
A Rolling Horizon Approach for Scheduling of
Multiproduct Batch Production and Maintenance

Using Generalized Disjunctive Programming Models

Ouyang Wua, Giancarlo Dalle Aveb,c, Iiro Harjunkoskib, Lars Imslanda,∗

aDepartment of Engineering Cybernetics, Norwegian University of Science and Technology,
7491 Trondheim, Norway

bABB Power Grids Research, Mannheim, Germany
cProcess Dynamics and Operations Group, Department of Biochemical & Chemical

Engineering, TU Dortmund, 44221 Dortmund, Germany

Abstract

This paper considers joint production and maintenance scheduling of a multi-
product batch chemical manufacturing plant. A Generalized Disjunctive Progra-
mming-based formulation is proposed for the scheduling problem, integrat-
ing additional features inspired by an industrial case study, namely sequence-
dependent degradation and limited final product storage tanks. To properly
consider maintenance in the context of production scheduling, a long time hori-
zon needs to be considered, resulting in high computational complexity. To this
end, a new rolling horizon approach is proposed to find good quality solutions
to these scheduling problems with their extended horizons in order to better
consider the trade-offs between production and maintenance scheduling. The
proposed scheduling formulation and rolling horizon approach are tested using
an industrial case study and analyzed with a variety of tuning parameter sets.

Keywords: maintenance scheduling, sequence-dependent degradation,
performance decay, rolling horizon method, precedence models

1. Introduction

Batch scheduling is an important topic in the process industries as it is appli-
cable to a wide variety of industrial production plants. These batch production
plants often produce multiple products requiring several steps. Furthermore, it
is often desirable to combine additional features into the scheduling problems5

including (but not limited to), storage constraints, equipment condition, and
maintenance concerns. Due to the many different complex tradeoffs between
these concerns, it is desirable to combine them into a single scheduling model as

∗Corresponding author
Email address: lars.imsland@ntnu.no (Lars Imsland)

Preprint submitted to Computers & Chemical Engineering March 14, 2022

effective scheduling is a requirement for efficient plant operations in the process
industries (Harjunkoski, 2016).10

Many types of optimal batch scheduling models exist in literature today. A
comprehensive review of these types of models can be found in Méndez et al.
(2006). A common method of modeling scheduling problems (and optimiza-
tion problems in general) is via Generalized Disjunctive Programming (GDP).15

GDP has been applied to many relevant process industry problems including
strip packing (Trespalacios and Grossmann, 2017) and process design (Chen
and Grossmann, 2019a). A review of modeling paradigms using GDP can be
found in Chen and Grossmann (2019b). A specific example in scheduling comes
from Castro and Grossmann (2012) who used GDP to derive a set of generic20

continuous-time scheduling models and compared them based on computational
efficiency.

A key feature of scheduling problems is the type of material transfer and
storage policies presented in the plant. In many facilities, the transfer of ma-25

terials is highly constrained because it requires shared resources, such as the
presence of finite storage units. Material and storage policies in batch schedul-
ing plants can be modeled with a variety of formulations. A precedence-based
model for storage was proposed by (Sundaramoorthy and Maravelias, 2008).
Their problem featured limited storage, both in terms of size and number of30

vessels, as well as constraints on the time that product could spend in storage.
Kilic et al. (2011) used a state-task network model to explicitly model storage
vessels. A make-and-pack process with finite intermediate buffer was proposed
by Klanke et al. (2020). They used a combined immediate precedence-based
model and discrete-time model and solved the problem using an iterative order35

insertion heuristic.

Another topic of interest to scheduling is to integrate equipment condition
and maintenance decisions into production scheduling as resources are shared
by maintenance and production processes (e.g. processing units). A continuous-40

time model for maintenance scheduling in a gas power plant was presented by
Castro et al. (2014). Their formulation was derived using GDP and featured
scheduling of the turbines as well as of maintenance teams. Turbines were also
studied by Xenos et al. (2016), but in the context of a compressor network for a
chemical plant. Their discrete-time formulation considered two different wash-45

ing procedures in order to reduce additional fouling-based energy costs. Com-
bined maintenance and production scheduling to avoid a decrease in produc-
tion was studied by Vieira et al. (2017). They considered a bio-pharmaceutical
process under performance decay, where maintenance must occur before a max-
imum number of batches is reached. They formulated the problem using a50

continuous-time resource-task network model and tested the problem with dif-
ferent objectives including maximizing total profit, and minimizing number of
maintenance activities. Maintenance and production scheduling of a steel plant
was studied by Biondi et al. (2017). They presented a multi-time scale discrete-

2

time model coupled with a remaining useful lifetime model to keep track of the55

assets’ life cycles. A steel plant was also studied by Dalle Ave et al. (2019b)
but on a shorter time scale. Their model featured operating mode-dependent
degradation with the goal to minimize total operating and maintenance costs.

Due to the complexity of many industrial processes, additional solution algo-60

rithms or model reformulations, are needed to solve the mixed-integer scheduling
problems in industrially relevant time-frames. One reason that these problems
are often difficult to solve is due to symmetry or equivalent solutions. By adding
symmetry-breaking constraints, one can reduce the size of the search space. An
example of a work that considers symmetry breaking constraints is Trespalacios65

and Grossmann (2017). In this work, symmetry breaking constraints are applied
to regions that can be represented with the selection of two different disjunc-
tive terms. An example from scheduling comes from the work of Baumann and
Trautmann (2014), who pointed out that symmetry in short-term scheduling
often arises due to identical batches. They removed said symmetry by imposing70

arbitrary sequences for each group of identical batches, leading to better compu-
tational efficiency. Decomposition approaches on the other hand, reduce the size
of the original scheduling problem by breaking into smaller pieces which can be
solved separately. A two-step iterative method was proposed by Aguirre et al.
(2012) to solve a semiconductor manufacturing problem. In their approach, a75

general scheduling is performed at the first stage, with a more detailed model
being used in the second. The solution is then iteratively improved using a
reduced MILP at each step. Mean value cross decomposition was applied to
a pulp-and-paper as well as a steel case study by Hadera et al. (2019). The
method is not guaranteed to converge, however experimentally it was shown to80

produce high quality solutions quickly.

Time-based decomposition are popular decomposition schemes and they of-
ten manifest themselves as rolling horizon (RH) algorithms. Rolling horizon
approaches are iterative methods in which a subset of the horizon is studied85

in detail at every iteration while the rest is represented in an aggregate form.
Decisions are fixed in one iteration and the detailed portion of the time hori-
zon is slid for the next iteration until the whole horizon has been scheduled in
detail. A classic example of a rolling horizon being applied to scheduling prob-
lems is through the work of Dimitriadis et al. (1997). The aggregate model in90

this case was formulated using weighted sums of corresponding exact variables.
Rolling horizon algorithms are often also used to bridge models of different time
scales. Li and Ierapetritou (2010) use a rolling horizon approach to bridge the
gap between planning and scheduling, where targets for the scheduling horizon
come from the higher level planning model. Another work comes from Dalle95

Ave et al. (2019a). In this work near- and short-term electricity-related con-
cerns were combined into a single scheduling model. The discrete-time rolling
horizon algorithm used a non-uniform grid to distinguish between the detailed
and aggregate model.

