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Abstract—Edge intelligence refers to a set of connected systems
and devices for data collection, caching, processing, and analysis
proximity to where data is captured based on artificial intelli-
gence. Edge intelligence aims at enhancing data processing and
protect the privacy and security of the data and users. Although
recently emerged, spanning the period from 2011 to now, this
field of research has shown explosive growth over the past five
years. In this paper, we present a thorough and comprehensive
survey on the literature surrounding edge intelligence. We first
identify four fundamental components of edge intelligence, i.e.
edge caching, edge training, edge inference, and edge offloading
based on theoretical and practical results pertaining to proposed
and deployed systems. We then aim for a systematic classification
of the state of the solutions by examining research results and
observations for each of the four components and present a
taxonomy that includes practical problems, adopted techniques,
and application goals. For each category, we elaborate, compare
and analyse the literature from the perspectives of adopted
techniques, objectives, performance, advantages and drawbacks,
etc. This article provides a comprehensive survey to edge intel-
ligence and its application areas. In addition, we summarise the
development of the emerging research fields and the current state-
of-the-art and discuss the important open issues and possible
theoretical and technical directions.

Index Terms—Artificial intelligence, edge computing, edge
caching, model training, inference, offloading

I. INTRODUCTION

W ITH the breakthrough of Artificial Intelligence (AI),
we are witnessing a booming increase in AI-based

applications and services. AI technology, e.g., machine learn-
ing (ML) and deep learning (DL), achieves state-of-the-art
performance in various fields, ranging from facial recognition
[1], [2], natural language processing [3], [4], computer vision
[5], [6], traffic prediction [7]–[9], and anomaly detection [10],
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[11]. Benefiting from the services provided by these intelligent
applications and services, our lifestyles have been dramatically
changed.

However, existing intelligent applications are computation-
intensive, which present strict requirements on resources, e.g.,
CPU, GPU, memory, and network, and makes it impossible
to be available anytime and anywhere for end users. Although
current end devices are increasingly powerful, it is still in-
sufficient to support some deep learning models. For exam-
ple, most voice assistants, e.g., Apple Siri Google Assistant
and Microsoft’s Cortana, are based on cloud computing and
they can not work if the network is unavailable. Moreover,
existing intelligent applications generally adopt centralised
data management, which requires users to upload their data
to central data-centre. However, there is giant volume of
data, generated and collected by billions of mobile users and
Internet of Thing (IoT) devices, which are distributed at the
network edge. According to Cisco’s forecast, there will be
850 ZB of data generated by mobile users and IoT devices
by 2021 [12]. Uploading such volume of data to the cloud
consumes significant bandwidth resources, which may also
result in unacceptable latency for users. On the other hand,
users increasingly concern about their privacy issues. The
European Union has promulgated General Data Protection
Regulation (GDPR) to protect private information of users
[13]. If mobile users upload their personal data to the cloud
for a specific intelligent application, they would take the risk
of privacy leakage, i.e., the personal data might be extracted
by malicious hackers or companies for illegal purposes.

Edge computing [14]–[18] emerges as an extension of
cloud computing to push cloud services to the proximity of
end users. Edge computing offers computing platforms which
provide computing, storage, and networking resources, which
are usually located at the edge of networks. The devices
that provide services for end devices are referred to as edge
servers, which could be IoT gateways, routers, and micro
data centers at mobile network base stations, on vehicles, and
amongst other places. End devices, such as mobile phones, IoT
devices, and embedded devices that request services from edge
servers are called edge devices. With the fast development of
end devices, the capabilities of computing and energy control
has been significantly improved, which makes it possible to
provide networking and lightweight computing services for
peers [19]–[23]. The main advantages of the edge computing
paradigm could be summarised into three aspects. (i) Ultra-
low latency: computation usually takes place in the proximity
of the source data, which saves substantial amounts of time
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on data transmission. Edge servers provides nearly real-time
responses to end devices. (ii) Saving energy for end devices:
since end devices could offload computing tasks to edge
servers, the energy consumption on end devices would sig-
nificantly shrink. Consequently, the battery life of end devices
would be extended. (iii) Scalability: cloud computing is still
available if there are no enough resource on edge devices or
edge servers. In such a case, the cloud server would help to
perform tasks. In addition, end devices with idle resources
could communicate amongst themselves to collaboratively
finish a task. The capability of the edge computing paradigm
is flexible to accommodate different application scenarios.

Edge computing addresses the critical challenges of AI
based applications and the combination of edge computing
and AI provides a promising solution. This new paradigm
of intelligence is called edge intelligence [24], [25], also
named mobile intelligence [26]. Edge intelligence refers to
a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data is
collected, with the purpose of enhancing the quality and speed
of data processing and to protect the privacy and security of
data. Compared with traditional cloud-based intelligence that
requires end devices to upload generated or collected data to
the remote cloud, edge intelligence processes and analyses
data locally, which effectively protects users’ privacy, reduces
response time, and saves on bandwidth resources [27], [28].
Moreover, users could also customise intelligent applications
by training ML/DL models with self-generated data [29], [30].
It is predicted that edge intelligence will be a vital component
in 6G network [31]. It is also worth noting that AI could also
be a powerful assistance for edge computing. This paradigm is
called intelligent edge [32], [33], which is different from edge
intelligence. The emphasis of edge intelligence is to realize
intelligent applications in edge environment with the assistance
of edge computing and protect users’ privacy, while intelligent
edge focuses on solving problems of edge computing with
AI solutions, e.g., resource allocation optimization. Intelligent
edge is out of our scope in this survey.

There exists lots of works which have proved the feasi-
bility of edge intelligence by applying an edge intelligence
paradigm to practical application areas. Yi et al. implement
a face recognition application across a smartphone and edge
server [34]. Results show that the latency is reduced from
900ms to 169ms, compared with cloud based paradigm. Ha
et al. use a cloudlet to help a wearable cognitive assistance
execute recognition tasks, which saves energy consumption
by 30%-40% [35]. Some researchers pay attention to the
performance of AI in the context of edge computing. Lane
et al. successfully implement a constrained DL model on
smartphones for activity recognition [36]. The demo achieves
a better performance than shallow models, which demonstrates
that ordinary smart devices are qualified for simple DL models.
Similar verification is also done on wearable devices [37] and
embedded devices [38]. The most famous edge intelligence
application is Google G-board, which uses federated learning
[39] to collaboratively train the typing prediction model on
smartphones. Each user uses their own typing records to
train G-board. Hence, the trained G-board could be used

immediately, powering experiences personalised by the way
users use this application.

This paper aims at providing a comprehensive survey to
the development and the state-of-the-art of edge intelligence.
As far as we know, there exist few recent efforts [32], [40]–
[44] in this direction, but they have very different focuses
from our survey. Table I summarizes the comparison among
these works. Specifically, Yang et al. provide a survey on
federated learning, in which they mainly focus on the architec-
ture and applications of federated learning [40]. The authors
divide literature of federated learning into three classifications:
horizontal federated learning, vertical federated learning, and
federated transfer learning. Horizontal federated learning is
also involved as a cloud-based federated learning in our survey.
We pay more attention to the combination of federated learn-
ing and edge computing, i.e., edge-based federated learning
and hierarchical federated learning, in addition to cloud-based
federated learning. The focus of [41] is how to realize the
training and inference of DL models on a single mobile device.
They briefly introduce some challenges and existing solutions
from the perspective of training and inference. By contrast, we
provide a more comprehensive and deeper review on solutions
from the perspective of model design, model compression,
and model acceleration. We also survey how to realize model
training and inference with collaboration of edge devices and
edge servers, even the assistance from the cloud server, in
addition to solo training and inference at edge. Mohammadi et
al. review works on IoT big data analytic with DL approaches
[42]. Edge intelligence is not necessary in this work. The
emphasis of survey [43] is how to use DL techniques to
deal with the problems in wireless networks, e.g., spectrum
resource allocation, which has no overlap with our work.

To our best knowledge, Ref. [32] and [44] are two most
relevant articles to our survey. The focus of Ref. [32] is the
inter-availability between edge computing and DL. Hence the
scope of Ref. [32] includes two parts: DL for edge computing,
and edge computing for DL. The former part focuses on
some optimisation problems at edge with DL approaches, for
example, caching popular content and resource allocation in
wireless network with deep reinforcement learning, which is
out of our scope. The latter part focus on applying DL in the
context of edge computing, which is overlapping to our survey
to some extent. Specifically, in this part, they mainly review the
enablers of using DL in the context of edge, e.g., the hardware,
theory, and algorithms, and discuss what can be done with
these enablers. For example, they only briefly introduce model
compression, which could be used to simplify DL models. In
contrast, we adopt an orthogonal view to review what has been
done and the detailed problems and solutions during the im-
plementation in practice. For example, we take up lots of space
to review and discuss the classification of model compression
approaches and the detailed problem during using these ap-
proaches in practical applications. Similarly, the survey [44]
mainly focus on reviewing and discussing the development,
motivation, architecture, enabling technologies, and indicators
of edge intelligence. However, how to apply these enabling
technologies to realize edge intelligence in practical is not
included, which is exactly what we mainly review and discuss
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(a) Centralized intelligence (b) Edge intelligence

Fig. 1. The comparison of traditional intelligence and edge intelligence from the perspective of implementation. In traditional intelligence, all data must be
uploaded to a central cloud server, whilst in edge intelligence, intelligent application tasks are done at the edge with locally-generated data in a distributed
manner.

TABLE I
COMPARISON OF RELATIVE SURVEYS.

Ref. Year Domain Scope

[40] 2019 Federated learning Horizontal federated learning, vertical federated learning,
and federated transfer learning

[41] 2018 DL-based mobile applications Training and inference on single mobile device
[42] 2018 IoT big data DL in IoT applications, and DL on IoT devices

[43] 2019 Intelligent wireless network Algorithms that enables DL in wireless networks
Applications ranging from traffic analytic to security

[32] 2019 Edge intelligence
Intelligent edge

Enablers of training and inference at edge
Optimizing edge problems with DL

[44] 2019 Edge intelligence Development, motivation, architectures
Enablers, performance indicators

Our work 2020 Edge intelligence Architectures, challenges, detailed applications
Edge caching and edge offloading

in our survey. In addition to these overlaps, we investigate
other components in a complete procedure of implementing
AI in edge environment, i.e., data collection/management, and
offloading, which is not included in other surveys.

It is worth noting that, the edge caching and offloading in
our paper is different from these extensively studied traditional
caching and offloading. For edge caching, we review works of
caching AI models at edge to deal with task-fickle scenarios.
Pre-caching multiple kinds of deep learning models on edge
server for different kinds of tasks can reduce the computation
time and further improve users’ QoE in edge intelligence. We
also review works on caching computation results of AI mod-
els, which are reusable for future execution of AI applications
on edge devices. Both of these two aspects are very relevant
and important to the implementation of edge intelligence and
naturally different from traditional edge caching for content
download/delivery. For edge offloading in our survey, we
mainly focus on offloading tasks of AI applications with full
consideration of the characteristics of AI models, instead of
purely computing.

Our survey focuses on how to realise edge intelligence in a
systematic way. There exist three key components in AI, i.e.
data, model/algorithm1, and computation. A complete process
of implementing AI applications involves data collection and
management, model training, and model inference. Compu-
tation plays an essential role throughout the whole process.
Hence, we limit the scope of our survey on four aspects,
including how to cache data to fuel intelligent applications
(i.e., edge caching), how to train intelligent applications at the
edge (i.e., edge training), how to infer intelligent applications
at the edge (edge inference), and how to provide sufficient
computing power for intelligent applications at the edge (edge
offloading). Our contributions are summarized as following:

• We survey recent research achievements on edge intelli-
gence and identify four key components: edge caching,
edge training, edge inference, and edge offloading. For
each component, we outline a systematical and compre-

1Model and algorithm are interchangeable in this article
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hensive classification from a multi-dimensional view, e.g.,
practical challenges, solutions, optimisation goals, etc.

• We present thorough discussion and analysis on relevant
papers in the field of edge intelligence from multiple
views, e.g., applicable scenarios, methodology, perfor-
mance, etc. and summarise their advantages and short-
comings.

• We discuss and summarise open issues and challenges
in the implementation of edge intelligence, and outline
five important future research directions and development
trends, i.e., data scarcity, data consistency, adaptability
of model/algorithms, privacy and security, and incentive
mechanisms.

The remainder of this article is organized as follow. Section
II overviews the research on edge intelligence, with consider-
ations of the essential elements of edge intelligence, as well
as the development situation of this research field. Then, we
give a brief review on artificial intelligence in Section III.
We present detailed introduction, discussion, and analysis on
the development and recent advances of edge caching, edge
training, edge inference, and edge offloading in Section IV to
Section VII, respectively. Finally, we discuss the open issue
and possible solutions for future research in Section VIII, and
conclude the paper in Section IX.

II. OVERVIEW

For convenience, we present the comparison between tradi-
tional centralised intelligence with edge intelligence from the
perspective of implementation in Fig. 1. Traditional centralised
intelligence is shown in Fig. 1(a), where all edge devices first
upload data to the central server for intelligent tasks, e.g.,
model training or inference. The central server/data-centre is
usually, but not necessarily, located in remote cloud. After
the processing on the central server, results, e.g., recognition
or prediction results, are transmitted back to edge devices.
Fig. 1(b) demonstrates the implementation of edge intelli-
gence, where a task, e.g., recognition and prediction is either
done by edge servers and peer devices, or with the edge-
cloud cooperation paradigm. A very small amount, or none
of the data is uploaded to the cloud. For example, in area
(1) and (2), cloudlet, i.e. BS and IoT gateway could run
complete intelligent models/algorithms to provide services for
edge devices. In area (3), a model is divided into several parts
with different functions, which are performed by several edge
devices. These edge devices work together to finish the task.

It is known that three most important elements for an intel-
ligent application are: data, model, and computation. Suppose
that an intelligent application is a ‘human’, model would be
the ‘body’, and computation is the ‘heart’ which powers the
‘body’. Data is then the ‘book’. The ‘human’ improves their
abilities by learning knowledge extracted from the ‘book’.
After learning, the ‘human’ starts to work with the learned
knowledge. Correspondingly, the complete deployment of
most intelligent applications (unsupervised learning based
application is not included) includes three components: data
collection and management (preparing the ‘book’), training
(learning), and inference (working). Computation is a hidden

component that is essential for the other three components.
Combined with an edge environment, these three obvious
components turn into edge cache (data collection and storage
at edge), edge training (training at edge), and edge inference
(inference at edge), respectively. Note that edge devices and
edge servers are usually not powerful. Computation at edge
usually is done via offloading. Hence, the hidden component
turns into edge offloading (computation at edge). Our classi-
fication is organised around these four components, each of
which features multidimensional analysis and discussion. The
global outline of our proposed classification is shown in Fig. 2.
For each component, we identify key problems in practical
implementation and further break down these problems into
multiple specific issues to outline a tiered classification. Next,
we present an overview of these modules shown as Fig. 2.

A. Edge Caching

In edge intelligence, edge caching refers to a distributed data
system proximity to end users, which collects and stores the
data generated by edge devices and surrounding environments,
and the data received from the Internet to support intelligent
applications for users at the edge. Fig. 3 presents the essential
idea of edge caching. Data is distributed at the edge. For
example, mobile users’ information generated by themselves is
stored in their smartphones. Edge devices such as monitoring
devices and sensors record the environmental information.
Such data is stored at reasonable places and used for process-
ing and analysis by intelligent algorithms to provide services
for end users. For example, the video captured by cameras
could be cached on vehicles for aided driving [45]. Edge
caching is different from traditional caching, which caches
popular content at base stations from the backbone network.
The data flow of traditional caching is from the cloud to the
edge of the network, while the data flow of edge caching is
from the edge to the central cloud. The structure of this section
is organised as the bottom module in Fig. 2.

In edge caching, there are two kinds of content to be cached
at edge. One is the raw data collected from end users or
IoT devices and surrounding environment, which provides the
input for intelligent applications. The inputs of an intelligent
application may be the same or partially the same. For
example, in continuous mobile vision analysis, there are large
amounts of similar pixels between consecutive frames. Some
resource-constrained edge devices need to upload collected
videos to edge servers or the cloud for further processing.
With cache, edge devices only need to upload different pixels
or frames. For the repeated part, edge devices could reuse the
results to avoid unnecessary computation. Hence, the other
kind of cached data is the computation results of some intel-
ligent applications, which could be used in the future to avoid
redundant computation. Moreover, the requested computing
tasks of intelligent applications may be the same. For example,
an edge server provides image recognition services for edge
devices. The recognition tasks from the same context may
be the same, e.g., the same tasks of flower recognition from
different users of the same area. Edge servers could directly
send the recognition results achieved previously back to users.
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Fig. 2. The classification of edge intelligence literature.

Fig. 3. The illustration of edge caching. Data generated by mobile users
and gathered from surrounding environments is collected and stored on edge
devices, unmanned aerial vehicle (UAV), autonomous underwater vehicles
(AUV), and micro clouds. Such data is processed and analysed by intelligent
algorithms to provide services for end users.

Such kind of caching could significantly decrease computation
and execution time. Some practical applications based on
computation redundancy are developed in [46]–[48].

For data caching, existing works mainly focus on how
to efficiently collect data and how to manage the collected
data. Mobile users could keep their data locally on their
smartphones for privacy and security concern. However, the
majority data is generated by IoT devices, which have ex-
tremely limited resources. Hence, the collected data need
to be sent to the edge data center, e.g., edge server. Some
researchers focus on collecting data in the urban with the
assistance of vehicles [49]–[62]. These vehicles can collect
data from IoT devices when they pass by or directly sense data
from the urban environment. However, not all IoT devices are
implemented near the road. Some researchers adopts multi-

hop routing for data delivery [63]–[66]. There are also some
work collecting data in underwater scenarios for smart ocean
[67], [68], [68]–[71].

In edge context, the collected data is kept locally for
processing and maintaining. Different from cloud-based cen-
tralized data center, there is no large-scale data center at edge.
Existing works mainly focus on storing and managing data
with virtual micro cloud, especially vehicular micro cloud
[72], [73], [73]–[75]. Some works study managing data with
static vehicles in parking lot with the consideration of stability
[76]–[80]. There also some works focus on vehicular micro
cloud with deep investigation on the mobility of vehicles [81]–
[87]. In addition, we also give some practical applications with
these data collection and management techniques [88]–[90].

Researchers have verified the redundant computation in
AI applications. Caching reusable computation results could
significantly reduce the computation latency and energy con-
sumption. According to the caching granularity, we iden-
tify three kinds of computation caching: level-layer caching,
application-level caching, and device-level caching. For level-
layer caching, existing works mainly focus on the similarity-
based lookup and incremental learning on changed pixels in
continuous mobile vision applications. For application-level
caching, the focus of literature is approximate caching across
applications on the same device. For device-level caching,
researchers investigate the spatio-temporal locality of users
within an area to cache repeatedly requested computation
results on edge server. In addition, there are also some works
propose to cache multiple deep learning models on edge server
for specialized missions to improve the quality of service.
Some applications on eye gaze tracking and voice assistant
based on computation caching are introduced at last.
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Fig. 4. The illustration of edge training. The model/algorithm is trained either
on a single device (solo training), or by the collaboration of edge devices
(collaborative training) with training sets cached at the edge. Acceleration
module speeds up the training, whilst the optimisation module solves problems
in training, e.g., update frequency, update cost, and privacy and security issues.
Uncertainty estimates module controls the uncertainty in training.

B. Edge Training

Edge training refers to a distributed learning procedure that
learns the optimal values for all the weights and bias, or the
hidden patterns based on the training set cached at the edge.
For example, Google develops an intelligent input application,
named G-board, which learns user’s input habits with the
user’s input history and provides more precise prediction on
the user’s next input [39]. The architecture of edge training is
shown as Fig. 4. Different from traditional centralised training
procedures on powerful servers or computing clusters, edge
training usually occurs on edge servers or edge devices, which
are usually not as powerful as centralised servers or computing
clusters. Hence, in addition to the problem of training set
(caching), four key problems should be considered for edge
training: (i) how to train (the training architecture), (ii) how to
make the training faster (acceleration), (iii) how to optimise
the training procedure (optimisation), and (iv) how to estimate
the uncertainty of the model output (uncertainty estimates).
The structure of this section is organised as the left module in
Fig. 2.

For the first problem, researchers design two training ar-
chitectures: solo training [36]–[38], [91] and collaborative
training [39], [92]–[95]. Solo training means training tasks are
performed on a single device, without assistance from others,
whilst collaborative training means that multiple devices coop-
erate to train a common model/algorithm. Since solo training
has a higher requirement on the hardware, which is usually
unavailable, most existing literature focuses on collaborative
training architectures.

Different from centralised training paradigms, in which
powerful CPUs and GPUs could guarantee a good result with
a limited training time, edge training is much slower. Some
researchers pay attention to the acceleration of edge training.

Corresponding to training architecture, works on training
acceleration are divided into two categories: acceleration for
solo training [91], [96]–[101], and collaborative training [95],
[102], [103].

Solo training is a closed system, in which only iterative
computation on single devices is needed to get the optimal
parameters or patterns. In contrast, collaborative training is
based on the cooperation of multiple devices, which requires
periodic communication for updating. Update frequency and
update cost are two factors which affect the performance of
communication efficiency and training result. Researchers on
this area mainly focus on how to maintain the performance of
the model/algorithm with lower update frequency, and update
cost. To solve the problem of limited resources, e.g., CPU and
battery, researchers propose various energy-efficiency algo-
rithms to help edge devices collaboratively train models under
various kinds of scenarios. In addition, totally edge-based
collaborative training is limited the scarcity of participants and
data. Some researchers adopt hierarchical federated learning-
based approaches to solve such problem.

The public nature of collaborative training is vulnerable to
malicious users. There is also some literature which focuses
on the privacy [104]–[115] and security [116]–[120], [120]–
[122], [122]–[125] issues.

In DL training, the output results may be erroneously
interpreted as model confidence. Estimating uncertainty is easy
on traditional intelligence, whilst it is resource-consuming for
edge training. Some literature [126], [127] pays attention to
this problem and proposes various kinds of solutions to reduce
computation and energy consumption.

We also summarised some typical applications of edge
training [39], [104], [128]–[135], [135]–[146] that adopt the
above-mentioned solutions and approaches.

C. Edge Inference

Edge inference is the stage where a trained model/algorithm
is used to infer the testing instance by a forward pass to
compute the output on edge devices and servers. For example,
developers have designed a face verification application based
DL, and employ on-device inference [147], [148], which
achieves high accuracy and low computation cost. The archi-
tecture of edge inference is shown as Fig. 5. Most existing
AI models are designed to be implemented on devices which
have powerful CPUs and GPUs, this is not applicable in an
edge environment. Hence, the critical problems of employing
edge inference are: (i) how to make models applicable for their
deployment on edge devices or servers (design new models,
or compress existing models), and (ii) how to accelerate edge
inference to provide real-time responses. The structure of this
section is organised as the right module in Fig. 2.

For the problem of how to make models applicable for the
edge environment, researchers mainly focus on two research
directions: design new models/algorithms that have less re-
quirements on the hardware, naturally suitable for edge envi-
ronments, and compress existing models to reduce unnecessary
operation during inference. For the first direction, there are
two ways to design new models: let machines themselves
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Fig. 5. The illustration of edge inference. AI models/algorithms are designed
either by machines or humans. Models could be further compressed through
compression technologies: low-rank approximation, network pruning, compact
layer design, parameter quantisation, and knowledge distillation. Hardware
and software solutions are used to accelerate the inference with input data.

design optimal models, i.e., architecture search [149], [150],
[150], [150]–[153]; and human-invented architectures with
the application of depth-wise separable convolution [154]–
[156] and group convolution [157], [158]. We also summarise
some typical applications based on these architectures, in-
cluding face recognition [147], [148], [159], human activity
recognition (HAR) [160]–[168], vehicle driving [169]–[172],
and audio sensing [173], [174]. For the second direction,
i.e., model compression, researchers focus on compressing
existing models to obtain thinner and smaller models, which
are more computation- and energy-efficient with negligible
or even no loss on accuracy. There are five commonly
used approaches on model compression: low-rank approxima-
tion [175]–[180], knowledge distillation [181]–[189], compact
layer design [190]–[198], network pruning [199]–[213], and
parameter quantisation [176], [213]–[229]. In addition, we
also summarise some typical applications [230]–[235] that are
based on model compression.

