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Abstract

This thesis will provide an overview of how the challenge of underwater positioning
and orientation of a camera has been addressed, utilizing a low-cost and simple sys-
tem. To address the challenges of positioning and orientating a camera underwater, a
Raspberry Pi 4, a camera, and an Inertial Measurement Unit (IMU) were employed.
The Extended Kalman Filter (EKF) was then used to combine measurement data
from the IMU and AprilTag.

Before the thesis attempted to tackle the problem using EKF, IMU, and April-
Tag, the thesis attempted to solve the problem with Simultaneous Localization and
Mapping (SLAM) and IMU. Installing and implementing SLAM on a Raspberry Pi
caused several difficulties.

The IMU was used to determine the camera’s position and orientation. The test
indicated that the IMU can provide accurate orientation measurements, but that it
would drift after some time. The AprilTag was implemented to detect multiple tags
and provide the camera’s position in relation to the tags. These tests demonstrate
that the AprilTag is capable of providing accurate readings when detecting a tag.
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Sammendrag

Denne masteroppgaven gir en oversikt over hvordan utfordringene med posisjonering
og orientering under vann var undersøkt, ved å benytte et billig og enkelt system.
Utfordringene med å posisjonere og orientere et kamera under vann ble undersøkt
med å benytte en Raspberry Pi, et kamera og en Inertial Measurement Unit (IMU).
Det ble benyttet en Extended Kalman Filter (EKF) hvor posisjonerings dataen fra
IMU’en og AprilTag ble slått sammen.

I begynnelsen av masteroppgaven var problemstillingen forsøkt løst med å benytte
Simultaneous Localization and Mapping (SLAM) og en IMU. Det oppsto flere pro-
belmer med installasjon og implementasjon av SLAM, ved å benytte en Raspberry
Pi.

IMU’en var brukt til å definere posisjon og orientering av kameraet. Tester som
ble utført indikerer at IMU’en klare å levere presis orienterings målinger, men der
er utfordringer med drifting etter at IMU’en har vært operativ en stund. AprilTag
er tagger som brukes for å lese av en binær kode. AprilTag var implementert inn i
systemet for å kunne detektere flere tagger og leveren kameraet sin posisjon relativt
til plasseringene til taggene. Igjennom tester ble det funnet ut at AprilTag gir veldig
presise posisjoneringer når systemet detekterer en tagg.
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Chapter 1

Introduction

This thesis will describe how the challenge of positioning and orientating a camera
underwater was addressed using low-cost components. The problem was attempted
to be solved by merging IMU readings and AprilTag measurements in an extended
Kalman filter utilizing an IMU, a Raspberry Pi 4, and a low-cost Raspberry Pi high
quality camera. This will also help to address the issues with the IMU drifting.

This chapter will provide an introduction to the thesis by discussing the motivations
and aim of study, as well as the research questions and contributions of the thesis.
The challenges that have been encountered during the project will also be briefly
explained. The introductory chapter will conclude with a short outline of the thesis.

1.1 Motivation

Norway has a long history as a marine nation. Monitoring and intelligent monitoring
are becoming more important in the maritime industries that operate not only in
Norway but also globally. Camera systems have been increasingly popular in recent
years, and their capabilities are continually expanding. Simultaneously, there is
innovation and development of moving cameras, such as those used in autonomous
vehicles.

Moving cameras provide a new challenge in terms of quickly orienting itself with
the surroundings and understanding the position to carry out tasks. Surface-based
positioning, such as mobile networks and Global Positioning System (GPS), do
not operate underwater. There are several underwater navigation options on the
market today, but they all have several commonalities: they are expensive, resource
intensive to scale, require setup by authorized staff, and require additional cables
and sensors to be placed out. The latter is difficult since more sensors and cabling
on facilities increase the infrastructure’s sensitivity to weather and wind.

The idea behind this thesis is that an accelerometer or IMU may be used to detect
the cameras position and orientation underwater. This is a compact and inexpensive
sensor that is utilized in a variety of industries. One acknowledged issue with IMUs
is that they drift with time and hence cannot offer trustworthy data after a period
of time. As a result, it is intended to use the camera’s picture flow and a known
geometry to recalibrate the IMU underwater at intervals sufficient to allow the IMU
to be used as an operational tool for orientation and positioning.
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1.2. AIM OF STUDY

1.2 Aim of Study

This thesis will concentrate on the development of a system that will address un-
derwater positioning issues utilizing low-cost components. The technology will not
be tested underwater due to timing restrictions. This is due to the fact that con-
structing a waterproof test model and being able to conduct tests underwater takes
time and introduces additional challenges that must be addressed in addition to the
challenges that have accrued over water.

1.3 Challenges

Throughout the thesis, various time-consuming challenges were encountered, and as
a result, some tasks took longer to accomplish than anticipated. The SLAM-related
issues required the most time. Oriented FAST and Rotated BRIEF (ORB)-SLAM3
and Python (py)SLAM were both tested, and both had some installation difficulties
as well as some issues getting both systems to work properly. The majority of these
issues arose since the system was operated on an Raspberry Pi, which is an Advanced
RISC Machines (ARM)64 system, whereas the ORB-SLAM3 and pySLAM were
designed for Advanced Micro Devices (AMD)64 systems. The thesis was adjusted
so that it would be addressed using an IMU, AprilTag, and an extended Kalman
filter instead of utilizing SLAM because all of the issues were time-consuming to
solve and make operational.

There have also been several additional challenges that were time-consuming to
resolve, such as memory issues, IMU booting problems, and Gstreamer issues. There
were experiments conducted utilizing two Raspberry Pi’s, one running Ubuntu 21.10
and the other Ubuntu 20.04, during the SLAM problems. This was done to exclude
the possibility that the problem was caused by utilizing the wrong Ubuntu version.
As a result, it was also necessary to prepare a second IMU for use and testing. The
camera was changed from a SONY camera to a Raspberry Pi camera due to issues
with Gstreamer. This eliminated issues with getting the camera and Raspberry Pi
to communicate properly and allowed the camera to be directly connected to the
Raspberry Pi. To be able to utilize the new camera on the test model and connect
both the camera and the IMU to the Raspberry Pi at the same time, the test model
needed to be modified. All of these problems were resolved, although it took time.

2



1.4. RESEARCH QUESTIONS

1.4 Research questions

This master’s thesis will contribute to answering the following questions:

• Research questions 1: What are the challenges of positioning a camera under-
water, and how can they be overcome?

• Research questions 2: Is it possible to solve the underwater position issues
with a low-cost system?

• Research questions 3: Can the IMU drifting problems be overcome by com-
bining camera and IMU using sensor fusion?

1.5 Contributions

The contributions for the master’s thesis are:

• Contributed to the system integration and calibration of the inertial measure-
ment unit. Has also contributed to testing the inertial measurement unit to
ensure it is operational and properly calibrated.

• Contributed to the calibration of the camera and the integration of AprilTag
into the system. Has also contributed in system testing to ensure that the
AprilTag was operational and the camera was properly calibrated.

• Contributed to the system’s implementation of an extended Kalman filter that
employs the inertial measurement unit as input and the AprilTag as measure-
ment. Has contributed to testing the extended Kalman filter with the inertial
measurement unit as input, but the AprilTag is still not functioning as a filter
measurement.

3



1.6. OUTLINE OF THE THESIS

1.6 Outline of the thesis

Chapter 1 - Introduction: This chapter provides an introduction to the thesis, in-
cluding the motivations, aim of study, challenges, research questions and objectives,
and the contributions.

Chapter 2 - Related work: This chapter will provide a overview of previous
research and articles related to this topic.

Chapter 3 - Background and Methods: This chapter will go through the the-
sis’s background and methods, including details of the camera utilized, the inertial
measurement unit, AprilTag, the Kalman filter, and Simultaneous Localization and
Mapping.

Chapter 4 - Experiments and Results: This chapter contains the experiments
and results from the thesis’s work using SLAM, IMU, AprilTag, and the Extended
Kalman Filter. It also gives a summary of some of the difficulties experienced during
the thesis.

Chapter 5 - Conclusion and Further work: Finally, this chapter concludes the
work conducted for this thesis. It also covers further work that can be performed
subsequently.
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Chapter 2

Related work

There are multiple studies on various techniques to address underwater position-
ing, with systems ranging from basic to complicated, low to high precision, and low
to high cost. It is challenging to accomplish precise positioning using the conven-
tional positioning approach for an underwater system due to its location and the
complex and dynamic environment in which it operates. The paper "Survey of un-
derwater robot positioning navigation" by Yinghao Wu, Xuxiang Ta, Ruichao Xiao,
Yaoguang Wei, Dong An, and Daoliang Li, [1], studies and summarizes various stan-
dard underwater robot location and navigation approaches. It covers underwater
localization technologies such as multisensor information fusion, underwater acous-
tic localization and navigation techniques, GPS buoy, underwater vision, SLAM,
and coordinate localization and navigation of several underwater robots [1].

This study provides an excellent overview of many relatively mature and tradi-
tional underwater robot positioning and navigation methods. Although all of the
approaches may fill the tasks of positioning and navigation, each has its unique set
of features. Because this document evaluates and summarizes the advantages and
disadvantages of each system, it is feasible to choose the best strategy for different
environments. The most equivalent positioning approach to this study is monocular
vision, which studies location based on feature matching. The positioning technique
was used in this case to calculate location based on the size of the target in the
image. This is a low-cost and basic structure, however it has certain issues, such
as being unidentifiable for comparable images. It also considers the usage of multi-
sensor fusion, where it implements IMU and the Kalman Filter (KF), however GPS
systems are utilized to address the IMU’s drifting difficulties. This complicates the
system and is influenced more by the environment. In this project, not all of these
systems are relevant to examine. The research papers examined in this report are
systems that are similar to the system employed in this study, a low-cost, basic
positioning system [1].

The research paper "Towards Micro Robot Hydrobatics: Vision-based Guid-
ance, Navigation, and Control for Agile Underwater Vehicles in Confined Environ-
ments" by Luyue Huang, Bo He and Tao Zhang, [2], present a compact, affordable,
high-performing vision-based self-localization module and its integration into a pow-
erful Guidance, Navigation, and Control (GNC)-framework that enables hydrobatic
maneuvering with agile micro underwater robots. Three on-board components were
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utilized: a Raspberry Pi 4, an IMU, and a low-cost wide-angle Raspberry Pi cam-
era. Their research was carried out in a freshwater tank that had fiducial markers
placed at predetermined locations. They employed EKF technique which they en-
hance by a dynamic measurement noise model. In two experimental conditions,
they assess how well their system performs. They started by examining the localiza-
tion module’s performance to show that it is adequate for precise visual underwater
localization and benchmarking tasks. The experiment proved that the module’s
localization capabilities were quite accurate. The second experiment was centered
on the GNC-integration framework’s and the localization system’s robustness. The
outcome was that the suggested GNC-framework could move the robot along the
path with repeatability and accuracy [2].

This study article is quite similar to this project. To tackle the challenges of under-
water positioning, they employ low-cost components such as a Raspberry Pi camera,
an IMU, EKF, and AprilTag. Because of these parallels, the study report can pro-
vide useful information on how effectively this system works. The studies were
carried out in a fresh water tank with AprilTags scattered across the tank’s bottom.
Their research demonstrates that their system can provide precise localization and
path tracking, which is useful information to have before commencing this project.

The research study "An autonomous navigation algorithm for underwater
vehicles based on inertial measurement units and sonar" by Daniel A. Duecker,
Nathalie Bauschmann, Tim Hansen, Edwin Kreuzer, and Robert Seifried, [3], intro-
duces the Inertial-SLAM algorithm, a method based on IMU and sonar for under-
water vehicle autonomous navigation. In order to calculate the underwater vehicle’s
velocity, position, attitude, bias errors of the IMU, and features map around the un-
derwater vehicle, the system employs a hybrid Rao-Blackwellised SLAM algorithm.
The Inertial-SLAM method combines the SLAM algorithm based on particle filters
with the Inertial Navigation System (INS). This approach has a low estimate er-
ror and a low time complexity. The IMUs’ random drift is not taken into account
by the traditional SLAM algorithm; it only considers the observation noise of the
IMUs. The INS and SLAM algorithms are combined to create the Inertial-SLAM
algorithm for underwater vehicles. IMU errors are included in the state vector to
obtain the most accurate estimation of the errors and alter the sensor’s output. This
considerably decreased the cumulative error. The studies compared the most widely
used SLAM algorithm, EKF-SLAM, with the inertial-SLAM method. The Inertial-
SLAM is quicker than EKF-SLAM and has a lower time complexity. It can achieve
the same level of accuracy with fewer particles than EKF-SLAM. The simulation
errors are reduced significantly compared to EKF-SLAM, resulting in more reliable
navigation and positioning for the Autonomous Underwater Vehicle (AUV) [3].

This article presents intriguing data because the project’s initial plan was to employ
a SLAM system in conjunction with an IMU to address the issue of positioning
underwater. Through simulations, they discovered that the inertial-SLAM technique
for underwater vehicles considerably minimizes IMU drifting error. This implies that
employing a more standard SLAM method may provide some difficulties when used
with IMU. Additionally, they discovered that the inertial-SLAM algorithm was more

6



accurate for positioning and navigation underwater. This suggests that employing
SLAM systems to address the problem of location underwater can produce promising
results, but there are some considerations that must be made during development.

The research paper "Improved Tag-based Indoor Localization of UAVs Using
Extended Kalman Filter" by Navid Kayhani, Adam Heins, Wenda Zhao, Moham-
mad Nahangi, Brenda McCabe and Angela P. Schoellig, [4], discusses the use of
AprilTag markers to create an EKF for enhancing the estimate module of an indoor
localization system. They were able to merge data from AprilTag and an IMU using
the EKF, as well as enhance the estimation technique by considering uncertainty.
During the research, they compared the performance of the approach using the EKF
to the performance of an older localization method that provided estimations based
on simply a single tag or an IMU. Pose estimation was carried out using both ap-
proaches in four scenarios. The experimental findings showed that the new method
using an EKF improved posture estimation in all cases studied. This means that
using an EKF will smooth out the estimated path and reduce errors relative to the
ground truth, making it more dependable for usage in the real world [4].

