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Abstract

The aim of this thesis is to apply the new DIVISIVESHAPAPPROX method to approximate SHAP
values and to compare its performance to the KernelSHAP method.

There are now many methods to add interpretability to a machine learning model, and one of the
most popular methods is the Shapley values. The Shapley values provide insight into the predictions
made by a machine learning model by assigning each of the features used in the prediction a
value of its contribution to the prediction. The SHAP values are the Shapley values for a single
individuals’ prediction. As the computation of Shapley values is very time consuming, one needs
to use approximation methods in order to use Shapley values in practice.

In this thesis we compare two approximation methods for Shapley values. The first method we use
is the KernelSHAP method, which is currently the most used approximation method. The second
approximation method we use is the DIVISIVESHAPAPPROX method, and a modified version of
this method, DIvVISIVESHAPAPPROXNEW. The approximation methods were compared over three
sets of experiments.

The first set of experiments used data from a multivariate Gaussian distribution and a linear
relationship between the output and the data. The second set of experiments also used multivariate
Gaussian data, but a non-linear relationship between the output and the data, modelled with a
random forest model. The final experiment used synthetic data, based on a real data set from
the Norwegian financial service group DNB. On this data set a random forest model was fitted
to predict the probability of default, and the SHAP values were computed using the different
approximation methods.

The results of the experiments revealed that DIVISIVESHAPAPPROX is too unstable for use, and
that this is improved on in DIvISIVESHAPAPPROXNEW. The performance of DIVISIVESHAPAP-
PROXNEW is dependent on the relationship between the data and the output, and is only com-
petitive when this relationship can be decomposed. For a simple relationship such as the linear
model, the DIVISIVESHAPAPPROXNEW will outperform the KernelSHAP method, if both meth-
ods are given an equal short run time. As the run times of both methods increases, the error
from the KernelSHAP method reduces faster than from the DIvVISIVESHAPAPPROXNEW and the
KernelSHAP is best if given enough computation time. In conclusion, the KernelSHAP is overall
the better option.
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Sammendrag

Formalet med denne oppgave er a anvende den nye metoden DIVISIVESHAPAPPROX pa & approk-
simere SHAP-verdier og a sammenlikne dens prestasjoner med KernelSHAP-metoden.

Det er for tiden mange metoder som gjgr det mulig a tolke maskinleringsmodeller, og én av de
mest populeere metodene er Shapley-verdier. Shapley-verdiene gir innsikt i prediksjonene til en
maskinleeringsmodell ved & gi hver av variablene som er brukt for prediksjonen en verdi som be-
skriver variabelens bidrag til prediksjonen. SHAP-verdiene er Shapley-verdier for ett enkeltindivids
prediksjon. Ettersom beregningen av Shapley-verdier er sveert tidkrevende trenger man approksi-
masjonsmetoder for a4 kunne bruke Shapley-verdier i praksis.

I denne oppgaven sammenlikner vi to approksimasjonsmetoder for Shapley-verdiene. Den fgrste
metoden vi benytter er KernelSHAP-metoden, som for gyeblikket er den mest brukte approksimas-
jonsmetoden. Den andre approksimasjonsmetoden vi benytter er DIVISIVESHAPAPPROX-metoden,
samt en modifisert versjon av denne, DIVISIVESHAPAPPROXNEW. Approksimasjonsmetodene ble
sammenliknet over tre sett med eksperimenter.

Det forste settet med eksperimenter brukte data fra en multivariat Gaussisk fordeling og en lineser
sammenheng mellom utfallet og dataene. Det andre settet med eksperimenter brukte ogsa data med
multivariat Gaussisk fordeling, men med en ikke-lineser sammenheng mellom utfallet og dataene,
modellert av en random forest-modell. Det siste eksperimentet brukte syntetisk data, som er laget
fra ekte data, som ble gitt av DNB. Pa dette datasettet blir en random forest-modell benyttet for
a predikere sannsynligheten for mislighold, og SHAP-verdiene blir beregnet av de ulike approksi-
masjonsmetodene.

Resultatene fra eksperimentene avslgrer at DIVISIVESHAPAPPROX er for ustabil til a vere til
bruk, men at dette er forbedret hos DIVISIVESHAPAPPROXNEW. Prestasjonene til DIVISIVE-
SHAPAPPROXNEW avhenger av sammenhengen mellom utfallet og dataene, og metoden er kun
konkurransedyktig nar denne sammenhengen kan deles opp i mindre biter. For enkle sammen-
henger, som en lineger modell, vil DIVISIVESHAPAPPROXNEW prestere bedre enn KernelSHAP,
gitt at begge metodene har den samme korte kjgretiden. Nar man gker kjgretiden til metodene vil
feilen til KernelSHAP reduseres raskere enn hos DIVISIVESHAPAPPROXNEW og KernelSHAP vil
veere best, gitt lang nok kjgretid. Konklusjonen blir at KernelSHAP alt i alt er det beste valget.
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1 Introduction

This thesis is a further work of the author’s Specialization Project (Aasland, 2022) on the divisive
clustering approximation method DI1VISIVESHAPAPPROX (Corder and Decker, 2019). Parts of
Sections 1, 2 and 3 are based on the previous work in this project.

The use of artificial intelligence (AI) and more specifically machine learning is experiencing a rapid
incline in our society (Doshi-Velez and Kim, 2017). From being mostly hidden for the vast majority
of people, the rise of Al has certainly caught the eye of the public as autonomous cars are starting
to roam the roads, and reinforcement training algorithms such as AlphaZero are able to dominate
against the winner of several computer chess championships, Stockfish 8, after training for only
four hours (Silver et al., 2018). AI and machine learning are beginning to learn how to perform
complicated tasks, and for the simpler and more defined tasks, humans are downright outperformed
by these newcomers. Machine learning seems to be the way forward in numerous areas, and the
amount of research going into the application of machine learning is substantial (a search on ”using
machine learning” after the year 2017 on Google Scholar returns over 1 million results).

Although machine learning is a great tool, which can help humans in both efficiency and in better
understanding of certain tasks, the actual workings of the machine is often considered to be a black
box. This can raise questions regarding the fairness of the machine learning model, if the model
is able to perform its tasks correctly, and whether its decisions are based on criteria that humans
would agree upon or not. E.g. we do not want an automatic loan acceptance based on machine
learning that discriminates and is biased towards something deemed unfair by humans. Therefore
it is important that machine learning being used for important tasks is either transparent enough
that they can be controlled or so well-studied that the models are universally relied upon even
though their inner workings may not be perfect (Doshi-Velez and Kim, 2017). In turn, this has
created a need for ways to make the inner workings of machine learning models more transparent
and making it possible to interpret what the model relies on when making its decisions.

The need for interpretable Al has led to several methods which provide different insights to the
models decisions. The methods are usually divided into two groups, model-specific and model-
agnostic. The model-specific methods are designed for specific classes of machine learning models,
e.g. tree based models, and can only be used when the model that we are interested in explaining
belong in this class. The model-agnostic methods do not assume any particular class of model,
and only need the output of the model (often along with a data set for which the model makes
its predictions). Thus model-agnostic models are more flexible than the model-specific methods,
allowing the use of the same explanation method when switching between different machine learning
models. Naturally, in order to not be redundant, the model-specific methods are faster and more
precise than their model-agnostic counterparts. Another distinction is between global and local
explanations. Global explanations relate the effects of the features to the entire distribution of the
relevant data, e.g. the average effect a single feature has on the prediction of a data set. Local
explanations are instead interested in explaining individual predictions. Before diving deeper into
the theory of Shapley values and the approximation method presented by Corder and Decker
(2019), some of the most well known model-agnostic methods in the field of explainable machine
learning is presented briefly.

A relatively old method is the partial dependence plot (PDP). This plot shows how a single (or two)
feature(s) affect the prediction of a machine learning model (Molnar, 2019). The PDP produce
a line, which is the average prediction from the model for all values of the feature(s) of interest.
The average prediction is made by marginalizing over all the remaining features taken as input in
the model. In practice this means that for all the data points in the data set, only the feature
of interest is changed, and then this new data point is fed to the model to get an output. The
value on the PDP for a certain value xs is then the average over all the new data points where
this feature is set to x, and the rest of the features are kept the same. This means that PDP
assumes independence between the feature of interest and the other features taken as input in the
model. The PDP is relatively easy to implement, and quite intuitive to interpret. It has some
disadvantages with the aforementioned assumption of independence and the inability to be used on
more than 2 features at once due to constraint on the visual representation of such a plot on the 2D
surface of a computer screen or a paper. Another disadvantage of the PDP is that heterogeneous




effect can be hidden. Heterogeneous effects are effects that are not equal in the entire feature
space, but differ between different parts of the feature space. If a part of the data set would have
a positive effect on the output as the feature increases, and some other part would have a negative
effect as the feature increases, then the PDP could appear with a horizontal line and the chosen
feature would falsely seem to have no effect on the output.

A method which works in much the same way as the PDP is the individual conditional expectation
(ICE) method. Instead of plotting the average output over all the instances for the particular
value of a feature, a separate line for each of the instances’ output is included. Being so similar
to the PDP, the interpretation and level of difficulty on implementation is similar between the
two methods. Some differences however, is that ICE is able to give some local information on the
model, and the method can thus show heterogeneous effects that could be hidden in the PDP.
Disadvantages of the ICE curves are that it can only be used on one feature at a time, that a
too big number of instances leave a too overcrowded plot and that it might be difficult to see the
average effect. Some of these problems have solutions like only including a set number of instances
and adding a PD line on the plot as the ICE curves. ICE also assume independence between the
feature of interest and the other features.

Both PDP and ICE assume independence, and quickly run into unrealistic data if features are in
fact correlated. A method which achieve the same type of interpretation as the PDP, but handles
dependent features, is the accumulated local effects (ALE). Part of the way ALE handles dependent
features is by creating intervals for the feature of choice, and dividing the data points of the data
set into which of these intervals they belong, such that the data points used to get outputs from
the model are far more likely to be realistic. Advantages of ALE include being unbiased when
features are correlated, and also being a faster method than the PDP. Molnar (2019) lists quite
a few disadvantages of the ALE, some of which are that one can not interpret the effect of the
feature across intervals and that the ALE is not able to work together with an ICE plot. Despite
ALE being far more complex, thus more difficult to implement, Molnar recommends the method
over the PDP in most situations.

The three mentioned methods, PDP, ICE and ALE, all generate functions of only one (or two)
features which display some interpretation of the effect this (these) features have on the output of
the model. Other methods use surrogate models to get an interpretation on the effect of more or
all the features. Surrogate models are models that are more interpretable than the actual model
that we are looking into, and which approximate the actual model as closely as possible, while
often times remaining simple. The global surrogate method creates a surrogate model (e.g a linear
model or a decision tree) for the full distribution of the data. The local interpretable model-
agnostic explanations (LIME) method is a local surrogate method. Here the surrogate model is
fitted around a single data point, which is done by weighting the data points according to their
proximity to the data point which is desired to explain. The advantage of the surrogate methods
includes that if they are simple enough (e.g. lasso or short trees), then the resulting models are
very fast to interpret. Some disadvantages on the other hand are that the surrogate models must be
close enough to the actual model in order to give the right picture, and there is no clear threshold
for when a surrogate model is good enough (Molnar, 2019). For the LIME method, the choice of
which proximity measure to use may also greatly impact the results.

All the above methods describe how the outcome of the model changes given certain values for
the features. Other methods are less interested in mapping the model to a function, and care
more about how important each feature is for the output. One method which aims to describe the
global importance of each feature is the permuted feature importance method. In this method,
the importance of a feature is defined as the error of the predicted values from the model when
the values of this feature is permuted between the data points of the data set. Permuted feature
importance yields results that are quite intuitive and tidy. One of the disadvantages of the method
is that in order to measure the error, the actual values the model is trying to predict needs to be
available, which might not be the case if you are just given an already built model.

Shapley values is another method which assigns each feature a value (Shapley, 1953) and is the
method in focus in this project. Instead of importance, the Shapley value should be interpreted as
the feature’s contribution to the prediction. Shapley values can be used for the local contribution,




then called SHAP values. SHAP values explain the contribution of each feature on the outcome
of the model for a specific data instance. Shapley values can also be used for global contribution
by assigning each feature their contribution to the models total R2, which is called Shapley regres-
sion. A big difference to the other mentioned interpretation methods is that the Shapley value is
the only method based on solid theory (Molnar, 2019). However, the computation of the exact
Shapley values for a model is extremely computationally complex, and in general one has to rely
on approximations methods for the Shapley values in order to use Shapley values in practice.

A final model-agnostic method to mention is the counterfactual explanations. Counterfactual
explanations have a very different aim than the other methods discussed in this section which are
all concerned with explaining why a certain prediction was made. The counterfactual explanations
do not care why a prediction was made, only on how the prediction can be changed. It is based on
the human-friendly question: ”What is the smallest change needed to make the prediction reach a
certain level?”. This sort of question is likely to be the most important for people who encounter
an automatic (machine learning trained) approval system and experience to be declined. Using
counterfactual explanations as the explanation method could then be the most reasonable choice
as the intuition of its results is very clear. The problem with using counterfactual explanations
is determining which ”small change” in the features is considered as the smallest change for the
user, and thus how one should measure distance between cases, and also which solutions to present
when multiple solutions are found (Molnar, 2019).

