
M
aster's thesis at N

TN
U

, 2022
Thom

as H
alvard Bolle

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Thomas Halvard Bolle

Operationalizing testing setup used
at NTNU SmallSat Lab

Design of an Automatic Test-framework for On-
board Software of Satellites

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
June 2022

M
as

te
r’s

 th
es

is

Thomas Halvard Bolle

Operationalizing testing setup used at
NTNU SmallSat Lab

Design of an Automatic Test-framework for On-board
Software of Satellites

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Satellites are complicated constructs that require interdisciplinary teamwork of various experts
of different academic disciplines. At the SmallSat Lab at Norwegian University of Science and
Technology (NTNU), a team is working on designing and developing satellites known as HYPSO
(HYPer-spectral Smallsat for ocean Observation). The HYPSO satellites consist of a payload
integrated with a 6U CubeSat satellite bus developed by NanoAvionics. With the satellites, the
HYPSO team aim to use a hyperspectral imager to observe ocean color and detect harmful algal
blooms (HABs) that can threaten ecosystems in seas and lakes. To ensure proper functionality
of the satellites, the codebase for the on-board software require rigorous testing. Creating and
executing these tests is a time-consuming process, that require intricate knowledge of the inner
workings of the codebase. Additionally, as the codebase increases with new functionality added
to the satellite, previous tests might become outdated. Which leads to more time being spent on
maintenance.

This thesis describes the design and implementation of an automatic test framework for the on-
board software of the HYPSO satellites. A test framework is a set of guidelines/rules for creating
and designing test cases, while an automatic test framework is a test framework that is able to test
automatically at certain events. Utilizing an automatic test framework will improve the HYPSO
team’s test efficiency, test accuracy and test maintenance cost.

The automatic test framework designed in this thesis is able to imitate a normal user’s usage of
the satellite and is able to efficiently test over multiple test cases, with multiple sets of input data.
It has been implemented to execute testing automatically when changes are made to the codebase.
As each test case is also timed and dated, possibilities arise for documenting/logging changes in
performance speed of the on-board software. Which is useful considering the limited connection
time the satellite has to a ground station.

i

Sammendrag

Satellitter er kompliserte konstruksjoner som krever tverrfaglig kompetanse og sammarbeid mel-
lom personer mer ulike akademiske disipliner. Ved SmallSat Labben p̊a Norges teknisk-natur-
vitenskapelige universitet (NTNU), jobber det ett team som designer og utvikler satellitter ved
navnet HYPSO (HYPer-spectral Smallsat for ocean Observation). HYPSO-satellittene best̊ar av
en nyttelast integrert med en 6U CubeSat satellite-bus utviklet av NanoAvionics.

Nyttelasten inneholder ett hyperspektralt kamera som HYPSO teamet vil bruke for å ta hyperspek-
trale bilder av havet for å kunne se etter tegn av alge oppblomstring. Som kan true økosystemer i
b̊ade hav og innsjøer. For å forsikre at satellitten fungerer om det skal, kreves det grundig testing
av kodebasen for programvaren ombord. Å lage disse testene er en tidkrevende prosess, som krever
stor kunnskap til den indre virkem̊aten av kodebasen. I tillegg, s̊a etterhvert som kodebasen blir
større n̊ar ny funksjonalitet legges til, kan gamle tester slutte å fungere. Noe som da fører til at
mye tid m̊a brukes p̊a vedlikehold av disse testene.

Denne oppgaven beskriver design og implementering av et automatisk testrammeverk for pro-
gramvaren ombord HYPSO-satellittene. Et testrammeverk er et sett med retningslinjer/regler
for hvordan en skal lage tester, mens et automatisk testrammeverk er et testrammeverk som er i
stand til å kjøre testene automatisk. Å bruke et automatisk testrammeverk vil forbedre HYPSO
teamets effektivitet, testnøyaktighet og vedlikeholdskostnader n̊ar det kommer til testing. Det
automatiske testrammeverket designet i denne oppgaven er i stand til å imitere en normal brukers
bruk av satellitten og er i stand til å effektivt teste flere tester om gangen, med ulike sett av in-
ngangsdata. Testrammeverket er implementert til å automatisk utføre testing hver gang det skjer
endringer i kodebasen. Og ettersom hver tests blir timet og datert, s̊a gir det muligheter for å
dokumentere/logge endringer i programvarehastigheten til satelliten over tid. Noe som kommer
godt med, med tanke p̊a den begrensede tiden man har for kommunikasjon n̊ar satelliten er over
bakkestasjonen.

iii

Acknowledgements

I want to thank all the members of the HYPSO team for all the support and help I have gotten
throughout the semester. Especially my co-supervisor Roger Birkeland, who helped me with the
decision-making when choosing the framework to implement. I would also like to thank Sivert
Bakken, who helped me understand how GitHub Actions functions, and why it is such an amazing
tool to utilize.

Lastly I want to thank my fellow students, Einar Avdem, Edvard Birkeland, Eivind Bjørnebøle,
Simen Netteland and Anders Brørvik, who have made my last month’s on NTNU be a time filled
with joy.

v

TABLE OF CONTENTS TABLE OF CONTENTS

Table of Contents

Abstract i

Sammendrag iii

Acknowledgements v

List of Figures xi

List of Tables xiii

Acronyms xv

1 Introduction 1

1.1 The HYPSO Project . 1

1.2 CubeSats . 2

1.3 Objective . 3

1.4 Structure of Master’s thesis . 3

2 System Background 4

2.1 HYPSO . 4

2.2 Breakout Board (BoB) and OPU . 5

2.3 Network Communication . 6

2.3.1 CSP . 7

2.3.2 CAN . 7

2.4 HYPSO software . 8

2.4.1 Hypso-sw . 9

2.4.2 Hypso-cli . 10

2.4.3 Assmebly-integration-test . 12

2.4.4 Hypso-sw-build-check . 13

2.5 Test Setup . 13

2.5.1 Test Menu . 14

3 Test Frameworks 16

3.1 Definition of testing . 16

3.2 Test types . 16

3.2.1 Functional Testing . 17

3.2.2 Unit test . 17

vii

TABLE OF CONTENTS TABLE OF CONTENTS

3.2.3 Integration test . 17

3.2.4 Non-functional testing . 17

3.2.5 Performance testing . 18

3.2.6 Reliability testing . 18

3.3 Test automation frameworks . 18

3.3.1 Linear Testing Framework . 18

3.3.2 Modular Based Testing Framework . 19

3.3.3 Library Architecture Testing Framework . 19

3.3.4 Data-Driven Testing Framework . 20

3.3.5 Keyword-Driven Testing Framework . 20

3.3.6 Hybrid Testing Framework . 21

4 Methods and Tools 23

4.1 Docker . 23

4.2 Git & GitHub workflow . 23

4.2.1 Issues . 24

4.2.2 Branch . 24

4.2.3 Commit . 24

4.2.4 Pull request . 24

4.2.5 Review . 25

4.2.6 Merge . 25

4.3 GitHub Actions . 25

5 Analysis & Requirements 29

5.1 HYPSO current test framework . 29

5.2 Requirements . 30

5.3 Framework analysis . 31

5.3.1 Linear Testing Framework . 31

5.3.2 Modular Based Testing Framework . 31

5.3.3 Library Architecture Testing Framework . 31

5.3.4 Data-Driven Testing Framework . 32

5.3.5 Keyword-Driven Testing Framework . 32

5.3.6 Hybrid Testing Framework . 33

6 Design & Implementation 35

6.1 Design . 35

viii

TABLE OF CONTENTS TABLE OF CONTENTS

6.2 Test file and data file . 36

6.2.1 Data-file . 36

6.2.2 Test file . 36

6.3 Test script . 39

6.3.1 Input . 40

6.3.2 Cycle through information from test file . 41

6.3.3 Connect to hypso-cli and start OPU . 42

6.3.4 Cycle through test cases in test file . 42

6.3.5 Disconnect from hypso-cli . 43

6.3.6 Save results from test script into test result file 43

6.4 Test menu . 44

6.5 GitHub-Actions . 45

6.5.1 Setting up GitHub Action Runner . 45

6.5.2 Workflow files . 45

7 Results 49

7.1 Simple Test File . 49

7.2 Simple first test . 50

7.2.1 First Data File . 50

7.2.2 Pull request assembly-integration-test . 50

7.2.3 Pull request hypso-sw . 51

7.2.4 First test result file . 52

7.3 Simple second test . 53

7.3.1 Second Data File . 53

7.3.2 Pull request assembly-integration-test . 53

7.3.3 Pull request hypso-sw . 54

7.3.4 Second test result file . 55

7.4 Complex test . 56

7.4.1 Test file & Data file . 56

7.4.2 Pull requests . 58

7.4.3 Result file . 59

8 Discussion 61

8.1 Analysis . 61

8.2 Fulfillment of Requirements . 62

ix

TABLE OF CONTENTS TABLE OF CONTENTS

9 Conclusion 63

10 Future Work 64

Appendix 68

A Hypso-cli commands . 68

B Hypso-sw-build-check . 71

B.1 Dockerfile . 71

B.2 Entrypoint.sh . 72

C PicoZed specifications . 74

D Test Script.py . 75

E Test Menu.py . 83

F Auto test execution.py . 89

G Functions for Test Menu.py and Auto test execution.py 90

x

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Image over HYPSO mission . 1

2 CubeSat dimensions. 2

3 Connections between modules inside the HYPSO-1 satellite 4

4 Connections between modules inside the HYPSO-2 satellite 4

5 HYPSO-1 payload hardware with interface connections. Note: CAN connections is
numbered 2, and corresponds to the same CAN connections as in other figures in
this thesis. 6

6 Avnet PicoZed SoC, used for on-board processing on HYPSO-1, front (left) and
back (right) angles. The board utilizes a Zynq-7030 SoC from Xilinx [4]. 6

7 Standard CAN Protocol Data Frame . 8

8 Structure of hypso-sw repository. Test framework.yml in orange and hypso-cli

in green will both be further discussed in this thesis. 10

9 A model of how hypso-cli can connect over CAN-bus to communicate with the
HYPSO payloads [48] . 11

10 Implementation of hypso-cli sub-commands [48] . 12

11 Structure of assembly-integration-test repository. Hypso-cli in green is the ex-
ecutable created by building the code in hypso-sw repository 2.4.1, while test script.py

is the main test script for the test framework created in this thesis. 13

12 Structure of hypso-sw-build-check repository. 13

13 Schematic overview of HYPSO test setup. 14

14 Test menu containing three different tests. 15

15 Output from auto test execution.py file using tests from Figure 14 15

16 Functional testing types . 17

17 Linear Testing Framework. 19

18 Modular Based Testing Framework. 19

19 Library Architecture Testing Framework. 20

20 Data-Driven Testing Framework. 20

21 Keyword-Driven Testing Framework. 21

22 Hybrid testing framework as a combination of Modular Based Testing Framework
and Data-Driven Testing Framework. 22

23 Git & GitHub workflow . 24

24 On the GitHub page, one can see the result from previous workflows runs. 27

25 Inside each GitHub Actions workflow run, one can see every job that has been taken
for that specific run. 27

26 Inside each GitHub Actions job, one can see every step that has been taken for that
specific job. 28

27 Message in pull request when a triggered workflow file has failed. In this case there
were two workflow files that were triggered, where one passed and one failed. . . . 28

xi

LIST OF FIGURES LIST OF FIGURES

28 Message in pull request when a triggered workflow file has passed. In this case there
were two workflow files that were triggered, where both files passed. 28

29 Design flow of testing framework . 35

30 Flowchart of test script used in the modified Keyword-Driven Testing Framework . 39

31 Input prompt when no input arguments have been given at execution of test script
for Modified Keyword-Driven Testing Framework 40

32 Snippet taken from test menu, containing 4 tests where two have been selected for
testing. 44

33 Snippet from test menu explaining the controls and options for the menu 44

34 Two possible outcomes from the auto test execution.py executable. One where
two tests pass, and one where two tests fail. When a test fail, the name of the test
script and the input arguments are outputted under Failed Tests. 45

35 Flowchart of GitHub Actions workflow files for hypso-sw repository and assembly-

integration-test repository. 46

36 Tests located inside test menu . 49

37 Merge message in assembly-integration-test repository when issuing a pull re-
quest. In this merge message the Dispatch workflow file has executed successfully. 51

38 Result from a GitHub Actions run in the hypso-sw repository that has been trig-
gered by a dispatch event. 51

39 Merge message in hypso-sw repository when issuing a pull request. In this merge
message the workflow file has executed successfully. 52

40 Result from a GitHub Actions run in the hypso-sw repository that has been trig-
gered by a pull request. 52

41 Merge message in assembly-integration-test repository when issuing a pull re-
quest. In this merge message the workflow file has executed successfully. 54

42 Result from a GitHub Actions run in the hypso-sw repository that has been trig-
gered by a dispatch event. The GitHub Actions run was not successful. 54

43 Result from a failed GitHub Actions run, where the test test script.py test1.csv

data2.json failed. 54

44 Merge message in hypso-sw repository when issuing a pull request. In this merge
message the workflow file has not executed successfully. 55

45 Result from a GitHub Actions run in the hypso-sw repository that has been trig-
gered by a pull request. The GitHub Actions run was not successful. 55

46 Result from a failed GitHub Actions run, where the test test script.py test1.csv

data2.json failed. 55

47 Result from a GitHub Actions run in the hypso-sw repository that has been trig-
gered by a dispatch event. The GitHub Actions run was successful. 58

48 Result from a GitHub Actions run in the assembly-integration-test repository
that has been triggered by a pull request event. The GitHub Actions run was
successful. 58

49 Merge message in assembly-integration-test repository when issuing a pull re-
quest. In this merge message the workflow file has executed successfully. 58

xii

LIST OF TABLES LIST OF TABLES

50 Merge message in hypso-sw repository when issuing a pull request. In this merge
message the workflow file has executed successfully. 58

51 Complete PicoZed specifications. The HYPSO team utilizes a PicoZed with Xilinx
XC7Z030-1SBG485 SoC (System-on-Chip). 74

List of Tables

1 Seven-layer Open Systems Interconnection (OSI) network communication Model. . 7

2 Services present on OPU . 9

3 Commands when compiling hypso-sw . 9

4 Generic commands in hypso-cli application . 11

5 Command types for hypso-cli application . 11

6 Example of a test case of a generic website using the Keyword-Driven Testing Frame-
work. This Table is based upon a Table located at [28] 21

7 Requirements for test framework . 30

8 Test case in Keyword-Driven Test Framework, with modifications (part 1) 33

9 Test case in Keyword-Driven Test Framework, with modifications (part 2) 34

10 Example of test file, containing two similar test cases, with different Rerun case

or command setting (Part 1). 37

11 Example of test file, containing two similar test cases, with different Rerun case

or command setting (Part 2). 37

12 Simplified test file before and after Cycle through information from test file

with Rerun case or command set to ”command” 42

13 Simplified test file before and after Cycle through information from test file

with Rerun case or command set to ”case” . 42

14 Example of result file, containing one test case with two commands, none of which
contain variables (Part 1). 44

15 Example of result file, containing one test case with two commands, none of which
contain variables (Part 2). 44

16 Test file used in testing of simple tests, containing two test cases (Part 1). 49

17 Test file used in testing of simple tests, containing two test cases (Part 2). 50

18 Result file from first simple test, where all commands passed (Part 1). 53

19 Result file from first simple test, where all commands passed (Part 2). 53

20 Result file from second test, where 4 commands passed, 2 failed, and 1 was skipped.
(Part 1). 56

21 Result file from second test, where 4 commands passed, 2 failed, and 1 was skipped.
(Part 2). 56

22 Test file used in testing of a more complex test, containing multiple test cases (Part 1) 57

23 Test file used in testing of a more complex test, containing multiple test cases (Part 2) 57

24 Result file from complex test, where all command passed. (Part 1). 59

xiii

LIST OF TABLES LIST OF TABLES

25 Result file from complex test, where all command passed. (Part 2). 60

26 Summary of the design requirements, and the level to which they were fulfilled
(ranging from Low to Medium to High). 62

27 Commands in hypso-cli application, with description 68

xiv

Acronyms Acronyms

Acronyms

ADCS Attitude and Determination Control System. 5

CAN Controller Area Network. xi, 7, 8, 9, 11, 14, 33

CI/CD continuous integration and continuous delivery. 3, 25, 29, 63, 64

CLAW Colored Littoral Zone and Algea Watcher. 4

CLI Command Line Interface. 9, 10

CSP CubeSat Space Protocol. 7, 8, 9, 11

CSV Comma Separated Values. 36, 43

EPS Electrical Power System. 5, 14, 42, 43, 50, 55

ESD ElectroStatic Discharge. 14

FC Flight Computer. 5

GS Ground Station. 5, 7

HSI Hyper Spectral Image. 1, 2, 5, 7, 9, 10, 56, 57, 64

HYPSO HYPer-spectral Smallsat for ocean Observation. i, xi, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14,
23, 24, 26, 29, 30, 31, 32, 33, 42, 45, 46, 49, 50, 56, 61, 63, 64

JSON JavaScript Object Notation. 36

NTNU Norwegian University of Science and Technology. i, 1, 4, 5, 63

OPU On-board Processing Unit. 5, 9, 10, 33, 38, 42, 43, 49, 50, 56, 57, 64

OS Operating Software. 9

OSI Open Systems Interconnection. xiii, 6, 7

PC Payload Controller. 5, 8, 14, 56, 57

PL Programmable Logic. 6

PS Processing System. 6

REPL Read-eval-print-loop. 10

RGB Red-green-blue. 5, 7, 10

SDR Software Defined Radio. 1, 2, 4, 5, 14

SSH Secure Shell. 14

UHF Ultra-High Frequency radio. 5

UNIX UNiplexed Information Computing System. 40

USB Universal Serial Bus. 7

YAML YAML Ain’t Markup Language. 25, 29, 46

xv

1 INTRODUCTION

1 Introduction

”Myth has become reality: Earth’s
gravity conquered”

French daily Le Figaro

When looking up at the sky, you can see many things including planets and start. But you can
also see satellites. October 4, 1957, Sputnik 1, the first man-made satellite, was launched. On this
day, as French daily Le Figaro said, Earth’s gravity was conquered, and the start of the human
space age had begun. At that time satellites were simple systems. The Sputnik 1 consisted of
only four antennas and an aluminum sphere containing a low-power transmitter used for sending
out signals that could be picked up on Earth [37]. But as major technology advancements have
been made in the years since, so have the advancements in satellites. These days satellites are
more complex than ever before, with multiple components that all need to work in tandem for the
satellites to function properly. As satellites are ”out of reach” as soon as they leave planet earth,
it is imperative the on-board software function as expected. To this end, testing is an important
process of the development, and facilitating this testing requires thorough and comprehensive tests.
This thesis describes the design and implementation of an automatic test framework for the On-
board software of the components in satellites, as a means to reduce the time cost and complexity
of creating such tests.

1.1 The HYPSO Project

The HYPer-spectral Smallsat for ocean Observation (HYPSO) project is the first part of the
Norwegian University of Science and Technology (NTNU) SmallSat Lab’s initiative to grow space-
related knowledge on NTNU. At the SmallSat Lab, the HYPSO team have designed and built the
CubeSats used for the project. The first mission, HYPSO-1, focuses on bringing a hyperspectral
imager into space using a CubeSat, with the aim of observing ocean color and detect harmful
algal blooms through Hyper Spectral Images HSI, as seen in Figure 1 [50]. As the first mission is
currently well underway, with the HYPSO-1 CubeSat soaring up in orbit, the team at the SmallSat
Lab has started work on the second mission, HYPSO-2. The second mission is an improved version
of HYPSO-1, with more features, specifically a second payload containing a Software Defined Radio
(SDR) which shall be used for providing Arctic researchers easier and faster access to scientific
data products regarding the Ultra-high Frequency (UHF) communication channel and on-orbit
interference [51].

Figure 1: Image over HYPSO mission

1

1.2 CubeSats 1 INTRODUCTION

The HYPSO project is motivated by observing the effect climate change has on the ocean, specifi-
cally how climate change effects the growth of algal blooms that threaten the fish farming industry
in Norway. These blooms may kill fish in various of ways, for example by depleting the oxygen in
the water due to high respiration rate of the algae, or by bacterial respiration during their decay
[30]. Detecting algal blooms early with satellites can help owners of the farms save their fish. Once
the algal blooms are discovered, the satellite will downlink data to be a part of an Autonomous
Ocean Sampling Network (AOSN) including Autonomous Surface Vehicles (ASV), Autonomous
Underwater Vehicles (AUV) and Unmanned Aerial Vehicles (UAV), which can investigate the sit-
uation further. Using the HSI camera enables images to be taken across the entire spectrum from
visible light to near-infrared light (400 nm-800 nm), as light is diffracted inside camera into sepa-
rate wavelength. Hence, it is able to detect light given of algal blooms in the near-infrared area.
Adding the SDR to this project for easier and quicker communication with the Arctic is important
since it is one of the regions where consequences of global warming are observed early [8]. SDR’s
are flexible communication platforms that enable functional changes by modifying the software and
keeping the same hardware. Which can be beneficial in a satellite for in-flight updates of channels
and interference measurements, for communicating with autonomous vessels.

1.2 CubeSats

Both the HYPSO-1 and HYPSO-2 satellites are 6U CubeSat satellites. A CubeSat is a class of
research spacecraft called nanosatellite, which are built up of cubic modules measuring 10 cm x 10
cm x 10 cm in size, with a maximum weight of 1.33 Kg per module [38]. The 6U CubeSat consist
of 6 of these cubic modules, totaling 10 cm x 20 cm x 30 cm in size, Figure 2a. The exterior of the
6U CubeSat satellite can be seen in Figure 2b. The HYPSO CubeSats contain a M6P satellite bus
developed by NanoAvionics and payload(s) created by the HYPSO team. NanoAvionics specializes
in the production of satellite buses, and solutions for commercial and scientific missions for small
satellites [3]. By having the satellite bus provided, the HYPSO team are able to concentrate on
the payloads used to accomplish the mission goals of the CubeSats, and their support during the
mission in orbit.

1U

2U 3U 6U 12U

Dimensions of a CubeSat
10x10x10 cm

1.33 Kg
10 cm 10 cm

10 cm

(a) CubeSat units. (b) 6U CubeSat. Courtesy of NanoAvionics.

Figure 2: CubeSat dimensions.

2

1.3 Objective 1 INTRODUCTION

1.3 Objective

To ensure proper functionality of the HYPSO CubeSats, the codebase for the on-board software
requires rigorous and through testing. Tests should demonstrate that the implementation meets
the functional and performance requirements of the CubeSats.

The HYPSO team consist of multiple PhD candidates and postdocs who stay on the team for long
periods of time, as well as multiple Master’s and Bachelor’s students who join the team for specific
projects spanning one or two semesters. Out of the team members, many are from multiple different
departments and have different disciplines. In this setting the HYPSO team members usually have
limited amount of time, and a high turnover. This coupled with the steep learning curve of the
current test framework, which utilizes Jenkins for continuous integration and continuous delivery
(CI/CD), creates a situation where very few tests are created and maintained. Due to this, most
of the on-board software is not tested, and proper functionality of the HYPSO CubeSats can not
be guaranteed.

The goal of this Master’s thesis, is to analyze the current test framework, to find out why it is
not utilized, and what possible improvements can be made. Before designing and implementing
an improved Automated test framework. The new framework should contain an easier and more
efficient way of creating and executing tests for the on-board software of the CubeSats, with a
lower learning curve than the current version.

1.4 Structure of Master’s thesis

The Introduction, Section 1 contains a brief introduction with a main focus on the HYPSO mission,
the satellites, and the goal of the thesis. Followed by the background, which consist of two sections.
Section 2, System background, contains background theory on HYPSO system to understand
the work done. This includes explanations of the satellites, its structures and connections, and
the test setup utilized by the HYPSO team. Section 3, Automated Test Frameworks, contain
background information on types of testing, and different automation test frameworks. After the
background sections comes Methods & Tools, Section 4. This section contains some of the tools
and methods used by the HYPSO team, for developing the codebase for the satellites, and that
are needed for understanding the work in this thesis. Then follows the Analysis section, Section
5, which contains an analysis of the current test framework used by HYPSO, and which of the
automated test framework from Section 3, would work best for the new test framework developed
in this thesis. Based on the analysis, a design is made, and then implemented in the Design &
Implementation section, Section 6. After the new automated test framework has been implemented,
tests are executed in the Result section, Section 7. Following the results, a discussion of the entire
framework is presented in Section 8. This discussion is then concluded in, Section 9, Conclusion.
Lastly Section 10, Future Work, contains work that can should be done for the utilization of the
automated test framework, but that the author did not have time to do.

3

2 SYSTEM BACKGROUND

2 System Background

This Section contains background related to the HYPSO satellites, the test setup and the software
used for this thesis.

2.1 HYPSO

As mentioned in the introduction, see Section 1, HYPSO team at the NTNU SmallSat Lab has
designed and built one satellite, HYPSO-1, that is currently in orbit, and is already hard at work
on the second satellite, HYPSO-2.

Figure 3 and Figure 4 illustrates the parts and interfaces between in the satellites. Both contain the
identical M6P satellite bus (some of the subsystems in the M6P bus have been excluded from the
figures) developed by NanoAvionics, and the Colored Littoral Zone and Algea Watcher (CLAW)
payload developed by the HYPSO team. In addition, HYPSO-2 also contains a second payload
which houses the SDR with the name TOTEM.