This research paper is relevant to this master thesis because it provides essential
information regarding how the usage of an EKF is a superior solution for the problem
of locating in non-GPS environments, such as indoors and underwater. The research
article also explains how the data from the IMU and AprilTag may be used in an
EKF, which is very beneficial for this thesis.

7



Chapter 3

Background and Methods

This chapter will go through the background and methods used for the master’s
thesis. It will explain how the challenge of positioning a camera underwater was
addressed using a camera, IMU, AprilTag and an EKF.

Initially, the challenges of positioning a camera underwater were attempted to be
overcome by combining an IMU with SLAM. However, there were several complica-
tions with employing SLAM during the project, so the project was adjusted to try
to solve the problem using an IMU, AprilTag, and an EKF instead.

This chapter will begin with an introduction of the camera used for the thesis. Then
it will describe what an IMU is, how it works, which IMU was utilized, and how the
IMU was calibrated. The chapter will also explain what AprilTag is, how it works,
and how the camera was calibrated for improved positioning results using AprilTag.
After the AprilTag section, the chapter goes on to describe what a Kalman filter
is, how it works, and how the Extended Kalman filter was used to integrate and
filter the position data from the IMU and AprilTag. This chapter finishes with a
discussion of what SLAM is, why it was not used further in the project, and a brief
summary of the two SLAM systems tried, ORB-SLAM3 and pySLAM.

3.1 Raspberry Pi High Quality Camera

The Raspberry Pi High Quality (HQ) camera was used in this thesis. High resolu-
tion, sensitivity, and the option of using various lenses with both C- and CS-mount
are all features of the HQ camera. The camera has a board with a Sony IMX477
sensor, which has a 12.3Megapixel (MP) resolution, a 7.9mm diagonal picture size, a
back-illuminated sensor architecture, adjustable back focus, and a C to CS mounting
adaptor. The Raspberry Pi HQ camera is seen in fig. 3.1 without a lens [5], [6].

For industrial and consumer applications, such as security cameras, that demand
high quality and/or integration with specialized optics, the Raspberry Pi HQ Cam-
era offers an alternative to the Raspberry Pi Camera Board v2. Using the most
recent software update, it is compatible with all Raspberry Pi computer models,
starting with the Raspberry Pi 1 Model B [6].

8



3.1. RASPBERRY PI HIGH QUALITY CAMERA

Figure 3.1: Raspberry Pi HQ camera [6]

The HQ camera’s assembly is shown in fig. 3.2. When no lens is attached, a dust
cap is installed on the camera to protect it from dust. This is because dust might
cause the sensor to malfunction. When a lens is used, this cap is removed. The HQ
camera is compatible with CS-mount lenses. To make the camera compatible with
C-mount lenses, an optional adapter is provided to expand the rear focus by 5mm.
When a CS-mounted lens is used, the C to CS adapter is removed, as it is only
necessary when a C-mount lens is used. There are two objectives for the back focus
adjustment mechanism. The back focus provides focus modification when using a
small, inexpensive fixed-focus lens, but it also allows for focal range adjustment
when using an adjustable-focus lens. The tripod mount is an additional accessory
that may be removed when not required. The ribbon is used to attach the HQ
camera to the Raspberry Pi’s camera connection [7].

Figure 3.2: Raspberry Pi HQ camera assembly [6]
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3.2. INERTIAL MEASUREMENT UNIT

The lens that was used in this thesis can be seen in fig. 3.3. This 6mm wide-angle
Infrared (IR) lens is designed to work with the Raspberry Pi HQ Camera. Since this
lens is CS mounted, the C-CS adaptor had to be removed before usage. This lens
has a back focal length of 7,53mm, a 1/2" picture format, and a 6mm focal length.
Its field of view is 63°, and its resolution is 3MP High-definition (HD) [8].

Figure 3.3: Raspberry Pi HQ camera with lens [8]

This camera can easily be installed in a waterproof model for usage in water. The
benefit of employing this camera for underwater use is that it can be directly con-
nected to the Raspberry Pi, eliminating potential sources of errors. This camera is
also affordable, and if autofocus is required later, it is possible to upgrade to the
high-resolution autofocus camera for the Raspberry Pi [9]. The main reasons for
selecting this camera for the thesis were that it was easy to use and was already
accessible for usage at the firm Zebop, which provided the master’s thesis.

3.2 Inertial measurement unit

The inertial measurement unit, also known as IMU, is a sensor that measures mo-
tion in a given timeframe. The IMU is used to measure and provide specific force,
angular rate, and body orientation by combining three sensors: a gyroscope, an
accelerometer, and a magnetometer. The angular rate is measured by the gyro-
scope, the specific force and acceleration are measured by the accelerometer, and
the magnetic direction is measured by the magnetometer [10], [11], [12].

An IMU may offer information ranging from 2-Degrees of freedom (DOF) to 9-DOF,
which defines how many different ways an item can move in three dimensions. The
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most popular form of IMU is a 6-DOF IMU with one gyroscope and one accelerom-
eter. It is also becoming increasingly typical to employ a 9-DOF IMU with all three
sensors: a gyroscope, an accelerometer, and a magnetometer [11], [13].

Using sensor fusion, the IMU can combine all sensor data from the three sensors and
provide information about the orientation of the device. The accelerometer provides
information about the orientation along the x, y, and z axes, while the gyroscope
provides information about the orientation along the yaw, roll, and pitch angles.
The magnetometer provides information about the object’s orientation in relation
to the Earth’s frame [11], [13].

Figure 3.4 depicts the operation of a 9-DOF sensor, where the black X, Y , and
Z axes represent the accelerometer, the red Ωx, Ωy, and Ωz axes represent the
gyroscope, and the blue x, y, and z axes represent the magnetometer.

Figure 3.4: 9-DOF IMU sensor [14]

The main problem with an IMU is that it is sensitive to "drift," or accumulation
of inaccuracy over time. The IMU repeatedly rounds off tiny fractions in its esti-
mations since it is always sensing changes relative to itself, rather than comparing
against a fixed or known external component, which adds up over time. These minor
inaccuracies might build-up to big errors if left untreated [10], [15].

An IMU was utilized for underwater positioning because it is inexpensive, compact,
and energy-efficient, making it simple to attach to a camera. Since GPS does not
work underwater, it is feasible to determine the position and orientation of the cam-
era using outputs like acceleration, velocity, angular rate, and magnetic direction.
The accuracy and performance of the IMU are, however, affected by a variety of
parameters, such as temperature, calibration, sensor noise, and bias. As a result, it
should not be utilized alone.
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3.2.1 Adafruit IMU BNO055

Adafruit BNO055 IMU was utilized in this thesis. This IMU is a 9-DOF sensor with
sensor fusion algorithms that combine the orientation data from the accelerometer,
gyroscope, and magnetometer. It is equipped with a small microprocessor that
collects and combines all sensor data to convert it to true orientation without the
use of a Kalman filter [16], [17].

Three degrees of acceleration, magnetic orientation, and angular velocity are among
the nine forms of motion or orientation data that the IMU can acquire. It converts
accelerometer, gyroscope, and magnetometer sensor data into accurate "3D space
orientation." Both in the Euler vector and the quaternion, the IMU may output
absolute orientation. The Euler vector offers orientation data based on a three-axis
360-degree sphere, but the quaternions’ four-point output allows for more exact
data management. It may also produce an angular velocity vector as a three-axis
rotation speed and a three-axis acceleration vector. The magnetic field strength
vector and the linear acceleration vector can both be generated by the IMU as three-
axis magnetic field sensing data and three-axis linear acceleration data. Finally, the
IMU may generate a gravity vector as a three-axis of gravitational acceleration, as
well as the ambient temperature in degrees Celsius [16], [17]. The Adafruit BNO055
IMU is shown in fig. 3.5.

Figure 3.5: IMU BNO055 from Adafruit [17]
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3.2.2 Calibration of IMU

Calibrating the IMU before use is critical to guarantee adequate performance. The
BNO055 comes with a WebGL example of how to calibrate the IMU. This example
demonstrates how to transmit orientation measurements to a web page and rotate
a 3D model using them. The gyroscope, accelerometer, magnetometer, and system
were calibrated using this example. The 3D model in the example will not provide
proper orientation data without calibration, which is why it is critical to calibrate
the IMU before using it. The IMU is reset every time the power is switched off. This
means that every time the IMU is turned on or reset, it is necessary to calibrate it.
The BNO055 IMU does much of the calibration on its own; all that is required to
finish the calibration is for the sensor to be moved in particular directions [18].

Figure 3.6 depicts how the web page appeared when the WebGL example was
launched. The current calibration status of the BNO055 sensor is displayed in
the bottom center column of the web page. When calibrating the sensor, each com-
ponent, including the system (or fusion algorithm), gyroscope, accelerometer, and
magnetometer, must be calibrated independently. Each component has a calibration
level ranging from 0 to 3, with 0 being uncalibrated and 3 denoting fully calibrated.
All four components should have a calibration level of at least 3 to acquire the best
orientation data. However, if only a few of the components are calibrated to level 2
or 3, the results should be acceptable [18]. Because all four components, gyroscope,
accelerometer, magnetometer, and the system have calibration value 3 in fig. 3.6,
they are properly calibrated.

Figure 3.6: WebGL example web page are used to calibrate the IMU
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The gyroscope was the simplest component to calibrate. All that was required was
to place the IMU on a level surface for a few seconds. Calibrating the accelerometer
required a bit more effort. The accelerometer was calibrated by carefully moving
the IMU in six different directions and holding it for a few seconds in each direction.
To calibrate the magnetometer, it was vital to ensure that the IMU was not too
close to any metal objects, as this might affect the calibration or slow down the
calibration process. To calibrate the magnetometer, the IMU had to be moved in
an infinite pattern until the magnetometer was properly calibrated. The system
was the last component to be calibrated. The calibration of the system began to
calibrate while the other components were being calibrated. When one component
was properly calibrated, the system began its calibration process. When all of the
other components had been thoroughly calibrated, the system calibration was nearly
complete. All that remained was to leave the IMU alone for a few seconds so that
it could finish calibrating the system.

The IMU’s current orientation was presented in the bottom left column of the web
page, as shown in fig. 3.6. These numbers represent orientation in terms of heading,
roll, and pitch in degrees. These are the angles of the IMU axes X, Y, and Z in
the local plane. The rotation around the Z-axis is known as heading, the rotation
around the Y-axis is known as pitch, and the rotation around the X-axis is known
as roll. The orientation values vary as the IMU rotates and the 3D model rotates
with it.

The last column, at the bottom right corner of the web page, was where the cal-
ibration could be saved and loaded. It was possible to use the calibration later
using this feature, eliminating the need to repeat all of the stages to calibrate each
component. The "Save Calibration" button saved all of the calibration settings to
a file called "calibration.json" on the Raspberry Pi. It was possible to use the func-
tions "get_calibration" and "set_calibration" to utilize the finalized calibration in
a code. Section 4.3 code 2 shows how these two functions were implemented in the
code.

The IMU has to be recalibrated when the device is used underwater since variables
like depth, temperature, and other underwater environmental factors might create
errors and inaccurate readings. To get more information and a step-by-step tutorial
on how the IMU was calibrated, see attachment B and the pre-project [19].

3.3 AprilTag

«AprilTag is a visual fiducial system, useful for a wide variety of tasks including
augmented reality, robotics, and camera calibration»[20].

The AprilTag detecting program computes the precise 3D location, orientation, and
Identification (ID) of the tags with respect to the camera. It is intended to be both
portable to embedded devices and simple to integrate into other programs. Even
with Central Processing Unit (CPU)s made for cell phones, real-time performance
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is possible. Since AprilTags are a form of two-dimensional bar code, they share
certain conceptual similarities with Quick Response (QR) codes. They are made
to encode much smaller data payloads, ranging from 4 to 12 bits, enabling more
reliable detection over a wider area. Additionally, because of its high localization
precision design, it is feasible to determine the exact 3D position of the AprilTag in
relation to the camera [20].

Figure 3.7 depicts the six different AprilTag families. The collection of tags that the
AprilTag detector will look for in an input image is defined by an AprilTag family.
The default AprilTag family is "Tag36h11," which is the tag used in this thesis [21].
The tags can be any size, with a black outline square on a white background and an
embedded black bare-code inside the square. Even in poor visibility conditions, the
tags offer a method of identification and 3D placement. The tags function similarly
to barcodes by storing a limited amount of data, such as tag ID, and allowing for
quick and precise calculation of the tag’s 6D (x, y, z, roll, pitch, and yaw) position
[22], [23].

Figure 3.7: AprilTags [20]

To compute tag pose estimate, the tag size must be known. The tag size was
measured from where the white and black borders meet, as shown in fig. 3.8, and
not from the exterior of the tag. The length of the edge between the white border
and the black border, or alternatively, the distance between the corners that can
be detected, was used to define the tag size. The tag’s dimensions are measured in
meters [24].
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Figure 3.8: AprilTag size [24]

A set of poses from AprilTag were generated each time the camera switched posi-
tions. Each pose describes the camera’s position along the moving camera trajectory
at a certain moment in time. The homogeneous transformation in eq. (3.1) was used
to provide a continuous trajectory between two positions [22].

di =
[
pix piy piz

]T (3.1a)

Ri =

cϕcθ cθsψsϕ− cψsθ cψcθsϕ+ sψsθ
cϕsθ cψcθ + sψsϕsθ −cθsψ + cψsϕsθ
−sϕ cϕsψ cψcϕ

 (3.1b)

T τ
i =

[
Ri di
0 1

]
4×4

(3.1c)

The camera frame of reference was used as the input angles in eq. (3.1). θ is
the rotation about the z-axis that represents the camera’s roll motion, ϕ is the
rotation about the y-axis that represents the camera’s yaw motion, and ψ is the
rotation about the x-axis that represents the camera’s pitch motion. Equation (3.2)
represents the transformation T i+1

i from point pi to point pi+1 and can be used to
calculate the trajectory in a single frame of reference [22].

