
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Simen Sælevik Tengs

State of the Art Learned Index
Structures

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2022

M
as

te
r’s

 th
es

is

Simen Sælevik Tengs

State of the Art Learned Index
Structures

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2022

Norwegian University of Science and Technology

Abstract

”Learned Indexes” have been a hot topic within the database community after the release

of the first learned index, which introduces machine learning to solve the indexing prob-

lem that have for a long time, and still are, dominated by traditional structures like B-trees.

There have since been created several learned indexes, some of which are created for spe-

cific purposes, and some that prove to be very flexible. These flexible learned indexes

may serve the same purpose as the B-tree, by supporting a wide variety of workloads and

still providing great performance. In this thesis, we provide a technical analysis of two

state of the art, general purpose learned indexes; ALEX and PGM-Index. These structures

have many of the same characteristics while being built on different approaches. We also

cover two learned indexes that have given inspiration to, and introduced many important

concepts that are being used by the state of the art learned indexes.

We create a benchmark for the two state of the art learned indexes, by using the authors

own implementations of their respective structures in C++. We show that we are able

to reproduce similar performance results as reported by the authors, as well as provide a

novel side by side comparison of ALEX and PGM-Index on the same data distributions

and query workloads. We found that ALEX produced better query performance overall

for read-only workloads. PGM-Index performed more consistent for all data distribu-

tions and workloads, and had better write performance than ALEX on one of the data

distributions.

i

Preface

I want to thank my supervisor Svein Erik Bratsberg for being a great resource along the

way while writing this thesis.

When I first came upon the concept of learned indexes I was instantly intrigued by how

well studied concepts of mathematics and machine learning can be utilized to efficiently

index data. After examining and testing some of the open source implementations of

various learned indexes, I wanted to know more about how and why I got the results I was

getting for different datasets. This motivated the research and testing of the state of the

art, general purpose learned indexes.