CLAW-1 Payload

PicoBoB
(OPU)

HSI

RGB

M6P

SPI

CAN 1

EPS

UHF

FC S-Band

PC CAN 2
PWR

Figure 3: Connections between modules inside the HYPSO-1 satellite

CLAW-1 Payload

UltraBoB
(OPU)

HSI

RGB

M6P

SPI

CAN 1

EPS

UHF

FC S-Band

PC

SDR Payload

TOTEM

CAN 2

PWR

Figure 4: Connections between modules inside the HYPSO-2 satellite

4

2.2 Breakout Board (BoB) and OPU 2 SYSTEM BACKGROUND

The different modules of the M6P satellite bus are as follows:

• PC: The Payload Controller controls the interfaces between the payload and the satellite
platform. This includes the CAN bus and the power connections from the EPS.

• EPS: The Electrical Power System provides and regulates power to other subsystems. This
power is collected from the solar panels, and stored in batteries, until needed. In addition,
the EPS also contains a fail-safe mechanism making it avoid electrical damage in both itself
and other subsystems.

• UHF: The Ultra-High Frequency radio communicates with the Ground Station (GS) through
the UHF-band.

• FC: The Flight Computer collects data from the sensors and GPS, and uses this to perform
activities related to the ADCS.

– ADCS: The Attitude and Determination Control System uses information from sen-
sors to ensure the satellite is in a desired orientation and maintain it. When taking
hyperspectral images, the ADCS will ensure the satellite points to the desired location,
through the use of actuators.

– GPS: The Global Positioning System is the navigation system of the satellite.

• S-Band: The S-band radio communicates with the GS through the s-band. This gives it
larger bandwidth and throughput than the UHF, but it requires the satellites to point directly
at the Ground Station (GS) when communicating.

• Solar Panels: Used for collecting energy from the sun to the satellite

More information on the M6P satellite bus can be found on NanoAvionics’s website [2].

The modules of the payloads for the satellites are as follows:

• OPU: The On-board Processing Unit contains an on-board processing breakout board, and
interface to the satellite payload. The board for HYPSO-1 contains a PicoZed, while HYPSO-
2 contains an UltraZed.

• HSI: Hyper Spectral Image (HSI) used for taking hyperspectral pictures.

• RGB Camera: Used for taking RGB pictures, that helps with georeferencing and registering
of the images obtained from the HSI camera.

• TOTEM: TOTEM is a high-performance nanosatellite Software Defined Radio (SDR) plat-
form, used for quickly deploying multiple SDR applications [51]. This module is not included
in HYPSO-1.

2.2 Breakout Board (BoB) and OPU

As the breakout board for HYPSO-2 is still under development at NTNU, work done in this thesis
occurred with a breakout board similar to the HYPSO-1, namely Breakout Board v3 (BoBv3).

The BoBv3 is used for connecting routing signals and power between the M6P satellite bus, and
the rest of the payload. Figure 5 displays the interface connections to and from the BoBv3. The
HSI camera is connected to the BoBv3 through an 8-pin HIROSE cable for power transfer and
flash signal, and an RJ45 Ethernet cable for data and command transfer [44]. The flash signal is
used by the HSI to signal the beginning/end of a capture [21]. The RGB camera is connected to
BoBv3 through a USB 2.0 mini-B cable used for power, data, and command transfers.

5

2.3 Network Communication 2 SYSTEM BACKGROUND

HSI

RGB
USB

ETH

12 V

BoBv3

PicoZed

PWR

CAN 2

Flash

Figure 5: HYPSO-1 payload hardware with interface connections. Note: CAN connections is
numbered 2, and corresponds to the same CAN connections as in other figures in this thesis.

The BoBv3 contains a PicoZed, used as the computing unit for the OPU. The PicoZed is a module
developed by Avnet, and equipped with a multicore Zynq-7030 System-on-Chip (SoC) from Xilinx,
and can be seen in Figure 6.

It combines a Processing System (PS) part with a Programmable Logic (PL) part. The PS con-
tains a dual ARM core and the PL contains multiple Look-Up-Tables, Flip-Flops, adder circuits,
block Random Access Memory(RAM) units, and Digital Signal Processing blocks [31]. Complete
specifications for the PicoZed can be found in Appendix C.

Figure 6: Avnet PicoZed SoC, used for on-board processing on HYPSO-1, front (left) and back
(right) angles. The board utilizes a Zynq-7030 SoC from Xilinx [4].

2.3 Network Communication

An understanding of the different communication protocols used in this project can be gained by
looking at the Open Systems Interconnection (OSI) model. The OSI model is a generic, protocol-
independent model, which is used to describe all form of network communication, and their func-
tions, in a network system [13]. The model splits the flow of data into seven abstraction layers, see
Table 1, to describe communication from the physical implementation of transmitting bits across
a communications medium to the highest-level representation of data of a distributed application.
By implementing layers the systems provides structure to the network designers when they are
designing protocols. In the OSI model, each layer provides a service of functionality to the layer
above, and is serviced a functionality by the layer below.

6

2.3 Network Communication 2 SYSTEM BACKGROUND

Layer Function

7 Application Used by end-user software, and provides protocols that allow software
to send and receive information and present meaningful data to users.

6 Presentation Defines how to devices should encode, encrypt and compress data. It
also takes any data transmitted from the application layer and prepares
it for transmission over the session layer.

5 Session Responsible for opening communication channels, and ensure they re-
main open and functional while data is being transmitted.

4 Transport Break data sent in the session layer into segments on the transmitters
end, and reassemble it on the receiver end, as well as controlling the
rate of flow of data.

3 Network Break of segments into data packets, and reassemble the packets on
the receiving end, as well as routing packets across a physical network
(usually done by the use of network addresses).

2 Data Link Establish and terminate connections between two physically-connected
nodes on a network. Data Link also break up packets into frames and
transmits them across the physical connection.

1 Physical Physical cabling or wireless connection between multiple nodes in a
network, and is responsible for the transmission of the raw data.

Table 1: Seven-layer Open Systems Interconnection (OSI) network communication Model.

The HYPSO satellites contain a number of protocols, in different layers, that are relevant for this
thesis. These are the CSP protocol, CAN protocol, USB protocols, and the Ethernet protocols.
Ethernet, and USB, both occupy layer 1 (Physical) and layer 2 (Data Link), and are used for the
connection between the HSI and RGB camera respectively. The HSI is connected to the BoBv3
through the RJ45 Ethernet cable, which corresponds to the Physical layer, and uses the Ethernet
protocol for transmission of data between them, which corresponds to the Data Link layer. The
RGB is also connected to the BoBv3 in the same fashion as the HSI. But the RGB camera uses a
USB 2.0 cable in the Physical layer, and the USB protocol for data transmission in the Data Link
layer.

2.3.1 CSP

CubeSat Space Protocol (CSP) is a small transport layer protocol specifically designed for easing
the communication between distributed embedded systems in smaller networks, like in CubeSats
[35]. CSP aims to give some of the same features as TCP/IP, which is used on the Internet, but
without having the overhead that comes with the IP header. The CSP allows all subsystems to
provide their services on the same network level, without requiring any master node. Each node
in the network contain a unique CSP address, which allows every subsystem to communicate with
each other. In the HYPSO satellite, the payload and its subsystems all employ CSP as their
external communication protocol for communication with the M6P satellite bus. The M6P bus
also utilizes CSP internally between submodules, as well as externally when communicating with
the Ground Station (GS) [45].

2.3.2 CAN

Controller Area Network (CAN) is an asynchronous serial communications protocol, supporting
distributed real-time control (bit rate up to 1Mbs in networks up to 40 m), defined by the ISO
11898:2003 standard [9]. The CAN protocol exists in both the Physical layer and the Data Link
layer. In the Physical layer it provides a physical connection between module/nodes using a
twisted two pair cable, and the Data Link layer it provides the messaging between nodes with

7

2.4 HYPSO software 2 SYSTEM BACKGROUND

the transmission of frames. There are four types of CAN messages(frames); Data Frame, Remote
Frame, Error Frame, and Overload Frame. The Data Frame is used for sending messages from the
transmitter to other modules on the bus. Figure 7 contains a standard Data Frame. The meaning
of the bit fields in the figure are as follows:

• SOF: Signals the start of a message, and is used to synchronize the modules on a bus after
being idle.

• Identifier field: Identifier sets the priority of the data frame, while Remote transmission
request (RTR) defines the frame type (Data Frame or Remote Frame).

• Control field: Identifier extension bit (IDE) sets the Data Frame (Standard or extended),
R is a reserved bit, and Data length code (DLC) informs how many bytes in DATA is
transmitted.

• Data: Contains user defined data to be transmitted (0-8 bytes).

• CRC field and ACK field: Protects the message with a checksum using Cyclic redundancy
check (CRC) followed by a Delimiter (DEL) bit. Based on the result of the CRC, the receiver
acknowledges positively or negatively in the Acknowledge (ACK) slot, which is also followed
by a DEL bit.

• EOF: Signals the end of the message.

There are two types of Data Frames, CAN 2.0A (standard) and CAN 2.0B (extended). Standard
CAN contain an 11-bit identifier in the arbitration field, while extended contain a 29 bit identifier.

Identifier RTR IDE R DLC DATA CRC DEL DEL EOF ITMSOF

Arbitration field Control field CRC field ACK field

Standard Data Frame

ACK

Data field

11 bits
(29 in extended)

1 1 1 1 4
bits 0-8 bytes 15 bits 1 1 1 1

Figure 7: Standard CAN Protocol Data Frame

On the HYPSO satellites there are two CAN-busses, CAN 1 and CAN 2. Figure 3 and Figure
4 shows the CAN connections in the HYPSO-1, and the planned HYPSO-2 satellite respectively.
CAN 1 connects the subsystems of the M6P bus together, while CAN 2 connects the payloads to
the PC, which acts as a router between the two networks. The CAN network allows communication
between the different subsystems in the satellites by sending CSP packets encapsulated in CAN
messages.

2.4 HYPSO software

The code developed in this thesis, is part of the code under version control on GitHub for the
NTNU SmallSat Lab Organization. GitHub is described in Section 4.2. In this Organization,
the author has worked on three different repositories. The first repository, hypso-sw [48], is
the main repository for the HYPSO team, and contains the executables used on the HYPSO
satellite. In this repository the author has worked on setting up GitHub Actions for automa-
tion of the test framework. More on GitHub Actions can be found in Section 4.3. The second
repository, assembly-integration-test [46] repository is where most of the code the author
has written resides in, and is where most of the test framework is located. The third repository,
hypso-sw-build-check[49], is a repository that is used in tandem with GitHub Actions to check
building of the software in the hypso-sw repository. For this thesis, a fourth repository is also
relevant, namely the Hardware-in-loop [47] as it is used in the current test framework. More
information on this repository is described in Section 5.

8

2.4 HYPSO software 2 SYSTEM BACKGROUND

2.4.1 Hypso-sw

The following is based on the authors experience using the repository, in addition with the repos-
itory itself [48]. The hypso-sw repository, Figure 8, contains source code used for building the
executables used for communicating with and running on the satellite. These executables are as
follows:

• hypso-cli

• m6p-time-sync

• opu-services

• packet-dropper

• sdr-services

From these services, two are relevant for this thesis, hypso-cli and opu-services. The hypso-cli
executable is a Command Line Interface that is used for communicating with the HYPSO satellite
using CSP messages. The hypso-cli source file will parse the command line inputs and create CSP
packets that will be distributed over a CAN network in the satellite. More in depth explanation
of hypso-cli can be found in Section 2.4.2 Opu-services is a monolithic executable running on
the OPU, this program has the function of interpreting the CSP packets received from hypso-cli,
then perform several actions according to what is requested in the packet. These actions will use
one or multiple of the services found in Table 2.

Services Application

CSP Accept and respond to CSP packets.

File transfer Manage file operations.

RGB Capture and process RGB images.

HSI Capture and process HSI images.

Shell Accept and execute command strings in the OS shell.

TM Handle request related to telemetry.

Table 2: Services present on OPU

The toolchain used for compiling these executables are encapsulated inside a Docker container, see
Section 4.1. The executable can be built for different architectures inside the Docker container
with the commands found in Table 3

Command Application

make Compiles hypso-cli and opu-services for x86 architecture

make ARCH=arm Compiles hypso-cli and opu-services for ARM architecture

make test Runs tests from top level

make clean Removes all compiled source files and other files generated by compilation

Table 3: Commands when compiling hypso-sw

9

2.4 HYPSO software 2 SYSTEM BACKGROUND

...
.githubContains workflow files used for GitHub Actions.

...
workflowscontains workflow files used for GitHub Actions.

test framework.ymlGitHub Action for automation of test framework.
formatter.ymlGitHub Actions for clang-formatting on C/C++ files in
repository.

appsContains top level source files for executables.
buildContains the executables after make is called.

armContains executables for arm architecture, created by make ARCH=arm.
arm64 Contains executables for arm64 architecture, created by make ARCH=arm64.
x86Contains executables for x86 architecture, created by make.

...
hypso-clihypso-cli binary file for x86 architecture.
opu-servicesopu-services binary file for x86 architecture

cmakeContains files used when generating build scrips.
CMakeLists.txt Description of project build, which CMake uses when generating files.
configContains configuration files for various components, such as HSI and RGB
camera.

docContains documentation of various software components.
...
hypso-cli.mdDocumentation for hypso-cli executable.
opu-services.mdDocumentation for opu-services executable.
packet-dropper.mdDocumentation for packet-dropper executable.

extern ...Contains external repositories.
includeContains header files corresponding to the source code.
Makefile ...Top level wrapper around CMake.
README.md ..Description of usage of repository.
scriptsContains script files such as setup for CAN and Docker.

...
setup dockerShell script for setting up the Docker environment.
start dockerShell script for starting the Docker environment.

srcContains source code for executables connected to the header files.
testsContains various unit tests suites that are executed with make test.

Figure 8: Structure of hypso-sw repository. Test framework.yml in orange and hypso-cli
in green will both be further discussed in this thesis.

2.4.2 Hypso-cli

Hypso-cli is a Command Line Interface (CLI) implemented as a Read-eval-print-loop (REPL),
which means that it takes readable text commands as input, executes them, and presents the
results or output [31]. Figure 9 shows a model of how hypso-cli can be used to connect to the
OPU in the satellite.

10

2.4 HYPSO software 2 SYSTEM BACKGROUND

Figure 9: A model of how hypso-cli can connect over CAN-bus to communicate with the
HYPSO payloads [48]

Hypso-cli will parse the command line inputs and evaluate it against a known set commands
and sub-commands before creating CSP packets that will be distributed over a CAN network in
the satellite.

Table 4 contain a set of generic commands, while Table 5 contains more advanced commands used
that are connected to different services.

Generic commands Description

clear Clear the terminal

help Print helptext for a command.

list List commands, or sub-commands of a specific command.

ls ls -l –color=always

q Exit this CLI.

shell Run a local shell command. Enter ’help shell’ for subcommands

shell remote Enter remote shell mode for a specified node.

Table 4: Generic commands in hypso-cli application

Command
Types

Description

csp ... CSP-specific commands.

eps ... EPS specific commands.

ft ... File Transfer specific commands.

hsi ... CLAW-1 specific commands.

opu ... Commands for controlling the OPU.

pl ... Commands for controlling the OPU.

rgb ... RGB specific commands.

sdr ... Commands for controlling the SDR.

Table 5: Command types for hypso-cli application

All the advanced commands, contains further sub-commands, where the sub-commands are imple-
mented as trees. In Figure 10, sub-commands are displayed as branches going to the right. While

11

2.4 HYPSO software 2 SYSTEM BACKGROUND

separate commands/sub-commands are displayed as branches going down. A complete set of the
commands hypso-cli is able to interpret can be found in Appendix A.

Figure 10: Implementation of hypso-cli sub-commands [48]

2.4.3 Assmebly-integration-test

As with the hypso-sw repository in Section 2.4.1, the following information in this Section is
based on the authors experience using the repository, in addition with the repository itself [46].

The assembly-integration-test repository contain functional and integration tests, see Sec-
tion 3.2, that interact with, and executes multiple commands on, hypso-cli to test the on-board
software of the payload.

Figure 11 contain the structure for the repository. Hypso-cli is marked in green in this fig-
ure. The tests in this repository uses the hypso-cli executable, that is created from the
hypso-sw repository in Section 2.4.1, to communicate with the satellite. For this thesis, the
files in the directory automated test are quite relevant as they, in addition with the files
auto test execution.py and auto test sequence.csv in the test menu directory that
the author has created for a previous project, contain the code for the test framework. The files
in the test menu directory are used for combining multiple tests together into one larger test,
which helps with automating testing, more information on the test menu can be found in Sec-
tion 2.5.1. The files test function.py and test settings.py in the tvac automation
directory contain general functions and setting that is used for interacting with hypso-cli.

12

2.5 Test Setup 2 SYSTEM BACKGROUND

...
automated test

template.csv
template.log
template result.csv
template settings.json
test script.py

fps capability test
hypso-cli
image-42.ub
image-43.ub
pc-buffer
README.md
test autmation
test menu

...
test menu.py
auto test execution.py
auto test sequence.csv

tvac autmation
...
test functions.py
test settings.py

ui less

Figure 11: Structure of assembly-integration-test repository. Hypso-cli in green is the
executable created by building the code in hypso-sw repository 2.4.1, while test script.py
is the main test script for the test framework created in this thesis.

2.4.4 Hypso-sw-build-check

The hypso-sw-build-check repository [49] is used in tandem with GitHub Actions, Section
4.3, for checking that the code in the hypso-sw repository is able to correctly build the executables.
The file Dockerfile is used for setting up the Docker environment, and ends by invoking the
entrypoint.sh file, which builds the executables in hypso-sw, and checks if they succeeded.

...
Dockerfile
LICENSE
README.md
action.yml
check.sh
entrypoint.sh

Figure 12: Structure of hypso-sw-build-check repository.

2.5 Test Setup

The testing of the test framework created during this project was done on the HYPSO test setup.
Figure 13 contains schematic of the test setup. The test setup consists of four main parts; LidSat,
Totem, and Operational Computer located at the SmallSat Lab in Trondheim, and FlatSat
located at NanoAvionics in Vilnius. Together these parts contain most of the modules used in
HYPSO-1, and that are going to be used in HYPSO-2 The Operational Computer is a machine

13

2.5 Test Setup 2 SYSTEM BACKGROUND

used for executing hypso-cli, which communicates with LidSat and Totem through a CAN-bus.
Totem is the SDR platform which is going to be implemented in HYPSO-2 [39]. LidSat contains
the main parts of the payload for the current HYPSO satellite, mounted on the lid of an ESD
box [40]. In addition to the payload, LidSat also includes the PC and EPS of the M6P satellite
bus. The EPS is used for testing and controlling power status of components in the payload, while
the PC is used for connecting the payload to the rest of the M6P satellite bus, including a virtual
CAN-bridge over the internet to the FlatSat.

The user can connect to the Operational computer through the internet using Secure Shell (SSH).
Once connected they can execute hypso-cli, which allows control of the rest of the test setup.

LidSat (Trondheim)

PWR
ETHUSB

RGB HSI

OPU
ID = 12

PC
ID = 6

EPS
ID = 4

FlatSat
(Vilnius)

FC
ID = 3

Operational
Computer

Hypso-cli
ID = 14

CAN 1

Totem
(Trondheim)

SDR
ID = 13

CAN 1
CAN 1

CAN-bridge
over internet

PWR

CAN 2
CAN 2

User Access
via internet

Figure 13: Schematic overview of HYPSO test setup.

2.5.1 Test Menu

The author has previously created a Test Menu system that can be used for both executing
and combining multiple test scripts together into one larger test [6]. The python executable for
this menu system is located in the assembly-integration-test repository under the name
test menu.py, and can be seen in Figure 11. The code for test menu.py can be found in
Appendix E and Appendix G.

Figure 14 displays the menu, containing three different tests. Each of these tests will be executed,
in sequential order, with their arguments. Through the use of the menu, an auto test sequence
.csv file can be created. This file will contain every test with their arguments, and is used when
executing the auto test execution.py python file. The auto test execution.py file,
which can be found in Appendix F, executes every test located in auto test sequence.csv.
Once all the tests have completed, it will give an output where the pass rate of every test together,
and tests that failed to pass are displayed. In Figure 15 the output from the tests in Figure 14 is
displayed. In this Figure, test2 did not pass, and is therefore displayed in the output.

14

2.5 Test Setup 2 SYSTEM BACKGROUND

Figure 14: Test menu containing three different tests.

Figure 15: Output from auto test execution.py file using tests from Figure 14

15

3 TEST FRAMEWORKS

3 Test Frameworks

This section contains the background related to testing. The types of testing that exists, and the
different kinds automated test frameworks that can be utilized.

3.1 Definition of testing

In the book Guide to the Software Engineering Body of Knowledge, P. Bourgue and R.E. Fairley
gives a definition of software testing:

”Software testing consists of the dynamic verification that a program provides expected behaviors
on a finite set of test cases, suitably selected from the usually infinite execution domain” [7,
pp. 4–1]

In the above definition, bold words correspond to key issues in describing Software Testing Knowl-
edge.

Dynamic testing implies that testing the execution of programs is done with specific inputs
predefined by various test cases. As opposed to static testing in which software is tested without
code execution, usually done by manual or automated reviews of code, requirement documents
and document design [24]. As even a simple program can theoretically contain such a high number
of test cases, that complete testing of all cases could take months or years to execute[7]. Testing
every possible case is usually not cost-effective due to limited resources and schedules, instead a
Finite set of test cases are used, which are a subset of all possible test cases. The test cases that
have been selected are determined by risk and other prioritization criteria to provide high test
coverage, with as few as possible amount of cases. Different selection criteria may yield vastly
different degree of effectiveness. Identifying the best selection under given conditions tend to be a
complex problem [7]. When testing it must be possible to decide if the observed outcome of a test
are in line with what is expected. If it is not possible to decide if the outcome is acceptable or
not, then the testing effort is useless.

3.2 Test types

Software testing can be broken down into two different types: functional testing and non-functional
testing. Different aspects of software testing of an application, require different types of testing,
such as performance testing, integration testing, unit testing, and so on [36]. Each of these testing
types can be used to offer different insight into an application, from code to user experience. There
are two main subsets of testing; functional Testing and non-functional testing.

16

3.2 Test types 3 TEST FRAMEWORKS

3.2.1 Functional Testing

Integration
Testing

Functional
Testing

Unit
Testing

Return on Investm
ent

Co
st

 o
f d

ev
el

op
m

en
t a

nd
 e

xe
cu

tio
n

Quantity of tests

Figure 16: Functional testing types

Functional testing encompasses tests that check crit-
ical features, functionality and usability, and are
used for ensuring that software features and func-
tionalities are behaving as expected without any er-
rors [26]. It mainly validates the entire application
against specifications mentioned in the software re-
quirement documents. Types of testing include unit
testing, integration testing, and many more.

While functional testing is a subset of testing, it is
also commonly referred to as a specific type of test-
ing, namely black-box testing. In black-box testing
one is not concerned with the codebase of the appli-
cation [25], but rather the input and output and how
they conform to the software requirements and spec-
ifications. In Figure 16, functional testing is at the
top of the pyramid. To optimize return on invest-
ment, the codebase should have the least amount
of functional tests, as these are usually more time-
consuming to develop and execute [29]

3.2.2 Unit test

Unit testing are used for verifying individual functionality in isolation from software elements that
are separately testable [7]. Depending on the context/software, these can be individual modules
or a larger component made of highly cohesive units. Unit testing are typically conducted by the
programmer that wrote the tests to ensure the module/larger component is working as intended.
Usually to optimize return of investment, the codebase should have as many unit tests as possible,
as seen in Figure 16. As they are both quicker to create and execute. As well as making it easier
to weed out modules that work as intended, when fixing errors in the codebase [29].

3.2.3 Integration test

Integration testing is the practice of testing the interaction among multiple software components/-
modules together. As seen in Figure 16, integration tests take more time and effort to both create
and execute, than unit tests, which is why there tends to be fewer of them. But, where unit testing
can verify that a module works as intended, integration testing verifies that a module fits in with
the rest of the codebase [29]. Integration testing are often ongoing throughout the development of
an application. During which software engineers abstract away from the lower-level perspectives,
and instead concentrate more on higher level. For larger systems, incremental integration strate-
gies are often preferred to putting all the components together at once [7], as the source of errors
can be more effortless to discover.

3.2.4 Non-functional testing

Non-functional testing, evaluates the non-functional aspects of an application [27]. These aspects
are performance, usability, reliability, and so forth. Whereas functional testing checks that the
application functions as it should, non-functional testing checks the readiness of a system.

17

3.3 Test automation frameworks 3 TEST FRAMEWORKS

3.2.5 Performance testing

Performance testing, also known as efficiency testing, goes under non-functional testing, and checks
that an application meets up to its specified performance requirements [7]. When testing the
performance it will check how an application, to an extent, handles capacity, quantity and response
time [27].

3.2.6 Reliability testing

Reliability testing, checks to which extent an application can continuously perform specified func-
tions without failure. I.e. that an application can perform a failure-free operation for a specified
time period in a specific environment [23]

3.3 Test automation frameworks

Test automation framework is a platform that provides an environment where one can execute
automated test scripts. This platform consists of a combination of programs, compilers, features,
tools, etc. [52]. In other words a test automation framework is a set of components that facilitate
executing tests and comprehensive reporting of test results. To this end, implementing a successful
test automation framework requires equipment, testing tools, scrips and procedures for testing.