Similar to edge training, edge devices and servers are not as
powerful as centralised servers or computing clusters. Hence,
edge inference is much slower. Some literature focuses on
solving this problem by accelerating edge inference. There
are two commonly used acceleration approaches: hardware
acceleration and software acceleration. Literature on hardware
acceleration [236]–[245], [245]–[261] mainly focuses on the
parallel computing which is available as hardware on devices,
e.g., CPU, GPU, and DSP. Literature on software acceleration
[45], [251], [262]–[270] focus on optimising resource man-
agement, pipeline design, and compilers, based on compressed
models.

Fig. 6. The illustration of edge offloading. Edge offloading is located at
the bottom layer in edge intelligence, which provides computing services for
edge caching, edge training, and edge inference. The computing architecture
includes D2C, D2E, D2D, and hybrid computing.

D. Edge offloading

As a necessary component of edge intelligence, edge of-
floading refers to a distributed computing paradigm, which
provides computing service for edge caching, edge training,
and edge inference. If a single edge device does not have
enough resource for a specific edge intelligence application,
it could offload application tasks to edge servers or other
edge devices. The architecture of edge offloading is shown as
Fig. 6. Edge offloading layer transparently provides computing
services for the other three components of edge intelligence. In
edge offloading, Offloading strategy is of utmost importance,
which should give full play to the available resources in edge
environment. The structure of this section is organised as the
top module in Fig. 2.

Available computing resources are distributed in cloud
servers, edge servers, and edge devices. Correspondingly,
existing literature mainly focuses on four strategies: device-to-
cloud (D2C) offloading, device-to-edge server (D2E) offload-
ing, device-to-device (D2D) offloading, and hybrid offloading.
Works on the D2C offloading strategy [271]–[286] prefer to
leave pre-processing tasks on edge devices and offload the
rest of the tasks to a cloud server, which could significantly
reduce the amount of uploaded data and latency. Works on
D2E offloading strategy [25], [287]–[292] also adopt such
operation, which could further reduce latency and the depen-
dency on cellular network. Most works on D2D offloading
strategy [293]–[301] focus on smart home scenarios, where
IoT devices, smartwatches and smartphones collaboratively
perform training/inference tasks. Hybrid offloading schemes
[302]–[304] have the strongest ability of adaptiveness, which
makes the most of all the available resources.

We also summarise some typical applications that are based
on these offloading strategies, including intelligent transporta-
tion [305], smart industry [306], smart city [307], and health-
care [308] [309].

E. Summary

In our survey, we identify four key components of edge
intelligence, i.e. edge caching, edge training, edge inference,
and edge offloading. Edge intelligence shows an explosive
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Fig. 7. Publication volume over time. These curves show the trend of
publication volume in edge caching, edge training, edge computing, edge
inference, and edge intelligence, respectively. The value of 2021 is predicted
based on the values of past years.

developing trend with a huge amount of researcher have been
carried out to investigate and realise edge intelligence over
the past five years. We count the publication volume of edge
intelligence, as shown in Fig. 7.

We see that this research area started from 2011, then grew
at a slow pace before reaching 2014. Most strikingly, after
2014, there is a rapid rise in the publication volume of edge
caching, edge training, edge inference, and edge offloading.
Overall, the publication volume of edge intelligence is boom-
ing, which demonstrates a research field replete with activity.
Such prosperity of this research filed owes to the following
three reasons.

First, it is the booming development of intelligent tech-
niques, e.g., deep learning and machine learning techniques
that provides a theoretical foundation for the implementa-
tion of edge intelligence [310]–[312]. Intelligent techniques
achieve state-of-the-art performance on various fields, ranging
from voice recognition, behaviour prediction, to automatic
piloting. Benefiting from these achievements, our life has been
dramatically changed. People hope to enjoy smart services
anywhere and at any time. Meanwhile, most existing intel-
ligent services are based on cloud computing, which brings
inconvenience for users. For example, more and more people
are using voice assistant on smartphone, e.g., MI AI and
Apple Siri. However, such applications can not work without
networks.

Second, the increasing big data distributed at the edge,
which fuels the performance of edge intelligence [313]–[315].
We have entered the era of IoT, where a giant amount of IoT
devices collect sensory data from surrounding environment
day and night and provide various kinds services for users.
Uploading such giant amount of data to cloud data centres
would consume significant bandwidth resources. Meanwhile,
more and more people are concerned about privacy and
security issues behind the uploaded data. Pushing intelligent
frontiers is a promising solution to solve these problems and
unleash the potential of big data at the edge.

Third, the maturing of edge computing systems [15], [17]

Fig. 8. Publication volume over time. These curves show the trend of
publication volume in edge caching, edge training, edge computing, edge
inference, and edge intelligence, respectively.

and peoples’ increasing demand on smart life [316], [317]
facilitate the implementation of edge intelligence. Over the
past few years, the theories of edge computing have moved
towards application, and various kinds of applications have
been developed to improve our life, e.g., augmented reality
[318]–[320]. At the same time, with the wide spreading of
5G networks, more and more IoT devices are implemented to
construct smart cities. People are increasingly reliant on the
convenient service provided from a smart life. Large efforts
from both academia and industry are enacted to realise these
demands.

III. PRELIMINARY OF ARTIFICIAL INTELLIGENCE

In this section, we briefly introduce the concept and its
branches of artificial intelligence.

A. Artificial Intelligence

The history of artificial intelligence could be traced back to
1956. After decades of development, it has been the hottest
topic in both academia and industry. Artificial intelligence
refers to the ability enabling computers to mimic intelligent
creatures, which learn from experience to adapt to various
kinds environment and tasks [321]–[323]. The goal of AI
is to let computer act like human to understand and think
and replace human in various kinds of tasks, such as object
recognition, translation, and driving.

The scope of artificial intelligence is quite wide, including
knowledge representation, reasoning, data mining, etc. Learn-
ing is an approach to enable computer to be intelligent. The
relationship amongst artificial intelligence, machine learning
and deep learning is shown as Fig. 8. Machine learning is a
typical approach to realize artificial intelligence, while deep
learning is an efficient machine learning algorithm.

B. Machine learning

Machine learning refers to the process of computer learning
and improving with knowledge extracted from data, without
following specific instructions [324]. Generally, there are three
branches of machine learning: supervised learning, unsuper-
vised learning, and reinforcement learning. Supervised learn-
ing is applicable to scenarios where data is labeled. Supervised
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learning algorithms learn a function which maps the input to
output. The learning procedure is to continuously minimize
the loss function that reflects the overall degree of input-output
matching. Popular supervised algorithms include decision tree
[325], random forest [326], support vector machine (SVM)
[327], k-nearest neighbors (KNN) [328], linear regression
[329], etc. In unsupervised learning, the data is not labeled.
Learning algorithms automatically learn the properties of data.
Typical examples of unsupervised learning include grouping
data items based on similarity, and reducing dimension of data.
Popular unsupervised learning algorithms include K-means
[330], spectral clustering [331], principle component analysis
(PCA) [332], independent component analysis (ICA) [333],
singular value decomposition (SVD) [334], etc. Similar with
unsupervised learning, there is also no labeled data in rein-
forcement learning. Intelligent agents continuously improve
their actions to maximize the cumulative rewards through the
interaction with the surrounding environment. For example, if
the agent plays chess, it can try different strategies of action.
If the strategy can help the agent get more points, higher
reward would be given to this strategy. Typical algorithms
of reinforcement learning include Q-learning [335], double
Q-learning [336], Sarsa [337], deep Q-network [338], policy
gradient [339], actor critic [340], etc.

Generally, machine learning requires to extract features
manually, which is also called feature engine. This is feasible
in some simple scenarios. However, in scenarios like object
detection and voice recognition, it is hard to design features
by human.

C. Deep learning

Deep learning evolves from neural network (NN), which is a
simulation of bio neural network. Neuron is the basic element
of neural network, which receives input from other neurons
(except for the input layer), process received inputs with
activation function, and output the results to next neurons. In
deep neural network (DNN), there are multiple layers and each
layer has multiple neurons. In particular, there is one input
layer, one output layer, and multiple hidden layers between
input layer and output layer. Data is sent to the input layer,
which will further propagate the data to hidden layer. Then
the data is processed and propagate through multiple hidden
layers and finally the results are output through output layer.
The most obvious difference between DNN and traditional NN
is the number of hidden layers, which automatically extract
feature with non-linear units. There are usually multiple hidden
layers in DNN, which is also the origin of ”deep learning”.

Theoretically, deep learning is able to approximate any con-
tinuous function [341], [342]. With the network going deeper,
it can solve a lot of complex problems. Practically, deep
learning has achieved state-of-the-art performance in various
kinds application scenarios, which proves the learning ability
of deep learning. Deep learning highly relies on the data.
With more high-quality data, the performance of deep learning
will be better. However, more data and deeper model mean
more computing power. Most deep learning based applications
are not suitable to be executed on resource-constraint edge

devices. Hence, the scope of our survey is how to implement
applications/models in the context of edge computing.

Typical models of deep learning include convolutional neu-
ral network (CNN) [343], recurrent neural network (RNN)
[344], generative adversarial network (GAN) [345], and their
variations. Specifically, CNN is often used for image pro-
cessing, e.g., image classification and face recognition. The
structure of CNN is usually composed of convolutional layers,
pooling layers, and fully connected layers. Convolutional layer
is used to extract features from input data, while pooling
layer is used to down sampling feature maps and reduce the
dimension. The fully connected layer is a classifier to output
final result. RNN is usually used to process sequential data,
e.g., time series and language. The most obvious characteristic
of sequential data is the temporal-correlation. The structure of
RNN is also composed of input layer, hidden layer, and output
layer. RNN allows neurons in hidden layer to keep the memory
of previous input, which will impact the processing result of
current input. For example, in stock prediction, the current
price is high related to the price of yesterday, even the price
of last week. However, RNN has the shortcoming of short-
term memory. Hence, variations, i.e., long short-term memory
networks (LSTM) [346] and gated recurrent units (GRU) [347]
are proposed to solve the problem. GAN is composed of two
parts: generator and discriminator. The generator is used to
generate data according to the learned distribution of data,
while the discriminator is used to judge on result of the
generator. The training procedure is as follows. (1) Train the
generator and use the discriminator to judge the results of
generator, until the discriminator cannot tell the generated
result from real data. (2) Train the discriminator until it is
able to correctly judge the generated results. (3) Repeat step
(1) and (2). Finally, we get a generator and a discriminator
with good performance.

IV. EDGE CACHING

Initially, the concept of caching comes from computer
systems. The cache was designed to fill the throughput gap
between the main memory and registers [348] by exploring
correlations of memory access patterns. Later, the caching
idea was introduced in networks to fill the throughput gap
between core networks and access networks. Nowadays, the
cache is deployed in edge devices, like various base stations
and end devices. By leveraging the spatiotemporal redundancy
of communication and computation tasks, caching at the edge
can significantly reduce transmission and computation latency
and improve users’ QoE [349]–[351].

Traditional content caching mainly focuses on the storage
system of popular files or document on edge servers that is
physically close to edge devices to meet the requirements of
latency and bandwidth [352]–[354]. The data flow is from
the core of the network to the edge. In the context of edge
intelligence, edge caching focuses on the sharing, collection,
storage and management of the data generated at the edge
of the network to provide better data service for intelligent
applications [355]. The data flow is from the edge of the
network to the core. From existing studies, the critical issues
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of caching technologies in edge networks fall into two aspects:
data caching and computation caching. Next, we discuss and
analyse relevant literature in edge caching in terms of the
above two perspectives. For the convenience of readers, we
summarize existing literature on data caching in table II.

A. Data caching

With the fast development of IoT, billions of IoT devices are
deployed at the edge of the network to sense and collect the
status and information of the crowd flow, environment and in-
frastructures in smart city. A large amount of data is generated
by these IoT devices. In fact, most IoT devices are resource-
constraint, e.g., sensors, which have poor capability of storage
and computing. Hence, the generated data is transmitted to
edge data centers, e.g., edge server, powerful edge devices, etc.
and will be further processed and consumed by edge intelligent
applications. The key challenges of data caching are how to
efficiently collect and manage the data.

1) Data collection: Data collection refers to the process
of gathering quantitative information, e.g., temperature and
traffic, or qualitative information, e.g., anomaly or not, from
end devices, e.g., sensors and embedded devices. Although
most IoT devices are equipped with wireless communication
modules, the generated data cannot be directly uploaded to the
data center. Multilevel architecture is commonly used for data
collection [356]. There are usually three levels in multilevel
architecture. Data generators, e.g., sensors, are located at the
bottom level and mobile sinks are at the middle level. The
data center is at the top level. The mobile sink could be UAV,
autonomous underwater vehicle, or vehicle on the road, which
depends the practical applying scenario.

In smart city, there are a large number of vehicles moving
everyday, which could work as sinks to collect data [49]–
[51]. Bonola et al. propose to use vehicles to collect data
through opportunistic communications [52]. In this scenario,
sensors are deployed near the road. When vehicles pass these
nodes, data is gathered through opportunistic communication.
However, this scheme can only collect data through sensors
along the road. If the sensor is far away from the road, the
data cannot be gathered. Based on [52], Luo et al. propose
a data collection scheme through moving vehicles in city,
which enables multi-hop transmission among sensors [53].
Sensor nodes are clustered into several clusters. Within a
cluster, all sensor nodes first send their data to the head of
the cluster via multi-hop delivery. Then the gathered data is
transmitted to the passing vehicle. The data collection scheme
is shown as Fig.9. The cluster head is selected based on the
distance with the vehicle, and these sensor nodes are clustered
based on the distance with the cluster head. The work in [54]
improves the cluster head selection based on road segmenting
to support the collection of delay-sensitive data. Cao et al.
investigate the data collection problem in large-scale outdoor
unfriendly environment with UAV [55]. Similarly, they also
adopt clustering strategy to divide the area into several part and
select a cluster head based on remaining energy. In addition,
they use ant colony algorithm [357] to optimize the flying path
to minimize the energy consumption of UAV.

Fig. 9. Illustration of cluster-based data collection. The generated data is first
sent to the cluster head, and then transmitted to the passing vehicle.

The mobility of vehicles is highly dynamic in the city,
which brings a big challenge for data transmission and delivery
[56], [57]. Some literature [58]–[61] focuses on data collection
based on vehicle mobility prediction. Lin et al. study the long-
term movement pattern of vehicles in the city and use K-means
algorithm to estimate the contact duration between vehicles
and road side units (RSUs) and the contact duration between
vehicles based on their history contact records [61]. Then the
data carrier vehicle greedily selects the vehicle or RSU for
next hop to delivery data. The work [59] considers the scenario
of recruiting several vehicles to collect data in the city. They
estimate the sensing capacity of vehicles based on their future
temporal distribution and Markov chain to predict the mobility
of vehicles. Then a greedy approximation algorithm is used
to select the optimal vehicles. Considering the low prediction
accuracy in [61] and [59], Zhu et al. propose to use deep
learning approach to accurately predict the mobility of vehicles
in the recruiting problem [60]. He et al. further consider
the budget issues in recruiting vehicles based on predicted
trajectory [58]. The minimum budget problem is NP-complete
and they proposed two greedy-based algorithms to solve it.
Instead of predicting the mobility of vehicles, Huang et al.
propose to recruit vehicles with fixed trajectories and runtime,
e.g., bus to collect data from other sensing vehicles in the city
[62]. Considering the coverage and overlapping of different
buses, they propose a simulate anneal-based algorithm to solve
the problem of optimal set of buses.

Smart ocean [358] is also attracting more and more attention
from both academia and industry, benefiting from the fast
development of underwater IoT. Large amount of data is
collected by IoT devices deployed in the ocean to power appli-
cations like ocean environment monitoring, resource detection,
and navigation. There are two commonly adopted architectures
for underwater data collection: AUV-driven data collection
[67] and UAV-driven data collection [68]. The former one
usually uses AUV to directly collect data from underwater
IoT devices, while the latter one usually uses relays, e.g.,



11

Fig. 10. Illustration of vehicular micro cloud architecture. (a) Parked vehicles
form a virtual vehicular micro cloud, in which members are relatively
fixed. (b) Homodromous vehicles form a vehicular micro cloud. (c) Moving
vehicles form a virtual vehicular micro cloud at the intersection, in which the
membership is frequently changed.

floating nodes in the ocean to gather data, and then forward
the gathered data to UAV.

2) Data management: Data management refers to the pro-
cess of storing, organizing and maintaining the data collected
from end devices, e.g., IoT devices, sensors, and vehicles.
Traditional cloud-based intelligent applications require to up-
load data from edge to the central data center, which is easy
to manage and maintain. However, in edge intelligence, data
are kept at edge, where there is no physical data center for
data management and maintenance. Existing work on edge-
based data management mainly focus on micro cloud-based
schemes, especially vehicular micro cloud [72]–[75]. There
are two vehicular micro cloud architectures: static and dynamic
vehicular micro cloud. The former one adopts parked vehicles
to form a virtual micro cloud for data storage or computation,
while the latter one maintains a virtual micro cloud with
moving vehicles. As shown in Fig. 10, (a) is a static vehicular
micro cloud, while (b) and (c) are dynamic vehicular micro
cloud.

The key idea of vehicular micro cloud is to let vehicles con-
nect with each other to form a virtual cloud, in which vehicles
work collaboratively to provide data storage, processing, and
sensing service for both members and other users. Researchers
from Toyota have verified the feasibility of vehicular micro
cloud through practical implementation [76] and analysis on
vehicle probe datasets [77]. The shortcoming of the dynamic
vehicular micro cloud is obvious. The network is unstable
and easy to be decomposed due to the high-speed mobility of
vehicles. Hagenauer et al. propose a comprehensive framework
of vehicular micro cloud for parked vehicles [78]. This frame-
work includes gateway selection, handover mechanism, and
in-out management. The system dynamically selects a subset
of vehicles in the parking lot as gateways to maintain the
cached data and computing resource. When vehicles or users
pass by, gateways seamlessly provide service for them with
handover mechanism. If vehicles enter or leave the parking
lot, they will inform all other gateways for data transferring.

Dressler et al. propose a distributed hash table-based method
to efficiently manage and access the data within the parked
vehicular micro cloud [79], [80].

Ciocan et al. evaluate the performance of vehicular micro
cloud in urban in terms of data preserving and find that only
when the density of vehicles is high enough, performance of
the cloud can meet the requirement of data preserving [81].
To deal with the problem of failure in micro cloud caused
by resource scarcity, Higuchi et al. design a mechanism to
schedule when and where to form micro cloud [82]. They
assume that the probability of successful micro cloud is
positively relevant with the amount of resource. Each vehicle
periodically registers at RSUs to report its current resource and
data. For a given region, if the amount of resource reaches the
threshold, the micro cloud is formed.

In a vehicular micro cloud, data is stored at members of
the cloud. Due to the mobility of vehicles, keeping the data
available in a vehicular micro cloud is challenging. If there
is only one copy of a data item, and the vehicle holding the
data item leaves the current cloud, the data item will be lost.
Pannu et al. propose a data management protocol to solve such
problem, which enables the communication between micro
clouds [83]. Specifically, when a vehicle is leaving the current
cloud, it checks the redundancy of the data in its knowledge
base within the cloud. If it is only copy, it broadcasts the
information of the data and its moving intention. Vehicles
coming to join the cloud, also interested in the data, will
retrieve the data to keep the data alive. However, the data
handover may fail due to many factors, e.g., packet collisions,
poor connection, etc. Hu et al. solve this problem with erasure
coding [84]. Data item is split into several parts for delivery.
Erasure coding could recover the original data item without
receiving all parts of the item.

3) Applications: Benefiting from the development of IoT
and big data, farming is becoming more and more intelligent.
Various kinds of sensors are implemented in farms to collect
data from environment and livestock, e.g., temperature, humid-
ity, luminance, gyroscope, acceleration, and GPS, for precision
farming [88]. Bhargava et al. provide an intact smart farming
scheme [89]. In particular, two kinds of sensors are used in
the scheme: in-field sensor to collect the environment status,
e.g., weather, grass growth, and collar on cows to monitor
the health status and trajectory. When cows come back to
the milking station, data is transmitted to the gateway for
processing. Considering the limited storage resource, they use
L-SIP algorithm to compress the collected data.

In intelligent transportation system, accident detection in
real time is necessary, which could provide medical care in
time. Khaliq et al. design an accident detection and medical aid
system based on vehicular network [90]. Each vehicle period-
ically sends sensed data, e.g., captured images, accelerometer,
gyroscope, etc. to the edge server for detection. If an accident
is detected, the edge server notifies all vehicles of this area
and nearest hospital for medical aid.

B. Computation caching
In the wave of AI, we are now surrounded by various

intelligent edge devices such as smartphones, smart watches,
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TABLE II
LITERATURE SUMMARY OF DATA CACHING.

Ref. Cache places Scenario Delivery Content Strategy Metric
[356] Mobile sink General Multi-hop Data collection Clustering Communication cost
[52] Vehicle Roadside data collection One-hop Data collection Opportunistic communication Experimental evaluation
[53] Vehicle Smart city Multi-hop Data collection Clustering Energy consumption
[54] Vehicle Delay-sensitive Multi-hop Data collection road segmenting Supported data types
[55] UAV Unfriendly environment Multi-hop Data collection Clustering, path optimization Data collection time
[61] Vehicle Mobile crowdsensing Multi-hop Data collection Mobility prediction Delivery rate
[59] Vehicle Mobile crowdsensing One-hop Data collection Mobility prediction Data collection efficiency
[60] Vehicle Mobile crowdsensing One-hop Data collection Mobility prediction Collected data volume
[58] Vehicle Mobile crowdsensing One-hop Data collection Trajectory prediction Coverage
[62] Bus Mobile crowdsensing One-hop Data collection Collector selection Redundancy rate

[359] Sensor Wireless sensor network Multi-hop Data aggregation Fuzzy c-means clustering Data quality
[66] Sensor Wireless sensor network Multi-hop Data aggregation Early message mechanism Aggregation probability
[67] IoT device Underwater sensing Multi-hop Path connectivity Sink-node-deployment Fairness
[68] AUV Underwater sensing Multi-hop Collection Shortest path tree Energy consumption
[76] Vehicular cloud Stop interaction Data management Micro cloud demo N/A
[77] Vehicular cloud Interaction, freeway Data management Analysis on probe datasets Feasibility
[78] Vehicular cloud Parking lot Data management Micro cloud framework Data transmitting rate
[79] Vehicular cloud Parking lot Data management Distributed hash table N/A
[81] Vehicular cloud Urban environment Data management Real trace experiments N/A
[82] Vehicular cloud General Data management Cloud formation Failure frequency
[83] Vehicular cloud Intersection Data management Data recovery Data availability
[84] Vehicular cloud General Data management Erase coding Data handover efficiency
[87] Vehicular cloud General Data management Mobility-aware allocation Reliability

and smart brands. These intelligent edge devices provide
diverse applications to augment users’ understanding of their
surroundings [360], [361]. For example, speech-recognition
based AI assistants, e.g., Siri and Cortana, and song identi-
fication enabled music applications, have been widely used in
peoples’ daily lives. Such AI-based applications are of high
computational complexity and cause high power consumption
of the device [318], [319], [362]. Meanwhile, some researchers
have discovered the computation redundancy in AI-based
applications, e.g., face detection and voice recognition, which
indicates the feasibility of computation reuse for AI applica-
tions [363]. It saves ridiculous amount of time and energy for
edge devices performing AI applications through caching the
results of previous computation [364].

The key idea of computation caching technologies is to
explore the spatiotemporal redundancy of computation. Com-
putation redundancy is caused by commonly used high compu-
tational complexity applications or AI models. Generally, there
are three kinds of computation caching, according to the gran-
ularity of computation redundancy: layer-level, model-level,
and device-level computation caching. Table III summaries
existing literature on computation caching.

