probability distributions for this network is given by

Y(1) | {S(1) = s} ∼ N (ν,Γs)

Y′ | {S′ = s,Y = y} ∼ N (Asy + bs,Qs)

P (S′ | S) = P (S′) = (pi) ∈ RM

(Initial distribution)

(Transition model)

(Transition/Marginal model).

(3.23)

In this network there is no observation model, so the forward algorithm reduces to only
performing the prediction steps recursively, and skips the condition step. We have also
omitted the edges between the discrete variables to make the following computation
easier to follow.

Say we wish to compute the marginal distribution of Y(t), which we start off by
computing the base case:

σ(1)(s,y) = P (S(1) = s)× pY(1)(y | S(1) = s) = psf(y;νs,Γs).

If we wish to find the marginal distribution of Y(1), we can simply sum over s, that is,

σ(1)(y) =
M∑

s=1

σ(1)(s,y) =
M∑

s=1

psf(y;νs,Γs),

which we can see is a Gaussian mixture, consisting of a weighted combination of M
multivariate Gaussian densities. Let us continue, where we now try to compute the
filtered estimate for t = 2.

Now, following the algorithm, we compute the prediction step as shown in Expres-
sion (3.4), to get the predicted, (in this case, also filtered) estimate at t = 2. Note,

38 CHAPTER 3. METHODS

that the full transition model P (S′) = P (S′ | S) and py′(Y′ | S′,Y), can be written
compactly as follows:

P(S′)P(Y′ | S′,Y) = P(S′ | S,Y)P(Y ′ | S′, S,Y) = P(S′,Y′ | S, Y),

where we use calligraphic P(Y) to cover both probabilities P (Y = y) and densities
pY (y). The filtered estimate is:

σ(2)(s,y) =

M∑

j=1

∫

RN

P(S′ = s,Y′ = y | S = j,Y = z)σ(1)(j, z) dz

=
M∑

j=1

∫

RN

psf(y;Asz+ bs,Qs)pjf(z;νj ,Γj) dz

= ps

M∑

j=1

pj

∫

RN

f(y;Asz+ bs,Qs)f(z;νj ,Γj) dz

= ps

M∑

j=1

pjf(y;Asνj + bs,Qs +AΓjA
T),

where we in the last equality used the result from Expression (3.16). Now, we can see
that the marginal distribution of Y(2) is an even larger mix:

σ(2)(y) =

M∑

s=1

σ(2)(s,y) =

M∑

s=1

M∑

j=1

pspjf(y;Asνj + bs,Qs +AsΓjA
T),

which has the form

σ(2)(y) =

M2∑

k=1

w
(2)
k f(y;µ

(2)
k ,Σ

(2)
k),

a combination of M2 Gaussian densities! For the general case, we have that the filtered
estimate for Y at time t has the following form

σ(t)(y) =

Mt∑

k=1

w
(t)
k f(y;µ

(t)
k ,Σ

(t)
k),

a mixture of M t Gaussian densities! The mixture size grows exponentially with time.
For only M = 2 classes, the filtered estimate for Y(30) becomes a mixture of more
than one billion Gaussian densities! Thus, exact inference on DBNs where continuous
variables have discrete parents is not feasible. There are many proposed solutions for
this, including both deterministic and stochastic approaches (Blom & Bar-Shalom, 1988;
Murphy, 1998; Lerner, 2003; Koller & Friedman, 2009). The main idea for the deter-
ministic approach is to find a way to set an upper bound to the number of Gaussian
mixtures per time step. This is explained in detail in Section 3.4.3. First, we find the
analytical expressions for exact inference of the SLDS.

3.4. HYBRID - SLDS 39

3.4.2 Exact inference

We remind ourselves that the variables in the SLDS has the following CPDs:

P (S(1)) = π = (πi) ∈ RM

Y(1) | {S(1) = s} ∼ N (νs,Γs)

P (S′ | S) = P = (pij) ∈ RM×M

Y′ | {S′ = s′,Y = y} ∼ N (As′y + bs′ ,Qs′)

O | {S = s,Y = y} ∼ N (Csy + ds,Rs)

(Initial distribution)

(Initial distribution)

(Transition model)

(Transition model)

(Observation model).

(3.24)

The general form of the filtered estimate is

σ(t)(s) = P (S(t) = s | o(1:t)) = p(t)s , s = 1, . . . ,M (3.25)

σ(t)(y) = pY(t)(y | o(1:t)) =
Mt∑

k=1

w
(t)
k f(y;µ

(t)
k ,Σ

(t)
k), y ∈ RN (3.26)

where the index k uniquely represents each possible history

s(1:t)(k) = {S(t) = s(t)(k), S(t−1) = s(t−1)(k), . . . , S(1) = s(1)(k)}. (3.27)

The above representation can be made possible with the following bijective relation
between the index k and the history,

s(1:t)(k) = {s(i)(k) : i = 1, . . . , t} where s(t)(k) =

(⌊
k − 1

M t−1

⌋
mod M

)
+ 1. (3.28)

We also make use of a different parameterization of the indices when applying the forward
algorithm. That is, j | {S(t) = s}, where j represents the history at times 1, . . . , t − 1,
and S(t) = s represent the history at time t. There is a bijection between the indices
j | {S(t) = s} and k as follows:

k 7→ j | {S(t) = s} for

{
s =

⌊
k−1
Mt−1

⌋
+ 1,

j =
(
(k − 1) mod M t−1

)
+ 1.

j | {S(t) = s} 7→ k for k = (s− 1)M t−1 + j

(3.29)

Table 3.1 demonstrates the M t possible histories for t = 3 and M = 2 along with the
indices 1 ≤ k ≤ M t, 1 ≤ j ≤ M t−1 and 1 ≤ s ≤ M for each respective history. To not
get overwhelmed by long subscripts, we often reduce j | {S(t) = s} to simply j | s, since
the time step is implicitly given by the variables we are subscripting, e.g.

v
(t)

j|{S(t)=s} = v
(t)
j|s.

40 CHAPTER 3. METHODS

Table 3.1: The index k represents the k’th possible history of the states S(t) for t = 1, 2, 3,
where we have M = 2 possible states per time step.

k j | {S(3) = s} s(3)(k) s(2)(k) s(1)(k) s(1:3)(k)

1 1 | {S(3) = 1} 1 1 1 {S(3) = 1, S(2) = 1, S(1) = 1}
2 2 | {S(3) = 1} 1 1 2 {S(3) = 1, S(2) = 1, S(1) = 2}
3 3 | {S(3) = 1} 1 2 1 {S(3) = 1, S(2) = 2, S(1) = 1}
4 4 | {S(3) = 1} 1 2 2 {S(3) = 1, S(2) = 2, S(1) = 2}
5 1 | {S(3) = 2} 2 1 1 {S(3) = 2, S(2) = 1, S(1) = 1}
6 2 | {S(3) = 2} 2 1 2 {S(3) = 2, S(2) = 1, S(1) = 2}
7 3 | {S(3) = 2} 2 2 1 {S(3) = 2, S(2) = 2, S(1) = 1}
8 4 | {S(3) = 2} 2 2 2 {S(3) = 2, S(2) = 2, S(1) = 2}

When we apply the forward algorithm, we combine the filtered estimate for S(t) and
Y(t) as follows

σ(t)(s,y) = σ(t)(s)σ(t)(y | s) = p(t)s

Mt−1∑

j=1

v
(t)
j|sf

(
y;µ

(t)
j|s,Σ

(t)
j|s

)
, (3.30)

Here, the Gaussian mixture is conditioned on the most recent possible state S(t) = s.
This is why it is useful to have an alternative representation of the index k. We show
the relation between the weights conditioned on S(t),

v
(t)
j|s = P (s(1:(t−1))(j) | S(t) = s,o(1:t)), (3.31)

and the unconditioned weights

w
(t)
k = P (s(1:t)(k) | o(1:t)), (3.32)

by deriving the marginal filtered estimate σ(t)(y) from the joint σ(t)(s,y):

σ(t)(y) =
M∑

s=1

σ(t)(s)σ(t)(y | s)

=

M∑

s=1

p(t)s

Mt−1∑

j=1

v
(t)
j|sf

(
y;µ

(t)
j|s,Σ

(t)
j|s

)

=
M∑

s=1

Mt−1∑

j=1

σ(t)(s)v
(t)
j|sf

(
y;µ

(t)
j|s,Σ

(t)
j|s

)

=

Mt∑

k=1

σ(t)(s(t)(k))v
(t)
k f(y;µ

(t)
k ,Σ

(t)
k)

=

Mt∑

k=1

w
(t)
k f(y;µ

(t)
k ,Σ

(t)
k),

3.4. HYBRID - SLDS 41

that is,

w
(t)
k = σ(t)(s(t)(k))v

(t)
k . (3.33)

As we saw in Section 3.4.1, the increase of Gaussian components happens in the
prediction step, so the predicted estimate has the following form

σ(·t+1)(s,y) = p(·t+1)
s

Mt∑

j=1

v
(·t+1)
j|s f

(
y;µ

(·t+1)
j|s ,Σ

(·t+1)
j|s

)
, (3.34)

σ(·t+1)(s) = p(·t+1)
s , s = 1, . . . ,M, (3.35)

σ(·t+1)(y) =
Mt+1∑

k=1

w
(·t+1)
k f(y;µ

(·t+1)
k ,Σ

(·t+1)
k), y ∈ RN . (3.36)

That is, the predicted estimate of Y (t+1) is a mixture of M t+1 Gaussian densities. Now
we have the form of the filtered estimate, and the predicted estimate given in Expres-
sion (3.30) and (3.34). From the general recursive formula of the predicted step given
by Expression (3.4), we have that

σ(·t+1)(s,y) =
M∑

m=1

∫

RN

P(S′ = s,Y′ = y | S = m,Y = z)σ(t)(m, z) dz

=
M∑

m=1

∫

RN

pmsf(y;Asz+ bs,Qs)p
(t)
m

Mt−1∑

n=1

v
(t)
n|mf

(
z;µ

(t)
n|m,Σ

(t)
n|m

)
dz

=

M∑

m=1

pmsp
(t)
m

Mt−1∑

n=1

v
(t)
n|m

∫

RN

f(y;Asz+ bs,Qs)f
(
z;µ

(t)
n|m,Σ

(t)
n|m

)
dz

=

M∑

m=1

Mt−1∑

n=1

pmsp
(t)
m v

(t)
n|mf

(
y;Asµ

(t)
n|m + bs,Qs +AsΣ

(t)
n|mA

T
s

)

=
Mt∑

j=1

[
P (S′ = s | S = s(t)(j))σ(t)(s(t)(j))

v
(t)
j f(y;Asµ

(t)
j + bs,Qs +AsΣ

(t)
j AT

s)

]
,

where we in the last equality applied the index mapping given by Expression (3.29). We
are close to having the predicted estimate on the form given in Expression (3.34). We
have

µ
(·t+1)
j|s = Asµ

(t)
j + bs, (3.37)

Σ
(·t+1)
j|s = Qs +AsΣ

(t)
j AT

s , (3.38)

42 CHAPTER 3. METHODS

for j = 1, . . . ,M t and s = 1, . . . ,M , but we still need the predicted estimate p
(·t+1)
s and

the weights v
(·t+1)
j|s . We start by finding p

(·t+1)
s by integrating out Y (t+1) from σ(·t+1)(s,y).

p(·t+1)
s =

∫

RN

σ(·t+1)(s,y) dy

=
M∑

m=1

pmsp
(t)
m

∫

RN

Mt−1∑

n=1

v
(t)
n|mf

(
y;Asµ

(t)
n|m + bs,Qs +AsΣ

(t)
n|mA

T
s

)
dy

=
M∑

m=1

pmsp
(t)
m

If we take a pause and look at this result, we see that this is simply

σ(·t+1)(s) =

M∑

m=1

P (S′ = s | S = m)σ(t)(S(t) = m), s = 1, . . . ,M,

which has exactly the same form as the original formula in Expression (3.4). The weights

v
(·t+1)
j|s are obtained by conditioning on S(t):

σ(·t+1)(y | s) = σ(·t+1)(s,y)

σ(·t+1)(s)

=

∑Mt

j=1 P (S
′ = s | S = s(t)(j))σ(t)(s(t)(j))v

(t)
j f(y;µ

(·t+1)
j|s ,Σ

(·t+1)
j|s)

p
(·t+1)
s

=
Mt∑

j=1

(
P (S′ = s | S = s(t)(j))σ(t)(s(t)(j))

p
(·t+1)
s

v
(t)
j

)
f(y;µ

(·t+1)
j|s ,Σ

(·t+1)
j|s),

which gives us the weights,

v
(·t+1)
j|s =

P (S′ = s | S = s(t)(j))σ(t)(s(t)(j))

p
(·t+1)
s

v
(t)
j , s = 1, . . . ,M, j = 1, . . . ,M t.