A number of different test automation framework exists, which will be explained further in the
following SubSections. These are:

• Linear Testing Framework

• Modular Based Testing Framework

• Library Architecture Testing Framework

• Data-Driven Framework

• Keyword-Driven Framework

• Hybrid Testing Framework

3.3.1 Linear Testing Framework

Linear Testing Framework are commonly used on small applications. Testers manually records
each step of a process, as seen in Figure 17, which then creates a script that can be automatically
played back to conduct the test [1]. The main advantage of this framework is its speed. As the
tester does not have to write custom code, it makes it one of the fastest ways to generate test
scripts. In addition, as the test scripts are laid out sequentially, it is easy for any outside party to
understand how it works.

The downside of this framework is that scripts developed through this method are not reusable.
Data used for the test script are hardcoded in, hence the test script cannot be re-run with multiple
sets [5]. Additionally, if the data is altered, the test script also needs to be re-written to accom-
modate for the change. This can make maintenance a hassle as it can add a lot of rework, which
also means that this framework is not suitable for scale as the scope of testing expands.

18

3.3 Test automation frameworks 3 TEST FRAMEWORKS

Tester manually
records each steps

of process

Test
script

Figure 17: Linear Testing Framework.

3.3.2 Modular Based Testing Framework

Modular Based Testing Framework, has the tester break down the application under test into
smaller isolated modules, as seen in Figure 18. These modules can consist of functions, sections,
units, etc., each with their own test script [1], which can then be combined into a larger test script
in a hierarchical fashion. The different modules in this framework are separated by an abstraction
level in such a way that changes made in one module will not yield any affects on the overarching
application [28].

By utilizing Modular Based Testing Framework one gains the advantage of low maintenance. If
changes are made to the application, only the module and its associative individual test scripts
requires alteration. Due to this, this framework also has high scalability [28]. The disadvantage
of this framework is that data is still hardcoded in each test, thus whenever one is to test with a
different set of test data, it requires changes to be made in the test scripts [1].

Module 1

Module 2

Module 3

Module 4

Test script 1

Test script 2

Test script 3

Test script 4

Larger
test script

Application
under test

Figure 18: Modular Based Testing Framework.

3.3.3 Library Architecture Testing Framework

Library Architecture Testing Framework is based on the Modular testing framework. But instead
of dividing the application under test into modules with various scripts that need to be run, similar
task within the scrips are identified and later grouped together by functions [1]. In other words the
application is broken down by common objectives/functions. As seen in Figure 19, these functions
are kept in a library which can be called upon by the test script when needed. This framework is
therefore suitable for applications that contain similar functionalities across different parts of the
application [52]. Utilizing this framework leads to a high level of modularization, which in turn
makes the maintenance and scalability easier and more cost-effective. In addition, this framework
also has a high degree of re-usability, as there is a library of common functions that can be used
by multiple test scripts [52].

As with previous frameworks though, the test scripts still contain hardcoded data, and therefore any
changes to the data will require changing the test scripts, [28]. The test scripts in this framework

19

3.3 Test automation frameworks 3 TEST FRAMEWORKS

also take more time to develop, and writing and analyzing the common functions within the test
scripts requires sufficient expertise on the subject.

Common
Library Test ScriptApplication

Figure 19: Library Architecture Testing Framework.

3.3.4 Data-Driven Testing Framework

While automating or testing any application, at times it may be required to test the same func-
tionality multiple times with different sets of input data. Therefore, the test scripts shouldn’t be
embedded with test data, but rather acquire it from an external database outside the test scripts
[28]. This is the case in Data-Driven Testing Framework. In this framework the test script logic
and the test data are segregated from each other. In Figure 20, the external test data contains
both input data and expected data. The input data is used for deciding what the test script will
execute, while the expected data is used for verifying the output from the execution was correct.

Using this framework allows tests to execute with multiple data sets, which in turn means that
multiple scenarios can be quickly tested with the same test scripts. Setting up this framework can
take significant more time than other frameworks, but it saves a lot of maintenance time as scripts
won’t need to be changed when the test data is changed [1].

External test data

Input
data

Expected
data

Test scriptPopulate external test
data into test script

Compare data from
test script with
expected data

Figure 20: Data-Driven Testing Framework.

3.3.5 Keyword-Driven Testing Framework

Keyword-Driven Testing Framework is an extension to Data-Driven Testing Framework. Instead of
only segregating the test data from the scripts, it also keeps certain keywords, representing certain
actions, in an external file, as seen in Figure 21 [1]. These keywords are self-guiding as to what
actions need to be performed by the application. The keywords and the test data are stored in a
table, thus this framework is also known as Table Driven Framework [28].

20

3.3 Test automation frameworks 3 TEST FRAMEWORKS

In table 6 an example of a test case for a generic website using the Keyword-Driven Testing
Framework is shown. In this Table keywords like Login, clickLink, and verifyLink have
been defined in a step-by-step fashion, where each row represents a new test step. Each of these
keywords are associated with certain code in the external keywords file, that will be executed upon
use. For each keyword there is also an Object. In this example the Object contains the location
of where keyword-actions is being performed on.

A major advantage to this framework is that a single keyword can be used across multiple test
scripts, which makes the code reusable [52]. Additionally, Keyword-Driven Testing Framework
doesn’t require the user to possess much scripting knowledge, as creating the table is simple. The
downside to this framework is that setting up the framework has a high initial cost. As it is both
time-consuming and complex. Keywords have to be defined and the object repository/library needs
to be set up, [1]. Keywords can also become hard to maintain when scaling the test operation, and
new keywords are introduced.

Step Number Description Keyword Object

1 Login to application Login Login Button

2 Click on homepage clickLink //[@id=’homepage’]

3 Verify logged-in user verifyLink //[@id=’link’]

Table 6: Example of a test case of a generic website using the Keyword-Driven Testing Framework.
This Table is based upon a Table located at [28]

Test scriptPopulate values into
test script

Keywords

Test data

Figure 21: Keyword-Driven Testing Framework.

3.3.6 Hybrid Testing Framework

Hybrid Testing Framework, is as the name suggests, a hybrid combination of multiple testing
frameworks, [28]. By combining multiple frameworks, they can be set up to take advantage of each
other’s positive sides, while mitigating their weaknesses [1].

As every application is different, the process used for testing should also be different. So that it
fits within the purpose of the application [5]. A hybrid framework can be more easily adapted to
get the best test result for each application while sacrificing as little as possible.

Figure 22 contains an example of a Hybrid Testing Framework. This Framework consists of a Mod-
ular Based Testing Framework, combined with a Data-Driven Testing Framework. By combining
these two one alleviates the hardcoded data disadvantage from the Modular Based Testing Frame-
work, while keeping the modularity that Data-Driven Testing Framework lacks. One disadvantage
with the Hybrid Testing Framework, is that as it combines multiple frameworks it becomes more
complex than either of them. Which in turn results in higher initial cost of when creating the
framework.

21

3.3 Test automation frameworks 3 TEST FRAMEWORKS

Module 1

Module 2

Module 3

Module 4

Test script 1

Test script 2

Test script 3

Test script 4

Larger
test script

Application
under test

External test data

Input
data

Expected
data

Populate external test
data into test script

Compare data from
test script with
expected data

Figure 22: Hybrid testing framework as a combination of Modular Based Testing Framework and
Data-Driven Testing Framework.

22

4 METHODS AND TOOLS

4 Methods and Tools

This Section contains the tools and methods that have been utilized during the work of this thesis.

4.1 Docker

The HYPSO team utilizes a software platform known as Docker when building the executables
in the hypso-sw repository. Docker provides the ability to package and run an application in a
loosely isolated environment called container [11]. Using Docker, deploying software to different
environments become much easier, as one does not have to manually provision necessary software to
each machine. Neither does one have to manually configure how each machine utilizes its resources
for the software [32].

In the same way a container on-board a cargo ship can contain multiple items that are isolated
from the other containers on-board, so can a container in Docker contain various software that
is isolated from the rest of the machine. The containers in Docker are lightweight and contain
everything needed to run the specific application [11]. This ensures that everyone that has the
same container, have the same code and dependencies so that the application runs quickly and
reliably from one computing environment to another [12].

For the HYPSO team, using Docker is advantageous as it guarantees that the toolchain for building
the software is the same no matter where it is run, or what system it is run on. Setting up the
Docker environment is easily done by executing the shell script setup docker located in the
scripts directory in the hypso-sw repository, Figure 8. After the setup has been completed,
the Docker container can be opened by executing the start docker shell script located in the
same directory.

4.2 Git & GitHub workflow

The software for HYPSO is written by many people, working on a wide number of tasks. To
ensure the software continues to work throughout the development and completion of these tasks,
the HYPSO team utilizes Git. Git is a free and open-source distributed version control system,
that has been designed to handle large projects with speed and efficiency [14]. By using Git, one is
able to record changes made to the codebase over time in a database called repository. With these
records, one can look back at the history of the codebase, to see what changes were made, when
were they made, and by whom were they made. This gives higher security to the codebase, as one
is also able to revert the codebase to an earlier version of the if something were to go wrong.

As Git as a service only exists locally on a machine, the HYPSO team utilizes GitHub. GitHub
is a cloud-based Git repository hosting service [10]. In other words, GitHub is an online database
that allows keeping track of, and sharing of Git version control projects outside a local computer.
GitHub expands upon the features and advantages that Git provides. In addition to the version
control system from Git, GitHub also provides built-in control and task-management tools. As
well as providing a GitHub Marketplace service that can be used to include even more features.

The workflow on GitHub centralizes around a working master branch, that should always be
deployable, represented as the thick blue line in Figure 23. To ensure this, GitHub can be set up
to prevent changes made to this master branch, until they have been reviewed, tested, and ensured
working. This is the setup that the HYPSO team has. Every time someone makes new changes to
the master branch, a different member in the team has to review them and sign off that the new
changes are working as intended.

23

4.2 Git & GitHub workflow 4 METHODS AND TOOLS

Branch Commits Pull request MergeReview

Master

Figure 23: Git & GitHub workflow

4.2.1 Issues

Issues are a task-management feature that is rigorously used by the HYPSO team. Issues are a
way for the HYPSO team to inform other people when a feature in the software is missing, or a
bug is discovered. Every member in the HYPSO team can create issues. Inside these issues, a
detailed explanation is given on why it is created, and then people in the team can use this issue
as a place for discussing a possible solution.

4.2.2 Branch

Git and GitHub utilizes a feature called Branches. Branches are a way of copying the codebase
into a new, contained, area where one can develop features, fix bugs, and safely experiment with
new ideas without altering the main version of the codebase [15]. The master branch (main if the
repository is created after October 1, 2020) is the default branch when a repository is created.
Following good code practice, this branch should always be deployable, which is why developing
code in this branch is not recommended.

The HYPSO team uses branches for development. Every branch is independent of one another, so
that changes made in one branch will not affect other branches. This enables the HYPSO team
to work on independent tasks for the same systems without interfering with each other. In figure
23 a branch has been created, blue box. This branch can then be used to develop a new feature
for the codebase. When the developing has finished, and has been reviewed, the branch can be
merged back into the master branch.

4.2.3 Commit

The main advantages with using Git and GitHub is the possibility to track the progress that
one has made. To accomplish this, commits are used. A commit is a ”save point” within Git’s
version control system. Every commit made is considered a separate unit of change [22]. In Figure
23 multiple commits have been made inside a separate branch from the master branch, orange
box. Each commit work like a separate ”save point” that one is able to revert to at will. Every
commit made also requires a commit message. A commit message is useful for explaining what has
changed in this commit vs. the previous one, and it enables other people to follow and understand
the changes that have been made, and why they were made.

When a commit is created, it is saved locally. To update the remote branch created through
GitHub, a push has to be made. Pushing is the act of updating the branch on GitHub with all the
recent commits made since the last push.

4.2.4 Pull request

When the work done in a branch has concluded, one might want to update the master branch
with the new code. To accomplish this one can open a pull request, represented in Figure 23 with
the red box. A pull request is a way to inform others about changes that have been pushed to a
branch, and get their feedback. When the pull request is created, it starts a discussion about the

24

4.3 GitHub Actions 4 METHODS AND TOOLS

commits, and changes, that have been made to the codebase. Here everyone can see what will be
changed in the new master branch. A pull request can also be created at any point in time, if one
wants to share some general ideas, is stuck and needs help, or when a review of the changes made
are needed.

4.2.5 Review

After a pull request has been made, a discussion and/or review session is started, represented
with the green box in Figure 23. In this session the person or team reviewing the changes may ask
questions or come with some comments about the changes. Pull requests are designed to encourage
and capture these conversations in a way that allows everyone on the team to be on the same page
when the master branch is updated with the new changes [22].

4.2.6 Merge

When the changes made on a branch has gone through a pull request and review process, and
has been accepted by at least one other team member, it is ready to be merged into the master
branch. In Figure 23 one can see that this is the final step of the branch, and signifies the end
of the workflow. If one were to branch out of the master branch after this merge, then the new
branch would include the changes made in the previous branch.

4.3 GitHub Actions

In 2018 GitHub launched GitHub Actions, a continuous integration and continuous delivery (CI/CD)
platform aimed at automating building, testing and deployment of pipelines [20]. By utilizing
GitHub Actions, one can bring automation directly into the software development lifecycle via
event-driven triggers. These event-driven triggers, are specified GitHub events that can range
from creating pull request to creating a new branch.

GitHub Actions automation are handled by workflows that defined the automation process. These
workflow files are YAML files placed in the .github/workflows directory in a repository. In Fig-
ure 8 in Section 2.4.1, one can see two workflow files, test framework.yml and formatter.yml.

Every workflow file consists of several core aspects:

• Events: Event is a specific activity in a repository that triggers a workflow run. This activity
can for example be when someone creates a pull request, opens an issue, pushes a commit to
a repository and so on. A workflow run can also be triggered on a schedule.

• Jobs: Jobs is a set of steps in a workflow file that execute on the same runner. Each job
runs in its own virtual machine and parallel to other jobs, unless otherwise specified.

• Steps: Steps are individual tasks inside a job. These tasks can either be a script, an action
or a command, that will be run. The steps will be run in sequential order, and as every step
inside the same job will be executed on the same runner, it is also possible to share data
between them.

• Actions: An action is a custom application for the GitHub Actions platform. Actions are
used to help reduce the amount of repetitive code that is written in a workflow file. For
example and action can be used for pulling a GitHub repository, setting up a toolchain for
the build environment and so on. GitHub also have a GitHub Marketplace where one can
find multiple actions that other people have created.

25

4.3 GitHub Actions 4 METHODS AND TOOLS

• Runners: A runner is a GitHub Action application that runs workflows when they are
triggered. The runner listens for available jobs, runs them, and reports back the progress,
logs and results. Each runner can be either hosted by GitHub or they can be self-hosted on
a localized server. Self-hosted runners can operate on any operating system, while GitHub
hosted runners operate on either Ubuntu Linux, Windows or macOS. Additionally, GitHub
hosted runners can not access target hardware, while self-hosted runners can.

Code Listing 1 contains the formatter.yml file located in hypso-sw repository under .github/
workflows directory, Figure 8. This file was not created by the author, but it will be used as
an example for a GitHub Actions workflow file. In this file one can see that it will be triggered
on every push. The file contains one job with the name of clang-format Code Formatter. This
job will run on GitHub’s own Ubuntu server with the latest version, and contains two steps. The
first step, checkout on branch, uses the GitHub Action Checkout [18]. This action is used
for allowing the workflow access to the relevant repository. Following this the second step, Clang
Code Formatter, uses a GitHub Action that has been created by the HYPSO team, that ex-
ecuted Clang formatting on every C/C++ file in the codebase. Inside this step there is also an
environment variable, env. This environment variable contains a GitHub token, that gives access
to the NTNU-SmallSat-Lab GitHub organization, and the repositories that are contained within.

1 name: clang−format Code Formatter
2 on: push
3 jobs:
4 lint:
5 name: clang−format Code Formatter
6 runs-on: ubuntu− l a t e s t
7 steps:
8 − name: checkout on branch
9 uses: a c t i on s /checkout@v3
10 with:
11 ref: ${{ github . head r e f }}
12 − name: Clang Code Formatter
13 uses: NTNU−SmallSat−Lab/ clang−format−action@master
14 env:
15 GITHUB TOKEN: ${{ s e c r e t s .GITHUBTOKEN }}

Code Listing 1: formatter.yml file located in hypso-sw repository under .github/workflows
directory, Figure 8

When a GitHub Actions workflow run is executed, a summary of the results is displayed under the
Actions tab on GitHub page, Figure 24. On this page one can see every workflow run, when it was
run, and how the result ended up. One can then further go into every specific run, to see the jobs
that were run, Figure 25, and inside each job, one can see the specific steps that have been taken,
Figure 26. Additionally, when creating a pull request, if there are any workflows set to run, the
result from the run will be displayed in the pull request. Figure 27 shows how it will look when a
workflow file fails, while Figure 28 shows how it looks when the workflow files passes.

26

4.3 GitHub Actions 4 METHODS AND TOOLS

Figure 24: On the GitHub page, one can see the result from previous workflows runs.

Figure 25: Inside each GitHub Actions workflow run, one can see every job that has been taken
for that specific run.

27

4.3 GitHub Actions 4 METHODS AND TOOLS

Figure 26: Inside each GitHub Actions job, one can see every step that has been taken for that
specific job.

Figure 27: Message in pull request when a triggered workflow file has failed. In this case there
were two workflow files that were triggered, where one passed and one failed.

Figure 28: Message in pull request when a triggered workflow file has passed. In this case there
were two workflow files that were triggered, where both files passed.

28

5 ANALYSIS & REQUIREMENTS

5 Analysis & Requirements

Before the author started working on creating a test framework, an analysis of the current test
setup had to be done, to figure out what requirements the new test framework required.

5.1 HYPSO current test framework

The HYPSO team has previously created multiple tests, that execute automatically using Jenkins.

Jenkins is a self-contained, open source continuous integration and continuous delivery (CI/CD)
platform, that can be used for automating building, delivery and deployment of software [34].
Jenkins and GitHub Actions, Section 4.3, are quite similar and both can be used for automatic
testing. Some main similarities between them are:

• Jenkins uses Declarative and Scripted Pipelines when creating workflows, which
are similar to the workflow files GitHub Actions utilizes.

• Jenkins uses stages to run a collection of steps, while GitHub Actions uses jobs as a way
to group one or more steps or individual commands.

• Jenkins and GitHub Action both support container-based builds, like Docker, Section 4.1.

• In both Jenkins and GitHub Actions, steps or tasks can be reused and shared with the
community.

Some differences between Jenkins and GitHub Actions are:

• Jenkins uses two different types of syntaxes when creating pipelines, Declarative
Pipelines and Scripted Pipelines, where Declarative is a simplified version of
Scripted as declarative syntax is more limited (One is not able to inject code anywhere in
pipeline in Declarative). GitHub Actions, on the other hand, uses only one type of syntax
when creating workflows and configuration files, YAML.

• Jenkins’ deployments are usually self-hosted, while GitHub Actions offers both self-hosted
runners and cloud based runners.

• Jenkins is based on accounts and triggers and centers on builds which does not conform to
GitHub events, while GitHub Actions can trigger on every GitHub event.

The main difference between GitHub Actions, and Jenkins for the HYPSO team, is how both of
them integrate with GitHub. For the HYPSO team, Jenkins is currently set up as a ”multi-branch
pipeline” in the hardware in loop GitHub repository [47]. This means instead of branches for
development of specific features, each branch is a separate testing pipeline, that each perform a
different set of procedures. Thus unlike the other repositories used by the HYPSO team, the
hardware in loop repository uses neither the Git nor GitHub branching style explained in Section
4.2. Additionally, these branches are not supposed to ever be merged with the master branch.

For the HYPSO team, using Jenkins proved to be an unsatisfactory solution. Since it is not
ingrained into the GitHub ecosystem, it meant that if one wanted to create new tests, one had to
become familiar with how Jenkins works. Which took a lot of time that many members of HYPSO
didn’t have due to other school work. This resulted in very few people familiarizing themselves
with Jenkins, which in turn resulted in, when Jenkins is not working properly (as of the moment
this thesis is written) very few people are able to fix it.

With both Jenkins and GitHub Actions, the tests being automated have to be made beforehand.
Currently, the predefined tests that execute on Jenkins have been created manually, by hand, and
the tests in the Assembly-integration-test repository, Section 2.4.3 have also been created
manually, and they are not compatible with multiple sets of data. Creating these tests is the

29

5.2 Requirements 5 ANALYSIS & REQUIREMENTS

biggest problem with the current setup. There are no clear recipes on how these tests are to be
made, which have resulted in some tests having to be manually executed, while others can be
executed through a script. Additionally, creating tests can take a lot of time, which as mentioned
before, many team members of HYPSO might not have.

A test framework that eases and streamlines the process of creating new tests, and that can be
automated with the use of GitHub Actions would be very advantageous.

5.2 Requirements

From the analysis of the current HYPSO test setup, the author made some requirements that the
test framework has to fulfill. In table 7 a summary of the requirements are shown, and following
the table the reason for each requirement is detailed.

Req. Number Description

REQ-0 The test system shall imitate normal usage of hypso-cli.

REQ-1 Creating new tests in the test system shall be quick and effortless.

REQ-2 The test system shall log the results from the tests in a results file.

REQ-3 The test system shall be usable with future features on hypso-cli.

REQ-4 The test system shall have low maintenance.

REQ-5 The test system shall be able to test multiple sets of data with the
same command.

REQ-6 The test system shall be able to automatically execute tests through
the use of GitHub Actions.

Table 7: Requirements for test framework

REQ-0: The test system shall imitate normal usage of hypso-cli. This means that the interac-
tion between the test framework and hypso-cli shall be indistinguishable to a normal user manually
inserting commands. The test framework shall be used for ensuring commands on hypso-cli
function as they should under normal operation, if it didn’t imitate normal usage it would have no
reason to exist.

REQ-1: Creating new tests shall be quick and effortless. This means that creating new tests shall
not require large amount of scripting, and should not take longer time than creating tests without
the use of the framework.

REQ-2: The test system shall log the results from the tests in a results file. After the test
framework has been used, it shall save the results from the testing in a file. By having test results
saved in a file, one can use it to see progress from testing over time.

REQ-3: The test system shall be usable with future features on hypso-cli. As more develop-
ment occurs on the HYPSO satellites more features on hypso-cli might be needed. When this
occurs one should not have to create a new test framework, but rather the test framework in use
should be able to handle new features.

REQ-4: The test system shall have low maintenance. The test framework shall require as little
maintenance as possible. As the HYPSO team changes throughout the years, it is not given that
there will always be people with ample knowledge of the inner workings of the test framework to
be able to change/fix it very easily.

REQ-5: The test system shall be able to test multiple sets of data with the same command.
Having to write tests that use the same commands as previous tests, but with new data wastes a
lot of time. Therefore, to save time, the test framework shall be able to test multiple data sets of
data with the same command.

30

5.3 Framework analysis 5 ANALYSIS & REQUIREMENTS

REQ-6: The test system shall be able to automatically execute tests through the use of GitHub
Actions at specified GitHub events. This is to ensure that when the codebase in the master branch
is updated with new code, both the new and old code still functions as intended.

5.3 Framework analysis

After the requirements had been set, the author started looking at what framework from the ones
explained in Section 3.3 would fit best for HYPSO. All the frameworks end up with a test script
that can be executed by itself, and a log file can also be extracted from a test script, which means
that no matter what framework is chosen, they can all conform to REQ-2 and REQ-6 in Table 7.

5.3.1 Linear Testing Framework

In the Linear Testing Framework the tester has to manually record each step of the process before
being able to automatically run it as a test script. In this framework new tests are quick to create
which is very advantageous considering requirement REQ-1 found in Table 7. But as explained in
Background section 3.3.1, this framework can require a lot of maintenance which would directly
contradict requirement REQ-4. This framework can also not be used for creating tests that utilizes
multiple sets of data, which interferes with requirement REQ-5. Based on these grounds the Linear
Testing Framework was not selected.

5.3.2 Modular Based Testing Framework

The Modular Based Testing Framework is suitable for when applications under test are divided
into modules, see Section 3.3.2. As then each module can have its own test script. This framework
provides low maintenance, as a change in one module does not affect other modules. Which
is very advantageous considering requirement REQ-4 in Table 7. The Modular Based Testing
Framework also has high scalability which works well with requirement REQ-3, as more modules
can be added without interfering with existing modules. The downside with this framework, data
is still hardcoded in each test, is in direct violation of requirement REQ-5. REQ-5 says that the
framework shall be able to test multiple sets of data with the same command. This is not possible
when the data is hardcoded in the test scripts. An additional downside, as mentioned, is that
this framework works well when the application is divided into modules, which the application
hypso-cli, to a degree, is not, see Section 2.4.2. Hypso-cli contains multiple commands, that are
all executed through the same terminal. Therefore, it makes no sense to split up the commands
into their own modules based on their functionalities, and as a result the Modular Based Testing
Framework was not selected.

5.3.3 Library Architecture Testing Framework

Library Architecture Testing Framework is a framework that is suitable for applications that
contain similar functionalities across different parts of the application, see Section 3.3.3. From this
statement it is evident that this framework won’t be suitable as a test framework for hypso-cli,
considering that hypso-cli contains a large amount of dissimilar functionalities, see Section
2.4.2. Additionally, this framework also relies on having hardcoded data in the test scripts, which
goes against requirement REQ-5, Table 7.

This framework does contain a high level of modularization, which makes the maintenance and
scalability easier and more cost-effective, which is good for requirement REQ-4. Nevertheless, due
to the drawbacks of this framework, it was not selected as a test framework for HYPSO.