100

3

This work builds upon previous works by the same authors. The problem in
question is production and maintenance scheduling of a multiproduct chemical
manufacturing plant with sequence-dependent degradation (Wu et al., 2020a)
and limited storage tanks (Wu et al., 2020b). This work summarizes the previous
works and proposes a GDP-based formulation for some of the earlier presented105

features. Furthermore, the case study is extended to industrially-relevant time
horizons in order to better understand the complex tradeoffs between produc-
tion and maintenance scheduling. To deal with these extended horizons, a novel
rolling horizon algorithm is proposed and analyzed for a wide variety of param-
eter sets.110

2. Problem Description

This work considers an industrial scheduling case study in a chemical batch
plant. The process in this case study consists of multiple stages with parallel
units in some stages. The topology of the batch process is presented in Fig. 1.115

For each batch run, a set of raw materials are charged and mixed in a monomer
make-up vessel referred to as unit U1, which is the first production stage. The
monomer fluid is then mixed with oil and transferred through homogenizers to
form a monomer emulsion, which is subsequently fed to one of two parallel batch
reactors (denoted as units U2 and U3) in the second stage. Emulsion polymer-120

ization in the batch reactors turns the monomer emulsion to polymer products.
The products are then transferred and stored in temporary tanks for quality
checks, which comprises the third production stage. The plant produces multi-
ple grades of product with fixed batch sizes by using various different recipes in
the production stages (Stage 1 and Stage 2) .125

Batch
Orders

Batch
Recipes

Stage 1:
Monomer

Make-up (L1)

Stage 2:
Polymerization
Reaction (L2)

U2
Demand_R1

Demand_R2

Demand_R3

R1

R2

R3

Stage 3:
Quality

Check (L3)

L1-Tr
Homogenizer

L2 -Tr
Product Transfer

U3

U1 Tanks

Figure 1: Process topology of case study

One of the types of degradation in the case study is fouling of the batch
reactors. The fouling is formed by polymer residuals inside the reactors and the
associated heat exchangers. Due to the fouling it is more difficult to cool the
reactor, which results in an increased batch time. As the fouling continues to130

build-up, the pressure drop across the heat exchanger increases. Due to safety
concerns, the reactors must be shut down and cleaned before a complete block-
age occurs. An upper limit of the pressure drop defines the latest point at which

4

reactor maintenance must occur.
135

The evolution of fouling in the batch reactors, and the associated mainte-
nance actions, are some of the key bottlenecks in the case study and therefore
need to be explicitly considered in the production scheduling problem. A key
performance indicator (KPI) of fouling is taken to measure the level of fouling
at the start of each batch run in the reactors (Wu et al., 2019a). The sequence140

of batch recipes that determine the conditions of polymerization is the main fac-
tor that affects the rate of fouling evolution from an operational view. A model
which describes the sequence-dependent fouling evolution between batches that
depends on the batch recipe and the fouling KPI after the previous batch in the
same reactor was developed in Wu et al. (2020a).145

The tanks in the third stage store multiple batches of products in integer
quantities. A storage tank can only be occupied by product of one recipe at
a time. A quality check is performed in a tank before the products inside are
transferred for further distribution. Since one tank can only store product that150

is associated to a recipe, the number of tanks will put constraints on the recipes
currently in production, and therefore the sequences of the multiproduct batch
runs have to meet the corresponding storage constraints.

The batch scheduling model in this paper considers the main features men-155

tioned above to generate practical and accurate solutions for the case study.
Since the batching decisions are assumed to have been made elsewhere, the con-
sidered decisions in this scheduling model are: (1) assignment of various batches
to one of the units in each stage; (2) sequencing of batches considering fouling
and storage constraints; (3) scheduling of maintenance operations throughout160

the course of production.

Nomenclature

Indices

p, p′, p′′ Production batch
m Unit
s Stage
r Batch recipe
g, g′ Batch group
(r, g) Recipe-specific group assigned to a storage tank

Sets

P Set of production orders
Pr Subset of P using batch recipe r
Pn
sub Subset of P for scheduling in the nth time horizona

Pnew Subset of P that are not scheduled during RH iterationsa

Pfix Subset of P that are sequentially fixed during RH iterationsa

aSee Algorithm 1

5

Sets

Pn
fix Subset of P that are sequentially fixed in nth time horizona

S Stages of production units
Sst Stage of storage tanks
Sf Subset of S containing units in Mf

R Batch recipes
M Units of production
Mst Storage tanks
Mf Subset of M affected by degradation
Ms Subset of M in stage s
Gr Set of groups consisting of r-recipe batches

Parameters

tppm Fixed processing time of batch run p at unit m
tsm Time of availability in unit m
tc Time cost for maintenance in unit m ∈Mf

trps Time for material transfer of batch run p in stage s to the next
stage

tqc Time for quality check and product transfer in storage tanks
FIm Initial KPI value of fouling in unit m ∈Mf

Fc KPI value after cleaning
Fmax Threshold of fouling KPI in in unit m ∈Mf

Afpm,
Bfpm

Recipe-specific parameters of fouling model for batch run p in
unit m ∈Mf

Apm Proportional parameter for extra processing time of batch run
p due to fouling in unit m ∈Mf

λ Weight parameter
THP Length of time horizona

Cinit Initial condition and availability of unitsa

Continuous variables

Tsps Start time of batch run p in stage s
Ts(r,g) Start time of group (r, g) in a storage tank
Te(r,g) End time of group (r, g) in a storage tank
Teps End time of batch run p in stage s
Tpps Processing time of batch run p in stage s
Tfp Extra processing time of batch run p in unit m ∈ Mf due to

degradation
Tcp Time for maintenance right before batch p in unit m ∈Mf

fpm Fouling KPI of unit m ∈Mf at the beginning of batch p
fem Fouling KPI of unit m ∈Mf after finishing all batch runs
MS Makespan

Boolean variables

XGpp′m Sequencing decision for batch p preceding batch p′ in unit m ∈
M \Mf

aSee Algorithm 1

6

Boolean variables

XG1
pp′m Assignment decision for at most one of batches p and p′ in unit

m ∈M \Mf

Ypm Assignment decision of batch p in unit m ∈M
Xg

pp′s Sequencing decision for batch p preceding batch p′ in stage
s ∈ S \ Sf

Xpp′s Sequencing decision for batch p immediately preceding batch
p′ in a certain unit of stage s ∈ Sf

XF
pm Sequencing decision of batch p in the first place of unit m ∈Mf

XL
pm Sequencing decision of batch p in the last place of unit m ∈Mf

Xf1
pp′m Sequencing decision for batch p immediately preceding batch

p′ in unit m ∈Mf

Xf2
pm Sequencing decision for maintenance immediately preceding

batch p in unit m ∈Mf

Xf3
pm Sequencing decision for batch p in the first place of unit m ∈

Mf

Xf4
pm Assignment decision of batch p in a unit other than m ∈Mf

Zp Decision of maintenance immediate before batch i in a certain
unit m ∈Mf

Xim1
pp′s Sequencing decision for batch p immediately preceding batch

p′ in the same unit in stage s ∈ Sf without maintenance in
between

Xim2
pp′s Sequencing decision for batch p immediately preceding batch p′

in the same unit in stage s ∈ Sf with maintenance in between
XF im3

pm Sequencing decision for batch p in the first place of unit m ∈
Mf without maintenance occurring before

XF im4
pm Sequencing decision for batch p in the first place of unit m ∈

Mf with maintenance occurring before
XLim3

pm Sequencing decision for batch p in the last place of unit m ∈
Mf without maintenance occurring before

XLim4
pm Sequencing decision for batch p in the last place of unit m ∈

Mf with maintenance occurring before
XL0

m No assignment of batches in unit m ∈Mf

165

3. GDP-based Formulation

This section presents a GDP-based formulation for the scheduling problem
that is described in Section 2. The indices, sets, parameters and variables in
the formulation are summarized in the Nomenclature section.