The aim of this thesis is to compare the performance of the approximation method DIVISIVE-
SHAPAPPROX by Corder and Decker (2019) to the KernelSHAP method (Lundberg and Lee, 2017),
with respect to approximating SHAP values with dependent features. The thesis is structured as
follows:

Section 2 introduces the theory of the Shapley value, from its origin in cooperative game theory
to its application for machine learning models. Here we also present the SHAP values and the
approximation method KernelSHAP. Section 3 describes the DIVISIVESHAPAPPROX method to
approximate Shapley values, as well as a new modified version of the method. In Section 4 we
introduce the machine learning methods used in our experiments, namely the linear model and the
random forest model. Section 5 describes and discusses the experiments for which the approxima-
tion methods are tested on. The experiments include some simulated experiments on linear models
and a random forest model, in addition to a synthetic data set from the Norwegian financial service
group DNB. In Section 6 we draw a conclusion from the results of the experiments in Section 5
and discuss some future work.




2 Shapley values

The Shapley value is originally a concept from cooperative game theory (Shapley, 1953). By re-
formulating the resulting model from some machine learning algorithm, it is possible to apply the
concept of Shapley value to the world of machine learning, and by doing so obtaining some inform-
ation regarding the contribution of each parameter in the model. In this section, the definition
of the Shapley value from cooperative game theory is presented first. Then, some of the ways
to apply it to machine learning are described. Lastly, the computational complexity of finding
Shapley values is discussed and some approximation methods to improve the computation time
are presented.

2.1 Shapley values in cooperative games

A cooperative game consist of a set of players N = {1,--- ,n} and the characteristic function
v: 2NV — R. The characteristic function v(S) can then represent the payoff a coalition S C N get
from cooperating. The coalition with all the players N, is often called the grand coalition. The
players in the cooperative game should be considered as self-interested and are only cooperating
as to maximise their own profit. The problem that arise is then how the total payoff should be
distributed among the players.

Shapley value provides one way of distributing the total payoff between players. The Shapley value
is the unique solution to the aforementioned problem, where also four desirable fairness properties
are fulfilled. These properties are (Shapley, 1953):

e Efficiency: The resulting additional payoff from the cooperation should be distributed fully
among the players. In mathematical notation this can be written as

o(S) = o+ 3 64(0).
€S

where ¢y = v(()) can be interpreted as the base payoff, which is achieved even when no
players are playing. The players thus only share the difference v(S) — v(@)) which they
actually contribute to.

e Symmetry: Two players who contribute equally to any coalition should be given the same
amount.

v(Sufih) =v(Sufil) v S:{i,j} ¢S
= ¢i(v) = ¢;(v)

e Null player: A player who do not contribute in any coalition should not receive anything.
v(SU{i}) =v(SVS: {i} ¢ S = ¢;(v) =0

e Linearity: If the characteristic function can be expressed as the sum of two other charac-
teristic functions, then the relationship should be linear. This means that

pi(av + bw) = ag;(v) + bg;(w)

where v and w are characteristic functions.

The formula for the Shapley value in a cooperative game is then given as

o= 3 B 506y - os). i=1em (1)

|
SCN\{i} "

The Shapley value can be interpreted as the marginal contribution of player i to the payoff of

a coalition (Colini-Baldeschi et al., 2018). In Equation (1) we can note how W =




1 -1 . _
%W = %(75‘1) . This means that for each number of players |S|, there are ("‘S‘l)
combinations where the contribution of ¢ is summed, and then the average is taken by dividing
this sum by the number of combinations. Finally the average over each of these n averages with

|S| from 0 to n — 1 is computed to get the Shapley value.

2.2 Shapley values for machine learning

In the machine learning setting, the players are the variables of the machine learning model in
question (Lundberg and Lee, 2017). For the characteristic function there are infinitely many
choices, as one can choose any function v : 2V — R assigning a value to any subset of the input
parameters of the model. Depending on the choice of characteristic function the corresponding
Shapley value have different interpretations.

In the case of linear models, the characteristic function v(S) = R? leads to what is called Shapley
regression (Lundberg and Lee, 2017). v(S) is then the corresponding R? of the fitted linear model
using only the covariates included in S. The results from the Shapley regression can then be
interpreted as the relative importance of each variable in the model. It should be noted that these
values describe the variables’ relative global importance, that is, their importance for the entire
data set.

Shapley values can also be used to determine the local importance of covariates on predictions.
One way to achieve this, as seen in Aas et al. (2019), is with the characteristic function v(S) =
E[f(x)|xs = x%], where f(a) is the prediction from the model in question given covariate values
x, and xg is a subset of the covariates. The Shapley value is then found for a given individual
with covariates values *. The Shapley values for this characteristic function are often referred to
as SHAP (SHapley Additive exPlanations) values and it is this characteristic function which will
be used in this thesis.

2.3 Computational complexity of the Shapley values

The main drawback for the practical use of the Shapley value in machine learning is the compu-
tational complexity. Computing the Shapley value using the definition in Equation (1) includes
calling the characteristic function for every subset of players at least once. With optimal design,
this means that the run-time for computing the Shapley value is O(2"), as there are 2" possible
combinations of n players or covariates. Computationally heavy characteristic functions will add
further run-time complexity, and is another possible drawback of the Shapley value method. As
a result of the general formulation for the Shapley value having such a high computational com-
plexity, there is a need for faster methods. This has given rise to approximation methods such
as KernelSHAP, which will be further explained in Section 2.5, and Shapley Sampling Values
(Strumbelj and Kononenko, 2010), which approximates the Shapley value by a Monte Carlo ap-
proach. The divisive clustering method proposed by Corder and Decker, DIVISIVESHAP APPROX
approximates Shapley values of games with recognizable equivalence, and is explained in detail
in Section 3. In Aasland (2022) the DIVISIVESHAPAPPROX was found to be incredibly fast even
for numerous players, but lacking in precision when there was dependence between many of the
players.

Exact formulas for the Shapley value, with less complexity, has been discovered for some specific
game representations as well, providing the best option when such games arise. In the specialization
project leading up to this thesis (Aasland, 2022) it was shown that the features game (Corder and
Decker, 2019; Soufiani et al., 2014) and Variance game (Colini-Baldeschi et al., 2018) are two game
representations which have exact and explicit formulas for Shapley values. In this thesis, the focus
is on SHAP values for predictive models. Simple and exact formulas for the Shapley values are
also known in certain cases in this case. In what follows we will describe the cases.

For the already easy to interpret linear regression model, f(z) = = ' 3, along with the characteristic
function for local importance v(S) = E[f(z)|zs = x%], the Shapley value can be calculated easily
through ¢; = B;(z; — E[z;]), if the covariates are independent (Aas et al., 2019).




When using a linear model with dependent features there is no such general exact formula for the
Shapley values. However the computation of the characteristic function can be simplified in this
case by (Aas et al., 2019)

- / flas, z5)p(es|zs = zh)dzg

ZBJ% + ZBJ p(xgles = x5)drg

jeS JES

=8 [eiptasles = as)des + 3 a5 [ plasles = a3)des

jeSs jES

=> BiElzjlws = a5+ Y _ B}

jes jes
v(S) = f(Elzsles = z§], x5). (1)

This is useful as long as E[xg|zs = x%] is feasible to obtain, which is generally not the case.

2.4 SHAP

The characteristic function for the SHAP values is as previously mentioned

v(S) = E[f(z)|es = z], (2)

where f(x) is the prediction of the model in question for an individual with covariate values x
and x* is the covariate values of the individual whose prediction we want to explain. Following
the notation by Aas et al. (2019), the complement set to S is denoted S such that N = {S U S}.
From the definition of expected values we get

Elf(z)|zs = 2] = /f V(s = h)d
/f ws|$s —fvs)d rg, (3)

where p(zg|lrs = ) is the conditional distribution of 5 given the covariates in S of the individual
of interest.

The original approach by Lundberg and Lee (2017) is to assume independence between xg and x g,
which reduce the conditional distribution p(xz|zs = x%) to the marginal distribution p(xg). This
way, the expected value can be estimated by the Monte Carlo method, simulating the marginal
distribution of Xg by drawing directly from the observed data.

When dealing with real data, such an assumption of independence is often not justified, and some
covariates can be quite heavily correlated. Thus, the conditional distribution can not be approx-
imated by the marginal distribution, and the aforementioned method is not possible. Possible
approaches to handle dependent covariates in the characteristic function are discussed by Aas et
al. (2019) and Redelmeier et al. (2020).

A relatively simple approach to incorporate conditional probabilities is by assuming that the co-
variates come from a multivariate normal distribution, X ~ A (u,X). The parameters for such
a distribution can be estimated from the data set. For a coalition S and its complement S, the
parameters of the multivariate normal distribution can be rewritten as




7
5 Fss Z355} .
Yss Xss

The conditional distribution of the covariates not in S will then also be multivariate normal (Hérdle
and Simar, 2019), i.e. Xg|Xs = xs ~ N (g5, Xg)s), where

M35 = M35+ T5sTgs(Ts — pg) (4)
515 = Ts5 — B5sX55T 55 (5)

To evaluate the characteristic function defined in Equation (2) analytically using the integral
defined in Equation (3), both terms of the integrand would have to be analytical. The prediction
of the model, f, will in many cases not be an analytical function, or at least convoluted enough
to make exact integration futile. Assuming that the data is multivariate Gaussian, the integral
in Equation (3) can be approximated using Monte Carlo integration, by sampling from the now
known conditional distribution with parameters from Equation (4) and Equation (5). This means
that

K
o(S) ~ j(;f(w’g,wz), (6)

where 33% is one of K random samples from the multivariate normal distribution N (g s, Xg|s)-

Note that computing the characteristic function as in Equation (6) is significantly more time
consuming than when having a simple formula for v, especially considering K needs to be large
enough to get a somewhat consistent evaluation during re-runs.

2.5 KernelSHAP

One of the most well-known approximation methods of the Shapley value is the KernelSHAP
method (Lundberg and Lee, 2017). KernelSHAP was primarily an approximation method for
SHAP values, hence its name, but the concept has no limitations to specific characteristic functions.
The KernelSHAP method utilizes a different formula for the Shapley values. This formula is the
result of the following weighted least squares formulation of the Shapley value problem:

2

&= argdl)nin Z v(S) — <q§o + Z ¢j> - k(n,9), (7)

SCN jeSs
where ¢ is the set of all the Shapley values, and the kernel k(n,.S) is defined as

n—1

K 8) = oyl =18

(8)

Solving the weighted least squares problem in Equation (7) is proven to lead to the same Shapley
values as using Equation (1). From Equation (8) we have that k(n,0) = k(n, N) = oo, which in
practice means that Equation (7) contains the two constraints ¢g = v(0) and o+ ¢; = v(NV).
For any practical use, using e.g. k(n,0) = k(n, N) = 10° is sufficient for the results to be very
good approximations.




Now, this optimisation is still O(2™) and can barely be considered an approximation, but the trick
of the KernelSHAP is to approximate this optimisation problem. Since the kernel give a very small
weight for most of the subsets S, each of these subsets impact the overall minimisation very little
as n grows larger. The way KernelSHAP uses this property is by sampling only d number subsets
D, d = |D|, with replacement, from the set of all possible combinations, with each subset having
a probability of being picked following the kernel weights in Equation (7). As the probability of a
subset being sampled now follows the kernel weights, the sampled subsets will be weighted equally.
The two subsets with infinite kernel values, ) and N, are not included in the sampling process, but
can be dealt with in one of two ways. They can both be included once in the sampling and be given
weights of e.g. 10° or be set as constraints. If the weights are set to 109, the new minimisation
problem becomes

2

¢:argq£ninz v(S) — <¢0+Z¢j> ~w(.9), (9)

SeD jes

which can be regarded as a weighted linear regression, with well known solutions. w(S) is the
weight of subset S and is 10° for ) and N and 1 otherwise. This reduces the complexity of the
computation from O(2") to O(d), as the number of subsets is reduced from 2" to d. If the §) and
N subsets are given as constraints, these need not be included in the sampling, and Equation (9)
is a simple (non-weighted) linear regression.

In contrast to the previous work in the specialization project (Aasland, 2022), the two constraints,
@0 = v(0) and Z;L:O ¢; = v(N) are in this thesis incorporated exactly. Firstly, as the SHAP values
explain the deviation of the individual prediction from the average prediction of the data set, the
characteristic function can instead report this difference, v*(S) = E[f(x)|xs = x5] — E[f(z)].
From the linearity property of the Shapley value, this can be seen as the linear combination of two
characteristic functions, and the resulting Shapley value will thus also be the linear combination
of the corresponding Shapley values. The Shapley values for the second term, E[f(x)] is ¢ = v(0)
and ¢; = 0 for all other ¢, because E[f(x)] is a constant. This means that v*(S) will yield the
same Shapley values as v, except for ¢g which will always be exactly 0, and the first constraint is
satisfied.

The second constraint, Z?:O ¢; = v(N), can be satisfied by explicitly setting ¢,, = v(NN) —Z?:_ll O;.
Each occurrence of ¢,, is thus replaced by v(N) — E;:ll ¢; in Equation (9). Note that the two
data points, ) and N, are no longer needed in D, as these differences are always just 0 with our
new constraints. The reported ¢, is consequently computed from the other Shapley values from
the linear regression.

The kernel from Equation (8) for a specific coalition S in itself does not show the probability of
this coalition being sampled directly. This is due to the fact that the kernel is not scaled, and the
proper probability of a coalition .S being sampled can be written as

c

P(Sampling S) = —(‘gmg‘(n s

(10)

for some C such that the sum of all the probabilities add to 1. For a relatively large number of
covariates, computing the probabilities for all the 2™ possibilities defeats some of the purpose of the
KernelSHAP method. One way of avoiding this complication is by noticing that the probabilities
for all sets S with an equal number of covariates is the same. The number of coalitions with &
members from the total of n covariates is (Z)7 and the probability of sampling a coalition with k
is thus ﬁ The resampling can therefore be done by first drawing the number of covariates,
i.e. 6, then adding 6 random (uniformly) covariates to the coalition. This reduces the number of
probabilities required from 2™ to n — 1.