Simen Sælevik Tengs,

25.06.2022

ii

Table of Contents

Abstract i

Preface ii

List of Figures vi

1 Introduction 2
1.1 Purpose and motivation . 2

1.2 Research questions . 4

1.3 Thesis content . 4

2 Background & Terminology 5
2.1 Convex hull . 5

2.2 Index structure . 5

2.3 B+ Tree . 6

2.4 Indexes represented in the Cartesian Plane 7

2.5 Why overfitting is desired for read-only databases 7

3 The first learned index structure 9
3.1 Semantic guarantees . 10

3.2 Assumptions and limitations . 11

3.3 Approximating the Cumulative Distribution Function 12

iii

3.4 Model type . 14

3.4.1 A single deep or wide model . 14

3.4.2 Hierarchy of experts . 16

3.5 Recursive Model Index(RMI) . 18

3.6 The potential for GPU’s & TPU’s for learned indexes 21

3.7 Results from novel experiments with the first learned index 21

3.7.1 Optimal model types for a 2-stage RMI 22

4 FITing-Tree 24
4.1 Piecewise Linear Approximation(PLA) 25

4.2 FITing-Tree design . 26

4.2.1 Segmentation algorithm . 27

4.3 Lookup & insert strategy . 29

4.4 FITing-Tree performance . 31

5 PGM-Index 32
5.1 Optimal Piecewise Linear Approximation 33

5.1.1 Geometric segmentation algorithm 33

5.2 Model structure . 35

5.2.1 Indexing the PLA-model . 35

5.2.2 Running a lookup operation . 37

5.3 Insertion strategy . 38

5.4 Compressed PGM-Index . 39

6 ALEX 41
6.1 Technical contributions . 42

6.2 Model structure . 44

6.3 Query operations . 46

6.3.1 Lookup and range queries . 46

6.3.2 Inserts . 46

6.4 Node expansion and node splits . 47

iv

7 Benchmark 49
7.1 Method . 50

7.1.1 Benchmark tests . 50

7.1.2 Datasets . 51

7.2 Results . 55

7.2.1 ALEX . 55

7.2.2 PGM . 57

7.3 ALEX & PGM-Index comparison . 59

7.4 Discussion . 61

7.4.1 Limitations . 61

7.4.2 Query performance . 61

7.5 Conclusion . 62

v

List of Figures

2.1 Convex Hull[8] . 5

2.2 B-tree . 6

2.3 A dictionary of ordered keys, represented as 2D-points[31] 7

2.4 Statistical fit - examples [23] . 8

3.1 Why B-Trees are models . 11

3.2 Approximating the CDF - example . 13

3.3 Indexes as CDF [18] . 14

3.4 Two layer hierarchy of experts network [16] 17

3.5 Staged Models [18] . 18

3.6 Model loss (Ll) [18] . 20

3.7 Learned Index vs B-Tree [18] . 22

3.8 Two stage RMI - example . 23

4.2 Clustered FITing-Tree model[13] . 27

4.3 Shrinking cone[13] . 28

5.1 Segmentation process . 34

5.2 Mapping from key to position in simplified PGM-index[31] 35

5.3 PGM-Index Construction Pseudo Code[12] 36

5.4 Lookup operation on PGM-index[12] 37

6.1 ALEX Design[10] . 44

vi

6.2 Internal nodes allow different resolutions in different parts of the key

space[10] . 45

6.3 ALEX Node Expansion[10] . 47

7.1 Uniform distribution datasets . 52

7.2 Triangular dataset of size 104 - Histogram 53

7.3 Triangular distribution - CDF . 54

7.4 ALEX performance . 55

7.5 ALEX Performance - isolated dataset distributions 56

7.6 PGM Performance . 57

7.7 PGM-Index Compressed PGM-Index 58

7.8 . 58

7.9 ALEX and PGM Performance . 59

7.10 ALEX and PGM - Read-only Workload 60

1

Chapter 1

Introduction

The term ’Learned Indexes’ have been a hot topic within the database community since

the exploratory work ”The Case for Learned Index Structures”[18] was published by Tim

Kraska(MIT) and google in 2017. Indexing in database systems have for a long time,

and still is, dominated by robust and reliable data structures like B-trees and its variants.

Although reliable, and with set error bounds, these structures does not assume anything

about the data distribution, and thus can’t take advantage of any patterns in the data.

By abstracting index structures to be viewed as models, with a simple input key and

outputting a position with a given error bound, the traditional indexing structures can be

replaced by learned models with these same properties, and also take advantage of the

data distribution. Different learned indexes have been shown to be able to beat traditional

data structures by several orders of magnitude in both pure speed throughput and in model

space occupancy [10][12][17] [18][21].

1.1 Purpose and motivation

Since the first learned index paper surfaced in 2017, there have been created several dif-

ferent learned indexes, with different approaches and purposes. There are many aspects

2

to consider when creating a learned indexing model, where one may negatively affect

another. Some examples are model build times, model space occupancy, pure speed

throughput, dynamic workload support and utilization of specific hardware. Some learned

indexes specialize in one or more of these aspects, while others are more flexible.

Examples of the learned indexes which have specific purposes are LISA[19] and Radix

Spline[17]. LISA is a learned index that can index spatial data, with an idea to be able to

replace the R-Tree, as R-trees may have problems with being able to handle very big data

loads, which are becoming increasingly more important. Radix Spline is a learned index

that specializes in short build times, as it only requires one pass over the data to model it,

and is built for read-only workloads. ALEX and PGM-Index are two indexes that stands

out when it comes to flexibility. Both structures are fast, have low space consumption and

can handle a variety of different workloads. ALEX and PGM-Index are in our estimation

the two state of the art, general purpose learned indexes, which have the characteristics

that are the most likely to potentially replace the most used traditional structure in today’s

DBMS systems; The B-tree. There is an incentive to potentially be able to replace a B-

tree with a learned index in the future, as performance in distributed database systems is

becoming ever so important with the increasing growth of big data.

There have been published several comparisons between learned indexes and traditional

data structures for both speed and space occupancy [10][12][17] [18]. The comparison of

learned indexes against traditional index structures is not in focus for this thesis. There

have also been created a benchmark for some learned indexes and traditional structures,

called SOSD-Benchmark[21]. ALEX was unfortunately not released at the time when

SOSD-benchmark was created. For this reason, we contribute by creating a micro-

benchmark, where ALEX and PGM-Index are tested and compared against each other

on the same system, on the same datasets and query distributions. We also provide a

technical analysis of the approaches of ALEX and PGM-Index, as well as the Learned In-

dex[18] and the FITing-Tree[13], which are two learned indexes that played an important

role by introducing many important concepts from mathematics, statistics and machine

learning the state of the art learned indexes builds upon. The chapters are in the chrono-

3

logical order of the release of the learned index structures that is covered. This is done

with the aim that the reader can get a good understanding of how the approaches is built

up, and how they have improved over time.