170

In the scheduling model, a set of batches are assigned to one of the parallel
units in each production stage and are sequenced as a combination of batch
recipes in each unit; these batches generate multiple grades of products or semi-
finished products to be transferred to the next stage. The sequences of these

7

batch runs in the production stages can be described using two types of prece-
dence concepts. In Méndez and Cerdá (2003); Castro and Grossmann (2012),
a so-called general precedence formulation which considers Boolean variables
XGpp′m and XG1

pp′m, such that XGpp′m is true if batch p and p′ are both as-

signed to unit m and batch p is sequenced before batch p′; XG1
pp′m is true if at

least one of batch p and batch p′ is not assigned to unit m. These Boolean vari-
ables represent a set of individual terms of disjunctions for sequencing any two
batches in a stage. A set of disjunctive constraints describe how the timing of
two batches in a stage are connected using the exclusive OR operator Y, which
yields the following GDP-based constraints:[

XGp′pm

Tep′s + trp′s 6 Tsps

]
Y
[

XGpp′m

Teps + trps 6 Tsp′s

]
Y XG1

p′pm ,

∀ p, p′ ∈ P : p′ < p, m ∈Ms, s ∈ S \ Sf (1)

where the disjunctive constraint XG1
p′pm is empty because no timing constraints

exist for two batches assigned to different parallel units; Tsps and Teps denote
the start and end time of batch p in stage s, and trp′s is the transfer time
of products or semi-finished products to the next stage. XGpp′m is further
represented using types of Boolean variables Xg

pp′s and Ypm as Eqs. (2) and (3)

show, where Xg
pp′s is true if batch p starts earlier than batch p′ in stage s,

and Ypm is true if batch p is assigned to unit m. Equation (4) presents the
constraints that batch p is assigned to one of the units in stage s. This type
of precedence model is used for the production stages that have no degradation
issues (s ∈ S \ Sf), which has the advantage of fewer variables compared to
other formulations.

XGpp′m ⇐⇒ Xg
pp′s ∧ Ypm ∧ Yp′m, ∀ p 6= p′ ∈ P, s ∈ S \ Sf , m ∈Ms (2)

XGp′pm ⇐⇒ ¬Xg
pp′s ∧ Ypm ∧ Yp′m, ∀ p 6= p′ ∈ P, s ∈ S \ Sf , m ∈Ms (3)∑

m∈Ms

Ypm = 1, ∀ p ∈ P, s ∈ S (4)

The second type of precedence formulations for batch sequencing uses the
concept of immediate precedence (Gupta and Karimi, 2003). This formulation
considers Boolean variables Xpp′s to be true if batch p and batch p′ are assigned
to the same unit and batch p′ is immediately sequenced after batch p′. In
regards to to disjunctions for scheduling batch p in stage s, two other types of
disjunctive terms are represented using Boolean variables XF

pm and XL
pm; XF

pm

is true if batch p is in the first place of the sequence in unit m, while XL
pm is

true if batch p is in the last place of the sequence in unit m. The disjunctions
and the corresponding disjunctive constraints for the timing of batches are

Y
p′ 6=p∈P

[
Xp′ps

Tep′s + trp′s 6 Tsps

]
Y

m∈Ms
XF

pm, ∀ p ∈ P, s ∈ Sf (5)

Y
p′ 6=p∈P

[
Xpp′s

Teps + trps 6 Tsp′s

]
Y

m∈Ms
XL

pm, ∀ p ∈ P, s ∈ Sf (6)

8

where terms XF
pm and XL

pm present no disjunctive constraints for the timing of
batch p in unit m given other existing parallel units. Boolean variables Xpp′s

and Ypm are associated in Eq. (7) to put constraints on the assignment of two
consecutive batches in one unit.

Ypm 6 Yp′m + 1−Xp′ps −Xpp′s, ∀ p 6= p′ ∈ P, m ∈Ms, s ∈ Sf (7)

In the stage of batch reactors, sequences of recipe-specific batch runs in-
fluence the evolution of fouling in the reactors, and an immediate precedence
formulation can be used to represent the fouling evolution from batch to batch
according to a specific batch sequence. This formulation considers types of
Boolean variables: Xf1

pp′m is true if batch p and batch p′ are assigned to unit m175

and batch p is immediately sequenced before batch p′; Xf2
pm is true if a main-

tenance is carried out right before batch p in unit m; Xf3
pm is true if batch p

is in the first place of the sequence in unit m and no maintenance happens
right before batch p in the same unit; Xf4

pm is true if batch p is not assigned
to unit m. The Boolean variables describe individual terms of disjunctions for180

the fouling evolution in batch p, and the GDP-based constraints that model the
disjunctions are:

Y
p′ 6=p∈P

[
Xf1

p′pm

fpm = Afp′m · fp′m +Bfp′m

]
Y
[

Xf2
pm

fpm = Fc

]
Y
[

Xf3
pm

fpm = FIm

]
Y
[

Xf4
pm

fpm = 0

]
, ∀ p ∈ P, m ∈Mf (8)

Here, fpm denotes the fouling KPI of unit m ∈ Mf at the beginning of batch
p, and Mf refers to the set of batch reactors; fpm is computed from the fouling
indicator of the immediately preceding batch fp′m using a recipe-specifc degra-

dation model {Afp′m, Bfp′m} when Xf1
pp′m is true (Wu et al., 2019b); fpm is

reverted back to Fc when the unit is cleaned right before batch p and Xf2
pp′m is

true; fpm equals to the initial fouling condition FIm when Xf3
pp′m is true; fpm

equals zero when batch p is not assigned to unit m. An allowed threshold of
fouling Fmax is set as the upper-bound of fpm

fpm 6 Fmax, ∀ p ∈ P, m ∈Mf

The Boolean variables in Eq. (8) are further represented using the Boolean
variables from Eqs. (2) and (5) and yield

Xf1
pp′m ⇐⇒ ¬Zp ∧Xpp′s ∧ Yp′m ∧ Ypm, ∀ p 6= p′ ∈ P, s ∈ Sf , m ∈Ms (9)

Xf2
pm ⇐⇒ Zp ∧ Ypm, ∀ p ∈ P, m ∈Mf (10)

Xf3
pm ⇐⇒ ¬Zp ∧XF

pm, ∀ p ∈ P, m ∈Mf (11)

Xf4
pm ⇐⇒ ¬Ypm, ∀ p ∈ P, m ∈Mf (12)

9

where, Boolean variable Zp is true if batch p is assigned to a unit and a main-
tenance is immediately sequenced before batch p in the same unit.

185

To consider maintenance in addition to the sequences of batches in the re-
actors, an immediate precedence formulation extends the GDP-based logic con-
straints in Eqs. (5) and (6) to

Y
p′ 6=p∈P

[
Xim1

p′ps

Tep′s + trp′s 6 Tsps

]
Y

p′ 6=p∈P

[
Xim2

p′ps

Tep′s + trp′s + tc 6 Tsps

]
Y

m∈Ms

XF im3
pm Y

m∈Ms

XF im4
pm , ∀ p ∈ P, s ∈ Sf (13)

Y
p′ 6=p∈P

[
Xim1

pp′s

Teps + trps 6 Tsp′s

]
Y

p′ 6=p∈P

[
Xim2

pp′s

Teps + trps + tc 6 Tsp′s

]
Y

m∈Ms

XLim3
pm Y

m∈Ms

XLim4
pm , ∀ p ∈ P, s ∈ Sf (14)

where Boolean variable Xim1
p′ps is true if batch p′ is immediately sequenced before

batch p in the same unit and no maintenance is carried out between them, while
Xim2

p′ps is true if batch p′ is immediately sequenced before batch p in the same
unit and a maintenance task is performed between them. The Boolean variable
XF im3

pm is true if batch p is sequenced in the first position of unit m without

maintenance occurring before; Boolean variable XF im4
pm is true if batch p is

sequenced in the first place of unit m and a maintenance operation is scheduled
right before batch p. Similarly, the Boolean variables XLim3

pm and XLim4
pm are

defined that XLim3
pm is true if batch p is sequenced in the last place of unit m

without maintenance in advance; XLim4
pm is true if batch p is sequenced in the last

place of unitm with maintenance performed right before batch p. These Boolean
variables are equivalent to the logic expressions using the Boolean variables from
Eqs. (5) and (6) and Zp, as Eqs. (15) to (20) show.