The number of resampled subsets in D, d, affects the run-time, but also the precision of the
approximation. A general agreed upon expression for d was not found in the research for this




thesis. Covert and Lee (Covert and Lee, 2020) cast some light on the subject, finding empirical
evidence that the variance of KernelSHAP is O (%), but still offer no suggestion as to the best
choice of d.

The KernelSHAP method was originally used for approximating SHAP values, which is also the
intention in this thesis, but the approach will not be the same as in Lundberg and Lee (2017).
As mentioned in Section 2.4, the original approach of KernelSHAP to estimate Equation (3) is
to assume independence between xg and xg, and thus simulate the marginal distribution of Xg
by drawing directly from the observed data. As the experiments in Section 5 use data with
high correlation between features, this approach is mostly avoided. Instead, the KernelSHAP will
primarily follow the approach of Aas et al. (2019) when computing the characteristic function in
Equation (2), by assuming data from a multivariate Gaussian distribution. Further use of the term
KernelSHAP thus reference the computation of SHAP values through Equation (9), and not how
the characteristic function is computed.

The popularity of the KernelSHAP approximation is in large due to the fact that it is a model-
agnostic approximation method. Another advantage of the KernelSHAP method compared to
using Equation (1) is that it computes the approximated (or exact, if one use Equation (7)) Shapley
value through the matrix multiplication Hv, where H is the hat matrix from the (weighted) linear
regression and v is the vector containing the corresponding values of the characteristic function v
for the subsets included, v = (v(S)sep). This means that for a new characteristic function vpew,
the Shapley value can be computed quickly through the matrix multiplication Hvyey, and H does
not need to be computed again, while with Equation (1) the entire computation would have to be
done again.




3 Cluster-decomposition approach

The approximation method DIVISIVESHAPAPPROX by Corder and Decker (2019) is the main fo-
cus of this project. Similar to KernelSHAP, DIvISIVESHAPAPPROX is also model-agnostic, as it
uses only the output of the model, and can thus be used for any machine learning model. Di-
VISIVESHAPAPPROX differs from KernelSHAP however, as DIVISIVESHAPAPPROX assumes to be
used on a game where the features (players) have a set of attribute values and that the charac-
teristic function of the game, v, is a function of these attributes. It also assumes that features
with similar sets of attribute values will get similar values from the characteristic function wv.
DivisiveShapApprox exploits this assumption by grouping features based on similar attributes.
This means that unlike KernelSHAP, DIVISIVESHAPAPPROX can not be used in any scenario, des-
pite being model-agnostic, because it needs a measure of similarity between all features as well the
output of the model.

A cooperative game is said to have a multi-issue representation when it can be divided into T
independent subgames (Corder and Decker, 2019), and the characteristic function of the game can
be expressed as the sum of some individual characteristic functions v; for the subgames, that is
v(S) = ZJET v;(S). It follows from the linearity property of the Shapley value in 2.1 that the
Shapley value for a multi-issue represented game is the sum of the Shapley value ¢;; for each
of the independent subgames. This changes the complexity from O(2") to O3 cr 21%51), where
|C;| is the number of players which impact the value of v;. This means there is a reduction in
complexity if the characteristic function has a multi-issue decomposition where every subgame
has a characteristic function v; which only depend on some of the players. Exact multi-issue
decompositions are rarely possible, but the DIVISIVESHAPAPPROX method applies the idea with
an approximate multi-issue decomposition.

Another form of game representation are agent type games. In these games the players are referred
to as agents, and there are different equivalence classes connected to the agents. Agents that
contribute equally to every coalition are called strategically equivalent, and by the symmetry
property of the Shapley value in 2.1 such agents have an equal Shapley value. In games where agents
have attributes, agents with all equal attributes are called representationally equivalent agents.
These equivalence classes have given rise to the agent type representation called recognizable
equivalence, where the characteristic function is assumed to depend on the agents attributes.

The D1vVISIVESHAP APPROX method by Corder and Decker (2019) assumes games with recognizable
equivalence. By doing so, the method opens for a partitioning of the grand coalition IV based only
on the agents attributes. This partitioning will end with [ leaf coalitions with maximum size
logg(n), where (5 is a tuning parameter for the method, and can be done by an arbitrary clustering
algorithm. For each of these leaf coalitions, containing no more than logg(n) agents, the Shapley
value will be computed exactly for this subgame. As noted by Corder and Decker (2019), the
characteristic functions used in these subgames should still be the same characteristic function as
in the full game, which does not actually decompose v into individual v; for the different coalitions,
as in a proper multi-issue-decomposition, but instead could be described as an e-approximate
decomposition, v =€+ > ¢, v(Ck).

When joining Shapley values from two branches of a partition, the Shapley value from each of the
branches is scaled such that the sum of the Shapley value approximations a4 for the agents in the
current coalition is equal to the total payout for the subgame with only these agents. In other words,
as the grand coalition is rejoined from its partitions, the Shapley value from the branches are scaled
by the synergy rate -y, the rate in which the value change as the subcoalitions are joined, which
means that v = v(S)/ >, v(S;), with S; being the subcoalitions from the partitioning of S. This
scaling process is responsible for ensuring that the approximations made by DIVISIVESHAP APPROX
satisfy the efficiency property of the Shapley value from Section 2.1. Corder and Decker (2019)
also prove that the method satisfies the symmetry property of the Shapley value as well as the
property of the null player when not all leaf coalitions have value v(S;) = 0, but v(N) # 0, or as
long as null players are more similar than any non-null player are to a null player.

The process of partitioning the grand coalition N into leaf coalitions, exact computation of Shapley
values for the leaf coalitions and backwards feeding of Shapley values up to the grand coalition is
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Figure 1: The concept of the DIVISIVESHAPAPPROX method. The grand coalition with all players
go through several partitions by clustering methods until there are only leaf coalitions with less
than logg (n) players in each. In the leaf coalitions, the exact Shapley values for these subgames
are computed. The approximated Shapley values for each coalition, ag4 is subsequently computed
from its own subcoalitions until the Grand coalition is reached.

shown in Figure 1. The pseudo code for DIVISIVESHAPAPPROX is presented in detail by Corder
and Decker (2019) p.5.

The run-time complexity of the method depends on the tuning parameter 5. A high value for
means the leaf coalitions are smaller, which leads to the exact computation of the Shapley value
in the leaf coalitions being faster, while a low § leads to fewer partitions and less error from the
approximation. Thus 3 also control the trade-off between run-time and error. Corder and Decker
(2019) prove the run-time complexity of DIVISIVESHAPAPPROX when using k-means clustering

with k = 2 to be O(n'°8#()*1) and with best case run-time Q (M
logg(n)

Corder and Decker (2019) use k-means clustering as partition method and 8 = n!/v™. This
construction of the f results in the maximum size of leaf-clusters logg(n) = y/n.

) . In their experiments,

k-means clustering is a well known clustering algorithm, where the number of clusters k is decided
up front. The algorithm starts by choosing k¥ random data points from the data set to serve as
initial cluster centers, or centroids. From here, two steps are repeated until convergence, which is
when no changes are made in one iteration. First, each data point is assigned to the cluster with
the closest centroid. Second, the clusters’ new centroids are computed as the mean position of all
the data points in that cluster.

In the experiments of this thesis it is found more appropriate to use another clustering approach
called hierarchical clustering. Hierarchical clustering is a set of clustering methods where the
clusters are created in a hierarchy. On the bottom all objects are their own cluster. As one rises
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through the hierarchy, clusters are joined together all the way to the top where there is just one
cluster. The results are typically represented visually using dendrograms. There are generally
two classes of hierarchical clustering methods, agglomerative methods and divisive methods (Mai-
mon and Rokach, 2005). Agglomerative methods construct the hierarchical clustering bottom-up,
joining together clusters from the bottom until there is just one cluster, while divisive methods
constructs the hierarchical clustering top-down, starting out with one cluster which is divided into
two clusters, repeated until all clusters have only one instance.

The clusters in the hierarchical clustering are decided from some similarity measure between in-
stances (Maimon and Rokach, 2005), and there are different ways to use this similarity measure
when comparing two clusters. Single-link clustering considers the similarity between two clusters
as the highest similarity between two instances from the different clusters, and is sometimes called
nearest-neighbor. Complete-link clustering is another approach and it considers the similarity
between two clusters to be the smallest similarity across the clusters, and is similarly called furthest-
neighbor.

To summarise, KernelSHAP and D1vISIVESHAPAPPROX achieve their approximations in com-
pletely different manners. KernelSHAP approximates the Shapley values by the assumption that
most coalitions do not matter much for the Shapley values, and that having just a relatively small
subset of coalitions and their respective payouts, v(S), is enough to get good approximations of
the Shapley values. The DIVISIVESHAPAPPROX method assumes that the game itself is nearly
a composition of smaller subgames. DIVISIVESHAPAPPROX approximates the Shapley values by
computing the Shapley values in these subgames, and by using the linearity property of the Shap-
ley value, that the Shapley values for the full game can be represented by the Shapley values from
the subgames, adjusted by certain scaling factors.

It should be noted that KernelSHAP and D1VISIVESHAPAPPROX use the same characteristic func-
tion, namely the characteristic function of the full game. The fact that DIVISIVESHAPAPPROX
assumes v to be a function of the features’ attributes is simply a condition for the method to have
a proper foundation, while KernelSHAP has no such condition. In their paper Corder and Decker
(2019) implicitly state that v(()) = 0. This is dealt with by instead using a modified characteristic
function v*(S), mentioned in Section 2.5, which is simply a relocated version of the characteristic
function v(S). Note that adding a constant to the characteristic function v(S) will only impact
¢p, and the other Shapley values will remain the same as before. Thus, the interpretation of the
Shapley values for the features when using the relocated v*(S) is exactly the same as when using
v(S). For SHAP values, v(0) = E[f(x)], and in the setting of the later experiments E[f(x)] is the
average prediction for the data set, when assuming the data set is representable for the entire pop-
ulation. This also means that one can find ¢g for the original setting with characteristic function
v(S) as ¢9 = f(X), where X is the entire data set. From this point on, v*(S) will be used as
characteristic function, and will be referred to as v(.S).

3.1 A modification to the DivisiveShap Approx

A problem which often occurs in the experiments in Section 5 is a huge error in the approximations
made by DIVISIVESHAPAPPROX for some individuals. This error is caused by the scaling step in
the method, which in some cases is way off. Because the scaling factor, v, is decided by the
characteristic function on the subcoalitions, the approximations are highly vulnerable to mistakes
here. Such mistakes are particularly likely to happen when subcoalitions are valued close to 0, i.e.
v(S) = 0.

An example can illustrate this more clearly. Consider the small problem where the grand coalition
N is only partitioned once into the two leaf coalitions S; and S5. Since the decomposition of v
is not perfect, we have that v(N) = v(S1) + v(S2) + €. The synergy rate when joining these two
coalitions is then
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This is of course an intended feature, but the method becomes rather unstable whenever |v(S7) +
v(S2)| << e. This is particularly likely to happen when the decomposition of v is not very good,
making e relatively big. In addition, since v*(S) is centered around 0, as described in Section 2.5,
getting v(S51) + v(S2) & 0 is not unlikely. Say v(S1) + v(S2) = 0.2¢, this gives a synergy rate of
v =1+ 55 = 6. Thus, although the exactly computed Shapley values in each leaf coalition might
be close to the actual value for the full game, the scaling will completely ruin the approximation.
The results are even worse if the error is big enough to flip the sign, e.g. v(S1) + v(S3) = —0.5¢.
This results in a synergy rate of v = 1 — —= = —1, which means that the Shapley values from
the leaf-coalitions will be completely flipped in the approximation of the Shapley values for the
full game. This would make the biggest contributor in a leaf coalition the biggest inhibitor in the

full game.

The mistakes due to heavy scaling is particularly present for the near average prediction indi-
viduals, as mentioned above, but also more likely when the characteristic function itself has to be
approximated. This approximation entails variance as another potential cause for failure. Now,
even if E[v(S1) +v(S2)] = v(N), when v(NN) ~ 0 there is a high probability of getting a value which
is of opposite sign. In fact, only an approximation really close to the desired v(N) will avoid a big
scaling error.

To look into the necessity of the scaling step of the algorithm, a new method will be tested in
Section 5. DIVISIVESHAPAPPROXNEW works exactly like DIVISIVESHAPAPPROX, but ignores the
scaling. Essentially this means that the Shapley values computed in the leaf coalitions will be the
approximated Shapley values of the full game (for Figure 1 this means the approximation is com-
plete when it has reached the green boxes). As long as the decomposition of the game is adequate,
this method will be fine, as opposed to the original DIVISIVESHAPAPPROX which can still run into
the aforementioned problems. Avoiding the scaling is however not without its consequences. As
the scaling step in DIVISIVESHAPAPPROX is responsible for keeping the Shapley values on a size
where they perfectly sum to the gain in payout from the players, this feature is lost in DIVISIVE-
SHAPAPPROXNEW. Therefore, there is no guarantee that DIVISIVESHAPAPPROXNEW satisfy the
Efficiency property of the Shapley values for any more than the leaf coalitions that the Shapley
values are based on. This raises questions regarding how one can interpret the approximated Shap-
ley values from this method if the difference in prediction explained by the Shapley values is no
way near the actual gain from the players.
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4 Machine learning methods

This section presents the two machine learning models which will be used in the experiments in
Section 5. First, the choice of machine learning models for this project is explained. Then the
linear model is presented in Section 4.1 and the random forest model is presented in Section 4.2.