(3.39)
That is, for every combinations of the previous history s(1:t)(j) for j = 1, . . . ,M t, we get

a new weight v
(·t+1)
j|s from v

(t)
j , that is reweighted by the term

P (S′ = s | S = s(t)(j))σ(t)(s(t)(j))

p
(·t+1)
s

=
P (S(t+1) = s | S(t) = s(t)(j),o(1:t))P (S(t) = s(t)(j) | o(1:t))

P (S(t+1) = s | o(1:t))
= P (s(t)(j) | S(t+1) = s,o(1:t)),

3.4. HYBRID - SLDS 43

where we in the first equality used that (S(t+1) ⊥ o(1:t) | S(t)), as {S(t)} = Pa(S(t+1))

and o(1:t) ∈ NonDesc(S(t+1)). When we multiply by v
(t)
j , we get

v
(·t+1)
j|s = P (s(t)(j) | S(t+1) = s,o(1:t))v

(t)
j

= P (s(t)(j) | S(t+1) = s,o(1:t))P (s(1:(t−1))(j) | s(t)(j),o(1:t))
= P (s(t)(j) | S(t+1) = s,o(1:t))P (s(1:(t−1))(j) | s(t)(j), S(t+1) = s,o(1:t))

= P (s(1:t)(j) | S(t+1) = s,o(1:t)),

which is exactly what is expected, a likelihood of having the history s(1:t)(j) given that
the next state is S(t+1) = s. In the third equality we used that S(t) d-separates S(t+1)

from S(1:(t−1)).
We have managed to express all parameters in the predicted estimate σ(·t+1)(·) in

terms of the parameters in the filtered estimate σ(t)(·). Now we do the same for the
filtered estimate in the next time step σ(t+1)(·) in terms of the parameters in σ(·t+1)(·).
We start by using the result from Expression (3.5).

σ(t+1)(s,y) ∝ pO(o(t+1) | S = s,Y = y)σ(·t+1)(s,y)

= f(o(t+1);Csy + ds,Rs)p
(·t+1)
s

Mt∑

j=1

v
(·t+1)
j|s f(y;µ

(·t+1)
j|s ,Σ

(·t+1)
j|s)

= p(·t+1)
s

Mt∑

j=1

ṽ
(t+1)
j|s f(y;µ

(t+1)
j|s ,Σ

(t+1)
j|s),

where

µ
(t+1)
j|s = µ

(·t+1)
j|s +K

(t+1)
j|s (o(t+1) − (Csµ

(·t+1)
j|s + ds)) (3.40)

Σ
(t+1)
j|s = (I−K

(t+1)
j|s Cs)Σ

(·t+1)
j|s (3.41)

K
(t+1)
j|s = Σ

(·t+1)
j|s CT

s (Rs +CsΣ
(·t+1)
j|s CT

s)
−1 (3.42)

ṽ
(t+1)
j|s = v

(·t+1)
j|s f(o(t+1);Csµ

(·t+1)
j|s + ds,Rs +CsΣ

(·t+1)
j|s CT

s), (3.43)

where we used that

f(o(t+1);Csy + ds,Rs)f(y;µ
(·t+1)
j|s ,Σ

(·t+1)
j|s)

= p(o(t+1) | Y(t+1) = y, S(t+1) = s)pY(t+1)(y | s(1:t)(j), S(t+1) = s,o(1:t))

= p(o(t+1) | Y(t+1) = y, s(1:t)(j), S(t+1) = s,o(1:t))pY(t+1)(y | s(1:t)(j), S(t+1) = s,o(1:t))

= p(o(t+1) | s(1:t)(j), S(t+1) = s,o(1:t))pY(t+1)(y | o(1:(t+1)), s(1:t)(j), S(t+1) = s)

= f(o(t+1);Csµ
(·t+1)
j|s + ds,Rs +CsΣ

(·t+1)
j|s CT

s)f(y;µ
(t+1)
j|s ,Σ

(t+1)
j|s),

where we in the second equality used the conditional independence in Figure 3.3b, and
in the third equality we used the result from Expression (3.19), (3.17) and (3.18).

44 CHAPTER 3. METHODS

We can find σ(t+1)(s) = p
(t+1)
s in a similar way as we found p

(·t+1)
s , by integrating out

Y(t+1). Now we include the normalizing constant, which is given by Expression (3.6).

σ(t+1)(s) =

∫

RN

σ(t+1)(s,y) dy =

∫

RN

p
(·t+1)
s

∑Mt

j=1 ṽ
(t+1)
j|s f(y;µ

(t+1)
j|s ,Σ

(t+1)
j|s)

p(o(t+1) | o(1:t)) dy

=
p
(·t+1)
s

∑Mt

j=1 ṽ
(t+1)
j|s

p(o(t+1) | o(1:t)) .

Since the denominator is independent of S(t+1), we can write this as

p(t+1)
s = σ(t+1)(s) =

p̃
(t+1)
s∑M

m=1 p̃
(t+1)
m

, (3.44)

where p̃
(t+1)
s = p

(·t+1)
s

∑Mt

j=1 ṽ
(t+1)
j|s and p(o(t+1) | o(1:t)) =

∑M
m=1 p̃

(t+1)
m . The weights

v
(t+1)
j|s are found by conditioning on S(t+1) = s:

σ(t+1)(y | s) = σ(t+1)(s,y)

σ(t+1)(s)

=
p
(·t+1)
s

∑Mt

j=1 ṽ
(t+1)
j|s f(y;µ

(t+1)
j|s ,Σ

(t+1)
j|s)/p(o(t+1) | o(1:t))

p
(t+1)
s

=
p
(·t+1)
s

∑Mt

j=1 ṽ
(t+1)
j|s f(y;µ

(t+1)
j|s ,Σ

(t+1)
j|s)

p̃
(t+1)
s

=
p
(·t+1)
s

∑Mt

j=1 ṽ
(t+1)
j|s f(y;µ

(t+1)
j|s ,Σ

(t+1)
j|s)

p
(·t+1)
s

∑Mt

i=1 ṽ
(t+1)
i|s

=

Mt∑

j=1

 ṽ

(t+1)
j|s

∑Mt

i=1 ṽ
(t+1)
i|s

 f(y;µ

(t+1)
j|s ,Σ

(t+1)
j|s),

that is,

v
(t+1)
j|s =

ṽ
(t+1)
j|s

∑Mt

i=1 ṽ
(t+1)
i|s

, s = 1, . . . ,M, j = 1, . . . ,M t. (3.45)

The complete procedure is shown in Algorithm 1, where

A = {As : s = 1, . . . ,M}, b = {bs : s = 1, . . . ,M}, Q = {Qs : s = 1, . . . ,M},
C = {Cs : s = 1, . . . ,M}, d = {ds : s = 1, . . . ,M}, R = {Rs : s = 1, . . . ,M},
ν = {νs : s = 1, . . . ,M}, Γ = {Γs : s = 1, . . . ,M},

(3.46)

3.4. HYBRID - SLDS 45

and

p(∗) = (p(∗)s) ∈ RM , (w(∗),µ(∗),Σ(∗)) = {(w(∗)
k ,µ

(∗)
k ,Σ

(∗)
k) : k = 1, . . . ,M t}, (3.47)

for (∗) = (·t) and (t). In the prediction step of Algorithm 1, when we compute the

parameters from σ(·t)(s,y), the most expensive computation is forming Σ
(·t)
k for each

possible history s(1:t)(k), as we are dealing with a matrix-matrix product (O(N3)) in
line 21 of the algorithm. This gives a complexity of O(M tN3). In the condition step
of Algorithm 1, when we compute the parameters from σ(t)(s,y), the most expensive

computation is either when we compute the Kalman gain K
(t)
k on line 31, since we have

to compute the inverse of an L × L matrix (O(L3)), or when we compute Σ
(t)
k on line

33 where we have a matrix-matrix product (O(N3)), depending on which of M and
N is largest. This gives a complexity of O(M tmax{N,L}3). In total, computing all
the filtered estimates using the exact method, requires O(tM tmax{N,L}3) number of
operations. It is clear we must find an alternative approximate method which does not
grow exponentially to be able to perform inference on any observation sequence larger
than t = 15.

Algorithm 1 Filter algorithm for SDLS

1: procedure Filter(
θ = {P,A,b,Q,C,d,R,π,ν,Γ} ▷ Model parameters
o(1:T) ▷ Observation sequence

)
2: θH ← {P,A,b,Q} ▷ Model parameters for hidden variables
3: θO ← {C,d,R} ▷ Model parameters for observed variable
4: Θ(·1) ← {π, 1,ν,Γ} ▷ Prior belief state at time 1
5: Θ(1) ← CondStep(θO,Θ

(·1),y(1)) ▷ Belief state at time 1
6: for t = 1, . . . , T − 1 do
7: Θ(·t+1) ← PredStep(θH ,Θ

(t)) ▷ Prior belief state
8: Θ(t+1) ← CondStep(θO,Θ

(·t+1),y(t+1)) ▷ Belief state
9: end for

10: return Θ(1:T)

11: end procedure

3.4.3 Approximate deterministic inference

It is clear from Expression (3.26) that computing the exact filtering estimates as de-
scribed in Algorithm 1 is not possible, because of the exponentially growing mixture.

A natural suggestion would be to restrict the Gaussian mixture to a fixed amount of
Gaussian densities each time step. There are many possibilities when choosing how large
we wish the mixture to be, but typically it would consist of min{Mp−1,M t} Gaussian
densities where p is a positive integer, since the mixture grows by a factor ofM Gaussian
densities per time step. The larger we choose p, the more accurate the mixture would

46 CHAPTER 3. METHODS

12: procedure PredStep(
θH = {P,A,b,Q} ▷ Model parameters for hidden variables
Θ(t) = {p(t),w(t),µ(t),Σ(t)} ▷ Prior belief state

)
13: for s = 1, . . . ,M do

14: p
(·t+1)
s ←∑M

m=1 pmsp
(t)
m ▷ P (S(t+1) = s | o(1:t))

15: for j = 1 . . . ,M t do
16: k ← (s− 1)M t + j ▷ Index for history s(1:(t+1))(k)

17: m←
⌊
j − 1

M t−1

⌋
+ 1 ▷ Index for S(t) = s(t)(k) = s(t)(j) = m

18: w
(·t+1)
k ← pmsw

(t)
j ▷ Weight P (s(1:(t+1))(k) | o(1:t))

19: // Compute moments of the PDF p(y(t+1) | s(1:(t+1))(k),o(1:t))

20: µ
(·t+1)
k ← Asµ

(t)
j + bs

21: Σ
(·t+1)
k ← Qs +AsΣ

(t)
j AT

s

22: end for
23: end for
24: return {p(·t+1),w(·t+1),µ(·t+1),Σ(·t+1)}
25: end procedure

be. Setting p = 1 gives us the most gross approximation where the filtered estimate for
Y(t) would be a single Gaussian.

One important question we must answer, is when we do the approximation. If we
decided to have a mixture of Mp−1 Gaussian densities, then at the prediction step, the
mixture increases to Mp Gaussian densities. Should we approximate here, to go back
to Mp−1 Gaussian densities, or should we do the condition step first? If we choose to
do the approximation in the prediction step, we may have a faster running code than if
we choose to do the approximation in the condition step. However, we may lose some
accuracy choosing to do the approximation before we have conditioned on the newest
observation in the condition step.

Another very important question we must answer is how we approximate. How do
we go from Mp Gaussian densities to Mp−1 Gaussian densities? Assume that we choose
to do the approximation after we have conditioned on the latest observation. Then we
have to do the following approximation step

σ̆(t)(y) =
Mp∑

k=1

w̆
(·t)
k f(y; µ̆

(t)
k , Σ̆

(t)
k) ≈

Mp−1∑

k=1

ŵ
(·t)
k f(y; µ̂

(t)
k , Σ̂

(t)

k) = σ̂(t)(y).

The most straightforward way is to discard the Mp−1(M − 1) lowest weights and nor-
malize the remaining weights. This method is called pruning. However, eventually it is
unavoidable to discard a region where the true Y (t) had taken place. Although there is
a low probability of Y (t) taking a value in this region, it is still possible.