31

5.3 Framework analysis 5 ANALYSIS & REQUIREMENTS

5.3.4 Data-Driven Testing Framework

Data-Driven Testing Framework are useful for testing an application that requires testing the same
functionality multiple times with different sets of input data, see Section 3.3.4. This relates well
with requirement REQ-5 in Table 7. Due to this framework containing data in data sets separate
from the test script, it has low maintenance. This framework contains data in data sets separate
from the test script, which gives lower maintenance, which is positive considering REQ-4. Changes
made in the test data does not require changes to be made in test scripts. The maintenance in this
framework could still be lower though, as adding new features or altering existing features requires
the creation of new test scripts. This framework does also not address requirement REQ-1 which
states that creating new tests should be quick and effortless, as every command that is to be tested
has to be manually entered in the test script. Since the Data-Driven Testing Framework does not
ease the creation of new tests, this framework was not selected.

5.3.5 Keyword-Driven Testing Framework

Keyword-Driven Testing Framework improves upon Data-Driven testing Framework by including
a set of keywords that correspond to a specific action that the test script will preform, see Section
3.3.5. In the case of hypso-cli these keywords would correspond to specific command(s) that
would be executed. This framework is well suited for the requirements REQ-1, REQ-4 and REQ-
5 in Table 7. When creating new tests in this framework, users have to utilize two files, a file
containing a set of test data, like in the Data-Driven Testing Framework, see Section 3.3.4, and
a keywords file containing specific code that corresponds to the action the keyword represents.
The code in the Keywords file can be set up to automatically use the sets of data found in the
data file, which then allows it to be tested over multiple sets of data. With these two files, the
user can create test cases very quickly as they only have to create a table like Table 6 in Section
3.3.5. Additionally, users with less scripting knowledge will also have an easier time creating new
tests. Which can be very beneficial for HYPSO team, as new members might require less time
to familiarize with the test framework before starting to make tests. By having the test cases be
tables, when a test has to be altered, the user only has to alter the tables that are used, giving
lower maintenance time.

So far the Keyword-Driven Testing Framework is the framework that seems most suited as the
framework for hypso-cli, but also this framework contains some downsides. The first downside
is the initial cost of creating the framework, due to its complexity. The keyword file has to contain
a library that contains all the actions that are to be performed for each specific keyword, and in
large systems the number of these keywords can be quite high.

This framework might also not be the best fit when it comes to scalability, which is bad considering
requirement REQ-3 in Table 7. As the application scales, and adds more features, new keywords
has to be introduced. While maintaining the set of test data in this framework can be easy and
fast, maintaining the way keywords work as the application scales can be cumbersome.

When analyzing the Keyword-Driven Testing Framework it is evident that is has a lot of positive
sides, with a few negative ones.

The author therefore decided to use this framework as a base when looking at a hybrid version
of framework, to see if there were a few combinations of frameworks, or modifications of this
framework that could be used to make the Keyword-Driven Testing Framework fit better for
hypso-cli, while also mitigating a few of the downsides.

32

5.3 Framework analysis 5 ANALYSIS & REQUIREMENTS

5.3.6 Hybrid Testing Framework

As every application is different, the process for testing should be specialized, so it fits within
the purpose of the application. In Hybrid Testing Framework, multiple different frameworks are
combined, and modified to fit the needs of the application as much as possible, see Section 3.3.6.
To this end the author looked at what modifications and combinations could be done with the
Keyword-Driven Testing Framework.

The first thing the author looked at was how Keywords were utilized within the framework, as
the creation and maintaining of the Keywords file takes quite a bit of time. The first requirement,
REQ-0 in Table 7, states that the framework shall imitate normal usage of hypso-cli. When
using hypso-cli, see Section 2.4.2, the user connects to the OPU through the CAN-bus. Once
the user is connected, they can then execute commands in the command line interface. Each
command is connected to the specific set of code that accomplishes the task that the command
represent, in the same way a keyword would. In addition, each command outputs a message after
execution, this message differs depending on the command that was executed, and if the command
functioned as it should. The user that will create test cases for hypso-cli, are HYPSO team
members who are already familiar with most of the hypso-cli commands.

With this information, the author decided to switch out keywords, when creating test cases, with
commands. This results in, when creating test cases, one can not use keywords as a quick way for
multiple commands to be entered, instead every command has to be entered. This increases the
amount of time it takes when creating test cases, which goes against REQ-1 in Table 7, but it also
minimizes the threshold needed for creating tests. The users creating new test cases, do not need
to learn what commands each keyword represents. The time it takes when creating test cases with
this change, is also still faster than having to create test cases without a test framework.

In the Keyword-Driven Testing Framework example, Figure 21 in Section 3.3.5, there is also
an object column which indicates what object should be tested on. This is not needed for
hypso-cli, as every command is tested in the command line interface. This column is therefore
not needed, and can be removed.

The resulting test case will then look like the table in Table 8. In this table, each step is a new
test case, and inside each test case there can be multiple commands.

Step Nr. Description Command

1 Description 1 Command 1

Command 2

2 Description 2 Command 1

Command 2

Table 8: Test case in Keyword-Driven Test Framework, with modifications (part 1)

In the table, one can see that the columns Step Nr. and Description both contain information
on the same rows. This indicated that the Step Nr. column can be removed, and the Description
column can also be used for indicating a new test case. Additionally, when a command is executed,
there is no indication what the test framework should look for to check if the command succeeded
or not. In Linear Testing Framework, the user manually records each step of a test case, which
can then be automatically executed later, see Section 3.3.1. In doing this the user also acquires
the expected result from each command inputted. The same thing can be done in the modified
Keyword-Driven Testing Framework. The user can input the commands in hypso-cli, and save
the output. This output can then be placed into the test case table in a new column.

But so far the modified framework has no implementations of sets of data. To achieve this the
author implemented variables that can be inputted with both the commands and expected results
from the commands. These variables can then be linked to sets of data contained in data file.

33

5.3 Framework analysis 5 ANALYSIS & REQUIREMENTS

Table 9 displays how a test case would look like with these changes implemented. In the columns
Command and Expected Result There have now been added variables. These variables will
connect to sets of data in the data file, and the commands will be executed with all the values
found in the data file under the specific variable name.

Description Command Expected Result

Description 1 Command 1 var1 Expected Result 1 Evar1

Command 2 var2 Expected Result 2 Evar2

Description 2 Command 1 var1 Expected Result 1 Evar1

Command 2 var2 Expected Result 2 Evar2

Table 9: Test case in Keyword-Driven Test Framework, with modifications (part 2)

These new changes also work well when it comes to maintenance, and when new features are
added to hypso-cli. When new features are added, previous test cases are not affected, and
creating tests with the new features require the same as with old features. I.e. the commands and
expected results have to be added to the test case. When it comes to maintenance, if a command
in hypso-cli is altered, only the test cases that utilize this command have to be changed, the
rest will function as normal.

From the result of these modifications to the Keyword-Driven Testing Framework, the new frame-
work will work well with all the requirements found in Table 7.

34

6 DESIGN & IMPLEMENTATION

6 Design & Implementation

Based on the analysis done in Section 5, the author created a design for the test framework. This
design is implemented to work with the test menu the author has previously created, see Section
2.5.1, and GitHub Actions, see Section 4.2. The test menu is used for testing multiple different
test scripts at once, and GitHub Actions is used for automating testing on target hardware.

6.1 Design

The Design of the entire test framework can be seen in Figure 29. The design revolves around
multiple modified Keyword-Driven Testing Frameworks, explained in Section 5, that are used in
conjunction with the Test Menu, see Section 2.5.1, and GitHub Actions, see Section 4.3. In the
figure different colors are used to differentiate separate parts of the framework.

The first part consists of the 1 up to N amount of blue boxes. Each of these boxes contain the
framework explained in the analysis Section 5, with their own Test file (red cylinders in the figure).
These test files can contain either one or multiple test cases, and can utilize either the same of
different data files (purple cylinders in the figure). Inside each of the blue boxes, there is an orange
box. This box represent the test script that is used for extracting information from the test file and
the data file, execute the tests on hypso-cli, and then compare the results from the commands
to the expected results. By utilizing multiple test files in the system, it allows the creation of test
files that target selected commands and functionality of hypso-cli which gives better overview
of the tests, and helps with maintenance when/if some tests need to be altered.

The second and third part of the system consists of the green and red box. The green box represent
the Test Menu, see Section 2.5.1, and the red box, see Section 4.3, represent the usage of GitHub
Actions. All tests created using the framework are placed in the Test Menu, which allows the
creation of a test script that will execute every test after one another, and gives a collected result
afterwards. GitHub Actions will use this test script when testing automatically on the target
hardware explained in Section 2.5.

Test
Menu

Test file 1

Data

Test script

Populate
information

into test script

Execute on
application under

test

Compare with
expected values

located in Keywords

 (1, 2, ..., N)

Test file N

Data

Test script

Populate
information

into test script

Execute on
application under

test

Compare with
expected values

located in Keywords

GitHub
Actions

Figure 29: Design flow of testing framework

35

6.2 Test file and data file 6 DESIGN & IMPLEMENTATION

6.2 Test file and data file

The test file and the data file are the only files that the user of the framework is required to create
to be able to test. The contents of these two files are explained in the following sections below.

6.2.1 Data-file

The data file contains sets of data that the commands in the test file can refer to, to be able to
test the same commands with different settings. The Data file is set up as a JavaScript Object
Notation (JSON) file. JSON is a lightweight data-interchange format, that contains data as text
and a syntax derived from JavaScript Object Notation [33].

Code Listing 2 contains an example of a Data file with JSON syntax. In this example there are
two main objects, buffer settings and csp address. Both of these objects contain multiple
object/value pairs, that can be referenced in the test file. The values each object contains can have
the form of a number, a string, or an array of numbers and/or strings. If the value is an array,
the command that references the array will be executed as many times as there are elements in
the array. For each time the command executes, a new element will be selected. As an example, if
the object/value pair csp address id inside the object csp address (line 9 in Code Listing 2)
is referenced. The command that referenced it will execute three times, each time using the next
element starting from the first, until all the elements in the object/value pair have been used.

1 {
2 "buffer settings" : {
3 "buffer csp address" : 12,
4 "buffer port" : 25,
5 "buffer period" : 5,
6 "buffer file id" : [32,33,34,35,36,37,38,39,40,41]
7 },
8 "csp address": {
9 "csp address id" : [12,3,3],
10 "csp address name" : ["OPU","UHF2","FC"]
11 }
12 }

Code Listing 2: Example of Data file with JSON syntax

6.2.2 Test file

The test file contains test cases that define the tests that the framework will execute. The test file is
set up as a Comma Separated Values (CSV) file. CSV files are plain text files that contain records
of data that are separated by a comma [41]. Since most applications can recognize data separated
by comma, importing the data in these files are convenient. As most spreadsheet applications
can import CSV files, it makes it very easy to use when creating and editing tests, as each text
separated by a comma is inserted into its own spreadsheet cell. When a test file is displayed in
this thesis, it will be displayed like a table in a spreadsheet due to readability.

The test file will look similar to Table 9 in Section 5, but with a few more columns that add
additional functionality to the framework.

Table 10 and Table 11 contain an example of a test file. The test file has been split in two, due to
width of the table and readability, Table 11 is a horizontal continuation of Table 10.

36

6.2 Test file and data file 6 DESIGN & IMPLEMENTATION

Description Command Expected Result

Csp ping with
rerun command

csp ping {csp address,csp address id} Ping received from {csp address,csp address name}

shell remote oneshot 12 5 find hsi0/temp.txt hsi0/temp.txt
Csp ping with
rerun case

csp ping {csp address,csp address id} Ping received from {csp address,csp address name}

shell remote oneshot 12 5 find hsi0/temp.txt hsi0/temp.txt

Table 10: Example of test file, containing two similar test cases, with different Rerun case or
command setting (Part 1).

Rerun case
or command

End case
on fail

Wait time after
execution [s]

Timeout [s]

command No 0 10
none No 0 10
case No 0 10
none No 0 10

Table 11: Example of test file, containing two similar test cases, with different Rerun case or
command setting (Part 2).

The different columns in the file, with their functionality, are as follows:

• Description
– Contains the description for the different test cases, as well as being the defining element

for when a test case starts. In Table 10 there is a description on every other line between
line 2-10. This means that every other line, a new test case is defined.

• Command
– Contains the commands that are to be tested on hypso-cli. These commands can

contain variables, that enables the command to be tested with multiple sets data without
having to re-write the command. The variables reference specific object/value pairs
located in the data file 6.2.1. The variables have to contain the name of the object/value
pair written between the symbols ”{” and ”}”. If referencing a nested object, like
in line 3 in Table 10 where the command references csp address id located inside
csp address, the variable has to start with the overarching object followed by the
object/value pair and separated by a comma symbol. This will then reference the
object/value pair located in line 9 in Code Listing 2.

• Expected Result
– Contains the expected response/result from the terminal after a command has been

executed. As different commands in the Command column can be executed by the
use of variables, the Expected Result column also requires the possibility of using
variables to check for multiple responses. The variables in the Expected Result
column, function in the same way as Command column.

• Rerun case or command
– The variables in the Command and Expected Result columns can be integrated

in two different ways, either command-wise or case-wise. Command-wise (chosen by
having command in this column) means that the command in the same line as the
variable will be re-executed. Where in each execution, either the Command and/or the
Expected result will contain new data from the object/value pair that the variable
corresponded to, until all data in the object/value pair has been used. Case-wise (chosen
by having case in this column) means that the entire test case will re-execute, each time
with new data from the corresponding object/value pair in either in Command and/or
Expected Result, until all data has been used. For example, row 3 in Table 10
has contains a variable that refers to line 9 in Code Listing 2. If line 3 in the Rerun
case or command column in Table 11 contains command, then the command in row
3 will be executed three times, once with each of the values in the csp address id
object/value pair, before the command in row 4 will execute. If the Rerun case or

37

6.2 Test file and data file 6 DESIGN & IMPLEMENTATION

command column contains case, then the entire test case will execute three times, once
for each value in the csp address id object/value pair, before the next test case will
execute.

• End case on fail
– If a command ends up failing, i.e. the result from executing a command does not match

the expected result, there are two choices that can be taken.
Many of the commands that can be executed through hypso-cli require that previous
commands have been executed. For example, a command that requires connection to
the OPU will fail if the command that turns on the OPU hasn’t been executed. By this
logic, there might be situations where it would be a waste of time to execute the rest
of the test case is an earlier command fails. Adding ”yes” to the End case on fail
column in Table 11, tells the framework to skip the rest of the test case if the command
fails.

• Wait time after execution [s]
– In hypso-cli, one might want to wait a set amount of time after executing a command

before continuing to the next command. For example, after buffering a file with the ft
buffer file command, see Section 2.4.2, one might want to wait for the buffering
to complete before executing the next command that might check the log file if the
buffering succeeded. This is accomplished by adding a number to the Wait time
after execution [s] column in Table 11. The framework will then wait the set
amount of time before continuing. If the End case on fail column contains ”yes”,
and the command fails, then the wait time will be skipped as the entire test case will
be skipped, and there would be no reason to wait.

• Timeout [s]
– When a command executes, it might take some time before the output arrives. The

number in the Timeout [s] column in Table 11 represent the number of seconds
that the framework will wait for the expected result to manifest before labeling it as
failed. During this time the framework will continuously keep checking for the expected
output. If the output manifest during this time it will not continue waiting for the
time to run out, before continuing. This might seem very similar to the Wait time
after execution [s] column. But the Timeout [s] will use this time to check
for the expected result, while Wait time after execution [s] will wait after the
expected result has already been checked. This means that if it takes 8 second before
a command manifests the expected result, and Wait time after execution [s]
is set to 20 seconds, it will take 28 seconds before continuing to the next command.

38

6.3 Test script 6 DESIGN & IMPLEMENTATION

6.3 Test script

This Section goes into more detail on how the test script, seen in Figure 29 functions. The python
code created for the test script can be found in Appendix D. Figure 30 displays the system flow of
the test script.

Check if Command
and/or Expected
Result contain

variable

Insert copy of
command

Check if Command
and/or Expected
Result contain

variable

Insert copy of
case

 Not finished

 Finished

Cycle through
information from

test file None

 Command Case

Check Rerun case or
command

Replace variables
with values from
object/value pair

Test file Data

Input

Import
Test file &

Data

Print input
prompt

Connect to
hypso-cli
and start

OPU

 Passed

 Failed Check Input

Cycle through
test cases in

test file

 Finished

Cycle through
command in test

case

 Not finished

 Not finished Connect to
hypso-cli

Execute command on
hypso-cli

 Check result from
execution with

Expected Result

 Passed

 No Yes

 Failed Save execution time

Disconnect from
hypso-cli

Disconnect from
hypso-cli

Check End case on
fail

Turn off OPU
and disconnect

from
hypso-cli

 Finished

Create
test_result
directory

Save result from
testing into a test

result file

Figure 30: Flowchart of test script used in the modified Keyword-Driven Testing Framework

39

6.3 Test script 6 DESIGN & IMPLEMENTATION

6.3.1 Input

As seen at the top of Figure 30, the test script for the Modified Keyword-Driven Testing Framework
starts with an input. This input has to contain the names of the test file and the data file. If
the test file does not contain any variables, then the data file is not needed, and can be omitted.
When the test script executes it will also create a log file which will contain everything the test
script prints to the terminal. If the user does not feel the need to have a log file, then it can also
be omitted. By adding ”-n” to the input this is accomplished.

The test script is executed with the following command:

. / t e s t s c r i p t . py

In this case, the test script has been executed without any input arguments, which will result
in the Check Input block in Figure 30 to fail. The script will then print an Input prompt to
the terminal, which will look like Figure 31. The Check Input block will output the reason for
failing in red before the input prompt is printed. In addition, the input prompt explains the usage
of the test script as well as a few examples of how it can be executed.

Figure 31: Input prompt when no input arguments have been given at execution of test script for
Modified Keyword-Driven Testing Framework

The Check Input block in Figure 30 works by first checking the amount of input arguments. It
will fail if the amount is less than one or more than three. If a valid amount of input arguments are
entered, Check Input will check if the files inputted actually exist. As the test script is created
to be used on a UNiplexed Information Computing System (UNIX) based system, the inputted
files have to contain the relative path to the location of the test script, which can be seen in Figure
11 in Section 2.

The different outputs from the Check Input block are as follows:

• Not enough arguments
– Occurs when the amount of inputs to the test script are fewer than one

• Too many arguments
– Occurs when the amount of inputs to the test script are higher than 3

• Logging disabled
– Occurs when one of the inputs to the test script contains ”-n”.

In this case the Check Input block will not fail, but it will output Logging Disabled
in yellow so that the user is aware that no log file will be created.

40

6.3 Test script 6 DESIGN & IMPLEMENTATION

• Inputted test file does not exist
– Occurs when the amount of input arguments are valid, but the path to the test file

relative to the test script is incorrect. In other words, occurs when the test script is
unable to find the inputted test file.

• Inputted data file does not exist
– Occurs when there are two input arguments (three if ”-n” for no logging is included),

and the path to the data file relative to the test script is incorrect. In other words,
occurs when the test script is unable to find the inputted data file.

Once the Check Input block has passed, the test script will import the information located in
both the test file and the data file. The information in the test file will be placed into a list, while
the data file can be used as is with the JSON library for python.

6.3.2 Cycle through information from test file

In Figure 30 the green area are represents when the test script goes through the test and data files
and checks for variables, and if there are variables the list containing the information from the test
file will be extended according to what is written in the Rerun case or command column.

The first block Cycle through information from test file checks how many commands
exists in the test file, and cycles through all of them one by one. For each cycle it goes to the
Check Rerun case or command block. The Rerun case or command column is required
to either contain ”command” or ”case” to inform how the test script should implement the data
from the object/value pair corresponding to the inputted variables. Thus, this is an easy way to
check if either the Command and/or Expected Result contain variables.

Depending on what is written in Rerun case or command column, copies of either the case or
the command are created in the following blocks. The amount of copies created correlate to the
amount of different data located in the object/value pair for each variable. Each of these copies
are then furnished with data from the object/value pair, in place of the variable.

Table 12 displays a simplified version of the information located in the list created from the test file
before and after Cycle through information from test file, with Rerun case or
command set to ”command”. Table 12a displays the list before, while Table 12b displays after. In
the table after, all the commands are placed after one another, and will be executed as such, before
the command shell remote oneshot 12 5 find hsi0/temp.txt is executed. This is
also the same for variables located in the Expected Result column.

Table 13 displays a simplified version of the information located in the list created from the test
file before and after Cycle through information from test file, with Rerun case
or command set to ”case”. Table 13a displays the list before, while Table 13b displays the list
after. In the table after, new test cases, that each contain separate data for the command that
contained a variable, have been created. These cases have been placed after one another, and will
execute as such. This is also the same for variables located in the Expected Result column.

The test script will continue with this process, until all the information from the test file has been
cycled through, and no more variables are found. At which point it will then exit the green are in
Figure 30.

41

6.3 Test script 6 DESIGN & IMPLEMENTATION

Command
Rerun case
or command

csp ping {csp address,csp address id} command
shell remote oneshot 12 5 find hsi0/temp file.txt none

(a) Simplified test file before Cycle through
information from test file. The variable
csp address,csp address name refers to the
csp address id variable in line 9 in Code Listing
2

Command
Rerun case
or command

csp ping 12 command
csp ping 3 command
csp ping 3 command
shell remote oneshot 12 5 find hsi0/temp file.txt none

(b) Simplified test file after Cycle through
information from test file

Table 12: Simplified test file before and after Cycle through information from test
file with Rerun case or command set to ”command”

Command
Rerun case
or command

csp ping {csp address,csp address id} case
shell remote oneshot 12 5 find hsi0/temp file.txt none

(a) Simplified test file before Cycle through
information from test file. The variable
csp address,csp address name refers to the
csp address id variable in line 9 in Code Listing
2

Command
Rerun case
or command

csp ping 12 case
shell remote oneshot 12 5 find hsi0/temp file.txt none
csp ping 3 case
shell remote oneshot 12 5 find hsi0/temp file.txt none
csp ping 3 case
shell remote oneshot 12 5 find hsi0/temp file.txt none

(b) Simplified test file after Cycle through
information from test file

Table 13: Simplified test file before and after Cycle through information from test
file with Rerun case or command set to ”case”

6.3.3 Connect to hypso-cli and start OPU

After the list created from the information from the test file has been extended with sets of data
instead of variables, it is now ready to be executed on hypso-cli. Before testing though, the test
script tries to start hypso-cli. The hypso-cli that the test script utilizes is the one located
in the assembly-integration-test repository, see Section 2.4.3. This hypso-cli has been
created by the hypso-sw repository, see Section 2.4.1, and then moved into the assembly-
integration-test repository. If the test script is able to start hypso-cli, it will then input
a command that tells the EPS to provide power to the OPU. Most of the commands and function-
alities on the HYPSO satellites require the OPU. Therefore instead of always having to start the
OPU in every test, this happens automatically. The OPU will turn itself off after a set amount
of time if it is not used, and when the test script finishes it will also try to turn of the OPU.
Therefore, starting it preemptively is not a major concern, even if the test cases in the test file
might not use OPU.

6.3.4 Cycle through test cases in test file

After the test script has made sure it is able to connect to hypso-cli, and has started the OPU, it
will go forward to the blue box in Figure 30. This box represent the actual testing of the list of test
cases created from the previous steps. The testing process starts by cycling through the test cases,
where in each cycle it will go through the commands in each test case. For each command, a python
subprocess is started that starts hypso-cli, and inputs the command. A python subprocess is a
module that allow the creation of new processes that can be used for executing external code and
programs [42], in this case hypso-cli.

A timeout handler is also started at the same time, this timeout handler will wait for the set amount
of time located in the Timeout [s] column for the specific command, before it triggers and marks
the command as failed. While the timeout handler is ongoing, the test script continuously check
the output from hypso-cli. If hypso-cli returns the same information that is stored in
Expected Result column for the specific command, then the timeout handler is preemptively

42

6.3 Test script 6 DESIGN & IMPLEMENTATION

stopped, and the command is marked as passed. This takes place in the Check result from
execution with expected result block. In addition, if the command passed, then the
execution time, the time from inputting the command into hypso-cli and until it got an output
that matched the expected results, is saved. If the command failed, an execution time will not
be saved. No matter if the command passed or failed, the connection to hypso-cli through the
python subprocess is terminated. If the command passed, the test script continues cycling through
the commands in the test case until finished. If the command failed, the End case on fail
column for the specific command is checked. A ”yes” in this column tell the test script to skip
the rest of the commands in the test case. These commands are then also marked as ”skipped”
instead of either passed of failed.

Once the test script has either finished cycling through all commands in a test case, or skipped a
test case, it starts the testing process over again for the following test cases in the test list, until
all test cases have been cycled through. At which point it will exit the blue box in Figure 30.

6.3.5 Disconnect from hypso-cli

Once the test script has finished cycling through the test cases, it will turn off the OPU, and
disconnect the first connection it made to hypso-cli. If the OPU is already off, turning it off again
will not return an error as the command for turning on/off the OPU works by sending a state
change for the OPU connection to the EPS. Turning on the OPU occurs by sending the state ”1”,
while turning off is sending the state ”0”. If the OPU is turned off before this point of the test
script flow in Figure 30. The state change in the EPS is changed from ”0” to ”0”, which will not
make any difference.

6.3.6 Save results from test script into test result file

After disconnecting from hypso-cli, the test script will create a result file. The test script will
create a test result directory that will be located inside the automated test directory, see
Figure 11 in Section 2.4.3. If this directory already exists, a new one will not be created.