1) Layer-level computation caching: CNN and its vari-
ations achieve state-of-the-art performance in computer vi-
sion. In CNN-driven applications, input images are processed
through CNN layer by layer to produce intermediate results,
which is also called feature maps, and then output the infer-
ence results. On the other hand, in continuous mobile vision,
there is plenty of redundant information between continuous
frames. Hence, the intermediate results are reusable to avoid
redundant computation for users. Such paradigm is also called
incremental inference [365]

The key question is what should be cached. In continuous
vision, the content of frames varies along with time, which
means directly caching the computation result of a complete

Fig. 11. Illustration of DeepCache. Each frame is partitioned into multiple
regions. The lookup table maps the cache keys, i.e., regions to cache value,
i.e., feature maps.

frame is not possible. Xu et al. design a layer-level caching
framework, called DeepCache, for continuous mobile vision
applications, in which each frame is split into multiple regions
of same size (10x10 pixels) [366]. There are large number
of redundant regions among different frames. As shown in
Fig. 11, the region is treated as cache key, while the result,
i.e., feature map of the region is cache value. A lookup table is
created to map regions to feature maps. When forward propa-
gation is performed at each layer, the cached feature maps are
used to replace the actual execution. Experiments on image
classification with ncnn framework show that the proposed
caching system could speedup the inference significantly with
less than 3% accuracy loss. However, comparing and identify-
ing these reusable regions from each frame requires significant
overhead, which limits the accelerating performance and in-
troduce extra energy consumption. Moreover, due to the errors
in region matching with cache keys, the accuracy of the model
would be also degraded.

The focused scenario of [366] is general. Huynh et al.
design a simplified layer-level caching system for mobile
continuous vision of first-person-view [251]. In continuous
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first-person-view based applications, there are not too much
changes between consecutive images. Hence, the authors
propose to directly compare regions in the same location
in consecutive images to identify reusable feature maps,
which could significantly reduce the computation overhead
compared with [366]. However, comparing two images is
computation consuming, even for 8x8 grids. To solve this
problem, the authors propose to use the color distribution
to compute the similarity of two images. Specifically, they
calculate the chi-square distance of two color distributions.
Two images are treated as similar if the distance is smaller
than the threshold. Although the proposed color distribution-
based approach reduces computation load, it results in further
accuracy loss. Cavigelli et al. propose to not only compare
regions of successive images at the input layer but also before
every intermediate layer to reduce accuracy loss in similar
application scenario [270], [367]. Similar approach is also
adopted in [368]. Inspired by video codecs [369], Buckler
et al. propose an activation motion compensation (AMC)
algorithm to detect changed pixels and incrementally update
the output for predicted frames [370]. Different from [251],
[366], AMC requires to manually split the CNN model into
two parts. The result of prefix part is cached. AMC only need
to execute the suffix part to compensate for the changed pixels.

In some mobile continuous computer vision applications,
such as driving assistance, the system is required to provide
high trackability. The system needs to recognise, locate, and
label the tracked object, e.g., road signs, on the screen in real-
time, which makes it hard to execute the recognition model
on a resource-constrained edge device. Chen et al. develop
an active cache based continuous object recognition system,
called Glimpse, with the assistance of cloud server to achieve
real-time trackability [371]. The structure of Glimpse is shown
as Fig. 12. Glimpse caches frames locally and only uploads
trigger frames to the cloud server. Trigger frames refers to the
frames, for which the recognition from the server is different
from current local tracking. The cloud server sends back the
recognised object, its labels, bounding boxes, and features,
which would be cached locally on devices. Then the devices
would track the object with the labels, bounding boxes, and
features locally on captured frames. A similar approach is also
adopted in CNNCache [45]. However, detecting these trigger
frames also requires intensive computation. Naderiparizi et
al. develop a framework, Glimpse, to select valid frames by
performing coarse visual processing with low energy con-
sumption [280]. Glimpse adopts gating sensors and redesigns
the processing pipeline to save energy.

2) Application-level computation caching: Modern mobile
systems have the advantage of good compatibility, support
various vision applications [372]. These vision application on
the same mobile device share the same root data, as well as
the processing components, which provides the possibility of
sharing the computation result across applications.

Likamwa et al. propose a across-application caching frame-
work, named Starfish, which enables computation sharing
among concurrent computer vision applications on the same
device [373]. As the name suggests, there is a core, i.e., a
vision library in the center of the framework, which processes

Fig. 12. The architecture of Glimpse. Edge device, i.e., glimpse client, only
uploads trigger frames to the cloud to save bandwidth resources. Glimpse
server transmits the recognition results and features back to edge devices.
Edge devices deal with local frames with these features.

root data and caches the result. When vision applications call
for the library, the core returns the cached results, which
significantly reduce the computation overhead. However, this
framework only support applications of the same type, which
indicates poor scalability. To solve this problem, Guo et al.
design Potluck, an application-level caching system for ap-
proximate caching [374]. They investigate the temporal, spatial
and semantic correlation of input of different applications.
When an application requests for computation, the input is
processed into a feature vector with fixed length, which is
treated as the cache key. If the key is similar to an existing
key within a given threshold, the cache hits. Otherwise, the
input is processed and the results will be cached.

There are also some researchers focus on static scenario,
where the captured images are all predictable. Boos et al.
design FlashBack, a near real-time immersive virtual real-
ity (VR) system based on pre-caching all possible images
[375]. Before performing VR application, FlashBack renders
all possible images or download pre-rendered results from
the server and cache it on local device. When performing
VR application, a CacheManager component fetches rendered
results according to user’s location and orientation. Obviously,
human-interaction is not supported by the system. The other
disadvantage is the giant storage load. It takes about 50GB
for a single application, which is unacceptable for resource-
constraint edge devices. Qian et al. solve the problem of
overwhelming storage load through pre-caching the results of
future viewport, instead of the complete pre-rendered results
from the server based on the prediction of head movement
[376]. They study the head movement behaivor of 130 diverse
users when they are watching immersive video, and use four
ML algorithms to predict users head movement. Based on the
movement prediction of next time slot, the system pre-caches
the corresponding results from the server.
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3) Device-level computation caching: Since most edge de-
vices are resource-constraint, offloading computation-intensive
tasks to edge server is a promising solution. From the per-
spective of users of the same area, the requested recognition
tasks would exhibit spatio-temporal locality. For example, in a
park, nearby visitors may use their smartphones to recognise
the same flowers and then search the information accordingly.
In this case, these recognition tasks are offloaded to the same
edge server. If the results of previous recognition tasks could
be used for latter tasks, the response time would be signif-
icantly decreased. In [46], Guo et al. crawl street views by
using the Google Streetview API [47] and builds an ’outdoor
input image set’. They then find that around 83% of the
images exhibit redundancy, which leads to a large number of
potential unnecessary computations for image reorganisation
application. Also, they analyse NAVVIS [48], an indoor view
dataset, and observed that nearly 64% of indoor images exhibit
redundancy.

Device-level computation caching usually adopts server-
client architecture. Drolia et al. propose a caching framework,
Cachier, to cache the recognition results on edge servers [377].
Specifically, Cachier first extracts features of the requested
recognition task, and then tries to match a similar object
from the cache. If there is a cache hit, the corresponding
computation results would be sent back to the mobile de-
vice. Otherwise, the request would be sent to the cloud.
To identify similar recognition tasks, they used a Locality
Sensitive Hashing (LSH) algorithm [378] to determine the best
match. Furthermore, to overcome the unbalanced and time-
varying distribution of users’ requested tasks, Guo et al. design
an Adaptive LSH-Homogenized kNN joint algorithm which
outperforms LSH in terms of evaluation results [46]. Drolia
et al. further introduce a proactive caching strategy into their
system by predicting the requirement of users and proactively
caching parts of models on edge server for pre-processing to
further reduce the latency [379]. Such a strategy is also used
in [380] to deal with unstructured data at edge.

Moreover, in some task-fickle scenarios, multiple different
kinds of tasks, e.g., voice recognition and object recognition,
are offloaded from devices to edge server. By pre-caching
multiple kinds of deep learning models on server for different
kinds of tasks, we can reduce the computation time and further
improve users’ QoE. Taylor et al. propose an adaptive model
selection scheme to select the best model for users [381].
They use a supervised learning method to train a predictor
model offline and then deploy it on an edge server. When
a request arrives, the predictor will select an optimal model
for the task. In [382], Zhao et al. propose a system, Zoo, to
compose different models to provide a satisfactory service for
users. Ogden et al. propose a deep inference platform, MODI,
to determine what model to cache and what model to use for
specific tasks [383]. There is a decision engine inside MODI,
which aggregates previous results to decide what new models
are required to cache. Aforementioned solutions require users
to upload data to edge server for processing, which leads
to relatively high latency (but much lower than cloud-based
solutions). Fang et al. propose a caching scheme with the
joint consideration of latency and accuracy [384]. A complex

model is partitioned and distributed between edge devices and
the cloud server. The input data is first processed locally and
then sent to edge server for further process.

4) application: Tracking eye gaze is widely used in various
scenarios, for example hand-free interaction in games and
irregular behavior detection in driving. However, tracking eye
in real-time is computation-intensive, which needs to process
eye images with a quite high frame rate. Mayberry et al.
design a computation caching enabled mobile gaze tracker
on wearable device [385]. There is large amount redundant
information on eye images. Hence, processing results on
these repeated regions are cached. For each eye image, they
authors propose a point-of-gaze predictor model to estimate
the location of eye on eye image. They only need to execute
inference on a small region containing eye.

Current voice assistants are based on cloud computing,
which introduce extra latency. Xu et al. apply caching mecha-
nism on home voice assistant system to reduce the interaction
with cloud server [386]. They find that the usage of voice
assistant at home follows a power-law distribution. Although
people’s interest is diverse, commonly used command for
voice assistant could be covered by three domains. Hence,
computation results of these commonly used commands are
cached locally. Only when cache misses, cloud service is used
to process the new command. Similarly, caching mechanism
also applies to instance recognition. Lovagnini et al. cache
redundant instance recognition on cloud environment to reduce
the latency for users [387].

V. EDGE TRAINING

The standard learning approach requires centralising train-
ing data on one machine, whilst edge training relies on
distributed training data on edge devices and edge servers,
which is more secure and robust for data processing. The main
idea of edge training is to perform learning tasks where the
data is generated or collected with edge computing resources.
It is not necessary to send users’ personal data to a central
server, which effectively solves the privacy problem and saves
network bandwidth.

Training data could be solved through edge caching. We
discuss how to train an AI model in edge environments in this
section. Since the computing capacity on edge devices and
edge servers is not as powerful as central servers, the training
style changes correspondingly in the edge environment. The
major change is the distributed training architecture, which
must take the data allocation, computing capability, and net-
work into full consideration. New challenges and problems,
e.g., training efficiency, communication efficiency, privacy and
security issues, and uncertainty estimates, come along with the
new architecture. Next, we discuss these problems in more
detail.

A. Training architecture

Training architecture depends on the computing capacity
of edge devices and edge servers. If one edge device/server is
powerful enough, it could adopt the same training architecture
as a centralised server, i.e., training on a single device.
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TABLE III
LITERATURE SUMMARY OF COMPUTATION CACHING.

Ref. Granularity Content Baseline (without caching) Performance

[364] Application Empirical study Matrix multiplication
Face-detection [388], chess 50× faster

[366] Layer Results lookup AlexNet [389], GoogLeNet [190], YOLO [254]
ResNet-50 [191], Dave-orig [390] 20% faster

[251] Layer Grid comparison VGG-Verydeep-16 From 3s to 644ms
[270] Layer Input decomposition cuDNN baseline 9.1× faster
[368] Layer Input decomposition VGG 19 [391] 10× faster
[370] Layer Activation motion compensation AlexNet, Faster16, FasterM 87% energy reduced
[371] Layer Trigger detection GoogleNet [190] improve battery life by 24%
[280] Layer Frame early-discarding RGB tracking algorithm [392] 7-25× less energy consumption

[373] Application Library splitting Face, Object Recognition
Scene Geometry 19%-58% less energy consumption

[374] Application Approximate deduplication AlexNet [389] Lower latency
[375] Application Rendering Memoization Viking Village 97× less energy

[376] Application Viewport prediction Festive [393], BBA [394]
Full [395], H2 [396] 18× quality improvement

[46] Device Scalable lookup, high-quality reuse Google Lens Lower latency and energy cost
[377] Device System design Offloading to cloud 3× speedup
[379] Device Requirement prediction Markov model 5× speedup

[381] Device Model selection Inception [397], ResNet [398]
MobileNet [154] 1.8× faster

[382] Device Composable services Inception [397], LeNet-5 [399]
VGG16 [391] Lower latency

[382] Device Model selection Inception V3 [400] 2.3× faster
[382] Device Model Partitioning Complete model 58-217% faster

Otherwise, cooperation with other devices is necessary. Hence,
there are two kinds of training architectures: solo training,
i.e., perform training tasks on a single edge device/server,
and collaborative training, i.e., few devices and servers work
collaboratively to perform training tasks.

1) Solo training: Early researchers mainly focus on veri-
fying the feasibility of directly training deep learning models
on mobile platforms. Chen et al. find that the size of neural
network and the memory resource are two key factors that
affect training efficiency [91]. For a specific device, training
efficiency could be improved significantly by optimising the
model. Subsequently, Lane et al. successfully implement a
constrained deep learning model on smartphones for activ-
ity recognition and audio sensing [36]. The demonstration
achieves a better performance than shallow models, which
demonstrates that ordinary smart devices are qualified for
simple deep learning models. Similar verification is also done
on wearable devices [37] and embedded devices [38].

2) Collaborative training: The most common collaborative
training architecture is the master-slave architecture. Federated
learning [39] is a typical example, in which a server employs
multiple devices and allocates training tasks for them. Li et
al. develop a mobile object recognition framework, named
DeepCham, which collaboratively trains adaptation models
[92]. The DeepCham framework consists of one master, i.e.,
edge server and multiple workers, i.e., mobile devices. There
is a training instance generation pipeline on workers that
recognises objects in a particular mobile visual domain. The
master trains the model using the training instance generated
by workers. Huang et al. consider a more complex framework
with additional scheduling from the cloud [93]. Workers
with training instances first uploads a profile of the training
instance and requests to the cloud server. Then, the cloud

server appoints an available edge server to perform the model
training.

Peer-to-peer is another collaborative training architecture, in
which participants are equal. Valerio et al. adopt such training
architecture for data analysis [94]. Specifically, participants
first perform partial analytic tasks separately with their own
data. Then, participants exchange partial models and refine
them accordingly. The authors use an activity recognition
model and a pattern recognition model to verify the proposed
architecture and find that the trained model could achieve
similar performance with the model trained by a centralised
server. Similar training architecture is also used in [95] to
enable knowledge transferring amongst edge devices.

B. Training Acceleration

Training a model, especially deep neural networks, is often
too computationally intensive, which may result in low training
efficiency on edge devices, due to their limited computing
capability. Hence, some researchers focus on how to accelerate
the training at edge. Table IV summaries existing literature on
training acceleration.

Chen et al. find that the size of a neural network is an
important factor that affects the training time [91]. Some
efforts [96], [97] investigate transfer learning to speed up
the training. In transfer learning, learned features on pre-
vious models could be used by other models, which could
significantly reduce the learning time. Valery et al. propose
to transfer features learned by the trained model to local
models, which would be re-trained with the local training
instances [96]. Meanwhile, they exploit the shared memory
of the edge devices to enable the collaboration between CPU
and GPU. This approach could reduce the required memory
and increase computing capacity. Subsequently, the authors
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TABLE IV
LITERATURE SUMMARY OF MODEL ACCELERATION IN TRAINING.

Ref. Model Approach Learning method Object Performance
[91] DNN Hardware acceleration Transfer learning Review training factors N/A
[96] CNN Hardware acceleration Transfer learning Alleviate memory constraint Faster than Caffe-OpenCL trained

[97] CNN Hardware acceleration
parameter quantisation Transfer learning Alleviate memory constraint Faster than Caffe-OpenCL trained

[99] DNN Analog memory Transfer learning Better energy-efficiency Close to software baseline of 97.9

[100] RF, ET, NB
LR, SVM Human annotation Incremental learning Investigate iML for HAR 93.3% accuracy

[101] Naive Bayes Human annotation Incremental learning Reduce limitations in learning 6-8 hours to train a model
[95] CNN Software acceleration Transfer learning Reduce required labelled data 50× faster than scratch training

[102] Statistical model Software acceleration Federated learning Address statistical challenges Outperform global, local manners

[103] GCN Software-hardware
Co-optimization Supervised learning Accelerate GCN training

on heterogeneous platform 15× faster than cpu-only scheme

further accelerate the training procedure by compressing the
model by replacing float-point with 8-bit fixed point [97].

In some specific scenarios, interactive machine learning
(iML) [401], [402] could accelerate the training. iML en-
gages users in generating classifiers. Users iteratively supply
information to the learning system and observe the output to
improve the subsequent iterations. Hence, model updates are
more fast and focused. For example, Amazon often asks users
targeted questions about their preferences for products. Their
preferences are promptly incorporated into a learning system
for recommendation services. Some efforts [98], [100] adopt
such approach in model training on edge devices. Shahmo-
hammadi et al. apply iML on human activity recognition, and
find that only few training instances are enough to achieve a
satisfactory recognition accuracy [100]. Based on such theory,
Flutura et al. develop DrinkWatch to recognise drink activities
based on sensors on smartwatch [101].

In a collaborative training paradigm, edge devices are en-
abled to learn from each other to increase learning efficiency.
Xing et al. propose a framework, called RecycleML, which
uses cross modal transfer to speed up the training of neural
networks on mobile platforms across different sensing modal-
ities in the scenario that the labelled data is insufficient [95].
They design an hourglass model for knowledge transfer for
multiple edge devices, as shown in Fig. 13. The bottom part
denotes lower layers of multiple specific models, e.g., Au-
dioNet, IMUNet, and VideoNet. The middle part represents the
common layers of these specific models. These models project
their data into the common layer for knowledge transfer.
The upper part represents the task-specific layers of different
models, which are trained in a targeted fashion. Experiments
show that the framework achieves 50x speedup for the training.
Federated learning could be also applied to accelerate the
training of models on distributed edge devices. Smith et al.
propose a systems-aware framework to optimise the setting
of federated learning (e.g., update cost and stragglers) and to
speed up the training [102].

C. Training optimization

Since solo training is similar to training on a centralised
server to a large extent, existing work mainly focuses on
collaborative training. Federated learning is the most typical
collaborative training architecture, and almost all literature on

Fig. 13. Illustration of the hourglass model. The lower part represents lower
layers of specific sensing models. The latent feature representation part is the
common layer. Lower layers project their data into this layer for knowledge
transfer. The upper part represents task-specific higher layers, which are
trained for specific recognition tasks.

collaborative training is relevant to this topic. Hence, we focus
on the optimization on federated learning here.

Federated learning is a kind of distributed learning [94],
[403], [404], which allows training sets and models to be
located in different, non-centralised positions, and learning can
occur independent of time and places. This learning paradigm
is first proposed by Google, which allows smartphones to
collaboratively learn a shared model with their local training
data, instead of uploading all data to a central cloud server
[39].

The learning process of federated learning is shown as
Fig. 14(a). There is a untrained shared model On the central
server, which will be allocated training participants for train-
ing. Training participants, i.e., edge devices train the model
with the local data. After local learning, changes of the model
are summarised as a small focused update, which will be
sent to the central server through encrypted communication.
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The central server averages received changes from all mobile
devices and updates the shared model with the averaged result.
Then, mobile devices download the update for their local
model and repeats the procedure to continuously improve the
shared model. In this learning procedure, only the changes
are uploaded to the cloud and the training data of each mobile
user remains on mobile devices. Transfer learning and edge
computing are combined to learn a smarter model for mobile
users. In addition, since learning occurs locally, federated
learning could effectively protect user privacy, when compared
with a centralised learning approach.

The aforementioned federated learning is cloud-based. Be-
sides, there are two other kinds of federated learning: edge-
based federated learning, and hierarchical federated learning.
The architecture comparison of these three kinds of feder-
ated learning is shown as Fig. 14. In edge-based federated
learning, edge servers could replace the role of cloud servers
to iteratively aggregate updates from edge devices, as shown
in Fig. 14(b). This is a two-layer architecture. Edge server
recruits participants for collaborative training. The hierarchical
federated learning is a combination of these two paradigms,
as shown in Fig. 14(c). In each training round, edge servers
hire edge devices within their coverage to train AI models.
After receiving updates from edge devices, edge servers upload
their aggregated updates to the central cloud server for further
aggregation. Then the central server allocates the updated
parameters to each edge server, which will be further allocated
to edge devices.

The key challenge for cloud-based federated learning is the
Unstable network connection and low bandwidth. Typical edge
devices are smartphones with unreliable and slow network
connections. Moreover, due to the unknown mobility, these
devices may be intermittently available for working. Hence,
the communication efficiency between smartphones and the
central server is of the utmost importance to the training.
Specifically, there are two factors affecting the communication
efficiency: communication frequency and communication cost.
For edge-based federated learning, there are two main chal-
lenges. (i) Limited resources: smartphones have less powerful
CPUs, limited storage and small batteries, let alone IoT de-
vices and embedded devices. (ii) Scarce participants and data
for training: different from cloud-based federated learning,
which could recruit participant across the giant network, there
are scarce edge devices in an edge area. Hierarchical federated
learning could solve the data scarcity problem to some extent,
since it could recruit more participants and use more data
for training. In addition, the update from edge devices is
vulnerable to malicious users. Hence privacy and security issue
are also challenging for these three kinds of federated learning.
We discuss these challenges and solutions in detail next. Table
V summarises literature on federated learning.

1) Communication efficiency: In federated learning, com-
munication between edge devices and the cloud server is the
most important operation, which uploads the updates from
edge devices to the could server and downloads the aggregated
update from the shared model to local models. Due to the pos-
sible unreliable network condition of edge devices, minimising
the number of update rounds, i.e., communication frequency

between edge devices and cloud server is necessary. Jakub
et al. are the first to deploy federated learning framework
and propose the setting for federated optimisation [130]. In
[131], the authors characterise the training data as massively
distributed (data points are stored across massive edge de-
vices), non-IID (training set on devices may be drawn from
different distributions), and unbalanced (different devices have
different number of training samples). In each round, each
device sends an encrypted update to the central server. Then
they propose a federated stochastic variance reduced gradient
(FSVRG) algorithm to optimise the federated learning. They
find that the central shared model could be trained with a small
number of communication rounds.

McMahan et al. propose a federated averaging algorithm
(FedAvg) to optimise federated learning in the same scenario
in [130], [131] and further evaluate the framework with
five models and four datasets to proof the robustness of
the framework [104]. Although FedAvg could achieve good
performance on certain datasets, Zhao et al. find that using
this algorithm to train CNN models with highly skewed
non-IID dataset would result in the significant reduction of
the accuracy [405]. They find the accuracy reduction results
from the weight divergence, which refers to the difference of
learned weights between two training processes with the same
weight initialisation. Earth mover’s distance (EMD) between
the distribution over classes on each mobile device and the
distribution of population are used to quantify the weight
divergence. They then propose to extract a subset of data,
which is shared by all edge devices to increase the accuracy.

Strategies that reduce the number of updates should be on
the premise of not compromising the accuracy of the shared
model. Wang et al. propose a control algorithm to determine
the optimal number of global aggregations to maximise the
efficiency of local resources [406]. They first analyse the
convergence bound of SGD based federated learning. Then,
they propose an algorithm to adjust the aggregation frequency
in real-time to minimise the resource consumption on edge
devices, with the joint consideration of data distribution, model
characteristics, and system dynamics.

Above-mentioned works adopt a synchronous updating
method, where in each updating round, updates from edge
devices are first uploaded to the central server, and then
aggregated to update the shared model. Then the central
server allocates aggregated updates to each edge device. Some
researchers think that it is difficult to synchronise the process.
On one hand, edge devices have significantly heterogeneous
computing resources, and the local model are trained asyn-
chronously on each edge device. On the other hand, the
connection between edge devices and the central server is
not stable. Edge devices may be intermittently available, or
response with a long latency due to the poor connection. Wang
et al. propose an asynchronous updating algorithm, called
CO-OP through introducing an age filter [407]. The shared
model and downloaded model by each edge device would
be labelled with ages. For each edge device, if the training
is finished, it would upload its update to the central server.
Only when the update is neither obsolete nor too frequent, it
will be aggregated to the shared model. However, most works
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(a) Cloud-based federated learning (b) Edge-based federated learning (c) Hierarchical federated learning

Fig. 14. The architectures of federated learning. Cloud-based federated learning adopts a two-layer architecture, i.e., cloud layer and client layer. Edge-based
federated learning involves edge layer and client layer, while hierarchical federated learning involves cloud layer, edge layer and client layer.

adopt synchronous approaches in federated learning, due to its
effectiveness [104], [408].