T i+1
i = T i+1

τ × (T i
τ )

−1,where(T )−1 =

[
RT −RTd
0 1

]
(3.2)

Figure 3.9 illustrates the camera moving and changing positions at different time
stamps. Every position was at a unique location in relation to the tag. The contin-
uous trajectory was created by detecting AprilTags at each position. The camera’s
center serves as the origin of the coordinate system. The z-axis extends from the
lens of the camera outward. In the image that was captured by the camera, the
y-axis was down and the x-axis was to the right. The coordinate frame for the tag
was oriented with the z-axis into the tag, the x-axis to the right, and the y-axis
down [24].
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Figure 3.9: Different camera positions relative to a tag [22]

AprilTag was chosen as a good solution for underwater positioning because it can
provide rapid and accurate pose estimation of tags even in low visibility environ-
ments. It is possible to locate the camera’s position based on the locations of
numerous tags that have been placed in a specific underwater area.

3.3.1 Calibration of camera

It was necessary to calibrate the camera in order to utilize AprilTag for pose es-
timation. This was because the images are distorted due to the use of low-cost
camera. Figure 3.10 displays a checkerboard pattern captured using the Raspberry
Pi HQ camera used in this thesis. This demonstrates that the image was distorted
since the checkerboard’s straight lines appear to be curved, which does not match
the checkerboard pattern that was photographed. The image was getting increas-
ingly distorted as the camera was moved away from the center of the image. Radial
distortion is the term used to describe this type of distortion [25], [26].
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Figure 3.10: Distorted picture from the camera

Radial distortion was calculated using eq. (3.3). The old pixel point coordinates in
the input picture are (x, y), while the corrected output image’s location is (xdistorted, ydistorted)
[25], [26].

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (3.3a)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (3.3b)

Tangential distortion was another essential distortion to address. When the picture
plane was not parallel to the image capturing lens, tangential distortion occurs. As a
result, certain regions in the photos may appear closer than they are. Equation (3.4)
was used to compute the tangential distortion [25], [26].

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (3.4a)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (3.4b)

The distortion coefficient is represented by eq. (3.5). It is represented by five dis-
tortion parameters in a one-row, five-column matrix [25], [26].

Distortion coefficients = (k1 k2 p1 p2 k3) (3.5)
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To calibrate the camera, the 3x3 camera matrix shown in eq. (3.6) had to be found.
The camera matrix consists of the focal length (fx, fy) and optical centers (cx, cy)
given as pixel coordinates. Once computed, it can be saved for use in the future
because it only depends on the camera.

Camera matrix =

fx 0 cx
0 fy cy
0 0 1

 (3.6)

The parameters in eq. (3.5) and eq. (3.6) were determined during camera calibration.
The camera was calibrated using a checkerboard pattern. The checkerboard pattern
that was utilized to calibrate the camera is seen in fig. 3.11. The design was printed
on A4 paper and has squares measuring 25mm by 11x8. To prevent errors, it was
crucial to ensure that the printed pattern was scaled correctly. The squares in the
checkerboard pattern have to be large enough and distinct from one another in order
to achieve the optimum calibrating results. The checkerboard pattern was provided
by [27].

Figure 3.11: Checkerboard pattern
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3.4 Kalman filter

A filter makes it possible to continually estimate a system’s state using noisy mea-
surements derived from different sensors, such as location, velocity, and orientation.
A motion model is frequently used to explain the dynamics of the system, which de-
fines how the states change over time. The filter’s purpose is to combine the motion
model data and sensor readings as effectively as possible to determine the new state
estimate. The challenge in effectively fusing data from several sensors and a motion
model, a process known as sensor fusion, is determining how much of the different
sensors and the motion model to believe [28], [29].

The Kalman filter (KF) is an estimating algorithm that generates hidden variable
estimates based on faulty and unreliable measurements. Additionally, the KF gives
a prediction of the future state of the system based on prior estimates. The discrete-
data linear filtering problem was addressed in a 1960 study by Rudolf E. Kalman,
after whom the filter is named [30]. The KF is utilized in many different applica-
tions today, including computer graphics, location and navigation systems, control
systems, and target tracking [31].

The processes that are being measured must be able to be modeled by a linear system
in order to utilize a KF to eliminate noise from a signal. At each time increment,
the new state is obtained by applying a linear operator to the previous state, as
described in eq. (3.7a). It is also introducing noise to deal with unmodeled changes
in the state. Equation (3.7b) describes the new measurement. In eq. (3.7), xk
represents the state vector, uk represents the control input vector, and zk represents
the measurement vector at time k. The transition matrix A connects the previous
time step k− 1 to the current time step k, the control input matrix B connects the
control input u to the state x, and the transformation matrix H connects the state
vector to the measurement domain. The final two variables are random Gaussian
noise, with wk representing process noise and vk representing measurement noise
[29], [32].

xk = Axk−1 +Buk−1 + wk−1 (3.7a)
zk = Hxk + vk (3.7b)

The KF uses a type of feedback control to estimate the process. The KF algorithm
is depicted in a process diagram in fig. 3.12. The state x0, including position and
velocity, and the covariance matrix P0, are initialized in the first step, which is called
the initial step. The subsequent phase turns these initial states into previous states,
xk−1 and Pk−1. The prediction model, x̂−k and P−

k , which is the following phase, is
developed based on previous values and model. The Kalman gain, Kk, is calculated
using this prediction model. The final step, known as the updated step, combines
the measured, zk, and predicted, x̂−k , locations to provide the updated location x̂k.
Depending on the level of uncertainty with each measurement, the KF will choose
either the predicted location or the measured location. The procedure is repeated
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when the system receives new sensor data and the updated state, x̂k and Pk, is
utilized as feedback to the prediction model. The KF returns the updated state xk
and covariance matrices Pk [33].

Initial state
x0 P0

Measurement from sensor
yk = zk −Hx̂−

k

Previous state
xk−1 Pk−1

Prediction model
x̂−
k = Ax̂k−1 +Buk−1

P−
k = APk−1A

T +Qk

Kalman gain
S = HP−

k HT +Rk

Kk = P−
k HTS−1

State and covariance update
x̂k = x̂−

k +Kkyk
Pk = (I −KkH)P−

k

Output updated state
xk Pk

Figure 3.12: Kalman filter process diagram

The prediction step of the KF is described in eq. (3.8). To obtain the a posteriori
estimations, the prediction step makes temporal predictions into the future while
estimating the current state and error covariance [29], [32]. The predicted state
estimate is x̂−k , the system inputs is uk−1, the predicted estimate error covariance
matrix is P−

k , and the process noise covariance matrix is Qk.

x̂−k = Ax̂k−1 +Buk−1 (3.8a)
P−
k = APk−1A

T +Qk (3.8b)
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The measurement update process for the KF is described in eq. (3.9). To get a
better a posteriori estimate, the update step adds new measurements to the a pri-
ori estimations. As a weighted average of the a priori state estimate x̂−k and the
measurement residual, the posteriori state estimate x̂k in equation eq. (3.9d) is pro-
duced. The weights’ function is to help select which measurement estimate should
be trusted more. Values with better predicted uncertainty are more trustworthy
since the Kalman gain is calculated based on their uncertainties. The Kalman gain
cancels out the impact of the prediction if the new measurements have better es-
timates, but it does the opposite if the prediction has superior estimates [29], [32].
The updated state estimate is x̂k, the measurement is zk, the Kalman gain at time
k is Kk, the state-to-measurement matrix is H, and the measurement covariance
matrix is Rk.

yk = zk −Hx̂−k (3.9a)
S = HP−

k H
T +Rk (3.9b)

Kk = P−
k H

TS−1 (3.9c)
x̂k = x̂−k +Kkyk (3.9d)
Pk = (I −KkH)P−

k (3.9e)

Every time step, this process is repeated, with the updated estimate and its covari-
ance determining the prediction utilized in the subsequent iteration. As a result,
the Kalman filter calculates a new state using only the most recent best prediction
rather than the history of a system’s state [29], [32].

3.4.1 Extended Kalman filter

Since the KF can only be used for linear systems, it is essential to overcome this
limitation and enable non-linear system state estimation. An Extended Kalman
filter (EKF) is a kind of KF that linearizes about the current mean and covariance.
Equation (3.10a) represents the new state model and eq. (3.10b) represents the new
measurement, both of which contain non-linear functions, f and h, and random
Gaussian noise wk and vk [32].

xk = f(xk−1, uk) + wk (3.10a)
zk = h(xk) + vk (3.10b)

The covariance cannot be calculated with the same approach as for the KF since the
system is non-linear. By calculating the Jacobians in eq. (3.11), the EKF linearizes
with respect to the mean of the current estimate and covariance [32].
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Ak =
∂f

∂x

∣∣∣∣
x̂−
k−1,ûk

(3.11a)

Hk =
∂h

∂x

∣∣∣∣
x̂−
k−1

(3.11b)

In the same way as the KF, the prediction step of the EKF in eq. (3.12) predicts
the state and covariance estimates from the previous time step to the current time
step [32].

x̂−k = f(xk−1, uk−1, wk−1) (3.12a)
P−
k = AkPk−1A

T
k +Qk (3.12b)

Similar to the KF, the state and covariance estimates are updated with the mea-
surement zk using the EKF measurement update equations in eq. (3.13) [32].

yk = zk −Hkx̂
−
k (3.13a)

Sk = HkP
−
k H

T
k +Rk (3.13b)

Kk = P−
k H

T
k S

−1
k (3.13c)

x̂k = x̂−k +Kkyk (3.13d)
Pk = (I −KkHk)P

−
k (3.13e)

By using an EKF in the underwater positioning system, it is possible to fuse the
positioning data for the IMU and the AprilTag. All measurement data are taken
into account during the estimating step of the EKF method. The prediction step
creates a predicted position using data from the IMU and the previous position. In
the correction stage, when tag data is combined to form an overall estimate, the
prediction is updated. This estimate is then used as the prior position in the next
time step prediction. By doing this, information from the IMU and all of the visible
tags will be combined, rather than changing between the IMU and the tag-based
localization in various circumstances.

3.5 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping, also known as SLAM, refers to the tech-
nique of mapping an unfamiliar environment while maintaining track of the device’s
location inside it. Engineers utilize map data for purposes like trajectory tracking
and obstacle detection. SLAM systems make data collecting easier and may be
utilized in both outdoor and indoor scenarios [34], [35].
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The SLAM technology combines data from the system’s onboard sensors and em-
ploys computer vision algorithms to analyse it in order to identify features in the
immediate area. As a result, SLAM is able to create a rough map and determine
the system’s location. When the camera moves, SLAM uses the original location
estimate as a starting point and updates it with additional information from the
system’s on-board sensors. The cycle is completed when the new position estimate
is known, at which point the map is updated in turn. SLAM monitors the route as
the camera moves through the assets by continually repeating these steps. It also
creates a thorough map concurrently [36].

A SLAM system’s architecture consists of the front end and the back end as its two
main components. While the back end does estimate and infer on data from the
front end, the front end collects pertinent data from raw sensor measurements and
makes data associations between the measurements and the map. Other types of
sensors, such as IMU, may also contribute readings to the back end. Figure 3.13
provides a summary of this architecture [37], [38].

Figure 3.13: SLAM systems architecture [37]

In the beginning of the master thesis, the idea to solve the problem of positioning
under water was to use SLAM. During testing there where tried out two different
SLAM systems, ORB-SLAM3 and pySLAM, but because allot of problems occurred
during installation and testing of these systems, and all the troubleshooting was
time consuming, the project was to take a slightly different angle to solve the task.

3.5.1 ORB-SLAM3 and pySLAM

ORB-SLAM3 is the first real-time SLAM framework capable of performing Visual,
Visual-Inertial, and Multi-Maximum a posteriori (MAP) SLAM using monocular,
stereo, and Red, Green and blue - Depth sensing (RGB-D) cameras with pinhole
and fisheye lens models. ORB-SLAM3 outperforms the top systems in all sensor
combinations in terms of robustness and accuracy [39].

PySLAM includes a python version of a monocular Visual Odometry (VO) pipeline.
It supports a wide range of traditional and modern local characteristics, as well as
providing a user-friendly interface. It also includes a collection of other typical and
essential VO and SLAM technologies. [40]
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Chapter 4

Experiments and Results

This chapter will review all of the project’s experiments and their results. It will
begin by discussing all of the issues that have arisen in relation to SLAM. It will
then discuss general problems that have arisen throughout the project. The im-
plementation of the IMU will then be explained, along with some test results that
were obtained. The next section will explain how AprilTag was calibrated and im-
plemented, and it will then present some test findings. Finally, the chapter will
finish with an explanation of how the EKF was implemented and a discussion of the
findings.

4.1 Simultaneous Localization and Mapping

This section will go through all of the issues that were experienced when using
ORB-SLAM3 and pySLAM. It will provide a brief description of how the problems
developed and how they were handled.

4.1.1 ORB-SLAM3

ORB-SLAM3 was the first SLAM software to be tested. There where several prob-
lems that occurred during the installation and testing of ORB-SLAM3. During
the pre-project, [19], Open Source Computer Vision Library (OpenCV) 4.5.2 and
Pangolin were installed successfully, however ORB-SLAM3 had certain issues that
needed to be rectified. The issue that caused the ORB-SLAM3 installation to fail
was that it attempted to build using C++11, however this system has an earlier
version of C++. The C++ version was upgraded because this system runs Ubuntu
21.10, which was a newer version than the one used by the ORB-SLAM3 team [39].
In this system, C++14 was utilized instead of C++11. Changing the "CMake-
List.txt" file to use C++14 instead of C++11 fixed the problem. Once this error
was rectified, ORB-SLAM3 installation was finished successfully. Figure 4.1 shows
where C++11 was replaced with C++14.
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Figure 4.1: Changes on CMakeList.txt

An installation guide for ORB-SLAM3 on Ubuntu 21.10 has been created. This
installation tutorial covers memory swapping, OpenCV installation, Pangolin in-
stallation, and ORB-SLAM3 installation, as well as instructions on how to upgrade
from C++11 to C++14. It also contains a guidance on how to conduct testing of
the system. Appendix A contains this installation guide.

Following the installation of ORB-SLAM3, certain tests were performed on the sys-
tem to ensure that it was functioning correctly and to determine how accurate the
mapping estimation was in comparison to the ground truth. The dataset EuRoc,
which was utilized by the ORB-SLAM3 team, was employed in these tests. EuRoc is
a collection of visual-inertail datasets gathered from a Micro Aerial Vehicle (MAV).
Stereo pictures, synchronized IMU measurements, and accurate motion and struc-
tural ground-truth are all included in the datasets [41]. Figure 4.2 depicts how it
appeared when the system was tested with EuRoc using camera and an IMU.