The test scrip will then create a result file that will be placed inside the test result directory. The
name of the result file will have a specific syntax:

(t e s t f i l e name) (date)T(time)

The values inside the parenthesis(including the parenthesis) will be switched out with the name of
the test file inputted as an argument when executing the test script, the date of the day the test
script was executed, and the time of execution respectively. For example, if the test was named
Test1 and the testing started 7. May 2022, at 04:30:00 UTC, the result file would be named
Test1 220507T043000

The result file is a CSV file for the same reasons the test file is a CSV file, see Section 6.2.2. An
example of a result file that has been created can be seen in Table 14 and Table 15. The test file
that used when creating this result file contained one test case, with two commands, where none
of the commands contained variables. The result file contains the same info as in the test file,
with some additional information. At the top of the result file the date the testing took placed
is displayed, as well as the Git branch and Git commit the hypso-sw repository had when the
hypso-cli used was created. A summary detailing how many tests were passed, failed, and
skipped, with their overall percentage is also shown.

In the result file the UTC time for when a command was executed, as well as if it passed, failed,
or skipped is shown. If the command passed, then the time it took to execute is shown, if the
command either failed or was skipped, the execution time for that line will contain NA. A more
thorough look on the result file is shown in Section 7.

43

6.4 Test menu 6 DESIGN & IMPLEMENTATION

Date 2022-05-07 Tests Amount Percentage
Git branch HEAD Passed 2 100.0%
Git commit 3efd1e1 Failed 0 0.0%

Skipped 0 0.0%

Time[UTC] Test Results Execution time[s] Description Command Expected Result

18:48:23:670607 Passed 0.0353543758392334 Check csp ping with command rerun csp ping 12 Ping received from OPU
18:48:23.708550 Passed 0.05288124084472656 shell remote oneshot 12 5 find hsi0/temp.txt hsi0/temp.txt

Table 14: Example of result file, containing one test case with two commands, none of which
contain variables (Part 1).

Rerun case or command End case on fail Wait time after execution[s] Timeout[s]
None No 0 10
None No 0 10

Table 15: Example of result file, containing one test case with two commands, none of which
contain variables (Part 2).

6.4 Test menu

The Test Menu system is used for creating a larger test script that can be used to execute multiple
test files sequentially, and give a collective result afterwards, see Section 2.5.1. Figure 32 shows a
snippet of the menu system in use. There are two tests that have been selected for testing, both
of these tests uses the test script for the framework in this thesis, seen under the column called
Tests. Arg1 and Arg2 respectively contain the first and second argument that are to be used
with the test script. The first test will use a test file named test1.csv, and the second test
will use a test file named test2.csv. Both of these test files uses the same data file containing
object/value pairs, namely data.json.

Figure 32: Snippet taken from test menu, containing 4 tests where two have been selected for
testing.

Figure 33: Snippet from test menu explain-
ing the controls and options for the menu

Figure 33 contains a second snippet from the test
menu. Here one can see a choice of generat-
ing a new auto test sequence.csv file. This
file can will be used in conjunction with the
auto test execution.py python executable to
execute multiple tests automatically.
Figure 34 displays two possible outcomes from the
auto test execution.py executable. Figure
34a displays the outcome when both tests pass,
while Figure 34b shown when both tests fail. Note
that when a test fail, both the name of the test
script and the input arguments are outputted as un-
der Failed Tests. This is quite advantageous when
using GitHub Actions, and will be more explained
in Section 7.

44

6.5 GitHub-Actions 6 DESIGN & IMPLEMENTATION

(a) Example of output from
auto test execution.py when two tests
both pass.

(b) Example of output from
auto test execution.py when two tests
both fail.

Figure 34: Two possible outcomes from the auto test execution.py executable. One where
two tests pass, and one where two tests fail. When a test fail, the name of the test script and the
input arguments are outputted under Failed Tests.

6.5 GitHub-Actions

To automatically test new test files and/or automatically test previously created test files at certain
times, on target hardware, GitHub Actions is utilized. GitHub Actions will be used for executing
the auto test sequence.py python executable at specific trigger events, see Section 4.3. Before
this can take place, GitHub Actions has to be set up to work with the HYPSO test setup specified
in Section 2.5. The following sections explain the specifics in setting up GitHub Actions.

6.5.1 Setting up GitHub Action Runner

The GitHub Actions Runner is the application used for executing the testing. Since this testing is
to take place on target hardware, the runner is required to be self-hosted, see Section 4.3. To give
the self-hosted runner access to target hardware, it has to be set up on the Operational Computer
on the HYPSO test setup, see Figure 13 in Section 2.5.

When setting up this self-hosted server, a guide made by GitHub was used [17]. Through the use
of the guide, the runner was automatically connected to the hypso-sw repository, and could be
used to execute workflow files located in the .github/workflows directory in the repository.

Additionally, the GitHub Actions runner required to be able to execute python files, as the ex-
ecutable used for executing the auto test sequence.csv file created from the test menu is
a python file; auto test execution.py. To enable this, an external Action called setup-
python, was used [16]. This Action provides a guide for downloading, installing and adding to
PATH an available version of Python in the tools cache on the test setup that GitHub Actions is
able to utilize.

6.5.2 Workflow files

For GitHub Actions, two workflow files have been created. One in the hypso-sw repository and
one in the assembly-integration-test repository. Both of these repositories will trigger
testing when a GitHub pull request, see Section 4.2, is issued to the master branch. For the
assembly-integration-test repository, a pull request to the master branch might entail
new tests that are to be implemented into the testing. Having the test setup automatically test
when new tests are added can be used to ensure the tests work with previous confirmed version
of hypso-cli. For the hypso-sw repository, a pull request to the master branch might entail
new functionality to the on-board software and/or hypso-cli, these new functionalities have to
be tested to ensure they are working as intended, and do not introduce bugs.

The workflow file in hypso-sw will execute the testing on the self-hosted runner that is set up on

45

6.5 GitHub-Actions 6 DESIGN & IMPLEMENTATION

the HYPSO test setup, while the workflow file in assembly-integration-test will execute on
a GitHub hosted runner, and will send a dispatch message to the workflow file in hypso-sw, which
will cause the workflow file in hypso-sw to execute. Figure 35 displays the workflow of both files
while Code Listing 3 and Code Listing 4 display the YAML code for both files respectively. At the
start of both code listings, one can see the events that will trigger GitHub Actions for the files. For
hypso-sw, the workflow file will trigger on pull requests to the master branch, and to workflow
dispatches. A workflow dispatch is an event that can be triggered through the use of the GitHub
REST API [19]. The workflow file in assembly-integration-test uses an external Action
called github-script, which provides an easy way to use the GitHub REST API through
workflow files [43], to send a dispatch event to the hypso-sw workflow file. Additionally, as the
workflow in assembly-integration-test does not require to be connected to the test setup,
it can be executed on GitHub hosted servers, which can be seen on line 9 in the workflow file.

In Figure 35 each block inside the green and blue blocks represent different steps in the workflow
files. As steps execute sequentially, the arrows in the figure represents the order they execute.

Hypso-sw
pull request

Assembly-integration-test
pull request

hypso-sw workflow file

Give Github-runner
connection to

repository
Build hypso-sw

Clone assembly-
integration-test

repository

Move hypso-cli
executable from
hypso-sw into

assembly-integration-
test

Execute
auto_test_execution.py

Check output
and either pass or fail

assembly-integration-test workflow file

Send dispatch to
hypso-sw

Dispatch
event

Figure 35: Flowchart of GitHub Actions workflow files for hypso-sw repository and assembly-
integration-test repository.

46

6.5 GitHub-Actions 6 DESIGN & IMPLEMENTATION

1 name: Work f l ow f o r c o n n e c t i n g t o a s s emb l y − i n t e g r a t i o n − t e s t −
r e p o

2 on:
3 pu l l r e qu e s t :
4 branches : [m a s t e r]
5 workf low di spatch :
6
7 j obs :
8 Test ing :
9 runs−on: [s e l f −h o s t e d , l i d s a t]
10 name: A j o b t o do CI t e s t s
11 s t ep s :
12 - name: Ch e c k ou t b r a n c h
13 uses : a c t i o n s / c h e c k o u t@v2
14 with :
15 submodules : r e c u r s i v e
16 env:
17 GITHUBTOKEN: $ {{ s e c r e t s . GITHUB TOKEN }}
18
19 - name: B u i l d i n g
20 uses : NTNU−Sma l l S a t −Lab / hypso −sw−b u i l d −che ck@ma in
21 env:
22 GITHUBTOKEN: $ {{ s e c r e t s . G ACCESS TOKEN }}
23
24 - name: c l o n e a s s emb l y − i n t e g r a t i o n − t e s t
25 uses : a c t i o n s / c h e c k o u t@v2
26 with :
27 r epo s i t o r y : NTNU−Sma l l S a t −Lab / a s s emb l y − i n t e g r a t i o n −

t e s t
28 token : $ {{ s e c r e t s . G ACCESS TOKEN }}
29 path : a s s emb l y − i n t e g r a t i o n − t e s t
30 r e f : m a s t e r
31
32 - name: move hypso − c l i e x e c u t a b l e
33 run: cp b u i l d / x86 / hypso − c l i a s s emb l y − i n t e g r a t i o n − t e s t /
34
35 - name: Run s c r i p t
36 uses : m a t h i a s v r / command−ou tpu t@v1
37 id : r u n s c r i p t
38 with :
39 run: . / a s s emb l y − i n t e g r a t i o n − t e s t / t e s t m e n u /

a u t o t e s t e x e c u t i o n . py
40 env:
41 key: $ {{ s e c r e t s . k ey }}
42
43 - name: Check i f a l l t e s t s p a s s e d
44 i f : |
45 f a l s e == conta in s (s t ep s . r un s c r i p t . outputs .

stdout , 'Pass rate: 100.0%')
46 uses : a c t i o n s / g i t h u b − s c r i p t @ v 3
47 with :
48 s c r i p t : |
49 core . s e tFa i l e d ('All tests did not pass!')

Code Listing 3: Code for workflow file in hypso-sw repository

47

6.5 GitHub-Actions 6 DESIGN & IMPLEMENTATION

1 name: D i s p a t c h t o hypso −sw
2 on:
3 push:
4 branches : [m a s t e r]
5 pu l l r e qu e s t :
6 branches : [m a s t e r]
7 j obs :
8 d i spatch :
9 runs−on: ubuntu− l a t e s t
10 s t ep s :
11 - uses : a c t i o n s / g i t h u b − s c r i p t @ v 6
12 with :
13 github−token : $ {{ s e c r e t s . G ACCESS TOKEN }}
14 s c r i p t : |
15 const r e s u l t = await g ithub . r e s t . a c t i on s .

createWorkf lowDispatch ({
16 owner: 'NTNU-SmallSat -Lab' ,
17 repo : 'hypso-sw' ,
18 workf low id : 'test_framework.yml' ,
19 r e f : 'test-framework -github-actions'
20 })

Code Listing 4: Code for workflow file in assmebly-integration-test repository

48

7 RESULTS

7 Results

This section contains results from three tests executed on the entire framework. Two simple
tests used for testing that every function of the framework is operational, and one larger, and
more complex test which represent a more accurate test to what might be executed with the
test framework. The tests have all been placed inside the test menu in Figure 36, and a new
auto test sequence.csv file has been created for every run of the test framework.

The two simple tests, both use the same test file, but different data files. The first data file contains
no errors, while the second data file contains an intended error. The more complex test, contain
its own test file, and data file.

In all tests, pull requests in both assembly-integration-test and hypso-sw repositories
are tested.

Figure 36: Tests located inside test menu

7.1 Simple Test File

Figure 16 and 17 displays the test file used for the testing of the simple tests. The file contains two
test cases, the first one which will has ”command” in the Rerun case or command column,
while the second test case has ”case”. Both test cases have two commands, with variables in their
first command and expected result, and no variable in the second. The object/value pair these
variables corresponds to are displayed in the data files which are shown in Section 7.2.1 and Section
7.3.1.

The command csp ping tries to send a ping from the Operational Computer to another compo-
nent on the HYPSO test setup, and listens for an answer. The output on hypso-cli, if successful,
contains Ping received from in addition to the letters from the component it tried to ping.
The command shell remote oneshot 12 5 find config uses the shell command shell
remote oneshot to connect to the OPU, execute a command once, and then disconnect. The
command executed on the OPU is find config. This command checks the memory on the OPU
if it contains a file called config. The output from hypso-cli, if successful, contains config.

Lastly the second command in the first test case, contains the number 50 in Wait time after
execution [s] column, which indicated that the framework should wait 50 second after this
command has been executed before going to the next.

Description Command Expected Result

Csp ping with
rerun command

csp ping {csp address,csp address id} Ping received from {csp address,csp address name}

shell remote oneshot 12 5 find config config
Csp ping with
rerun case

csp ping {csp address,csp address id} Ping received from {csp address,csp address name}

shell remote oneshot 12 5 find config config

Table 16: Test file used in testing of simple tests, containing two test cases (Part 1).

49

7.2 Simple first test 7 RESULTS

Rerun case
or command

End case
on fail

Wait time after
execution [s]

Timeout [s]

command Yes 0 10
none Yes 50 10
case No 0 10
none Yes 0 10

Table 17: Test file used in testing of simple tests, containing two test cases (Part 2).

7.2 Simple first test

In the first testing of the framework, a pull request in both assembly-integration-test
and hypso-sw repositories are executed. Both of these pull request should execute the hypso-sw
workflow file which executes the test script explained in section 6.3 with a test file, and a data file
which contains no errors.

7.2.1 First Data File

Code Listing 5 displays the data file used in tandem with the test file. This file contains two objec-
t/value pairs that correspond to the variables used in the test file. Csp address id contains two
IDs that refer to the components OPU and EPS in HYPSO test system, while csp address name
contains the names of the components.

1 {
2 "csp address": {
3 "csp address id" : [12,4],
4 "csp address name" : ["OPU","EPS"]
5 }
6 }

Code Listing 5: Data file used when testing, containing two object/value pairs.

7.2.2 Pull request assembly-integration-test

When a pull request is issued in the assembly-integration-test repository, a merge message
comes up. The merge message displays whether the workflow files have passed or failed. The merge
message for the for this pull request passed, which can be seen in Figure 37. This indicates that the
workflow file in assembly-integration-test, see Code Listing 4 in Section 6.5, that sends a dispatch
event to the workflow file in hypso-sw worked as intended. On the GitHub website, in the hypso-sw
repository, one can see the GitHub Actions runs that have been executed. Here one can see that
the workflow file in hypso-sw has been executed, and that it was triggered due to a dispatch event,
as seen in Figure 38. The text A job to do CI tests relate to the name seen at line 10 in
Code Listing 3, and the green checkmark indicates that it was successful.

50

7.2 Simple first test 7 RESULTS

Figure 37: Merge message in assembly-integration-test repository when issuing a pull
request. In this merge message the Dispatch workflow file has executed successfully.

Figure 38: Result from a GitHub Actions run in the hypso-sw repository that has been triggered
by a dispatch event.

7.2.3 Pull request hypso-sw

When a pull request is issued in the hypso-sw repository, a merge message also comes up here,
which can be seen in Figure 39. The merge message here indicates that the workflow file in hypso-
sw, see Code Listing 3 in Section 6.5, has been executed and that it was successful. The merge
message also displays the name of the workflow which has been executed, and this name is the
same as line 1 in the Code Listing for the workflow file. Additionally, in Figure 40 one can see that
this time the workflow was triggered by a pull request instead of a dispatch event.

51

7.2 Simple first test 7 RESULTS

Figure 39: Merge message in hypso-sw repository when issuing a pull request. In this merge
message the workflow file has executed successfully.

Figure 40: Result from a GitHub Actions run in the hypso-sw repository that has been triggered
by a pull request.

7.2.4 First test result file

The result file created from the first testing can be seen in Table 18 and Table 19. Here one can
see that, from the test file and the data file used, seven commands were executed. The output
from every command matched what was written in the Expected Result column, which means
that every command passed. Additionally, as the first shell remote oneshot 12 5 find
config command in the test file had 50 in the Wait time after execution [s] column,
the framework should wait 50 second after this command before continuing to the next. Under the
Time[UTC] column in the result file one can see that this wait occurred, as the time of execution
the first shell remote oneshot 12 5 find config had is 50 seconds before the time of
execution for the following command (including some milliseconds as wait only occurs after the
command has passed, and some internal processing time that the test script uses).

52

7.3 Simple second test 7 RESULTS

Date 2022-05-23 Tests Amount Percentage
Git branch HEAD Passed 7 100.0%
Git commit 3efd1e1 Failed 0 0.0%

Skipped 0 0.0%

Time[UTC] Test Results Execution time[s] Description Command Expected Result

00:42:35.094229 Passed 0.0353543758392334 Check csp ping with rerun case csp ping 12 Ping received from OPU
00:42:35.129741 Passed 0.11270570755004883 csp ping 4 Ping received from EPS
00:42:35.245080 Passed 0.050455331802368164 shell remote oneshot 12 5 find config config
00:43:25.348682 Passed 0.032892465591430664 Check csp ping with rerun case csp ping 12 Ping received from OPU
00:43:25.384207 Passed 0.048543691635131836 shell remote oneshot 12 5 find config config
00:43:25.435474 Passed 0.11247801780700684 Check csp ping with rerun case csp ping 4 Ping received from EPS
00:43:25.550533 Passed 0.049387454986572266 shell remote oneshot 12 5 find config config

Table 18: Result file from first simple test, where all commands passed (Part 1).

Rerun case or command End case on fail Wait time after execution[s] Timeout[s]
command Yes 0 10
command Yes 0 10
none Yes 50 10
case No 0 10
none Yes 0 10
case No 0 10
none Yes 0 10

Table 19: Result file from first simple test, where all commands passed (Part 2).

7.3 Simple second test

The second test of the framework will test the same way as the first test, but instead of only testing
with the test file once with a correct data file, this testing also includes testing the test file with a
data file that contains intentional errors.

7.3.1 Second Data File

The second data file can be seen in Code Listing 6. This file is the same as the first test file, but
this time it contains an intended error in the form of a 0 in line 3, which is marked in green. In the
first data file, see Code Listing 5, which passed the testing with no errors, contains the number 4.
The number 0 does therefore not match the ID of the EPS.

1 {
2 "csp address": {
3 "csp address id" : [12,0],
4 "csp address name" : ["OPU","EPS"]
5 }
6 }

Code Listing 6: Data file used when testing, containing two object/value pairs with one inteded
error marked in green.

7.3.2 Pull request assembly-integration-test

When a pull request now occurs in the assembly-integration-test repository, the workflow
file in the merge message is still marked as successful, as seen in Figure 41. This is due to a
shortcoming of the GitHub REST API, where it will send a dispatch event, and as soon as that
dispatch event is received, it will be marked as passed. This shortcoming is discussed further in

53

7.3 Simple second test 7 RESULTS

Section 8 and Section 10. The workflow file in hypso-sw is triggered by the dispatch event as seen
in Figure 42, but in this case it has been marked as failed, as seen by the red cross. On the GitHub
website, one can then look further into the steps executed by the workflow, Figure 43 contains a
snippet from the website and displays why the test failed. The Run script stage contains the
output from the auto test execution.py python executable, see Section 2.5.1, and here one
can see that the test script.py executable with the test file and the second data file failed.
As this test failed, the pass rate of the testing did not match 100%, which is what the Check if
all tests passed step looks for, see line 45 in Code Listing 3.

Figure 41: Merge message in assembly-integration-test repository when issuing a pull
request. In this merge message the workflow file has executed successfully.

Figure 42: Result from a GitHub Actions run
in the hypso-sw repository that has been trig-
gered by a dispatch event. The GitHub Actions
run was not successful.

Figure 43: Result from a failed GitHub Ac-
tions run, where the test test script.py
test1.csv data2.json failed.

7.3.3 Pull request hypso-sw

A pull request in the hypso-sw, on the other hand, does produce an error in the merge message,
see Figure 44. In this figure one can see that the workflow file in hypso-sw did not pass, which
matches with Figure 45, which displays that workflow was triggered by a pull request, and Figure
46, which displays why the test failed.

54

7.3 Simple second test 7 RESULTS

Figure 44: Merge message in hypso-sw repository when issuing a pull request. In this merge
message the workflow file has not executed successfully.

Figure 45: Result from a GitHub Actions run
in the hypso-sw repository that has been trig-
gered by a pull request. The GitHub Actions
run was not successful.

Figure 46: Result from a failed GitHub Ac-
tions run, where the test test script.py
test1.csv data2.json failed.

7.3.4 Second test result file

Executing the second testing resulted in two test result files, where the first test result file is
identical(albeit with different time that the commands were executed) to the test result from the
last tests as they used the same test file and data file. This test result file is therefore omitted
here.

Table 20 and Table 21 display the result file from the execution of the test script.py file with
the test file and the second data file.

In the result file, one can see that 4 commands passed, 2 failed, and 1 was skipped. The time of
execution of these commands can be seen in the Time[UTC] column, where the command that was
skipped contains NA (not applicable) instead of a time, since it was never executed. The commands
that either failed and skipped both contain NA in the Execution time[s] column as well. The
commands that failed are the commands that sent csp ping 0 and expected to get an output
saying they received an answer from the EPS, which coincides with the intended error in the data
file. Additionally, the skipped command occurred due to a failed command that happened before it
in the test case, which contained ”Yes” in the End case on fail. As the skipped command was
not executed, the framework did not wait the 50 seconds that the command has in the Wait time
after execution[s] column. All the commands contained 10 in the Timeout[s] column,

55

7.4 Complex test 7 RESULTS

indicating that the framework would wait 10 seconds for the expected result before continuing. By
examining the Time[UTC] column one can see that the commands following a failed command
occurred approximately 10 second later (approximation due to internal processing time of the test
script).

Date 2022-05-23 Tests Amount Percentage
Git branch HEAD Passed 4 57.14285714285714%
Git commit 3efd1e1 Failed 2 28.57142857142857%

Skipped 1 14.285714285714285%

Time[UTC] Test Results Execution time[s] Description Command Expected Result

12:44:53.589105 Passed 0.0332493782043457 Check csp ping with rerun command csp ping 12 Ping received from OPU
12:44:53.625463 Failed NA csp ping 0 Ping received from EPS
NA Skipped NA shell remote oneshot 12 5 find config config
12:45:03.627976 Passed 0.03315258026123047 Check csp ping with rerun case csp ping 12 Ping received from OPU
12:45:03.662982 Passed 0.05002140998840332 shell remote oneshot 12 5 find config config
12:45:03.715067 Failed NA Check csp ping with rerun case csp ping 0 Ping received from EPS
12:45:13.717974 Passed 0.04864645004272461 shell remote oneshot 12 5 find config config

Table 20: Result file from second test, where 4 commands passed, 2 failed, and 1 was skipped.
(Part 1).

Rerun case or command End case on fail Wait time after execution[s] Timeout[s]
command Yes 0 10
command Yes 0 10
none Yes 50 10
case No 0 10
none Yes 0 10
case No 0 10
none Yes 0 10

Table 21: Result file from second test, where 4 commands passed, 2 failed, and 1 was skipped.
(Part 2).

7.4 Complex test

The test in this section will test that the framework is able to handle tests that are more faithful to
the tests that the HYPSO team might use. This test is more complex than the previous two tests,
as it tests functionality of commands that utilizes multiple components of the HYPSO test setup,
see Section 2.5. This test will take a HSI image, split it up into chunks, and store the chunks in
a buffer file on the PC, which needed for transferring pictures to the Operational Computer from
the satellite [31].

7.4.1 Test file & Data file

The test file can be seen in Table 22 and Table 23. Some commands in the test file do not have
an expected result, this is due to hypso-cli not giving an output when these commands are
executed. The commands in this test file also contain much more variable timings than the

The test starts with the first test case, which removes the folder with the same name that will be
created by the capture of the HSI image, on the On-board Processing Unit (OPU). The second
test case will turn on the HSI imager, followed by acquiring its temperature. When the command
for turning on the HSI imager is sent, hypso-cli outputs OK. To ensure it is actually turned on,
one can check its temperature. If the temperature is returned then the HSI imager is tuned on.
Afterwards, a HSI image containing 250 frames (-n 250 in the command) is captured, the captured
image is then compressed through software (-s in the command), before it is saved on the OPU as
compressed cube.bip.cmpr.

56

7.4 Complex test 7 RESULTS

Taking a HSI image uses some time depending on the amount of frames. Therefore, the capture
has a timeout of 200 seconds, with 20 seconds wait time after execution for software compression.
In some cases, this wait time might be long enough for the OPU to turn off, thus, a command to
turn it back on, and a ping to check connection is also sent. The compressed cube.bip.cmpr
is then split into several 8 MB chunks depending on the size of the image. These chunks are then
ensured they are placed on the OPU.

The third test case clears the buffer files on the PC, to make them ready for buffering the new
chunk files. Lastly, the last test cased buffers the chunk files to the OPU, and checks the log for
the On-board Processing Unit (OPU) to see that the buffering has both started, and completed
for all the files.