In addition to communication frequency, communication
cost is another factor that affects the communication efficiency
between edge devices and the central server. Reducing the
communication cost could significantly save bandwidth and
improve communication efficiency. Konevcny et al. propose
and proof that the communication cost could be lessened
through structured and sketched updates [131], [409]. The
structured update means learning an update from a restricted
space that could be parametrised with few variables through
using low rank and random mask structure, while sketched
update refers to compressing the update of the full model
through quantisation, random rotations and sub-sampling.

Lin et al. find most of the gradient update between edge
devices and the central server is redundant in SGD based
federated learning [410]. Compressing the gradient could solve
the redundancy problem and reduce the update size. However,
compression methods, such as gradient quantisation and gradi-
ent sparsification would lead to the decreased accuracy. They
propose a deep gradient compression (DGC) method to avoid
the loss of accuracy, which use momentum correction and
local gradient clipping on top of the gradient sparsification.
Hardy et al. also try to compress the gradient and propose
a compression algorithm, called AdaComp [411]. The basic
idea of AdaComp is compute staleness on each parameter and
remove a large part of update conflicts.

Smith et al. propose to combine multi-task learning and
federated learning together, which train multiple relative mod-
els simultaneously [102]. It is quite cost-effective for a single
model, during the training. They develop an optimisation al-
gorithm, named MOCHA, for federated setting, which allows
personalisation through learning separate but related models
for each participant via multi-task learning. They also prove
the theoretical convergence of this algorithm. However, this
algorithm is inapplicable for non-convex problems.

Different from the client-to-server federated learning com-
munication in [131], [410], [411], Caldas et al. propose
to compress the update from the perspective of server-to-
client exchange and propose Federated Dropout to reduce the

update size [412]. In client-to-server paradigm, edge devices
download the full model from the server, while in a server-
to-client paradigm, each edge device only downloads a sub-
model, which is a subset of the global shared model. This
approach both reduces the update size and the computation
on edge devices.

2) Resource scheduling: Federated learning requires partic-
ipants iteratively execute training process and transmit updates
to the server, which is energy consuming. Battery resource
is of utmost importance for edge devices, which is usually
very limited. In particular, there are many factors impacting
the energy consumption, e.g., CPU frequency, allocated time,
bandwidth, wireless channel status, convergent accuracy, etc.
Yang et al. formulate the resource scheduling as an energy
minimization problem with joint consideration of computation
and update transmission [413]. They assume the local training
stops until a given accuracy is reached. Through theoretical
analysis, they find the time used for training is a convex
function of the accuracy. Then they propose a iterative al-
gorithm to derive the optimal resource scheduling solution.
Mo et al. study the joint optimization problem with two wire-
less transmission protocols, i.e., NOMA and TDMA [414].
Different from [413], they assume execution time for edge
devices is given. The overall minimum energy consumption
problem is formulated as a convex function of multi factors,
i.e., transmission power, transmission rate, and CPU frequency.

These works are based on the assumption that edge devices
are not heterogeneous. However, in practical, edge devices are
heterogeneous in terms of computing capability, battery, data
distribution, network connection, etc. In federated learning,
the model update is synchronized, which means edge devices
with high computing capability would finish local update in
advance. These devices could execute model training with
lower CPU frequency to reduce energy consumption. Based
on this idea, Zhan et al. optimize the computing resource
control problem under dynamical network condition with deep
reinforcement learning [415]. Tang et al. investigate a similar
problem in UAV-enabled IoT network with deep deterministic
policy gradient-based algorithm [416]. Similarly, edge devices
with low computing capability or poor channel condition
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would prolong the local execution time, which will further
postpone the synchronization with central server. Nishio et al.
design a protocol, named FedCS, which enable the edge server
set deadline for participants to upload updates and download
aggregated parameters [129]. In each round, edge server greed-
ily selects participants according to their computing capability,
battery level, and network condition to aggregate updates as
much as possible. Focusing on fast convergence, Mohammed
et al. formulate the selection of best R clients from total
candidates with given budget as a secretary problem and solve
it with an online heuristic solution [417].

In scenarios where participants are IoT devices, which are
not able to run a complete model, offloading to edge server
is a feasible solution. Ye et al. propose to partition a CNN
model and offload the suffix part to edge server in federated
learning [418]. IoT device run the prefix part, which extracts
features from input. Only offloading the intermediate results
from the prefix part to edge server is also privacy-preserving.

In fact, not all users are willing to participate in federated
learning. Some researchers focus on rewarding schemes to
attract users to participate in the training procedure, especially
users with good data quality and computing capability. Kang
et al. design a contract theory-based incentive mechanism to
reward participants [419]. Specifically, they define a parameter
that is related to the accuracy of training model to denote the
data quality. Users with high data quality can choose contract
item with higher profit. Zhan et al. use deep reinforcement
learning to learn the optimal pricing scheme for participants
[420]

3) Hierarchical federated learning: Cloud-based federated
learning benefits from sufficient participants and data but faces
the challenge of communication cost and long latency. Edge-
based federated learning benefits from the low communication
cost and high bandwidth but with scarce participants and
data. Hierarchical federated learning is first proposed in [421]
to combine the advantages of these two kinds of learning
paradigms. Edge server orchestrate edge devices within its
coverage for federated learning and uploads the primary
aggregation to cloud server through backbone network. The
authors prove through theoretical analysis that the FadAvg
algorithm can still converge in hierarchical architecture. They
also study the problem of aggregation frequency at edge level
and cloud level to guarantee the fast convergence of the
learning process. Abad et al. apply the hierarchical federated
learning architecture on cellular network, where base station
act like the cloud server and small base station work as edge
server [422]. Meanwhile, the resource allocation is optimized
among edge devices to reduce the overall communication
latency.

The heterogeneity of edge devices is not considered in
[421], [422]. In scenarios of large amount of heterogeneous
edge devices with different computing capabilities, energy
levels, and data qualities being recruited to participated in
federated learning, it is necessary to consider the resource
allocation to reduce the overall training cost. Luo et al.
consider the joint optimization of computation and communi-
cation resource allocation among heterogeneous edge devices
in hierarchical federated learning aiming at minimum energy

consumption [423]. The authors decompose the problem to
reduce the complexity and solve them with iterative cost
reduction strategy.

In fact, the data distribution is not independent and identi-
cally distributed, due to the heterogeneity of users, which is big
challenge for federated learning. It is not possible to directly
share the data among users to reduce the distribution differ-
ence. Benefiting from the dense implementation of small base
stations and user mobility, in hierarchical federated learning,
users are allowed to connect to multiple edge servers, which
are associated with small base stations. Mhaisen et al. find that
upper bond of parameters in cloud-based federated learning is
proportional to the distribution distance between users’ dataset
and the global dataset [424]. Hence, they propose to associate
edge devices with the optimal edge server to minimize the
overall distance, which is proved to be NP-hard. The problem
could be simplified and solved with heuristic algorithms.
Briggs et al. propose to cluster participants based on the
similarity of their updates and separately train model for each
cluster [425]. Because federated training on non-IID would
result in overfitting on local data. Similar participants could
collaboratively train a specialised model. Experiments show
that such method could converge quickly with less training
rounds. Similarly, Chai et al. propose to cluster vehicles
based on regional features for knowledge sharing in federated
learning and introduce blockchain to guarantee the security
[426]. Each cluster maintains a blockchain to record the shared
model. RSU is a given region acts as the role of edge server
for primary aggregation. They also design a light-weight PoK
mechanism to reduce computation overhead.

4) Privacy and security issues: After receiving updates
from edge devices, the central server needs to aggregate these
updates and construct an update for the shared global model.
Currently, most deep learning models rely on variants of
stochastic gradient descent (SGD) for optimisation. FedAvg,
proposed in [104], is a simple but effective algorithm to
aggregate SGD from each edge device through weighted av-
eraging. Generally, the update from each edge device contains
significantly less information of the users’ local data. However,
it is still possible to learn the individual information of a
user from the update [105], [427]. If the updates from users
are inspected by malicious hackers, participant edge users’
privacy would be threatened. Bonawitz et al. propose Secure
Aggregation to aggregate the updates from all edge devices,
which makes the participant updates un-inspectable by the
central server [106]. Specifically, each edge device uploads
a masked update, i.e., parameter vector to the server, and
then the server accumulates a sum of the masked update
vectors. As long as there is enough edge devices, the masks
would be counteracted. Then, the server would be able to
unmask the aggregated update. During the aggregation, all
individual updates are non-inspectable. The server can only
access the aggregated unmasked update, which effectively
protect participants’ privacy. Liu et al. introduce homomorphic
encryption to federated learning for privacy protection [107].
Homomorphic encryption [108] is an encryption approach that
allows computation on ciphertexts and generates an encrypted
result, which, after decryption, is the same with the result
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Fig. 15. The impact of data-poisoning attack. The black dashed arrows
refers to the gradient estimates computed by honest participants, which are
distributed around the actual gradient. The red dotted arrow indicates the
arbitrary gradient computed by malicious participants, which hampers the
convergence of the training.

achieved through direct computation on the plain text. The
central server could directly aggregate the encrypted updates
from participants.

Geyer et al. propose an algorithm to hide the contribution
of participants at the clients’ based on differential privacy
[109]. Similar to differential privacy-preserving traditional
approaches [111], [112], the authors add a carefully calibrated
amount of noise to the updates from edge devices in federated
learning. The approach ensures that attackers could not find
whether an edge device participated during the training. A
similar differential privacy mechanisms are also adopted in
federated learning based recurrent language model and feder-
ated reinforcement learning in [113] and [114].

In federated learning, the participants could observe inter-
mediate model states and contribute arbitrary updates to the
global shared model. All aforementioned research assumes that
the participants in federated learning are un-malicious, which
provides a real training set and uploads the update based on the
training set. However, if some of the participants are malicious,
who uploads erroneous updates to the central server, the
training process fails. In some cases, the attack would result
in large economic losses. For example, in a backdoor attacked
face recognition based authentication system, attackers could
mislead systems to identify them as a person who can access
a building through impersonation. According to their attack
patterns, attacks could be classified into two categories: data-
poisoning and model-poisoning attacks. Data-poisoning means
compromising the behaviour and performance of the model
through changing the training set, e.g., accuracy, whilst model-
poisoning only change the model’s behaviour on specific
inputs, without impacting the performance on other inputs.
The impact of data-poisoning attack is shown as Fig. 15.

The work in [116] tests the impact of a data-poisoning
attack on SVM through injecting specially crafted training
data, and find that the SVM’s test error increases with the
attack. Steinhardt et al. construct the approximate upper bound
of the attack loss on SVM and provides a solution to eliminate
the impact of the attack [117]. In particular, they first remove
outliers residing outside a feasible bound, and then minimise
the margin-based loss on the rest data.

Fung et al. evaluate the impact of sybil-based data-
poisoning attack on federated learning and propose a defense
scheme, FoolsGold, to solve the problem [118]. A sybil-
based attack [119] means that a participant edge device has a
wrong training dataset, in which the data is the same with

other participants whilst its label is wrong. For example,
in digit recognition, the digit ‘1’ is labelled with ‘7’. They
find that attackers may overpower other honest participants
by poisoning the model with sufficient sybils. The proposed
defense system, FoolGold, is based on contribution similarity.
Since sybils share a common objective, their updates appear
more similar than honest participants. FoolGold eliminates the
impact of sybil-based attacks through reducing the learning
rate of participants that repeatedly upload the same updates.

Blanchard et al. evaluate the Byzantine resilience of SGD
in federated learning [120]. Byzantine refers to arbitrary
failures in federated learning, such as erroneous data and
software bugs. They find that linear gradient aggregation has
no tolerance for even one Byzantine failure. Then they propose
a Krum algorithm for aggregation with the tolerance of f
Byzantines out of n participants. Specifically, the central server
computes pairwise distances amongst all updates from edge
devices, and takes the sum of n − f − 2 closest distance
for all updates. The update with the minimum sum would
be used to update the global shared model. However, all
updates from edge devices are inspectable during computation,
which may result in the risk of privacy disclosure. Chen et al.
propose to use the geometric median of gradients as the update
in federated learning [121]. This approach could tolerate q
Byzantine failures up to 2q(1 + ε) ≤ m, in which q is the
number of Byzantine failures, m refers to the headcount of
participants, and ε is a small constant. This approach groups
all participants into mini-batches. However, Yin et al. find that
the approach fails if there is one Byzantine in each mini-batch
[122]. They then propose a coordinate-wise median based
approach to deal with the problem.

In fact, data-poisoning based attacks on federated learning
is low in efficiency in the condition of small numbers of
malicious participants. Because there are usually thousands of
edge devices participating in the training in federated learning.
The arbitrary update would be offset by averaging aggregation.
In contrast, model-poisoning based attacks are more effective.
Attackers directly poison the global shared model, instead
of the updates from thousands of participants. Attackers in-
troduce hidden backdoor functionality in the global shared
model. Then, attackers use key, i.e., input with attacker-chosen
features to trigger the backdoor. The model-poisoning based
attack is shown as Fig. 16. Works on model-poisoning mainly
focus on the problem of how backdoor functionality is injected
in federated learning. Hence, we will focus on this direction
as well.

Chen et al. evaluate the feasibility of conducting a backdoor
in deep learning through adding few poisoning samples into
the training set [123]. They find that only 5 poisoning samples
out of 600,000 training samples are enough to create a
backdoor. Bagdasaryan et al. propose a model replacement
technique to open a backdoor to the global shared model [124].
As we aforementioned, the central server computes an update
through averaging aggregation on updates from thousands of
participants. The model replacement method scales up the
weights of the ‘backdoored’ update to ensure that the backdoor
survives the averaging aggregation. This is a single-round
attack. Hence, such attack usually occurs during the last round
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Fig. 16. Overview of model-poisoning based attack. Attackers train the
backdoor model with local data. Then, attackers scale up the weight of the
update to guarantee that the backdoor model would not be cancelled out by
other updates.

update of federated learning. Different from [124], Bhagoji
et al. propose to poison the shared model even when it is
far from convergence, i.e., the last round update [125]. To
prevent that, the malicious update is offset by updates from
other participants, they propose a explicit boosting mechanism
to negate the aggregation effect. They evaluate the attack
technique against some famous attack-tolerant algorithms, i.e.,
Krum algorithm [120] and coordinate-wise median algorithm
[122], and find that the attack is still effective.

D. Uncertainty Estimates

Standard deep learning method for classification and re-
gression could not capture model uncertainty. For example, in
model for classification, obtained results may be erroneously
interpreted as model confidence. Such problems exist as well
in edge intelligence. Efficient and accurate assessment of
the deep learning output is of crucial importance, since the
erroneous output may lead to undesirable economy loss or
safety consequence in practical applications.

In principle, the uncertainty could be estimated through
extensive tests. [126] propose a theoretical framework that
casts dropout training in DNNs as approximate Bayesian
inference in deep Gaussian processes. The framework could
be used to model uncertainty with dropout neural networks
through extracting information from models. However, this
process is computation intensive, which is not applicable on
mobile devices. This approach is based on sampling, which
requires sufficient output samples for estimation. Hence, the
main challenge to estimate uncertainty on mobile devices is
the computational overhead. Based on the theory proposed in
[126], Yao et al. propose RDeepSence, which integrates scor-
ing rules as training criterion that measures the quality of the
uncertainty estimation to reduce energy and time consumption
[127]. RDeepSence requires to re-train the model to estimate
uncertainty. The authors further propose ApDeepSence, which
replaces the sampling operations with layer-wise distribution
approximations following closed-form representations [428].

E. Applications

Bonawitz et al. develop a scalable product system for
federated learning on mobile devices, based on TensorFlow

[128]. In this system, each updating round consists of three
phases: client selection, configuration, and reporting, as shown
in Fig. 17. In the client selection phase, eligible edge devices,
e.g., devices with sufficient energy and computing resources,
periodically send messages to the server to report the liveness.
The server selects a subset among them according to a given
objective. In the configuration phase, the server sends a shared
model to each selected edge device. In the reporting phase,
each edge device reports the update to the server, which
would be aggregated to update the shared model. This protocol
presents a framework of federated learning, which could adopt
multiple strategies and algorithms in each phase. For example,
the communication strategy in [130], [131] could be used for
updating, and the FedAvg algorithm in [104] is adopted as an
aggregation approach.

Researchers from Google have been continuously working
on improving the service of Gboard with federated learning.
Gboard consists of two parts: text typing and a search engine.
The text typing module is used to recognise users’ input, whilst
the search engine provides user relevant suggestions according
to their input. For example, when you type ‘let’s eat’, Gboard
may display the information about nearby restaurants. Hard et
al. train a RNN language model using a federated learning
approach to improve the prediction accuracy of the next-
word for Gboard [132]. They compare the training result
with traditional training methods on a central server. Feder-
ated learning achieves comparable accuracy with the central
training approach. Chen et al. use federated learning to train a
character-level RNN to predict high-frequent words on Gboard
[133]. The approach achieves 90.56% precision on a publicly-
available corpus. McMahan et al. undertake the first step
to apply federated learning to enhance the search engine of
Gboard [39]. When users search with Gboard, information
about the current context and whether the clicked suggestion
would be stored locally. Federated learning processes this
information to improve the recommendation model. Yang et al.
further improve the recommendation accuracy by introducing
an additional triggering model [134]. Similarly, there are some
works [135], [135] focusing on emoji prediction on mobile
keyboards.

Federated learning has great potential in the medical imag-
ing domain, where patient information is highly sensitive.
Sheller et al. train a brain tumour segmentation model with
data from multi-institution by applying federated learning
[136]. The encrypted model is first sent to data owners, i.e.,
institutions, then the data owners decode, train, encrypt and
upload the model back to the central aggregator. Roy et al.
further develop an architecture of federated learning that uses
peer-to-peer communications to replace the central aggregator
towards medical applications [137].

Wearable devices, e.g., smart watch and smart band, are
with people almost all the time, which could record extremely
detailed and private data for people. Collecting such data is
difficult. Meanwhile, federated learning is naturally applicable
to be used to train healthcare-relevant AI models. Chen et al.
propose a federated learning framework, named FedHealth,
to detect human activity [138]. Similarly, Gao et al. design
an electroencephalography classification algorithm with hier-
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Fig. 17. The illustration of a TensorFlow-based federated learning system. (a) edge devices register to participate in federated training. Un-selected devices
would be suggested to participate in the next round. (b) server reads the checkpoint of the model from storage. (c) server sends a shared model to each
selected edge device. (d) edge devices train the model with local data and uploads their updates. (e) All received updates are aggregated. (f) the server save
the checkpoint of the model.

archical federated learning framework [139].
Covid-19 has caused a world-wide crisis. Millions of peo-

ple died from such virus. Although the diagnosis kits are
effective, it takes days to get the medical results. Diagnostic
image analysis, for example CT scan, with deep learning is
a promising solution to solve the problem. Considering the
privacy issues and scarce image dataset, Zhang et al. propose
a federated learning-based diagnostic algorithm to solve the
problem and achieve a good performance [140]. Qayyum et
al. design a similar model to help diagnose covid-19 with
clinic data [141]. Vaid et al. design a multi-layer perception
model to predict the trend mortality of patients with covid-19
[142]. Since data is distributed at 5 hospitals, they naturally
adopt federated learning approach to train the model.

Samarakoon et al. apply federated learning in vehicular
networks to jointly allocate power and resources for ultra
reliable low latency communication [143]. Vehicles train and
upload their local models to the roadside unit (RSU), and RSU
feeds back the global model to vehicles. Vehicles could use
the model to estimate the queue length in city. Based on the
queue information, the traffic system could reduce the queue
length and optimise the resource allocation. Lu et al. introduce
blockchain to enhance the security of knowledge sharing in
similar scenario [144]. Every time when vehicles upload their
updates to RSU, they also upload the model to blockchain for
further verification. Considering the intermittent connection in
vehicular network, they adopt asynchronous federated learning
to improve the training efficiency. In addition, to guarantee
the fast convergence of the learning procedure, the authors
also propose a deep reinforcement learning-based algorithm
to dynamically select vehicles with good computation and
communication capabilities.

Electric vehicles are more and more popular recently.
Consequently, large-scale electric charging stations are im-
plemented. Saputra et al. design an energy demand learning
algorithm to predict the charging demand of vehicles [145].
For privacy concern and communication efficiency, they adopt
federated learning. Each charging station executes the predic-

tion model with its collected data from passing by vehicles
and then send their updates to charging station provider for
aggregation.

Nguyen et al. develop DIoT, a self-learning system to detect
infected IoT devices by malware botnet in smart home envi-
ronments [146]. IoT devices connect to the Internet through a
gateway. They design two models for IoT device identification
and anomaly detection. These two models are trained through
the federated learning approach.

VI. EDGE INFERENCE

The exponential growth of network size and the associated
increase in computing resources requirement have been be-
come a clear trend. Edge inference, as an essential component
of edge intelligence, is usually performed locally on edge de-
vices, in which the performance, i.e., execution time, accuracy,
energy efficiency, etc. would be bounded by technology scal-
ing. Moreover, we see an increasingly widening gap between
the computation requirement and the available computation
capacity provided by the hardware architecture [146]. In this
section, we discuss various frameworks and approaches that
contribute to bridging the gap.

A. Model Design

Modern neural network models are becoming increasingly
larger, deeper and slower, they also require more computation
resources [149], [435], [436], which makes it quite difficult
to directly run high performance models on edge devices
with limited computing resources, e.g., mobile devices, IoT
terminals and embedded devices. Guo emph evaluate the per-
formance of DNN on edge device and find inference on edge
devices costs up to two orders of magnitude greater energy
and response time than central server [437]. Many recent
works have focused on designing lightweight neural network
models, which could be performed on edge devices with less
requirements on the hardware. According to the approaches
of model design, existing literature could be divided into two
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TABLE V
LITERATURE SUMMARY OF TRAINING OPTIMISATION.