Xim1
p′ps ⇐⇒ ¬Zp ∧Xp′ps, ∀ p 6= p′ ∈ P, s ∈ Sf (15)

Xim2
p′ps ⇐⇒ Zp ∧Xp′ps, ∀ p 6= p′ ∈ P, s ∈ Sf (16)

XF im3
pm ⇐⇒ ¬Zp ∧XF

pm, ∀ p ∈ P, m ∈Mf (17)

XF im4
pm ⇐⇒ Zp ∧XF

pm, ∀ p ∈ P, m ∈Mf (18)

XLim3
pm ⇐⇒ ¬Zp ∧XL

pm, ∀ p ∈ P, m ∈Mf (19)

XLim4
pm ⇐⇒ Zp ∧XL

pm, ∀ p ∈ P, m ∈Mf (20)

The disjunctions for the assignment of batch p in stage s are modeled as the
GDP-based logic constraints

Y
m∈Ms,
s∈Sf

 Ypm
Tpps = tppm + Tfp
Tsps > tsm + Tcp

 Y
m∈Ms,
s∈S\Sf

 Ypm
Tpps = tppm
Tsps > tsm

 , ∀ p ∈ P (21)

10

where Tpps denotes the processing time of batch p in stage s and it is determined
by Boolean variable Ypm; tppm is the unit-specific production time of batch p
in unit m, and Tfp is the extra processing time because of the fouling in the
batch reactors, which is estimated to be proportional to fouling KPIs as Eq. (22)
shows. The start and end time of batch p are constrained according to Tpps in190

Eq. (23). The start time Tsps of batch p is always later than the time tsm that
unit m becomes available when Ypm is true, and Tcp is the cleaning time before
batch p as Eq. (25) shows. These disjunctive constraints can be reformulated
directly as MILP constraints as presented in Eqs. (24) and (26).

Tfp =
∑

m∈Mf

Apm · fpm, ∀ p ∈ P (22)

Tsps + Tpps = Teps, ∀ p ∈ P, s ∈ S (23)

Tpps =

{ ∑
m∈Ms

tppm · Ypm + Tfp, ∀ p ∈ P, s ∈ Sf∑
m∈Ms

tppm · Ypm, ∀ p ∈ P, s ∈ S \ Sf
(24)

Tcp = tc · Zp, ∀ p ∈ P (25)

Tsps >

{ ∑
m∈Ms

tsmYpm + Tcp, ∀ p ∈ P, s ∈ Sf∑
m∈Ms

tsmYpm, ∀ p ∈ P, s ∈ S \ Sf
(26)

In the final stage, the storage and quality check stage, products generated
from batch runs in the production stages are transferred to one of the storage
tanks, and a quality check is performed once the tank is full of products from
the same recipe. A concept of groups is introduced to represent batches that
generate the same grade of product to be stored in a tank together for the final
quality check (Wu et al., 2020b). Each group has index (r, g) to denote a type of
recipe r and an index number of groups g that belong to recipe r. These groups
are associated with batches through Boolean variables Yp(r,g), Y

f
p(r,g) and Y l

p(r,g).

Yp(r,g) is true if batch p is assigned to group (r, g); Y f
p(r,g) is true if batch p is in

the first place of the batch sequence in group (r, g), and Y l
p(r,g) is true if batch

p is in the last place of the batch sequence in group (r, g). In the considered
scenario, all batches generate the same quantity of product. Therefore, the
same number of batches of any product type are needed to fill up the tanks
before the final quality check and transfer of products out of storage can be
performed. The number of batches in a group is fixed and corresponds to the
tank volume. The number of groups is predefined giving a predefined batch set
in the scheduling model, and Yp(r,g), Y

f
p(r,g) and Y l

p(r,g) are predefined to assign

corresponding batches in the groups. Product transfer of batches from the
production stages to the storage stage are therefore represented as assignment
and sequencing of groups in the tanks. Similar to the sequencing constraints of
batches in Eq. (1) a general precedence formulation considers disjunctions for
sequencing of any two of the groups, and Boolean variables XG(r′,g′)(r,g)m and
XG1(r′,g′)(r,g)m describe individual terms in each disjunction. XG(r′,g′)(r,g)m

is true when group (r′, g′) is sequenced before group (r, g) in tank m ∈ Mst;

11

XG1(r′,g′)(r,g)m is true if any one of the two groups is not assigned in tank m.
The GDP-based constraints for these disjunctions are[

XG(r′,g′)(r,g)m

Te(r′,g′) 6 Ts(r,g)

]
Y
[

XG(r,g)(r′,g′)m

Te(r,g) 6 Ts(r′,g′)

]
Y XG1(r′,g′)(r,g)

∀ r, r′ ∈ R, g ∈ Gr, g
′ ∈ Gr′ : g′ < g, m ∈Mst (27)

where Ts(r,g) and Te(r,g) are the start and end times of group (r, g) following
the above disjunctive timing constraints of the groups. The timing of groups are
also associated with the timing of batches in the groups. These are determined
with the known first and last place batches within the group,

Te(r,g) >
∑
p∈Pr

(Tep(s−1) + tqc) · Y l
p(r,g), ∀ r ∈ R, g ∈ Gr, s ∈ Sst (28)

Ts(r,g) =
∑
p∈Pr

Tep(s−1) · Y f
p(r,g), ∀ r ∈ R, g ∈ Gr, s ∈ Sst (29)

where Tep(s−1) is the end time of batch p in the upsteam stage of the tanks; tqc195

denotes the time of quality check and product transfer from tanks to product
transport or other storage places.

The scheduling optimization formulation considers two terms in the objective
function. The first is the Makespan (MS) of the schedule,

MS > Te(r,g), ∀ r ∈ R, g ∈ Gr (30)

The other candidate is the final fouling KPIs of the batch reactors. The final
fouling KPIs are obtained using GDP-based constraints, as

Y
p∈P

[
XL

pm

fem = Afpm · fpm +Bfpm

]
Y
[

XL0
m

fem = FIm

]
, ∀ m ∈Mf (31)

In the sequence of each batch reactor, the disjunctive constraints in Eq. (31)
calculate the value of fouling KPI after the last batch in the sequence, or when200

XL0
m is true if no batches are scheduled in unit m so that the final fouling KPI

equals the initial fouling KPI of unit m. Equation (31) prevents a cleaning
task from being scheduled at the end of the horizon for two main reasons. The
first is due to the model itself; one of the goals of the model is to minimize the
makespan of the schedule (more information about the objective will be given205

alongside the case studies in Section 5). Unless a much larger emphasis is placed
on the fouling objective over the makespan, an “unnecessary” maintenance task
will never be added to the end of the horizon. Additionally, in actual operation
the scheduler will be operating in a true moving-horizon fashion, instead of
a shrinking horizon manner as studied in this paper. If a maintenance task210

is needed at the end of the current horizon (but is not present in the current
version of the schedule) and a new order comes in, the algorithm would schedule
the maintenance task before production of the new task in the new horizon.