The linear model is a convenient choice of machine learning model for the control experiments
in Section 5.1. As presented in Section 2.3, the linear model has both an exact formula for the
characteristic function, v(5), in Equation (1), and an explicit formula for the Shapley values if
the features are independent. The explicit formula for the Shapley values can not be used for the
purpose of this project, since all experiments in Section 5 will include at least some correlated
features. However, the exact formula for v for a linear model with dependent features in Equation
(1) is useful as it greatly reduces the computational time from having to use the Monte Carlo
integration approach in Equation (6), which would have to be used for other models without an
exact formula for the characteristic function. Moreover, having to approximate the characteristic
function would introduce variance to the ”exact” Shapley values that will be used as the ground
truth in the experiments. This is suboptimal, as the error estimates are based on this ground
truth. Avoiding this approximation of the characteristic value is therefore favorable.

The random forest model is a machine learning model with typically much higher predictive power
than the linear model. The model is much more complex than the linear model and is thus able to
represent more convoluted relationships between the features and the output, but it is also more
difficult to interpret. The random forest model is chosen as for the experiment in Section 5.3 as it
has good predictive power and is a typical black box model for which Shapley values are useful.

4.1 Linear model

The linear model is one of the simplest machine learning models. The model assumes a linear
relationship between the observation, 3, and the covariates x with an error term, y = '3 + .
Note that the vector with the covariates in this representation will usually include a 1 as the first
element to allow an intercept in the model, = (1,21, -+ ,2,)". In the experiments in Section
5.1 we do not include an intercept term however, and this element is excluded from the vector.
The error term is typically assumed to have a normal distribution, ¢ ~ N(0,0?), and finding the
optimal B is now the same as solving a least squares problem (Wood, 2015). The fitted linear
model is then

B=(X"X)"'X"y (11)

where X = (xy,---, ;)" is the design matrix and y = (y1,--- ,yx) are the corresponding obser-
vations.

The prediction from the linear model on an individual with covariates «x is

fl@)==2"8, (12)

but several predictions can be made at the same time with matrix multiplication:

F(X)=BTX. (13)

4.2 Random forest

The fundamental cornerstone of the random forest model is the decision tree, and thus the decision
tree is presented first. Decision trees make their predictions by running the covariates of an
individual through a set of comparisons, e.g. if 1 < 40 then follow the tree to the left, otherwise
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follow the tree to the right. As this reaches a leaf node, the tree returns a prediction. For
classification problems, the leaf node predicts a class, while for regression problems it predicts a
value, and is often called a regression tree. In practice this means that regression trees can only
produce as many different values as there are leaf nodes.

Decision trees are usually constructed in a greedy top-down manner, called recursive binary split-
ting (James et al., 2013). For classification trees, each new split is made at the place with the
highest information gain (Stuart and Norvig, 2009), which is based on the concept of entropy.
Entropy is a measure of disorder, and is defined as

H=— Zpi log, pi,

where p; is the probability of class ¢. In this setting, the probability p; is the share of observations
which has reached this part of the tree belonging to class ¢. The information gain is then the
reduction in entropy from a split. Another common option is to use Gini index instead of entropy.
The Gini index is defined as

G= Zpi(l —Pi)s

and is in fact rather similar in characteristics to the entropy measure.

The regression tree is similarly fitted by minimizing the RSS (residual sum of squares) in each step,

K
RSS =" (s — )%

j=1i€R,

where Ry, -, Ry refers to the high-dimensional boxes the splits of the tree form and g; is the
mean of the observed values y in box R; (James et al., 2013).

Decision trees can be be grown to perfectly explain most training data, but doing so will lead to
too big trees that are likely overfitted to the training data. To avoid overfitting, big decision trees
are pruned to make smaller trees. The smaller trees are not only less likely to overfit, but are also
more interpretable for humans. The decision trees do not have the same predictive accuracy as
many other methods, and are highly sensitive to small changes in the data (James et al., 2013).
The predictive accuracy can be considerably improved by creating ensembles of decision trees,
which is what the methods bagging, random forest and boosting do.

Bagging and random forest are two closely related methods. They both create an ensemble of
decision trees that are made from bootstrapped samples of the training data, instead of the full
training data. This results in different trees for each run, and the resulting model is not just one
tree, but e.g. 100 different trees. The prediction made by these models is aggregated from the
predictions of the different decision trees. For classification problems they select the most common
prediction from the decision trees. For the regression problems they predict the average prediction
of the decision trees.

The difference between bagging and random forest is in how the splits are made. Bagging produce
splits in the exact same way as the single decision tree. If there are some features that have strong
predictive power in the data set, they are likely to be in the first nodes of all the different trees,
meaning the trees produced by bagging are not very different. A high correlation between the trees
fails to lower the variance of the prediction compared to a single decision tree (James et al., 2013).
Random forest avoids having correlated trees. When the each split is generated, it is only allowed
to consider m different features (typically m =~ y/n, where n is the total number of features). In
this way, the trees are forced to use more of the features when creating the trees, and they are
much more diverse than the ones produced by bagging.
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Boosting is more complex than bagging and random forest (James et al., 2013), and will in short
fit trees on the residuals from previous trees. All the three methods that use ensembles of trees
are better than the simple tree. Generally random forest models are better than bagging, while
boosting in many cases outperforms even the random forest (Stuart and Norvig, 2009). The main
disadvantage of these three models is that the nice interpretable nature of the decision tree is lost
when there are many trees that are responsible for the outcome.
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5 Experiments

In this section we will compute SHAP values for three differently constructed data sets. First, in
Section 5.1 we will use a linear model and multivariate Gaussian distributed data, since we in this
case are able to exactly compute the true SHAP values. In Section 5.2, the linear model is replaced
by a non-linear model, but the data is still multivariate Gaussian. Finally, in Section 5.3 we use a
synthetic data set based on a real data set from DNB. The simulated experiments in Section 5.1
and Section 5.2 are designed to be more controlled and simple variants of the DNB data set. This
data set in Section 5.3 contains 28 features, which makes exact computation of the Shapley values
quite time consuming. Hence, the simulated experiments in Sections 5.1 and 5.2 will use 15 and 9
covariates, respectively.

In the experiments we will use four different estimators for the characteristic function v(S);
v_indep, v_all multigauss, v_cluster multigauss and v_linear.

For the estimators v_indep, v_all multigauss and v_cluster_multigauss the characteristic func-
tion is estimated using Equation (6). The difference between the three approaches is how they
sample the values of the covariates that are not in the coalition S, a:%

v_indep follows the approach by Lundberg and Lee (2017) which assumes the covariates in S are
independent of the covariates in S. The covariate values w’; are taken from a random individual

for each sample, k. This is the original approach for the KernelSHAP.

v_all multigauss assumes that all the covariates are from a multivariate Gaussian distribution.
As explained in Section 2.4, a:g is drawn from a multivariate Gaussian distribution with mean and
variance according to the Equations (4) and (5).

v_cluster multigauss assumes that within each cluster (not applicable to KernelSHAP) the co-
variates are multivariate Gaussian, but that covariates in separate clusters are independent from
each other. For the remaining covariates in the same cluster as S, the sampled values is done
similarly as in v_all multigauss. For the covariates outside the current cluster, the values are
samples from random individuals of the data set as in v_indep. This approach is simpler, in the
way that it generate less data from the multivariate Gaussian distribution. This could reduce the
risk of generating unrealistic data in the case where the covariates are not actually multivariate
Gaussian.

The last estimator, v_1inear, assumes that the model to be explained is a linear model, and is not
really an estimator when this is true. The characteristic function is computed using Equation (1),
with E[zg|zs = x| = pg)s from Equation (4). This requires only one prediction from the model
and is exact, in contrast to the other approaches. v_linear is the clear best choice for a linear
model when the data is multivariate Gaussian, but should not be applied for any other model.

As explained in Section 3, DIVISIVESHAPAPPROX assumes v(f)) = 0. Thus, for all the four estim-
ators we subtract the mean prediction of the data set (the data set is assumed to be representative
for the distribution of the population) from the expected prediction given covariate values x%.

5.1 Linear model experiments

In this section we simulate data from a linear model with 15 multivariate Gaussian features. The
data sets are constructed to mimic the structure of the DNB data set in Section 5.3, seen in Figure
11. The 15 covariates are divided into 5 groups of 3 covariates each. These groups will be referred
to as clusters. Within each cluster, we specify a high correlation, p;,, = 0.9, for all experiments
in this section. Between all pairs of two covariates in different clusters we use a lower correlation,
Pbw, Which differs between the three different experiments conducted in this section. All covariates
are set to have an equal variance of 1. Figures 2, 5 and 6 visualise how these correlation matrices
appear in the three experiments. The simulated data sets contain 10000 individuals which are
drawn from multivariate Gaussian distributions with covariance matrices as described above and
with mean 0.
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Figure 2: The covariance/correlation matrix used in experiment 1. Within each cluster the correl-
ation is p;, = 0.9, and between the clusters the correlation is ppy = 0, meaning that the clusters
are completely independent.

Before looking into the results of concrete experiments, the run times of the KernelSHAP and
Di1viSIVESHAPAPPROX were tested on a data set with independent clusters, phyw = 0, gener-
ated from a linear model with random standard normal distributed coefficients, 5 from Section
4.1. For a fair comparison both methods used the same estimator for the characteristic function,
v_all multigauss. For both approximation methods we tested 9 different values for their tuning
parameters, d and [ respectively. For each number of samples, d, for the KernelSHAP method, and
for each 8 for the DIVISIVESHAPAPPROX method, we performed 100 re-runs to get more robust
results. For KernelSHAP we used d in the range of 25 to 350 samples. The different values for
B were constructed with regards to the maximum size of the leaf clusters allowed by the method.
Changing the value of 8 only have an effect on the DIvISIVESHAP APPROX whenever it allows for a
different maximum leaf cluster size. The sizes of all the leaf clusters are positive integers, and there
is thus only a finite and discrete number of possibilities for tuning of the DIVISIVESHAP APPROX
method, namely n. The 9 smallest maximum leaf cluster sizes were tested, using 5 = n'/* to allow
leaf clusters to be of size up to k. The run times are shown in Figure 3.

From Figure 3 it becomes quite clear that the run time develops differently for KernelSHAP and
D1vISIVESHAPAPPROX. KernelSHAP seems to have a linear run time of O(d), as expected from
Section 2.5. DIVISIVESHAPAPPROX has no theoretical run time when using hierarchical clustering,
and appears more complex. The run time appears to increase stepwise at 6 and again at 9, and be
constant in between. The reason for this is probably due to the structure of the data set for which
the tests were performed. As DIVISIVESHAPAPPROX aims to partition the data into clusters, it is
likely to find the actual clusters of this data set when p;, is much higher than py,. This means
that the partitioning will only ever reach leaf clusters with a multiple of 3 number of features.
For example, when DIVISIVESHAPAPPROX is allowed leaf clusters with up to 5 features, it will
still partition clusters of 6 features into two leaf clusters of 3 features, and as a consequence end
up being exactly equal to DIVISIVESHAPAPPROX with maximum leaf clusters of 3. Thus, only
when the maximum size of the leaf cluster reaches the next multiple of 3, the method will reach
bigger leaf clusters. It will then take longer to compute SHAP values and hence the run time of the
method is increased. For maximum leaf cluster sizes of 1 and 2, the same argument does not apply,
and the reason the run time decrease here, is because the games are so small that the computation
time of the SHAP values in the leaf clusters does not dominate the run time of the method, and
joining the SHAP values takes longer.
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Figure 3: The left plot shows the run time of KernelSHAP with d ranging from 25 to 350 samples.
The right plot shows the run time of DIVISIVESHAPAPPROX with s corresponding to maximum
leaf cluster sizes from 1 to 9. The black lines are the averages of the 100 runs, and the grey area
display the center 80% quantile.

5.1.1 Experiment 1

We performed three different experiments with a linear model. The three experiments are referred
to as experiment 1, experiment 2 and experiment 3. In the first experiment the between cluster
correlation was zero, ppy = 0, making the clusters independent (see Figure 2). Using 8 = n'/V™ the
leaf clusters for DIVISIVESHAPAPPROX were of max size 3 < v/15 & 3.87, which is the size of the
actual clusters in the simulated data. Thus, with perfect clustering, the partitioning should result
in a proper multi-issue decomposition of the characteristic function. The first coefficient of the
linear model was set to be zero, §; = 0, while the remaining coefficients were drawn independently
from a standard normal distribution.

The SHAP values for one individual in experiment 1 were approximated using KernelSHAP, the
original DIvISIVESHAPAPPROX and the modified version DIviSIVESHAPAPPROXNEW. For the
KernelSHAP we used only d = 50 samples, so that the computation time was roughly equal for
the three methods, see Figure 3. The exact computation of the SHAP values used the actual
mean, g = 0, and covariance matrix as shown in Figure 2, in combination with v_linear. The
approximation methods were given the mean and covariance estimators of the simulated data, as
one would have to do in real applications. To compute values of the characteristic function, v, all
three approximation methods used v_all multigauss. Additionally, for this experiment, we also
computed the SHAP values using the original KernelSHAP method, i.e. with v_indep as estimator
for v, and d = 1000 samples. The resulting approximations are shown in Figure 4, along with the
true SHAP values.