Figure 4.2: EuRoc test of ORB-SLAM3 with camera and IMU

The ORB-SLAM3’s functionality may be verified after the test. The following test
was performed to assess how well the ORB-SLAM3 estimator compares to a file
named ground truth. This test was performed on EuRoc using stereo. The output
of ORB-SLAM3 is seen in fig. 4.3. This test was completed entirely, and the ORB-
SLAM3 estimation was plotted against the ground truth. There were some issues
during the plotting since the plotting file is written in Python2.7 and the system is
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written in Python3. To make the plotting work, certain changes were done to the
files home/username/Dev/ORB_SLAM3/evaluation/evaluate_ate_scale.py and
home/username/Dev/ORB_SLAM3/evaluation/associate.py. The modifications made
from python2.7 to python3 were as follows ".sort()" was changed to "sorted()",
".keys()" was changed to "list()", and some parentheses were added to the print
functions.

Figure 4.3: EuRoc test of ORB-SLAM3 with stereo

The validation was plotted after the files were updated. The plot is depicted in
fig. 4.4, with a zoomed-in section of the plot. This zoomed-in section demonstrates
how well ORB-SLAM3 estimate works. Under the difference in red, the estimation
in blue and the ground truth in black are shown. This signifies that the difference
between the estimate and the ground truth is quite minimal.

Figure 4.4: Plot of EuRoc test of ORB-SLAM3 estimation against the ground truth,
including a zoomed in section of the plot

The issues with ORB-SLAM3 occurred while attempting to utilize a camera to de-
ploy ORB-SLAM3. There have been various attempts to make it operate, as well
as some attempts to calibrate the camera, but the primary issue was that ORB-
SLAM3 was utilizing software that has not been updated for usage with Ubuntu
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21.10. There were also a lot of difficulties with that there was little information on
how to address all of the problems, therefore it took a long time to resolve each prob-
lem. There was also an attempt to run ORB-SLAM3 on a virtual machine, however
this did not provide a solution to the problems. Because all of this troubleshooting
was so time consuming and complicated, it was determined that the focus of this
thesis would shift and that one other SLAM system would be used to complete the
thesis assignment.

A calibration guide for ORB-SLAM3 was created, however because the calibration
was never finished, the calibration guide was likewise incomplete and will not be
included in this report.

4.1.2 PySLAM

PySLAM was the second SLAM software tested. The issues with pySLAM began
during the installation process. The biggest issue was meeting the criteria that
pySLAM requires in order to be installed. Python 3.6.9, numpy 1.18.2, OpenCV
4.5.1, Pytorch >= 1.4.0, and Tensorflow-Graphics Processing Unit (GPU) 1.14.0
are required to install pySLAM. In order to execute the full version of pySLAM
pangolin and General Graph Optimization (g2o)py, must also be installed. Meeting
all of these requirements was challenging since pySLAM was developed and tested
on Ubuntu 18.04, but the systems utilized in this thesis were Ubuntu 20.04 and
Ubuntu 21.10 [40].

Throughout the installation process, there were some challenges with installing the
necessary versions of tensorflow-GPU, OpenCV, and g2opy for pySLAM. Attempts
were made to install newer versions of these softwares, however this simply resulted
in pySLAM installation failing. There were several attempts to get the pySLAM
installation to work, but none were successful. Due to these problems, an attempt
was made to install pySLAM using conda. Conda installation had several complica-
tions, but they were fixed by identifying the proper version of conda that supported
aarch64 and Python 3.8.

Despite all of this debugging, there were still issues with pySLAM installation. After
much study, the issues appeared to be that this thesis was utilizing a Raspberry Pi
4 which is an ARM64 system and hence requires installation files that support
aarch64, but pySLAM is built on AMD64 systems and thus supports x86_64 files.
There were attempts to resolve this issue by forcing the system to utilize aarch64
files rather than x86_64 files, however this operation proved too time consuming and
complicated. As a result, it was decided that the thesis would not employ SLAM to
solve the thesis challenge.

An installation guide for pySLAM was developed; however, because the installa-
tion was never completed, the installation guide is also incomplete and will not be
included in this report.
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4.2 General problems

Additional to SLAM difficulties, some other problems that have occurred and have
been time consuming to solve will be described in this chapter. All of these problems
have been explained as to why they arose and how they were resolved.

4.2.1 Memory problems

During the installation and testing of ORB-SLAM3 and pySLAM, there were some
issues with the system having insufficient memory. The cause for this issue is that
multiple attempts were made to make these softwares operate, and as a result, several
minor installs were performed, which combined occupied a large amount of memory
on the system. Some attempts to free up space on the memory were made, but they
had little effect, therefore the problem was solved by reinstalling the memory card.
There was also a change to a bigger memory card, from 32Gigabyte (GB) to 64GB, to
lessen the likelihood of experiencing the same issue in the future. This indicated that
everything on the system had been deleted, and it would be necessary to reinstall
everything. This includes the IMU, camera, and ORB-SLAM3 installation. In
addition, several codes were lost, including the code to get the IMU operational, as
well as the calibration of the IMU. The code to get the camera to function with
Real Time Streaming Protocol (RTSP)-stream and HQ Raspberry Pi camera with
OpenCV, as well as a code that contained both the camera and the IMU, were also
lost.

4.2.2 Second raspberry Pi

A second Raspberry Pi 4 with Ubuntu 20.04 was also used in the experiment. The
purpose for this was so that tests could be run simultaneously on both Ubuntu 21.10
and Ubuntu 20.04 systems to ensure that this was not the issue. As a result, it was
also essential to prepare a second IMU for use and testing.

4.2.3 IMU problems

The booting problem that occurred when the IMU was attached was mentioned in
the pre-project, [19], and since an IMU was necessary to be utilized with Ubuntu
20.04, it was important to find a solution. Several ways were tried to address this
problem, but the one that worked was a comparison of the files /boot/config.txt,
/boot/firmware/config.txt, and /boot/firmware/cmdline.txt on Ubuntu 20.04 and
Ubuntu 21.10. The solution was to make the files from Ubuntu 20.04 and the files
from Ubuntu 21.10 identical, and certain commands were added to both systems
files.
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The following modifications were made to the file /boot/config.txt:
"force_turbo=1", "dtoverlay=disable-bt", and "dtoverlay=miniuart-bt" were in-
serted at the bottom of the file. The only modification in the file /boot/firm-
ware/cmdline.txt was the removal of "console=serial0,115200". Several changes were
made to the final file /boot/firmware/config.txt, as seen in fig. 4.5. All places where
the kernel uses "uboot" for the correct Raspberry Pi are replaced by a single kernel
that uses "vmlinuz," and the line "initramfs initrd.img followkernel" was added. An-
other modification was the removal of the line "device_tree_address=0x03000000".
The last changes are "force_turbo=1", "dtoverlay=disable-bt", and "dtoverlay=miniuart-
bt" inserted at the end of the file.

The IMU installation instructions from the pre-project, [19], have been updated and
are included as attachment B in this thesis.

Figure 4.5: The file /boot/firmware/config.txt, which contains all of the modifica-
tions

4.2.4 Ubuntu

Now that everything is compatible with both Ubuntu 21.10 and Ubuntu 20.04, it
was decided to continue with Ubuntu 20.04 for the remainder of the thesis. This
was due to the fact that Ubuntu 21.10 does not have long-term support and hence
was not as widely used and tested as Ubuntu 20.04.

4.2.5 Gstreamer problems

Another issue that arose was that a basic installation of OpenCV was performed,
and so a version of OpenCV that included gstreamer was not installed. This was
a challenge since the camera intended for use in this thesis was a Sony camera,
see the pre-project [19]. To make this camera operate, RTSP was required, and so
gstreamer was required to make the camera function properly. Gstreamer includes
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a variety of plugins that may be used to enhance the utilization of a video stream.
These plugins are required for RTSP to function properly. The only method to
make OpenCV utilize gstreamer was to remove the old OpenCV and then reinstall
it with gstreamer. With this not being a straightforward or guaranteed solution, it
was decided to try uninstalling and reinstalling OpenCV on the raspberry pi used
for testing before carrying out the procedure on the original raspberry pi, which
already has everything else installed and functioning as it should.

Initially an attempt to remove OpenCV was made, however, this proved to be far
more complex than initially expected. This was due to the fact that a large number
of additional directories and packages were automatically installed when OpenCV
was installed, and these directories and packages were scattered across the system.
All of this was not immediately removed when uninstalling OpenCV, and it was
difficult to discover. After uninstalling OpenCV, an effort was made to remove
and uninstall the remaining directories and packages. However, after reinstalling
OpenCV, it appears that something from the previous OpenCV was still present.
When OpenCV was reinstalled, everything throughout the installation indicated
that the installation was completed smoothly and without errors. However, when
OpenCV was imported using Python, the system was unable to locate it. The only
way to solve this issue was to reinstall the system with a fresh Ubuntu 20.04 and
then install OpenCV with gstreamer from the beginning. This seemed to make
gstreamer function with OpenCV, but there were still a number of issues, including
the fact that not all of the required plugins could be installed on an ARM64 system.
Some alternative approaches were explored to remedy this problem, but because
they were time consuming, it was determined the best path forward would be to
replace the camera.

4.2.6 HQ camera and new test model

The Raspberry Pi’s function to directly connect to the Raspberry Pi HQ camera,
made it easy to use. The HQ camera must be enabled with raspi-config in order to
function. Because Ubuntu 20.04 was used instead of the Raspberry Pi Operating
System (OS), it was necessary to install raspi-config. This technique, as well as
everything else done to make the Raspberry Pi HQ camera function, was documented
in an installation guide, which is provided as attachment C.

When it was decided to switch to a new camera, certain adjustments to the test
model were required, as shown in the pre-project [19]. Figure 4.6 depicts the up-
graded test model, which now includes a new camera and a spirit level. To connect
the camera to the Raspberry Pi, the Adafruit Perma-Proto Pi hat, that had been
used to attach the IMU to the Raspberry Pi, had to be removed. This was due to
the Pi hat blocking the input for the Raspberry Pi’s camera; see attachment C for
details on how the camera is attached to the Raspberry Pi. The IMU had to be
attached directly to the Raspberry Pi because the Pi hat had been removed. To
resolve this, jumper wires were soldered to the IMU wires and then connected to
the proper Raspberry Pi pins. Figure 4.7 shows how the IMU and HQ Pi camera
was connected to the raspberry pi without the Adafruit Perma-Proto Pi hat.
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Figure 4.6: The test model with the rasp-
berry Pi HQ camera installed

Figure 4.7: The connection of the IMU
and camera to the raspberry Pi

4.3 Inertial measurement unit

The IMU code was originally tested separately before being included in the main
code for this thesis. This section will provide and explain the essential parts of
the IMU code that were tested and later incorporated into the main code. The
first section of code that was written was the one that imports the BNO055 mod-
ule from the Adafruit library. Code 1 demonstrates how the BNO055 module was
imported as well as the configuration of the BNO055 sensor connection. It was
important to set the serial port for the BNO055 sensor to be "/dev/ttyAMA0" in
order for it to operate in the Raspberry Pi’s serial Universal Asynchronous Re-
ceiver/Transmitter (UART) mode. Additionally, it was essential to set the re-
set function to be configured to utilize the relevant pin. This was the pin to
which the IMU’s reset function was connected to the Raspberry Pi, and in this
thesis, the reset function is connected to the Raspberry Pi’s General Purpose In-
put/Output (GPIO)18.

1 # Import BNO055
2 from Adafruit_BNO055 import BNO055
3

4 # Create and configure the BNO055 sensor connection.
5 bno = BNO055.BNO055(serial_port='/dev/ttyAMA0', rst=18)
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Code 1: Python code for importing BNO055 module and connecting the sensor

Code 2 demonstrates how the calibration file from section 3.2.2 was used. After open-
ing the calibration file, the functions bno.set_calibration and bno.get_calibration
were utilized. The set_calibration function sets the IMU calibration settings, while
the get_calibration function reads the gyroscope, accelerometer, magnetometer, and
system calibration values. This function returns a value between zero and three for
each sensor, with zero indicating that the sensor is uncalibrated and three indicating
that the sensor is fully calibrated.

1 # Calibration file
2 CALIBRATION_FILE = 'calibration.json'
3

4 # Load calibration from disk.
5 with open(CALIBRATION_FILE, 'r') as cal_file:
6 data = json.load(cal_file)
7

8 # Set the IMU calibration
9 bno.set_calibration(data)

10

11 while True:
12 # Read the calibration status,
13 # 0=uncalibrated and 3=fully calibrated.
14 sys, gyro, accel, mag = bno.get_calibration_status()

Code 2: Python code for loading the calibration file

Code 3 shows the following section of the code. This section is used to read the var-
ious sensors, the code presented here displays more sensor values than were utilized.
Only the sensor data from the linear accelerometer and gyroscope was utilized in
the main code since these were the sensor values required by the EKF. This code
demonstrates that the IMU is capable of providing sensor readings such as temper-
ature in °C, accelerometer in m/s2, linear accelerometer in m/s2, current gravity
accelerometer in m/s2, gyroscope (angular velocity) in rad/s, magnetometer in µT ,
quaternions, and Euler angles in degrees. Linear acceleration is the acceleration
caused by movement rather than gravity.

1 # Grab new BNO055 sensor readings.
2 # Read the temperature in °C
3 temp = bno.read_temp()
4

5 # Read the accelerometer for x, y and z
6 # in m/s^2
7 ax, ay, az = bno.read_accelerometer()
8

9 # Read the linear acceleration for x, y and z
10 # in m/s^2
11 ax, ay, az = bno.read_linear_acceleration()
12

13 # Read the current gravity acceleration for x, y and z
14 # in m/s^2
15 gax, gay, gaz = bno.read_gravity()
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16

17 # Read the gyroscope (angular velocity) for
18 # x, y and z in rad/s
19 gx, gy, gz = bno.read_gyroscope()
20

21 # Read the magnetometer for x, y and z in
22 # micro-Teslas
23 mx, my, mz = bno.read_magnetometer()
24

25 # Read the Quaternions for x, y, z and w
26 qx, qy, qz, qw = bno.read_quaternion()
27

28 # Read the Euler angles for heading, roll, pitch
29 # in degrees.
30 heading, roll, pitch = bno.read_euler()

Code 3: Python code for reading the BNO055 sensor

The final section of the IMU code demonstrates how the linear acceleration vector
and gyroscope vector were converted to acceleration and angular velocity. The
system’s velocity was computed by adding the initial velocity to the acceleration
multiplied by the time interval. The velocity will have a small inaccuracy since
the acceleration must be time-integrated to obtain velocity. If the resultant velocity
estimate is time-integrated again to obtain a position estimate, the inaccuracy grows
quadratically with time. This means that utilizing acceleration to predict position
will provide some challenges. This is why using an IMU alone to determine the
camera’s position underwater is not a suitable option.