Description Command Expected Result

Clear hsi folder on
the OPU

shell remote oneshot 12 5 rm -r hsi{hsi folder}

Turn of hsi camera
and capture an image

shell remote oneshot 4 5 output 8 1 0 OK

hsi gettemp Temperature is
hsi capture -n 250 -s created folder: hsi{hsi folder}
shell remote oneshot 4 5 output 10 1 0 OK
csp ping 12 Ping received from OPU
hsi chunkify {hsi folder} 8
compressed cube.bip.cmpr

Found file, starting partitioning

opu list hsi{hsi folder}/compressed cube.bip.cmpr chunk{chunk amount}
ft download cancel 6

Request the buffer file
on the PC to be cleared

ft clear 6 {buffer,buffer port}

Buffer file chunk files
after captured image

ft buffer file 12 {buffer,file id} 5 n
hsi{hsi folder}/compressed cube.bip.cmpr
chunk{chunk amount}

Buffering remote file path
hsi{hsi folder}/compressed cube.bip.cmpr
chunk{chunk amount}

opu log Percent: 0
opu log Buffering of file completed

Table 22: Test file used in testing of a more complex test, containing multiple test cases (Part 1)

Rerun case or command End case on fail Wait time after execution [s] Timeout [s]

command No 5 10
none Yes 10 10
none Yes 0 10
command Yes 20 250
none Yes 10 10
none Yes 0 10
command Yes 5 10
command Yes 0 10
none Yes 5 10
case Yes 5 10
case Yes 30 10
none Yes 360 10
none Yes 0 10

Table 23: Test file used in testing of a more complex test, containing multiple test cases (Part 2)

The data file, Code Listing 7 contains the test data for the complex test. In the data file, there
are four object/value pairs that will be used. The buffer port and the file id are mapped
together in hypso-cli, i.e. buffer port 22 is mapped to the file id 35, and buffer port 23 is
mapped to file id 36. In the test file the command ft clear 6, Table 22, clears the files on on
the buffer ports, while the command ft buffer file 12 {buffer,file id} buffer the files
from thr OPU to the specified files in the PC. The object/value pair hsi folder contains the
folder that that the captured Hyper Spectral Image (HSI) image, and subsequent chunks are placed
into on the OPU. The object/value pair chunk amount contains the amount of chunks created
from the command hsi chunkify, and depend on the size of the HSI capture. A capture of 250
frames with software compressing, and split into 8 MB chunks, creates two chunk files which are
numbered 0 and 1.

1
2 {
3 "buffer" : {

57

7.4 Complex test 7 RESULTS

4 "buffer port" : [22,23],
5 "file id" : [35,36]
6 },
7 "chunk amount" : [0,1],
8 "hsi folder" : [0]
9 }

Code Listing 7: Data file used when testing the more complex test, containing four object/value
pairs

7.4.2 Pull requests

Pull requests in both the assembly-integration-test and the hypso-sw repository, handle
the same way for the complex test, as for the first simple test. The dispatch and pull request events
that are used for triggering the testing are displayed in Figure 47 and Figure 48. As both events
produce successful tests, the merge messages in Figure 49 and Figure 50 also look identical as the
first test.

Figure 47: Result from a GitHub Actions run
in the hypso-sw repository that has been
triggered by a dispatch event. The GitHub
Actions run was successful.

Figure 48: Result from a GitHub Actions run
in the assembly-integration-test
repository that has been triggered by a pull
request event. The GitHub Actions run was
successful.

Figure 49: Merge message in
assembly-integration-test repository
when issuing a pull request. In this merge
message the workflow file has executed
successfully.

Figure 50: Merge message in hypso-sw
repository when issuing a pull request. In this
merge message the workflow file has executed
successfully.

58

7.4 Complex test 7 RESULTS

7.4.3 Result file

Executing the third, and more complex, test resulted in the result file seen in Table 24 and Table
25. In the result file, one can see that the test had a 100% pass percent, which means that every
command that was executed passed. Which indicates that the framework is able to handle test
that are more faithful to the actual tests the framework might be used for.

In this result file one can also see how the framework handles commands that contain more than one
variable. The command ft buffer file 12 {buffer,file id} 5 n hsi{hsi folder}
/compressed cube.bip.cmpr chunck{chunk amount} contain three different variables, and
in Code Listing 7 one can see that two of the object/value pairs for the variables contain one more
value than the third. In situations like this the test script will contniue to implement copies of either
command or case until every value in all object/value pairs have been used. For object/values pair
that contain fewer values, their last value will be used when they run out. This is also the case
when the variables in commands and expected result contain dissimilar values in their object/value
pair, the last one will be used.

Date 2022-06-11 Tests Amount
Git branch HEAD Passed 18
Git commit 3efd1e1 Failed 0

Skipped 0

Time[UTC] Test Results Execution time[s] Description Command

12:59:08.472236 Passed 0.0009264945983886719 Clear hsi folder on the OPU shell remote oneshot 12 5 rm -r hsi0

12:59:13.480753 Passed 0.03584694862365723
Turn of hsi camera
and capture an image

shell remote oneshot 4 5 output 8 1 0

12:59:23.529297 Passed 0.04114580154418945 hsi gettemp
12:59:23.573582 Passed 130.33833050727844 hsi capture -n 250 -s
13:01:53.932438 Passed 0.0359196662902832 shell remote oneshot 4 5 output 10 1 0
13:02:03.980481 Passed 0.0326995849609375 csp ping 12
13:02:04.015861 Passed 0.033629655838012695 hsi chunkify 0 8 compressed cube.bip.cmpr
13:02:09.056215 Passed 2.47528338432312 opu list
13:02:11.534082 Passed 2.972672939300537 opu list
13:02:14.509304 Passed 0.0009326934814453125 ft download cancel 6

13:02:19.516776 Passed 0.0009195804595947266
Request the buffer file
on the PC to be cleared

ft clear 6 22

13:02:24.524881 Passed 0.001065969467163086
Request the buffer file
on the PC to be cleared

ft clear 6 23

13:02:29.532391 Passed 0.03162980079650879
Buffer file chunk files
after captured image

ft buffer file 12 35 5 n
hsi0/compressed cube.bip.cmpr chunk0

13:02:59.596634 Passed 2.124535083770752 opu log
13:09:01.813439 Passed 1.432903528213501 opu log

13:09:03.249142 Passed 0.03159165382385254
Buffer file chunk files
after captured image

ft buffer file 12 36 5 n
hsi0/compressed cube.bip.cmpr chunk1

13:09:33.312591 Passed 2.1749751567840576 opu log
13:15:35.589216 Passed 1.446702241897583 opu log

Table 24: Result file from complex test, where all command passed. (Part 1).

59

7.4 Complex test 7 RESULTS

Percentage
100.0%
0.0%
0.0%

Expected Result Rerun case or command End case on fail Wait time after execution [s] Timeout [s]

command No 5 10
OK none Yes 10 10
Temperature is none Yes 0 10
created folder: hsi0 command Yes 20 250
OK none Yes 10 10
Ping received from OPU none Yes 0 10
Found file, starting partitioning command Yes 5 10
hsi0/compressed cube.bip.cmpr chunk0 command Yes 0 10
hsi0/compressed cube.bip.cmpr chunk1 command Yes 0 10

none Yes 5 10
case Yes 5 10
case Yes 5 10

Buffering remote file path
hsi0/compressed cube.bip.cmpr chunk0

case Yes 30 10

Percent: 0 none Yes 360 10
Buffering of file completed none Yes 0 10
Buffering remote file path
hsi0/compressed cube.bip.cmpr chunk1

case Yes 30 10

Percent: 0 none Yes 360 10
Buffering of file completed none Yes 0 10

Table 25: Result file from complex test, where all command passed. (Part 2).

60

8 DISCUSSION

8 Discussion

This section discusses the analysis done, and the implemented test framework, whether it fulfilled
the requirements set in Section 5, or not.

8.1 Analysis

The work done in this thesis started with the analysis of the current HYPSO test setup, and then
the creation of the requirements that the new framework should adhere to, see Section 5. An
analysis of existing test automation frameworks were performed. What quickly became apparent
for the author, was that some of the frameworks mentioned in Section 3.3, would not work for
hypso-cli with the requirements. For example, tests created with the Linear Testing Framework
would cause too much maintenance to be efficiently used by the HYPSO team, as well as not being
able to utilize multiple sets of test data. The Modular Based Testing Framework would not fit well
for HYPSO either, as hypso-cli is not split into modules, but instead functions as one large
cohesive application, and the main requirement, REQ-0 in Table 7, for the new framework was
that it should imitate normal usage of hypso-cli.

Most of the commands in hypso-cli have dissimilar functionalities, and need specific input data
to function properly, which means that Library Architecture Testing Framework would not be
suitable as a framework either. This left the Data-Driven Testing Framework, and the Keyword-
Driven Testing Framework as the two only options left, and since the Keyword-Driven Testing
Framework is an improved version of the Data-Driven Testing Framework, it was chosen. The
downside with the Keyword-Driven Testing Framework is its scalability, and its complexity. This
framework was therefore modified by the author to mitigate these issues, and make it fit better
with the usage of hypso-cli. The new framework is still quite complex, as it contains a lot
of functionality, but the scalability is improved, as maintaining and adding new keywords is not
required when new features are implemented to hypso-cli.

From the analysis, it also became evident that the new framework had to utilize GitHub Actions
instead of Jenkins, as Jenkins has proven to be unsatisfactory solution for the HYPSO team due
to the threshold of knowledge needed to be efficiently able to create new tests, and maintain the
framework, see Section 5.1. Additionally, since GitHub Actions is integrated with GitHub and can
effectively be triggered by a number of different GitHub events, the choice on which one to choose
was quite clear.

61

8.2 Fulfillment of Requirements 8 DISCUSSION

8.2 Fulfillment of Requirements

The requirements from Section 5 are reviewed to determine whether the implemented Automated
Test Framework fulfills them, based on the results from the testing in Section 7. A summary of
the requirements and the level of fulfillment is provided in Table 26

Req. Number Description Level of
fulfillment

REQ-0 The test system shall imitate normal usage of hypso-cli. High

REQ-1 Creating new tests in the test system shall be quick and
effortless.

High

REQ-2 The test system shall log the results from the tests in
a results file.

Medium

REQ-3 The test system shall be usable with future features on
hypso-cli.

High

REQ-4 The test system shall have low maintenance. Medium

REQ-5 The test system shall be able to test multiple sets of
data with the same command.

High

REQ-6 The test system shall be able to automatically execute
tests through the use of GitHub Actions.

High

Table 26: Summary of the design requirements, and the level to which they were fulfilled
(ranging from Low to Medium to High).

The requirement of being able to imitate normal usage of hypso-cli is fully implemented. The
test framework is able to input both simple and more complex commands, with specific timings,
which allows the user of the framework full control of when commands are executed and what the
expected output from the commands are. As the test framework interacts with hypso-cli the
same way as a normal user would, by connecting to hypso-cli and then inputting commands,
the framework is not affected by the addition of new features to the application, as long as the
new features do not hinder the previous features in any way. Based on this, the test framework is
able to fulfill REQ-0 and REQ-3 with a high level of fulfillment.

From the tests executed in the results, see Section 7, the test framework operates as intended. New
tests are quickly made by creating a test file containing a table with commands, expected output
from the commands, and specific timings for when the commands are to be executed. Creating a
data file in addition, gives the possibility of adding variables to the test file, which allows testing
over multiple sets of data. Creating these tests do not require much more knowledge than what is
required for using hypso-cli. Therefore, REQ-1, and REQ-5 are set to high level of fulfillment
in Table 26.

After a test is executed a result file is created. This result file contains the same information as
the test file, but after it has been combined with the data file. Additionally, the result file also
contains information on what the result from each command were, either passed, failed, or skipped,
and how many passes, fails, and skips there were in total. The test framework also enables testing
of edge cases. If one wants to test a command containing a variable, where the object/value pair
contains a range of values, where some should fail, while others should pass, the entire test case
can be marked as pass. This is accomplished by having the entire expected result for the command
can be a variable, where the object/value pair for the variable contains the expected output from
hypso-cli. Then, when the command should fail, the expected result can represent this by
containing the output from hypso-cli that is given when the command fails, and opposite when
the command should pass. This way, the test can have a 100% pass rate, when intended commands
fail, while others pass.

For every command executed on hypso-cli the result file contains the UTC time of when the

62

9 CONCLUSION

command was executed, and how long time it took from execution until it received the expected
value. This could be used for performing non-functional testing, like performance testing, see
Section 3.2.5, on the on-board software. The HYPSO satellites have limited amount of time
above the ground station at each pass around the Earth. Having efficient software is therefore
advantageous. Additionally, by analyzing the time execution each command multiple time, one
can also check the reliability of software, see Section 3.2.6, that the software is able to continuously
perform specific functions without failure over time. Based on this, the framework is able to fulfill
REQ-2 with a high level of fulfillment. While the framework does produce a result file when
executed automatically, this result file is not saved over multiple executions. When utilizing the
self-hosted GitHub Actions runner, the repositories are cloned to the working directory of the
runner before the tests are executed. These cloned repositories are overwritten each time the
runner is activated. Which means that the result file for each subsequent run of the entire test
framework, will overwrite the results from the last time. An implemented storage for these should
have been implemented.

The tests in Section 7 are completely integrated with GitHub Actions, and are executed auto-
matically on pull requests to the master branch in both hypso-sw repository and assembly-
integration-test repository. By having to use the menu system when adding new tests, in-
stead of altering the workflow files on GitHub, see Section 6.5, new users do not have to learn how
the syntax for the GitHub Actions workflow files work, they only need to know how to utilize the
test menu, and where to look on GitHub to find the result from the execution. Additionally, by
utilizing the test menu, it allows the HYPSO team the possibility of adding tests that have not
been created with the test script, to the automated execution with GitHub Actions. One drawback
with the current implementation of the framework, is that the merge message in the pull request
in assembly-integration-test repository, will be marked as passed even if the workflow
in the hypso-sw repository fails. Due to this the user is required to check the Actions tab
in hypso-sw when making a pull request, which is not ideal. Nevertheless, the framework has
completed the goal of the requirement REQ-6, and has thereby achieved a high level of fulfillment.

The requirementREQ-4, The test system should have low maintenance, have a medium fulfillment
level. If the functionality of a command/feature is changed, all subsequent tests that utilizes the
command have to be altered. Which, with a lot of tests, can take some time. Compared to the
unmodified Keyword-Driven Testing Framework, where functionality of a feature is changed, then
only the keyword has to be altered, and not the test files. But this is a trade-off between lowering
the learning curve for utilizing the framework, and having as low maintainability as possible.

9 Conclusion

When the author joined the HYPSO team a lot of the codebase for the on-board software for
the satellites had already been created, and a system for CI/CD has been set up through the use
of Jenkins. This system had proved to be less than desirable due to the amount of knowledge
and time needed to learn to properly utilize the system. As a lot of the members of the HYPSO
team are made up of Bachelors and Master students, working on specific projects for only a few
semesters, there is not a lot of time to get familiarized with both HYPSO and the test framework
to the point of being able to create and execute tests.

The work in this Master’s thesis documents an analysis, design, and implementation of a new
automated test framework, for the purpose of operationalizing the testing setup used by the HYPSO
team at the NTNU SmallSat Lab. Based on the fulfillment level of the new framework, see Section
8, the new framework and implemented framework functions as intended and improves upon the
old test framework.

The new framework utilizes a Keyword-Driven Testing Framework that has been modified to fit
the needs of HYPSO. With this framework, one is able to create new tests, by creating a table
containing the commands that one wants to test on the hypso-cli application, which is used
for communication with the CubeSats. The new automated test framework also contains the
possibility of testing across multiple sets of data, something that the old one could not. This

63

10 FUTURE WORK

makes it so that creating tests in the new framework does not require any scripting knowledge,
which lessens threshold for creating tests.

Additionally, as the codebase for the HYPSO satellites reside on GitHub, the new framework has
been integrated with GitHub Actions. GitHub Actions is used as a CI/CD system in place of
Jenkins, to execute testing on target hardware every time the GitHub master branch is updated
with new code.

10 Future Work

As a result of the design and implementation done by the author, the automated test framework is
fully implemented. What remains to be done are the addition of a few features that could make the
framework even better, and add more customizability to the created tests. One of these features
is the addition of using the output from hypso-cli as a variable for following commands. In
the complex test in Section 7, the test required that the folder for the files from the HSI capture,
was removed from the OPU before the capture was executed. This is due to the fact that the hsi
capture command will increment the highest numbered folder when it created a folder for the
captured image, i.e. if the OPU contains folders from hsi0 up to hsi8, then the folder created with
the hsi capture command will be hsi9. Without knowing beforehand how many folders there
are on the OPU, the test script does not know in what folders the image files were placed. If the
test framework could use the output from hypso-cli as variables, then the deletion of the folder
beforehand is not required, which could shorten the amount of commands needed in the tests.

The workflow file in the assembly-integration-test repository, should be altered so that
the merge message in a pull request exhibits the actual result from the execution of the GitHub
Actions run, and not just the dispatch event sent to hypso-sw. This is not natively possible
with the GitHub REST API, as the dispatch event is sent to the entire hypso-sw repository and
not to specific workflows. But a solution to the problem can be achieved in a few ways. The
dispatch event can send with it an input ID that will be displayed in the GitHub Actions tab in
hypso-sw. Then, a script can be created that continuously checks for this ID and the result from
the execution, and based on this the workflow in assembly-integration-test can either
be marked as passed or failed. Another way this problem could be fixed, is by making altering
the workflow in assembly-integration-test to make it function similarly as to hypso-sw,
where it will copy repositories, and execute similarly. The GitHub Actions runs, will then not
be centralized, and one has to make sure both repositories utilize the same GitHub runner to
prevent two runners accessing hypso-cli at the same time, which could cause unexpected race
conditions.

Between each automatic execution of the framework, the result files should be saved in a location
that persist over multiple executions of GitHub Actions. Which would allow checking the progress
of the codebase over time more easily. This location could for example be a separate repository,
where every time the workflow file in hypso-sw acquires a 100% pass rate, it could push the result
file from the local directory created on the GitHub runner, up to the new repository.

In addition to the new features, the most important future work that remains is the creation of
the tests files and data files that are to be executed with the framework. A study has to be done
to find out which commands should be executed to give the highest amount of test coverage, while
spending the least amount of time. As seen in the complex test in result, Figure 47 in Section 7,
the test took just over 19 minutes to execute. When having multiple complex tests, the time can
quickly add up, which might not ideal.

64

REFERENCES REFERENCES

References

[1] Kirsten Aebersold. Test Automation Frameworks.
https://smartbear.com/learn/automated-testing/test-automation-fram
eworks/. Accessed: 2022-05-13.

[2] Nano Avionics. 6U nanosatellite bus M6P.
https://nanoavionics.com/small-satellite-buses/6u-nanosatellite-bu
s-m6p/. Accessed: 2022-05-13.

[3] Nano Avionics. Nano and Micro Satellite buses.
https://nanoavionics.com/buses/. Accessed: 2022-05-13.

[4] Avnet. PicoZed.
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-bo
ard-families/picozed/. Accessed: 2022-05-13.

[5] Bhavana Bhavar. What are Test Automation Frameworks and Types.
https://www.clariontech.com/blog/what-are-test-automation-framewor
ks-and-types. Accessed: 2022-05-13.

[6] Thomas Halvard Bolle. Payload Hardware In The Loop Testing of Satellite Operations. 2021.

[7] Pierre Bourque and Richard E. (Dick) Fairley. Guide to the software engineering body of
knowledge. Vol. 3.0. IEEE Computer Society, 2014.

[8] Marine Mammal Commision. Climate Change and the Arctic.
https://www.mmc.gov/priority-topics/arctic/climate-change/. Accessed:
2022-05-28.

[9] Steve Corrigan. Introduction to the Controller Area Network (CAN). Texas Instruments, 2002
- Revised 2016.

[10] Devmountain. Git vs. GitHub: What is the difference?
https://devmountain.com/blog/git-vs-github-whats-the-difference/.
Accessed: 2022-05-15.

[11] Docker. Docker Overview.
https://docs.docker.com/get-started/overview/. Accessed: 2022-05-13.

[12] Docker. Use containers to Build, Share and Run you applications.
https://www.docker.com/resources/what-container/. Accessed: 2022-05-13.

[13] Forcepoint. The OSI Model Defined.
https://www.forcepoint.com/cyber-edu/osi-model. Accessed: 2022-05-15.

[14] Git. Git.
https://git-scm.com/. Accessed: 2022-05-15.

[15] GitHub. About branches.
https://docs.github.com/en/pull-requests/collaborating-with-pull-r
equests/proposing-changes-to-your-work-with-pull-requests/about-br
anches. Accessed: 2022-05-15.

[16] GitHub. actions/setup-python.
https://github.com/actions/setup-python. Accessed: 2022-05-13.

[17] GitHub. Adding self-hosted runners.
https://docs.github.com/en/actions/hosting-your-own-runners/adding
-self-hosted-runners. Accessed: 2022-05-13.

[18] GitHub. Checkout V3.
https://github.com/marketplace/actions/checkout.
GitHub Action. Accessed: 2022-05-15.

[19] GitHub. Events that trigger workflows.
https://docs.github.com/en/actions/using-workflows/events-that-tri
gger-workflows. Accessed: 2022-05-15.

65

https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://smartbear.com/learn/automated-testing/test-automation-frameworks/
https://nanoavionics.com/small-satellite-buses/6u-nanosatellite-bus-m6p/
https://nanoavionics.com/small-satellite-buses/6u-nanosatellite-bus-m6p/
https://nanoavionics.com/buses/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/picozed/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/picozed/
https://www.clariontech.com/blog/what-are-test-automation-frameworks-and-types
https://www.clariontech.com/blog/what-are-test-automation-frameworks-and-types
https://www.mmc.gov/priority-topics/arctic/climate-change/
https://devmountain.com/blog/git-vs-github-whats-the-difference/
https://docs.docker.com/get-started/overview/
https://www.docker.com/resources/what-container/
https://www.forcepoint.com/cyber-edu/osi-model
https://git-scm.com/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://github.com/actions/setup-python
https://docs.github.com/en/actions/hosting-your-own-runners/adding-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/adding-self-hosted-runners
https://github.com/marketplace/actions/checkout
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

REFERENCES REFERENCES

[20] GitHub. What is GitHub Actions.
https://resources.github.com/downloads/What-is-GitHub.Actions_.Ben
efits-and-examples.pdf. Accessed: 2022-05-20.

[21] Amund Gjersvik. Breakout Board V3 ICD. 2020.

[22] Hybesis - H.urna. Pull Request Workflow with Git — 6 steps guide.
https://medium.com/@urna.hybesis/pull-request-workflow-with-git-6-
steps-guide-3858e30b5fa4. Accessed: 2022-05-15.

[23] Thomas Hamilton. Reliability Testing Tutorial: What is, Methods, Tools, Example.
https://www.guru99.com/reliability-testing.html. Accessed: 2022-04-23.

[24] Thomas Hamilton. Static Testing vs Dynamic Testing: What’s the Difference?
https://www.guru99.com/static-dynamic-testing.html. Accessed: 2022-04-12.

[25] Thomas Hamilton. What is BLACK Box Testing? Techniques, Example & Types.
https://www.guru99.com/black-box-testing.html. Accessed: 2022-04-30.

[26] Thomas Hamilton. What is Functional Testing? Types & Examples (Complete Tutorial).
https://www.guru99.com/functional-testing.html. Accessed: 2022-04-30.

[27] Thomas Hamilton. What is Non Functional Testing? Types with Example.
https://www.guru99.com/non-functional-testing.html. Accessed: 2022-04-16.

[28] Software Testing Help. Most Popular Test Automation Frameworks With Pros And Cons Of
Each - Selenium Tutorial #20.
https://www.softwaretestinghelp.com/test-automation-frameworks-sel
enium-tutorial-20/. 2022-05-05.

[29] Software Testing Help. The Differences Between Unit Testing, Integration Testing And Func-
tional Testing.
https://www.softwaretestinghelp.com/the-difference-between-unit-in
tegration-and-functional-testing/. Accessed: 2022-05-13.

[30] Nicki Holmyard. Killers at sea: Harmful algal blooms and their impact on aquaculture.
https://www.globalseafood.org/advocate/killers-at-sea-harmful-alga
l-blooms-and-their-impact-on-aquaculture/. Accessed: 2022-05-28.

[31] Magne Hov. Design and Implementation of Hardware and Software Interfaces for a Hyper-
spectral Payload in a small Satellite. Master’s thesis, NTNU, 2019.

[32] Aidan Hobson Sayers Ian Miell. Docker in Practice. Second Edition. Manning Publications
Co, 2019.

[33] Ecma International. The JSON Data Interchange Syntax. 2nd Edition. 2017.

[34] Jenkins. Jenkins User Documentation.
https://www.jenkins.io/doc/. Accessed: 2022-05-15.

[35] Kubos. The CubeSat Space Protocol.
https://docs.kubos.com/1.2.0/apis/libcsp/csp_docs/overview.html.
Accessed: 2022-05-15.

[36] Glenn Lee. Types of Software Testing: Differences and Examples.
https://www.loadview-testing.com/blog/types-of-software-testing-di
fferences-and-examples/. Accessed: 2022-05-13.

[37] Olga Zakutnyaya Lev Zelenyi. The “Simplest Satellite” That Opened Up the Universe.
https://www.americanscientist.org/article/the-simplest-satellite-t
hat-opened-up-the-universe. Accessed: 2022-05-28.

[38] Sarah Loff. CubeSats Overview.
https://www.nasa.gov/mission_pages/cubesats/overview. Accessed: 2022-05-
28.

[39] Tuva Okkenhaug Moxnes. A common Software framework for a CubeSat with multiple pay-
loads. Master’s thesis, NTNU, 2021.

[40] Dennis Langer Roger Birkeland. HYPSO-UM-004 Manual for FlatSat and LidSat.
Internal Document. Non-published. 2022.