1.2 Research questions

Research question 1 (RQ1): How is general purpose learned indexes constructed to be

able to support dynamic workloads with great performance?

Research question 2 (RQ2): How does the performance of the state of the art learned

indexes PGM-Index and ALEX compare against each other?

1.3 Thesis content

In Chapter 2, we provide background information and explain terminology that will be

useful later in the thesis. Chapter 3 covers the first learned index structure; Learned Index.

We cover the approach of this novel structure, as well as the ideas and motivations of the

authors. Chapter 4 covers the learned index FITing-Tree, which uses a different approach

than Learned Index. For both Chapter 3 and 4, we explain concepts and terminology

which is adopted from other fields. In chapter 5 and 6, we cover the approach of PGM

and ALEX. This includes the design structure and the approach to query operations. We

aim to provide simple explanations and visualizations of the important structures and

algorithms. In chapter 7, we present the results of the benchmark of ALEX and PGM-

Index, as well as some additional tests for a different configuration of PGM-Index. We

also cover the method used for conducting the tests, the limitations of the benchmark, and

a discussion of the results. Chapter 3 through 6 addresses RQ1, while chapter 7 addresses

RQ2.

4

Chapter 2

Background & Terminology

2.1 Convex hull

Figure 2.1: Convex Hull[8]

In geometry, a convex hull of a set of points in euclidean space is the smallest convex that

contains it, which is the smallest subset of 2D points. It can be visualized as the shape

that is enclosed by a rubber band stretched around the subset, as depicted in Figure 2.1.

2.2 Index structure

An index structure is structure that is used to optimize the performance of a database

by efficiently storing keys. The goal is to optimize query performance by reducing the

5

amount of disk accesses and operations required for processing queries. Index structures

should be able to solve the fully-dynamic indexable dictionary problem, which is to be

able to store a multiset of keys, and be able to efficiently run a series of query operations

on the set. Examples are lookup, insert, delete and predecessor. the B-tree and its variants

remain the most used data structure in commercial database systems where all these kinds

of query operations are required.

2.3 B+ Tree

Figure 2.2: B-tree

The B+ tree is a self balancing tree where all its nodes are sorted to support efficient

traversal and search. A node in a B+ tree may have more than two children nodes, but

always has at least m/2 children, where m is the order of the tree. The data is located at

the leaf nodes of the tree, containing keys with pointers to data. A standard B-tree have

pointers at internal nodes as well as for data nodes, while a B+tree only have pointers

at the leaf level. The amount of space allocated at each leaf node is usually the same

as a logical page on the system. By having multiple elements per page more elements

are kept in the memory’s cache, further improving performance. The B-tree have a time

complexity of O(log(n)) for all query operations, where n is the dataset size. Every

time an element in the tree is mutated, the tree balances itself. The reason why the time

complexity is logarithmic in relation to the dataset size, is because every time you traverse

6

one level down the tree, the amount of data that has to be processed to find the key you

are looking for is halved.

2.4 Indexes represented in the Cartesian Plane

Figure 2.3: A dictionary of ordered keys, represented as 2D-points[31]

Index structures usually store its keys in sorted order to be able to efficiently search and

support range queries. When a set of keys are in sorted order and represented as 2D-points

in a Cartesian plane, the indexes can be interpreted as models that are mapping the keys

to their rank in their sorted order[31]. State of the art learned indexes use linear models

to approximate keys, which is made possible by the fact that the indexes are represented

in this way.

2.5 Why overfitting is desired for read-only databases

In statistics, a fit refers to how well a model is approximating a target function. Fitting

is a common term in machine learning when explaining how well a model learns and

generalizes to new data. If a model is underfitting, the model is too simple for the given

problem and won’t be able to learn the training data or generalize to new data. On the

7

other hand, if a model is overfitting, the model is too complicated and is learning all the

irregularities of the dataset. When the model is overfitting, it will be great at modeling

the training data because it knows both the general pattern and the irregularities, but will

be bad at generalizing for new data because it has learned the irregularities as concepts.

Figure 2.4 shows some examples of over- and underfitting in a typical categorization

problem.

Figure 2.4: Statistical fit - examples [23]

In machine learning, overfitting is usually something to be avoided. In contrast, for read-

only databases, overfitting is actually preferred in many cases. What in an indexing scen-

ario would be the equivalent of the training data, is the actual data that should be indexed.