Ref. Problem Solution Baseline Performance
[130] Communication efficiency FSVRG Optimal offline Less rounds
[131] Communication efficiency FSVRG N/A Less rounds
[104] Communication efficiency FedAvg Synchronized SGD 10− 100× less rounds
[405] Communication efficiency FedAvg, data sharing Training on Non-IID data 30% higher accuracy

[429] Uncoordinated communication Incentive mechanism
Admission control Optimal algorithm 22% gain in reward

[430] Incentive mechanism Deep reinforcement learning Greedy, Random Lower communication cost
[406] Communication frequency Aggregation control Optimal algorithm Near to the optimum
[407] Communication frequency CO-OP Centralized learning 80% accuracy
[431] Communication bandwidth Beamforming design l1+SDR Lower training loss, higher accuracy
[432] Noisy communication Convex approximation Centralized learning Approach to centralized method
[433] Wireless fading channel D-DSGD, CA-DSGD QSGD, SighSGD Converges faster, higher accuracy
[434] Single point of failure Server-less aggregation Centralized learning One order of magnitude less rounds

[131] Communication cost Structured update
sketched update N/A 85% accuracy

[410] Communication cost DGC Complete ResNet-50
DeepSpeech 270− 600× smaller update size

[411] Communication cost Compression
staleness mitigation Asynchronous SGD 191× smaller update size

[102] Multi-task learning
Communication cost MOCHA COCOA, Mb-SGD

Mb-SDCA Lowest prediction error

[412] Communication cost Federated Dropout FedAvg 28× smaller update size
[106] Information revealing Secure Aggregation N/A 1.98× expansion for 214 users
[107] Privacy protection Homomorphic encryption Self-learning models Little accuracy drop
[109] Privacy protection Differentially privacy N/A Privacy maintained

[110] Privacy protection Differentially privacy
K-client random scheduling MLP network Privacy maintained

[114] Privacy protection Gaussian differential DQN-alpha, DQN-full
FCN-alpha, FCN-full F1 score 10% - 20% higher

[115] Privacy protection SecureBoost RL-SecureBoost Higher accuracy, F1-score
[113] Privacy protection Differentially privacy Un-noised models Similar to un-noised models
[118] Sybil-based attack FoolGold Multi-Krum Attacking rate <1%
[120] Byzantine failure Krum aggregation Classical averaging. Toleratable for 45% Byzantines
[121] Byzantine failure Batch gradients median N/A 2q(1 + ε) ≤ m Byzantines
[122] Byzantine failure Coordinate-wise median Distributed SGD Optimal statistical error rate
[125] Backdoor attack Explicit boosting Byzantine-resilient aggregation 100% backdoor accuracy
[413] Resource scheduling Convex optimization Conventional FL 59.5% energy reduced
[414] Resource scheduling Convex optimization Without joint optimization strategies Significant energy efficiency
[415] Resource scheduling Deep reinforcement learning Heuristic, Static algorithms 40% energy-saving than Heuristic
[416] Resource scheduling Deep deterministic policy Conventional Fl Significant energy efficiency
[129] Participants selection Greedy algorithm FedAvg 76.5 minutes faster than FedAvg
[417] Participants selection Online heuristic algorithm Optimal offline algorithm Approaching the optimal
[418] Partial model offloading Model partitioning FedAvg Outperform FedAvg in most cases
[419] Incentive mechanism Contract theory Stackelberg model Outperform Stackelberg model
[420] Incentive mechanism Deep reinforcement learning Greedy algorithm Outperform Greedy algorithm
[421] Hierarchical federated learning Architecture design Cloud-based FL Comparable to cloud-based FL
[422] Hierarchical federated learning Resource allocation Cloud-based FL Faster than cloud-based FL
[423] Hierarchical federated learning Resource allocation Uniform allocation strategy 30% less cost
[424] Hierarchical federated learning Client-server association Cloud-based FL Comparable to cloud-based FL
[425] Hierarchical federated learning Hierarchical clustering Cloud-based FL 5× less rounds
[426] Hierarchical federated learning Blockchain Cloud-based FL 10% higher accuracy

categories: architecture search, and human-invented architec-
ture. The former is to let machine automatically design the
optimal architecture, while the latter is to design architectures
by human.

1) Architecture Search: Designing neural network architec-
tures is quite time-consuming, which requires substantial effort
of human experts. One possible research direction is to use AI
to enable machine search for the optimal architecture auto-
matically. In fact, some automatically searched architectures,
e.g., NASNet [149], AmoebaNet [150], and Adanet [151],
could achieve competitive even much better performance in
classification and recognition. However, these architectures are

extremely hardware-consuming. For example, it requires 3150
GPU days of evolution to search for the optimal architecture
for CIFAR-10 [150]. Mingxing et al. adopt reinforcement
learning to design mobile CNNs, called MnasNet, which could
balance accuracy and inference latency [152]. Different from
[149]–[151], in which only few kinds of cells are stacked,
MnasNet cuts down per-cell search space and allow cells to
be different. There are more 5 × 5 depthwise convolutions
in MnasNet, which makes MnasNet more resource-efficient
compared with models that only adopt 3× 3 kernels.

Recently, a new research breakthrough of differentiable
architecture search (DARTS) [153] could significantly reduce
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dependence on hardware. Only four GPU days are required
to achieve the same performance as [150]. DARTS is based
on continuous relaxation of the architecture representation and
uses gradient descent for architecture searching. DARTS could
be used for both convolutional and recurrent architectures.

Architecture search is hot research area and has a wide
application future. Most literature on this area is not specially
for edge intelligence. Hence, we will not further discuss on
this field. Readers interested in this field could refer to [438],
[439].

2) Human-invented Architecture: Although architecture
search shows good ability in model design, its requirement
on hardware holds most researchers back. Existing litera-
ture mainly focuses on human-invented architecture. Howard
et al. use depth-wise separable convolutions to construct a
lightweight deep neural network, MobileNets, for mobile and
embedded devices [154]. In MobileNets, a convolution filter
is factorised into a depth-wise and a point-wise convolution
filter. The drawback of depth-wise convolution is that it
only filters input channels. Depth-wise separable convolution,
which combines depth-wise convolution and 1× 1 point-wise
convolution could overcome this drawback. MobileNet uses
3×3 depth-wise separable convolutions, which only requires 8-
9 times less computation than standard ones. Moreover, depth-
wise and point-wise convolutions could also be applied to
implement keyword spotting (KWS) models [155] and depth
estimation [156] on edge devices.

Group convolution is another way to reduce computation
cost for model designing. Due to the costly dense 1 × 1
convolutions, some basic architectures, e.g., Xception [440]
and ResNeXt [441] cannot be used on resource-constrained
devices. Zhang et al. propose to reduce the computation
complexity of 1 × 1 convolutions with pointwise group con-
volution [157]. However, there is a side effect brought on
by group convolution, i.e., outputs of one channel are only
derived from a small part of the input channels. The authors
then propose to use a channel shuffle operation to enable
information exchanging among channels, as shown in Fig 18.

Depth-wise convolution and group convolution are usu-
ally based on ‘sparsely-connected’ convolutions, which may
hamper inter-group information exchange and degrades model
performance. Qin et al. propose to solve the problem with
merging and evolution operations [158]. In merging operation,
features of the same location among different channels are
merged to generate a new feature map. Evolution operation
extracts the information of location from the new feature map
and combines extracted information with the original network.
Therefore, information is shared by all channels, so that the
information loss problem of inter-groups is effectively solved.

3) Applications: A large number of models have been
designed for various applications, including face recognition
[147], [148], [159], human activity recognition (HAR) [160]–
[168], vehicle driving [169]–[172], and audio sensing [173],
[174]. We introduce such applications next.

Face verification is increasingly attracting interests in both
academic and industrial areas, and it is widely used in device
unlocking [442] and mobile payments [443]. Particularly,
some applications, such as smartphone unlocking need to run

Fig. 18. Illustration of channel shuffle. GConv refers to group convolution.
(a) Two stacked convolution layers. Each output channel is related with an
input channel of the same group. (b) GConv2 takes data from different groups
to make full relations with other channels. (c) The implementation of channel
shuffle, which achieves the same effect with (b).

locally with high accuracy and speed, which is challenging for
traditional big CNN models due to constrained resources on
mobile devices. Sheng et al. present a compact but efficient
CNN model, MobileFaceNets, which uses less than 1 million
parameters and achieves similar performance to the latest big
models of hundreds MB size [147]. MobileFaceNets uses a
global depth-wise convolution filter to replace the global aver-
age pooling filter and carefully design a class of face feature.
Chi et al. further lighten the weight of MobileFaceNets and
presents MobiFace [148]. They adopt the Residual Bottleneck
block [159] with expansion layers. Fast downsampling is also
used to quickly reduce the dimensions of layers over 14× 14.
These two adopted strategies could maximise the information
embedded in feature vectors and keep low computation cost.

Edge intelligence could be used to extract contextual infor-
mation from sensor data and facilitate the research on Human
Activity Recognition (HAR). HAR refers to the problem of
recognising when, where, and what a person is doing [444],
which could be potentially used in many applications, e.g.,
healthcare, fitness tracking, and activity monitoring [445],
[446]. Table VI compares existing HAR technologies, regard-
ing to their frameworks, models, ML methods, and objects.
The challenges of HAR on edge platforms could summarised
as follows.

• Commonly used classifiers for HAR, e.g., naive Bayes,
SVM, DNN, are usually computation-intensive, espe-
cially when multiple sensors are involved.

• HAR requires to support near-real-time user experience
in many applications.

• Very limited amount of labelled data is available for
training HAR models.

• The data collected by on-device sensor includes noise and
ambiguity.

Sourav et al. investigate how to deploy Restricted Boltz-
mann Machines (RBM)-based HAR models on smartwatch
platforms, i.e., the Qualcomm Snapdragon 400 [160]. They
first test the complexity of a model that a smartwatch can
afford. Experiments show that although a simple RBM-based
activity recognition algorithm could achieve satisfactory ac-
curacy, the resource consumption on a smartwatch platform
is unacceptably high. They further develop pipelines of fea-
ture representation and RBM layer activation functions. The
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TABLE VI
COMPARISON OF DIFFERENT HAR APPLICATIONS.

Ref. Model ML method Objective Dataset
[160] RBM Unsupervised Learning Energy-efficiency, higher accurate Opportunity dataset
[161] CNN Deep Learning Improve accuracy UCI & WISDM
[162] CNN Deep Learning Improve accuracy RealWorld HAR
[163] LSTM Incremental learning Minimise resource consumption Heterogeneity Dataset
[164] CNN Multimodal Deep Learning Integrate sensor data Opportunity dataset
[165] Heuristic function Supervised learning Automatic labelling 38 day-long dataset

[166]
Random forest

Naive bayes
decision tree

Ensemble learning Detect label errors CIMON

[167] CNN & RNN Supervised learning Reduce data noise Opportunity dataset
[168] CNN & RNN Supervised Learning Heterogeneous sensing quality Opportunity dataset

RBM model could effectively reduce energy consumption on
smartwatches. Bandar et al. introduce time domain statistical
features in CNN to improve the recognition accuracy [161]. In
addition, to reduce the over-fitting problem of their model, they
propose a data augmentation method, which applies a label-
preserving transformation on raw data to create new data. The
work is extended with extracting position features in [162].

Although deep learning could automatically extract features
by exploring hidden correlations within and between data,
pre-trained models sometimes cannot achieve the expected
performance due to the diversities of devices and users,
e.g., the heterogeneity of sensor types and user behaviour
[447]. Prahalathan et al. propose to use on-device incremental
learning to provide a better service for users [163]. Incremental
learning [448] refers to a secondary training for a pre-trained
model, which constrains newly learned filters to be linear
combinations of existing ones. The re-trained model on mobile
devices could provide personalised recognition for users.

Collecting fine-grained datasets for HAR training is chal-
lenging, due to a variety of available sensors, e.g., different
sampling rated and data generation models. Valentin et al.
propose to use RBM architecture to integrate sensor data
from multiple sensors [164]. Each sensor input is processed
by a single stacked restricted Boltzmann machine in RBM
model. Afterwards, all outputted results are merged for activity
recognition by another stacked restricted Boltzmann machine.
Supervised machine learning is a most commonly utilised ap-
proach for activity recognition, which requires a large amount
of labelled data. Manually labelling requires extremely large
amounts of effort. Federico et al. propose a knowledge-driven
automatic labelling method to deal with the data annotation
problem [165]. GPS data and step count information are
used to generate weak labels for the collected raw data.
However, such an automatic annotation approach may create
labelling errors, which impacts the quality of the collected
data. There are three types of labelling errors, including
inaccurate timestamps, mislabelling, and multi-action labels.
Multi-action labels means that individuals perform multiple
different actions during the same label. Xiao et al. solve the
last two labelling errors through an ensemble of four stratified
trained classifiers of different strategies, i.e., random forest,
naive bayes, and decision tree [166].

The data collected by on-device sensors maybe noisy and it
is hard to eliminate [447], [449]. For example, in movement

tracking application on mobile devices, the travelled distance
is computed with the sensory data, e.g., acceleration, speed,
and time. However, the sensory data maybe noisy, which will
result in estimation errors. Yao et al. develop DeepSense,
which could directly extract robust noise features of sensor
data in a unified manner [167]. DeepSense combines CNN and
RNN together to learn the noise model. In particular, the CNN
in DeepSense learns the interaction among sensor modalities,
while the RNN learn the temporal relationship among them
based on the output of the CNN. The authors further propose
QualityDeepSense with the consideration of the heterogeneous
sensing quality [168]. QualityDeepSense hierarchically adds
sensor-temporal attention modules into DeepSense to measures
the quality of input sensory data. Based on the measurement,
QualityDeepSense selects the input with more valuable infor-
mation to provide better predictions.

Distracted driving is a key problem, as it potentially leads
to traffic accidents [450]. Some researchers address this prob-
lem by implementing DL models on smartphones to detect
distracted driving behaviour in real-time. Christopher et al.
design DarNet, a deep learning based system to analyse
driving behaviours and to detect distracted driving [169]. There
are two modules in the system: data collection and analytic
engine. There is a centralised controller in the data collection
component, which collects two kinds of data, i.e., IMU data
from drivers’ phones and images from IoT sensors. The
analytic engine uses CNN to process image data, and RNN
for sensor data, respectively. The outputs of these two models
are combined through an ensemble-based learning approach to
enable near real-time distracted driving activity detection. Fig.
19 presents the architecture of DarNet. In addition to CNN
and RNN models, there are also other models could be used
to detect unsafe driving behaviours, such as SVM [170], HMM
[171], and decision tree [172].

Audio sensing has become an essential component for
many applications, such as speech recognition [451], emotion
detection [452], and smart homes [453]. However, directly
running audio sensing models, even just the inference, would
introduce a heavy burden on the hardware, such as digital
signal processing (DSP) and battery. Nicholas et al. develop
DeepEar, a DNN based audio sensing prototype for the
smartphone platform [173], including four coupled DNNs of
stacked RBMs that collectively perform sensing tasks. These
four DNNs share the same bottom layers, and each of them is
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Fig. 19. Architecture of DarNet. IMU agent runs on IoT devices and frame
agent runs on mobile devices. A centralised controller collects and pre-
processes data for the analytic engine.

responsible for a specific task, for example, emotion detection,
and tone recognition. Experiments show that only 6% of the
battery is enough to work through a day with the compromise
of 3% accuracy drop. Petko et al. further improve the accuracy
and reduces the energy consumption through applying multi-
task learning and training shared deep layers [174]. The
architecture of multi-task learning is shown as Fig. 20, in
which the input and hidden layers are shared for audio analysis
tasks. Each task has a distinct classifier. Moreover, the shared
representation is more scalable than DeepEar, since there is
no limitation in the integration of tasks.

B. Model Compression

Although neural networks are quite powerful in various
promising applications, the increasing size of neural networks,
both in depth and width, results in the considerable con-
sumption of storage, memory and computing powers, which
makes it challenging to run neural networks on edge devices.
Moreover, statistic shows that the gaps between computational
complexity and energy efficiency of deep neural networks and
the hardware capacity are growing [454]. It has been proved
that neural networks are typically over-parameterised, which
makes deep learning models redundant [455]. To implement
neural networks on powerless edge devices, large amounts of
effort try to compress the models. Model compression aims
to lighten the model, improve energy efficiency, and speed
up the inference on resource-constraint edge devices, without
lowering the accuracy. According to their approaches, we
classify these works into five categories: low-rank approx-
imation/matrix factorisation, knowledge distillation, compact
layer, parameter quantising, and network pruning. Table VII
summarises literature on model compression.

1) Low-rank Approximation: The main idea of low-rank
approximation is to use the multiplication of low-rank con-
volutional kernals to replace kernals of high dimension. This
is based on the fact that a matrix could be decomposed into
the multiplication of multiple matrices of smaller size. For
example, there is a weight matrix W of m × k dimension.
The matrix W could be decomposed into two matrices, i.e.,
X (m× d) and Y (d× k), and W = UV . The computational
complexity of matrix W is O(m × k), while the complexity
for the decomposed two matrices is O(m × d + d × k).
Obviously, the approach could effectively reduce the model
size and computation, as long as d is small enough.

Fig. 20. Illustration of the multi-task audio sensing network.

Jaderberg et al. decompose the matrix of convolution layer
d× d into the multiplication of two matrices d× 1 and 1× d
compress the CNNs [175]. The authors also propose two
schemes to approximate the original filter. Fig. 21 presents
the compression process. Fig. 21(a) shows a convolutional
layer acting on a single-channel input. The convolutional layer
consists of N filters. For the first scheme, they use the linear
combination of M (M < N ) filters to approximate the
operation of N filters. For the second scheme, they factorise
each convolutional layer into a sequence of two regular
convolutional layers but with rectangular filters. The approach
achieves a 4.5x acceleration with 1% drop in accuracy. This
work is a rank-1 approximation. Maji et al. apply this rank-1
approximation on compressing CNN models on IoT devices,
which achieves 9x acceleration of the inference [177]. Denton
et al. explore the approximation of rank-k [176]. They use
monochromatic and biclustering to approximate the original
convolutional layer.

Kim et al. propose a whole network compression scheme
with the consideration of entire convolutional and fully con-
nected layers [178]. The scheme consists of three steps: rank
selection, low-rank tensor decomposition, and fine-tuning. In
particular, they first determine the rank of each layer through
a global analytic solution of variational Bayesian matrix fac-
torisation (VBMF). Then they apply Tucker decomposition to
decompose the convolutional layer matrix into three compo-
nents of dimension 1 × 1, D ×D (D is usually 3 or 5), and
1×1, which differs from SVD in [176]. The approach achieves
a 4.26× reduction in energy consumption. We note that the
component of spatial size w×h still requires a large amount of
computation. Wang et al. propose a Block Term Decomposi-
tion (BTD) to further reduce the computation in operating the
network, which is based on low-rank approximation and group
sparsity [179]. They decompose the original weight matrix
into the sum of few low multilinear rank weight matrices,
which could approximately replace the original weight matrix.
After fine-tuning, the compressed network achieves 5.91×
acceleration on mobile devices with the network, and a less
than 1% increase on the top-5 error.

Through optimising the parameter space of fully connected
layers, weight factorisation could significantly reduce the
memory requirement of DNN models and speed up the in-
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TABLE VII
LITERATURE SUMMARY OF MODEL COMPRESSION.

Ref. Approach Object Baseline Performance Type
[181] Knowledge distillation Less resource requirement Full network Faster Lossless
[182] Knowledge distillation Compress model Full network 80% improvement Lossless
[183] Knowledge distillation Generate thinner model FitNets More accurate and smaller Improved

[184] Knowledge distillation
Attention

Improve performance
with shallow model ResNet 1.1% top-1 better Improved

[185] Knowledge distillation
Regularisation NIN network Reduce storage 33.28× smaller Improved

[186] Knowledge distillation Less memory WideResNet 40%smaller Lossless
[187] Knowledge distillation Less memory, acceleration GooLeNet 3× faster, 2.5× less memory 0.4% drop
[188] Knowledge distillation Improve training efficiency WRN 6.4× smaller, 3× faster Lossy
[189] Knowledge distillation Reconstruct training set HINTON 50%smaller Lossy
[175] Low-rank approximation Reduce runtime CNN 4.5× faster Lossy
[176] Low-rank approximation Reduce computation CNN 2× faster Lossy
[177] Low-rank approximation Reduce computation VGG16 9× speedup Lossless
[178] Low-rank approximation Reduce energy consumption VGG-S 4.26× energy reduction Lossy

[179] Low-rank approximation
Group sparsity Reduce computation ILSVRC12 5.91× faster Improved

[180] Low-rank approximation
Kernel separation Use less resource AlexNet, VGG 11.3× less memory

13.3× faster Lossless

[190] Compact layer design Use less resources ILSVRC14 3− 10× faster
[191] Compact layer design Training acceleration ILSVRC15 2015 28% relative improvement Improved
[192] Compact layer design Reduce model complexity YOLOv2 15.1× smaller, 34% faster Improved
[193] Compact layer design Reduce parameters AlexNet 50× fewer parameter Lossless
[194] Compact layer design Accelerates training ILSVRC12 3.08% top-5 error Lossy

[195] Compact layer design
Task decomposition

Utilise storage to trade
for computing resources SqueezeNet 5.17× smaller Improved

[196] Compact layer design Simplify SqueezeNet Full 0.89MB total parameter Lossy
[197] Compact layer design Improve compression rate ASR 7.9× smaller Lossy
[198] Compressive sensing Training efficiency LeNet-5 6x faster Improved
[199] Network pruning On-device customisation NIN 1.24× faster 3% Lossy
[200] Network pruning Reduce storage AlexNet 13× fewer Lossless
[201] Network pruning Higher energy efficiency ResNet 20× faster Improved
[202] Network pruning Reduce iterations LeNet 33% fewer Lossy
[203] Network pruning Speed up inference VGG-16 10× faster Lossy
[204] Global filter pruning Accelerate CNN ResNet-56 70% FLOPs reduction Lossless
[205] Network pruning Energy-efficiency AlexNet 3.7× less energy Lossy

[206] Network pruning Reduce model size DyNS
SparseSep

98.9% smaller, 94.5% faster
95.7% energy saved Lossless

[207] Network pruning Reduce memory footprint VGGNet 5× less computation Lossless

[208] Network pruning
Data reuse Maximise data reusability AlexNet 1.43× faster, 34% smaller Lossless

[209] Channel pruning Speed up CNN inference ResNet-50 2% higher top-1 accuracy Improved
[210] Progressive Channel Pruning Effective pruning framework ResNet-50 Up to 44.5% FLOPs Lossy
[211] Debiased elastic group LASSO Structured Compression of DNN LeNet Several folder smaller Lossless
[212] Filter correlations Minimal information loss LeNet-5 96.4% FLOPs pruning Lossless
[214] Vector quantisation Compress required storage ILSVRC12 16− 24× smaller Lossy
[215] Hash function Reduce model size NN 8× fewer Lossy

[216]
Parameter quantisation

Network pruning
Huffman coding

Compress model VGG-16 49× smaller Lossless

[217] Parameter quantisation Compress model ILSVRC-12 20× smaller, 6× faster Lossy
[218] BinaryConnect Compress model MLP State-of-the-art Improved
[219] Network Binarisation Speed up training BNN State-of-the-art Improved
[220] Network Binarisation Reduce model size AlexNet 32× smaller, 58× faster Lossy

[221] Parameter quantisation
Binary Connect

Compress model
speed up training NN Better than standard SGD Improved

[176] Parameter quantisation
Binary Connect

Compress model
speed up training CNN 2− 3× faster, 5− 10× smaller Lossy

[222] Parameter quantisation Speed up training Speech recognition 10× speedup at most Lossless
[223] Quantisation aware training Recover accuracy loss LSTM 4% loss recovered 8.1 % Lossy
[224] Parameter quantisation Reduce model size Faster R-CNN 4.16× smaller Improved
[225] Parameter quantisation Save energy ZynqNet 4.45fps, 6.48 watts Lossy
[226] Parameter quantisation Reduce computation CNN 1/10 memory shrinks Improved
[227] Posit number system Reduce model size DCNN 36.4% memory shrinks Lossy
[228] Network Binarisation Improve energy efficiency MNN State-of-the-art Improved
[229] Network Binarisation Improve energy efficiency NN State-of-the-art Improved
[213] Non-parametric Bayesian Improve quantisation efficiency RL Better than RL methods Lossy
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Fig. 21. The decomposition and approximation of a CNN. (a) The original operation of a convolutional layer acting on a single-channel input. (b) The
approximation of the first scheme. (c) The approximation of the second scheme.

Fig. 22. The application of attention mechanism in teacher-student paradigm
transfer learning. (a) The left image is an input and the right image is the
corresponding spatial attention map of a CNN model which shows which
feature affects the classification decision. (b) Schematic representation of
attention transfer. The attention map of the teacher model is used to supervise
the training of the student model.

ference. However, the effect of the approach for CNN maybe
not good, because there is a large amount of convolutional
operations in CNN [38]. To solve the problem, Bhattacharya
et al. propose a convolution kernel separation method, which
optimises the convolution filters to significantly reduce convo-
lution operations [180]. The authors verify the effectiveness of
the proposed approach on various mobile platforms with pop-
ular models, e.g., audio classification and image recognition.

2) Knowledge Distillation: Knowledge distillation is based
on transfer learning, which trains a neural network of smaller
size with the distilled knowledge from a larger model. The
large and complex model is called teacher model, whilst the
compact model is referred as student model, which takes the
benefit of transferring knowledge from the teacher network.

Bucilua et al. take the first step towards compressing models
with knowledge distillation [456]. They first use a function
learned by a high performing model to label pseudo data.
Afterwards, the labelled pseudo data is utilised to train a
compact but expressive model. The output of the compact
model is compatible with the original high performing model.
This work is limited to shallow models. The concept of
knowledge distillation is first proposed in [182]. Hinton et
al. first train a large and complex neural model, which is
an ensemble of multiple models. This complex model is the
teacher model. Then they design a small and simple student

model to learn its knowledge. Specifically, they collect a
transfer dataset as the input of the teacher model. The data
could be unlabelled data or the original training set of the
teacher model. The temperature in softmax is raised to a
high value in the teacher model, e.g., 20. Since the soft
target of the teacher model is the mean result of multiple
components of the teacher model, the training instances are
more informative. Therefore, the student model could be
trained on much less data than the teacher model. The authors
prove the effectiveness on MNIST and speech recognition
tasks. Sau et al. propose to supervise the training of the student
model with multiple teacher models, with the consideration
that the distilled knowledge from a single teacher may be
limited [185]. They also introduce a noise-based regulariser to
improve the health in the performance of the student model.