Another more promising method, is to collapse the mixture while conserving the first

3.4. HYBRID - SLDS 47

26: procedure CondStep(
θO = {C,d,R} ▷ Model parameters for observed variable
Θ(·t+1) = {p(·t+1),w(·t+1),µ(·t+1),Σ(·t+1)} ▷ Predicted belief state
o(t+1) ▷ Time t+ 1 observation

)
27: for s = 1, . . . ,M do
28: for j = 1, . . . ,M t do
29: k ← (s− 1)M t + j ▷ Index for history s(1:(t+1))(k)
30: // Compute moments of the PDF p(y(t+1) | s(1:(t+1))(k),o(1:(t+1)))

31: K
(t+1)
k ← Σ

(·t+1)
k CT

s (Rs +CsΣ
(·t+1)
k CT

s)
−1 ▷ Kalman gain

32: µ
(t+1)
k ← µ

(·t+1)
k +K

(t+1)
k (o(t+1) − (Csµ

(·t+1)
k + ds))

33: Σ
(t+1)
k ← (I−K

(t+1)
k Cs)Σ

(·t+1)
k

34: // Compute P(s(1:t)(j),o(t+1) | S(t+1) = s,o(1:t))

35: ṽ
(t+1)
j|s ← w

(·t+1)
k

p
(·t+1)
s

f(o(t+1) | Csµ
(·t+1)
k + ds,Rs +CsΣ

(·t+1)
k CT

s)

36: end for
37: z

(t+1)
s ←∑Mt

j=1 ṽ
(t+1)
j|s ▷ p(o(t+1) | S(t+1) = s,o(1:t))

38: p̃
(t+1)
s ← p

(·t+1)
s z

(t+1)
s ▷ P(S(t+1) = s,o(t+1) | o(1:t))

39: end for
40: L(t+1) ←∑M

j=1 p̃
(t+1)
j ▷ Conditional likelihood p(o(t+1) | o(1:t))

41: ℓ(t+1) ← logL(t+1) ▷ Log-likelihood
42: for s = 1, . . . ,M do

43: p
(t+1)
s ← p̃

(t+1)
s /L(t+1) ▷ P (S(t+1) = s | o(1:(t+1)))

44: for j = 1, . . . ,M t do
45: k ← (s− 1)M t + j ▷ Index for history s(1:(t+1))(k)

46: v
(t+1)
j|s ← ṽ

(t+1)
j|s /z

(t+1)
s ▷ Weight P (s(1:t)(j) | S(t+1) = s,o(1:(t+1)))

47: w
(t+1)
k ← p

(t+1)
s v

(t+1)
j|s ▷ Weight P (s(1:(t+1))(k) | o(1:(t+1)))

48: end for
49: end for
50: return {p(t+1),w(t+1),µ(t+1),Σ(t+1), ℓ(t+1)}
51: end procedure

48 CHAPTER 3. METHODS

two moments (mean and variance). If we have a Gaussian mixture

p(y) =
K∑

i=1

wif(y;µi,Σi),

then the moment matched density p̂(y) = f(y;µ,Σ) has mean and variance

µ =

K∑

i=1

wiµi,

Σ =
K∑

i=1

wiΣi +
K∑

i=1

wi(µi − µ)(µi − µ)T.

(3.48)

The first line in Expression (3.48) seems intuitive as it is simply the weighted average of
each individual mean from the mixture. The second line also has a weighted average of
the variances, but has an additional term that takes into account the “distance” between
each individual density. We see that the larger the distance between the mean µ and
the individual means µi, the larger the extra term becomes.

An example of the two methods is shown in Figure 3.7, where we have a mixture of
two Gaussian densities, f(y; 3, 12) and f(y; 6, 22), with the weights 0.7 and 0.3, respec-
tively. To the left, we see that the mixture is approximated by discarding the density
f(y; 3, 12) because it had the lowest weight. We immediately see that the probability of
Y being greater than 6 is reduced by a lot after the approximation is made, whereas the
moment matching approximation appears to give a more similar probability of Y being
greater than 6. The probabilities are as follows:

P (Y > 6) = 0.1441

P (Y > 6) = 0.0013

P (Y > 6) = 0.1164

(Original mix),

(Collapse by pruning),

(Collapse by moment matching).

In this case, choosing the moment matching method seems to be the better choice, and
this is true in most cases. However, there may be cases where the mixture consists of
very distinct densities as in Figure 3.8, representing different hypotheses, and we wish
to determine which hypothesis seems more probable. By pruning, we reject that Y
lies in the neighborhood around 60, but if we collapse by moment matching, we get
a bit of both hypotheses. However, the most likely value Y can take in the moment
matched approximation is Y = 39, that lies in a region of which the original mixture
has a extremely low probability. Lerner (2003) proposes an algorithm that combines
the pruning method and the moment matching method having a tuning parameter.
However, we choose to continue with the moment matching method as it often works
great in practice.

Collapsing by moment matching to maintain a mixture of Mp−1 Gaussian densi-
ties in each time step is called Generalized Pseudo Bayesian p, or GPB(p) (Blom &
Bar-Shalom, 1988; Murphy, 2002; Lerner, 2003; Koller & Friedman, 2009). The most

3.4. HYBRID - SLDS 49

Discard lowest weight Moment matching

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.0

0.1

0.2

0.3

0.4

x

wif(x;µi, σ
2
i) f(x; µ̂, σ̂2)

∑
iwif(x;µi, σ

2
i)

Figure 3.7: Two approximations of a Gaussian mixture, where the gray curves are
the mixture components, the black curves are the mixture and the purple curves are
the collapsed approximations. The approximation to the left is made by choosing the
Gaussian density with the highest weight. The approximation to the right is done by
choosing a single Gaussian density with the same mean and variance as the mixture.

Discard lowest weight Moment matching

0 25 50 75 100 0 25 50 75 100

0.0

0.1

0.2

0.3

0.4

x

wif(x;µi, σ
2
i) f(x; µ̂, σ̂2)

∑
iwif(x;µi, σ

2
i)

Figure 3.8: Another example of two approximations of a Gaussian mixture.

common approximations are choosing p = 1 and 2, giving them the names GPB1 and
GPB2. A schematic of the two methods are shown in Figure 3.9.

50 CHAPTER 3. METHODS

{p(t)s }Ms=1,µ
(t),Σ(t)

Predict

{p(·t+1)
s ,µ

(·t+1)
s ,Σ

(·t+1)
s }Ms=1

Conditiono(t+1)

{p(t+1)
s , µ̂(t+1)

s , Σ̂
(t+1)

s }Ms=1

Collapse

{p(t+1)
s }Ms=1,µ

(t+1),Σ(t+1)

(a) GPB1 O(M).

{p(t)s ,µ(t)
s ,Σ

(t)
s }Ms=1

Predict

{p(·t+1)
s , {v(·t+1)

j|s ,µ
(·t+1)
j|s ,Σ

(·t+1)
j|s }Mj=1}Ms=1

Conditiono(t+1)

{p(t+1)
s , {v(t+1)

j|s ,µ
(t+1)
j|s ,Σ

(t+1)
j|s }Mj=1}Ms=1

Collapse

{p(t+1)
s ,µ

(t+1)
s ,Σ

(t+1)
s }Ms=1

(b) GPB2 O(M2).

Figure 3.9: The schematic shows one cycle of the filtering steps using the Generalized
Pseudo Bayesian approximations GPB1 and GPB2. The collapse happens after the
condition step.

The simplest one, the GPB1, starts with a single Gaussian density. Then in the
prediction step, it increases to a mixture of M Gaussians densities having a computa-
tional cost of O(MN3). Then in the condition step the computational cost is similar,
depending on whether N or L is largest, giving a cost of O(M max{N,L}3). We cur-
rently have a mixture of M Gaussians which we need to collapse. As we are collapsing
to a single Gaussian, this is straight forward, where we moment project directly using
Expression (3.48). This has a cost of O(MN2) because of the summation of the variance
terms. Thus, the GPB1 method has a total cost of O(tM max{N,L}3). It is now linear
in terms of the number of classesM , compared to the exponentialM t for exact inference.

The GPB2 starts off similar to GPB1, but with a mixture of M Gaussians instead.
This mixture increases toM2 Gaussians which we have to collapse in after the condition
step. We have to collapse the mixture from M2 Gaussians to M Gaussians. It seems
that we cannot moment project this using Expression (3.48), since that would give us a
single Gaussian. The trick is to use the alternative indexing, shown in Expression (3.29),
where we condition on the most recent S(t). Here we must use the conditioned weights

v
(t)
j|s instead of w

(t)
k in the collapse, and moment project as follows:

M∑

j=1

v
(t)
j|sf(y;µ

(t)
j|s,Σ

(t)
j|s) ≈ f(y;µ

(t)
s ,Σ

(t)
s), for s = 1, . . . ,M.

3.4. HYBRID - SLDS 51

{p(t)s ,µ(t)
s ,Σ

(t)
s }Ms=1

Predict pt. 1

{p(·t+1)
s , {v(·t+1)

j|s ,µ
(t)
j ,Σ

(t)
j }Mj=1}Ms=1

Collapse

{p(·t+1)
s , µ̆(·t+1)

s , Σ̆
(·t+1)
s }Ms=1

Predict pt. 2

{p(·t+1)
s ,µ

(·t+1)
s ,Σ

(·t+1)
s }Ms=1

Conditiono(t+1)

{p(t+1)
s ,µ

(t+1)
s ,Σ

(t+1)
s }Ms=1

Figure 3.10: The schematic shows one cycle of the filtering steps using the IMM approach,
(O(M)).

The GPB2 method is closer to the exact solution but the cost has increased by a factor
of M compared to GPB1, that is, it is quadratic in terms of M . This leaves us with a
trade-off between computational performance and accuracy of the approximation. For
large M , GPB2 may be too computationally demanding, forcing us to go for the more
gross approximation of GPB1. What if both GPB2 is too expensive, and GPB1 gives a
too poor filtered estimate?

There is a third way, where we get the best of both methods. That is, we get
computational cost which is linear in M as in GPB1, but we get a Gaussian mixture of
M Gaussian densities as in GPB2. This method is called Interactive Multiple Models
or IMM (Blom & Bar-Shalom, 1988). Here we do the collapsing step in the beginning
of the prediction step, instead of after the condition step. At first, this may seem like
we are doing the GPB1 approach, with the collapse in the beginning instead of the end,
but there is a subtle difference. A schematic is shown in Figure 3.10. In the prediction

step, we first compute the conditioned weights {v(·t+1)
j|s }Mj=1 for s = 1, . . . ,M . That is,

we get a unique set of weights for each s, that we use to collapse the filtered parameters

52 CHAPTER 3. METHODS

µ
(t)
k ,Σ

(t)
k :

M∑

j=1

v
(·t+1)
j|s f(y;µ

(t)
j ,Σ

(t)
j) ≈ f(y; µ̆(·t+1)

s , Σ̆
(·t+1)
s) for s = 1, . . . ,M.

That is, we use the same set of M Gaussians for each s, giving us a new set of M
Gaussians, because of the different weights vj|s. To finish off the prediction step, we
compute

µ(·t+1)
s = Asµ̆

(·t+1)
s + bs,

Σ(·t+1)
s = Qs +AsΣ̆

(·t+1)
s AT

s ,
s = 1, . . . ,M,

which if you compare to Algorithm 1 on lines 20 and 21, we see that in IMM, we do
the computation for each s = 1, . . . ,M , instead of for each s, j = 1, . . . ,M as in GPB2,
saving us from having a quadratic cost in M .

3.4.4 Approximate stochastic inference - Particle filtering

As we have seen, doing inference on SLDSs requires a lot of analytical computation
beforehand and it is time consuming to implement the algorithms. This motivates
alternative stochastic approaches. Stochastic approaches are in general very flexible in
terms of the model, and often requires little to no analytical computation beforehand.
This is also the case for the stochastic method we show in this section, the particle
filtering algorithm (Murphy, 2002; Lerner, 2003; Koller & Friedman, 2009). There are
many variants of the particle filter, but the simplest and the most common one is the
likelihood weighting, which we now show.

The SLDSs assumes that the continuous part of the transition model Y′ | {S′,Y}
is linear Gaussian, similarly for for the observation model Y | {S,Y}, but the parti-
cle filtering algorithm can handle non-linearity. The basic idea of the particle filter is
shown in Figure 3.11. We assume we have B samples {s(t)[b],y(t)[b]}Bb=1 which we call
particles, that are drawn from the filtered estimate σ(t)(s,y). Then, for each parti-
cle (s(t)[b],y(t)[b]), we draw one particle (s(·t+1)[b],y(·t+1)[b]) from the transition model
P(S′,Y′ | S,Y), which gives us B new particles. We now have an unfiltered set of
particles for time t+ 1, that are drawn from the predicted estimate σ(·t+1)(s,y). These
are the particles from the top row in Figure 3.11. The next step is to associate each
particle with a weight w(t+1)[b] which indicates how likely it is to observe o(t+1) when
the hidden state is given by the current particle. That is,

w(t+1)[b] = P(o(t+1) | y(t+1)[b], s(t+1)[b]), (3.49)

which is shown in the middle row in Figure 3.11. Thus, we have a way of ranking the
particles based on how “good” they are. That is, particles that receive a high weight
are particles that explain the evidence (o(t+1)) better. We then bootstrap the indices
b = 1, . . . , B using the the weights, to select the most likely particles at time t + 1,

3.4. HYBRID - SLDS 53

Sample B particles (y(t+1), s(t+1))

Get weights from p(o(t+1) | y(t+1), s(t+1))

Resample using weights

Figure 3.11: Particle filtering O(B). The equal-sized circles in the top row represents
the B particles sampled from the transition model. The particles then get a weight from
inserting them into the observation model together with the observation o(t+1), where
the red curve represents the likelihood of getting the different particles.

which is shown in the bottom row in Figure 3.11. Then this cycle repeats. This gives a
complexity of (B) for each time step, which for any reasonable size of B gives a higher
running time than the deterministic approximations.