12

To solve the GDP-based models, one approach is to reformulate the logic pro-
gramming models as MIP models and to solve using conventional MIP solvers.215

The common reformulation methods include the big-M method and the convex-
hull reformulation. Castro and Grossmann (2012) present examples of applying
reformulation to GDP-based formulations for batch scheduling. Pyomo is a col-
lection of optimization modelling packages in Python that supports disjunctions
(Hart et al., 2017). GDP-based models can be solved in Python using Pyomo220

through the use of automated problem transformations, converting the GDP
model to a MIP model.

4. Rolling Horizon Algorithm

To schedule a large number of batches of various product grades, the size225

of the proposed MILP problem becomes too large to solve to optimality in
a reasonable time period using an MILP solver. Instead of solving a single
large-size MILP problem, a rolling horizon algorithm decomposes the original
scheduling problem into many smaller MILP problems. This is accomplished
by grouping scheduling tasks into many smaller time horizons. In each time230

horizon, a sub-scheduling problem (SubMILP) with a smaller set of batches is
formulated and it is solved to optimality within a much shorter period of time
than the full-space model. The batches that are scheduled within the current
sub-schedule horizon are then fixed in the original scheduling problem, and the
algorithm moves on to the next sub-scheduling problem.235

Algorithm 1 Rolling horizon algorithm

1: function RH-MILP(P , Cinit, THP)
2: Sold ← MasterMILP(P , Cinit)
3: Pnew ← P , Pfix ← ∅, C1

init ← Cinit

4: P 1
sub ← InitSubMILP(Pnew, C1

init, THP)
5: repeat n = 2, 3, 4...
6: (Soln, Pn

fix, C
n+1
init)← SolveSubMILP(Pn

sub, C
n
init, THP)

7: Sold ← FixDiscreteVar(Sold, Pfix, Soln, Pn
fix)

8: Pfix ← Pfix ∪ Pn
fix, Pnew ← Pnew \ Pn

fix

9: Pn+1
sub ← InitSubMILP(Pnew, Cn+1

init , THP)
10: until Pn+1

sub = Pnew

11: Soln+1 ← SolveMILP(Pn+1
sub , Cn+1

init)
12: Sold ← FixDiscreteVar(Sold, Pfix, Soln+1, Pn+1

sub)
13: SolRH ← SolveMasterFixedLP(P , Cinit, Sold)
14: return SolRH

15: end function

The main RH algorithm is presented in Algorithm 1. The initial condition
and availability of units is denoted as Cinit. A set of batch runs denoted as P
are predefined to be scheduled according to the production target. In the RH

13

algorithm, SubMILP is formulated using the proposed model in Section 3 and
schedule a set of batch runs in the nth time horizon (defined as Pn

sub), given Cn
init240

which specifies the corresponding initial condition of the sub-problem with su-
perscript n. Cn

init includes the fouling KPIs FInm at the beginning of the current
time horizon, the exact time that the units become available tsnm, and the status
of the tanks (whether tanks are already filled with one of the product grades and
how many batches of product are stored in the tanks). The status of the tanks245

are presented as a group set (r, g)ninit, such that if group (r, g) ∈ (r, g)ninit was
assigned to tank m ∈Ms (Y(r,g)m is true) in the previous time horizon, and the
start time of the group Ts(r,g) is fixed according to the first batch in group (r, g)
that is scheduled in the previous time horizon. Psub is calculated via function
InitSubMILP giving the set of the unscheduled batch runs, denoted by Pnew,250

Cinit and the length of horizon periods THP , which is described in Algorithm 2.
Function SolveSubMILP solves SubMILPn and calculates the set of batch runs
Pn
fix that are scheduled in the nth time horizon. Pfix refers to the batch runs

that have already been fixed at a previous point in the iterative process. Sold
refers to the discrete variables of the master problem of the RH algorithm de-255

noted as MasterMILP(P , Cinit). The variables in Sold that relate to batch runs
in Pn

fix or additional batch runs in Pfix are assigned with fixed binary values
according to Soln the solution of SubMILPn by calling function FixDiscreteVar.
In the last iteration of the RH algorithm, Pn+1

sub equals Pnew, and the remaining
batches of Pnew are scheduled according to Soln+1 by fixing the corresponding260

variables in Sold. The RH solution denoted as SolRH is obtained by solving
MasterMILP with fixed discrete variables (Sold) using an LP solver.

Algorithm 2 Initialization of SubMILP

1: function InitSubMILP(Pnew, Cinit, THP)
2: Psub ← ∅
3: for r ∈ R do
4: Sol ← SolveMILP(P r

new, Cinit)
5: for p ∈ P r

new, s ∈ S do
6: if Sol.Tsps 6 max

m∈Ms

(Cinit.tsm) + THP then

7: Psub ← Psub ∪ p
8: end if
9: end for

10: end for
11: return Psub

12: end function

Algorithm 2 describes the procedures for calculating Psub. Psub is a subset
of Pnew that determines all allowable combinations of recipe types and batch265

sequences in a given time horizon. The size of Psub determines the problem size
of SubMILP. To find a smaller size of Psub, a series of relatively smaller MILP
problems are formulated to only schedule batch runs of the same recipe within

14

Algorithm 3 Solve SubMILP with extended results

1: function SolveSubMILP(Psub, Cinit, THP)
2: Pfix ← ∅
3: Sol ← SolveMILP(Psub, Cinit)
4: for p ∈ Psub, s ∈ S do
5: if Sol.Tsps 6 max

m∈Ms

(Cinit.tsm) + THP then

6: Pfix ← Pfix ∪ p
7: end if
8: end for
9: Cnew

init ← CalculateCinit(Sol, Pfix)
10: return (Sol, Pfix, Cnew

init)
11: end function

the time horizon. P r
new, a subset of Pnew, is defined as {p|p ∈ Pnew, p ∈ Pr},

∀ r ∈ R. Function SolveMILP(P r
new, Cinit) refers to the process of applying a270

MILP solver to a SubMILP defined by P r
new and Cinit and it returns the optimal

solution (Sol). The time horizon is defined for multiple stages with the start
time given by the availability tsm of the units in the same stage given by Cinit

and the length parameter THP . By further checking the start times of batches
in the solution Sol.Tsps, batch runs that start before the end time of the time275

horizon in any stage s are added to Psub. Therefore, Psub contains all batch runs
of the optimal single-recipe scheduling sequences within the time horizon and
allows for all combinations of recipe-specific batch sequences in the time horizon.

Algorithm 3 presents the procedures to calculate Pfix and Cnew
init based on280

the optimal solution of the sub-problem. Firstly, SubMILP built by Psub and
Cinit is solved optimally using an MILP solver. Because Psub contains many
more batch runs to provide all possibilities of recipe-specific batch sequences
within the time horizon, Pfix as a subset of Psub is introduced to denote the set
of batch runs that are scheduled within the time horizon according to solution285

Sol. Furthermore, the initial condition for the scheduling in the next time hori-
zon Cnew

init is computed by checking unit condition in solution Sol after finishing
all batch runs in Pfix.

5. Computational Results290

In this section, the proposed rolling horizon method and the GDP-based
scheduling formulation are tested and analyzed for a set of tuning parameters.
The optimization models and the rolling horizon method are implemented using
Pyomo (version 5.7) in Python 3.7. The GDP-based formulation is automat-
ically transformed into MILP models using big-M reformulations via Pyomo’s295

automatic transformation and are solved using Gurobi 9.0. The tests were run
on a 2.3GHz 36 core machine with 192GB of RAM.