The SHAP values from the original KernelSHAP approach (Lundberg and Lee, 2017), using
v_indep, in Figure 4 are worse than the SHAP values from the KernelSHAP following the ap-
proach by Aas et al. (2019), using v_all multigauss, with MAE of 0.289 and 0.123, respectively.
This, despite the fact that the original KernelSHAP was allowed 20 times the number of samples of
the other KernelSHAP. The reason for this is because the assumption behind the estimator v_indep
is far from satisfied, and the resulting values of the characteristic function are far from the true
values. Thus, the original KernelSHAP approach will not converge to the correct SHAP values,
and will not be able to compete with the other approximation methods. Hence, this approach is
excluded from all further experiments.

Figure 4 shows how the original DIVISIVESHAPAPPROX method can fail in some cases. The
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Figure 4: The SHAP values for one individual in experiment 1 with the covariance matrix in Fig-
ure 2. Note that the covariates are sorted alphabetically and not by number. The red bars show
the exact SHAP values. The olive green bar is the SHAP values from the original version of Ker-
nelSHAP, which use v_indep as estimator for v, and d = 1000 samples. The green, blue and purple
bars are the approximations made by KernelSHAP, DivISIVESHAPAPPROX and DIVISIVESHAPA P-
PROXNEW, respectively, all using v_all multigauss as estimator for v. KernelSHAP used d = 50
samples, and DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used 3 = n!/V™, MAE of
original KernelSHAP = 0.289, MAE of KernelSHAP = 0.123, MAE of DIVISIVESHAPAPPROX =
0.746, MAE of D1vistvESHAPAPPROXNEW = 0.0301.

SHAP values for X1, X2, X11, X12, X13, X14 and X15 computed by the DIVISIVESHAPAPPROX
all appear to be scaled too much by the synergy, v. Looking into the partitioning made by
D1vISIVESHAPAPPROX in this experiment, reveals that the two leaf clusters of covariates X1 to X3,
denoted S7, and covariates X13 to X15, denoted S5, are joined together. From an exact valuation
of these coalitions using v_linear we find that v(S;) = —0.0944 and v(S5) = —0.0182, and the
joint coalition is valued as v(S; U S5) = —0.1515. When joining these two coalitions, the computed
SHAP values of S; and S5 should be scaled by —0.1515/(—0.944 — 0.0182) = 1.35. The total
synergy for these leaf coalitions, that is the combined scaling from the start up to the grand
coalition, is in fact only 1.25 when the characteristic function is computed exactly. Considering
DivisSiIVESHAPAPPROXNEW works exactly like DIVISIVESHAPAPPROX, but without the scaling by
synergy rate, we can see from Figure 4 that the actual scaling of the SHAP values in S5, X13, X14
and X15 is much higher than 1.25, however, and there has to be more to this explanation.

As mentioned in Section 3.1, DIVISIVESHAPAPPROX is particularly vulnerable to values of v near 0
for any of the subcoalitions of Figure 1, and Figure 4 is a typical example of this phenomenon. Con-
sider only v(S5), which is the closest value to 0 here. Over 1000 evaluations by v_all multigauss
with K = 1000 this estimator had a standard deviation of 0.041, which is more than double of the
value itself. In 352 of the 1000 iterations, the estimator returned a positive value, which is the wrong
sign and can cause SHAP values as discussed in Section 3.1. Another indication of the scaling of
the SHAP values in DIVISIVESHAPAPPROX being problematic, is that DIVISIVESHAP APPROXNEW
is quite close to the exact SHAP values in Figure 4, raising an important question regarding the
necessity of any scaling.
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The computation of the SHAP values in Figure 4 was repeated for 100 random individuals. For
each individual, the SHAP values were both computed exactly and by the different approximation
methods. For each approximation the mean absolute error (MAE) was computed and stored. The
average MAE for the approximations by a method is said to be the MAE of the method. Finally,
a skill score (Gneiting and Raftery, 2007) is assigned to each method, based on the improvement
from a base method. The skill score is defined as

Skill — MAE(method) — MAE(base method) 1 MAE(method)
~ MAE(optimal) — MAE(base method) MAE(base method)’

and is the same as used in Aas et al. (2019).

In our case the base method was decided to be the KernelSHAP method with 50 samples, as
this is the current most used approximation method with the same computation time as Divis-
IVESHAPAPPROX. This method was compared to the following approaches: KernelSHAP with
d = 100, 150 and 200 samples, and D1vISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW, both
with two alternative estimators for the characteristic function, v, namely v_all multigauss and
v_cluster multigauss, and with two different values for 5 to get either 3 covariates in each leaf

clusters, B = n'/3! or 6 covariates in each leaf cluster, 3 = n'/61. The results are presented in
Table 1.

Method v estimator number of samples | MAE | Skill
KernelSHAP v_all multigauss 50 0.0928 0
KernelSHAP v_all multigauss 100 0.0501 | 0.46
KernelSHAP v_all multigauss 150 0.0385 | 0.58
KernelSHAP v_all multigauss 200 0.0332 | 0.64

Method v estimator leaf cluster size MAE | Skill

D1vISIVESHAP APPROX v_all multigauss 3 5.08 -54
D1vVISIVESHAPAPPROX v_all multigauss 6 0.0502 | 0.46
D1VISIVESHAPAPPROX v_cluster multigauss 3 0.105 | -0.13
D1VISIVESHAPAPPROX v_cluster multigauss 6 0.189 | -1.03
D1visSIVESHAPAPPROXNEW v_all multigauss 3 0.0273 | 0.71
D1visIvESHAPAPPROXNEW v_all multigauss 6 0.0173 | 0.81
D1viSIVESHAPAPPROXNEW | v_cluster multigauss 3 0.0264 | 0.72
D1vISIVESHAPAPPROXNEW | v_cluster multigauss 6 0.0153 | 0.83

Table 1: The MAE and skill score of KernelSHAP, D1VISIVESHAPAPPROX and DIVISIVESHAPAP-
PROXNEW over 100 runs of experiment 1, p,y = 0. KernelSHAP used d = 50, 100, 150
and 200 samples. DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used 3 = n'/3! and
B = n'/61 to get maximum leaf cluster sizes of 3 and 6, combined with v_all multigauss and
v_cluster_ multigauss.

From Table 1 one can see that the DIVISIVESHAPAPPROX is mostly worse than the KernelSHAP
method with d = 50 samples. The only version to have a positive skill score is one which uses
B = n!/%! but this method has a run time comparable to the KernelSHAP with d = 150, see
Figure 3 (and Table 4), meaning it is still worse than it’s KernelSHAP competitor. The DIVISIVE-
SHAPAPPROXNEW methods on the other hand has a skill of about 0.7 with 8 = n'/3-1. This score
is enough to beat all the included KernelSHAP methods, even though they have up to four times
the computation time (Table 4) of the DIVISIVESHAPAPPROXNEW method. One can also note
that the two different estimators for v do not affect the MAE of the method significantly, although
the two DIVISIVESHAPAPPROXNEW methods which use v_cluster multigauss are slightly better
over these 100 runs. This makes sense, as the two methods are close to having the same expectation
in this experiment. v_cluster multigauss is slightly more accurate in this experiment however,
as it correctly assumes the clusters are independent, while v_all multigauss will use a small
correlation between the clusters due to the sample covariance that occurs naturally.

As should be anticipated, the MAE and skill score of the KernelSHAP method improve significantly
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as the number of samples, d, increases. There is no pattern in MAE and skill of the DIVISIVE-
SHAPAPPROX method in this experiment, which is discussed more below. Somewhat surprisingly,
the MAE and skill of the DIvISIVESHAPAPPROXNEW also improve significantly as the computa-
tion time is increased, going from S = n'/3! to f = n!'/%!. The reason this may be surprising
is that in this experiment, the DIVISIVESHAPAPPROX and thus also DIVISIVESHAPAPPROXNEW,
should be able to get a proper multi-issue decomposition of the characteristic function when having
leaf clusters with max 3 covariates, as mentioned above. Thus, one might expect the method to
have an equally good decomposition of the game with 8 = n'/3! as with 8 = n!/61, yet this does
not seem to be the case.

Perhaps the most noteworthy result in Table 1, is the MAE and skill score of DIVISIVESHAPAP-
PROX with estimator v_all multigauss and leaf cluster size of 3. To put into perspective, the
method’s MAE of 5.08 means that the average MAE for the approximations by this method over
100 individuals is 5 times larger than the biggest SHAP value of Figure 4. The skill score of -54
speaks for itself. This result is truly terrible, especially considering that experiment 1 is considered
to be the easiest scenario for DIVISIVESHAPAPPROX. As all MAEs were stored in the making
of Table 1, one can discover that the worst SHAP value approximation for an individual had an
MAE of 456.691, making it responsible for almost the entire MAE of the method. In fact, after
removing only the two worst approximations by this method, the new MAE of the method would
be 0.124, and the new skill score —0.34. This goes further to show that the DIVISIVESHAP APPROX
is very vulnerable to a few extreme mistakes, likely by the same reason as previously discussed,
considering DIVISIVESHAPAPPROXNEW does not share this trait.

5.1.2 Experiments 2 and 3

In experiments 2 and 3 we introduce some correlation between the clusters. More specifically, we
use a correlation of ppy, = 0.1 in experiment 2 and a correlation of ppy, = 0.3 in experiment 3. Fig-
ures 5 and 6 show how the correlation between the covariates then appear in the two experiments.
These experiments are thought to be less optimal for the DIvISIVESHAPAPPROX (and DIVISIVE-
SHAPAPPROXNEW) approach, as the subgames are connected, and the multi-decomposition of v
might struggle. Particularly, the error of the multi-issue decomposition should increase as ppy
increases. However, the increasing piy will not ruin the partitioning, and DIVISIVESHAPAPPROX
has no trouble finding the correct clusters from the simulated data sets.
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Figure 5: The covariance/correlation matrix used in experiment 2. Within each cluster the correl-
ation is piy, = 0.9, and between the clusters the correlation is ppy = 0.1.
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Figure 6: The covariance/correlation matrix used in experiment 3. Within each cluster the correl-
ation is pi, = 0.9, and between the clusters the correlation is ppy = 0.3.

Figures 7 and 8 show the SHAP values for two random individuals in experiments 2 and 3,
respectively. Similarly to experiment 1, the true SHAP values were computed as well as the
SHAP values from three approximation methods. The three methods were the KernelSHAP with
d = 50 samples and estimator v_all multigauss, DIVISIVESHAPAPPROX and DIVISIVESHAPAP-
PROX with 8 = n'/V™ (max leaf cluster size of 3) and estimator v_all multigauss.

In Figures 7 and 8 the SHAP values computed by DIVISIVESHAPAPPROX and DIVISIVESHAPAP-
PROXNEW are better than the SHAP values obtained using the KernelSHAP approach with d = 50
samples. The DIVISIVESHAPAPPROXINEW is better than DIVISIVESHAPAPPROX in both examples,
but the MAE of the SHAP values computed by DIVISIVESHAPAPPROX is much higher than it was
in Figure 4.

In experiment 2, Figure 7, we see that the DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW
correctly identify which covariates that are the four major contributors and the three major in-
hibitors of the prediction. This is an important task, with respect to the usual applications of the
Shapley values. In experiment 3, Figure 8, there are fewer covariates that stand out, but both
the DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW are able to identify the three covari-
ates that contribute negatively to the prediction, and correctly identify the biggest culprit. For
the biggest contributors, DIVISIVESHAPAPPROX is unable to identify the correct covariates, while
D1visiVESHAPAPPROXNEW correctly identifies the two biggest contributors.

Notice that in Figures 7 and 8, the actual SHAP value for X1 is not 0, although the coefficient
in the linear model for this covariate is 0. This is a consequence of the way SHAP is defined. A
covariate can have a non-zero SHAP value solely due to its impact on other covariates, as long as
these have an effect on the prediction. I.e. in these experiments, knowing the value of X1 when
X2 and X3 are not known, will be very insightful for what these values might be, given the high
correlation between these three covariates, and the prediction from the model will take this into
account, thus adding to the Shapley values. In fact, in these experiments, as all covariates have
some correlation to each other, the value of X1 always add information regarding the unknown
covariates. The intuition behind this could be that if two features are correlated, then in the world
of Shapley values they have some sense of symmetry, depending on the grade of correlation, and
the effects of one feature should also apply for the other feature. E.g. two perfectly correlated
(positively or negatively) features will yield equal SHAP values, due to the symmetry property of
the Shapley values.
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Figure 7: The SHAP values for one individual in experiment 2 with the covariance matrix in
Figure 5. Note that the covariates are sorted alphabetically and not by number. The red bars
show the exact SHAP values. The green, blue and purple bars are the approximations made
by KernelSHAP, D1viSIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW, respectively, all using
v_allmultigauss as estimator for v. KernelSHAP used d = 50 samples, and DIVISIVESHAPAP-
PROX and DIVISIVESHAPAPPROXNEW used 8 = n'/V"™. MAE of KernelSHAP = 0.338, MAE of
D1visSIVESHAPAPPROX = 0.212, MAE of DIVISIVESHAPAPPROXNEW = (0.127.

Like experiment 1, experiments 2 and 3 were repeated for 100 random individuals. The resulting
MAE of the methods and their skill scores are presented in Tables 2 and 3.