One problem with this simple approach, is that the particle randomly shoots out a
new particle at the next time step without considering the previous observations, and if
we are “lucky”, the generated particle matches the observation by chance. However, we
choose to give it a try in the upcoming example..

3.4.5 Comparison

The following example is inspired by Meuter et al. (2009). Bob is in his car, on his way
to visit his friend Alice. Bob is currently the only car on the freeway so he decides to
challenge Alice with a guessing game. He starts to share his location with Alice, such
that she receives GPS data every second. The freeway has three lanes, and he wants
her to use the GPS data to guess which lane he is switching to. Since the freeway is
a straight line, Alice thinks this will be an easy task and accepts the challenge. First
she transforms the GPS-coordinates to a value that determines the shortest (signed)
distance between the car and the right shoulder of the freeway in meters. If the data
point is on the right side of the right shoulder, we get a negative distance. The total
road width is 10.5 meters, so each lane is 3.5 meters wide.

Alice sets up the following model: Let S(t) ∈ {1, 2, 3} be the lane Bob is driving on,
where 1 is the lane next to the right shoulder, and 3 is the lane furthest away from the
right shoulder. Let Y (t) be the distance between Bob’s car and the right shoulder, and
similarly let O(t) be the observed distance between Bob’s car and the right shoulder.
Bob tells Alice how long he expects to stay on each lane, so Alice sets the following

54 CHAPTER 3. METHODS

parameters

π =

1/3
1/3
1/3

 , P =

0.99 0.01 0
0.01 0.98 0.01
0 0.01 0.99

 ;

ν1 = 1.75, ν2 = 5.25, ν3 = 8.75, Γ1 = Γ2 = Γ3 = 1;

As = 0.8, bs = (1−As)νs, Qs = .022, s = 1, 2, 3;

C = 1, d = 0, R = 22.

(3.50)

That is

Y (1) | {S(t) = s} ∼ N (νs,Γs)

Y ′ | {S′ = s′, Y = y} ∼ N (As′y + bs′ , Qs′)

O | {Y = y} ∼ N (Cy + d,R) = N (y, 22).

(3.51)

The reason for choosing bs = (1−As)νs, is that we want the limiting mean, µ(∞) to
converge to νs, so we solve for bs the following equation, (ignoring the switching state
for the moment):

µ(∞) = lim
t→∞

E[Y (t+1)] = lim
t→∞

E[E(Y (t+1) | Y (t))] = lim
t→∞

AE[Y (t)] + b

= Aµ(∞) + b

⇒ b = (1−A)µ(∞).

(3.52)

Figure 3.12 shows Bob’s driving pattern for 200 seconds. He starts at the third lane
for about fifty seconds before he suddenly switches to the second lane, and finally he
switches to the first lane. We also see the data points that Alice receives from Bob
(crosses).

0

4

8

12

0 50 100 150 200
t (seconds)

d
(m

et
er
s)

obs

lane

1

2

3

Figure 3.12: The true (solid line) and measured (crossed points) displacement from the
right shoulder of the freeway. The three lanes are separated by the black horizontal lines.

Alice knows that 200 data points is too much to do exact inference, so she decides
to try out GPB1, GPB2, IMM as well as particle filtering. The results are shown in

3.4. HYBRID - SLDS 55

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
t (seconds)

σ
(t
) (
s)

lane

1

2

3

(a) Filtered estimate of the lane switches.

0

4

8

12

0 50 100 150 200
t (seconds)

d
(m

et
er
s)

.95 CI

mean E[Y (t) | o(1:t)]

(b) Filtered estimate of the displacement from the right shoulder of the road.

Figure 3.13: Filtered estimate using GPB1.

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
t (seconds)

σ
(t
) (
s)

lane

1

2

3

(a) Filtered estimate of the lane switches.

0

4

8

12

0 50 100 150 200
t (seconds)

d
(m

et
er
s)

.95 CI

mean E[Y (t) | o(1:t)]

(b) Filtered estimate of the displacement from the right shoulder of the road.

Figure 3.14: Filtered estimate using GPB2.

56 CHAPTER 3. METHODS

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
t (seconds)

σ
(t
) (
s)

lane

1

2

3

(a) Filtered estimate of the lane switches.

0

4

8

12

0 50 100 150 200
t (seconds)

d
(m

et
er
s)

.95 CI

mean E[Y (t) | o(1:t)]

(b) Filtered estimate of the displacement from the right shoulder of the road.

Figure 3.15: Filtered estimate using IMM.

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
t (seconds)

σ
(t
) (
s)

lane

1

2

3

(a) Filtered estimate of the lane switches.

0

4

8

12

0 50 100 150 200
t (seconds)

d
(m

et
er
s)

.95 CI

mean E[Y (t) | o(1:t)]

(b) Filtered estimate of the displacement from the right shoulder of the road.

Figure 3.16: Filtered estimate using particle filtering using B = 100 particles.

3.5. LINEARIZATION OF NONLINEAR DYNAMICAL SYSTEMS 57

Figure 3.13 to 3.16. Alice sees that the results from GPB2, IMM and the particle filter
all agrees that Bob is starting at lane 3, then switches to lane 2 at around sixty seconds,
and then swaps to lane 1 at around 155 seconds, whereas the GPB1 approximation is
a bit more uncertain, especially in the middle where all lanes are almost equally likely.
The lane switches that Alice guesses are correct, but she detects the switches about
10-20 seconds late. This is due to the noisy GPS data from Bob’s car. Had it been less
noisy, the filtering algorithm would detect the switch sooner. Notice the 0.95 confidence
interval in Figure 3.13b. It is much smoother in GPB1 than the others. This is explained
by that the GPB1 always collapses to “one belief”, whereas the others approximations
are still considering other possibilities in the mixture.

We see that the approximations works well in this example, but how well? By
using the same parameters as from the example, we generate 50 simulations for t = 10
time steps. The reason for this low number of time steps is so we can compare the
approximations with the exact inference. Figure 3.17 shows the accuracy of the switching
state (lane) for all approximations, together with the exact filtered estimate, as well as
the root mean square error for the dynamic state (displacement from the right shoulder).
From worst to best on accuracy, we have the particle filter for 50 particles at the gives
the worst accuracy, which is followed by the particle filter for 200 particles. That is, all
of the deterministic approaches surpasses the particle filter on accuracy. GPB1 is next
on the list, and we see that GPB2 and IMM performs equally as well. When comparing
with the exact approach, they overlap. This shows that due to the randomness in the
process, the history only a few time steps back is not crucial for determining the correct
current state.

From worst to best on the root mean square error, the GPB1 performs the worst,
whereas the remaining approximations perform about the same, and they also overlap
with the exact approach. The reason why the particle filter did so well here might be
explained by the curse of dimensionality. In this comparison the hidden dynamic variable
was a univariate variable, and missing the “correct state” is less likely to be a complete
miss compared to if the dynamic variable was multivariate. Whereas missing the correct
switching state is in fact a complete miss, and these misses are easier to see when looking
at the accuracy.

As GPB2 and IMM performs equally well, and since IMM is more efficient this is the
most favorable choice (of the ones we have explored) when dealing with more complex
SLDSs.

3.5 Linearization of Nonlinear Dynamical Systems

We have until now only dealt with CLGs when we have continuous variables, but unfor-
tunately many real world problems have nonlinear dependencies between the variables.
For LDSs this means that we do not end up with any Gaussians, and for SLDSs this
means we do not have a mixture of Gaussians any longer.

There are several approaches to deal with the nonlinearity, the EKF is the traditional
approach, but there exists other approaches that are more sophisticated and tackles the

58 CHAPTER 3. METHODS

rmse

accuracy

2.5 5.0 7.5 10.0

0.4
0.5
0.6
0.7
0.8
0.9

0.6
0.8
1.0
1.2
1.4

t

method

gpb1

gpb2

imm

pf50

pf200

(a) Score excluding exact inference.

rmse

accuracy

2.5 5.0 7.5 10.0

0.4
0.5
0.6
0.7
0.8
0.9

0.6
0.8
1.0
1.2
1.4

t

method

gpb1

gpb2

imm

pf50

pf200

exact

(b) Score including exact inference.

Figure 3.17: Comparison of the approximations generated from 50 simulations for 10
time steps. The accuracy is computed for the switching state whereas the root mean
square error is computed for the dynamic state. For the particle filter we used 50 particles
(cyan) and 200 particles (magenta).

problem more directly, such as the unscented Kalman filter proposed by Julier and
Uhlmann (1997). Both methods are explained in detail by Lerner (2003, pp. 115–130).
The unscented Kalman filter appears to outperform the EKF as it is more direct and
gives a less biased estimate.

We choose to go with the traditional EKF, as it works well on many nonlinear real
world problems, and EKF is a method which I believe is easier to understand than the
unscented Kalman filter.

Let Y′ be a random vector of length N in a BN with the parent Y with the same

3.5. LINEARIZATION OF NONLINEAR DYNAMICAL SYSTEMS 59

length, and we assume that Y is Gaussian with mean µ and covariance matrix Σ. As-
sume that the CPD of Y′ is Y′ = f(Y), where f : RN → RN is a nonlinear deterministic
function. Assuming that f is deterministic does not restrict the generality of the method,
as we can always add some stochasticity to the function as a source of other random
variables, e.g. if

Y′ =
[√

Y 2
1 + Y 2

2 + ϵ1
sinY1 − cosY2 + ϵ2

]
=

[√
Y 2
1 + Y 2

2

sinY1 − cosY2

]
+ ϵ, ϵ ∼ N (0,Σϵ),

then we can view f as a deterministic function with two vectors f(Y, ϵ).
Our goal is to find a Gaussian approximation for the joint PDF p(y,y′). In the

EKF, we find a linear approximation f̂ to f . That way, we get a CLG, which we know by
Expression (3.15) gives us a joint PDF p(y,y′) that is Gaussian. We use the standard
Taylor expansion around the mean of Y to approximate f(Y′):

Y′ = f(Y) ≈ f̂(Y) = f(µ) +∇fT(µ)(Y − µ), (3.53)

where

∇fT(y) =
[
∇f1(y) . . . ∇fN (y)

]T
=

∂f1(y)
∂y1

. . . ∂f1(y)
∂yN

...
. . .

...
∂fN (y)
∂y1

. . . ∂fN (y)
∂yN

 , (3.54)

is the Jacobian matrix.
Now we connect this to the KF approach. Instead of Y(t+1) | Y(t) being a CLG with

mean AY(t) + b, it is instead a nonlinear function

Y(t+1) = f(Y(t), ϵ(t+1)), ϵ(1), ϵ(2), . . .
iid∼ N (0,Q), (3.55)

where ϵ(t) exclusively encodes the stochasticity in the transition, given Y(t), and where
ϵ(i) and Y(j) are independent for all i, j ≥ 1. We want the filtered estimate at each time
step to be Gaussian N (µ(t),Σ(t)). The general filtering procedure is almost the same as
the general KF, but with the following modifications:

Assume Y(t) | o(1:t) is Gaussian, and we want to perform the prediction step to
estimate Y(t+1) | o(1:t). The linear approximation is thus

Y(t+1) ≈ f̂(Y(t), ϵ(t+1)) = f(µ(t)) +∇fT(µ(t))(Y(t) − µ(t)) + ϵ(t+1),

and by the result from Expression (3.16) Y(t+1) | o(1:t) is approximately Gaussian dis-
tributed N (µ(·t+1),Σ(·t+1)), where

µ(·t+1) = f(µ(t))

Σ(·t+1) = ∇fT(µ(t))Σ(t)∇f(µ(t)) +Q.
(3.56)

Compare this with the predicted estimate of the regular KF given by Expression (3.20),
and we see that ∇fT(µ(t)) has replaced the role of A and is now time dependent, and

60 CHAPTER 3. METHODS

f(µ(t)) has replaced Aµ(t) + b. We emphasize that the result can trivially be extended
to SLDSs, where we have a nonlinear function f s for each switching state s = 1, . . . ,M .
Assuming the observation model is a CLG, the condition step is unaffected, and we use
the result from Expression (3.21) and (3.56). For a nonlinear observation model, we
omit the details as this will not be used, but the procedure is similar.