Romero et al. propose FitNet, which extends [182] to create
a deeper and lighter student model [183]. Deeper models could
better characterise the essence of the data. Both the output
of the teacher model and the intermediate representations are
used as hints to speed up training of the student model, as well
as improve its performance. Opposite to [183], Zagoruyko et
al. prove that shallow neural networks could also significantly
improve the performance of a student model by properly
defining attention [184]. Attention is considered as a set of
spatial maps that the network focuses the most on in the input
to decide the output decision. These maps could be represented
as convolutional layers in the network. In the teacher-student
paradigm, the spatial attention maps are used to supervise the
student model, as shown in Fig. 22.

There are also some efforts focusing on how to design
the student model. Crowley et al. propose to obtain the
student model through replacing the convolutional layers of
the teacher model with cheaper alternatives [186]. The new
generated student model is then trained under the supervision
of the teacher model. Li et al. design a framework, named
DeepRebirth to merge the consecutive layers without weights,
such as pooling and normalisation and convolutional layers
vertically or horizontally to compress the model [187]. The
newly generated student model learns parameters through
layer-wise fine-tuning to minimise the accuracy loss. Fig. 23
presents the framework of DeepRebirth. After compression,
GoogLeNet achieves 3x acceleration and 2.5x reduction in
runtime memory.

The teacher model is pre-trained in most relevant works.
Nevertheless, the teacher model and the student model could
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Fig. 23. The illustration of DeepRebirth. The upper model is the teacher
model, while the lower is the student model. The highly correlated convo-
lutional layer and non-convolutional layer are merged and become the new
convolutional layer of the student model.

be trained in parallel to save time. Zhou et al. propose a
compression scheme, named Rocket Launching to exploit the
simultaneous training of the teacher and student model [188].
During the training, the student model keeps acquiring knowl-
edge learnt by the teacher model through the optimisation of
the hint loss. The student model learns both the difference
between its output and its target, and the possible path towards
the final target learnt by the teacher model. Fig. 24 presents
the structure of this framework.

When the teacher model is trained on a dataset concerning
with privacy or safety, it is then difficult to train the student
model. Lopes et al. propose an approach to distill the learned
knowledge of the teacher model without accessing the original
dataset, which only needs some extra metadata [189]. They
first reconstruct the original dataset with the metadata of the
teacher model. This step could find the images that best match
these given by the network. Then they remove the noise of the
image to approximate the activation records through gradients,
which could partially reconstruct the original training set of
the teacher model.

3) Compact layer design: In deep neural networks, if
weights end up to be close to 0, the computation is wasted. A
fundamental way to solve this problem is to design compact
layers in neural networks, which could effectively reduce
the consumption of resources, i.e., memories and compu-
tation power. Christian et al. propose to introduce sparsity
and replace the fully connected layers in GoogLeNet [190].
Residual-Net replaces the fully connected layers with global
average pooling to reduce the resource requirements [191].
Both GoogLeNet and Residual-Net achieve the best perfor-
mance on multiple benchmarks.

Alex et al. propose a compact and lightweight CNN model,
named YOLO Nano for image recognition [192]. YOLO
Nano is a highly customised model with module-level macro-
and micro-architecture. Fig. 25 shows the network architec-

Fig. 24. The structure of Rocket Launching. WS , WL, and WB denotes
parameters. z(x) and l(x) represent the weighted sum before the softmax
activation. p(x) and q(x) are outputs. Yellow layers are shared by the teacher
and student.

ture of YOLO Nano. There are three modules in YOLO
Nano: expansion-projection (EP) macro-architecture, residual
projection-expansion-projection (PEP) macro-architecture, and
a fully-connected attention (FCA) module. PEP could reduce
the architectural and computational complexity whilst preserv-
ing model expressiveness. FCA enables better utilisation of
available network capacity.

Replacing a big convolution with multiple compact layers
could effectively reduce the number of parameters and further
reduce computations. Iandola et al. propose to compress CNN
models with three strategies [193]. First, decomposing 3 × 3
convolution into 1× 1 convolutions, since it has much fewer
parameters. Second, cut down input channels in 3× 3 convo-
lutions. Third, downsample late to produce big feature maps.
The larger feature maps could lead to higher classification
accuracy. The first two strategies are used to decrease the
quantity of parameters in CNN models and the last one is
used to maximise the accuracy of the model. Based on three
above mentioned strategies, the authors design SqueezeNet,
which can achieve 50× reduction in the number of parameters,
whilst remaining the same accuracy as the complete AlexNet.
Similar approaches ares also used in [194]. Shafiee et al.
modify SqueezeNet for applications with fewer target classes
and they propose SqueezeNet v1.1, which could be deployed
on edge devices [195]. Yang et al. propose to decompose a
recognition task into two simple sub-tasks: context recognition
and target recognition, and further design a compact model,
namely cDeepArch [196]. This approach uses storage resource
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Fig. 25. The architecture of the YOLO Nano network. PEP(x) refers to x
channels in PEP, while FCA(x) represents the reduction ratio of x.

to trade for computing resources.
Shen et al. introduce Compressive Sensing (CS) to jointly

modify the input layer and reduce nodes of each layer for
CNN models [198]. CS [457] could be used to reduce the
dimensionality of the original signal while preserving most
of its information. The authors use CS to jointly reduce the
dimensions of the input layer whilst extracting most features.
The compressed input layer also enables the reduction of the
number of parameters.

Besides the above-mentioned works about CNNs, Zhang
et al. propose a dynamically hierarchy revolution (DirNet)
to compress RNNs [197]. In particular, they mine dictio-
nary atoms from original networks to adjust the compression
rate with the consideration of different redundancy degrees
amongst layers. They then adaptively change the sparsity
across the hierarchical layers.

4) Network pruning: The main idea of network pruning
is to delete unimportant parameters, since not all parameters
are important in highly precise deep neural networks. Conse-
quently, connections with less weights are removed, which
converts a dense network into a sparse one, as shown in
Fig. 26 There are some works which attempt to compress
neural networks by network pruning.

The work [458] and [459] have taken the earliest steps
towards network pruning. They prune neural networks to
eliminate unimportant connections by using Hessian loss
function. Experiment results prove the efficiency of prunning
methods. Subsequent research focuses on how to prune the
networks. Han et al. propose to prune networks based on a
weight threshold [200]. Practically, they first train a model to
learn the weights of each connection. The connections with
lower weights than the threshold would then be removed.
Afterwards, the network is retrained. The pruning approach is
straightforward and simple. A similar approach is also used in

Fig. 26. Illustration of network pruning. Unimportant synapses and neurons
would be deleted to generate a sparse network.

[201]. In [201], the authors select and delete neurons of low
performance, and then use a width multiplier to expand all
layer sizes, which could allocate more resources to neurons of
high performance. However, the assumption that connections
with lower weights contribute less to the results may destroy
the structure of the networks.

Identifying an appropriate threshold to prune neural net-
works usually takes iteratively trained networks, which con-
sumes a lot of resources and time. Moreover, the threshold
is shared by all the layers. Consequently, the pruned con-
figuration maybe not the optimal, comparing with the case
of identify thresholds for each layer. To break through these
limitations, Manessi et al. propose a differentiability-based
pruning method to jointly optimise the weights and thresholds
for each layer [202]. Specifically, the authors propose a set of
differentiable pruning functions and a new regulariser. Pruning
could be performed during the back propagation phase, which
could effectively reduce the training time.

Molchanov et al. propose a new criterion based on the
Taylor expansion to identify unimportant neutrons in con-
volutional layers [203]. Specifically, they use the change of
cost function to evaluate the result of pruning. They for-
mulate pruning as an optimisation problem, trying to find a
weight matrix that minimises the change in cost function.
The formulation is approximately converted to its first-degree
Taylor polynomial. The gradient and feature map’s activation
could be easily computed during back-propagation. Therefore,
the approach could train the network and prune parameters
simultaneously. You et al. propose a global filter pruning
algorithm, named Gate Decorator, which transforms a CNN
module through multiplying its output by the channel-wise
scaling factors [204]. If the scaling factor is set to be 0, the
corresponding filter would be removed. They also adopt the
Taylor expansion to estimate the change of the loss function
caused by the changing of the scaling factor. They rank all
global filters based on the estimation and prune according to
the rank. Compared with [203], [204] does not require special
operations or structures.

In addition to minimum weight and cost functions, there are
efforts trying to prune with the metric of energy consumption.
Yang et al. propose an energy-aware pruning algorithm to
prune CNNs with the goal of minimising the energy con-
sumption [205]. The authors model the relationship between
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Fig. 27. Each channel is associated with a scaling factor γ in convolutional layers. Then the network is trained to jointly learn weights and scaling factors.
After that, the channels with small scaling factors (in orange colour) are pruned, which results in a compact model.

data sparsity and bit-width reduction through extrapolating the
detailed value of consumed energy from hardware measure-
ments. The pruning algorithm identifies the parts of a CNN
that consumes the most energy and prunes the weights to
maximise energy reduction.

Yao et al. propose to minimise the number of non-redundant
hidden elements in each layer whilst retaining the accuracy in
sensing applications and propose DeepIoT [206]. In DeepIoT,
the authors compress neural networks through removing hid-
den elements. This regularisation approach is called dropout.
Each hidden element is dropouted with a probability. The
dropout probability is initialised with 0.5 for all hidden el-
ements. DeepIoT develops a compressor neural network to
learn the optimal dropout probabilities of all elements.

Liu et al. propose to identify important channels in CNN
and remove unimportant channels to compress networks [207].
Specifically, they introduce a scaling factor γ for each channel.
The output ẑ (also the input of the next layer) could be
formulated as ẑ = γz + β, where z is the input of the
current layer and β is min-batch. Afterwards, they jointly train
the network weight and scaling factors, with L1 regulation
imposed on the latter. Following that, they prune the channels
with the small scaling factor γ. Finally, the model is fine-
tuned, which achieves a comparable performance with the full
network. Fig. 27 presents this slimming process. However, the
threshold of the scaling factor is not computed, which requires
iterative evaluations to obtain a proper one.

Based on network pruning, the work in [208] investigates
the data flow inside computing blocks and develops a data
reuse scheme to alleviate the bandwidth burden in convolution
layers. The data flow of a convolution layer is regular. If the
common data could be reused, it is not necessary to load all
data to a new computing block. The data reuse is used to
parallelise computing threads and accelerate the inference of
a CNN model.

5) Parameter quantisation: A very deep neural network
usually involves many layers with millions of parameters,
which consumes a large amount of storage and slows down
the training procedure. However, highly precise parameters in
neural networks are not always necessary in achieving high
performance, especially when these highly precise parameters

are redundant. It has been proved that only a small number
of parameters are enough to reconstruct a complete network
[455]. In [455], the authors find that the parameters within one
layer could be predicted by 5% of parameters, which means
we could compress the model by eliminating redundant param-
eters. There are some works exploiting parameter quantisation
for model compression.

Gong et al. propose to use vector quantisation methods
to reduce parameters in CNN [214]. Vector quantisation is
often used in lossy data compression, which is based on block
coding [151]. The main idea of vector quantisation is to divide
a set of points into groups, which are represented by their
central points. Hence, these points could be denoted with fewer
coding bits, which is the basis of compression. In [214], the
authors use k-means to cluster parameters and quantise these
clusters. They find that this method could achieve 16 − 24×
compression rate of the parameters with the scarification of no
more than 1% of the top-5 accuracy. In addition to k-means,
hash method has been utilised in parameter quantisation. In
[215], Chen et al. propose to use hash functions to cluster
connections into different hash buckets uniformly. Connections
in the same hash bucket share the same weight. Han et
al. combine parameter quantisation and pruning to further
compress the neural network without compromising the ac-
curacy [216]. Specifically, they first prune the neural network
through recognising the important connections through all
connections. Unimportant connections are ignored to minimise
computation. Then, they quantise the parameters, to save the
storage of parameters. After these two steps, the model will
be retrained. These remaining connections and parameters
could be properly adjusted. Finally, they use Huffman coding
to further compress the model. Huffman coding is a prefix
coding, which effectively reduces the required storage of data
[460]. Fig. 28 presents the three-step compression.

For most CNNs, the fully connected layers consume most
storage in neural network. Compressing parameters of fully
connected layers could effectively reduce the model size. The
convolutional layers consume most of the times during training
and inference. Wu et al. design Q-CNN to quantise both fully
connected layers and convolutional layers to jointly compress
and accelerate the neural network [217]. Similar to [214],
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Fig. 28. Illustration of three-stage compression pipeline. First use pruning to reduce the number of weights by 10×, then use quantisation to further compress
by 27× and 31×. Finally use Huffman coding to get more compression.

the authors utilise k-means to optimally cluster parameters in
fully connected and convolutional layers. Then, they quantise
parameters by minimising the estimated error of response for
each layer. They also propose a training scheme to suppress
the accumulative error for the quantisation of multiple layers.

Enormous amount of floating point multiplications con-
sumes significant times and computing resources in inference.
There are two potential solutions to address this challenge.
The first one is to replace floating point with fixed point,
and the second one is to reduce the amount of floating point
multiplications.

According to the evaluation of Xilinx, fixed point could
achieve the same accuracy results as float [461]. Vanhoucke
et al. evaluate the implementation of fixed point of an 8-bit
integer on x86 platform [222]. Specifically, activation and the
weights of intermediate layer are quantised into an 8-bit fixed
point with the exception of biases that are encoded as 32-
bit. The input layer remains floating point to accommodate
possible large inputs. Through the quantisation, the total re-
quired memory shrinks 3−4×. Results show that the quantised
model could achieve a 10x speedup over an optimised baseline
and a 4× speedup over an aggressively optimised float point
baseline without affecting the accuracy. Similarly, Nasution
et al. convert floating point to 8 and 16 bits to represent
weights and outputs of layers, which lowers the storage to
4.16× [224]. Peng et al. quantise an image classification CNN
model into an 8-bit fixed-point at the cost of 1% accuracy
drop [225]. Anwar et al. propose to use L2 error minimisation
to quantise parameters [226]. They quantise each layer one
by one to induce sparsity and retrain the network with the
quantised parameters. This approach is evaluated with MNIST
and CIRAR-10 dataset. The results shows that the approach
could reduce the required memory by 1/10.

In addition to fixed point, posit number could also be
utilised to replace floating point numbers to compress neural
networks. Posit number is a unique non-linear numerical
system, which could represent all numbers in a dynamic
range [462]. The posit number system represents numbers
with fewer bits. Float point numbers could be converted into
the posit number format to save storage. To learn more about
the conversion, readers may refer to [463]. Langroudi et al.
propose to use the posit number system to compress CNNs

with non-uniform data [227]. The weights are converted into
posit number format during the reading and writing operations
in memory. During the training or inference, when computing
operations are required, the number would be converted back
to float point. Because this approach only converts the weight
between two number systems, no quantisation occurs. The
network does not require to be re-trained.

Network Binarisation is an extreme case of weight quan-
tisation. Weight quantisation indicates that all weights are
represented by two possible values (e.g., -1 or 1), which
could overwhelmingly compress neural networks [218]. For
example, the original network requires 32 bits to store one
parameter, while in binary connect based network, only 1 bit
is enough, which significantly reduces the model size. An-
other advantage of binary connect is that replacing multiply-
accumulate operations by simple accumulations, which could
drastically reduce computation in training. Courbariaux et al.
extend the work [218] further and proposes Binary Neural
Network (BNN), which completely changes the computing
style of traditional neural networks [219]. Not only the
weights, but also the input of each layer is binarised. Hence,
during the training, all multiplication operations are replaced
by accumulation operations, which drastically improves the
power-efficiency. However, substantial experiments indicate
that BNN could only achieve good performance on small scale
datasets.

Rastegari et al. propose a XNOR-net to reduce storage
and improve training efficiency, which is different with [219]
in the binarisation method and network structure [220]. In
Binary-Weight network, all weight values are approximately
binarized, e.g., -1 or 1, which reduces the size of network by
32×. Convolutions could be finished with only addition and
subtraction, which is different with [219]. Hence, the training
is speed up 2×. With XNOR-net, in addition to weights,
the input to convolutional layers are approximately binarised.
Moreover, they further simplify the convolution with XNOR
operations, which achieves a speed up of 58×. The comparison
amongst standard convolution, Binary-Weight and XNOR-net
is presented as Table. VIII.

Lin et al. propose to use binary connect to reduce mul-
tiplications in DNN [221]. In the forward pass, the authors
stochastically binarise weights by binary connect. Afterwards,
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TABLE VIII
THE COMPARISON AMONGST STANDARD CONVOLUTION, BINARY-WEIGHT AND XNOR-NET.

Input Weight Convolution
operation

Memory
saving

Computation
saving

Accuracy
(imageNet)

Standard Convolution Real value Real value ×, +, − 1× 1× 56.7%
Binary-Weight Real value Binary value +, − ∼32× ∼2× 56.8%

XNOR-Net Binary value Binary value XNOR, bitcount ∼32× ∼58× 44.2%

they quantise the representations at each layer to replace the re-
maining multiply operations into bit-shifts. Their results show
that there is no loss in accuracy in training and sometimes this
approach surprisingly achieves even better performance than
standard stochastic gradient descent training.

Soudry et al. prove that binary weights and activations
could be used in Expectation Backprogagation (EBP) and
achieves high performance [228]. This is based on a variational
Bayesian approach. The authors test eight binary text clas-
sification tasks with EBP-trained multilayer neural networks
(MNN). The results show that binary weights always achieve
better performance than continuous weights. Esser et al.
further develop a fully binary network with the same approach
to EBP to improve the energy efficiency on neuromorphic
chips [229]. They perform the experimentation on the MNIST
dataset, and the results show that the method achieves 99.42%
accuracy at 108 µJ per image.

6) Applications: Some efforts try to use these compression
techniques on practical applications and prototypes at the edge,
including image analysis [230]–[232], compression service
[235], and automotive [233], [234].

Mathur et al. develop a wearable camera, called DeepEye,
that runs multiple cloud-scale deep learning models at edge
provide real-time analysis on the captured images [230].
DeepEye enables the creation of five state-of-the-art image
recognition models. After camera captures an image, the image
pre-processing component deals with the image according
to the adopted deep model. There is a model compression
component inside the inference engine, which applies available
compression techniques to reduce energy consumption and
the running time. Finally, DeepEye use the optimised BLAS
library to optimise the numeric operations on hardware.

To correctly identify prescription pills for patients based on
their visual appearance, Zeng et al. develop MobileDeepPill,
a pill image recognition system [231]. The pill image recog-
nition model is based on ImageNet [389]. Fig. 29 presents
the architecture of MobileDeepPill. In the training phase, the
system first localises and splits the pill image in consumer
and pill references. The system then enrich samples through
running data augmentation module. Finally, the system imports
CNNs as the teacher model to supervise the student model.
In the inference phase, the system first processes the pill
photo and extracts features to perform the student CNNs. As
a last step, the system ranks the results according to their
possibilities.

Wang et al. propose a fast image search framework to im-
plement the content-based image retrieval (CBIR) service from
cloud servers to edge devices [232]. Traditional CBIR services
are based on the cloud, which suffers from high latency and

Fig. 29. The architecture of MobileDeepPill. The blue arrows indicates the
flow of the training phase, whilst the red arrows indicate the inference phase.

privacy concerns. The authors propose to reduce the resource
requirements of the model and to deploy it on edge devices.
For the two components consuming most resources, i.e., object
detection and feature extraction, the authors use low-rank
approximation to compress these two parts. The compressed
model achieves 6.1× speedup for inference.

Liu et al. develop an on-demand customised compression
system, named AdaDeep [235]. Various kinds of compression
approaches could be jointly used in AdaDeep to balance the
performance and resource constraints. Specifically, the authors
propose a reinforcement learning based optimiser to automat-
ically select the combination of compression approaches to
achieve appropriate trade-offs among multiple metrics such as
accuracy, storage, and energy consumption.

With growing interests from the automotive industry, var-
ious large deep learning models with high accuracy have
been implemented in smart vehicles with the assistance of
compression techniques. Kim et al. develop a DL based object
recognition system to recognise vehicles [233]. The vehicle
recognition system is based on faster-RCNN. To deploy the
system on vehicles, the authors apply network pruning and
parameter quantisation to compress the network. Evaluations
show that these two compression techniques reduce the net-
work size to 16% and reduce runtime to 64%. Xu et al.
propose an RNN based driving behaviour analysis system on
vehicles [234]. The system uses the raw data collected by a
variety of sensors on vehicles to predict the driving patterns. To
deploy the system on automobiles, the authors apply parameter
quantisation to reduce the energy consumption and model size.
After compression, the system size is reduced to 44 KB and
the power overhead is 7.7 mW.
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Fig. 30. The architecture of Cappuccino. Thread workload allocation component optimises the workload of each thread. Data order optimisation component
converts data format. Inexact computing analyser determines the tradeoff amongst multiple metrics.

C. Inference Acceleration

The computing capacities of edge devices have been in-
creased and some embedded devices, such as NVIDIA Jetson
TX2 [464] could directly perform CNN. However, it is still
difficult for most edge devices to directly run large models.
Model compression techniques reduce the required resources
to create neural network models and facilitate the performance
of these models on edge devices. Model acceleration tech-
niques further speed up the performance of the compressed
model on edge devices. The main idea of model acceleration
in inference is to reduce the run-time of inference on edge
devices and realise real-time responses for specific neural
network based applications without changing the structure
of the trained model. According to acceleration approaches,
research works on inference acceleration could be divided into
two categories: hardware acceleration and software accelera-
tion. Hardware acceleration methods focuses on parallelising
inference tasks to available hardware, such as CPU, GPU,
and DSP. Software acceleration method focuses on optimising
resource management, pipeline design, and compiler.

1) Hardware Acceleration: Recently, mobile devices are
becoming increasingly powerful. More and more mobile plat-
forms are equipped with GPUs. Since mobile CPUs are
not suitable for the computing of deep neural networks, the
embedded GPU could be used to share the computing tasks
and accelerate the inference. Table IX summaries existing
literature on hardware acceleration.

Alzantot et al. evaluate the performance of CNNs and RNNs
only on CPU, and compares against the execution in parallel
on all available computing resources, e.g., CPU, GPU, DSP,
etc. [236]. Results show that the parallel computing paradigm
is much faster. Loukadakis et al. propose two parallel im-
plementations of VGG-16 network on ODROID-XU4 board:
OpenMP version and OpenCL version [237]. The former
parallelises the inference within the CPU, whilst the latter
one parallelises within the Mali GPU. These two approaches
achieve 2.8× and 11.6× speedup, respectively. Oskouei et
al. design a mobile GPU-based accelerator for using deep
CNN on mobile platforms, which executes inference in parallel
on both CPU and GPU [238]. The accelerator achieves 60×
speedup. The authors further develop a GPU-based accelerated
library for Android devices, called CNNdroid, which could
achieve up to 60× speedup and 130× energy reduction An-
droid platforms [239].

With the consideration that the memory on edge devices are
usually not sufficient for neural networks, Tsung et al. propose

to optimise the flow to accelerate inference [240]. They use
a matrix multiplication function to improve the cache hit rate
in memory, which indirectly speeds up the execution of the
model.

Nvidia has developed a parallelisation framework, named
Compute Unified Device Architecture (CUDA) for desktop
GPUs to reduce the complexity of neural networks and
improve inference speed. For example, in [465], CUDA
significantly improves the execution efficiency of RNN on
desktop GPUs. Some efforts implement the CUDA framework
onto mobile platforms. Rizvi et al. propose an approach
for image classification on embedded devices based on the
CUDA framework [241]. The approach features the most com-
mon layers in CNN models, e.g., convolutions, max-pooling,
batch-normalisation, and activation functions. General Purpose
Computing GPU (GPGPU) is used to speed up the most
computation-intensive operations in each layer. The approach
is also used to implement an Italian license plate detection
and recognition system on tablets [242]. They subsequently
introduce matrix multiplication to reduce the computational
complexity of convolution in a similar system to achieve real-
time object classification on mobile devices [243]. They also
apply the approach in a robotic controller system [244].