15

5.1. Application of the rolling horizon method to the scheduling problem

The rolling horizon approach in Algorithm 1 is applied to solve a relatively
large scheduling problem. The problem instance is generated from the afore-300

mentioned case study and formulated as an MILP scheduling problem. In the
problem instance, a set of 36 predefined batches with three recipes (each recipe
has 12 batches) will be scheduled, representing set P in the rolling horizon algo-
rithm. The cleaning tasks are the main maintenance actions performed in the
batch reactors and are scheduled along with batch production runs to prevent305

the values of the fouling KPIs from becoming too large. In the storage stage,
two parallel tanks store products generated from batch runs in the production
stages; all batches have the same production size, and each of the tanks stores
up to three batches of products of the same grade before the final quality check.
This leads to 12 groups of products to be stored and checked in the storage310

stage, and each group is associated with three batches of one recipe. The pro-
cessing time in unit U1 for different recipes is in the range from two to three
hours, and the processing time in the batch reactors is 6-7 hours, based on the
type of recipe and the current state of fouling. Cleaning of the fouling requires a
two-day shutdown of the reactors. Material transfers between two neighboring315

stages takes 1.5-2 hours, depending on the type of unit. Quality checks in the
storage tanks take roughly six hours. The production time for a given produc-
tion target can be up to two weeks. The master MILP for this problem instance
has a size of 58687 rows, 2112 columns and 163381 nonzeros with 220 continuous
variables and 1668 binary variables. Solving this master MILP using an MILP320

solver is difficult and requires high computational effort.
A multiobjective optimization function is considered in the rolling horizon

framework. The objective function is a convex combination of makespan and
the final fouling KPIs of the batch reactors. The two terms in Eq. (32) are
correlated and result in a scheduling sequence that aims to end in an as clean325

as possible condition for the non-bottleneck reactor.

min λ ·MSn + (1− λ) ·
∑

m∈M2

fenm (32)

The value of the weight parameter λ is between zero and one. The object func-
tion becomes minimization of Makespan when λ equals one, and the objective
function puts more weight on minimizing the final fouling KPIs when the value
of λ decreases. The weight parameter λ is taken as a tuning parameter for330

the performance of the rolling horizon framework. The other tuning parameter
considered in the test is the length of time horizons THP .

The tuning parameters are assigned to a set of values in the tests of the
rolling horizon approach. In Table 1, five sets of scheduling results are gener-
ated from the rolling horizon method using different values of THP and a fixed335

value of λ. The values of THP are 400min up to 800min in increments of 100min.
The result in No.5 has the largest value of THP and presents the smallest value
of the objective function in Table 1. The solutions of No.1, No.3 and No.5 in
Table 1 are presented in Gantt charts along with figures of fouling KPI curves

16

No. THP feU2 feU3 MS Obj. value Solution time
(min) (min) (sec)

1 400 3.07 2.19 13491 12142.69 551
2 500 3.07 2.19 13491 12142.69 624
3 600 3.35 2.01 13806 12426.52 6405
4 700 3.85 2.28 13470 12124.15 12966
5 800 4.25 2.19 13393 12054.41 11430

Table 1: Results of running rolling horizon method; weight parameter (λ) is 0.9

Figure 2: Gantt chart in RH result given λ: 0.9, THP : 400

as Figs. 2 to 7 show. One of the main differences between these solutions are340

the timing of cleaning tasks in the two reactors. In the solution of No.5, the
cleaning tasks are scheduled relatively earlier than the other two solutions: the
cleaning task for unit U2 is scheduled after one batch run in the solution of
No.5 as Fig. 4 shows; Fig. 2 illustrates that the cleaning task for unit U2 in
the solutions of No.1 is scheduled after three batch runs, and the one in the345

solution No.3 is scheduled after four batch runs as presented in Fig. 3. The
fouling KPI curves in Figs. 5 to 7 are associated with the sequences of batches
and cleaning. The results show that the solution of No.5 has the largest value
of the final fouling KPI in unit U2, and the earlier scheduled cleaning task is
one of the main contributing factors. Despite the effect of recipe sequences on350

the fouling evolution, more batch runs are scheduled after the cleaning task in
unit M2, which in general results in more fouling in the batch reactor by the
end of the scheduled production.

Moreover, the results in Table 1 show that solutions with larger values of355

THP tend to have better solutions with smaller values of the objective func-

17

Figure 3: Gantt chart in RH result given λ: 0.9, THP : 600

Figure 4: Gantt chart of RH result given λ: 0.9, THP : 800

tion. The rolling horizon method does not generate the optimal solutions but
computes optimal solutions in each iteration and yields a sub-optimal complete
solution after all the iterations. The sub-scheduling problems with larger THP

take more batches into account and therefore are more likely to generate better360

local solutions. However, this is not always valid, and one exception can be
found in the solution of No.3. This solution has a much larger value of the
objective function than other solutions. Comparing with other solutions in Ta-
ble 1, one of the main differences in the solution of No.3 is described in the
previous paragraph that the cleaning tasks of No.3 are scheduled timely later365

18

Figure 5: Fouling evolution in RH result given λ: 0.9, THP : 400

Figure 6: Fouling evolution in RH result given: λ: 0.9, THP : 600

than ones in other solutions.

To illustrate the different solutions generated in the iterations, the results in
the second iteration of No.1 and No.3 are presented in Figs. 8 and 9. The results
in the first iteration of both solutions P 1

fix are the same: batch 1 and batch 2 are370

19

Figure 7: Fouling evolution in RH result given λ: 0.9, THP : 800

fixed in the first time horizon, which generates the same initial conditions C2
init

for the scheduling in the second iteration of the both solutions of the rolling
horizon method. A larger value of THP in No.3 leads to a larger set P 2

sub which
has 13 batches compared with 10 batches in P 2

sub of result No.1. The differences
in the scheduling problems of the second iteration yield two local solutions from375

the rolling horizon. From this solution, the first three batch runs are fixed lead-
ing to different P 2

fix; these are batches 3, 13 and 4 in No.1 and batches 3, 13
and 15 in No.3 as Figs. 2 and 3 present. In the iterations after, No.1 and No.3
generate different local solutions Pn

fix as they are solving completely different
sub-scheduling problems.380

The solution time is total time over all iterations and increases as the size
of the scheduling problems in each iteration increases. According to the results
in Table 1, the solution time increases from 624 seconds to 6405 seconds when
THP increases from 500 minutes to 600 minutes. Another increase in the scale385

of solution time is when THP increases from 600 minutes to 700 minutes, and
the solution time increases from 6405 seconds to 12966 seconds. Moreover, the
solutions generated by No.1 and No.2 are the same with similar solution times.
No.4 and No.5 take the same order of magnitude of solution time. This is be-
cause the increase in THP of the two pairs of solutions does not enable adding390

more batch runs in the iterations, and therefore the size of scheduling problems
that depend on the number of batches of each iterations are nearly the same.