66

https://resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://medium.com/@urna.hybesis/pull-request-workflow-with-git-6-steps-guide-3858e30b5fa4
https://medium.com/@urna.hybesis/pull-request-workflow-with-git-6-steps-guide-3858e30b5fa4
https://www.guru99.com/reliability-testing.html
https://www.guru99.com/static-dynamic-testing.html
https://www.guru99.com/black-box-testing.html
https://www.guru99.com/functional-testing.html
https://www.guru99.com/non-functional-testing.html
https://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/
https://www.softwaretestinghelp.com/test-automation-frameworks-selenium-tutorial-20/
https://www.softwaretestinghelp.com/the-difference-between-unit-integration-and-functional-testing/
https://www.softwaretestinghelp.com/the-difference-between-unit-integration-and-functional-testing/
https://www.globalseafood.org/advocate/killers-at-sea-harmful-algal-blooms-and-their-impact-on-aquaculture/
https://www.globalseafood.org/advocate/killers-at-sea-harmful-algal-blooms-and-their-impact-on-aquaculture/
https://www.jenkins.io/doc/
https://docs.kubos.com/1.2.0/apis/libcsp/csp_docs/overview.html
https://www.loadview-testing.com/blog/types-of-software-testing-differences-and-examples/
https://www.loadview-testing.com/blog/types-of-software-testing-differences-and-examples/
https://www.americanscientist.org/article/the-simplest-satellite-that-opened-up-the-universe
https://www.americanscientist.org/article/the-simplest-satellite-that-opened-up-the-universe
https://www.nasa.gov/mission_pages/cubesats/overview

REFERENCES REFERENCES

[41] Yakov Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV)
Files. SolidMatrix Technologies, Inc., 2022.

[42] Simplilearn. An Introduction to Subprocess in Python With Examples.
https://www.simplilearn.com/tutorials/python-tutorial/subprocess-i
n-python. Accessed: 2022-05-13.

[43] GitHub Script team. actions/github-script.
https://github.com/marketplace/actions/github-script. Accessed: 2022-05-
15.

[44] HYPSO team. CLAW-1 Assembly, Integration and Test Plan. 2020.

[45] HYPSO team. HYPSO SW Design Report. 2020.

[46] HYPSO-SW team. assembly-integration-test.
https://github.com/NTNU-SmallSat-Lab/assembly-integration-test.
GitHub repository. Accessed: 2022-05-13.

[47] HYPSO-SW team. Hardware-in-the-loop testing.
https://github.com/NTNU-SmallSat-Lab/hardware_in_loop.
GitHub repository. Accessed: 2022-05-13.

[48] HYPSO-SW team. hypso-sw.
http://github.com/NTNU-SmallSat-Lab/hypso-sw.
GitHub repository. Accessed: 2022-05-13.

[49] HYPSO-SW team. hypso-sw-build-check.
https://github.com/NTNU-SmallSat-Lab/hypso-sw-build-check.
GitHub repository. Accessed: 2022-05-13.

[50] NTNU SmallSat Lab team. Hyperspectral imager.
https://www.ntnu.edu/web/smallsat/mission-hyper-spectral-camera.
Accessed: 2022-05-13.

[51] NTNU SmallSat Lab team. Software Defined Radio.
https://www.ntnu.edu/web/smallsat/mission-software-defined-radio.
Accessed: 2022-05-13.

[52] Testim. Your Complete Guide to Test Automation Frameworks.
https://www.testim.io/blog/test-automation-frameworks/. Accessed: 2021-
07-23.

67

https://www.simplilearn.com/tutorials/python-tutorial/subprocess-in-python
https://www.simplilearn.com/tutorials/python-tutorial/subprocess-in-python
https://github.com/marketplace/actions/github-script
https://github.com/NTNU-SmallSat-Lab/assembly-integration-test
https://github.com/NTNU-SmallSat-Lab/hardware_in_loop
http://github.com/NTNU-SmallSat-Lab/hypso-sw
https://github.com/NTNU-SmallSat-Lab/hypso-sw-build-check
https://www.ntnu.edu/web/smallsat/mission-hyper-spectral-camera
https://www.ntnu.edu/web/smallsat/mission-software-defined-radio
https://www.testim.io/blog/test-automation-frameworks/

Appendix

A Hypso-cli commands

clear Clear the terminal

csp ... CSP-specific commands.

csp buffers request free buffers from CSP node.

csp conn Print CSP connection table for this node.

csp debug Toggle CSP output debug levels.

csp hello Send a ‘hello world‘ CSP packet.

csp if Print CSP interfaces for this node.

csp init ... Commands for initialising CSP.

csp mem request free memory from CSP node.

csp ping Ping a CSP node.

csp reboot Request a CSP node to reboot.

csp route Print CSP routing table for this node.

csp shutdown Request a CSP node to shutdown.

csp uptime request uptime from CSP node.

eps ... EPS specific commands.

eps tm Request and print EPS general telemetry.

eps wdreset Reset the counter for the ground system watchdog.

exit Exit this CLI.

ft ... File Transfer specific commands.

ft buffer file Request a file to be buffered to the PC.

ft check Check the integrity or presence of file entries.

ft clear Request a file to be cleared.

ft deregister Deregister link for a file ID.

ft extract Request the extraction of a formatted file.

ft download
cancel

Send request to cancel ongoing download.

ft extract Request the extraction of a formatted file.

ft format Request formatting of a file.

ft info Request metadata for a file.

ft list Request file listing from a node.

ft prepare Create new formatted file from existing file.

ft register Register a link for a file path to a file ID.

ft upload file Upload a formatted file.

help Print helptext for a command.

Command Description

shell Run a local shell command. Enter ’help shell’ for subcommands

shell remote Enter remote shell mode for a specified node.

Table 27: Commands in hypso-cli application, with description

68

hsi ... CLAW-1 specific commands.

hsi capture Initiates a cube capture sequence.

hsi chunkify Segments image cube for transfer to payload controller

hsi compress Perform compression on a binned cube file.

hsi dmatest Tests the CubeDMA module.

hsi gettemp Poll the HSI camera temperature.

hsi metazip Request meta data files from hsi capture to be compressed.

list List commands, or sub-commands of a specific command.

ls ls -l –color=always

opu ... Commands for controlling the OPU.

opu caminfo Get information about all ueye cameras that are detected by the OPU.

opu check Compare local and remote checksums.

opu download Download a file from the OPU.

opu exit Request the opu-services process to exit.

opu git Get branch and commit of opu-services.

opu lastcmd Request the last command received by one of the opu services.

opu list List files in OPU’s current directory.

opu log Get boot-log from opu.

opu restart Requests to restart into a specific opu-services

opu setid Change the camera ID of a connected ueye camera. Valid IDs range from 1
to 254.

opu setip Change the IP configuration of a connected ueye camera identified by device
ID.

opu settime Request and print unix time from M6P node, and set system time.

opu shutdown Shuts down OPU

opu status Get status of OPU (simple telemetry).

opu telemetry Get current telemetry status from opu-services.

opu tmlog Turn on/off the telemetry logging on the OPU.

opu update Update a file on the OPU.

opu upload Upload a file to the OPU.

pl ... Commands for controlling the OPU.

pl check Compare local with remote checksum on specified PL .

pl download Download a file from the specified payload.

pl exit Request the services process of the specified payload to exit.

pl git Get git branch and commit of specified payload.

pl lastcmd Request the last command received by one of the services on the specified
payload.

pl list List files in a payload’s current directory.

Command Description

shell Run a local shell command. Enter ’help shell’ for subcommands

shell remote Enter remote shell mode for a specified node.

Table 27: Commands in hypso-cli application, with description (Continued)

69

pl restart Requests the specified payload to restart into a specific pl-services

pl settime Request and print unix time from M6P node of given address. Default address
is 4, EPS. Set PL system time

pl shutdown Shuts down specified PL

pl status Get status of specified payload (simple telemetry).

pl tmlog Turn on/off the telemetry logging on the specified PL.

pl upload Upload a file to the specified PL.

q Exit this CLI.

rgb ... RGB specific commands.

rgb capture Makes the OPU perform one RGB image capture

rgb configfile Load a different camera configuration file

rgb configure Set new rgb parameter values.

rgb deinit Deinitialize the camera.

rgb init Initialise RGB camera.

rgb print Print current parameter configuration to OPU’s stdout

sdr ... Commands for controlling the SDR.

sdr check Compare local and remote checksums.

sdr download Download a file from the SDR.

sdr exit Request the sdr-services process to exit.

sdr git Get branch and commit of sdr-services.

sdr lastcmd Request the last command received by one of the sdr services.

sdr list List files in SDR’s current directory.

sdr log Get boot-log from sdr.

sdr restart Requests to restart into the sdr-services specified

sdr settime Request and print unix time from M6P node of given address. Default address
is 4, EPS. Set SDR system time

sdr shutdown Shuts down SDR

sdr status Get status of SDR (simple telemetry).

sdr telemetry Get current telemetry status from sdr-services.

sdr tmlog Turn on/off the telemetry logging on the SDR.

sdr update Update a file on the SDR.

sdr upload Upload a file to the SDR.

sdr xadc Get current xadc status from sdr-services.

Command Description

shell Run a local shell command. Enter ’help shell’ for subcommands

shell remote Enter remote shell mode for a specified node.

Table 27: Commands in hypso-cli application, with description (Continued)

70

B Hypso-sw-build-check

B.1 Dockerfile

1 # Use Ubuntu 20.04 as a base image
2 FROM ubuntu:20.04
3
4 # Fix timezone issue
5 ENV TZ=Europe/Oslo
6 RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc

/timezone
7
8
9 # Install general tools and libraries
10 RUN dpkg --add-architecture i386 && apt-get update && apt-get install

-y \
11 build-essential \
12 apt-utils \
13 sudo \
14 locales \
15 git \
16 clang-tools \
17 cmake
18
19 #Make a HYPSO user
20 RUN adduser --disabled-password --gecos '' hypso && \
21 usermod -aG sudo hypso && \
22 echo "hypso ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers
23
24 RUN locale-gen en_US.UTF-8 && update-locale
25
26 # Install necessary libraries to download, compile and install nng
27 RUN apt-get update && apt-get install -y \
28 ninja-build \
29 python
30
31 # Compile and install nng. Remove source files afterwards
32 RUN git clone https://github.com/nanomsg/nng /home/hypso/nng && \
33 cd /home/hypso/nng && \
34 git checkout v1.5.2 && \
35 mkdir build && \
36 cd build && \
37 cmake -G Ninja .. && \
38 ninja && \
39 ninja install && \
40 rm -rf /home/hypso/nng
41
42 # Download dependencies of building libsocketcan
43 Run apt-get install -y \
44 autotools-dev \
45 autoconf \
46 libtool
47
48 # Download packages required to build hypso-sw
49 RUN apt-get install -y \
50 check \
51 make
52

71

53
54 # Download packages for cross compiling arm
55 RUN apt-get install -y \
56 binutils-arm-linux-gnueabihf \
57 gcc-arm-linux-gnueabihf
58
59 # Download packages for cross compiling arm 64-bit (aarch64)
60 RUN apt-get install -y \
61 gcc-aarch64-linux-gnu \
62 binutils-aarch64-linux-gnu
63
64 # Packages for producing doxygen output. F.ex callgraphs
65 RUN apt-get update && apt-get install -y \
66 doxygen \
67 graphviz
68 USER hypso
69 WORKDIR /home/hypso/
70
71 COPY entrypoint.sh /entrypoint.sh
72
73 ENTRYPOINT ["/entrypoint.sh"]

Code Listing 8: Dockerfile in hypso-sw-build-check repository

B.2 Entrypoint.sh

1 #!/bin/bash
2
3 make clean;
4 RESULT=$?
5 if [$RESULT -eq 0]; then
6 echo make clean success
7 else
8 echo make clean failed
9 exit 1
10 fi
11
12 make;
13 RESULT=$?
14 if [$RESULT -eq 0]; then
15 echo make success
16 else
17 echo make failed
18 exit 2
19 fi
20
21 make ARCH=arm;
22 RESULT=$?
23 if [$RESULT -eq 0]; then
24 echo make arm success
25 else
26 echo make arm failed
27 exit 3
28 fi
29
30
31 make ARCH=arm64;

72

32 RESULT=$?
33 if [$RESULT -eq 0]; then
34 echo make arm success
35 else
36 echo make arm for 64-bit failed
37 exit 5
38 fi
39
40 make test;
41 RESULT=$?
42 if [$RESULT -eq 0]; then
43 echo check test success
44 else
45 echo check failed
46 exit 4
47 fi

Code Listing 9: entrypoint.sh in hypso-sw-build-check repository

73

C PicoZed specifications

Figure 51: Complete PicoZed specifications. The HYPSO team utilizes a PicoZed with Xilinx
XC7Z030-1SBG485 SoC (System-on-Chip).

74

#!/usr/bin/python3

from genericpath import exists
import os
import time
import sys
import re
import json
import csv
import signal
from datetime import date, datetime, timezone
import logging

path = ""
current_dir = os.getcwd()
if os.path.exists('../assembly-integration-test'):
 new_dir = "automated_test/"
 path = os.path.join(current_dir, new_dir)
elif os.path.exists('assembly-integration-test'):
 new_dir = "assembly-integration-test/automated_test/"
 path = os.path.join(current_dir, new_dir)
elif os.path.exists('../../assembly-integration-test/'):
 new_dir = "../automated_test/"
 path = os.path.join(current_dir, new_dir)

os.chdir(path)

sys.path.append('.')
sys.path.append('../tvac_automation')

import test_settings as test_s
import test_functions as test_f

from test_settings import OPU_EPS_CHANNEL

class LogFile(object):
 def __init__(self, name=None):
 self.terminal = sys.stdout
 self.logger = logging.getLogger(name)

 def write(self, msg, level=logging.INFO):
 self.terminal.write(msg)
 if len(msg) > 2:
 new_msg = re.compile(r'\x1b[^m]*m').sub('', msg)
 self.logger.log(level, new_msg)

 def flush(self):
 for handler in self.logger.handlers:
 handler.flush()

def main():
 # 0) Save test start time
 test_start_datetime = datetime.now(timezone.utc).strftime("%y%m%dT%H%M%S")

 # 1) Check inputs

 csv_file = ""
 data_file = ""
 input_check_ret, no_log = input_check()
 if input_check_ret == 1:
 csv_file = sys.argv[1 + no_log]
 test_data_file = "No test settings file inputted"

D Test Script.py

75

 elif input_check_ret == 2:
 csv_file = sys.argv[1 + no_log]
 test_data_file = sys.argv[2 + no_log]
 with open(test_data_file, 'r') as f:
 data_file = json.load(f)
 else:
 return

 if no_log != 1:
 if exists(csv_file.split('.csv')[0] + '.log'):
 os.system(f"rm {csv_file.split('.csv')[0] + '.log'}")

 logging.basicConfig(level=logging.INFO,
 format='%(asctime)s %(name)s: %(message)s',
 datefmt='%m-%d-%y %H:%M:%S',
 filename=csv_file.split('.csv')[0] + '.log')
 sys.stdout = LogFile('stdout')
 sys.stderr = LogFile('stderr')

 print(test_f.strGreen("Inputted test file:") + test_f.strCyan(f"{csv_file}"))
 print(test_f.strGreen("Inputted settings file:") + test_f.strCyan(f"{test_data_file}"))

 # 2) Go through test file and settings file
 # Extend values from test file if required

 print("Reading test file")
 test_info = read_csv_file_to_list(csv_file)
 test_case_start_number = []

 for i in range(1, len(test_info)):
 if test_info[i][0] != '':
 test_case_start_number.append(i)
 test_case_start_number.append(len(test_info))

 print("Extending test file depending on variables used")
 test_info = extend_test_file_with_variables(test_info, test_case_start_number, data_file, no_log)

 test_case_start_number = []
 for i in range(1, len(test_info)):
 if test_info[i][0] != '':
 test_case_start_number.append(i)
 test_case_start_number.append(len(test_info))

 # 3) Starting and rebooting hypso_cli
 # And also getting git version
 hypso_cli = test_f.get_hypso_cli()
 git_version = starting_hypso_cli(hypso_cli)

 # 4) Testing

 test_results = []
 for i in range(len(test_info)):
 test_results.append(['','',''] + test_info[i])
 test_results[0][0] = "Time[UTC]"
 test_results[0][1] = "Test Results"
 test_results[0][2] = "Execution time[s]"

 pass_number = 0
 fail_number = 0
 skip_number = 0

 for i in range(len(test_case_start_number)-1):
 print('')
 print("Starting testing with purpose of:")
 print(f"{test_info[test_case_start_number[i]][0]}")
 if len(test_info) < test_case_start_number[-1]:
 pass

 for j in range(test_case_start_number[i], test_case_start_number[i+1]):

 test_results[j][0] = datetime.now(timezone.utc).strftime("%H:%M:%S.%f")
 ret, execution_time = execute_commands(j, test_info)

 if ret == 1:
 test_results[j][1] = "Passed"
 pass_number = pass_number + 1
 test_results[j][2] = execution_time
 elif ret == 2:
 test_results[j][1] = "Failed"
 fail_number = fail_number + 1
 test_results[j][2] = "NA"
 elif ret == 0:
 test_results[j][1] = "Failed"
 fail_number = fail_number + 1
 test_results[j][2] = "NA"
 for n in range(j+1, test_case_start_number[i+1]):
 test_results[n][1] = "Skipped"
 skip_number = skip_number + 1
 test_results[n][0] = "NA"
 test_results[n][2] = "NA"
 break

 # 5) Saving test results in its own file

 # Creating result folder
 path = os.getcwd()
 new_dir_name = "test_result"
 path = os.path.join(path, new_dir_name)
 #Create test result folder if it doesn't exist
 try:
 os.mkdir(path)
 except FileExistsError:
 pass

 print("")
 #results = [["Date", date.today()],["Git branch", git_version[0]],["Git commit", git_version[1]],[]]
 tot_commands = pass_number + fail_number + skip_number
 pass_percent = pass_number/tot_commands * 100
 fail_percent = fail_number/tot_commands * 100
 skip_percent = skip_number/tot_commands * 100
 results = [["Date", date.today(), '', 'Tests','Amount','Percentage'],
 ["Git branch", git_version[0],'','Passed',pass_number,str(pass_percent)+'%'],
 ["Git commit", git_version[1],'','Failed',fail_number,str(fail_percent)+'%'],
 [" ",'','','Skipped',skip_number,str(skip_percent)+'%'], [" "], [" "]]
 test_results = results + test_results
 test_result_file = path + '/' + csv_file.split(".csv")[0] + "_" + test_start_datetime + ".csv"

 print("Saving results in" + test_f.strCyan(test_result_file))
 with open(test_result_file, 'w', encoding='UTF8') as f:
 writer = csv.writer(f)
 for item in test_results:
 writer.writerow(item)

 # 6) Turning of OPU and killing hypso_cli
 killing_hypso_cli(hypso_cli)

 # 7) Removing log files

 print("Deleting log files starting with 220")
 os.system("rm 220*")

 # 8) Printing complete test result
 if pass_percent == 100:
 print(test_f.strGreen("Test script Passed"))
 print("All test cases completed, no skipps, no failed")
 print(test_f.strYellow("Pass Percent: 100%"))
 else:
 print(test_f.strRed("Test script Failed"))
 print("Not all test cases completed")
 print("Completed commands:", pass_number)
 print("Failed commands:", fail_number)
 print("Skipped commands:", skip_number)
 print(test_f.strYellow("Pass Percent:" + str(pass_percent) + "%"))

def extend_test_file_with_variables(test_info, test_case_start_number, data_file, no_log):
 for i in range(len(test_info)-1, 1, -1):
 if test_info[i][3] in {'case','command'}:
 new_commands = check_for_variable_in_command(test_info[i][1], data_file, no_log)
 new_results = check_for_variable_in_command(test_info[i][2], data_file, no_log)

 # Ensure new_commands and new_results are same length, if not fill it with last value
 if len(new_commands) > len(new_results):
 if new_results == []:
 new_results = [test_info[i][2]]
 new_results.extend([new_results[-1]] * (len(new_commands) - len(new_results)))
 elif len(new_commands) < len(new_results):
 if new_commands == []:
 new_commands = [test_info[i][1]]
 new_commands.extend([new_commands[-1]] * (len(new_results) - len(new_commands)))

 if new_commands != [] or new_results != []:
 if (test_info[i][3] == "command"):
 temp_description = test_info[i][0]

 for j in range(1, len(new_commands)):
 temp = test_info[i]
 temp[0] = ''
 temp[1] = new_commands[len(new_commands) - j]
 temp[2] = new_results[len(new_results) -j]
 test_info.insert(i, temp[:])

 # Due to how python copys lists by refrencing them instead of making copyes, it is necesarry to
 # update the value for the first instance, last
 # Using the deepcopy command in the library copy, would aliviate this problem. But making a deepcopy is more
timeconsuming
 # and memory intensive
 test_info[i][0] = temp_description
 if new_commands != []:
 test_info[i][1] = new_commands[0]
 if new_results != []:
 test_info[i][2] = new_results[0]

 if (test_info[i][3] == "case"):

 # Start_number and end_number are used for knowing what parts of the in the commands file should be
duplicated.
 # And then duplicating them to the correct places
 start_number = 0
 end_number = 0
 for t in range(len(test_case_start_number)):
 if i < test_case_start_number[t]:
 start_number = test_case_start_number[t-1]

 end_number = test_case_start_number[t]
 break

 temp = test_info[start_number:end_number]

 for j in range(0, len(new_commands)-1):
 temp[i-start_number][1] = new_commands[len(new_commands)-j-1]
 temp[i-start_number][2] = new_results[len(new_results)-j-1]
 for t in range(len(temp)):
 test_info.insert(end_number, temp[len(temp) -t-1][:])

 # Due to how python copys lists by refrencing them instead of making copyes, it is necesarry to
 # update the value for the first instance, last
 # Using the deepcopy command in the library copy, would aliviate this problem. But making a deepcopy is more
timeconsuming
 # and memory intensive
 if new_commands != []:
 test_info[i][1] = new_commands[0]
 if new_results != []:
 test_info[i][2] = new_results[0]
 return test_info

def check_if_empty(list_of_lists):
 for elem in list_of_lists:
 if elem:
 return False
 return True

def check_for_variable_in_command(test_info_line, data_file1, no_log):

 # Opening the JSON data file is needed here due to python not being very memory efficient
 # If this script is executed by another script, and the data file is not opened here
 # then an error will occur when trying to read the from file.
 test_data_file = sys.argv[2 + no_log]
 with open(test_data_file, 'r') as f:
 data_file = json.load(f)

 new_commands = []
 data_from_file = []
 var_count = test_info_line.count('{')

 if '{' in test_info_line:
 s = test_info_line
 temp = (s.split('{'))[1].split('}')[0]
 temp2 = temp.split(',')
 data_from_file = data_file[temp2[0]]
 for j in range(1, len(temp2)):
 data_from_file = data_from_file[temp2[j]]

 for j in range(len(data_from_file)):
 temp3 = s.replace(('{' + temp + '}'),str(data_from_file[j]))
 new_commands.append(temp3)

 while ('{' in new_commands[-1]):
 for i in range(len(new_commands)):
 s = new_commands[i]

 temp = (s.split('{'))[1].split('}')[0]
 temp2 = temp.split(',')
 data_from_file = data_file[temp2[0]]

 for j in range(len(data_from_file)):
 try:

 temp3 = s.replace(('{' + temp + '}'),str(data_from_file[i]))
 new_commands[i] = (temp3)
 except IndexError:
 #print("hello man")
 #new_commands[i] = new_commands[i-1]
 s = new_commands[i-1]
 temp3 = s.replace(('{' + temp + '}'),str(data_from_file[-1]))
 new_commands[i] = (temp3)

 if j > len(new_commands)-1:
 s = new_commands[i-1]
 temp3 = s.replace(('{' + temp + '}'),str(data_from_file[j]))
 new_commands.append(temp3)

 return new_commands

class TimeoutException(Exception):
 pass

def Timeout_handler(signum, frame):
 raise TimeoutException()

def execute_commands(start_row, test_info):
 ret = 0
 execution_time = 0
 command = test_info[start_row][1]
 expected_result = test_info[start_row][2]
 hypso_cli = test_f.get_hypso_cli()
 print(test_f.strYellow("Executing command:") + test_f.strLightPurple(f"{command}"))
 print(test_f.strYellow("Expected result: ") + test_f.strLightPurple(f"{expected_result}"))
 hypso_cli.stdout.flush()
 execution_time_start = time.time()
 try:
 hypso_cli.stdin.write(
 f"{command}\n"
)
 except BrokenPipeError:
 hypso_cli = test_f.get_hypso_cli()
 hypso_cli.stdin.write(
 f"{command}\n"
)
 time.sleep(0)

 signal.signal(signal.SIGALRM, Timeout_handler)
 signal.alarm(int(test_info[start_row][6])) #Read timeout amount for specific command in test_info

 stdout_lines = ''

 try:
 for line in iter(hypso_cli.stdout.readline, b''):
 stdout_lines = stdout_lines + line
 if expected_result in line:
 execution_time = time.time() - execution_time_start
 print(test_f.strCyan("Command ") + test_f.strGreen(f"Completed"))
 ret = 1
 break
 except TimeoutException:
 print(test_f.strCyan("Command ") + test_f.strRed(f"Failed"))
 print(test_f.strRed("Execution of failed command resulted in:"))

 #Parse stdout data
 stdout_data = stdout_lines.split("(hypso-cli-CAN)")[-1]

 print(test_f.strPurple(stdout_data))

 if test_info[start_row][4] in {"Yes","yes"}: # Check if test case will quit if a command fails
 print(test_f.strPurple("Quitting test case due to failure and setting in test file"))
 ret = 0
 else:
 ret = 2

 signal.alarm(0)
 if ret == 1 or ret == 2:
 #Sleep for set amount of seconds before continuing
 time.sleep(int(test_info[start_row][5]))

 hypso_cli.terminate()
 return ret, execution_time

def starting_hypso_cli(hypso_cli):
 print("Starting hypso_cli")
 df_dict = dict()