Chapter 4

Application in motion states

In this Chapter we show how to use noisy position data to classify a motion state, such
as moving at constant acceleration, constant speed or being stationary (not moving).
In Section 4.1 we start by deriving the nonlinear dynamical system for motion in a 2-
dimensional plane, where we assume a constant turn rate and acceleration. Later we
show how we can add new constraints such as constant speed or being stationary. We
follow up with a simulation study where we try to classify whether a car is driving
at constant speed, constant acceleration or is stationary, using noisy position data as
observations. In Section 4.2 we try to apply the same nonlinear dynamical system, but
now with real GPS data taken from a bus trip in Trondheim. Here, the goal is to detect
when we are walking and when we are taking the bus, using position data collected from
a smartwatch. The smartwatch is from the company Garmin, which is a technology
company that specializes in GPS technology for automotive, aviation, marine, outdoor
and sport activities (Garmin, 2022a).

4.1 Deriving the dynamical system

From elementary physics, we have the following equations of motion assuming constant
acceleration:

s(t) = s0 + v0t+
1

2
at2 (4.1)

v(t) = v0 + at, (4.2)

where s(t) is the displacement and v(t) is the velocity at time t. The variable s0 de-
notes the initial displacement s(0) and v0 denotes the initial velocity v(0). Let ∆t be a
constant, denoting a small time interval, e.g. 1 second. Then from Expression (4.1) and
(4.2), we have that

v(t+∆t) = v0 + a(t+∆t) = v0 + at+ a∆t

= v(t) + a∆t,
(4.3)

61

62 CHAPTER 4. APPLICATION IN MOTION STATES

and

s(t+∆t) = s0 + v0(t+∆t) +
1

2
a(t+∆t)2 = s0 + v0t+

1

2
at2 + (v0 + at)∆t+

1

2
a∆t2

= s(t) + v(t)∆t+
1

2
a∆t2,

(4.4)

which we can write as a linear system
[
s(t+∆t)
v(t+∆t)

]
=

[
1 ∆t
0 1

] [
s(t)
v(t)

]
+

[
1
2a∆t

2

a∆t,

]
(4.5)

or

s(t+∆t)
v(t+∆t)
a(t+∆t)

 =

1 ∆t 1

2∆t
2

0 1 ∆t
0 0 1

s(t)
v(t)
a(t)

 , (4.6)

where we have rewritten the constant acceleration as a constant function a(t + ∆t) =
a(t) = a. Expression (4.6) will be our basis in the model formulation of the SLDS in
this chapter.

Let the dynamic state be given by the vector

Y(t) =

Y (t)

V (t)

A(t),

 (4.7)

where the entries correspond to the position, velocity and acceleration of the truck,
respectively. We can describe the motion of the truck in one dimension as follows

y(t+1) =

y(t+1)

v(t+1)

a(t+1)

 =

y(t) +∆tv(t) + 1

2∆t
2a(t)

v(t) +∆ta(t)

a(t) + ϵ
(t)
a

=

1 ∆t 1

2∆t
2

0 1 ∆t
0 0 1

y(t)

v(t)

a(t)

+

0
0

ϵ
(t)
a

 ,

(4.8)

where we add some noise ϵ
(t)
a ∼ N (0, Qa) to the acceleration, to account for the truck

not driving exactly at constant velocity. The variable ∆t is the time difference between
the time steps.

The assumption of a truck driving in a straight direction without any turns is quite
narrow. A more useful model include motion in a two-dimensional plane. A simple
extension is to let

y(t+1) =

x(t+1)

y(t+1)

v
(t+1)
x

v
(t+1)
y

a
(t+1)
x

a
(t+1)
y

=

1 0 ∆t 0 1
2∆t

2 0
0 1 0 ∆t 0 1

2∆t
2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

x(t)

y(t)

v
(t)
x

v
(t)
y

a
(t)
x

a
(t)
y

+

0
0
0
0

ϵ
(t)
ax

ϵ
(t)
ay

. (4.9)

4.1. DERIVING THE DYNAMICAL SYSTEM 63

This however, causes some problems when we assume the model to have constant accel-
eration different than zero, and similarly if we assume a less general, constant velocity,
model, where we assume the velocity to be constant and different than zero.

Assume we want to model a car of which we expect to drive at constant speed, 90
km/h or 25 m/s. Of course, the car might sometimes drive slightly faster and slightly
slower, so we add some noise to the velocity components. In one dimension, we could let

v(t+1) = ϕvv
(t) + 25 · (1− ϕv) + ϵ(t+1)

v , ϵ(t+1)
v ∼ N (0, Qv),

where 0 ≤ ϕv ≤ 1. If ϕ = 0, we have that the velocities V (1), V (2), . . . are independent
with expected value of 25, and if ϕ = 1, we simply have V (t+1) | V (t) ∼ N (V (t), Qv),
which have the marginal expectation E[V (t+1)] = E[V (t)] = · · · = E[V (1)], where we
choose the initial expectation to be E[V (1)] = 25 by assumption. For 0 < ϕ < 1, we see
that we already chose b such that the limiting distribution gives the limiting expectation
of 25 m/s, see the result of Expression (3.52). If we extend to two dimensions instead,

we have the two velocity components V
(t)
x and V

(t)
y . The roads can go in any direction,

so we are forced to let E[V
(t)
x] = E[V

(t)
y] = 0. We still want the speed of the car to have

an expectation of 25 m/s:

E

[√(
V

(t)
x

)2
+
(
V

(t)
y

)2
]
= 25. (4.10)

Assuming V
(t)
x , V

(t)
y

iid∼ N (0,Γ), we need to determine Γ from Expression (4.10), and

further we need to determine Var[V
(t+1)
x | V (t)

x] and Var[V
(t+1)
y | V (t)

y] from Γ. This
means that we are forced to set the variance of the velocity components. This restriction
will often cause the model to have a much too high variance in the resulting speed

(v =
√
v2x + v2y), as we increase the expected speed. Therefore, we instead want to have

the option to set up a model that encodes the (absolute) velocity without decomposing
it into x and y-components, where we are free to adjust the variance ourselves.

The following model is adapted from Kaempchen et al. (2004), where they do an
analysis on Stop-and-Go situations, which has been extensively studied for adapted
cruise control, collision avoidance and collision warning (Vahidi & Eskandarian, 2003).
Kaempchen et al. (2004) propose two models, the free motion model, where we decompose
the velocity and acceleration in x and y-components as we did in Expression (4.9), and
the bicycle model, which we now introduce.

Let the dynamic state Y(t) be given by the vector

y(t) =

x(t)

y(t)

ψ(t)

v(t)

ω(t)

a(t)

, (4.11)

64 CHAPTER 4. APPLICATION IN MOTION STATES

where (x(t), y(t)) are UTM-coordinates (Universal Transverse Mercator) in unit meters,
v(t), is the speed of the object in unit m/s, a(t) is the acceleration in unit m/s2, and ψ(t)

and ω(t) are the yaw angle, and yaw rate, respectively. We set the yaw angle to be the
the angle between the horizontal axis and the driving direction as shown in Figure 4.1.
This naturally leads to a nonlinear dynamical system as we are dealing with angles,

ω

v, a

x

y

ψ

Figure 4.1: Bicycle model showing the kinematic behavior of a vehicle. The blue rectan-
gle represents the vehicle driving in the direction given by the arrow pointing towards v
and a. The orientation of the vehicle is determined by the yaw angle ψ and yaw rate ω.

which we solve by the EKF approach described in Section 3.5.

We need to find the nonlinear function f , that describes the dynamical model

y(t+1) = f(y(t), ϵ(t+1)) =

f1(y
(t), ϵ(t+1))

f2(y
(t), ϵ(t+1))

f3(y
(t), ϵ(t+1))

f4(y
(t), ϵ(t+1))

f5(y
(t), ϵ(t+1))

f6(y
(t), ϵ(t+1))

.

From elementary physics, assuming constant acceleration and constant yaw rate, we
have

v(t) = v0 + at (4.12)

ψ(t) = ψ0 + ωt (4.13)

vx(t) = v(t) cos(ψ(t)) (4.14)

vy(t) = v(t) sin(ψ(t)), (4.15)

where v0 is the initial velocity, and ψ0 is the initial yaw angle. We integrate to get an

4.1. DERIVING THE DYNAMICAL SYSTEM 65

expression for x(t) and y(t):

x(t) =

∫
vx(t) dt =

∫
(v0 + at) cos(ψ0 + ωt) dt

=
v0 + at

ω
sin(ψ0 + ωt) +

a

ω2
cos(ψ0 + ωt) + Cx;

y(t) =

∫
vy(t) dt =

∫
(v0 + at) sin(ψ0 + ωt) dt

= −v0 + at

ω
cos(ψ0 + ωt) +

a

ω2
sin(ψ0 + ωt) + Cy,

where Cx and Cy are constants, and where we have assumed ω ̸= 0. We deal with the
case ω = 0 shortly. When we add a small time interval ∆t into x(t) and y(t), we get

x(t+∆t) =
v0 + at+ a∆t

ω
sin(ψ0 + ωt+ ω∆t) +

a

ω2
cos(ψ0 + ωt+ ω∆t) + Cx

=
v(t) + a∆t

ω
sin(ψ(t) + ω∆t) +

a

ω2
cos(ψ(t) + ω∆t)

+

(
x(t)−

[
v(t)

ω
sin(ψ(t)) +

a

ω2
cos(ψ(t))

])

= x(t) +
v(t) + a∆t

ω
sin(ψ(t) + ω∆t)− v(t)

ω
sin(ψ(t))

+
a

ω2
(cos(ψ(t) + ω∆t)− cos(ψ(t))) ;

y(t+∆t) = −v0 + at+ a∆t

ω
cos(ψ0 + ωt+ ω∆t) +

a

ω2
sin(ψ0 + ωt+ ω∆t) + Cy

= −v(t) + a∆t

ω
cos(ψ(t) + ω∆t) +

a

ω2
sin(ψ(t) + ω∆t)

+

(
y(t)−

[
−v(t)

ω
cos(ψ(t)) +

a

ω2
sin(ψ(t))

])

= y(t)− v(t) + a∆t

ω
cos(ψ(t) + ω∆t) +

v(t)

ω
cos(ψ(t))

+
a

ω2
(sin(ψ(t) + ω∆t)− sin(ψ(t))) ,

where we used Expression (4.12) and (4.13) in the substitutions. The velocity after a
small time interval v(t+∆t) is already given by Expression (4.3), and the the result for
the yaw angle ψ(t+∆t) is similar:

ψ(t+∆t) = ψ(t) + ω∆t. (4.16)

66 CHAPTER 4. APPLICATION IN MOTION STATES

Combining these results, we get the following nonlinear system:

y′ = f(y, ϵ′)

=

x+ v+a∆t
ω sin(ψ + ω∆t)− v

ω sinψ + a
ω2 (cos(ψ + ω∆t)− cosψ)

y − v+a∆t
ω cos(ψ + ω∆t) + v

ω cosψ + a
ω2 (sin(ψ + ω∆t)− sinψ)

ψ + ω∆t
v + a∆t
ω + ϵ′ω
a+ ϵ′a

,

(4.17)

where we have added some noise ϵ
(t)
ω ∼ N (0, Qω) to the yaw rate and to the acceleration

ϵ
(t)
a ∼ N (0, Qa). Assuming no correlation between the noise terms, this is the same as
writing

ϵ(t) ∼ N (0,Q), Q =

0
0

0
0

Qω
Qa

= diag(0, 0, 0, 0, Qω, Qa),

where diag() is a shorthand notation for a diagonal matrix. The Jacobian is given by

∇yf
T(y, ϵ′) =

1 0 −(f2(y, ϵ′)− y) ∂f1
∂v

∂f1
∂ω

∂f1
∂a

1 f1(y, ϵ
′)− x ∂f2

∂v
∂f2
∂ω

∂f2
∂a

1 0 ∆t 0
1 0 ∆t

1 0
1

, (4.18)

where

∂f1
∂v

=
1

ω
(sin(ψ + ω∆t)− sinψ)

∂f2
∂v

= − 1

ω
(cos(ψ + ω∆t)− cosψ)

∂f1
∂ω

=
v + a∆t

ω
∆t cos(ψ + ω∆t)− 1

ω2
((v + 2a∆t) sin(ψ + ω∆t)− v sinψ)

+
2a

ω3
(cosψ − cos(ψ + ω∆t))