1 # Acceleration vector
2 array_a = array([ax,ay,az])
3 # Gyroscope vector
4 array_g = array([gx,gy,gz])
5

6 # Acceleration [m/s^2]
7 a = norm(array_a,2)
8 # Velocity[m/s]
9 v = u + a*delta_t

10 # Angular velocity [rad/s]
11 om = norm(array_g,2)

Code 4: Python code for transforming BNO055 readings to acceleration, velocity
and angular velocity

Figure 4.8 depicts the sensor output during testing. Despite the fact that the calibra-
tion value was three on all three sensors, the calibration was not always as precise.
When the IMU was stationary and level, the acceleration in the z-axis was 9.52m/s2,
rather than 9.81m/s2 as expected owing to gravitation. This shows that the calibra-
tion was not as successful as expected, and it is thus critical that all calibrations are
conducted correctly. After a few seconds of executing the code, the magnetometer
calibration was reset to zero. This was to be expected given the magnetometer cali-
bration’s high dynamic range. As a result, each time the IMU code is executed, the
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camera with the IMU attached must be moved in an infinity pattern, as described
in section 3.2.2. The system calibration began at zero, as shown in fig. 4.8, since the
magnetometer calibration was not calibrated. After the magnetometer calibration,
the system calibration was complete.

Figure 4.8: IMU sensor readings output

The system calibration was properly calibrated once the magnetometer was recali-
brated. The accelerometer calibration also decreased to zero after the magnetometer
was recalibrated and the code had been running for some time. This indicates that
the accelerometer calibration was not completed correctly, despite the fact that the
calibration value was set to three. The previously reported z value remained at
9.52m/s2 after the calibration value was decreased. The z value climbed to 9.79m/2

once the accelerometer was recalibrated, and 9.81m/s2 after the camera was level
in all directions. Because the z-axis is pointing down from the IMU center, a slight
angle will affect the z-axis value. It is also necessary to take into consideration the
fact that gravitational pull is not constant and decreases as it gets farther from the
center of the Earth. In fact, it is not even a constant at the surface, varying from
9.8m/s2 at the poles to 9.78m/2 at the equator. Figure 4.9 depicts the sensor output
after recalibration of the magnetometer and accelerometer.

Figure 4.9: IMU sensor readings after recalibration
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With the proper calibration, the IMU provided reliable and accurate positioning
and orientation measurements for a period of time. As predicted, the measurements
began to drift after the IMU had been operational for a while. When utilized alone,
this drifting makes the IMU’s position and orientation measurements unreliable.
When the system is utilized underwater, the IMU must be recalibrated since en-
vironmental factors such as temperature, pressure, depth, and so on will make the
calibration unreliable. Furthermore, the findings of the trials suggest that adequate
calibration is required to obtain trustworthy readings. As a result, the first time the
IMU is exposed to water, it must be calibrated, and that calibration can be saved
for future use.

4.4 AprilTag

The AprilTag code, like the IMU, was tested separately before being incorporated
into the main code for this thesis. The implemented AprilTag code is based on
examples from [21], [24] and [42]. This section will explain how the camera was
calibrated, how AprilTag was implemented, and how the calibration parameters
were used to determine the pose estimation of the tags. It will go through the
important parts of the codes and explain what they do.

4.4.1 Calibration

The checkerboard, shown in section 3.3, had to be photographed using the camera
that would be calibrated. Prior to taking images of the checkerboard, it was impor-
tant to ensure that the checkerboard was flat on a surface and had a plain, preferably
white, background. The camera was moved around while the photo was being taken
to capture the checkerboard pattern from various distances and viewpoints. It was
required that at least 10 photos of the checkerboard be taken [25], [26]. Code 5
demonstrates how the image was taken every 100th frame, allowing the operator
to reposition the camera between shots. The code would capture 30 images before
stopping, resulting in three times the number of pictures required. One of the 30
photos that were captured throughout this procedure is fig. 3.10.

1 # Extract picture every 100th frame
2 if i%100 == 0:
3 cv2.imwrite(os.path.join(path , 'image_%d.jpg')% num, frame)
4 i+=1
5 # Number of pictures taken
6 if num == 30:
7 break

Code 5: Python code for taking a picture with the camera
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The calibration process involved the code iterating over each image of the checker-
board one at a time in search of a checkerboard pattern. Code 6 is the Python code
that identifies and draws the checkerboard corners in all of the pictures.

The function cv2.findChessboardCorners(gray, (10,7), None) searches for in-
ner checkerboard corners and determines whether or not the input image contains
a checkerboard pattern. The number of inner corners in each checkerboard row and
column, as well as a grayscale image source, are inputs for the function. Because
the checkerboard has 11x8 squares, it has 10x7 internal corners, intersections where
the black squares meet. It was important to use the proper checkerboard pattern
size as input because if the size was incorrect, the function would fail to detect any
checkerboards in the input picture. If all of the corners are located and are arranged
in a specified order, going from left to right in each row, the function returns a
non-zero number. However if the function is unable to detect or rearrange all of the
corners, it returns zero [26], [43].

The corner coordinates that findChessboardCorners returns as output are simply
approximations. The cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), crite-
ria) function was used to enhance this. The feature enhances the corner positions
to offer better calibration results. It requires the checkerboard picture in grayscale
as well as the corners identified by the findChessboardCorners function as inputs.
To gather all of the equations into a single container, the given input results were
added to a imgpoints.append(corners) vector [26], [44].

Finally, the detected corners were displayed on the input picture using the
cv2.drawChessboardCorners(img, (10,7), corners2, ret) function. The tar-
get picture as well as the number of inner corners for each checkerboard row and
column are inputs for this function. Additionally, it receives as inputs the param-
eters from findChessboardCorners indicating whether or not the entire board was
located, as well as the array of the detected corners from cornerSubPix [26], [43].

1 # termination criteria
2 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,

0.001)↪→

3 # Find the chess board corners
4 ret, corners = cv2.findChessboardCorners(gray, (10,7), None)
5 # If found, add object points, image points (after refining them)
6 if ret == True:
7 objpoints.append(objp)
8 corners2=cv2.cornerSubPix(gray,corners, (11,11), (-1,-1),

criteria)↪→

9 imgpoints.append(corners)
10 # Draw and display the corners
11 cv2.drawChessboardCorners(img, (10,7), corners2, ret)

Code 6: Python code to identify and draw checkerboard corners in all pictures
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Figure 4.10 illustrates what the output of the drawChessboardCorners function looks
like. Here, all of the inner corners have been identified and are displayed with corner
markers. Additionally, it demonstrates how each row’s corners are drawn from left
to right, row by row. This example’s inner corner dimensions are 8x6, not the same
as the checkerboard used in this project, which has an inner corner dimension of
10x7.

Figure 4.10: Detected checkerboard pattern, 8x6 corners [27]

The cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
function was used to calibrate the camera once all the determined parameters from
identifying the inner corners of the checkboard pattern were completed. This func-
tion takes the picture size, a vector of 2D points in the image plane, and a vector of
3D points in the real-world space as inputs. It returns the camera matrix together
with rotation and translation vectors, distortion coefficients, and other data. Code 7
demonstrates how the calibrateCamera function was implemented in the code. The
parameters for the focal length (fx, fy) and optical centers (cx, cy) were obtained
from the camera matrix [25], [43].

1 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints,
imgpoints, gray.shape[::-1], None, None)↪→

2

3 # Printing the results
4 fx = mtx[0,0]
5 fy = mtx[1,1]
6 cx = mtx[0,2]
7 cy = mtx[1,2]
8

9 camera_params = (fx, fy, cx, cy)

Code 7: Python code for calibrating the camera
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The output parameters from calibratedCamera were used to undistort fig. 3.10 in
order to verify that the camera calibration functioned as intended. Code 8 demon-
strates how the code’s undistortion was implemented. Based on the free scaling
parameter, the method cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h),
1, (w1,h1)) computes and returns the optimal new camera matrix. It takes as in-
puts the camera matrix, distortion coefficients, the size of the original picture, and
the size of the new image.

This created a curved path, so it was possible to obtain the inputs for the cv2.remap(img,
mapx, mapy, cv2.INTER_LINEAR) function by using the
cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w1,h1),
5) function to find a map from the distorted picture to the undistorted image. The
initUndistortRectifyMap function takes as inputs the old camera matrix, distortion
coefficients, the generated new camera matrix, and the new picture size.

1 h, w = img.shape[:2]
2 newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h),

1, (w1,h1))↪→

3

4 # undistort
5 mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None,

newcameramtx, (w1,h1), 5)↪→

6 dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)
7

8 # crop the image
9 x, y, w, h = roi

10 dst = dst[y:y+h, x:x+w]
11 cv2.imwrite('calibresult.png', dst)

Code 8: Python code for undistortion

After the remapping, it was feasible to generate a fresh, calibrated image that was
not distorted. Figure 4.11 shows how the image appears after calibration. Now
that all of the lines are straight and match the actual checkerboard pattern, the
checkerboard pattern is no longer distorted.
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Figure 4.11: Undistorted picture after calibration

Using this data, the camera calibration was considered successful, and the camera
parameters that were saved for future use are presented in eq. (4.1). When operated
underwater, the system must be recalibrated. This is because variables such as
low visibility and light conditions might impact the system, causing the calibration
performed over water to no longer work properly.

fx = 620.480 (4.1a)
fy = 619.309 (4.1b)
cx = 310.751 (4.1c)
cy = 235.317 (4.1d)

4.4.2 Implementation

The AprilTag code was written to detect tags and give tag positions after the camera
calibration. Code 9, the first part of the AprilTag code, shows the importation of
the AprilTag library and the configuration of the AprilTag detector parameters.
To detect AprilTags in an image, settings such as the AprilTag family must be
specified. The AprilTag family used in this project is Tag36h11, as explained in
section 3.3. The AprilTag detector command utilizes these options as inputs to
detect AprilTags in the input image. The OpenCV library was also loaded in order
to utilize the camera. Being directly connected to the Raspberry Pi through the
camera input allowed the camera video stream to be opened using the OpenCV
function VideoCapture(0).
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1 # Import the necessary packages
2 import apriltag
3 import cv2
4

5 # Open Raspberry Pi camera
6 cam=cv2.VideoCapture(0)
7

8 # Define the AprilTag detector options and then detect the
AprilTags↪→

9 # in the input image
10 print("[INFO] detecting AprilTags...")
11 options = apriltag.DetectorOptions(families="tag36h11")
12 detector = apriltag.Detector(options)

Code 9: Python code for importing AprilTag module and configuring detector op-
tions

After importing the AprilTag library and configuring the detector, the input image
needed to be preprocessed to meet the AprilTag requirements. Code 10 describes
how the input image was preprocessed. The preprocessing involved converting the
image to grayscale using the frame-by-frame readings from the input image. The
image was also flipped since the camera was upside down after being installed on the
new test model. In the OpenCV flip function, 0 indicates that the image has been
flipped in the y-axes, 1 indicates that the image has been flipped in the x-axes, and
-1 indicates that both axes have been flipped. Finally, the total number of detected
AprilTags is saved in the variable "result".

1 # Capture frame-by-frame
2 _,frame=cam.read()
3

4 # Flip the video, 0 filp y, 1 flip x and -1 flip both
5 frame = cv2.flip(frame,0)
6

7 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
8 results = detector.detect(gray)

Code 10: Python code preprocessing the input video

With the detected AprilTags, it was easy to loop through the results and create
bounding boxes, center coordinates, and tag families on the image. Code 11 demon-
strates how the detected AprilTags are processed. The AprilTag algorithm loops
over the detected results to get the (x, y)-coordinates for all AprilTag corners. The
bounding box of the AprilTag detection was drawn using the known corners, and
the center (x, y)-coordinates of each AprilTag detection were obtained and drawn as
circles onto the image. The tag family where drawn on the image for each identified
tag.
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1 # Loop over the AprilTag detection results
2 for r in results:
3 # Extract the bounding box (x, y)-coordinates for the
4 # AprilTag
5 (ptA, ptB, ptC, ptD) = r.corners
6 ptA = (int(ptA[0]), int(ptA[1]))
7 ptB = (int(ptB[0]), int(ptB[1]))
8 ptC = (int(ptC[0]), int(ptC[1]))
9 ptD = (int(ptD[0]), int(ptD[1]))

10

11 # Draw the bounding box of the AprilTag detection
12 cv2.line(frame, ptA, ptB, (0, 255, 0), 2)
13 cv2.line(frame, ptB, ptC, (0, 255, 0), 2)
14 cv2.line(frame, ptC, ptD, (0, 255, 0), 2)
15 cv2.line(frame, ptD, ptA, (0, 255, 0), 2)
16

17 # Draw the center (x, y)-coordinates of the AprilTag
18 (cX, cY) = (int(r.center[0]), int(r.center[1]))
19 cv2.circle(frame, (cX, cY), 5, (0, 0, 255), -1)
20

21 # Draw the tag family on the image
22 tagFamily = r.tag_family.decode("utf-8")
23 cv2.putText(frame, tagFamily, (ptA[0], ptA[1] - 15),
24 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

Code 11: Python code for looping through the AprilTag detection results

The final part of the AprilTag code determines the pose estimation of each detected
AprilTag and is given in code 12. The detected AprilTags, camera parameters, and
tag size are used as inputs for AprilTag pose detection. The camera parameters
are the parameters (fx, fy, cx, cY ) obtained during the calibration mentioned in sec-
tion 4.4.1. The tag size is the length of the tag’s inside border in meters, as stated
in section 3.3. In addition to the pose, the pose detection function returns the initial
and final error values.