The performances of the methods in Tables 2 and 3 further suggest that DIVISIVESHAPAP-
PROXNEW is better than DIVISIVESHAPAPPROX. DIVISIVESHAPAPPROX is not only always worse
than DIVISIVESHAPAPPROXNEW, but it is also often worse than the base method KernelSHAP
with d = 50 samples, even with leaf clusters up to 6 covariates. The DIVISIVESHAPAPPROX never
outperforms the KernelSHAP with d = 150 samples, thus never really making it a reasonable
option. Recall however that in both Figure 7 and Figure 8, DIVISIVESHAPAPPROX is doing bet-
ter than KernelSHAP with the same computation time. The same can be noted in Table 2 for
experiment 2, with estimator v_cluster multigauss and leaf cluster size 3. This shows that D1-
VISIVESHAPAPPROX certainly has the potential to make approximations that are better than the
popular KernelSHAP method, given equal computation time. Nonetheless, due to the unstable
nature of the scaling done in the DIVISIVESHAPAPPROX method, it is generally worse than its
competitors. Previous versions of the performance tests in Tables 1, 2 and 3 which are not repor-
ted in this thesis have found quite different skill scores for DIVISIVESHAPAPPROX in particular,
but also to some extent for the other approximation methods. Although they have qualitatively
agreed with the results presented in this section, this suggests that 100 test observations is not
quite enough to get a completely accurate skill score. However, larger test sets have not been
possible in the time frame of this thesis.

DivisSIVESHAPAPPROXNEW is better than the base method in all three experiments, with all skill
scores positive in Tables 1, 2 and 3. As the between cluster correlation, pyy increases throughout
the experiments, the skill score of the method decreases. For experiment 2, with py, = 0.1, the
performance of DIVISIVESHAPAPPROXNEW with 8 = n'/6! is just a little bit better than the
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Figure 8: The SHAP values for one individual in experiment 3 with the covariance matrix in
Figure 6. Note that the covariates are sorted alphabetically and not by number. The red bars
show the exact SHAP values. The green, blue and purple bars are the approximations made
by KernelSHAP, D1viSIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW, respectively, all using
v_allmultigauss as estimator for v. KernelSHAP used d = 50 samples, and DIVISIVESHAPAP-
PROX and DIVISIVESHAPAPPROXNEW used 8 = n'/V™. MAE of KernelSHAP = 0.134, MAE of
D1visSIVESHAPAPPROX = 0.124, MAE of DIVISIVESHAPAPPROXNEW = (0.104.

run time equivalent KernelSHAP with d = 150 samples, and roughly equal in performance to the
just slightly slower KernelSHAP with d = 200 samples. For experiment 3, with pnhy, = 0.3, the
KernelSHAP with d = 150 samples matches the performance of DIVISIVESHAPAPPROXNEW with
B = n'/61 If one further increases the between cluster correlation ppy, it is expected that this
behavior will continue.

A reoccurring event in the different performance tests of Tables 1, 2 and 3 is that the skill score
of DIVISIVESHAPAPPROXNEW is higher with the estimator v_cluster multigauss than with the
estimator v_all multigauss. The explanation provided in the discussion of Table 1 no longer
holds for experiments 2 and 3, where we do have between cluster correlation, yet the difference in
skill scores is actually greater. The exact reason for this result is not entirely clear. A possible
explanation could be that when v_cluster multigauss samples the covariate values directly from
the data set outside the leaf cluster, it actually captures the true distribution of this data better
than v_all multigauss does. v_cluster multigauss will guarantee that the distribution of the
covariates outside the leaf cluster follows the true distribution, but the correlation between the
cluster and the rest of the covariates is ignored. Meanwhile v_all multigauss will use the correl-
ation between the covariates inside the cluster and the rest of the covariates, but it approximates
the distribution of the data using the observed mean and observed covariance, which might differ
somewhat from the parameters of the true distribution. The results of the performance tests might
suggest that the correlation between the covariates in the cluster and the rest is not as important
as sampling from the correct distribution outside the cluster.

The run times of the different methods in Tables 1, 2 and 3 were tracked. The differences between
the three experiments do not affect the run times of any method. Hence, we compute the average
run times over all the three experiments. In Table 4, these run times are presented, including the
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Method v estimator number of samples | MAE | Skill
KernelSHAP v_all multigauss 50 0.213 0
KernelSHAP v_all multigauss 100 0.109 | 0.49
KernelSHAP v_all multigauss 150 0.0878 | 0.59
KernelSHAP v_all multigauss 200 0.0714 | 0.67

Method v estimator leaf cluster size MAE | Skill

DIVISIVESHAPAPPROX v_all multigauss 3 0.421 | -0.97
D1VISIVESHAPAPPROX v_all multigauss 6 0.256 | -0.20
D1vVISIVESHAPAPPROX v_cluster multigauss 3 0.165 | 0.23
D1VISIVESHAPAPPROX v_cluster multigauss 6 0.103 | 0.52
D1vISIVESHAPAPPROXNEW v_all multigauss 3 0.0912 | 0.57
D1visivESHAPAPPROXNEW v_all multigauss 6 0.0659 | 0.69
D1viISIVESHAPAPPROXNEW | v_cluster multigauss 3 0.0743 | 0.65
D1viISIVESHAPAPPROXNEW | v_cluster multigauss 6 0.0547 | 0.74

Table 2: The MAE and skill score of KernelSHAP, D1VISIVESHAPAPPROX and DIVISIVESHAPAP-
PROXNEW over 100 runs of experiment 2, pn, = 0.1. KernelSHAP used d = 50, 100, 150
and 200 samples. DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used 3 = n'/3! and
B = n'/61 to get maximum leaf cluster sizes of 3 and 6, combined with v_all multigauss and
v_cluster_multigauss.

computation time of the exact SHAP values.

KernelSHAP has a run time and error trade-off which is discussed in Covert and Lee (2020). The
run-time is O(d), which can be seen from Figure 3 and in Table 4, while the variance is O(3). This
is supported by the results in Tables 1, 2 and 3, as the MAE of KernelSHAP steadily decrease as the
number of samples, d, increases. The run time and error trade-off for DIVISIVESHAP APPROX is less
documented, especially in regards to the effect the tuning parameter 8 has on the error. Tables 1,
2 and 3 reveal that doubling the leaf cluster size in experiment 1, 2 and 3 typically reduce the MAE
of the method. This is also shown in Corder and Decker (2019), and explained as less interpolation
error. However, as discussed in experiment 1, the error of the original DIVISIVESHAPAPPROX is
at high risk of being subject to extreme scaling, and the different MAEs of this method are mostly
just decided by these occasional bad approximations. It is therefore difficult to draw conclusions
for DIVISIVESHAPAPPROX. For DIVISIVESHAPAPPROXNEW the reduction in MAE is more steady,
when switching from § = n'/3! to § = n'/6!. In experiment 1, the MAE is reduced to about 60%,
in experiment 2 the MAE is reduced to about 70% and in experiment 3 the MAE is reduced to
about 70% and 60% for the two different estimators. From Table 4, we see that the run times for
D1visivVESHAPAPPROX and D1vISIVESHAPAPPROXNEW with leaf cluster sizes 3 and 6 are similar
to the run times of KernelSHAP with d = 50 and 150, respectively. Thus, we can compare the
reduction in MAE for DiviISIVESHAPAPPROXNEW to the reduction in MAE for the KernelSHAP
when switching from d = 50 samples to d = 150. In experiment 1 the MAE is reduced to 41%, in
experiment 2 the MAE is reduced to about 41% and in experiment 3 the MAE is reduced to about
44%. This means that although the DIVISIVESHAPAPPROXNEW is best with short computation
time, as more computation time is granted, the KernelSHAP will eventually become better.
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Method v estimator number of samples | MAE | Skill
KernelSHAP v_all multigauss 50 0.199 0
KernelSHAP v_all multigauss 100 0.112 | 0.44
KernelSHAP v_all multigauss 150 0.0878 | 0.56
KernelSHAP v_all multigauss 200 0.0717 | 0.64

Method v estimator leaf cluster size MAE | Skill

DIVISIVESHAPAPPROX v_all multigauss 3 0.412 | -1.07
DIVISIVESHAPAPPROX v_all multigauss 6 0.239 | -0.20
D1vISIVESHAP APPROX v_cluster multigauss 3 0.220 | -0.11
D1VISIVESHAPAPPROX v_cluster multigauss 6 0.174 | 0.13
D1vISIVESHAPAPPROXNEW v_all multigauss 3 0.149 | 0.25
D1viSIVESHAPAPPROXNEW v_all multigauss 6 0.105 | 0.47
D1visSIvESHAPAPPROXNEW | v_cluster multigauss 3 0.141 | 0.29
D1viSIVESHAPAPPROXNEW | v_cluster multigauss 6 0.0848 | 0.57

Table 3: The MAE and skill score of KernelSHAP, D1VISIVESHAPAPPROX and DIVISIVESHAPAP-
PROXNEW over 100 runs of experiment 3, ppy, = 0.3.

KernelSHAP used d = 50, 100, 150

and 200 samples. DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used 8 = n'/3! and
B = n'/61 to get maximum leaf cluster sizes of 3 and 6, combined with v_all multigauss and

v_cluster_multigauss.

Method v estimator number of samples | run time[s|
Exact v_linear all (219) 82.878
KernelSHAP v_all multigauss 50 0.268
KernelSHAP v_all multigauss 100 0.515
KernelSHAP v_all multigauss 150 0.774
KernelSHAP v_all multigauss 200 1.036

Method v estimator leaf cluster size run timels|
D1VISIVESHAPAPPROX v_all multigauss 3 0.265
DIVISIVESHAPAPPROX v_all multigauss 6 0.743
DIVISIVESHAPAPPROX v_cluster_multigauss 3 0.241
D1VISIVESHAPAPPROX v_cluster multigauss 6 0.779
D1vISIVESHAPAPPROXNEW v_all multigauss 3 0.249
D1VISIVESHAPAPPROXNEW v_all multigauss 6 0.746
D1viSIVESHAPAPPROXNEW | v_cluster multigauss 3 0.231
D1visivESHAPAPPROXNEW | v_cluster multigauss 6 0.771

Table 4: The average run time in seconds of KernelSHAP, DiviSIVESHAPAPPROX and Divis-
IVESHAPAPPROXNEW over combined 300 runs of experiment 1, 2 and 3. KernelSHAP used
D1viSIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW
used 8 = n?/v™ and B = n'/%! to get maximum leaf cluster sizes of 3 and 6, combined with

d = 50, 100, 150 and 200 samples.

v_all multigauss and v_cluster multigauss.
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5.2 Random forest experiments

To bridge the gap between the linear model experiments in Section 5.1 and the experiment with
synthetic DNB data in Section 5.3, we also performed two experiments were the data sets were
generated from a non-linear model and fitted using random forest models. Due to longer compu-
tation time for the predictions from a random forest compared to a linear model, the number of
covariates in these experiments was lowered from 15 to 9. The relationship between the output,
Y, and the data was specified as follows

_ (sign(z1(z2 — 0.2)) + 0.523 + exp x4) cos x5 4 0.1 1n |z¢] +0
o 20 + T

1 (xg + x%) ,
1

1+ exp(—n)’
y=H(p—0.5),

p:

where H is the Heaviside function. 7 may then be interpreted as a latent variable, and p as a
probability of belonging to class 1, applying the logistic function to the latent variable 7, such that
p € (0,1). Finally, y assigns the individual to the class 1 if this is the most likely class and to class
0 otherwise.

The data in these experiments also contain 10000 individuals, and were still generated from a
multivariate Gaussian distribution such that the handling of dependent features is accurate. The
structure of the data is similar to the experiments in Section 5.1, with 3 clusters consisting of 3
covariates each, a high correlation within each cluster, p;, = 0.9, and a lower correlation between
the clusters, ppw. The two experiments in this section differ only by the between cluster correlation,
and the first and second experiment use ppy, = 0 and ppy, = 0.2, respectively.

An exact computation of the SHAP values is no longer possible, since we do not have an exact
formula for v for a random forest. However, as previously discussed, v can be estimated by Equation
(6), which will be done here. In the ”exact” computation of the SHAP values in the experiments
of this section, the characteristic function will thus be computed by v_all multigauss, with
K = 10000. The exact SHAP values and MAE of the different methods presented in this section
are therefore not completely exact, but as close as possible given the circumstances.

The random forest models were fitted using the function ranger from the R package ranger. As
input to the ranger function we used probability = TRUE and importance = "impurity". The
first of these inputs tells the function to construct a probability forest as described in Malley et
al. (2012) and the second input states that the Gini index (or Gini impurity as it is also called)
should be used as the measure of importance when computing the information gain. The random
forest models used 500 trees, which is the default for ranger. The prediction made by the random
forest model is the probabilities of being in a certain class. For classification purposes one can
either assign each individual to the class with the highest probability, or in the case with only two
classes, assign the individual to class A if the probability for the class is over a certain threshold,
and otherwise assign it to class B.

By altering the threshold for classification, one can tune the specificity and sensitivity of the model.
The receiver operating characteristic (ROC) curve is a graphical display of this interplay. This
curve is created by plotting the sensitivity and 1 - specificity (false positive rate) for all values of
the threshold. A naive random classifier will be a diagonal line, and a good classifier will lie above
this line and hug the top left corner. The area under the curve (AUC) is a measurement of the
performance of a model, and is, as the name suggests, the area under the ROC curve. An AUC
of 0.5 is just a random classifier, while anything above 0.5 is better than a random classifier. The
best models will have an AUC which is close to 1, which would be a perfect model. Both random
forest models in this section have an AUC = 0.992, meaning they have practically been able to
recreate the non-linear relationship of the data set.