There is nothing outside the dataset that needs to be generalized over. This is an important

aspect of using learned models to index data to keep in mind, especially because it is con-

trary to the traditional aims of machine learning models. Another good example of this is

the B-tree, which is really good at overfitting. This is because being a simple regression

tree with simple if-statements to divide the space, it meets the overfitting conditions of

being great at learning the ”training data”, but would fail to generalize to new data.

8

Chapter 3

The first learned index structure

”The Case For Learned Index Structures”[18] have laid the groundwork for a whole new

field of study, by introducing machine learning to the decades old field of indexing data-

bases. The first learned index structure will simply be referred to as Learned Index. The

key idea behind a ”learned” index structure is that instead of storing the indexes in tra-

ditional structures, like B-trees, machine learning models can ’learn’ the distribution of

a dataset. Given an input key, the model would then predict the relative position of the

record, and take advantage of the patterns in the data when predicting the position. This

idea of utilization of the dataset pattern was a very important premise the authors had for

building Learned Index. An example they have used repeatedly is that in the hypothetical

case where your dataset is a set of continuous integer keys, the B-tree would not be ne-

cessary, and would only add an unnecessary layer of complexity. This is because the key

itself could be used as an offset. The complexity in this case would drop from O(log(n))

to a simple O(1). This example is an extreme case, but it clearly shows how knowing the

data patterns can optimize complexity.

In this chapter, we give insight into how structures like B-trees can be replaced learned

models with the novel approach used in Learned Index. We explain terminology and key

ideas from other fields that have been directly or indirectly applied in Learned Index, some

9

of which have only been briefly mentioned in the original paper[18]. We also look at the

key insights and results the authors got from their novel experimentation with Learned

Index. Learned Index is an important work because it have paved the way for all learned

indexes that have come after, and the model architecture used in the first learned index

have been optimized and built upon in new projects that we cover in the next chapters.

3.1 Semantic guarantees

In the paper ”The case for learned index structures”[18], the authors state that range index

structures, like B-Trees, are already models. This is an important premise for potentially

being able to replace structures like B-trees in real world of database management sys-

tems. In in the case of an in-memory, read-only database with a B-tree structure, you

abstract the B-tree to a simple model, one may look at the B-tree as a structure that es-

sentially just takes in an input and maps it to an output. In the B-Tree case, the ’model’

takes in a look-up key and maps it to a position in a sorted array of records. This position

is normally not the exact position of the record, because for efficiency reasons it is com-

mon practise to only index every nth record of a dataset. For B-Trees this usually means

indexing the first key of every leaf node, which often is the size of a logical page within

the continuous memory region where the sorted array resides. This way, the B-tree can

reduce the amount of indexes it have to store without big performance costs. After finding

the right page, there have to be run a search until the exact record is found, which means

that the B-tree is a mapping from an input key to a position with a min-error of 0 and a

max-error of the page size, with a guarantee that the records exists within the page. Thus,

the idea behind creating the first learned index was that you could replace the traditional

structures with other machine learning models, including neural nets, as long as the same

error-bound guarantees are provided.

10

Figure 3.1: Why B-Trees are models

The B-tree provides the error bound for the stored keys, but for new data it has to be

re-balanced. The same would be the case for ML-models, where the model has to be

”re-trained” for new data. By executing the model for every key, and saving the best and

worst and best prediction, you get error guarantees similar to a B-tree.

3.2 Assumptions and limitations

In this section, we mention some important assumptions and limitations the authors of the

first learned index had when creating Learned Index. Some of these points are important

to keep in mind when reading the rest of the chapter, especially when analysing the results

of the novel experimentation with the first learned index.

1. All the indexes are run with a dense and sorted in-memory array

The data that are being indexed in the tests are dense arrays that are sorted by key.

These type of indexes are quite common in in-memory databases, but does not

translate well to all type of scenarios, such as write-heavy workloads. We discuss

this further in the next chapters.

11

2. All the experiments are read-only

The approach and experimentation with the Learned Index only focuses on reads.

Some learned indexes that have been published after the first learned index, have

tackled the challenge of allowing inserts and updates. The high cost of training

machine learning models may make inserts seem like a difficult thing to implement

in a learned structure, because the models should have to be re-trained for new data.