1 # Camera parameters from the calibration
2 camera_params = (fx, fy, cx, cy)
3

4 # The tag size in meters
5 tag_size = 0.124 # Must be change to the right tag size
6

7 # Position matrix for the tags, and initial and final error
values↪→

8 pose, e0, e1 = detector.detection_pose(r,
9 camera_params,

10 tag_size)

Code 12: Python code for positioning AprilTag
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Figure 4.12 shows how the camera captures the AprilTags that was scattered around
when the code was executed. It is clear from this picture that AprilTag is capable
of detecting all tags, regardless of their placement or orientation. The tag that is
the furthest away from the camera is placed 2.5m from the center of the camera.
The AprilTag where capable of detecting tags from greater distances than 5m, but
because of space constraints, it was not possible to test this more. The tags in this
test were relatively large, but the maximum distance will vary depending on the size
of the tags. The detecting distance will also be reduced when utilized underwater
due to factors such as low visibility and light conditions.

Figure 4.12: AprilTags detected with camera

Figure 4.13 depicts the output from the previous test. With tag-IDs ranging from
0 to 3, it is apparent that the code is detecting all four tags. The code also displays
the tag family each tag belongs to, in this case all of the tags belong to tag36h11.
Each tag receives a pose matrix, a rigid 4x4 transformation matrix. The translation
vectors are the top values in the last column of the pose matrix. These translation
vectors are measured in meters with respect to the camera frame, with the origin
being in the center of the camera. Here, x is pointing to the right, y is pointing
down, and z is pointing out the lens. By examining the z-values of the pose matrix
for tag ID 1, it is possible to interpret that the calibration was successful because
the z values are 2.5m, which corresponds to the distance measured between the tag
and the camera center.

Finally, the function outputs the initial and final error, which corresponds to the
reprojection error associated with a specific tag. The final error should be less than
the initial error. It can be observed that tags placed at an angle relative to the
camera have a larger initial error than tags placed more straightly. This is because
the detected corners of tags positioned at an angle relative to the camera are more
susceptible to noise.
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Figure 4.13: AprilTags detected pose estimation output

This test examines the reliability of the AprilTag posture estimates. As a result,
using the AprilTag as the ground truth in the EKF should produce adequate results.
With a reliable date on positioning and orientation relative to the tags, the AprilTag
can be a useful resource for the underwater positioning system. However, because
problems such as low visibility and lightning conditions may make utilizing AprilTag
underwater difficult, employing AprilTag alone may not be a good solution.

4.5 Extended Kalman filter

The EKF code was obtained from [45]. This code has been modified to meet the
requirements of this project. This section will describe how the EKF’s relevant as-
pects were implemented. The EKF code was written as a function and then called
in the main code. The function takes AprilTag, IMU, and the initial positions as
inputs and produces the updated state xk and covariance matrices Pk. Code 13
demonstrates how the covariance noise matrices were calculated. Qk denotes the
input covariance noise matrix derived from the IMU, whereas Rk denotes the mea-
surement covariance noise matrix obtained from AprilTag. For the EKF to achieve
optimum performance, the diagonal values of these two matrices must be tuned.
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1 # Covariance
2 v_var = 0.01 # Translation velocity variance
3 om_var = 0.1 # Rotational velocity variance
4 r_var = 0.01 # Range measurements variance
5 b_var = 10 # Bearing measurement variance
6

7 # Nois covariance matrices
8 Qk = np.diag([v_var, om_var]) # Input nois from IMU
9 Rk = np.diag([r_var, b_var]) # Measurement nois from AprilTag

Code 13: Python code for covariance noise matrices

The prediction step is demonstrated in code 14 and is based on the EKF prediction
model that is provided insection 3.4. To linearize the nonlinear system, the Jacobian
has to be determined. The state and covariance estimates from the previous time
step to the current time step are predicted using a for loop that loops from the initial
prediction. When the loop is first executed, the initial values are utilized instead
of updating the stat with the most recent odometry measurements. Using the IMU
measurements as inputs, the predicted state estimate and estimate error covariance
matrix were calculated using the derived motion model function and Jacobian with
respect to the last state.

1 for k in range(1, len(t)):
2

3 # Update state with odometry readings
4 if (flag_initial == 1):
5 #copy initial state values by taking first row
6 x_k = np.array(x_est[0, :]).reshape(3, 1)
7

8 #copy initial covariance by taking first row
9 P_k = P_est[0]

10

11 # Create the motion model function
12 A1 = np.array([[np.cos(wraptopi(theta)), 0],

[np.sin(wraptopi(theta)), 0], [0, 1]], dtype='float')↪→

13 A2 = np.array([[v[k-1]], [om[k-1]]])
14

15 # Motion model Jacobian with respect to last state
16 F_km = np.zeros([3, 3])
17 F_km = np.array([[1, 0, -1 * delta_t * v[k-1] *

np.sin(wraptopi(theta))], [0, 1, delta_t * v[k-1] *
np.cos(wraptopi(theta))], [0, 0, 1]], dtype='float')

↪→

↪→

18

19 # Predicted state estimate
20 x_k = x_k + delta_t * np.matmul(A1, A2)
21 x_k[2] = wraptopi(x_k[2])
22

23 # Predicted estimate error covariance matrix
24 P_k = F_km*P_k*np.transpose(F_km) + Qk

Code 14: Python code for the prediction step
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The measurement update step was written as a function that was later incorporated
into the same loop as the prediction step. This function is seen in code 15, where
it receives the tag AprilTag location data and the prediction model as inputs and
returns the updated state and covariance estimates. The measurement update func-
tion computes the Jacobian transformation matrix Hk based on the predicted state
estimations. The predicted estimating error covariance P−

k , measurement covari-
ance noise matrix Rk, and the transformation matrix Hk were used to calculate the
Kalman gain Kk. The function could update the state estimate and the covariance
matrix when the predicted state was adjusted.

1 def measurement_update(lk, rk, bk, P_k, x_k):
2 # Jacobian transformation matrix
3 H_k = np.array([[-d_x/range_exp, -d_y/range_exp, d *

(d_x*np.sin(th) - d_y*np.cos(th))/range_exp],↪→

4 [d_y/frac, -d_x/frac, -1 - d * (np.sin(th)*d_y
+ np.cos(th)*d_x)/frac]])↪→

5 H_k = H_k.reshape(2, 3)
6

7 # Kalman Gain. Here is a 3x2 array
8 S_k = H_k*P_k*np.transpose(H_k) + Rk
9 K_k= P_k*np.transpose(H_k)*inv(S_k)

10

11 # Correct predicted state
12 phi = np.arctan2(d_y, d_x) - th
13 y_k = np.array([[range_exp], [wraptopi(phi)]])
14 y_k = y_k.reshape(2,1)
15 y_measured = np.array([[rk], [wraptopi(bk)]])
16

17 # Updated state estimate
18 x_k = x_k + K_k*(y_measured - y_k)
19 x_k[2] = wraptopi(x_k[2])
20

21 # Updated covariance matrix
22 P_k = (np.identity(3) - K_k*H_k)*P_k

Code 15: Python code for the measurement update step

A function called wraptopi was designed and is demonstrated in code 16. This
function is used to wrap the angle in radians to the interval [−π, π] such that π
maps to π and −π maps to −π. Positive π multiples of π are mapped to π, and
negative π multiples of π are mapped to −π.

1 # Wraps angle to (-pi,pi] range
2 def wraptopi(x):
3 if x > np.pi:
4 x = x - (np.floor(x / (2 * np.pi)) + 1) * 2 * np.pi
5 elif x < -np.pi:
6 x = x + (np.floor(x / (-2 * np.pi)) + 1) * 2 * np.pi
7 return x

Code 16: Python code for wraping angle to (-pi,pi] range
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The EKF integrating the AprilTag and IMU data has not been tested. This was due
to the fact that so much time was spent in the beginning of the project attempting
to get SLAM operating that the project was running out of time. What remains to
be done to make EKF operate is to accurately apply the AprilTag data and tune
the EKF. When this is done, it is easy to do tests by scattering AprilTags around
an area while moving the camera around such that the camera may occasionally
detect the tags while the IMU provides the location in between the tags. After some
testing, it is feasible to create three-dimensional maps that illustrate the route that
was taken. When doing so, the position from the IMU, AprilTag, and EKF may
be plotted to see how well the EKF is doing. Since the AprilTag measurements
by themselves produced satisfactory results, it is possible that the EKF may be a
suitable option for positioning. The EKF has been tested on the IMU to check that
everything functions as intended. This test produced encouraging findings. The
IMU’s drifting challenges are likely to be improved by utilizing the EKF, because
incorporating the AprilTag data as ground truth allows the IMU position to be
updated, reducing drifting.

There are going to be a lot of new issues when the system is utilized underwater since
there are a lot more challenges to be overcome in that environment than there are
in the indoor and outdoor testing environments. Some of the anticipated challenges
have already been solved, while others will be addressed during the system’s future
underwater calibrations.
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Chapter 5

Conclusion and Further work

Positioning underwater has many complicated and costly solutions because of the
challenges with GPS devices not working underwater, as well as difficulties such as
low visibility, lightning conditions, pressure and temperature. Solving the challenges
of underwater positioning using a low-cost and simple system was attempted to be
solved using a Raspberry Pi 4, a Raspberry Pi HQ camera, and a BNO055 IMU.
Additionally, this thesis combined data of positioning measurements from an IMU
and AprilTag with an EKF. The exact location of the camera in relation to the
tags may be determined with the use of AprilTag. The problem was attempted to
be solved using SLAM at the beginning of the thesis, but utilizing a Raspberry Pi
4 to implement this approach proved to be challenging. If less time had been spent
at the beginning of the thesis on the SLAM challenges, the thesis would have had
more time to address the issue using an IMU, AprilTag, and EKF. The likelihood
that the underwater positioning issue can be resolved with the use of an EKF has
increased with the IMU and AprilTag being operational and showing encouraging
results. The EKF would have been done if there had been more time, allowing for
the completion of more experiments and, therefore, more comprehensive results.

The challenges of positioning a camera underwater, such as the lack of GPS signals,
limited visibility, lightning conditions, pressure, and temperature, can be overcome
by employing an EKF, IMU, and AprilTag. This is because all of the outcomes to
date have been encouraging. This means that the underwater positioning problem
can be solved with low-cost technology. With the AprilTag measurements being
accurate and reliable, it is possible to use the AprilTag measurements as ground
truth in the EKF, which makes it possible to overcome the IMU drifting problem
using sensor fusion.
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5.1 Further work

This chapter discusses the effort required to get the system up and running, as well
as what is required to get it working underwater. It will begin by going over the
tasks that must be completed in order for the EKF to work and for the system to
be tested above water. The chapter’s conclusion will cover how to get the system
ready for usage underwater, as well as what is anticipated to be required to get the
system to work properly and provide accurate positioning data.

The AprilTag positioning must be accurately provided to make the EKF operational.
Additionally, the EKF must be tuned for it to provide the most accurate pose
estimate with the minimum level of noise. When the EKF is ready and tuned, the
system may be tested by placing multiple tags around a certain area and moving
the camera in between each tag. The IMU will then offer pose estimates between
the tags, and AprilTags will provide correct pose estimates when it detects tags.
Making plots of EKF, IMU, and AprilTag positioning measurements allows you to
assess how well those three measures are in comparison to one another.

An underwater model that can house the Raspberry Pi HQ camera, the IMU, and
the Raspberry Pi 4 must be constructed to operate the system underwater. It will
be necessary for the system to have a cable that can supply power, although Power
over Ethernet (PoE) can solve this. Use a Raspberry Pi PoE+ HAT that can supply
up to 25W of power to a Raspberry Pi 4 at maximum load to make the Raspberry
Pi function with PoE [46]. When utilizing PoE to power the device underwater,
RTSP may be used to run the code and receive a visual image of what the camera is
viewing. To be able to implement this solution, it is required to determine whether
the Raspberry Pi can support it and whether all system testing can be completed
via RTSP.

When the system is underwater, there are several difficulties that might arise, and
it is thus advisable to be prepared for this. The system needs to be calibrated
once again underwater because all previous calibrations performed above water were
incorrect, which would reduce the system’s reliability. Another problem to consider
is that underwater visibility will be limited. As a result, tests must be conducted to
determine the maximum distance at which the system can detect tags. The system
may also be affected by lighting conditions, temperature, and pressure.

When the system is operating well, it may be utilized in a variety of situations.
For example, it can be combined with a system that detects damage to fish farming
equipment. Or it may be used to operate underwater robots or drones, such as those
used to repair damage to oil platforms. In this case, the system can be utilized to
determine both the position of the damage and the position of the robot or drone
performing the repairs.
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Installation of ORB-SLAM3 on the Raspberry Pi 
This is an ORB-SLAM3 installation tutorial. The installation is carried out on a Raspberry Pi running 

Ubuntu 21.10. This installation guide also contains instructions on how to test the system after it has 

been installed.  

Configuration 
Before you can begin installing ORB-SLAM3, you must first complete certain system preparations. The 

first step is to ensure that the Raspberry Pi is up to date. 

sudo apt update 

sudo apt upgrade 

Memory swapping 

You should begin by providing Ubuntu more breathing room than a Raspberry Pi OS. The swap file 

prevents the Raspberry Pi from crashing. 

1. Run the following command to ensure that the Raspberry Pi does not already have swap space: 

free -h 

2. If you don't have enough swap space, create a 4GB swap file by running: 

sudo fallocate -l 4G /var/swapfile  

sudo chmod 600 /var/swapfile  

sudo mkswap /var/swapfile  

sudo swapon /var/swapfile  

sudo bash -c 'echo "/var/swapfile swap swap defaults,_netdev,x-initrd.mount  0 0" >> 

/etc/fstab' 

3. Reboot by running the following command: 

sudo reboot 

4. Now, check to see if the Raspberry Pi has swap space. 

free -h 

 

NOTE: If you see something like this, you need fix the swapfile. 

$ sudo mkswap /var/swapfile  

Setting up swapspace version 1, size = 1020 KiB  

no label, UUID=eeb4e9e0-386f-4fbd-919a-130e2c17079e 

Installation of OpenCV 

You may now begin installing OpenCV. This is a large installation that will take several hours to finish. 