∂f2
∂ω

=
v + a∆t

ω
∆t sin(ψ + ω∆t) +

1

ω2
((v + 2a∆t) cos(ψ + ω∆t)− v cosψ)

+
2a

ω3
(sinψ − sin(ψ + ω∆t))

∂f1
∂a

=
∆t

ω
sin(ψ + ω∆t) +

1

ω2
(cos(ψ + ω∆t)− cosψ)

∂f2
∂a

= −∆t

ω
cos(ψ + ω∆t) +

1

ω2
(sin(ψ + ω∆t)− sinψ) ,

4.1. DERIVING THE DYNAMICAL SYSTEM 67

given that ω ̸= 0. We now have to deal with the case for when ω ≈ 0. We solve this by
Taylor expanding f1(y, ϵ

′) and f2(y, ϵ′) about ω = 0, giving

f1(y, ϵ
′) = x+

1

2
∆t(2v + a∆t) cosψ − 1

6
ω∆t2(3v + 2a∆t) sinψ +O(ω2); (4.19)

f2(y, ϵ
′) = y +

1

2
∆t(2v + a∆t) sinψ +

1

6
ω∆t2(3v + 2a∆t) cosψ +O(ω2). (4.20)

After some experimentation with numerical accuracy, when |ω| < 10−4, it appears to
better to swap to the Taylor series approximation for f1(y, ϵ

′) and f2(y, ϵ
′). For |ω| <

10−4, the Jacobian has the same form given by Expression (4.18), but now with

∂f1
∂v

= ∆t cosψ − 1

2
ω∆t2 sinψ

∂f2
∂v

= ∆t sinψ +
1

2
ω∆t2 cosψ

∂f1
∂ω

= −1

6
(3v + 2a∆t)∆t2 sinψ − 1

12
ω(4v + 3a∆t)∆t3 cosψ

∂f2
∂ω

=
1

6
(3v + 2a∆t)∆t2 cosψ − 1

12
ω(4v + 3a∆t)∆t3 sinψ

∂f1
∂a

=
1

2
∆t2 cosψ − 1

3
ω∆t3 sinψ

∂f2
∂a

=
1

2
∆t2 sinψ +

1

3
ω∆t3 cosψ.

(4.21)

To summarize, we have for constant acceleration and constant yaw rate:

y =

x
y
ψ
v
ω
a

, ϵ′ =

0
0
0
0
ϵ′ω
ϵ′a

, Var[ϵ′] = Q = diag(0, 0, 0, 0, Qω, Qa),

f(y, ϵ′) =

f1(y, ϵ
′)

f2(y, ϵ
′)

f3(y, ϵ
′)

f4(y, ϵ
′)

f5(y, ϵ
′)

f6(y, ϵ
′)

, ∇yf

T(y, ϵ′) =

1 0 ∂f1
∂ψ

∂f1
∂v

∂f1
∂ω

∂f1
∂a

1 ∂f2
∂ψ

∂f2
∂v

∂f2
∂ω

∂f2
∂a

1 0 ∆t 0
1 0 ∆t

1 0
1

,

(4.22)

where the partial derivatives are given by Expression (4.19) or (4.21) for ω = 0. For
higher constraints, such as constant velocity, we set all the entries for acceleration equal

68 CHAPTER 4. APPLICATION IN MOTION STATES

to zero, and add some noise to the velocity instead as follows:

y =

x
y
ψ
v
ω
0

, ϵ′ =

0
0
0
ϵ′v
ϵ′ω
0

, Var[ϵ′] = Q = diag(0, 0, 0, Qv, Qω, 0),

f(y, ϵ′) =

f1(y, ϵ
′)

f2(y, ϵ
′)

f3(y, ϵ
′)

f4(y, ϵ
′)

f5(y, ϵ
′)

0

, ∇yf

T(y, ϵ′) =

1 0 ∂f1
∂ψ

∂f1
∂v

∂f1
∂ω 0

1 ∂f2
∂ψ

∂f2
∂v

∂f2
∂ω 0

1 0 ∆t 0
1 0 0

1 0
0

,

(4.23)

For even higher constraints, such as being stationary, we additionally set the velocity
and the yaw rate components to zero, and add noise to the x and y-positions and the
the yaw angle:

y =

x
y
ψ
0
0
0

, ϵ′ =

ϵ′x
ϵ′y
ϵ′ψ
0
0
0

, Var[ϵ′] = Q = diag(Qx, Qy, Qψ, 0, 0, 0),

f(y, ϵ′) =

f1(y, ϵ
′)

f2(y, ϵ
′)

f3(y, ϵ
′)

0
0
0

, ∇yf

T(y, ϵ′) =

1 0 ∂f1
∂ψ 0 0 0

1 ∂f2
∂ψ 0 0 0

1 0 0 0
0 0 0

0 0
0

.

(4.24)

In the following simulation study, we try to determine whether a car is stationary,
driving at constant speed, or accelerating, and also we want to estimate its true position
given noisy position data. Let S(t) ∈ {1, 2, 3} corresponding to the states constant
acceleration, constant velocity and stationary, respectively. Let Y(t) be the dynamic
variable following the transition model given by Expression (4.22), (4.23) and (4.24), for
the states 1,2 and 3, respectively and let

O(t) =

[
O

(t)
x

O
(t)
y

]
, (4.25)

where O
(t)
x and O

(t)
y are observed x and y-coordinates in unit meters.

4.1. DERIVING THE DYNAMICAL SYSTEM 69

The model parameters for the initial distribution are

P (S(1)) = π =
[
1/3 1/3 1/3

]T
, (4.26)

Y(1) | {S(1) = s} ∼ N (νs,Γs), (4.27)

ν1 = ν2 =
[
0 0 0 25/3.6 0 0

]T
, ν3 = 0, (4.28)

Γ1 = diag(100, 100, 5, 20/3.6, 0.001, 2)2,

Γ2 = diag(100, 100, 5, 20/3.6, 0.001, 0)2, (4.29)

Γ3 = diag(100, 100, 5, 0, 0, 0)2.

• In Expression (4.26) we assume that the car can be in any state in the starting
time.

• In Expression (4.28), we assume that given that the car is stationary (S(1) = 3),
we expect it to be at position (x, y) = (0, 0), with 0 yaw angle, velocity, yaw rate
and acceleration, whereas when the car is moving, either with constant velocity or

constant acceleration, we expect a velocity of 25 km/h, i.e. E[V
(1)
s] = 25/3.6 m/s,

for s = 1, 2. As we cannot tell whether the car is increasing in speed or decreasing,

we must set E[A
(1)
1] = 0 m/s2.

• In Expression (4.29), we assume that the x and y-coordinates lie between -200
and 200 meters with 0.95 probability, i.e. about two standard deviations, giving

Var[X
(t)
s] = Var[Y

(1)
s] = 1002 for all states. The yaw angle should preferably be

uniform in the range [−π, π], but this is not possible assuming the yaw angle is
Gaussian, so we set Var[ψs] = 52 for all states. For the stationary state, everything
else has zero variance. We assume the velocity to be in the range 25 plus-or-minus

40 km/h with .05 probability by setting Var[V
(1)
s] = (20/3.6)2. This, unfortunately

may cause a negative velocity during the simulation, so here we must do some
“cherry picking” when we select a simulation we are happy with. We assume the
car is turning not too rapidly, so we set the variance of the yaw rate very low

Var[ω
(1)
s] = 0.0012, for s = 1, 2. Finally, only for constant acceleration, we assume

it may lie in the range [−4, 4] m/s2 with 0.95 probability, i.e. Var[A
(1)
1] = 22 m/s2.

The parameters for the transition model are

P (S′ | S) = P =

1− ∆t

λCA

1
2

∆t
λCA

1
2

∆t
λCA

∆t
λCV

1− ∆t
λCV

0
∆t
λST

0 1− ∆t
λST

 =

0.95 0.025 0.025
0.0125 0.9875 0
0.0167 0 0.983

 , (4.30)

Q1 = diag(0, 0, 0, 0, 0.005, 1)2

Q2 = diag(0, 0, 0, 0.05, 0.005, 0)2 (4.31)

Q3 = diag(0, 0, 0, 0, 0, 0)2

70 CHAPTER 4. APPLICATION IN MOTION STATES

• In the transition model for the switching state (see Figure 4.2) given by Expres-
sion (4.30) we have made the following assumptions of expected time being in some
state:

λCA = 10

λCV = 40

λST = 30

mean time (seconds) spent with constant acceleration

mean time (seconds) spent in with constant velocity

mean time (seconds) spent stationary,

(4.32)

and where we have set ∆t = 0.5 seconds. As the transition model follows the
Markov assumption, we can look at each state separately, and view each time step
as an independent trial, which leads to a geometric distribution. The expected
number of trials before a “success” occurs, i.e. leaving the state, is the reciprocal
of the “success” probability. In our case, the expected number of trials is the
same as the ratio of the expected time being in state s and the length of the time
step, λs/∆t, and thus the probability of leaving state s is ∆t/λs. Furthermore, we
assume that the car can not transition directly between the states 2 and 3. That is,
the car can not all of a sudden have a constant velocity (different than zero) after
being stationary and vice versa, without accelerating first. We have also assumed
an equal chance of transitioning to being stationary or having constant velocity,
given that the current state is constant acceleration.

• In Expression (4.31) we have made the noise very small, and for the stationary
stationary state, the transition is completely deterministic with zero variance. The
values were chosen by trial and error to get a good simulation run.

1 2 3
0.025

0.025

0.95
0.0125

0.9875

0.0167

0.9833

Start
0.3333

0.3333

0.3333

Figure 4.2: Possible initial states P (S(1)) and state transitions, P (S′ | S). The switching
states are 1, 2 and 3, corresponding to constant acceleration, constant velocity and
stationary, respectively.

Finally, the observation model is given as

O(t) | Y(t) ∼ N (CY(t),R)

C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
, R = diag(1.5, 1.5)2,

(4.33)

4.1. DERIVING THE DYNAMICAL SYSTEM 71

such that CY(t) gives the x and y-coordinates, and where we assume the observed
position to lie within 3 meters in both x and y-axes with 0.95 probability.

10
20
30
40
50

−300 −200 −100 0
x

y

state CA CV ST

−3.2

−3.1

−3.0

0 10 20 30 40 50
t

ps
i

0

5

10

15

0 10 20 30 40 50
t

v

−0.03

−0.02

−0.01

0.00

0.01

0 10 20 30 40 50
t

om
eg

a

0

1

2

3

4

0 10 20 30 40 50
t

a

Figure 4.3: Simulation of planar motion, the top plot shows the true trajectory of the
car (solid line), and the observed positions are given as crossed points. The velocity,
acceleration, yaw angle and yaw rate are shown in the plots in the upper left, upper
right, lower left and lower right, respectively. The colors indicate the actual switching
state of the car.

Figure 4.3 shows a simulation run for 50 seconds, or 100 time steps as we choose
∆t = 0.5. The car starts in the upper right corner in the stationary state before it
starts moving towards the lower left in the following sequence: stationary→constant
acceleration→constant velocity→constant acceleration→constant velocity, where the car
reaches a velocity of about 16 m/s or 60 km/h. The initial yaw angle is around -3 radians
which is the same as going directly west, then it is turned anticlockwise (increases) a tiny

72 CHAPTER 4. APPLICATION IN MOTION STATES

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
t (seconds)

σ
(t
) (
s)

state CA CV ST

(a) GPB1.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
t (seconds)

σ
(t
) (
s)

state CA CV ST

(b) GPB2.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
t (seconds)

σ
(t
) (
s)

state CA CV ST

(c) IMM.

Figure 4.4: Filtered estimate of the switching state using three different approximations.
The vertical dashed lines denote when the actual switch occur.

4.1. DERIVING THE DYNAMICAL SYSTEM 73

bit, which is unnoticeable by looking at the trajectory. Then the angle goes clockwise,
meaning that the car turns right. The yaw rate can be thought of as the orientation
of the steering wheel, where a positive rate means that the steering wheel is turned
anticlockwise, and negative rate means that the wheel is turned clockwise.

10
20
30
40

−300 −200 −100 0
x

y

0

1

2

0 25 50 75 100
t

ps
i

−20

−10

0

0 25 50 75 100
t

v

−0.02

−0.01

0.00

0.01

0 25 50 75 100
t

om
eg

a

−4

−3

−2

−1

0

1

0 25 50 75 100
t

a

Figure 4.5: Filtered estimate of the dynamic state where IMM is used.