However, the experiments in [245] show that directly ap-
plying CUDA on mobile GPUs may be ineffective, or even
deteriorates the performance. Cao et al. propose to accelerate
RNN on mobile devices based on a parallelisation framework,
called RenderScript [245]. RenderScript [246] is a component
of the Android platform, which provides an API for hardware
acceleration. RenderScript could automatically parallelise the
data structure across available GPU cores. The proposed
framework could reduce latency by 4×.

Motamedi et al. implement SqueezeNet on mobile and
evaluates the performance on three different Android devices
based on RenderScript [247]. Results show that it achieves
310.74× speedup on a Nexus 5. They further develop a
general framework, called Cappuccino, for automatic synthesis
of efficient inference on edge devices [248]. The structure of
Cappuccino is shown as in Fig. 30. There are three inputs for
the framework: basic information of the model, model file, and
dataset. There are three kinds of parallelisation: kernel-level,
filter bank-level, and output-level parallelisation. The thread
workload allocation component allocates tasks by using these
three kinds of parallelisation. They specially investigate the
optimal degree of concurrency for each task, i.e., the number
of threads in [249]. The data order optimisation component is
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Fig. 31. The structure of Deepsense. The model converter converts the format
of the input model, then the model loader loads the model into memory.
Inference scheduler is responsible for task scheduling for GPU. The executor
runs the allocated tasks on a GPU.

used to convert the data format. Cappuccino enables imprecise
computing in exchange for high speed and energy efficiency.
The inexact computing analyser component is used to analyse
the effect of imprecise computing and determine the tradeoff
amongst accuracy, speed and energy efficiency.

Huynh et al. propose Deepsense, a GPU-based CNN frame-
work to run various CNN models in soft real-time on mobile
devices with GPUs [250]. To minimise the latency, Deepsense
applies various optimisation strategies, including branch diver-
gence elimination and memory vectorisation. The structure of
Deepsense is shown as in Fig. 31. The model converter first
converts pre-trained models with different representations into
a pre-defined format. Then, the model loader component loads
the converted model into memory. When inference starts, the
inference scheduler allocates tasks to the GPU sequentially.
The executor takes inputted data and the model for executing.
During the execution pipeline, CPU is only responsible for
padding and intermediate memory allocation, whilst most
computing tasks are done by the GPU. The authors further
present a demo of the framework in [251] for continuous
vision sensing applications on mobile devices.

The heterogeneous multi-core architecture, including CPU
and GPU on mobile enables the application of neural networks.
By reasonably mapping tasks to cores could improve energy
efficiency and inference speed. Taylor et al. propose a machine
learning based approach to map OpenCL kernels onto proper
heterogeneous multi-cores to achieve given objectives, e.g.,
speedup, energy-efficiency or a tradeoff [252]. The framework
first trains the mapping model with the optimisation setting
for each objective, then it uses the learned model to schedule
OpenCL kernels based on the information of the application.

Rallapalli et al. find that the memory of GPUs severely
limits the operation of deep CNNs on mobile devices, and
proposes to properly allocate part of computation of the fully-
connected layers to the CPU [253]. The fully-connected layers
are split into several parts, which are executed sequentially.
Meanwhile, part of these tasks are loaded into the memory
of the CPU for processing. They evaluate the method with an
object detection model, YOLO [254] on Jetson TK1 board and
achieve 60× speedup.

In addition to commonly used hardware, i.e., CPUs, mobile
GPUs, GPGPU, and DSP, field-programmable gate arrays
(FPGAs) could also be used for acceleration. Different from
CPUs and GPUs, which run software code, FPGA uses hard-

Fig. 32. The comparison between Eyeriss and Eyeriss v2. Both of them are
composed of GLB and PE. Eyeriss v2 adopts a hierarchical structure to reduce
communication cost.

ware level programming, which means that FPGA is much
faster than CPU and GPU. Bettoni et al. implement an object
recognition CNN model on FPGA via Tiling and Pipelining
parallelisation [255]. Ma et al. exploit the data reuse and data
movement in a convolution loop and proposes to use loop
optimisation (including loop unrolling, tiling, and interchange)
to accelerate the inference of CNN models in FPGA [256]. A
similar approach is also adopted in [257].

Lots of literature focus on developing energy-efficiency
DNNs. However, the diversity of DNNs makes them inflexible
for hardware [258]. Hence, some researchers attempt to design
special accelerating chips to flexibly use DNNs. Chen et al. de-
velop an energy-efficient hardware accelerator, called Eyeriss
[259]. Eyeriss uses two methods to accelerate the performance
of DNNs. The first method is to exploit data reuse to minimise
data movement, whilst the second method is to exploit data
statistics to avoid unnecessary reads and computations, which
improves energy efficiency. Subsequently, they change the
structure of the accelerator and propose a new version, Eyeriss
v2, to run compact and sparse DNNs [260]. Fig. 32 shows the
comparison between Eyeriss and Eyeriss v2. Both of them
consist of an array of processing elements (PE) and global
buffers (GLB). The main difference is the structure. Eyeriss
v2 is hierarchical, in which PEs and GLBs are grouped to
reduce communication cost.

2) Software Acceleration: Different from hardware accel-
eration, which depends on the parallelisation of tasks on avail-
able hardware, software acceleration mainly focuses on opti-
mising resource management, pipeline design, and compilers.
Hardware acceleration methods speed up inference through
increasing available computing powers, which usually does
not affect the accuracy, whilst software acceleration methods
maximise the performance of limited resources for speedup,
which may lead to a drop in accuracy with some cases. For
example, in [262], the authors sacrifice accuracy for real-time
response. Table X summarises existing literature on software
acceleration.

Georgiev et al. investigate the tradeoff between performance
and energy consumption of an audio sensing model on edge
devices [263]. Work items need to access different kinds of
memory, i.e., global, shared, and private memory. Global mem-
ory has the maximum size but minimum speed, whilst private
memory is fastest and smallest but exclusive to each work
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TABLE IX
LITERATURE SUMMARY OF HARDWARE ACCELERATION.

Ref. Model Executor Strategy Object Baseline Performance
[236] CNN, RNN CPU, GPU RenderScript Feasibility check Nexus 5x 3× faster
[237] VGG-16 CPU, GPU SIMD Speed up inference Initial OpenCL 11.6× faster
[238] CNN GPU SIMD Speed up inference CPU-only LeNet5 60× faster

[239] CNN GPU SIMD Speed up inference CPU-only LeNet 60× faster
130× energy-saving

[240] DNN GPU Flow optimisation Enable DNN on mobile device Pure CPU DNN 58× faster
104× energy-saving

[241] CNN GPGPU CUDA Maximise throughput CPU-only AlexNet 50× faster
[242] DNN GPU CUDA Real-time character detection Complete NN 250ms per time
[243] DNN GPU Matrix multiplication Real-time character detection ResNet-34 3× faster
[245] LSTM GPU RenderScript Rnn RNN on mobile platform CPU-only LSTM 4× faster

[247] CNN GPU RenderScript Acceleration, energy-efficiency Sequential SqueezeNet 310.74× faster
249.47× less energy

[249] CNN CPU, GPU, DSP RenderScript Optimise thread number GoogLeNet 2.37× faster
[248] CNN CPU, GPU, DSP RenderScript Automatic speedup SqueezeNet 272.03× faster
[250] CNN GPU Memory vectorisation Real-time response VGG-F 361ms runtime
[251] VGG16 GPU Tucker decomposition Real-time response Pure VGG16 644ms runtime

[252] SVM CPU, GPU Kernel mapping Adaptive optimisation OPENCL scheme 1.2× faster
1.6× energy saving

[253] YOLO CPU, GPU Memory optimisation Enable CNN on mobile device Deep CNN 0.42s for YOLO
[255] CNN FPGA Tiling, Pipelining Enable CNN in FPGA CNN on SoC GPU 15× faster
[256] VGG16 FPGA Loop optimisation Memory and data movement Virtex-7 FPGA 3.2× faster

[257] CNN FPGA Loop optimisation Improve energy efficiency CNN on i7 processor 23% faster
9.05× energy-saving

[259] VGG16 Eyeriss Data reuse Improve energy efficiency Without data gating 45% power saving

[260] DNN Eyeriss v2 Hierarchical mesh Processing efficiency Eyeriss 12.6× faster
2.5× energy-saving

[261] CNN TPU Systolic tensor array Improve systolic array Systolic array 3.14× faster

item. Shared memory is between global and private memory.
Typical audio sensing models have the maximum parameters,
which surpasses the capacity of memory. They use memory
access optimisation techniques to speed up the inference,
including vectorisation, shared memory sliding window, and
tiling.

Lane et al. propose DeepX to reduce the resource usage on
mobile devices based on two resource management algorithms
[264]. The first resource management algorithm is for runtime
layer compression. The model compression method discussed
in Section VI-B could also be used to remove redundancy
from original layers. Specifically, they use a SVD-based layer
compression technique to simplify the model. The second al-
gorithm is for architecture decomposition, which decomposes
the model into blocks that could be performed in parallel. The
workflow of DeepX is shown in Fig. 33. They further develop a
prototype of DeepX on wearable devices [265]. Subsequently,
they develop the DeepX toolkit (DXTK) [266]. A number
of pre-trained and compressed deep neural network models
are packaged in DXTK. Users could directly use DXTK for
specific applications.

Yang et al. propose an adaptive software accelerator, Ne-
tadpt, which could dynamically speed up the model according
to specific metrics [267]. They use empirical measurements on
practical devices to evaluate the performance of the accelera-
tor. Fig. 34 shows the structure of Netadapt. Netadpat adjusts
the network according to the given budget, i.e., latency, energy,
etc. During iteration, the framework generates many network
proposals. Then, Netadapt evaluates these proposals accord-
ing to direct empirical measurements, and selects one with

Fig. 33. The workflow of DeepX. Layer compression could reduce the
requirement on resource, whilst the architecture decomposition divides the
model into multiple blocks that could be performed in parallel.

maximum accuracy. The framework is similar to [235], which
caches multiple model compression systems, and compresses
the input model according to users’ demand.

Ma et al. introduce the concept of quality of service (QoS)
in model acceleration and develop an accelerator, DeepRT
[268]. The QoS of an accelerated model is defined as a tuple
Q = (d,C), where d is a desired response time and C
denotes model compression bound. There is a QoS manager
component in DeepRT, which controls the system resources
to support the QoS during the acceleration.

Liu et al. find that fast Fourier transform (FFT) could
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Fig. 34. The structure of Netadapt. Netadapt caches multiple pre-trained
models. When requests arrive, Netadapt selects a specific model and adjusts
its structure according to the given budget. Then it chooses the best proposal
as the accelerating scheme according to empirical measurement.

effectively speed up convolution operation [466]. Abtahi et al.
applie FFT-based convolution ResNet-20 on NVIDIA Jetson
TX1 and evaluates the performance [269]. Results show the
inference speed is improved several times. However, FFT-
based convolution only works when the convolution kernel
is big, e.g., bigger than 9× 9× 9. Most models adopt smaller
kernels in practice. Hence, there are few applications of FFT-
based convolution in practice.

In continuous mobile vision applications, mobile devices
are required to deal with continuous videos or images for
classification, object recognition, text translation, etc. These
continuous videos or images contain large amounts of repeated
frames, which are computed through the model again and
again during the inference. In such applications, caching
mechanisms are promising for acceleration. Xu et al. propose
CNNCache, a cache-based software accelerator for mobile
continuous vision applications, which reuses the computation
of similar image regions to avoid unnecessary computation
and saves resources on mobile devices [45]. Cavigelli et
al. present a similar framework, named CBinfer [270]. The
difference is that CBinfer considers the threshold of the pixel
size when matching frames. However, CBinfer only matches
frames of the same position, which may be ineffective in
mobile scenarios. [251] also considers reusing the result of
the similar input in inference. Different from [45] and [270],
the authors extract histogram-based features to match frames,
instead of comparing pixels.

VII. EDGE OFFLOADING

Computation is of utmost importance for supporting edge
intelligence, which powers the other three components. Most
edge devices and edge servers are not as powerful as central
servers or computing clusters. Hence, there are two approaches
to enable computation-intensive intelligent applications at the
edge: reducing the computational complexity of applications
and improving the computing power of edge devices and edge
servers. The former approach has been discussed in previous
sections. In this section, we focus on the latter approach.

Considering the hardware limitation of edge devices, com-
putation offloading [17], [362], [469]–[471] offers promising
approaches to increase computation capability. Literature of
this area mainly focuses on designing an optimal offloading
strategy to achieve a particular objective, such as latency min-
imisation, energy-efficiency, and privacy preservation. Accord-
ing to their realisation approaches, these strategies could be
divided into five categories: device-to-cloud (D2C), device-to-
edge (D2E), device-to-device (D2D), and hybrid architecture.

A. D2C offloading strategy

It consumes considerable computing resources and energy
to deal with streamed AI tasks, such as video analysis and
continuous speech translation. Most applications, such as
Apple Siri and Google Assistant, adopt pure cloud based
offloading strategy, in which devices upload input data, e.g.,
speech or image to cloud server through cellular or WiFi
networks. The inference through a giant neural model with
high accuracy is done by powerful computers and the results
are transmitted back through the same way. There are three
main disadvantages in this procedure: (1) mobile devices are
required to upload enormous volumes of data to the cloud,
which has proved to be the bottleneck of the whole procedure
[274]. Such a bottleneck increases users’ waiting time; (2)
the execution depends on the Internet connectivity; once the
device is offline, relative applications could not be used; (3)
the uploaded data from mobile devices may contain private
information of users, e.g., personal photos, which might be
attacked by malicious hackers during the inference on cloud
server [472]. There are some efforts trying to solve these
problems, which will be discussed next. Table XI summarises
existing literature on D2C offloading strategy.

There are usually many layers in a typical deep neural
network, which processes the input data layer by layer. The
size of intermediate data could be scaled down through layers.
Li et al. propose a deep neural network layer schedule scheme
for the edge environment, leveraging this characteristic of deep
neural networks [271]. Fig. 35 shows the structure of neural
network layer scheduling-based offloading scheme. Edge de-
vices lacking computing resources, such as IoT devices, first
upload the collected data to nearby edge server, which would
process the original input data through few low network layers.
The generated intermediate data would be uploaded to the
cloud server for further processing and eventually output the
classification results. The framework is also adopted in [272].
The authors use edge server to pre-process raw data and extract
key features.

The model partitioning and layer scheduling could be
designed from multiple perspectives, e.g., energy-efficiency,
latency, and privacy. Eshratifar et al. propose a layer schedul-
ing algorithm from the perspective of energy-efficiency in a
similar offloading framework [273]. Kang et al. investigate this
problem between edge and cloud side [274]. They propose to
partition the computing tasks of DNN between local mobile
devices and cloud server and design a system, called Neuro-
surgeon, to intelligently partition DNN based on the prediction
of system dynamics. Osia et al. consider the layer scheduling
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TABLE X
LITERATURE SUMMARY OF SOFTWARE ACCELERATION.

Ref. Model Strategy Object Performance & Baseline Accuracy
[262] DNN Memory access optimisation Performance-energy tradeoff 83% accuracy, VGG Lossy
[263] DNN Resource management Accelerate inference 3− 4× less energy, Gaussian Mixture Models Lossless
[264] DNN Compression, decomposition Reduce resource use 5.8× faster, Cloud offloading 4.9% loss
[265] DNN Compression, decomposition Reduce resource use 5.8× faster, DeepX 4.9% loss
[267] NN Caching Adaptive speedup 1.7× speedup, MobileNets 4.9% Lossless
[467] DNN Caching, model selection Optimizing DL inference 1.8× speedup, single model strategy 7.52% higher
[269] ResNet-20 FFT-based convolution Accelerate convolution 6.8× throughput, Direct-Conv N/A
[45] CNN Cache mechanism Accelerate inference 20.2% faster, without caching 3.51% drop

[270] CNN Caching, pixel matching Accelerate inference 9.1× faster, without caching 0.1% drop
[251] YOLO Caching, feature extraction Real-time response 36% faster, without caching 3.8%-6.2% drop
[468] NN Optimized computing library Ultra-low-power computing Up to 63× faster, sequential execution Lossless

Fig. 35. The structure of neural network layer scheduling-based offloading.
IoT devices first upload collected data to edge server, where few neural
network layers are deployed. The raw data is first pre-processed on edge
servers. Then the intermediate results are uploaded to cloud server for further
processing.

from the perspective of privacy preservation [275]. They add a
feature extractor module to identify private features from raw
data, which will be sent to the cloud for further processing.
Analogous approaches are also adopted in [276], [277].

In continuous computer vision analysis, video streams need
to be uploaded to the cloud server, which requires a large
amount of network resources and consumes battery energy.
Ananthanarayanan et al. propose a geographically distributed
architecture of clouds and edge servers for real-time video
analysis [278]. Fixed (e.g., traffic light) and mobile cameras
(e.g., event data recorder) upload video streams to available
edge servers for pre-processing. The pre-processed data would
be further transmitted to a central cloud server in a geographic
location for inference. Similarly, Ali et al. leverage all avail-
able edge resources to pre-process data for large-scale video
stream analytics [279]. Deep learning based video analytic
applications contain four stages, including motion detection,
frame enhancement, object detection based on shallow net-
works, and object detection based on deep networks. With
the traditional cloud-based approach, these four stages are
executed on a cloud server. The authors propose to execute
the first two stages locally, which does not require much

computation capacity. The output is then transmitted to edge
servers for further processing (the third stage). The output is
then uploaded to the cloud for final recognition.

The easiest offloading strategy is to offload the inference
task to the cloud when the network condition is good,
otherwise perform model compression locally. For example,
[281] only considers the network condition when offloading
healthcare inference tasks. Similar idea is also adopted in
[282]–[285], [473].

Georgiev et al. consider a collective offloading scheme
for heterogeneous mobile processors and cloud for sensor
based applications, which makes best possible use out of
different kinds of computing resources on mobile devices, e.g.,
CPU, GPU, and DSP [286]. They designed a task scheduler
running on low-power co-processor unit (LPU) to dynamically
restructure and allocate tasks from applications across hetero-
geneous computing resources based on fluctuations in device
and network.

B. D2E offloading strategy

Three main disadvantages with the D2C offloading strategy
have been discussed, i.e., latency, wireless network depen-
dency, and privacy concern. Although various solutions have
been proposed to alleviate these problems, they do not address
these fundamental challenges. Users still need to wait for
a long time. Congested wireless networks lead to failed
inference. Moreover, the potential risk of private information
leakage still exists. Hence, some works try to explore the
potential of D2E offloading, which may effectively address
these three problems. Edge server refers to the powerful
servers (more powerful than ordinary edge devices) that is
physically near mobile devices. For example, wearable de-
vices could offload the inference tasks to their connected
smartphones. Smartphones could offload computing tasks to
cloudlets deployed at roadside. Table XII summarises the
existing literature on D2E offloading strategy.

First, we review the works that offload inference tasks to
specialised edge servers, e.g., cloudlets and surrogates [474],
which refer to infrastructure deployed at edge of the network.
There are two general problems that need to be considered
in this scenario, including (1) which component of the model
could be offloaded to the edge; and (2) which edge server
should be selected to offload to. Ra et al. develop a framework,
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TABLE XI
LITERATURE SUMMARY OF D2C OFFLOADING STRATEGY.

Ref. Model Execution platform Focus and problem Baseline Performance
[271] DNN Edge and cloud Layer partitioning to reduce uploaded data Fixed mode Complete more tasks
[272] DNN Edge and cloud Framework design Local running 3.23× faster
[273] DNN Edge and cloud Layer partitioning for energy-efficiency Local running 3.07× faster
[274] DNN Edge and cloud Layer partitioning for latency, energy Cloud-only 3.1× faster, 140.5% higher
[275] DNN Local and cloud Layer partitioning for privacy N/A 94% accuracy
[276] DNN Local and cloud Feature obfuscation for sensitive data DFT, DCT 8× higher utility
[277] DNN Local and cloud Feature obfuscation for privacy protection DEEProtect Smaller false rejection rate
[279] CNN Edge and cloud Task allocation for QoS Cloud-only 3.1× faster, 140.5% higher
[280] CV Edge and cloud Hardware-based energy and computation efficiency RGB tracker 7− 25× energy-saving
[281] DNN Edge or cloud Offloading decision for acceleration Without offloading 80% energy-saving
[283] CNN Edge or cloud Latency-accuracy tradeoff for computation-efficiency Fast R-CNN 78ms vs. 142ms (baseline)
[284] NN Edge or cloud Multi-objective tradeoff for real-time performance Local running Higher accuracy and framerate
[285] NN Edge or cloud Multi-objective tradeoff for real-time performance Local-only Higher accuracy
[286] N/A Local and cloud Optimal schedule for energy efficiency Cloud offloading 1.6− 3× energy-efficiency

named Odessa for interactive perception applications, which
enables parallel execution of the inference on local devices
and edge server [287]. They propose a greedy algorithm to
partition the model based on the interactive deadlines. The
edge servers and edge devices in Odessa are assumed to be
fixed, meaning they do not consider problem (2). Streiffer et al.
appoint an edge server for mobile devices that requests video
frame analytics [288]. They evaluate the impact of distance
between edge server and mobile devices on latency and packet
loss and find that offloading inference tasks to an edge server
at a city-scale distance could achieve the similar performance
with execution locally on each mobile devices.

Similar to D2C offloading, where the partitioned model
layers could be simultaneously deployed on both cloud server
and local edge device, the partitioned model layers could
also be deployed on edge servers and edge devices. This
strategy reduces the transmitted data, which further reduces
latency and preserve privacy. Li et al. propose Edgent, a
device-edge co-inference framework to realise this strategy
[25]. The core idea of Edgen is to run computation-intensive
layers on powerful edge servers and run the rest layers on
device. They also adopt model compression techniques to
reduce the model size and further reduce the latency. Similarly,
Ko et al. propose a model partitioning approach with the
consideration of energy efficiency [289]. Due to the difference
of available resources between edge devices and edge servers,
partitioning the network at a deeper layer would reduce the
energy efficiency. Hence, they propose to partition the network
at the end of the convolution layers. The output features
through the layers on edge device would be compressed before
transmitted to edge server to minimise the bandwidth usage.

Some efforts [475]–[477] attempt to encrypt the sensitive
data locally before uploading. On cloud side, non-linear layers
of a model are converted into linear layers, and then they use
homomorphic encryption to execute inference over encrypted
input data. This offloading paradigm could also be adopted
on edge servers. However, the encryption operation is also
computation-intensive. Tian et al. propose a private CNN
inference framework, LEP-CNN, to offload most inference
tasks to edge servers and to avoid privacy breaches [290].
The authors propose an online/offline encryption method to

speed up the encryption, which trades offline computation and
storage for online computation speedup. The execution of the
inference over encrypted input data on edge server addresses
privacy issues.

Mobility of devices introduces a challenge during the of-
floading, e.g., in autonomous driving scenarios. Mobile de-
vices may lose the connection with edge server before the
inference is done. Hence, selecting an appropriate edge server
according to users’ mobility pattern is crucial. Zhang et al. use
reinforcement learning to decide when and which edge server
to offload to [291]. A deep Q-network (DQN) based approach
is used to automatically learn the optimal offloading scheme
from previous experiences. If one mobile device moves away
before the edge server finishes the execution of the task, the
edge server must drop the task, which wastes the computing
resources. Jeong et al. propose to move the execution state
of the task back to the mobile device from the edge server
before the mobile device moves away in the context of web
apps [292]. The mobile device continues the execution of the
task in this way.

Since the number of edge servers and computation capacity
of edge servers are limited, edge devices may compete for
resources on edge servers. Hence, proper task scheduling and
resource management schemes should be proposed to provide
better services at edge. Yi et al. propose a latency-aware
video edge analytic (LAVEA) system to schedule the tasks
from edge devices [296]. For a single edge server, they adopt
Johnson’s rule [478] to partition the inference task into a
two-stage job and prioritise all received offloading requests
from edge devices. LAVEA also enables cooperation among
different edge servers. They propose three inter-server task
scheduling algorithms based on transmission time, scheduling
time, and queue length, respectively.