 # Try to connect to OPU.
 # If this is not possible, the function get_reconnection_time will give a BrokenPipeError
 # And the program wil exit.
 try:
 hypso_cli.stdin.write(
 f"shell remote oneshot 4 5 output {OPU_EPS_CHANNEL} 0 0\n")
 hypso_cli.stdin.write(
 f"shell remote oneshot 4 5 output {OPU_EPS_CHANNEL} 1 0\n")
 test_f.get_reconnection_time(hypso_cli)
 df_dict['time_csp_ping_ms'] = test_f.get_csp_ping(hypso_cli)
 except BrokenPipeError:
 print(test_f.strRed("BrokenPipeError"))
 print(test_f.strRed("Was not able to start/connect to OPU"))
 exit()

 #reboot
 print("Rebooting hypso_cli")
 test_f.opu_reboot(hypso_cli)
 df_dict['clean_reboot_sec'] = test_f.get_reconnection_time(hypso_cli)
 print(
 test_f.strCyan(f"Used {df_dict['clean_reboot_sec']} seconds to reconnect to OPU"))

 test_f.cancel_shutdown(hypso_cli)

 test_f.sync_opu_time(hypso_cli)

 df_dict['git_version_start'] = test_f.get_git_version(hypso_cli)

 df_dict.update(test_f.get_opu_status(hypso_cli, key_postfix='start'))

 return df_dict["git_version_start"]

def killing_hypso_cli(hypso_cli):
 print("Turning off OPU")
 try:
 hypso_cli.stdin.write(
 f"shell remote oneshot 4 5 output {OPU_EPS_CHANNEL} 0 0\n"
)
 except:
 hypso_cli=test_f.get_hypso_cli()
 hypso_cli.stdin.write(
 f"shell remote oneshot 4 5 output {OPU_EPS_CHANNEL} 0 0\n"
)
 time.sleep(1)
 print("Killing hypso_cli")
 hypso_cli.kill()

def read_csv_file_to_list(file):

 with open(file, newline='') as f:
 reader = csv.reader(f, delimiter=';')
 data = list(reader)
 return data

def input_check():
 ret = 0
 no_log = 0
 if len(sys.argv) < 2:
 print(test_f.strRed("Not enough arguments"))
 usage_prompt()
 return ret, no_log
 elif len(sys.argv) > 4:
 print(test_f.strRed("Too many arguments"))
 usage_prompt()
 return ret, no_log
 elif sys.argv[1] == '-n':
 print(test_f.strYellow("Logging disabeled"))
 no_log = 1

 if not exists(sys.argv[1 + no_log]):
 print(test_f.strRed("Inputted test file does not exist"))
 usage_prompt()
 return ret, no_log
 elif len(sys.argv) == 3 + no_log:
 if not exists(sys.argv[2 + no_log]):
 print(test_f.strRed("Inputted data file does not exist"))
 usage_prompt()
 return ret, no_log
 else:
 ret = 2
 else:
 ret = 1

 return ret, no_log

def usage_prompt():
 print(" Usage of automated test file:")
 print(" Script to test commands on Lidsat")
 print(" ")
 print(" Input csv test file as first argument")
 print(" and a json data file as second argument(if needed).")
 print(" If a log file is not needed -n can be inputted as the first argument")
 print(" This will then prevent the log file from begin created")

 print(" ")
 print(test_f.strYellow("Example with data file:"))
 print(" ./test_script.py test_file.csv data_file.json")
 print(" ")
 print(test_f.strYellow("Example without data file:"))
 print(" ./test_script test_file.csv")
 print(" ")
 print(test_f.strYellow("Example for not creating log file:"))
 print(" ./test_script -n test_file.csv data_file.json")

if __name__ == "__main__":
 main()

#!/usr/bin/env python3
###
#
Author: Thomas Bolle
Date: 14.12.21
#
###

import curses
import functions as func
import curses.ascii

test_info = func.read_csv_file_to_list('test_info.csv')

class cursor_class:
 def __init__(self, row, col, row2, col2):
 self.row = row
 self.col = col
 self.row2 = row2 #row2 is used when the amount of tests is larger than can fit in the window
 self.col2 = col2
cursor = cursor_class(2,0, 0, 0)

def color_pair():
 curses.init_pair(1,curses.COLOR_BLACK, curses.COLOR_CYAN) # Black, with cyan border
 curses.init_pair(2,curses.COLOR_WHITE, curses.COLOR_GREEN) # White with green border
 curses.init_pair(3,curses.COLOR_WHITE, curses.COLOR_RED) # White with red border
 curses.init_pair(4,curses.COLOR_CYAN, curses.COLOR_BLACK) # Cyan with black border
 curses.init_pair(5,curses.COLOR_GREEN, curses.COLOR_BLACK) # Green with black border
 curses.init_pair(6,curses.COLOR_YELLOW, curses.COLOR_BLACK) # Yellow with black border

Write values from data to screen
as well as other necessary information on the screen
def write_to_screen(stdscr, data, starting_row, starting_col):
 stdscr.erase()
 column_size = 20
 col = starting_col
 stdscr.move(starting_row, col)

 maxRow, maxCol = stdscr.getmaxyx()

 start_row = 0
 if cursor.row2 > len(data) - cursor.row:
 cursor.row2 = len(data) - cursor.row
 elif cursor.row2 <= 0:
 cursor.row2 = 0

 if cursor.row2 > 0:
 start_row = cursor.row2

 # Write indexes from data, and make border around all of the tests
 for j in range(1, len(data[0])):
 stdscr.addstr(starting_row,col,data[0][j], curses.A_BOLD)

 col = col + column_size
 stdscr.move(starting_row, col)
 stdscr.addstr('|')
 stdscr.addstr(' ')
 col = col + 2

 for i in range(col-3):
 stdscr.addstr(starting_row+1, starting_col + i, '-')
 if len(data) < maxRow:
 for i in range(col-3):

E Test Menu.py

83

 stdscr.addstr(starting_row+1 + len(data), starting_col + i, '-')

 # Check if amount of tests is larger than size of terminal
 test_amount = maxRow - 1
 if len(data) < maxRow - 1:
 test_amount = len(data)

 # Input data from each specific test from data
 for i in range(1, test_amount):
 col = starting_col
 row = starting_row + 1

 stdscr.move(row+i, col)
 for j in range(1, len(data[i])):
 # Check for YES or NO in data, and set corresponding color to them if they match
 if data[i + start_row][j] in ["YES", "yes", "Y", "y", "Yes"]:
 data[i + start_row][j] = "YES"
 stdscr.addstr(row+i,col, data[i+start_row][j], curses.color_pair(2))
 elif data[i + start_row][j] in ["NO", "no", "N", "n", "No"]:
 data[i + start_row][j] = "NO"
 stdscr.addstr(row+i,col, data[i + start_row][j], curses.color_pair(3))
 else:
 stdscr.addstr(row+i, col, data[i + start_row][j])

 # Add spaces between each cell in every test
 col = col + column_size
 stdscr.move(row+i, col)
 stdscr.addstr('|')
 stdscr.addstr(' ')
 col = col + 2

 # Write Screen information that is not included from data
 stdscr.addstr(0, starting_col + len(data[0]) * 20, "Navigation of menu", curses.color_pair(5) | curses.A_BOLD)
 stdscr.addstr(1, starting_col + len(data[0]) * 20, "Quit: q or Q")
 stdscr.addstr(2, starting_col + len(data[0]) * 20, "Enter: enter key")
 stdscr.addstr(4, starting_col + len(data[0]) * 20, "YES and NO are toggled values")
 stdscr.addstr(7, starting_col + len(data[0]) * 20, "Change default values", curses.color_pair(5) | curses.A_BOLD)
 stdscr.addstr(8, starting_col + len(data[0]) * 20, "Press D or d")

 stdscr.addstr(10, starting_col + len(data[0]) * 20, "Generatge new test_sequence.csv file", curses.color_pair(5) |
curses.A_BOLD)
 stdscr.addstr(11, starting_col + len(data[0]) * 20, "Press G or g")

 stdscr.addstr(13, starting_col + len(data[0]) * 20, "Generatge new auto_test_sequence.csv file", curses.color_pair(5) |
curses.A_BOLD)
 stdscr.addstr(14, starting_col + len(data[0]) * 20, "Press A or a")

 stdscr.addstr(16, starting_col + len(data[0]) * 20, "Execute tests in test_sequence.csv file", curses.color_pair(5) |
curses.A_BOLD)
 stdscr.addstr(17, starting_col + len(data[0]) * 20, "Press R or r ")

 # Create output window
 textbox_start_row = 20
 textbox_row = 20
 textbox_col = 40
 for i in range(textbox_col + 1):
 stdscr.addstr(textbox_start_row, starting_col + len(data[0]) * 20 + i, '-')
 stdscr.addstr(textbox_start_row + textbox_row, starting_col + len(data[0]) * 20 + i, '-')

 for i in range(textbox_start_row + 1, textbox_start_row + textbox_row):
 stdscr.addstr(i, starting_col + len(data[0]) * 20, '|')
 stdscr.addstr(i, starting_col + len(data[0]) * 20 + textbox_col, '|')

 stdscr.move(cursor.row, cursor.col)

Check for key input from the keyboard, and perform
an action related to the specific key input
def check_key_input(stdscr, data):
 ret = 0

 maxRow, maxCol = stdscr.getmaxyx()
 cursor.row, cursor.col = stdscr.getyx()
 cursor.col = 0

 stdscr.move(cursor.row, cursor.col)
 stdscr.addstr('>', curses.color_pair(1))
 char = stdscr.getch()

 stdscr.move(cursor.row, cursor.col)
 stdscr.addstr(' ')

 if char == curses.KEY_UP:
 if cursor.row > 2:
 cursor.row = cursor.row - 1
 else:
 cursor.row2 = cursor.row2 - 1
 write_to_screen(stdscr, data, 0, 2)
 elif char == curses.KEY_DOWN:
 if cursor.row < maxRow-1 and cursor.row < len(data):
 cursor.row = cursor.row + 1
 else:
 cursor.row2 = cursor.row2 + 1
 write_to_screen(stdscr, data, 0, 2)

 elif char == ord('q') or char == ord('Q'): # when quitting, input 'q' og 'Q'
 ret = 1

 elif char == 10: #10 == enter key in curses
 menu_choice(stdscr, data, cursor.row, cursor.col)

 # Changing default values in the test_info.csv file
 elif char == ord('d') or char == ord('D'):
 func.write_list_to_csv_file(data, 'test_info.csv')

 # The column value of 2 + len(data[0]) * 20 + 2 is set to fit insite output window created in write_to_screen function
 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, "Default values changed", curses.color_pair(6) | curses.A_BOLD)

 # Generating new test_sequence.csv file
 elif char == ord('g') or char == ord('G'):
 func.generate_test_file(data, 'test_sequence.csv')

 # The column value of 2 + len(data[0]) * 20 + 2 is set to fit insite output window created in write_to_screen function
 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, "Test sequence generated", curses.color_pair(6) | curses.A_BOLD)

 # Generating new auto_test_sequence.csv file
 elif char == ord('a') or char == ord('A'):
 func.generate_test_file(data, 'auto_test_sequence.csv')

 # The column value of 2 + len(data[0]) * 20 + 2 is set to fit insite output window created in write_to_screen function
 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, "Auto test sequence generated", curses.color_pair(6) | curses.A_BOLD)

 # Run trough test_sequence.csv file, and show result on screen.
 # The function run_list_of_tests_in_terminal_from_file will also create a new directory that

 # contains the output to the terminal from each test
 elif char == ord('r') or char == ord('R'):

 # Check if test_sequence.csv file does exist and is not empty.
 if func.file_exist_and_not_empty('test_sequence.csv') == 0:
 list_with_tests = func.read_csv_file_to_list('test_sequence.csv')
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, 'Started testing', curses.color_pair(2))
 stdscr.refresh()

 ret = []
 output = []
 for i in range(len(list_with_tests)):
 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, 'Executing test:', curses.color_pair(6) | curses.A_BOLD)
 stdscr.addstr(22, 2 + len(data[0]) * 20 + 2, list_with_tests[i][1], curses.color_pair(4))
 stdscr.refresh()

 list_with_tests[i][1] = './' + list_with_tests[i][1] #add ./ in front of the test name

 res1, res2 = func.run_test_in_terminal(list_with_tests[i][1:],
 list_with_tests[i][0]) #second argument is the path to the location of the test
 ret.append(res1)
 output.append(res2)

 func.save_test_result(list_with_tests, ret, output, 'test_result') #save result and output for each test

 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, 'Testing finished', curses.color_pair(6) | curses.A_BOLD)

 result = ret.count(1)
 percent = int(result) / len(ret) * 100
 stdscr.addstr(22, 2 + len(data[0]) * 20 + 2, str(result) + " of " + str(len(ret)) + " Tests Passed.")
 stdscr.addstr(23, 2 + len(data[0]) * 20 + 2, "Pass Rate: " + str(percent) + "%")
 stdscr.addstr(24, 2 + len(data[0]) * 20 + 2, "To see output from each test,")
 stdscr.addstr(25, 2 + len(data[0]) * 20 + 2, "look in ")
 stdscr.addstr("test_result", curses.color_pair(4))
 stdscr.addstr(" directory")

 elif func.file_exist_and_not_empty('test_sequence.csv') == 1:
 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, '**ERROR**', curses.color_pair(3))
 stdscr.addstr(22, 2 + len(data[0]) * 20 + 2, 'test_sequence.csv file not found', curses.color_pair(3))
 stdscr.move(cursor.row, cursor.col)
 return
 elif func.file_exist_and_not_empty('test_sequence.csv') == 2:
 write_to_screen(stdscr, data, 0, 2)
 stdscr.addstr(21, 2 + len(data[0]) * 20 + 2, '**ERROR**', curses.color_pair(3))
 stdscr.addstr(22, 2 + len(data[0]) * 20 + 2, 'test_sequence.csv file is empty', curses.color_pair(3))
 stdscr.move(cursor.row, cursor.col)
 return

 stdscr.move(cursor.row, cursor.col)
 return ret

def menu_choice(stdscr, data, row, col):
 position = 0
 column_size = 20 # size of each column on the screen
 jump = column_size + 2

 while True:
 if 1: #((cursor.row + cursor.row2) <= len(data)) and (cursor.row > 1): # Check for pointer inside test window
 maxRow, maxCol = stdscr.getmaxyx()

 newcol = col + 2

 stdscr.erase()
 write_to_screen(stdscr, data, 0, 2)

 # Add highlighting of the users position in the test window
 stdscr.addstr(cursor.row, (cursor.col + 2) + position *jump,
 data[cursor.row + cursor.row2 - 1][position + 1] + ''.ljust(jump - 3 - len(data[cursor.row + cursor.row2 -1][position+1])),
 curses.color_pair(1))

 char = stdscr.getch() #get input

 if char == ord('q') or char == ord('Q'):
 break
 if char == curses.KEY_RIGHT:
 if position < (len(data[cursor.row + cursor.row2 - 2])-2):
 position = position + 1

 elif char == curses.KEY_LEFT:
 if position > 0:
 position = position - 1

 if char == curses.KEY_UP:
 if cursor.row > 2:
 cursor.row = cursor.row - 1
 else:
 cursor.row2 = cursor.row2 -1
 elif char == curses.KEY_DOWN:
 if cursor.row < maxRow -1 and cursor.row < len(data):
 cursor.row = cursor.row + 1
 else:
 cursor.row2 = cursor.row2 + 1
 else:
 position = position

 if char == 10: #10 == enter key in curses
 #Toggle YES to NO, and NO to YES without having to write it in
 if position == 0:
 if data[cursor.row + cursor.row2 -1][position+1] == 'YES':
 data[cursor.row + cursor.row2 -1][position+1] = 'NO'

 elif data[cursor.row + cursor.row2 -1][position+1] == 'NO':
 data[cursor.row + cursor.row2 -1][position+1] = 'YES'

 else:
 stdscr.addstr(cursor.row, newcol + jump * position, ''.ljust(jump-2))
 new_word = ''
 word = data[cursor.row + cursor.row2 -1][position + 1]
 stdscr.addstr(cursor.row, newcol + jump * position, word, curses.A_STANDOUT)

 while True:
 curses.curs_set(1) #turn on blinking cursor

 char = stdscr.get_wch()
 if (isinstance(char, str) and char.isprintable()):
 new_word += char
 elif char == curses.KEY_BACKSPACE:
 new_word = word[:-1]
 elif char == '\n': # Enter key in wch mode
 data[cursor.row + cursor.row2 - 1][position + 1] = word
 curses.curs_set(0) #turn off blinking cursor
 break
 word = new_word
 stdscr.addstr(cursor.row, newcol + jump * position, ''.ljust(jump-2))
 stdscr.addstr(cursor.row, newcol + jump * position, word)
 else:

 break

 stdscr.erase()
 write_to_screen(stdscr, test_info, 0, 2)

def main(stdscr: 'curses._CursesWindow'):
 color_pair()
 curses.curs_set(0) #turn off blinking cursor

 write_to_screen(stdscr, test_info, 0, 2)

 while True:
 ret = check_key_input(stdscr, test_info)
 if ret == 1:
 break

if __name__ == "__main__":
 try:
 curses.wrapper(main) #initializes curses window with standard inits
 except curses.error:
 print("**ERROR**")
 print("Your terminal is too small to fit the interface.")
 print("Please expand it and try again")

#!/usr/bin/env python3

###
#
Author: Thomas Bolle
Date: 27.01.22
#
###
Execute test_sequence.csv without using test_menu.py
Used for automation of testing.

import functions as func
import os

def main():
 path = os.path.dirname(__file__) + "/auto_test_sequence.csv"

 if func.file_exist_and_not_empty(path) == 0:
 list_with_tests = func.read_csv_file_to_list(path)
 list_with_tests_2 = func.read_csv_file_to_list(path)
 ret = []
 output = []
 for i in range(len(list_with_tests)):
 list_with_tests[i][1] = './' + list_with_tests[i][1] #add ./ in front of the test name

 res1, res2 = func.run_test_in_terminal(list_with_tests[i][1:], list_with_tests[i][0])
 ret.append(res1)
 output.append(res2)

 func.save_test_result(list_with_tests, ret, output, 'auto_test_result')

 print("Testing Finished")

 if 0 in ret:
 print("Failed Tests:")
 for i in range(len(ret)):
 if ret[i] == 0:
 temp = ""
 for j in range(1, len(list_with_tests_2[i])):
 temp = temp + " " + str(list_with_tests_2[i][j])
 print(temp)
 print(" ")
 result = ret.count(1)
 percent = int(result) / len(ret) * 100
 print(str(result) + " of " + str(len(ret)) + " Tests Passed")
 print("Pass rate: " + str(percent) + "%")

 elif func.file_exist_and_not_empty('auto_test_sequence.csv') == 1:
 print("**ERROR**")
 print("auto_test_sqeuence.csv file not found")

 elif func.file_exist_and_not_empty('auto_test_sequence.csv') == 2:
 print("**ERROR**")
 print("auto_test_sequence.csv file is empty")

if __name__ == "__main__":
 main()

F Auto test execution.py

89

#!/usr/bin/env python3

###
#
Author: Thomas Bolle
Date: 14.12.21
#
###

import shutil
import subprocess
import tempfile
import os
import csv
import json
from shutil import rmtree

Write list to a csv file
def write_list_to_csv_file(data, file):
 with open(file, 'w', encoding='UTF8', newline='') as f:
 writer = csv.writer(f)
 for item in data:
 writer.writerow(item)

Run test in terminal and check for the argument "Passed".
If passed, then return 1
If Passed is not found, the function will return 0.
Function also returns output from the test to the terminal.
def run_test_in_terminal(test_with_parameters, location_of_test):
 ret = 1

 path = os.path.join(os.path.dirname(__file__), location_of_test)

 with tempfile.NamedTemporaryFile(mode = 'w+t', delete = False) as tempf:
 proc = subprocess.Popen(test_with_parameters, cwd = path, stdout=tempf, stderr=tempf)

 # Wait for process to finish before continuing
 proc.wait()
 tempf.seek(0)
 output = tempf.read()

 # Check if any of the strings in pass_check exist in output
 pass_check = ["Passed", "passed", "PASSED"]
 if next((x for x in pass_check if x in output), False):
 ret = 1
 else:
 ret = 0

 return ret, output

Save result from the tests in a new directory, with a master csv file
containing the result for each test
and a file for each specific tests containing the output from the test.
def save_test_result(data, result, output, dirName):
 new_dir = dirName
 current_dir = os.getcwd()
 path = os.path.join(current_dir, new_dir)

 #Try to make a directory, if it fails, due to FileExistsError,
 # then delete the directory and make a new one
 try:

G Functions for Test Menu.py and Auto test execution.py

90

 os.mkdir(path)
 except FileExistsError:
 shutil.rmtree(path) #shutil.rmtree is used for deleting directories that are not empty
 os.mkdir(path)

 #stdscr.addstr(len(data) + 8, 2, str(result) + " of " + str(len(ret)) + " Tests Passed. " + str(percent) + "% pass rate")
 temp = []
 #result_passed = result.count(1)
 temp.append(["Number of Passed tests", "Number of tests", "Pass Rate [%]"])
 temp.append([result.count(1), len(result), int(result.count(1)/len(result)*100)])
 temp.append("")
 temp.append(["Result", "Test"])

 for i in range(len(result)):
 data[i][1] = data[i][1].replace("./", '').replace('.py', '')
 with open(os.path.join(path, data[i][1]), 'w', encoding='UTF8', newline='') as f:
 print(output[i], file=f)

 if result[i] == 1:
 temp.append(["Pass", data[i][1]])
 else:
 temp.append(["Fail", data[i][1]])

 #temp.append([result[i], data[i][1]])

 # Create master file with result for each test
 write_list_to_csv_file(temp, os.path.join(path, "index.csv"))

#Run a list of tests in terminal
def run_list_of_tests_in_terminal_from_file(file):
 list_with_tests = read_csv_file_to_list(file)

 ret = []
 output = []
 for i in range(len(list_with_tests)):
 list_with_tests[i][1] = './' + list_with_tests[i][1] #add ./ in front of the test name

 res1, res2 = run_test_in_terminal(list_with_tests[i][1:], list_with_tests[i][0]) #second argument is the path to the location of
the test
 ret.append(res1)
 output.append(res2)

 save_test_result(list_with_tests, ret, output) #save result and output for each test
 return ret

Go through a list.
If an element in the list contains 'YES' then the list is written to a csv file.
Function will also remove the YES string from the list
def generate_test_file(data, file):
 temp = []
 for i in range(0, len(data)):
 if 'YES' in data[i]:
 temp.append(data[i][0:1] + data[i][2:])

 write_list_to_csv_file(temp, file)

Read csv file and put the data into a list
def read_csv_file_to_list(file):
 with open(file, newline='') as f:
 reader = csv.reader(f, delimiter=",")
 data = list(reader)
 return data

Check if a file exists and if it is empty
def file_exist_and_not_empty(file):
 try:
 read_csv_file_to_list(file)
 if file_empty(file):
 return 2
 return 0
 except FileNotFoundError:
 return 1

def file_empty(file):
 file_contents = read_csv_file_to_list(file)
 if not file_contents:
 return 1
 return 0

M
aster's thesis at N

TN
U

, 2022
Thom

as H
alvard Bolle

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Thomas Halvard Bolle

Operationalizing testing setup used
at NTNU SmallSat Lab

Design of an Automatic Test-framework for On-
board Software of Satellites

Master’s thesis in Electronic Systems Design
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Introduction
	The HYPSO Project
	CubeSats
	Objective
	Structure of Master's thesis

	System Background
	HYPSO
	Breakout Board (BoB) and OPU
	Network Communication
	CSP
	CAN

	HYPSO software
	Hypso-sw
	Hypso-cli
	Assmebly-integration-test
	Hypso-sw-build-check

	Test Setup
	Test Menu

	Test Frameworks
	Definition of testing
	Test types
	Functional Testing
	Unit test
	Integration test
	Non-functional testing
	Performance testing
	Reliability testing

	Test automation frameworks
	Linear Testing Framework
	Modular Based Testing Framework
	Library Architecture Testing Framework
	Data-Driven Testing Framework
	Keyword-Driven Testing Framework
	Hybrid Testing Framework

	Methods and Tools
	Docker
	Git & GitHub workflow
	Issues
	Branch
	Commit
	Pull request
	Review
	Merge

	GitHub Actions

	Analysis & Requirements
	HYPSO current test framework
	Requirements
	Framework analysis
	Linear Testing Framework
	Modular Based Testing Framework
	Library Architecture Testing Framework
	Data-Driven Testing Framework
	Keyword-Driven Testing Framework
	Hybrid Testing Framework

	Design & Implementation
	Design
	Test file and data file
	Data-file
	Test file

	Test script
	Input
	Cycle through information from test file
	Connect to hypso-cli and start OPU
	Cycle through test cases in test file
	Disconnect from hypso-cli
	Save results from test script into test result file

	Test menu
	GitHub-Actions
	Setting up GitHub Action Runner
	Workflow files

	Results
	Simple Test File
	Simple first test
	First Data File
	Pull request assembly-integration-test
	Pull request hypso-sw
	First test result file

	Simple second test
	Second Data File
	Pull request assembly-integration-test
	Pull request hypso-sw
	Second test result file

	Complex test
	Test file & Data file
	Pull requests
	Result file

	Discussion
	Analysis
	Fulfillment of Requirements

	Conclusion
	Future Work
	Appendix
	Hypso-cli commands
	Hypso-sw-build-check
	Dockerfile
	Entrypoint.sh

	PicoZed specifications
	Test_Script.py
	Test_Menu.py
	Auto_test_execution.py
	Functions for Test_Menu.py and Auto_test_execution.py