We run the filtering algorithm for the three approximations GPB1, GPB2 and IMM.
We omit the particle filter as it underperformed, even with 200 particles for a univariate
case in Section 3.4.5. The filtered estimate of the switching state is shown in Figure 4.4
for the three approximations. First of all, GPB1 stands out as being very uncertain
on which state it the car is in at all times. GPB2 and IMM looks very similar where
the only noticeable difference is in the fourth switching state, when the car accelerates.
GPB2 performs slightly better in this case, as it is more uncertain if the car is driving
at constant speed or constant acceleration where the IMM is (wrongfully) more certain
that the car is driving at constant speed in the start. All three misses to notice the
first switch, when the car starts to accelerate for a couple of seconds. This is not very

74 CHAPTER 4. APPLICATION IN MOTION STATES

surprising if we look at the trajectory in Figure 4.3. Although the car is accelerating, we
do not notice any change in the observation points (orange color). We first notice that the
observation points are moving when the car is driving at constant speed (green color).
This is reflected in GPB2 and IMM, and partly in GPB1. However, they wrongfully
predict that the car is in the constant acceleration state. This is also not surprising if we
remember the possible transitions between the states shown in Figure 4.2. A stationary
car can not drive at a constant speed (different from zero) without accelerating first. In
the last switching state, all approximations correctly predicts the the constant velocity
state, where the probability grows more rapidly for GPB2 and IMM then for GPB1.

Figure 4.5 shows the filtered dynamic state for the IMM approximation. The trajec-
tory looks rather smooth compared to the observation points, and it similar to the true
trajectory. An interesting observation is that the velocity turns out to be negative, and
the angle appears to be around zero radians, so the model believes that the car driving
backwards. We have not specified in the model that the car should have a positive veloc-
ity, so whether the velocity is positive is “random”, or rather is likely to depend on the
initial yaw angle, as we assumed that the initial yaw angle followed a normal distribution
with mean at zero radians. However, it does not matter whether the model believes the
car is driving forwards or backwards, when we are interested in the switching state, or
the trajectory.

4.2 Bus and Walk Example

Now we attempt a slightly more complicated example, where we use real data. Here,
the goal is to detect whether we are walking or taking the bus, from position data.

The data we use are GPS coordinates received from a Garmin smartwatch, when
traveling from Leinstrand to Lademoen in Trondheim. The map view is shown in Fig-
ure 4.6. The trip starts by walking towards the bus stop indicated by the blue trajectory
in Figure 4.6b. Then after waiting a few minutes, the bus is boarded and it drives to
Lademoen before the bus is exited, shown in Figure 4.6c.

The first task is to actually retrieve this data. When the smartwatch is connected to
the Internet, the GPS data is uploaded to Garmin’s website where it can be downloaded.
However, they do not provide a CSV (Comma-Separated Values)-file format. They
instead provide GPX (GPS Exchange), KML (Keyhole Markup Language) and FIT
(Flexible and Interoperable Data Transfer), where the latter is their own file format.
Garmin provide a software that converts from FIT to CSV (Garmin, 2022b). Using this
software, we obtain the position data in CSV-format. The position data use semicircles
as a unit. Semicircles are represented by a 32-bit number (Microsoft Docs, 2022), which
we convert to degrees using the following formula

degrees = semicircles · 180
231

. (4.34)

We use the R package sf (Pebesma, 2018), to convert the data to a spatial object
where we register the coordinate reference system to be EPSG:4326 which is the World

4.2. BUS AND WALK EXAMPLE 75

63.35

63.40

10.30 10.35 10.40 10.45
lon

la
t

transport

Bus

Walk

(a) Full trip.

63.321

63.322

63.323

63.324

63.325

10.302 10.304 10.306 10.308
lon

la
t

(b) Start trip.

63.4325

63.4350

63.4375

63.4400

63.4425

10.415 10.420 10.425 10.430
lon

la
t

(c) End trip.

Figure 4.6: Map showing the trip starting at Leinstrand and ends in Trondheim at
Lademoen, where the colors indicate the transport type, bus (red) and walking (blue).
The maps are obtained using the R library ggmap (Kahle & Wickham, 2013).

76 CHAPTER 4. APPLICATION IN MOTION STATES

Geodetic System 1984 (WGS84) used in GPS. We then transform to a more suitable
coordinate reference system, EPSG:25832, a projection to UTM coordinates in zone 32,
which is the recommended projection (Geonorge, 2022), for the southern part of Norway
until the county Trøndelag, of which Trondheim lies in. This projection uses the unit
meters, which is exactly what we need for the model.

The data contains 1320 observations for a period of fifty minutes. The time interval
between each observation is an integer in seconds, the shortest and the most frequent
time interval is one second, and the longest time interval is at 12 seconds. This means
that we set the time interval to ∆t = 1 second. When there is a time interval higher
than this, we add rows of “missing data”, such that the filtering algorithm only does
the prediction step and skips the condition step when missing data is encountered. This
gives us 3000 observations of which 3000-1320=1680 are missing.

The data is ready and we can set up the model. Let S(t) ∈ {WS,WM,BS,BM},
which correspond to the states walk-stationary, walk-moving, bus-stationary and bus-
moving, respectively. The first two states represent walking WM, and waiting for the bus
WS, respectively, and similarly, BM is the state when we are in a moving bus, and BS
is the state when the bus is not moving, usually at a bus stop. The dynamic state Y(t)

uses the nonlinear bicycle form given by Expression (4.11). When being stationary (WS
or BS), we use the stationary model dynamics given by Expression (4.24), and when
the bus is moving (BM), we use the most general model dynamics where we assume
constant acceleration and constant yaw rate, which is given by Expression (4.22). When
walking (WM), we assume constant velocity model dynamics given by Expression (4.23),
with the extra assumption that the yaw angle is “constant”, where we add some noise
ϵψ ∼ N (0, Qψ), and let all the entries for the yaw rate be zero.

The model parameters for the initial distribution are

P (S(1)) = π =
[
0.01 0.97 0.01 0.01

]T
, (4.35)

Y(1) | {S(1) = s} ∼ N (νs,Γs), (4.36)

ν1 =
[
568273 7028843 0 0 0 0

]T
,

ν2 =
[
568273 7028843 0 1.5 0 0

]T
, (4.37)

ν3 =
[
568273 7028843 0 0 0 0

]T
,

ν4 =
[
568273 7028843 0 20 0 0

]T
,

Γ1 = diag(5000, 5000, π, 0, 0, 0)2,

Γ2 = diag(5000, 5000, π, 1, 0, 0)2, (4.38)

Γ3 = diag(5000, 5000, π, 0, 0, 0)2,

Γ4 = diag(5000, 5000, π, 10, 0.5, 0.5)2.

• In Expression (4.35) we assume that there is a very high probability we start by
walking (and moving).

• In Expression (4.37), we expect to be somewhere between Leinstrand and Trond-

4.2. BUS AND WALK EXAMPLE 77

heim, so we set the expected position to be at the UTM 32 coordinate (568273,
7028843) which is somewhere in the middle of the map in Figure 4.6a. The ex-
pected yaw angle, acceleration and yaw rate is set to zero for the same reasons
as described in Section 4.1. When being stationary (either bus or walk), we have
an expected velocity of zero. The average walking pace is about 1.5 m/s, and we
expect the bus to have an average velocity of 20 m/s when it is moving.

• In Expression (4.38), due to the large travel distance, we added a large variance
for the position, where we assume we are 10 km within the expected x and y
coordinate with 0.95 probability. We also added a somewhat arbitrary variance
to the yaw angle for each state to π2. When walking (and moving), we expect
the walking pace to be in the range [−0.5, 3.5] m/s with 0.95 probability, where
again have a possibility of negative velocity. As we saw in Section 4.1, negative
velocities does not pose a problem for us. When the bus is moving, we expect the
velocity to be in the range [0, 40] m/s with 0.95, probability. Finally, we add some
uncertainty to the acceleration and yaw rate for the state BM.

These parameters are gross intuitive guesses. As this is the initial distribution and we
have a lot of observation data to guide us at later time steps, it is not crucial to have
reasonable inputs.

WM

WS BS

BM

Start0.01

0.97 0.01

0.01

Figure 4.7: Possible initial states P (S(1)) and state transitions, P (S′ | S). The switch-
ing states are WS, WM, BS and BM, corresponding to walk-stationary, walk-moving,
bus-stationary and bus-moving, respectively. The transition probabilities are shown in
Expression (4.30).

78 CHAPTER 4. APPLICATION IN MOTION STATES

The parameters for the transition model are

P (S′ | S) = P =

0.99667 0.00007 0.00327 0
0.00167 0.99833 0 0
0.00067 0.00600 0.93333 0.06000

0 0 0.00833 0.99167

 , (4.39)

Q1 = diag(0.15, 0.15, 0.01, 0, 0, 0)2,

Q2 = diag(0, 0, 0.15, 0.10, 0, 0)2, (4.40)

Q3 = diag(0.10, 0.10, 0, 0, 0, 0)2,

Q4 = diag(0, 0, 0, 0, 0.05, 2.5)2,

• The possible transitions for the switching state are shown in Figure 4.7 and the
transition probabilities are given by Expression (4.30). We have assumed that
before we enter the bus, we are arriving at the bus stop a short while before the
bus arrives, so a direct transition WM→BS is not possible. Also, we cannot enter a
moving bus, so the transitions WM→BM andWS→BM are not possible. The same
goes for the other way, we cannot exit a moving bus so the transitions BM→WM
and BM→WS are not possible. All other transitions are possible, where we have
set the probabilities by “guesstimating” the mean time expected in each state as
follows

λWS = 5 · 60
λWM = 10 · 60
λBS = 15

λBM = 2 · 60

mean time (seconds) spent in WS

mean time (seconds) spent in WM

mean time (seconds) spent in BS

mean time (seconds) spent in BM.

(4.41)

Given that we left the WS state, we assume there is a 1/50 probability of walking
again (WM), and otherwise a 49/50 probability of entering the bus (BS). The
computation is done as follows

P (S(t+1) = WM | S(t) = WS) =
∆t

λWS
· 1
50

= 0.00007.

Also, given that we left the BS state, we assume there is a 1/100 probability of
leaving the bus and not move (WS), as we might wait for another bus, a 9/100
probability of leaving the bus and start walking (WM) and a 9/10 probability of
staying on the bus when it starts moving again (BM).

• The parameters in Expression (4.40) are the trickiest part to determine, and any
small adjustment may cause the filtering algorithm to fail. We solve this by having
some reasonable starting values, and run the filtering algorithm repeatedly where
the parameters is adjusted one by one, to lower the average log-likelihood (see line
41 in Algorithm 1 for the computation). This is a rather time consuming process,
where an automatic Expectation Maximization (EM) approach would have been
preferable.

4.2. BUS AND WALK EXAMPLE 79

Finally, the observation model is given as

O(t) | Y(t) ∼ N (CY(t),R)

C =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
, R = diag(1.2256, 1.2256)2,

(4.42)

where Garmin (2022c) states that GPS location accuracy is around 3 meters 95% of the
time. By solving

∫∫
√
x2+y2<r

f(x; 0, R)f(y; 0, R) dx dy = 1− α,

for R, we find that the variance must be

R = Var[O(t)
x | Y(t)] = Var[O(t)

y | Y(t)] = − r2

2 logα
= 1.22562, (4.43)

with significance level α = 0.05 and radius r = 3 meters.
For the filtering, we choose to go with the IMM approximation Section 3.4.5 and 4.1

showed that it works just as well as GPB2, and is more efficient. The filtered estimate
of the switching state is shown in Figure 4.8, where we see the marginal probabilities
of all four states in Figure 4.8a and the joint probability of the “transport type” in
Figure 4.8b. The filtered estimate correctly predicts whether or not we are on the bus,
as the ground truth is already known and shown by the vertical dashed lines. We also
see that the estimate is much less turbulent when in the walking states, compared to
when on the bus, which is not surprising as the motion of the bus is much more complex.
Figure 4.9a shows the filtered estimates of WS and WM the first ten minutes of the trip.
When stopping, it takes about one and a half minute before the probability of being in
state WS surpasses the probability of being in state WM. When entering the bus after
about 10 minutes into the trip, both probabilities drops to zero. Figure 4.9b shows the
filtered estimates of BS and BM at the beginning of the trip when entering the bus. We
see that the estimate performs well and correctly classifies when the bus is stopping and
when it is moving, with some small disturbances. Taking a look again at Figure 4.8a, at
around 2000 seconds into the trip, the filtered estimate fluctuates much more frequently,
and at around 2100 wrongfully predicts the state WM for a few seconds. This is when
the bus is in Trondheim city center, which contains a lot of traffic lights and where the
traffic moves at a crawl.