A set of RH tests were also performed using different values of λ and a fixed
value of THP . The results are presented in Table 2, in which seven sets of λ395

20

Figure 8: Gantt chart in RH result given λ: 0.9, THP : 400 at 2nd iteration

Figure 9: Gantt chart in RH result given λ: 0.9, THP : 600 at 2nd iteration

are from 0.3, up to 0.9 and THP set to 800. The key results including MS and
final fouling KPI are presented in Table 2. Since the weight parameter in the
objective function of the tests are different, the values of objective functions
of the tests are not presented in Table 2 as they cannot be directly compared.
Among these solutions, No.7 has the smallest value of MS, and No.1 and No.2400

have relatively larger MS. This intuitively can be explained as the value of the
weight parameter. As λ increases, the relative weight on MS also increases, and
solutions of the different time horizons tend to have smaller MS in each iteration.
These solutions finally result in smaller MS of the overall solutions as can be

21

No. λ feU2 feU3 MS (min) Solution time (sec)
1 0.3 4.07 2.25 13620 12446
2 0.4 4.95 2.02 13723 12314
3 0.5 4.27 2.19 13404 13245
4 0.6 4.03 2.26 13617 13211
5 0.7 3.54 2.26 13453 10316
6 0.8 5.19 2.03 13679 12948
7 0.9 4.25 2.19 13393 11430

Table 2: Results of running rolling horizon method; THP is 800

seen in No.7 and No.1. However, local solutions that have smaller MS do not405

always generate smaller MS of the overall solution, as seen in the cases between
No.1 and No.2, the ones between No.3 and No.4 and the comparison between
No. 5 and No.6. The overall solution presented by the RH solutions from each
iteration always have a gap to the globally optimal solution. Different gaps in the
solutions in Table 2 make the weight parameter less sensitive in emphasizing one410

of the multi-objective terms in the overall performance. Furthermore, while both
the makespan and the fouling KPIs depend on the sequence of products, there
is a base-level threshold for both of these values that must always be incurred
even if the globally optimal sequence is determined leaving a relatively narrow
(though still significant) band for improvement. It is sometimes difficult to see415

this trend due to the loss of optimality at each iteration. On the other hand,
changing λ results in different solutions per iteration and results in different
feasible solutions. A practical view of using various values of λ in the RH runs
is to provide a selection of good solutions from these feasible solutions. For
example, the solutions of No.3, No.5 and No.7 in Table 2 are relatively better420

than other solutions by looking at both fouling KPIs and MS.
In an attempt to reduce the computational efficiency of the algorithm we

attempted to omit some problem details, in this case the additional time due to
fouling, and add them back in a post-processing heuristic. This is implemented
by modifying Eq. (24) as follows:

Tpps =
∑

m∈Ms

tppm · Ypm, ∀ p ∈ P, s ∈ S

in the formulations for the sub-problems in Algorithm 1. The solutions for each
iteration are then corrected to be feasible and integrated into the master problem
in Algorithm 1. The results are presented in Table 3. It was observed that the
overall computation time of the algorithm was improved comparing with the425

results in Table 2, and the solutions with longer time of sub-period THP = 1000
are obtained within around two hours. Meanwhile, this variant RH method
generated good feasible solutions for cases No.3 and No.5; especially, No.5 ends
up with smaller values of fouling KPIs, while MS is nearly 1.5 hours shorter
than No.6. Therefore, this variant RH method helps to generate good feasible430

solutions and can solve the problem with acceptable computation time.

22

No. λ THP feU2 feU3 MS Solution time
(min) (min) (sec)

1 0.4 800 3.86 2.14 13669 3696
2 0.6 800 3.86 2.14 13669 3694
3 0.8 800 3.86 2.14 13570 3702
4 0.4 1000 3.87 1.91 13793 7813
5 0.6 1000 1.87 2.37 13577 4393
6 0.8 1000 2.34 1.95 13694 6721

Table 3: Results of running rolling horizon method with simplified sub-problems

6. Conclusions

Optimized batch scheduling is key for the profitability of many process in-
dustries. These production plants produce multiple products in a multi-stage
environment. Due to the tight coupling between production scheduling, mainte-435

nance scheduling, and product storage it is desirable to combine these concerns
into a single optimization problem. In this work, an industrial scheduling case
study was analyzed that considers sequence-dependent degradation, restorative
maintenance, and limited product storage. The scheduling problem was modeled
using a continuous-time GDP-based model. One of the issues with combining440

maintenance and production scheduling is that the maintenance concerns occur
on a different time scale than production scheduling. Merging the two into a
single model is intractable using a pure mathematical programming approach.
To overcome this, a rolling horizon algorithm was proposed. The rolling hori-
zon algorithm breaks the time horizon into smaller periods where soft scheduling445

targets for each period are predefined using a heuristic. Tasks that are unable to
be completed in the current window are passed back to the heuristic to be con-
sidered when predefining tasks for the subsequent window. This is performed
iteratively until the entire schedule has been calculated in detail. Results show
that the proposed approach can yield good quality solutions quite quickly de-450

pending on the choice of rolling horizon parameters. It is not easy however to
determine what good parameters are a priori.

This points to a few directions for future research. The question remains of
how to automatically tune the rolling horizon algorithm to determine optimal455

parameter sets without extensive off-line numerical testing. Other aspects of
the production site could also be incorporated into the scheduling model. For
example, planning decisions such as the ordering and timing of raw material
deliveries could improve overall site coordination. Uncertainty also plays a role
in all industrial scheduling. In this case study, two major sources of uncertainty460

exist: batch timings, and fouling evolution. These could potentially be inte-
grated into the scheduling model as stochastic parameters.

23

Acknowledgement

Financial support is gratefully acknowledged from the Marie Sk lodowska465

Curie Horizon 2020 EID-ITN project “PROcess NeTwork Optimization for effi-
cient and sustainable operation of Europe’s process industries taking machinery
condition and process performance into account – PRONTO”, Grant agreement
No 675215.

The anonymous reviewers are gratefully acknowledged for suggestions that470

significantly improved the RH algorithm.

References

Aguirre, A.M., Méndez, C.A., Gutierrez, G., Prada, C.D., 2012. An
improvement-based milp optimization approach to complex aws schedul-
ing. Computers & Chemical Engineering 47, 217 – 226. URL: http:475

//www.sciencedirect.com/science/article/pii/S0098135412002207,
doi:https://doi.org/10.1016/j.compchemeng.2012.06.036. fOCAPO
2012.

Baumann, P., Trautmann, N., 2014. A hybrid method for large-scale short-
term scheduling of make-and-pack production processes. European journal of480

operational research 236, 718–735.

Biondi, M., Sand, G., Harjunkoski, I., 2017. Optimization of multipurpose
process plant operations: A multi-time-scale maintenance and production
scheduling approach. Computers & Chemical Engineering 99, 325–339.

Castro, P.M., Grossmann, I.E., 2012. Generalized disjunctive programming as a485

systematic modeling framework to derive scheduling formulations. Industrial
& Engineering Chemistry Research 51, 5781–5792.

Castro, P.M., Grossmann, I.E., Veldhuizen, P., Esplin, D., 2014. Optimal main-
tenance scheduling of a gas engine power plant using generalized disjunctive
programming. AIChE journal 60, 2083–2097.490

Chen, Q., Grossmann, I.E., 2019a. Effective generalized disjunctive pro-
gramming models for modular process synthesis. Industrial & En-
gineering Chemistry Research 58, 5873–5886. URL: https://doi.

org / 10 . 1021 / acs . iecr . 8b04600, doi:10 . 1021 / acs . iecr . 8b04600,
arXiv:https://doi.org/10.1021/acs.iecr.8b04600.495

Chen, Q., Grossmann, I.E., 2019b. Modern modeling paradigms using general-
ized disjunctive programming. Processes 7, 839.

Dalle Ave, G., Harjunkoski, I., Engell, S., 2019a. A non-uniform grid ap-
proach for scheduling considering electricity load tracking and future load
prediction. Computers & Chemical Engineering 129, 106506. URL: http:500

//www.sciencedirect.com/science/article/pii/S0098135419300183,
doi:https://doi.org/10.1016/j.compchemeng.2019.06.031.