Like the previous experiments, Figures 9 and 10 show the SHAP values for two individuals estim-
ated with the two random forest models, and Tables 5 and 6 presents the MAE and skill scores
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of the different methods. As the random forest experiments are smaller (have fewer covariates)
than the linear model experiments, the tests in Tables 5 and 6 include only KernelSHAP with
d = 50 and 100 samples, and the DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW with
B =n/31 ie. leaf clusters of 3 covariates.
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Figure 9: The SHAP values for one individual in the first random forest experiment, with py, = 0.
The red bars show the exact SHAP values. The green, blue and purple bars are the approxima-
tions made by KernelSHAP, D1vISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW, respectively.
KernelSHAP used d = 50 samples, DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used
B = n'/31 and all methods used v_all multigauss as estimator for the characteristic function,
v. MAE of KernelSHAP = 0.00790, MAE of DIvISIVESHAPAPPROX = 0.0229, MAE of DIVISIVE-
SHAPAPPROXNEW = 0.0171.

Method number of samples MAE | Skill
KernelSHAP 50 0.0119 0
KernelSHAP 100 0.00772 | 0.35

Method v estimator MAE Skill

D1vISIVESHAP APPROX v_all multigauss 0.190 -15
D1VISIVESHAPAPPROX v_cluster multigauss | 0.452 -37
D1viSIVESHAP APPROXNEW v_all multigauss 0.0217 | -0.82
DivisivESHAPAPPROXNEW | v_cluster multigauss | 0.0217 | -0.82

Table 5: The MAE and skill score of KernelSHAP, D1VISIVESHAPAPPROX and DIVISIVESHAPAP-
PROXNEW over 100 runs of the first random forest experiment, with ppy, = 0. KernelSHAP used
d = 50 and 100 samples. DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used 3 = n'/3:1
with v_all multigauss and v_cluster multigauss.
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Figure 10: The SHAP values computed in the second random forest experiment, with ppy, = 0.2.
The red bars show the exact SHAP values. The green, blue and purple bars are the approxima-
tions made by KernelSHAP, D1vISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW, respectively.
KernelSHAP used d = 50 samples, DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used
B = n'/31 and all methods used v_all multigauss as estimator for the characteristic function,
v. MAE of KernelSHAP = 0.00724, MAE of DIvVISIVESHAPAPPROX = 0.0244, MAE of DIVISIVE-
SHAPAPPROXNEW = 0.00996.

Method number of samples MAE | Skill
KernelSHAP 50 0.0147 0
KernelSHAP 100 0.00861 | 0.41

Method v estimator MAE | Skill

DI1vISIVESHAP APPROX v_all multigauss 0.151 -9.3
DIvVISIVESHAPAPPROX v_cluster multigauss | 0.0851 | -4.8
D1vISIVESHAP APPROXNEW v_all multigauss 0.0443 | -2.0
D1viSIVESHAPAPPROXNEW | v_cluster multigauss | 0.0483 | -2.3

Table 6: The MAE and skill score of KernelSHAP, DIVISIVESHAPAPPROX and DIVISIVESHAPAP-
PROXNEW over 100 runs of the second random forest experiment, with pn, = 0.2. KernelSHAP
used d = 50 and 100 samples. DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW used
B =n'/3! with v_all multigauss and v_cluster multigauss.

The MAE in the random forest experiments is generally lower than those in the linear model
experiments because the domain of the characteristic function v is more narrow. The resulting
SHAP values are thus smaller and so is the MAE. Comparing the bar plots of Figures 9 and 10 to the
ones in Figures 7 and 8 it seems as though the relative errors in the random forest experiments are
quite similar to those in the linear model experiments in Section 5.1. As can be seen from Figures
9 and 10, the MAE of the SHAP values by the three approximation methods are quite similar.
Further, somewhat surprisingly the MAE of the SHAP values by DIVISIVESHAPAPPROXNEW is
actually lower in the second experiment, with ppy = 0.2, than in the first experiment, with ppy = 0.

For the test observations in Figures 9 and 10, the KernelSHAP method with d = 50 samples is bet-
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ter than both the DIvISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW. From Tables 5 and 6
one can see that this is also generally the case, also when using the estimator v_cluster multigauss.

Why does the KernelSHAP method with d = 50 samples in this case outperform the DIVISIVE-
SHAPAPPROX approaches? The only large difference between the experiments of this section and
Section 5.1 is the relationship between the explanatory variables and the outcome. While the linear
relationships in the experiments of Section 5.1 was easy to decompose, this is not the case for the
non-linear relationship in this section. Thus, the multi-issue decomposition of the characteristic
function is not particularly successful and the methods that try to partition the variables into
clusters do not work as well as in the linear case.

5.3 Synthetic data set from real data

In this section, the methods will be applied on a synthetic data set obtained from the Norwegian
financial service group DNB. The synthetic data set is generated from a real data set used for
predicting mortgage. To avoid legal or privacy issues associated with sharing real data, DNB has
used a method called synthpop (Nowok et al., 2016) to generate a synthetic data set from the
original data. The original data set is the one used by Kvamme et al. (2018), where each data
point contains information about the balances of the checking, savings and credit card accounts
and the sum of these. For each of the four balances, we have the mean and standard deviation
over a year, the minimum and maximum value over a year and also the standard deviation over
the year divided by the mean over the year. In addition to the balances on the accounts, the data
contains information on the number of transactions and the amount transferred into the checking
account. For both of these we have the mean, standard deviation and maximum over a year as
well as the standard deviation divided by the mean. All the features have then been normalized
to have mean 0 and standard deviation 1. In total this gives 28 features for each individual along
with a response value, default, which is either 1 if the individual has defaulted or 0 otherwise.
The definition of default used here follows the definition in Basel II.

DNB provided two synthetic data sets, a training set and a test set. The training set contains
12696 individuals (rows) and the test set contains 1921 individuals. As the synthpop method used
to generate synthetic data is not perfect, the variables in the synthetic data set are not perfectly
standardised. From Table 7 we see that the vast majority of the variables have got a mean close to
0, with sa_std_mean_correct as the only exception with means of 0.23 and 0.30 in the training and
test data sets respectively. For the variances however, there are several variables with variances
far from 1. Four of the the six variables displaying standard deviation over the mean (i.e the
ones ending in _std mean_correct) have observed variances that are dramatically different from
1, ranging from 0.0039 to 2.47. A last thing to note from Table 7 is that the variances (and
the means to some extent) vary between the training set and the test set. For variables such as
ch_min, cc_max, ch_std mean_correct and sum_std mean_correct this difference is quite big, and
can potentially be problematic.

Figure 11 shows the correlation between the features in the training data. The correlation in the
test data is not shown, but is structurally similar. From the figure it is obvious that there are
several clusters in the data sets. The mean, minimum and maximum for each time series are
always correlated. As the maximum always will be greater than the other two variables, and the
minimum always will be lower than the other two variables, this correlation is natural. The sum is
also highly correlated to the savings account. Considering most people will likely have a far larger
balance in their savings account than in their checking account or in their credit card account, the
sum of the three will thus be mostly dependent on the savings account. The standard deviation of
the checking account is also dependent on the amount transferred into the checking account (in).
Lastly, the standard deviation of the sum is highly correlated to the standard deviation of the
checking account (and in turn the in variables), due to the fact that for everyday use people tend
to use the money in their checking account rather than the credit card or the savings account. Thus
the checking account will likely have a much higher standard deviation than the other accounts, and
be responsible for most of the variance in the sum. Remember that the variables were standardised
before the synthetic data was created, and that the standard deviation of the checking account,
ch_std, will not appear to have higher variance than the credit card or the savings account in
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Variance Mean
Train Test Train Test
ch_mean 0.76 0.42 -0.0098 -0.024
ch_min 0.78 0.33 -0.0070 | -0.028
ch_max 0.94 0.44 -0.0035 | -0.022
ch_std 0.94 0.71 -0.0071 | 0.0044
ch_std_mean_correct 0.070 | 0.0097 | -0.0065 | -0.0096
in_mean 0.90 1.35 -0.0083 0.044
in_max 0.74 0.94 -0.010 0.021
in_std 0.90 0.93 -0.0068 0.024
in_std_mean_correct 0.93 0.90 -0.0073 | -0.022
cc_mean 0.84 0.65 -0.036 0.0072
cc_min 0.84 0.62 -0.038 | 0.00094
cc_max 1.14 0.57 -0.028 0.0097
cc_std 0.89 0.81 0.020 0.014
cc_stdmean _correct | 0.0039 | 0.0043 | -0.0087 | -0.0080
sa_mean 1.07 1.05 0.015 0.038
sa_min 1.18 1.46 0.017 0.044
sa_max 0.99 1.09 0.013 0.040
sa_std 0.59 0.34 0.00038 0.011
sa_std_mean_correct 2.13 2.47 0.23 0.30
sum_mean 0.93 1.00 0.0079 0.032
sum_min 1.07 1.30 0.011 0.041
sum_max 1.11 1.35 0.014 0.045
sum_std 0.96 0.44 0.0023 | -0.0035
sum_std_mean_correct 2.33 0.91 0.019 -0.024
tr_mean 1.01 0.99 0.036 0.040
tr_max 1.00 1.09 0.035 0.064
tr_std 1.00 1.08 0.038 0.060
tr_std_mean_correct 0.91 0.89 0.0043 0.013

Table 7: Shows all the variances and means of the features in the two synthetic data sets. In the
original data set which the synthetic data set is based on, all the means are 0 and all the variances
are 1.

Table 7.

When using the estimators v_all multigauss and v_cluster multigauss, the mean and covari-
ance matrix of the data are needed. Table 7 show that the means and variances are not equal for
the two data sets. In order to get the best representation of the population, the two data sets are
combined when computing the mean and covariance to be used in the approximation methods.

A random forest model was fitted on this data set using the function ranger. The input given to
the ranger function was the same as in Section 5.2, with probability = TRUE and importance =
"impurity", and 500 trees. The resulting model has an AUC of 0.855, indicating that the model
had acceptable discrimination. It should be noted that on the test data, this random forest model
had specificity of 0.996 and a sensitivity of 0.0393, when using a threshold of 0.5. To get a more
balanced sensitivity and specificity, the threshold had to be closer to 0.15, yielding a specificity
and sensitivity of 0.778 and 0.753, respectively. This does not affect the SHAP values however, as
they only use the predicted probabilities.

The SHAP values from the random forest model for the second individual of the test data set
were computed. As there is no ground truth in this experiment, it can be quite tricky to as-
sess the performance of the different approximation methods. In order to achieve some sense of
ground truth, KernelSHAP was used with d = 1000 samples and estimator v_all multigauss
(KernelSHAP 1000). The SHAP values for this method can not necessarily be considered to be
converging to the true SHAP values of this experiment, as they still rely on the assumptions made
by the estimator v_all multigauss, namely that the data belongs to a multivariate Gaussian
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Figure 11: Shows the correlation between the features of the training data set from DNB. ch -
checking account, sa - savings account, cc - credit card, sum - sum of checking account, savings
account and credit card, in - amount transferred into checking account, tr - number of transactions
on the checking account.

distribution. This assumption is however made by all the approximation methods as well, and
hence, these SHAP values can be seen as the SHAP values the other approximation methods are
trying to achieve. In order to present the approximation by the four different combinations of
D1vISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW with estimators v_all multigauss and
v_cluster multigauss, as well as approximations computed by the KernelSHAP method, the
SHAP values are presented in two separate figures, grouped by the sizes of the approximations to
make it easier to see each approximation. Both figures show the SHAP values from the KernelSHAP
approach with d = 1000 samples and v_all multigauss. Figure 12 shows the SHAP values for
the following methods: DIVISIVESHAPAPPROX with v_all multigauss (DSA v_all_mg), DIVISIVE-
SHAPAPPROX with v_cluster multigauss (DSA v_cluster mg), and DIVISIVESHAPAPPROXNEW
with v_cluster multigauss (DSANew v_cluster mg). Figure 13 shows the SHAP values for the
following approximation methods: KernelSHAP with d = 100 samples and v_all multigauss
(KernelSHAP 100), and DIVISIVESHAPAPPROXNEW with v_all multigauss (DSA v_all mg). All
the estimators for the characteristic function v used K = 10000 in this experiment, to lower the
risk of bad results due to inaccurate estimation of v. The same 8 = n'/v™ was used for all DIvis-
IVESHAPAPPROX and DIVISIVESHAPAPPROXNEW methods, giving a maximum leaf cluster size of
5 < /28 ~ 5.3.
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Figure 12: SHAP values of an individual in the DNB test data set for a random forest
model. This individual was predicted a probability of default 0.186 higher than the av-
erage prediction. KernelSHAP 1000 is the KernelSHAP method with d = 1000 samples
and estimator v_all multigauss. DSA_all.mg is the DIVISIVESHAPAPPROX with estimator
v_all multigauss and § = n!/V”. DSA_cluster_mg is the DIVISIVESHAPAPPROX with estim-
ator v_cluster multigauss and 8 = n'/vV". DSANew_cluster mg is the DIVISIVESHAPAPPROX
with estimator v_cluster multigauss and § = n!'/vV",
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Figure 13: SHAP values of an individual in the DNB test data set for a random forest
model. This individual was predicted a probability of default 0.186 higher than the average
prediction. KernelSHAP 1000 is the KernelSHAP method with d = 1000 samples and estim-
ator v_all multigauss. KernelSHAP 100 is the KernelSHAP method with d = 100 samples
and estimator v_all multigauss. DSA_all mg is the DIVISIVESHAPAPPROX with estimator
v_all multigauss and § = n'/V™.
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KernelSHAP with d = 1000 samples is included in both Figures 12 and 13 as a reference. An
immediate thing to notice is that the SHAP values from DI1VISIVESHAPAPPROX with both estim-
ators and DIVISIVESHAPAPPROXNEW with v_cluster multigauss in Figure 12 have much more
similar sizes to the SHAP values from KernelSHAP with d = 1000 samples. All of these four meth-
ods agree that sum_max is the feature with the largest positive contribution for this individual and
three of them agree also for the second largest contributor, sa_std mean_correct. Generally Divis-
IVESHAPAPPROXNEW with v_cluster multigauss appears to agree most with the KernelSHAP
with d = 1000 samples, though there are some features where they do not agree, e.g. tr_mean,
in mean, ch_std and cc_max with opposite signs for the SHAP values and a different ranking of
the worst contributor. According to DIVISIVESHAPAPPROXNEW it is tr_std_mean_correct, while
KernelSHAP claims it to be sum_std, both being ranked as fourth worst by the other method.