The filtered estimate of the dynamic state is shown in Figure 4.10. Some interesting
observations here are the yaw angle, velocity and acceleration. The yaw angle ranges
from -10 to 20 radians, which indicates a range of more than four revolutions in the
trajectory has taken place, which is incorrect. Also, we show the absolute value of the
velocity although it was negative a large part of the time. The data retrieved from
Garmin also contains an estimate of the velocity which is computed from sensors of the
smartwatch. Wee see that our estimate of the velocity matches Garmin’s estimate quite
well, especially in the beginning. From around at t = 1000 seconds our estimate is quite

80 CHAPTER 4. APPLICATION IN MOTION STATES

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
t (seconds)

σ
(t
) (
s)

state BM BS WM WS

(a) The filtered estimate of the switching state.

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
t (seconds)

σ
(t
) (
s)

state Bus Walk

(b) Filtered estimate we combined WS with WM and BS with BM. The vertical dashed lines
indicate when the bus is actually entered and exited, respectively.

Figure 4.8: Filtered estimate of the switching state, where (a) shows the marginal prob-
abilities and (b) shows the joint probabilities of the walk states, and bus states.

4.2. BUS AND WALK EXAMPLE 81

0.00

0.25

0.50

0.75

1.00

0 200 400 600
t (seconds)

σ
(t
) (
s)

state WM WS

(a) Filtered estimate of the states when walking (WS and WM).

0.00

0.25

0.50

0.75

1.00

600 700 800 900 1000 1100
t (seconds)

σ
(t
) (
s)

state BM BS

(b) Filtered estimate of the states when on the bus (BS and BM).

Figure 4.9: The filtered estimate of the switching state showing the probabilities of the
walking states in (a) and the bus states in (b). The vertical dashed lines indicate when
the actual state switches occur, i.e. when we are entering and leaving a bus stop.

noisy (peaking at 60 m/s or about 215 km/h), and the same for acceleration (peaking at
30 m/s2). These outliers may be due to weak GPS signal when being inside the bus. As
we mentioned in Section 4.1, negative or positive velocity in the model does not really
matter, but the sudden big jump in the yaw angle is troubling.

Although we managed to correctly classify when being on the bus and not, there is
certainly room for improvement to make the result of the dynamic state more realistic.
We only assumed one moving state for the bus, but the motion of the bus is complex,
and could possibly be broken down into more states, such as turning, accelerating and
constant velocity, and combinations of these.

82 CHAPTER 4. APPLICATION IN MOTION STATES

63.35

63.40

10.30 10.35 10.40 10.45
lon

la
t

−10

0

10

20

0 1000 2000 3000
t

ps
i

0

20

40

60

0 1000 2000 3000
t

ab
s(

v)

Estimated Garmin

−0.5

0.0

0.5

0 1000 2000 3000
t

om
eg

a

−30

−20

−10

0

10

20

30

0 1000 2000 3000
t

a

Figure 4.10: Filtered estimate of the dynamic state. The absolute value of the velocity
estimate is shown instead of the original velocity estimate and is compared with Garmin’s
estimated velocity (red curve).

Chapter 5

Closing remarks

We have explored how we can use the language of graphs to model physical processes,
where we use our intuition about causality to form dependence between variables. Then,
we can define the CPDs where we condition all variables on their parent nodes. When
performing inference on BNs, we saw how we can use the notion of d-separation to
say that two variables are conditionally independent given another variable, to greatly
reduce the complexity of the computations.

We have seen how we can introduce time to form DBNs where we used the state-
observation model representation such as HMMs, LDS and SLDSs. For purely discrete
cases such as the HMM, or pure continuous like the LDS, optimal inference is easy and
efficient where we compute the filtered estimate recursively and exploit two important
conditional independence properties, one in the prediction step, and the other in the
condition step. However with SLDSs, we have seen that although we can use the same
procedure and the same conditional independence properties, we get a problem with
an exponential increase of mixture distributions, where each component in the mixture
corresponds to a unique combination of the history of the switching states.

The main idea behind the GPB1, GPB2 and IMM approximations, is to collapse
this increasing mixture after each time step in the recursive inference algorithm. GPB1
is the most gross approximation where we end up with a single Gaussian distribution
after each time step, whereas for GPB2 and IMM we have a Gaussian mixture with
the same size as the number of possible switching states. Although GPB2 is the most
accurate approximation of the three, IMM appears to perform equally well and has
a significantly lower computational cost, which makes IMM a favorable choice. The
particle filter approach is very different and is based on weighted bootstrap sampling. It
has the advantage that it is easy to implement but at the cost of a longer running time
where it increases linearly as we increase the number of particles. We have seen that
the particle filter scores the worst on accuracy of the switching state, both for 50 and
200 particles, even worse than the GPB1. There exists more specific particle filtering
approaches that are likely to perform much better, but it was interesting to explore this
simple general bootstrap approach.

We have seen how we can incorporate the EKF for nonlinear dynamical systems in

83

84 CHAPTER 5. CLOSING REMARKS

SLDSs, and we have used this where we tried to classify when we are on the bus, and
when we are walking given GPS data. We have showed that for only four states the IMM
successfully classifies when we are walking and when we are taking the bus, although
we saw some strange results from the filtered estimate of the dynamic state, such as a
sudden four-revolutions turn of the bus and a few outliers with a velocity of more than
200 km/h.

Some possible improvements that could be done in the model for the bus and walk
example is to include an edge from the dynamic state to the switching state in the next
time step. This way we can increase the probability of switching from an accelerating
state to a constant velocity state as the velocity increases, and similarly increase the
probability of switching from an accelerating state to a being stationary when the velocity
is close to zero. Other improvements include increasing the number of states when the
bus moves as the motion dynamics are quite complex. We used EKF to deal with
the nonlinearity, but it would be interesting to see how the unscented Kalman filter
performed for this problem. Although the parameters can often be set using expert
knowledge, automatic approaches for learning the parameters is an important aspect of
statistical modeling. The most tedious task for the bus and walk example was to estimate
the the variances in the transition model as it was done manually in an expectation-
maximization manner. Finally, we have seen that most of the covariance matrices are
very sparse. We did not take advantage of that in the algorithm, so this could be a
possible improvement to speed up the filtering running time, especially as length of the
dynamic state vector increases.

We have only scratched the tip of the iceberg of SLDSs with the bus and walk
example, but many real-world examples have similar set-ups such as object tracking for
stop-and-go situations which are used for adaptive cruise control and collision avoidance.
Also, expanding to allow for even more types of transports as a switching state, such
as bicycle and personal car could potentially make navigation software more adaptive
where it automatically “notices” when the type of transport switches, such that we can
receive useful feedback on estimated time of arrival or whether to expect slow traffic.

Bibliography

Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2004). Estimation with applications to
tracking and navigation: Theory algorithms and software. John Wiley & Sons.

Blom, H. A., & Bar-Shalom, Y. (1988). The interacting multiple model algorithm for
systems with Markovian switching coefficients. IEEE transactions on Automatic
Control, 33 (8), 780–783.

Durlauf, S., & Blume, L. (2016). Macroeconometrics and time series analysis. Springer.
Garmin. (2022a, May). About us. https://www.garmin.com/en-US/company/about-

garmin/
Garmin. (2022b, April). The flexible and interoperable data transfer (FIT) for storing

and sharing data. https://developer.garmin.com/fit/
Garmin. (2022c, April). What can cause GPS accuracy issues on my fitness device?

https://support.garmin.com/en-US/?faq=z0n0KE1XVF0Pe4Su8QiZgA
Geonorge. (2022, April). Brukerveiledning. https : //www.geonorge . no/aktuelt /om-

geonorge/brukerveiledning/#Formater
Gu, Y., & Raphael, C. (2012). Modeling piano interpretation using switching Kalman

filter. ISMIR, 145–150.
Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear

systems. Signal processing, sensor fusion, and target recognition VI, 3068, 182–
193.

Kaempchen, N., Weiss, K., Schaefer, M., & Dietmayer, K. (2004). IMM object tracking
for high dynamic driving maneuvers. 2004 IEEE Intelligent Vehicles Symposium,
825–830.

Kahle, D., & Wickham, H. (2013). Ggmap: Spatial visualization with ggplot2. The R
Journal, 5 (1), 144–161. https://journal.r-project.org/archive/2013-1/kahle-
wickham.pdf

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and tech-

niques. The MIT Press.
Lerner, U. N. (2003). Hybrid Bayesian networks for reasoning about complex systems.

Stanford University Press.
Li, N., & Stephens, M. (2003). Modeling linkage disequilibrium and identifying recom-

bination hotspots using single-nucleotide polymorphism data. Genetics, 165 (4),
2213–2233.

85

https://www.garmin.com/en-US/company/about-garmin/
https://www.garmin.com/en-US/company/about-garmin/
https://developer.garmin.com/fit/
https://support.garmin.com/en-US/?faq=z0n0KE1XVF0Pe4Su8QiZgA
https://www.geonorge.no/aktuelt/om-geonorge/brukerveiledning/#Formater
https://www.geonorge.no/aktuelt/om-geonorge/brukerveiledning/#Formater
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

86 BIBLIOGRAPHY

Meuter, M., Muller-Schneiders, S., Mika, A., Hold, S., Nunn, C., & Kummert, A. (2009).
A novel approach to lane detection and tracking. 2009 12th International IEEE
Conference on Intelligent Transportation Systems, 1–6. https://doi.org/10.1109/
ITSC.2009.5309855

Microsoft Docs. (2022, April). WGS84 class. https : / / docs .microsoft . com/ en - us /
previous-versions/windows/embedded/cc510650(v=msdn.10)?redirectedfrom=
MSDN#remarks

Murphy, K. P. (1998). Switching Kalman filters (tech. rep.). DEC/Compaq Cambridge
Research Labs.

Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learn-
ing. University of California, Berkeley.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible
inference (1st ed.). Morgan Kaufmann.

Pebesma, E. (2018). Simple Features for R: Standardized support for spatial vector data.
The R Journal, 10 (1), 439–446. https://doi.org/10.32614/RJ-2018-009

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77 (2), 257–286.

Ravindranath, V. K. (2019, February). Finding Dory, hidden Markov models and simpli-
fying life. https://towardsdatascience.com/finding-dory-hidden-markov-models-
and-simplifying-life-3a69f01b4d50

Rudenko, A., Palmieri, L., Herman, M., Kitani, K. M., Gavrila, D. M., & Arras, K. O.
(2020). Human motion trajectory prediction: A survey. The International Jour-
nal of Robotics Research, 39 (8), 895–935.

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach, global edition
(4th ed.). Pearson Education.

Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge University Press.
Scott, S. L. (2002). Bayesian methods for hidden Markov models: Recursive computing

in the 21st century. Journal of the American statistical Association, 97 (457),
337–351.

Starner, T., & Pentland, A. (1997). Real-time american sign language recognition from
video using hidden Markov models. Motion-based recognition (pp. 227–243).
Springer.

Vahidi, A., & Eskandarian, A. (2003). Research advances in intelligent collision avoid-
ance and adaptive cruise control. IEEE transactions on intelligent transportation
systems, 4 (3), 143–153.

West, M., & Harrison, J. (2006). Bayesian forecasting and dynamic models. Springer
Science & Business Media.

Zucchini, W., & MacDonald, I. L. (2009). Hidden Markov models for time series: An
introduction using r. Chapman; Hall/CRC.

https://doi.org/10.1109/ITSC.2009.5309855
https://doi.org/10.1109/ITSC.2009.5309855
https://docs.microsoft.com/en-us/previous-versions/windows/embedded/cc510650(v=msdn.10)?redirectedfrom=MSDN#remarks
https://docs.microsoft.com/en-us/previous-versions/windows/embedded/cc510650(v=msdn.10)?redirectedfrom=MSDN#remarks
https://docs.microsoft.com/en-us/previous-versions/windows/embedded/cc510650(v=msdn.10)?redirectedfrom=MSDN#remarks
https://doi.org/10.32614/RJ-2018-009
https://towardsdatascience.com/finding-dory-hidden-markov-models-and-simplifying-life-3a69f01b4d50
https://towardsdatascience.com/finding-dory-hidden-markov-models-and-simplifying-life-3a69f01b4d50

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Mads Adrian Simonsen

Approximate Filtering Approaches
for Switching
Linear Dynamical Systems

Master’s thesis in Applied Physics and Mathematics
Supervisor: Jo Eidsvik
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Background and motivation
	Outline
	Abbreviations and notations

	Model
	Bayesian Networks
	Dynamic Bayesian networks
	Assumptions
	Definition

	State-observation models
	HMMs
	LDSs
	SLDSs

	Methods
	General filtering algorithm
	Discrete - HMM
	Continuous - KF
	Hybrid - SLDS
	The problem with hybrid DBNs
	Exact inference
	Approximate deterministic inference
	Approximate stochastic inference - Particle filtering
	Comparison

	Linearization of Nonlinear Dynamical Systems

	Application in motion states
	Deriving the dynamical system
	Bus and Walk Example

	Closing remarks
	Bibliography