See: https://qengineering.eu/install-ubuntu-20.04-on-raspberry-pi-4.html  

1. The first step is to install all liberay requirements. 

sudo apt-get install build-essential cmake gcc g++ git unzip pkg-config 

sudo apt-get install libjpeg-dev libpng-dev libtiff-dev 

sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev 

sudo apt-get install libgtk2.0-dev libcanberra-gtk* 

sudo apt-get install libxvidcore-dev libx264-dev 

sudo apt-get install python3-dev python3-numpy python3-pip 

sudo apt-get install libtbb2 libtbb-dev libdc1394-22-dev 



sudo apt-get install libv4l-dev v4l-utils 

sudo apt-get install libopenblas-dev libatlas-base-dev libblas-dev 

sudo apt-get install liblapack-dev gfortran libhdf5-dev 

sudo apt-get install libprotobuf-dev libgoogle-glog-dev libgflags-dev 

sudo apt-get install protobuf-compiler 

2. Now, check your Memory; you'll need at least 6.5 GB! If you don't have enough Memory, 

increase your swap space as previously described. 

free -m 

3. Download the most recent version of OpenCV. 

cd ~ 

wget -O opencv.zip https://github.com/opencv/opencv/archive/4.5.2.zip 

wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.5.2.zip 

4. Unzip the zip files 

unzip opencv.zip 

unzip opencv_contrib.zip 

5. To make life simpler later on, run the following commands: 

mv opencv-4.5.2 opencv 

mv opencv_contrib-4.5.2 opencv_contrib 

6. To build the OpenCV files, start with creating a directory: 

cd ~/opencv 

mkdir build 

cd build 

7. Now run build make  

cmake -D CMAKE_BUILD_TYPE=RELEASE \ -D CMAKE_INSTALL_PREFIX=/usr/local \ -D 

OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ -D ENABLE_NEON=ON \ -D 

BUILD_TIFF=ON \ -D WITH_FFMPEG=ON \ -D WITH_GSTREAMER=ON \ -D WITH_TBB=ON \ -D 

BUILD_TBB=ON \ -D BUILD_TESTS=OFF \  -D WITH_EIGEN=OFF \ -D WITH_V4L=ON \ -D 

WITH_LIBV4L=ON \ -D WITH_VTK=OFF \ -D OPENCV_ENABLE_NONFREE=ON \ -D 

INSTALL_C_EXAMPLES=OFF \ -D INSTALL_PYTHON_EXAMPLES=OFF \ -D 

BUILD_NEW_PYTHON_SUPPORT=ON \ -D BUILD_opencv_python3=TRUE \ -D 

OPENCV_GENERATE_PKGCONFIG=ON \ -D BUILD_EXAMPLES=OFF .. 

8. You are ready to build OpenCV. This process will take several hours. 

make -j4 

NOTE: If the building process fails before reaching 100% completion, repeat the cmake 

command (step 7) and execute the'make -j4' command again. 

9. Install the libraries 

sudo make install 

sudo ldconfig 

10. Do some cleaning (free 300 KB) 

make clean 

sudo apt-get update 

 

 



11. To verify your Python 3 installation and the version of OpenCV that is installed, use the following 

command: 

python3 

>>> import cv2 

>>> cv2.__version__ 

>>> exit() 

Install Pangolin 

You must additionally install Pangolin for visualization and user interface in order for the ORB-SLAM3 to 

function. 

See: https://github.com/Mauhing/ORB_SLAM3/blob/master/README.md  

1. To begin, install the required packages, you need to install “libglew-dev” for installation of 

Pangolin, “libboost-all-dev” for the DBoW, and “libssl-dev” for g2o. Run the following 

commands:  

sudo apt-get install libglew-dev libboost-all-dev libssl-dev 

sudo apt install libeigen3-dev 

2. It is now time to install Pangolin; use the following commands to begin the installation: 

cd ~/Dev 

git clone https://github.com/stevenlovegrove/Pangolin.git 

cd Pangolin  

mkdir build  

cd build  

cmake .. -D CMAKE_BUILD_TYPE=Release  

make -j 3  

sudo make install 

Installation of ORB-SLAM 3 
Now that all of the criteria have been met, it is time to install ORB-SLAM3.  

1. The first step is to clone the GitHub software for ORB-SLAM3, which may be done by running: 

cd ~/Dev 

git clone https://github.com/UZ-SLAMLab/ORB_SLAM3.git  

cd ORB_SLAM3 

2. Before you begin the installation, there may be certain issues that need to be 

addressed. If you proceed through the next stages and everything is in order, you can go 

ahead to step 4. To begin making modifications, open the header file 

"gedit./include/LoopClosing.h" with the command: 
gedit ./include/LoopClosing.h 

3. In order for this to compile, travel to line 51 and make the following change: 

Eigen::aligned_allocator<std::pair<const KeyFrame*, g2o::Sim3> > > KeyFrameAndPose; 

to 

Eigen::aligned_allocator<std::pair<KeyFrame *const, g2o::Sim3> > > KeyFrameAndPose;  

4. You may now compile ORB-SLAM3 and its dependencies, such as DBoW2 and g2o. To install, 

simply type: 

./build.sh 

NOTE: If you experience any issues, try running this shell script two or three more times. 



NOTE: If you receive the following error: 

 
You must make some adjustments to the "CMakeLlists.txt" file since it is attempting to run using 

"C++11," which is an outdated version. To make the installation work, you must update it so that it runs 

by using "C++14" instead of "C++11" [3].  

1. To convert "-std=++11" to "-std=c++14", go to the file "/home/username/Dev/ORB 

SLAM3/CMakeLists.txt", scroll down until you find something like the before picture, then make 

the changes so that it looks like the after picture (all the changes that were made are 

highlighted): 

Before: 

 
After: 

 
2. Then re-run with the commands: 

cd ~/Dev/ORB_SLAM3 

./build.sh  

 
 

 

 

 



Test the system 
You can now start testing to ensure that the installation was successful. 

Download test datasets 

You must first download some test datasets before you can test the system. Execute the following 

commands: 

cd ~ 

mkdir -p Datasets/EuRoc 

cd Datasets/EuRoc/ 

wget -c http://robotics.ethz.ch/~asl-

datasets/ijrr_euroc_mav_dataset/machine_hall/MH_01_easy/MH_01_easy.zip 

mkdir MH01 

unzip MH_01_easy.zip -d MH01/ 

If you're looking for more datasets in EuRoc, check out: 

[https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets] 

Run simulation 

After downloading the test datasets, you are ready to begin a simulation. You have three different 

examples to choose from. You can run one of the examples to ensure that everything is working 

properly. 

NOTE: When executing the examples, copy and execute all three lines at the same time 

1. Begin by navigating to the correct directory. 

cd ~/Dev/ORB_SLAM3 

Choose one of them from the list below to run. 

2. Mono 

./Examples/Monocular/mono_euroc ./Vocabulary/ORBvoc.txt 

./Examples/Monocular/EuRoC.yaml ~/Datasets/EuRoc/MH01 

./Examples/Monocular/EuRoC_TimeStamps/MH01.txt dataset-MH01_mono 

3. Mono + Inertial 

./Examples/Monocular-Inertial/mono_inertial_euroc ./Vocabulary/ORBvoc.txt 

./Examples/Monocular-Inertial/EuRoC.yaml ~/Datasets/EuRoc/MH01 ./Examples/Monocular-

Inertial/EuRoC_TimeStamps/MH01.txt dataset-MH01_monoi 

4. Stereo 

./Examples/Stereo/stereo_euroc ./Vocabulary/ORBvoc.txt ./Examples/Stereo/EuRoC.yaml 

~/Datasets/EuRoc/MH01 ./Examples/Stereo/EuRoC_TimeStamps/MH01.txt dataset-

MH01_stereo 

5. Stereo + Inertial 

./Examples/Stereo-Inertial/stereo_inertial_euroc ./Vocabulary/ORBvoc.txt ./Examples/Stereo-

Inertial/EuRoC.yaml ~/Datasets/EuRoc/MH01 ./Examples/Stereo-

Inertial/EuRoC_TimeStamps/MH01.txt dataset-MH01_stereoi 

 

 

 

 

 



6. You should receive something similar to the image below: 

 

 Validation Estimate vs Ground Truth 

Now, compare the estimation to the ground truth to see how well the ORB-SLAM3 works. 

1. Python3 requires numpy and matplotlib, thus the first thing you should do is install pip3 on 

python3 by running: 

sudo apt install python3-pip 

2. To check the version of pip3, use the following command: 

pip3 --version 

You should receive something like the following output: 

pip 20.3.4 form /usr/lib/python3/dist-packages/pip (python3.9) 

3. Now, execute the following commands to install numpy and matplotlib: 

pip3 install numpy matplotlib  

4. The plot script will need to be modified to operate with Python3 rather than Python2.7. The first 

step is to find the files that require modification. Files 

"home/username/Dev/ORB_SLAM3/evaluation/evaluate_ate_scale.py" and 

"home/username/Dev/ORB_SLAM3/evaluation/associate.py" must be modified. 

5. Several adjustments must be made to the file "evaluate_ate_scale.py." Simply follow the before 

photo to go to the right location, then make the modifications shown in the after pictures. 

6. On line 114, replace "stamp.sort()" to "sorted(stamps)," as seen below: 

Before: 

  
After: 

 
 

 

 

 

 

 

 

 

 

 



7. Change all "x.keys()" and "x.sort()" to "list(x)" and "sorted(x)" in lines 168-173, as shown below: 

Before: 

 
After: 

 
8. The final step in this file is to include parenthesis in all "print" functions, as seen below: 

Before: 

 
After: 

 
9. You may now head over to the "associate.py" file and make the necessary adjustments. On this 

file, only one update is required. All of the "x_lists.keys()" must be replaced with "list(x_list)", as 

illustrated below: 

Before: 

 
After: 

 
 

 

 

 

 

 

 



10. Now that you're ready to execute the examples, use the following command:  

NOTE: For "./example..." to "...MH01 stereo," you must execute everything at the same time. 

cd ~/Dev/ORB_SLAM3 

./Examples/Stereo/stereo_euroc ./Vocabulary/ORBvoc.txt ./Examples/Stereo/EuRoC.yaml 

~/Datasets/EuRoc/MH01 ./Examples/Stereo/EuRoC_TimeStamps/MH01.txt dataset-

MH01_stereo 

You should now see something like the image below: 

 
11. Plot the estimate against the ground truth 

cd ~/Dev/ORB_SLAM3 

python3 evaluation/evaluate_ate_scale.py 

evaluation/Ground_truth/EuRoC_left_cam/MH01_GT.txt f_dataset-MH01_stereo.txt --plot 

MH01_stereo.pdf 

12. Run the following instructions to open the document "MHO1 stereo.pdf": 

ls 

evince MH01_stereo.pdf 

You will obtain a plot like the one shown below: 

 
You can see here that the ORB-SLAM3 is following the ground truth really well.  

 



Sources 
[1] Q-enginerring, “Install Ubuntu 20.04 + OpenCV + TensorFlow (Lite) on Raspberry Pi 4,” [Online] 

https://qengineering.eu/install-ubuntu-20.04-on-raspberry-pi-4.html [Hentet 04/02/2022] 

[2] M. Yip, “Installation guide by Mauhing Yip,” [Online] 

https://github.com/Mauhing/ORB_SLAM3/blob/master/README.md [Hentet 04/02/2022] 

[3] egdw, “ORB_SLAM3_Ubuntu20.04,” [Online] 

https://github.com/egdw/ORB_SLAM3_Ubuntu20.04 [Hentet 04/02/2022] 
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Installation of the IMU on the Raspberry Pi 
This installation guide is made for the Adafruit BNO055 IMU. Before you start with the installation, make 

sure to do the wiring between the IMU and the Raspberry Pi correctly. See the link below to get 

information on the wiring and how to set up the Raspberry Pi to connect to the IMU: 

https://learn.adafruit.com/bno055-absolute-orientation-sensor-with-raspberry-pi-and-beaglebone-

black/overview  

Configuration 
https://waldorf.waveform.org.uk/2021/you-boot-no-u-boot-first.html (Ubuntu 20.04) 

On the Raspberry Pi, various preparations must be made before the IMU can be installed and used. 

Because the IMU is linked to the Raspberry Pi through serial UART mode, you must disable the kernel's 

use of the Pi's serial port. The Pi kernel will normally put a login terminal on the serial port when it starts 

up, but if you attach a device like the IMU to the serial port, the login terminal will confuse it. However, 

using the raspi-config tool, you can deactivate the kernel's usage of the serial port. 

1. First you need to install the “raspi-config” tool on your Ubuntu. To install “raspi-config” run: 

wget https://archive.raspberrypi.org/debian/pool/main/r/raspi-config/raspi-

config_20200601_all.deb -P /tmp 

sudo apt-get install libnewt0.52 whiptail parted triggerhappy lua5.1 alsa-utils -y 

sudo apt-get install -fy 

sudo dpkg -i /tmp/raspi-config_20200601_all.deb 

2. To make the "raspi-config" work, create a symbolic link between the files 

"/boot/firmware/cmdline.txt" and "/boot/cmdline.txt," by execute the command: 

sudo ln -s /boot/firmware/cmdline.txt /boot/cmdline.txt 

3. Now that you're ready to utilize the "raspi-config" tool to deactivate the kernel serial port, run: 

sudo raspi-config 

4. You should now see a window similar to the one shown below. Scroll down to "5 Interfacing 

Options" and hit "ENTER." (NOTE: Your system may display this differently) 

 
5. Scroll down to “P6 Serial” and press “ENTER” 



 
6. When prompted “Would you like a login shell to be accessible over serial?” select “No” 

 
7. When prompt “Would you like the serial port hardware to be enabled?” select “Yes” 

 
8. Now finish the raspi-config by going down to “Finish” and press “ENTER” 

9. Reboot the system by running: 

sudo reboot 

 



 

10. Because the IMU installation is a Python-module that interfaces with the GPIO header, this 

module is only for Python 2.7. To enable Python3, you must first install the RPi.GPIO module for 

Python3. To install the RPi.GPIO module for Python3, use the following command: 

sudo apt-get install python3-rpi.gpio 

Installation 
Now that you've completed all the necessary preparations, the system should be ready to install the 

IMU.  