The SHAP values in Figure 13 computed by the KernelSHAP with d = 100 samples and DIVISIVE-
SHAPAPPROXNEW with estimator v_all multigauss are not very close to the SHAP values from
the KernelSHAP with d = 1000 samples. Although both KernelSHAP methods should converge
to the same SHAP values, it appears as d = 100 samples is far from enough, and the resulting
SHAP values from this method do not appear to have any shared qualities to the SHAP from
the KernelSHAP with d = 1000 samples. The SHAP values from DI1VISIVESHAPAPPROXNEW
with estimator v_all multigauss drastically overestimate every single feature of the individual.
It does however, agree with the KernelSHAP with d = 1000 samples for the worst contributor and
for the two biggest contributors, but with switched rankings between them. A big concern with
the SHAP values computed by DIVISIVESHAPAPPROXNEW with v_all multigauss, is that these
are not even close to sum up to difference of 0.186, between the predicted probability of default for
the individual of interest and the average prediction. The SHAP values from this method actually
sum up to 2.105, which makes no sense as the difference between any two probabilities can never
be larger than 1. It is also strange that using the estimator v_all multigauss result in all positive
SHAP values for both DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW, but not for the
KernelSHAP methods. This could have the same potential explanation as discussed in Section
5.2, with v_cluster_ multigauss using a more true distribution when estimating the characteristic
function. Yet, from Figure 11, there are several features having more than 4 strongly correlated
features to it, but the leaf clusters by DIVISIVESHAPAPPROX and DIVISIVESHAPAPPROXNEW
could have maximum clusters of 5. This means that there is occasionally a strong correlation
between the leaf clusters, and it would seem better to use v_all multigauss to correctly handle
this. Another potential explanation could be connected to the assumed multivariate Gaussian
distribution of the data, which, if not satisfied, could mean bad estimation of the characteristic
function, in particular by the v_all multigauss estimator. The distribution of the data should
thus be tested.

One way to compare the distribution of some observations to a known distribution is by using a
quantile-quantile plot (Q-Q plot). A Q-Q plot compares the observations to the expected observa-
tions from a distribution, by sorting the observations and expected observations and plotting the
same quantiles of the two data sets together. If the observations truly belong to the distribution,
the points will form a line along the x = y diagonal. If the data points in the Q-Q plot form
a line, but not the = y diagonal, then the data still belong to the distribution bur with other
parameters. A shift from the origin implies a relocation of the distribution, and a different slope
implies a different scaling of the distribution. If the Q-Q plot does not form a line, this means the
observations do not follow the given distribution.

The handling of the dependent features in this thesis rely on the assumption that the data set
is from a multivariate Gaussian distribution, meaning that the marginal distribution for all the
features of the data set is normal. In the simulated experiments of Sections 5.1 and 5.2 this is
the case by design. For the data from DNB this will instead have to be tested. Recall that the
synthetic data set was based on a data set with standardised variables, and as such, the assumed
distribution of the features in the synthetic data set is the standard normal distribution. Note
however that we already know from Table 7 that some of the features have means and standard
deviations different from 0 and 1, respectively, but that this is not a problem by itself. However,
the Q-Q plots should still produce straight lines if the features are Gaussian distributed. Figures
14, 15 and 16 show the Q-Q plot of three representative features in the synthetic data set, cc_mean,
sa_std mean_correct and sum_mean, respectively.

36



cc_mean

15 20

10

Sample Quantiles

0 2 4

Theoretical Quantiles

Figure 14: Q-Q plot for the cc_mean in the DNB data set. A standard normal distributed variable
will follow the gray line. The dashed red line is drawn between the 25th and 75th percentile of the
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Figure 15: Q-Q plot for the sa_std mean correct in the DNB data set.

I I I
0 2 4

Theoretical Quantiles

A standard normal

distributed variable will follow the gray line. The dashed red line is drawn between the 25th and

75th percentile of the data set.

37



sum_mean

25

20

15
°g

Sample Quantiles
10
|
e

Theoretical Quantiles

Figure 16: Q-Q plot for the sum mean in the DNB data set. A standard normal distributed variable
will follow the gray line. The dashed red line is drawn between the 25th and 75th percentile of the
data set.

Neither of the three Q-Q plots in Figures 14, 15 and 16 form a straight line. All the three plots
have significant bends, meaning they are certainly not Gaussian distributed. The Q-Q plot of
textttcc_mean in Figure 14 are below the dashed red line on the left side and above it on the right
side, indicating that the actual distribution of the cc_mean is more heavy tailed than the Gaussian
distribution. The lack of symmetry implies that the true distribution is skewed. The Q-Q plot
of sa_std_mean correct in Figure 15 has a very peculiar shape. This is also heavy tailed and
skewed, like cc_mean, but also has two plateaus. This implies that sa_std mean_correct has two
modes, one being quite far on the right side of the distribution. This does not appear to belong to
any known distributions. The Q-Q plot of sum_mean in Figure 16 suggest that the sum_mean could
belong to the exponential distribution, with a slight relocation, as the line dips under 0.

As mentioned, these three features represent all the different shapes of Q-Q plots the features of
the DNB data sets have, meaning that not even a single feature of the 28 were actually Gaussian.
The exact effect of this unsatisfied assumption is unclear, and the experiments of Section 5.2 cast
no light on the subject, as they used only multivariate Gaussian data. A simulated experiment
where the data are drawn from other known distributions, but still using the same estimators
assuming multivariate Gaussian data could help to get a better understanding of the effects this
has. Using other known distributions for the data would still allow exact computation of the
conditional distributions, and thus the same quality of testing as was done in Section 5.2.
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6 Summary and further work

In this thesis we started by discussing the motivation for the field of interpretable AI, and some
of the methods that exist in Section 1. We then presented the theory of the Shapley values, and
specifically the SHAP values in Section 2. The two approximations methods of this thesis, the
KernelSHAP and the DIVISIVESHAPAPPROX, were introduced in Sections 2.5 and 3, as well as a
modified version of the DIVISIVESHAPAPPROX method in Section 3.1. In Section 4 we presented
the linear model and the random forest model to be used in the experiments in Section 5. The
experiments consisted of three simulated experiments with linear models, two simulated experi-
ments with random forest models and non-linear data and finally an experiment with synthetic
data from DNB, made from a real data set, also fitted with a random forest model. The results of
the experiments were discussed subsequently as the results were presented.

The original D1VISIVESHAPAPPROX method by Corder and Decker (2019) is an unstable method,
and is unsuccessful in outperforming the commonly used KernelSHAP with an equal run time,
even for the simplest data set and a linear model. Our modified version of the method, the
D1visSIVESHAPAPPROXNEW, performs much better in our experiments. In all experiments with a
linear model, this method is either better or equal in performance compared to the KernelSHAP
method with equal run time. If a short run time is important, the DIVISIVESHAPAPPROXNEW is
the best method here. However, due to different run time and error trade-offs, the KernelSHAP will
eventually outperform DIVISIVESHAPAPPROXNEW as one increase the run time of both methods.

The experiments with non-linear data and random forest models saw DIVISIVESHAPAPPROX and
D1vISIVESHAPAPPROXNEW struggle compared to the KernelSHAP approach. Complex relation-
ships of the data make the decomposition of the characteristic function difficult. Also the linear
model experiments saw DIVISIVESHAPAPPROXNEW slowly lose its advantage over the KernelSHAP
method as the correlation between the features increased. These results suggest the DIVISIVE-
SHAPAPPROXNEW does not work as well when the characteristic function is complex.

In the final experiment, a synthetic data set made from a real data set from DNB was used with a
random forest model. The resulting SHAP values were not conclusive in regards to which method
was best. Some of the approximated SHAP values appear to be very wrong. The bad results using
the estimator v_all multigauss suggest that assuming that the data is multivariate Gaussian is
far from the truth. Further testing of DIVISIVESHAPAPPROX or DIVISIVESHAPAPPROXNEW in
complex cases should incorporate other approaches for handling dependent features, e.g. using
conditional inference trees as in Redelmeier et al. (2020). Further work could also include more
comprehensive testing of the effects that assuming a wrong distribution of the data has for the
approximations by the different methods.

Another point of interest which is not addressed much in this thesis is the rankings of the features.
Shapley values are often used to communicate which features contribute most and least to a
prediction, and the absolute sizes of the Shapley values are sometimes less important. Further work
on DIVISIVESHAPAPPROX or DIVISIVESHAPAPPROXNEW could look deeper into the methods’
ability to get the correct rankings of the features, using e.g. Kendall’s correlation.

In conclusion, the DIvISIVESHAPAPPROXNEW method seems to thrive when used on simpler
models, but should be avoided for more complex models. How complex a model is, however, is
not necessarily easy to say up front, and having a method which is only usable for linear models is
quite redundant, given their already interpretable nature. KernelSHAP is more versatile, and has
the ability to easily be given higher precision by increasing its run time, to the point where it will
be better and faster than the DIVISIVESHAPAPPROXNEW. Thus the KernelSHAP is still overall
the better choice for approximation method.

39



References

Aas, Kjersti, Martin Jullum and Anders Lgland (2019). ‘Explaining individual predictions when
features are dependent: More accurate approximations to Shapley values’. In: arXiv preprint
arXiw:1903.10464.

Aasland, Erik Holst (Jan. 2022). ‘A review of the divisive clustering approximation method for
Shapley values on the features game and variance game’.

Colini-Baldeschi, Riccardo, Marco Scarsini and Stefano Vaccari (2018). ‘Variance allocation and
Shapley value’. In: Methodology and Computing in Applied Probability 20.3, pp. 919-933.

Corder, Kevin and Keith Decker (2019). ‘Shapley Value Approximation with Divisive Cluster-
ing’. In: 2019 18th IEEFE International Conference On Machine Learning And Applications
(ICMLA). IEEE, pp. 234-239.

Covert, Ian and Su-In Lee (2020). ‘ITmproving kernelshap: Practical shapley value estimation via
linear regression’. In: arXiv preprint arXiv:2012.01536.

Doshi-Velez, Finale and Been Kim (2017). ‘Towards a rigorous science of interpretable machine
learning’. In: arXiv preprint arXiw:1702.08608.

Gneiting, Tilmann and Adrian E Raftery (2007). ‘Strictly Proper Scoring Rules, Prediction, and
Estimation’. In: Journal of the American Statistical Association 102.477, pp. 359-378.

Hardle, Wolfgang Karl and Léopold Simar (2019). Applied multivariate statistical analysis. Springer
Nature.

James, Gareth et al. (2013). An introduction to statistical learning: with applications in R. Springer.
Chap. 8.

Kvamme, Havard et al. (2018). ‘Predicting mortgage default using convolutional neural networks’.
In: Ezxpert Systems with Applications 102, pp. 207-217.

Lundberg, Scott M and Su-In Lee (2017). ‘A Unified Approach to Interpreting Model Predictions’.
In: Advances in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc.

Maimon, Oded and Lior Rokach (2005). ‘Data mining and knowledge discovery handbook’. In.

Malley, James D et al. (2012). ‘Probability machines’. In: Methods of information in medicine
51.01, pp. 74-81.

Molnar, Christoph (2019). ‘Interpretable Machine Learning. A Guide for Making Black Box Models
Explainable’. In: https://christophm.github.io/interpretable-ml-book/. Chap. 6, 8 and 9.

Nowok, Beata, Gillian M Raab and Chris Dibben (2016). ‘synthpop: Bespoke creation of synthetic
data in R’. In: Journal of statistical software 74, pp. 1-26.

Redelmeier, Annabelle, Martin Jullum and Kjersti Aas (2020). ‘Explaining predictive models with
mixed features using Shapley values and conditional inference trees’. In: International Cross-
Domain Conference for Machine Learning and Knowledge Extraction. Springer, pp. 117-137.

Shapley, Lloyd S (1953). ‘A value for n-person games’. In: Contributions to the Theory of Games.
Vol. 2. Princeton University Press, pp. 307-317.

Silver, David et al. (2018). ‘A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play’. In: Science 362.6419, pp. 1140-1144.

Soufiani, Hossein Azari et al. (2014). ‘Approximating the shapley value via multi-issue decompos-
ition’. In: Proceedings of the International Foundation for Autonomous Agents and Multiagent
Systems.

Strumbelj, Erik and Igor Kononenko (2010). ‘An efficient explanation of individual classifications
using game theory’. In: The Journal of Machine Learning Research 11, pp. 1-18.

40



Stuart, Russell and Peter Norvig (2009). Artificial Intelligence: A Modern Approach 3rd ed. Berke-
ley. Chap. 18.3.

Wood, Simon N (2015). Core statistics. 6. Cambridge University Press.

41



@ NTNU

Norwegian University of
Science and Technology



	Introduction
	Shapley values
	Shapley values in cooperative games
	Shapley values for machine learning
	Computational complexity of the Shapley values
	SHAP
	KernelSHAP

	Cluster-decomposition approach
	A modification to the DivisiveShapApprox

	Machine learning methods
	Linear model
	Random forest

	Experiments
	Linear model experiments
	Experiment 1
	Experiments 2 and 3

	Random forest experiments
	Synthetic data set from real data

	Summary and further work
	References