24

http://www.sciencedirect.com/science/article/pii/S0098135412002207
http://www.sciencedirect.com/science/article/pii/S0098135412002207
http://www.sciencedirect.com/science/article/pii/S0098135412002207
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2012.06.036
https://doi.org/10.1021/acs.iecr.8b04600
https://doi.org/10.1021/acs.iecr.8b04600
https://doi.org/10.1021/acs.iecr.8b04600
http://dx.doi.org/10.1021/acs.iecr.8b04600
http://arxiv.org/abs/https://doi.org/10.1021/acs.iecr.8b04600
http://www.sciencedirect.com/science/article/pii/S0098135419300183
http://www.sciencedirect.com/science/article/pii/S0098135419300183
http://www.sciencedirect.com/science/article/pii/S0098135419300183
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.06.031

Dalle Ave, G., Hernandez, J., Harjunkoski, I., Onofri, L., Engell, S., 2019b.
Demand side management scheduling formulation for a steel plant considering
electrode degradation. IFAC-PapersOnLine 52, 691–696.505

Dimitriadis, A., Shah, N., Pantelides, C., 1997. Rtn-based rolling hori-
zon algorithms for medium term scheduling of multipurpose plants. Com-
puters & Chemical Engineering 21, S1061 – S1066. URL: http:

//www.sciencedirect.com/science/article/pii/S0098135497876430,
doi:https://doi.org/10.1016/S0098-1354(97)87643-0. supplement to510

Computers and Chemical Engineering.

Gupta, S., Karimi, I., 2003. An improved milp formulation for scheduling multi-
product, multistage batch plants. Industrial & engineering chemistry research
42, 2365–2380.

Hadera, H., Ekström, J., Sand, G., Mäntysaari, J., Harjunkoski, I., Engell,515

S., 2019. Integration of production scheduling and energy-cost optimization
using mean value cross decomposition. Computers & Chemical Engineering
129, 106436. URL: http://www.sciencedirect.com/science/article/

pii/S0098135418311451, doi:https://doi.org/10.1016/j.compchemeng.
2019.05.002.520

Harjunkoski, I., 2016. Deploying scheduling solutions in an industrial environ-
ment. Computers & Chemical Engineering 91, 127–135.

Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L., Hackebeil, G.A., Nichol-
son, B.L., Siirola, J.D., 2017. Pyomo-optimization modeling in python. vol-
ume 67. Springer.525

Kilic, O.A., van Donk, D.P., Wijngaard, J., 2011. A discrete time formula-
tion for batch processes with storage capacity and storage time limitations.
Computers & Chemical Engineering 35, 622–629.

Klanke, C., Yfantis, V., Corominas, F., Engell, S., 2020. Scheduling of a large-
scale industrial make-and-pack process with finite intermediate buffer using530

discrete-time and precedence-based models, in: Eden, M.R., Ierapetritou,
M.G., Towler, G.P. (Eds.), 30th European Symposium on Computer Aided
Process Engineering (ESCAPE 30). Elsevier. volume Accepted of Computer
Aided Chemical Engineering.

Li, Z., Ierapetritou, M.G., 2010. Rolling horizon based planning and scheduling535

integration with production capacity consideration. Chemical Engineering
Science 65, 5887 – 5900. URL: http://www.sciencedirect.com/science/
article/pii/S000925091000477X, doi:https://doi.org/10.1016/j.ces.
2010.08.010.

Méndez, C.A., Cerdá, J., 2003. An milp continuous-time framework for short-540

term scheduling of multipurpose batch processes under different operation
strategies. Optimization and Engineering 4, 7–22.

25

http://www.sciencedirect.com/science/article/pii/S0098135497876430
http://www.sciencedirect.com/science/article/pii/S0098135497876430
http://www.sciencedirect.com/science/article/pii/S0098135497876430
http://dx.doi.org/https://doi.org/10.1016/S0098-1354(97)87643-0
http://www.sciencedirect.com/science/article/pii/S0098135418311451
http://www.sciencedirect.com/science/article/pii/S0098135418311451
http://www.sciencedirect.com/science/article/pii/S0098135418311451
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.002
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.002
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2019.05.002
http://www.sciencedirect.com/science/article/pii/S000925091000477X
http://www.sciencedirect.com/science/article/pii/S000925091000477X
http://www.sciencedirect.com/science/article/pii/S000925091000477X
http://dx.doi.org/https://doi.org/10.1016/j.ces.2010.08.010
http://dx.doi.org/https://doi.org/10.1016/j.ces.2010.08.010
http://dx.doi.org/https://doi.org/10.1016/j.ces.2010.08.010

Méndez, C.A., Cerdá, J., Grossmann, I.E., Harjunkoski, I., Fahl, M., 2006.
State-of-the-art review of optimization methods for short-term scheduling of
batch processes. Computers & Chemical Engineering 30, 913–946.545

Sundaramoorthy, A., Maravelias, C.T., 2008. Modeling of storage in batching
and scheduling of multistage processes. Industrial & Engineering Chemistry
Research 47, 6648–6660.

Trespalacios, F., Grossmann, I.E., 2017. Symmetry breaking for generalized
disjunctive programming formulation of the strip packing problem. Annals of550

Operations Research 258, 747–759.

Vieira, M., Pinto-Varela, T., Barbosa-Póvoa, A.P., 2017. Production and main-
tenance planning optimisation in biopharmaceutical processes under perfor-
mance decay using a continuous-time formulation: A multi-objective ap-
proach. Computers & Chemical Engineering 107, 111–139.555

Wu, O., Bouaswaig, A., Imsland, L., Schneider, S.M., Roth, M., Leira, F.M.,
2019a. Campaign-based modeling for degradation evolution in batch processes
using a multiway partial least squares approach. Computers & Chemical
Engineering 128, 117–127.

Wu, O., Dalle Ave, G., Harjunkoski, I., Bouaswaig, A., Schneider, S.M., Roth,560

M., Imsland, L., 2020a. Optimal production and maintenance schedul-
ing for a multiproduct batch plant considering degradation. Computers &
Chemical Engineering 135, 106734. URL: http://www.sciencedirect.

com/science/article/pii/S0098135419309706, doi:https://doi.org/
10.1016/j.compchemeng.2020.106734.565

Wu, O., Dalle Ave, G., Harjunkoski, I., Bouaswaig, A., Schneider, S.M., Roth,
M., Imsland, L., 2020b. Short-term multiproduct batch scheduling considering
storage features, in: IFAC World Congress 2020 Germany. Elsevier. volume
Accepted of IFAC.

Wu, O., Dalle Ave, G., Harjunkoski, I., Imsland, L., Schneider, S.M., Bouaswaig,570

A.E.F., Roth, M., 2019b. Short-term scheduling of a multipurpose batch plant
considering degradation effects, in: Computer Aided Chemical Engineering.
Elsevier. volume 46, pp. 1213–1218.

Xenos, D.P., Kopanos, G.M., Cicciotti, M., Thornhill, N.F., 2016. Operational
optimization of networks of compressors considering condition-based mainte-575

nance. Computers & Chemical Engineering 84, 117–131.

26

http://www.sciencedirect.com/science/article/pii/S0098135419309706
http://www.sciencedirect.com/science/article/pii/S0098135419309706
http://www.sciencedirect.com/science/article/pii/S0098135419309706
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2020.106734
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2020.106734
http://dx.doi.org/https://doi.org/10.1016/j.compchemeng.2020.106734

	Introduction
	Problem Description
	GDP-based Formulation
	Rolling Horizon Algorithm
	Computational Results
	Application of the rolling horizon method to the scheduling problem

	Conclusions