1. The first step is to connect the IMU to the Raspberry Pi if you haven't previously. 

2. When everything is ready, use the following commands to install the essential dependencies: 

sudo apt-get update 

sudo apt-get install -y build-essential python3-dev python3-smbus python3-pip git 

3. Then execute the instructions below to get the most recent version of the BNO055 Python 

module code from GitHub: 

cd ~ 

git clone https://github.com/adafruit/Adafruit_Python_BNO055.git 

cd Adafruit_Python_BNO055 

sudo python3 setup.py install 

NOTE: If the installation fails with an error message, double-check that the requirements listed 

above were installed before proceeding. Also, ensure that your board is connected to the 

internet, since the installation will download and install several Python modules that are 

necessary. 

4. You will need to do some changes to the config.txt file, run:  

sudo nano /boot/config.txt 

5. Add the following to the bottom of the file: 

force_turbo=1 

# Disable Bluetooth 

dtoverlay=disable-bt  

dtoverlay=miniuart-bt 

6. And you need to do some changes to the cmdline.txt file, run  

sudo nano /boot/firmware/cmdline.txt 

7. Find the following text and remove it: 

console=serial0,115200 

8. You will also need to do some changes to the config.txt file in firmware, run: 

sudo nano /boot/firmware/config.txt 

9. Make the changes so it looks like: 



 

 
10. Now reboot the system: 

sudo reboot 

You're ready to use the module after it's been installed. 



Test the system 
To make sure everything is working how it is supposed to do, you can run a simple test name 

“simpletest.py”. In this example gives you information about the heading, roll and pitch of the IMU, it 

will also print the calibration value of the system, gyroscope, accelerometer, and magnetometer.  

1. To run the example you need to navigate to the library “examples” by running 

cd ~/Adafruit_Python_BNO055/examples 

2. Depending on how the BNO055 sensor is attached to your board, you may need to adjust the 

code to initialize it before running the example. Run the following command to open the file in 

the nano text editor: 

sudo nano simpletest.py 

3. In the file, navigate with the down key, to the part that looks like the code shown below: 

# Create and configure the BNO sensor connection.  Make sure only ONE of the 

# below 'bno = ...' lines is uncommented: 

# Raspberry Pi configuration with serial UART and RST connected to GPIO 18: 

bno = BNO055.BNO055(serial_port='/dev/ttyAMA0', rst=18) 

# BeagleBone Black configuration with default I2C connection (SCL=P9_19, SDA=P9_20), 

# and RST connected to pin P9_12: 

#bno = BNO055.BNO055(rst='P9_12')  

4. Depending on how it's connected to your board, you'll want to leave only one of the bno =... 

lines uncommented, as mentioned in the comments. Leave this line uncommented for a 

Raspberry Pi that uses the serial port and GPIO 18 as the reset pin: 

bno = BNO055.BNO055(serial_port='/dev/ttyAMA0', rst=18) 

Adjust the serial port and rst parameters of the initializer if you're using a different serial port or 

GPIO for the reset line. 

5. After you've finished editing the file, use Ctrl-S to save it, and then Ctrl-X to leave nano. 

6. Now you are ready to run the file. Execute the following command as a root user with sudo: 

sudo python3 simpletest.py 

7. After a few seconds, if everything is operating well, you should see something like this: 

System status: 5 

Self test result (0x0F is normal): 0x0F 

Software version:   776 

Bootloader version: 21 

Accelerometer ID:   0xFB 

Magnetometer ID:    0x32 

Gyroscope ID:       0x0F 

 

Reading BNO055 data, press Ctrl-C to quit... 

Heading=0.00 Roll=0.00 Pitch=0.00 Sys_cal=0 Gyro_cal=0 Accel_cal=0 Mag_cal=0 

Heading=0.00 Roll=-0.69 Pitch=0.81 Sys_cal=0 Gyro_cal=3 Accel_cal=0 Mag_cal=0 

Heading=0.00 Roll=-0.69 Pitch=0.81 Sys_cal=0 Gyro_cal=3 Accel_cal=0 Mag_cal=0 

Heading=0.00 Roll=-0.69 Pitch=0.81 Sys_cal=0 Gyro_cal=3 Accel_cal=0 Mag_cal=0 

Heading=0.00 Roll=-0.69 Pitch=0.81 Sys_cal=0 Gyro_cal=3 Accel_cal=0 Mag_cal=0 

Heading=0.00 Roll=-0.69 Pitch=0.81 Sys_cal=0 Gyro_cal=3 Accel_cal=0 Mag_cal=0 



A system status of 5 indicates that the fusion algorithm is running, and a self-test result of 0x0F shows 

that all sensors are operational. The orientation data from the sensor is produced every second as Euler 

angles, which represent the sensor's heading, roll, and pitch in degrees. Each second, the calibration 

level of each sensor is printed in addition to the orientation. It's critical to calibrate the BNO055 sensor if 

you want accurate orientation measurements. The system (fusion algorithm) is visible, and each sensor 

has its own calibration level. A level of 0 indicates that the device has not been calibrated, while a level 

of 3 indicates that it has been fully calibrated (with 1 and 2 being levels of partial calibration). The IMU 

will then be calibrated as the following step. 

Calibration of the IMU 
As you could see running the example above, the IMU needs to be calibrated to function properly. So, 

this part will go to a calibration by running the “webgl_demo”. This example shows how to send 

orientation readings to a webpage and use it to rotate a 3D model.  

1. Before you can run the web example, you need to install the flask Python web frame by running: 

sudo pip install flask  

2. The second thing you need to do before running the example is make sure you have a web 

browser that supports WebGL. It is recommended to use Chrome. 

3. Now you are ready to run the example. The first thing to do is to navigate to the “webgl_demo” 

example folder, run: 

cd ~/Adafruit_Python_BNO055/examples/webgl_demo 

4. Just like the simpletest.py example, you'll need to update the server.py file and change the bno 

setup lines. Depending on how the BNO055 is coupled to your hardware, only one bno =... line 

should be left uncommented. Run: 

sudo nano server.py 

5. Navigate down and make sure the only bno = … that is uncommented is the: 

“bno = BNO055.BNO055(serial_port=’/dev/ttyAMA0’, rst=18) 

6. After you've finished editing the file, use Ctrl-S to save it, and then Ctrl-X to leave nano. 

7. Now you are ready to run the file. Execute the following command as a root user with sudo: 

sudo python3 server.py 

8. When the server is up and running, you should see something like this: 

* Running on http://0.0.0.0:5000/ (Press CTRL+C to quit) 

* Restarting with stat 

9. Now it's time to head over to your computer and launch a web browser. Go to your board's IP 

address on port 5000, as seen in below: 

 
10. If everything went correctly, you should see something similar to the image below: 



 

If you move the BNO055 sensor, the 3D model should move with it. When the demo initially runs, 

however, the sensor will be uncalibrated and will most likely not provide accurate orientation data. So 

now you must begin the calibration process. 

If you want to utilize the BNO055 sensor, make sure it's calibrated every time it's turned on or reset. The 

BNO055 takes care of most of the calibration for you, but you will need to move the sensor in specific 

ways to finish it. 

The current calibration state of the BNO055 sensor is displayed in the bottom center column of the web 

page. The system (or fusion algorithm), gyroscope, accelerometer, and magnetometer are the four 

components of the sensor that are separately calibrated. Each component has a calibration level ranging 

from 0 to 3, with 0 indicating that it is uncalibrated and 3 indicating that it is completely calibrated. To 

receive the optimum orientation data, all four components should have a calibration level of at least 3. 

However, if a few of the sensors and the system are calibrated to level 2 or 3, you should still obtain 

good results. 

1. Calibrate the Gyroscope first. This is the most straightforward to calibrate, and it will almost 

certainly be fully calibrated by the time you access the web page. Place the sensor on a table 

and let it immobile for a few seconds to calibrate the gyroscope. 

2. The magnetometer should then be calibrated. It's a little more difficult to calibrate this one. You 

must constantly move the BNO055 sensor through a figure 8 of infinity pattern until the 

magnetometer calibrates. After roughly a dozen moves in the figure 8 pattern, the sensor will 

usually calibrate. Any significant metal items near the sensor may cause the calibration to 

change or slow down. 

3. Begin calibrating the accelerometer now. The accelerometer may be calibrated in two different 

ways. The first method is to hold the sensor for a few seconds in around six different locations. 

Consider a cube with six faces. Slowly move the sensor between each face and hold it there for a 

few seconds. If the accelerometer is calibrating, you'll notice its level climb from 0 to 1 and then 

up to 3 after switching to more faces after roughly 3-4 faces. 



The accelerometer may also be calibrated by rotating the IMU along an axis and holding it for a 

few seconds at each 45-degree angle. When you observe the calibration level move from 0 to 1 

after holding at a couple different 45-degree angles, you'll know it's working. 

4. The system, or fusion algorithm, is the last item to calibrate. Once all the sensors have started to 

calibrate, this will calibrate. As each sensor completes its calibration, the system calibration will 

most likely rise. Allow the sensor to finish calibrating the system after all the sensors have been 

calibrated. 

5. Your IMU should now be calibrated, and each calibration level should be at a level 3, as seen 

below: 

 
6. You may save time in the future by clicking the “Save Calibration” option on the right, which will 

save the calibration data to a calibration.json file. Press “Load Calibration” to load the file and its 

calibration when you restart the server in the future. After loading calibration, you may need to 

re-calibrate the magnetometer, although the accelerometer and system calibration are usually 

significantly faster in a loaded configuration. 

NOTE: For optimal performance, the sensor must be calibrated every time it is switched on or reset (for 

example, when the server is restarted). After calibrating, call the “get_calibration()” method in your own 

scripts that utilize the BNO055 library and store the resulting list of data (it will return 22 integers), then 

reload it later using the library's “set_calibration()” function. 

7. To align the axes of the IMU and the 3D model, use the "Straighten" button. 

8. You may also modify the 3D model by selecting one from the "Model" drop-down menu on the 

right. 

9. Return to the terminal where the server was launched and hit Ctrl-C to stop it. You may also 

need to execute the following command to terminate any Python processes that are still 

running (the browser can occasionally keep a zombie flask process alive): 

sudo pkill -9 python 

 

You have now completed the installation of the IMU BNO055. Congratulation!! 



Sources 
[1] T. DiCola, “BNO055 Absolute Orientation Sensor with Raspberry Pi & BeagleBone Black,” 

[Online] https://learn.adafruit.com/bno055-absolute-orientation-sensor-with-raspberry-pi-and-

beaglebone-black/overview [Hentet 17/01/2022] 

[2] JOEL, “Using the RPi.GPIO module with Python 3,” [Online] 

https://www.caretech.io/2018/01/20/using-the-rpi-gpio-module-with-python-3/ [Hentet 

17/01/2022] 

[3] linuxtut, “Install raspi-config on Ubuntu 20.04 (LTS),” [Online] 

https://linuxtut.com/en/a252676a3ce6bd1410da/ [Hentet 17/01/2022] 
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Raspberry Pi HQ camera on Ubuntu 20.04 
If you want to utilize a Raspberry Pi HQ camera on Ubuntu 20.04, you must do certain steps since 

programs like raspi-config, raspi-clone, and raspi-imager do not work. The first step is to install raspi-

config. After that, you must use raspi-config to activate the camera. Once this is completed, you may 

test the camera to ensure that everything works as it should. 

Install raspi-config 
Before you can use your pi camera, you must first install raspi-config in order to activate it. However, 

before you begin the installation, you must connect the camera to the correct input on the Raspberry Pi. 

1. Connect the Raspberry Pi HQ camera to the Raspberry Pi when it is powered off, as 

demonstrated in the image below: 

 
NOTE: Do not connect the camera to the display port as seen below: 

 
2. Now install the “raspi-config” tool on your Ubuntu. To install “raspi-config” run: 

wget https://archive.raspberrypi.org/debian/pool/main/r/raspi-config/raspi-

config_20200601_all.deb -P /tmp 



sudo apt-get install libnewt0.52 whiptail parted triggerhappy lua5.1 alsa-utils -y 

sudo apt-get install -fy 

sudo dpkg -i /tmp/raspi-config_20200601_all.deb 

3. To use "raspi-config," build a symbolic link between the files "/boot/firmware/cmdline.txt" and 

"/boot/cmdline.txt" by running the command: 

sudo ln -s /boot/firmware/cmdline.txt /boot/cmdline.txt 

4. Now, execute the following command to get your device number: See the image below for a 

sample of the output you will see when you execute the command. 

df -h 

 
5. Now mount the /boot directory by running: 

sudo mount /dev/mmcblk0p1 /boot 

NOTE: Yours may be different 

6. Run df -h again to see if the adjustments were made 

df -h 

  

Run raspi-config 
Now that you've successfully installed raspi-config, you'll need to run it to activate the camera. 

1. Run the following command to activate the camera using the "raspi-config" tool: 

sudo raspi-config 

2. Go to “3 Interface Option” (sometimes it is “5 Interface Option”) 

 
3. Select “P1 Camera” to enable 



 
4. Then select “Yes” 

 
5. Select “OK” 

 
6. Now finish the raspi-config by going down to “Finish” and press “ENTER” 

7. Reboot when prompt 



 

Test the camera 
All that remains is to ensure that the camera is operational. Begin by locating the camera, and then 

conduct some tests to ensure that everything is functioning properly. 

1. Install v4l2-ctl to locate the camera by running: 

sudo apt-get install v4l-utils 

2. Run the following command to locate the camera: The image below displays an example of how 

the output may look. 

v4l2-ctl --list-devices 

 
3. Now, use the following command to install ffmpeg: 

sudo apt install ffmpeg 

4. Finally, you may execute the following command to test the camera: 

ffplay /dev/video0 

Your camera should now be operational. 

 



Source  
[1] Raspberry Pi Trading Ltd., “Raspberry Pi High Quality Camera Getting started,” [Online] 

https://static.raspberrypi.org/files/product-

guides/Raspberry_Pi_High_Quality_Camera_Getting_Started.pdf [04.02.2022] 

[2] IChuck, “Enable Pi Camera with Raspberry Pi 4 Ubuntu 20.10 #樹梅派相機設置,” [Online] 

https://chuckmails.medium.com/enable-pi-camera-with-raspberry-pi4-ubuntu-20-10-

327208312f6e [Hentet 04/0/2022] 

[3] linuxtut, “Install raspi-config on Ubuntu 20.04 (LTS),” [Online] 

https://linuxtut.com/en/a252676a3ce6bd1410da/ [Hentet 17/01/2022] 
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