C. D2D offloading strategy

Most neural networks could be executed on mobile devices
after compression and achieve a compatible performance. For
example, the width-halved GoogLeNet on unmanned aerial
vehicles achieves 99% accuracy [479]. Some works consider
a more static scenario, where edge devices, such as smart
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TABLE XII
LITERATURE SUMMARY OF D2E OFFLOADING STRATEGY.

Ref. Model Problem Object Baseline Performance
[287] Object recognition Model partitioning Responsiveness and accuracy Domain experts 3× faster
[288] Object recognition Model partitioning Responsiveness and accuracy Local processing 3× faster
[25] AlexNet Model partitioning Reduce latency Local processing 100-1000ms runtime
[289] AlexNet Model partitioning Energy-efficiency Host inference 4.5× energy-saving
[290] AlexNet online/offline encryption Privacy and latency Without offloading 35× faster, 95.56% energy-saved
[292] DNN Execution state migration Computation resource client-only strategy Much faster

Fig. 36. The parallelism structure of Musical Chair. Task B is a layer-level
task, which are further partitioned into two sub-tasks on two devices. These
two devices adopt different input to double the system throughput.

watches are linked to smartphones or home gateways. Wear-
able devices could offload their model inference tasks to
connected powerful devices. There are two kinds of offloading
paradigms in this scenario, including binary decision-based
offloading and partial offloading. Binary decision offloading
refers to executing the task either on a local device or through
offloading. This paradigm is similar to D2C offloading. Partial
offloading means dividing the inference task into multiple
sub-tasks and offloading some of them to associated devices.
In fact, although the associated devices are more powerful,
the performance of the complete offloading is not necessarily
better than partial offloading. Because complete offloading is
required to transmit complete input data to the associated
device, which increases the latency. Table XIII summarises
the existing literature for D2D offloading strategy.

Xu et al. present CoINF, an offloading framework for
wearable devices, which offloads partial inference tasks to
associated smartphones [293]. CoINF partitions the model
into two sub-models, in which the first sub-model could be
executed on the wearable devices, while the second sub-
model could be performed on smartphones. They find that the
performance of partial offloading outperforms the complete of-
floading in some scenarios. They further develop a library and
provide API for developers. Liu et al. also propose EdgeEye,
an open source edge computing framework to provide real-
time service of video analysis, which provides a task-specific
API for developers [294]. Such APIs help developers focus on
application logic. Similar methods are also adopted in [480].

If one edge device is not powerful enough to provide
real-time response for model inference, a cluster of edge

Fig. 37. The illustration of a DIANNE module. Each module has references to
its predecessors and successors for feedforward and back-propagation during
training.

devices could cooperate and help each other to provide enough
computation resources. For example, if a camera needs to
perform image recognition task, it could partition the CNN
model by layers, and transmit the partitioned tasks to other
devices nearby. In this scenario, a cluster of edge devices could
be organised as a virtual edge server, which could execute
inference tasks from both inside and outside of the cluster.
Hadidi et al. propose Musical Chair, an offloading framework
that harvests available computing resources in an IoT network
for cooperation [297]. In Musical Chair, the authors develop
data parallelism and model parallelism scheme to speed up
the inference. Data parallelism refers to duplicating devices
that performs the same task whilst model parallelism is about
performing different sub-tasks of a task on different devices.
Fig. 36 shows the parallel structure for a layer-level task.
Talagala et al. use a graph-based overlay network to specify
the pipeline dependencies in neural networks and propose a
server/agent architecture to schedule computing tasks amongst
edge devices in similar scenarios [298].

Coninck et al. develop DIANNE, a modular distributed
framework, which treats neural network layers as directed
graphs [299]. As shown in Fig. 37, each module provides
forward and backward methods, corresponding to feedforward
and back-propagation, respectively. Each module is a unit de-
ployed on an edge device. There is a job scheduler component,
which assigns learning jobs to devices with spare resources.
Fukushima et al. propose the MicroDeep framework, which
assigns neurons of CNN to wireless sensors for image recog-
nition model training [300]. The structure of MicroDeep is
similar to DIANNE. Each CNN unit is allocated to a wireless
sensor, which executes the training of the unit parameters. In
feedforward phase, sensors exchange their output data. Once
a sensor receives the necessary input, it executes its unit and
broadcasts its output for subsequent layer. If a sensor with an
output layer unit obtains its input and ground-truth, it starts
the back-propagation phase. They adopt a 2D coordinate based
approach to approximately allocate a CNN unit to sensors.
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TABLE XIII
LITERATURE SUMMARY OF D2D OFFLOADING STRATEGY.

Ref. Model Problem Object Baseline Performance
[293] DNN Model partition Acceleration, save energy Wearable-only strategy 23× faster 85.5% less energy
[295] AlexNet,VGG Incremental training Improve accuracy Cloud-based scheme 3.3× faster, 30%-70% energy-saving
[296] DNN Task scheduling Minimise latency Local running 1.2− 1.7× faster
[297] DNN Data and task parallelism Computing power Local inference 90× faster, 200× less energy
[299] AlexNet Data, model parallelism Modular architecture Local inference 4.5× faster
[300] CNN Neuron assignment Enable training/inference Standard CNN 95.57% accuracy
[301] Bayesian Knowledge retrieval Routing strategy N/A 95% accuracy

Distributed solo learning enables edge devices or edge
servers to train models with local data. Consequently, each
model may become local experts that are good at predicting
local phenomena. For example, RSUs use local trained models
to predict local traffic condition. However, users are interested
in the traffic condition of places they plan to visit, in addition
to the local traffic condition. Bach et al. propose a routing
strategy to forward the queries to devices that have the specific
knowledge [301]. The strategy is similar to the routing strategy
in TCP/IP networks. Each device maintains a routing table to
guide the forwarding. The strategy achieve 95% accuracy in
their experiments. However, latency is a big problem in such
frameworks.

D. Hybrid offloading
The hybrid offloading architecture, also named osmotic

computing [481], refers to the computing paradigm that is
supported by the seamless collaboration between edge and
cloud computing resources, along with the assistance of data
transfer protocols. The hybrid computing architecture takes
advantage of cloud, edge, and mobile devices in a holistic
manner. There are some efforts focusing on distributing deep
learning models in such environments.

Morshed et al. investigate ‘deep osmosis’ and analyses the
challenges involved with the holistic distributed deep learning
architecture, as well as the data and resource architecture
[302]. Teerapittayanon et al. propose distributed deep neural
networks (DDNNs) based on the holistic computing archi-
tecture, which maps sections of a DNN onto a distributed
computing hierarchy [303]. All sections are jointly trained in
the cloud to minimise communication and resource usage for
edge devices. During inference, each edge device performs
local computation and then all outputs are aggregated to output
the final results.

There is always the risk that the physical nodes i.e., edge
devices and edge servers may fail, which results in the failure
of DNN units deployed on these physical nodes. Yousefpour
et al. introduce ‘deepFogGuard’ to make the distributed DNN
inference failure-resilient [304]. Similar to residual connec-
tions [191], which skips DNN layers to reduce the runtime,
‘deepFogGuard’ skips physical nodes to minimise the impact
of failed DNN units. The authors also verify the resilience of
‘deepFogGuard’ on sensing and vision applications.

E. Applications
There exists some works applying the above mentioned

offloading strategy to practical applications, such as intelligent

transportation [305], smart industry [306], smart city [307],
and healthcare [308] [309]. Specifically, in [305], the authors
design an edge-centric architecture for intelligent transporta-
tion, where roadside smart sensors and vehicles could work
as edge servers to provide low latency deep learning based
services. [306] proposes a deep learning based classification
model to detect defective products in assembly lines, which
leverages an edge server to provide computing resources.
Tang et al. develop a hierarchical distributed framework to
support data intensive analytics in smart cities [307]. They
develop a pipeline monitoring system for anomaly detection.
Edge devices and servers provide computing resources for the
execution of these detection models. Liu et al. design an edge
based food recognition system for dietary assessment, which
splits the recognition tasks between nearby edge devices and
cloud server to solve the latency and energy consumption prob-
lem [308]. Muhammed et al. develop a ubiquitous healthcare
framework, called UbeHealth, which makes full use of deep
learning, big data, and computing resources [309]. They use
big data to predict the network traffic, which in turn is used to
assist the edge server to make the optimal offloading decision.

VIII. FUTURE DIRECTIONS AND OPEN CHALLENGES

We present a thorough and comprehensive survey on the
literature surrounding edge intelligence. The benefits of edge
intelligence are obvious - it paves the way for the last mile of
AI and to provide high-efficient intelligent services for people,
which significantly lessens the dependency on central cloud
servers, and can effectively protect data privacy. It is worth
recapping that there are still some unsolved open challenges in
realising edge intelligence. It is crucial to identify and analyze
these challenges and seek for novel theoretical and technical
solutions. In this view, we discuss some prominent challenges
in edge intelligence along some possible solutions. These
challenges include data scarcity at edge, data consistency on
edge devices, bad adaptability of statically trained model,
privacy and security issues, incentive mechanism, and the
relationship with future 6G network.

A. Data scarcity at edge

For most machine learning algorithms, especially super-
vised machine learning, the high performance depends on
sufficiently high-quality training instances. However, it often
does not work in edge intelligence scenarios, where the
collected data is sparse and unlabeled, e.g., in HAR and
speech recognition applications. Different from traditional
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cloud based intelligent services, where the training instances
are all gathered in a central database, edge devices use the
self-generated data or the data captured from surrounding envi-
ronments to generate models. High-quality training instances,
e.g., good image features are lacking in such datasets. Most
existing works ignore this challenge, assuming that the training
instances are of good quality. Moreover, the training dataset
is often unlabeled. Some works [95], [100] propose to use
active learning to solve the problem of unlabeled training
instances, which requires manual intervention for annotation.
Such an approach could only be used in scenarios with few
instances and classifications. Federated learning approaches
leverage the decentralised characteristic of data to effectively
solve the problem. However, federated learning is only suitable
for collaboration training, instead of the solo training needed
for personalised models.

We discuss several possible solutions for this problem as
follows.

• Adopt shallow models, which could be trained with only a
small dataset. Generally, the simpler the machine learning
algorithm is, the better the algorithm will learn from the
small datasets. A simple model, e.g., Naive Bayes, linear
model, and decision tree, are enough to deal with the
problem in some scenarios, compared with complicated
models, e.g., neural network, since they are essentially
trying to learn less. Hence, adopting an appropriate model
should be taken into consideration when dealing with
practical problems.

• Incremental learning based methods. Edge devices could
re-train a commonly-used pre-trained model in an incre-
mental fashion to accommodate their new data. In such
a manner, only few training instances are required to
generate a customised model.

• Transfer learning based methods, e.g., few-shot learning.
Transfer learning uses the learned knowledge from other
models to enhance the performance of a related model,
typically avoiding the cold-start problem and reducing the
amount of required training data. Hence, transfer learning
could be a possible solution, when there is not enough
target training data, and the source and target domains
have some similarities.

• Data augmentation based methods. Data augmentation
enables a model to be more robust by enriching data
during the training phase [482]. For example, increasing
the number of images without changing the semantic
meaning of the labels through flipping, rotation, scal-
ing, translation, cropping, etc. Through the training on
augmented data, the network would be invariant to these
deformations and have better performance to unseen data.

B. Data consistency on edge devices
Edge intelligence based applications, e.g., speech recogni-

tion, activity recognition, emotion recognition, etc., usually
collect data from large amounts of sensors distributed at the
edge network. Nevertheless, the collected data may not be
consistent. Two factors contribute to this problem: different
sensing environments, and sensor heterogeneity. The envi-
ronment (e.g., street and library) and its conditions (e.g.,

raining, windy) add background noise to the collected sensor
data, which may have an impact on the model accuracy.
The heterogeneity of sensors (e.g., hardware and software)
may also cause the unexpected variation in their collected
data. For example, different sensors have different sensitivities,
sampling rates, and sensing efficiencies. Even the sensor data
collected from the same source may vary on different sensors.
Consequently, the variation of the data would result in the
variation on the model training, e.g., the parameters of features
[447], [483], [484]. Such variation is still a challenge for
existing sensing applications.

This problem could be solved easily if the model is trained
in a centralised manner. The centralised large training set
guarantees that the invariant features to the variations could be
learned. However, this is not the scope of edge intelligence.
Future efforts of this problem should focus on how to block
the negative effect of the variation on model accuracy. To this
end, two possible research directions maybe considered: data
augmentation, and representation learning. Data augmentation
could enrich the data during the model training process to
enable the model to be more robust to noise. For example,
adding various kinds of background noises to block the
variation caused by the environments in speech recognition
applications on mobile devices. Similarly, the noise caused by
the hardware of sensors could also be added to deal with the
inconsistency problem. Through the training of the augmented
data, the models are more robust with these variations.

Data representation heavily affects the performance of
models. Representation leaning focuses on learning the rep-
resentation of data to extract more effective features when
building models [485], which could also be used to hide the
differences between different hardware. For this problem, if we
could make a ‘translation’ on the representations between two
sensors which are working on the same data source, the perfor-
mance of the model would be improved significantly. Hence,
representation learning is a promising solution to diminish the
impact of data inconsistency. Future efforts could be made on
this direction, e.g., design more effective processing pipelines
and data transformations.

C. Bad adaptability of statically trained model

In most edge intelligence based AI applications, the model
is first trained on a central server, then deployed on edge
devices. The trained model will not be retrained, once the
training procedure is finished. These statically trained models
cannot effectively deal with the unknown new data and tasks
in unfamiliar environments, which results in low performance
and bad user experience. On the other hands, for models
trained with a decentralised learning manner, only the local
experience is used. Consequently, such models may become
experts only in their small local areas. When the serving area
broadens, the quality of service decreases.

To cope with this problem, two possible solutions may be
considered: lifelong machine learning and knowledge sharing.
Lifelong machine learning (LML) [486] is an advanced learn-
ing paradigm, which enables continuous knowledge accumu-
lation and self-learning on new tasks. Machines are taught
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to learn new knowledge by themselves based on previously
learned knowledge, instead of being trained by humans. LML
is slightly different from meta learning [487], which enables
machines to automatically learn new models. Edge devices
with a series of learned tasks could use LML to adapt to
changing environments and to deal with unknown data. It is
worth recapping that the LML is not primarily designed for
edge devices, which means that the machines are expected
to be computationally powerful. Accordingly, model design,
model compression, and offloading strategies should be also
considered if LML is applied.

Knowledge sharing [488] enables the knowledge commu-
nication between different edge servers. When there is a
task submitted to an edge server that does not have enough
knowledge to provide a good service, the server could send
knowledge queries to other edge servers. Since the knowledge
is allocated on different edge servers, the server with the
required knowledge responds to the query and performs the
task for users. A knowledge assessment method and knowl-
edge query system are required in such a knowledge sharing
paradigm.

D. Privacy and security issues

To realise edge intelligence, heterogeneous edge devices and
edge servers are required to work collaboratively to provide
computing powers. In this procedure, the locally cached data
and computing tasks (either training or inference tasks) might
be sent to unfamiliar devices for further processing. The data
may contain users’ private information, e.g. photos and tokens,
which leads to the risk of privacy leakage and attacks from
malicious users. If the data is not encrypted, malicious users
could easily obtain private information from the data. Some
efforts [271], [273], [274], [472] propose to do some prelimi-
nary processing locally, which could hide private information
and reduce the amount of transmitted data. However, it is still
possible to extract private information from the processed data
[105]. Moreover, malicious users could also attack and control
a device that provides computing power through inserting
a virus in the computing tasks. The key challenge is the
lack of relevant privacy preserving and security protocols or
mechanisms to protect users’ privacy and security from being
attacked.

Credit system maybe a possible solution. This is similar
with the credit system used in banks, which authenticates each
user participated in the system and checks their credit infor-
mation. Users with bad credit records would be deleted from
the system. Consequently, all devices that provide computing
powers are credible and all users are safe.

Encryption could be used to protect privacy, which is
already applied in some works [130], [131], [489]–[491].
However, the encrypted data need to be decrypted before the
training or inference tasks are executed, which requires an
increase in the amount of computation needed. Homomorphic
encryption may be a possible solution to solve the prob-
lem [108]. Homomorphic encryption refers to an encryption
method that allows direct computation on ciphertexts and
generate encrypted results. After decryption, the result is the

same as the result achieved by computation on the unen-
crypted data. Hence, by applying homomorphic encryption,
the training or inference task could be direct executed on
encrypted data. However, the encryption on edge device also
requires intensive computation. Some works [492], [493] have
investigated light-weight homomorphic encryption algorithms
to reduce computation overhead. Future work may focus on
the balance between encryption overhead and the security
efficiency in edge intelligence.

E. Incentive mechanism

Data collection and model training/inference are two utmost
important steps for edge intelligence. For data collection, it is
challenging to ensure the quality and usability of information
of the collected data. Data collectors consume their own
resources, e.g., battery, bandwidth, and the time to sense and
collect data. It is not realistic to assume that all data collectors
are willing to contribute, let alone for preprocessing data clean-
ing, feature extraction and encryption, which further consumes
more resources. For model training/inference in a collaborative
manner, all participants are required to unselfishly work to-
gether for a given task. For example, the architecture proposed
in [93] consists of one master and multi workers. Workers
recognise objects in a particular mobile visual domain and
provides training instances for masters through pipelines. Such
architecture works in private scenarios, e.g., at home, where
all devices are inherently motivated to collaboratively create
a better intelligent model for their master, i.e., their owner.
However, it would not work well in public scenarios, where the
master initialises a task and allocates sub-tasks to unfamiliar
participants. In this context, additional incentive issue arises,
which is not typically considered in smart environments where
all devices are not under the ownership of a single master.
Participants need to be incentivised to perform data collection
and task execution.

Reasonable incentive mechanisms should be considered for
future efforts. On one hand, participants have different mis-
sions, e.g., data collection, data processing, and data analysis,
which have different resource consumptions. All participants
hope to get as much reward as possible. On the other hand, the
operator hopes to achieve the best model accuracy with as a
low cost as possible. The challenges of designing the optimal
incentive mechanism are how to quantify the workloads of
different missions to match corresponding rewards and how to
jointly optimise these two conflicting objectives. Future efforts
could focus on addressing these challenges.

F. Edge intelligence with 6G

The fifth-generation (5G) wireless network is being applied
all over the world. The complete 5G network can provide high
peak data transmission rate, ultra-low communication latency,
and ubiquitous connections. However, with the fast increasing
demand on communication, it is forecasted that the capacity
of 5G network will be surpassed in 2030 [494], [495].

6G network, as the next evolution of 5G network, has been
proposed to meet the requirements that are out of the capability
of 5G. The commonly visioned aspects of 6G include global
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coverage, more spectrum resource, intelligent communica-
tion, high-level network security [496]–[498]. Global coverage
means that users can access the Internet anytime and anywhere
in the world. Current 5G networks are mainly deployed in
metropolises, the coverage is not good in remote areas. In
6G networks, satellite networks with high-bandwidth and
high-quality communication will be established to solve the
coverage problem. Spectrum resource is scarce. Terahertz and
optical frequency bands may be considered in 6G networks to
broaden spectrum resource.

In scenarios network resources are fixed, optimization of
resource allocation will improve the quality of service and
users’ experience. However, the optimization problems are
usually NP-h problem with multiple objectives under complex
constraints, which are hard to be solved. Moreover, it is
usually difficult to formulate these problems with accurate
mathematical models. AI algorithms, especially deep learning
algorithms, are of high adaptivity, which could automatically
extract features from data and learn the optimal resource
allocation scheme. In addition, network resource could be also
optimized to improve efficiency and avoid congestion through
learning the traffic pattern.

However, AI models are data-driven and usually require
massive data to train models. Traditionally cloud-based AI
requires to upload giant amount of data from edge to cloud,
which may decrease the benefit of broadened bandwidth.
Moreover, there may be large amount of private information
involved in the uploaded data, which is also contrary to vision
of enhanced security of 6G network. A possible solution is to
bring edge intelligence to each node, e.g., infrastructure in the
network, as well as the clusters of nodes. These nodes could
learn with local data and possibly share the knowledge with
others to collaboratively learn an optimal model with good
performance.

IX. CONCLUSIONS

In this paper, we present a thorough and comprehensive
survey on the literature surrounding edge intelligence. Specif-
ically, we identify critical components of edge intelligence:
edge caching, edge training, edge inference, and edge of-
floading. Based on this, we provide a systematic classification
of literature by reviewing research achievements for each
components and present a systematical taxonomy according
to practical problems, adopted techniques, application goals,
etc. We compare, discuss and analyse literature in the taxon-
omy from multi-dimensions, i.e., adopted techniques, objec-
tives, performance, advantages and drawbacks, etc. Moreover,
we also discuss important open issues and present possible
theoretical research directions. Concerning the era of edge
intelligence, We believe that this is only the tip of iceberg.
Along with the explosive development trend of IoT and AI, we
expect that more and more research efforts would be carried
out to completely realize edge intelligence in the following
decades.
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[85] C. Maihöfer, T. Leinmüller, and E. Schoch, “Abiding geocast: time–
stable geocast for ad hoc networks,” in Proceedings of the 2nd ACM
international workshop on Vehicular ad hoc networks, 2005, pp. 20–29.
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[445] Y. Guan and T. Plötz, “Ensembles of deep lstm learners for activity
recognition using wearables,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 2, p. 11,
2017.

[446] M. Shoaib, O. D. Incel, H. Scolten, and P. Havinga, “Resource
consumption analysis of online activity recognition on mobile phones
and smartwatches,” in 2017 IEEE 36th International Performance
Computing and Communications Conference (IPCCC). IEEE, 2017,
pp. 1–6.

[447] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard,
A. Dey, T. Sonne, and M. M. Jensen, “Smart devices are different:
Assessing and mitigatingmobile sensing heterogeneities for activity
recognition,” in Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems. ACM, 2015, pp. 127–140.

[448] A. Rosenfeld and J. K. Tsotsos, “Incremental learning through deep
adaptation,” IEEE transactions on pattern analysis and machine intel-
ligence, 2018.

[449] W. T. Ang, P. K. Khosla, and C. N. Riviere, “Nonlinear regression
model of a low-g mems accelerometer,” IEEE Sensors Journal, vol. 7,
no. 1, pp. 81–88, 2007.

[450] S. G. Klauer, F. Guo, B. G. Simons-Morton, M. C. Ouimet, S. E. Lee,
and T. A. Dingus, “Distracted driving and risk of road crashes among
novice and experienced drivers,” New England journal of medicine,
vol. 370, no. 1, pp. 54–59, 2014.

[451] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[452] M. Rabbi, S. Ali, T. Choudhury, and E. Berke, “Passive and in-situ
assessment of mental and physical well-being using mobile sensors,”
in Proceedings of the 13th international conference on Ubiquitous
computing. ACM, 2011, pp. 385–394.

[453] A. Gebhart, “Google home to the amazon echo:’anything you can
do...’,” cnet, May, vol. 18, p. 7, 2017.

[454] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi,
“Scaling for edge inference of deep neural networks,” Nature Electron-
ics, vol. 1, no. 4, p. 216, 2018.

[455] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148–2156.

[456] C. Bucilu, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 535–541.

[457] R. G. Baraniuk, “Compressive sensing,” IEEE signal processing mag-
azine, vol. 24, no. 4, 2007.

[458] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in neural information processing systems, 1990, pp. 598–605.

[459] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in neural information
processing systems, 1993, pp. 164–171.

[460] J. Van Leeuwen, “On the construction of huffman trees.” in ICALP,
1976, pp. 382–410.

[461] S. Malki and L. Spaanenburg, “Cnn image processing on a xilinx
virtex-ii 6000,” in Proceedings ECCTD, vol. 3, 2003, pp. 261–264.

[462] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own
game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[463] R. Morris, “Tapered floating point: A new floating-point representa-
tion,” IEEE Transactions on Computers, vol. 100, no. 12, pp. 1578–
1579, 1971.

[464] B. Blanco-Filgueira, D. Garcı́a-Lesta, M. Fernández-Sanjurjo, V. M.
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