3. Model training time is not a part of the experiments

The machine learning models used in the first learned index, ranging from linear re-

gression models to neural networks all needs to be trained. The time it takes to train

the models are not a part of the experiments that the authors conducted. Instead,

they created a framework called The Learning Index Framework(LIF). LIF gener-

ates different index configurations, optimizes them, and tests them automatically.

For neural networks, LIF extracts all the weights from a Tensorflow model[29], and

generates index structures in C++ based on the model specifications[18]. This way,

what is being measured is only the time to actually run the index, and removes the

training time from the equation. Model training time will be an important factor

when considering learned indexes as replacements for traditional structures in data-

base systems in the future. The authors state that for simple distributions, like a

randomized dataset, the models that are being used are also simple, and only needs

a few passes over the data. This only leaves a few seconds of training time for a

200M record dataset.[18]. For neural networks, training time may take up a few

minutes for complicated patterns.

3.3 Approximating the Cumulative Distribution Function

The authors of the first learned index [18] observed that when a machine learning model

maps an input key to a position within a sorted array, it becomes an approximation of the

Cumulative Distribution Function(CDF). Therefore, the term CDF in the realm of learned

12

indexes means the mapping from a key to a relative position within a sorted array. The

term is very similar to the CDF from statistics, where the CDF of x is the proportion of

keys less than x. Figure 3.2 represents an approximation of the CDF [21].

As stated earlier, the B-tree is also a mapping from an input key to a relative position

within a sorted array. For this reason, the B-tree may also be viewed as a way of remem-

bering the CDF of a dataset. If the B-tree is indexing every nth record, the error bound of

the B-tree’s CDF would then be n−1. In ML-terminology, you can look at a B-Tree as a

simple regression tree.

Figure 3.2: Approximating the CDF - example

One way of finding the starting point of a key in a sorted array, is to find the probability

for there to exist a key which is lower or equal to the lookup key. This can be written

as F(key) = p(X ≤ key). Simply multiplying this by the number of keys N will give

the estimated position within the sorted array; p = F(key) ∗N. If the CDF model over

the empirical data distribution is perfect, every estimate would then produce the actual

position within the array.

13

3.4 Model type

3.4.1 A single deep or wide model

When creating the first learned index, the first approach that was considered was to use

one single model to index all of the data in the datasets, and training the model end-

to-end. An important question to consider was whether they should use a wide or a

deep model. When indexing data, wide and deep models have their own advantages

and disadvantages in terms of execution cost and what kind of data patterns it’s good at

modelling. To make the case for using both deep and wide models for indexing clear with

edge-case examples, let’s say you have a really wide model of linear models, and a very

deep neural network. The wide model should be able to model any small nuances in the

dataset because each linear equation forms a regression line(CDF) through a small subset

of data, which should not give very large error bounds within each sub-range of data, even

though there could be irregularities in the dataset. The deep model would be better for

complicated patterns and bigger ranges of data, where the CDF is smooth and without

irregularities. This is visualized in Figure 3.3, where the whole pattern looks smooth, and

could likely be modeled well by a neural network, whereas the sub-range in focus would

be better modeled by linear models because of the linear tendency of the data distribution

at that range.

Figure 3.3: Indexes as CDF [18]

The cost for each of these examples above can be quantified by the number of pure math

14

operations needed to execute the models. A linear regression model can be represented as

(y = mx+b), where y is the prediction and x is the lookup key. This type of model only

requires one multiplication, one addition and if needed one rounding. The wide model

would then cost two times the width of the model in pure math operations.

For the deep model, the amount of math operations needed to execute the model equals

the width of the model squared. For a simple neural network this usually consist of at

least multiplying the input data with a weight to represent the signal strength, and then

applying an activation function to modulate to neurons activity [2]. For a deep model

this is executed in many layers, where the output of one layer is the input to the next.

Every additional layer are usually called the hidden layers of the network. This can be

represented by a square matrix multiplication, which means that for every intermediate

layer in the model, there has to be executed an additional square matrix multiplication.

Even though using a single model is possible, it is not optimal. An important reason for

this is that it does not take advantage of the capacity of the memory, as the above men-

tioned models is very tiny compared to a standard B-tree. For example, a linear model

consisting of four 8-byte double values, are much smaller than the internal nodes in the

B+tree, which stores keys and pointers. Because of this, the authors of the first learned

index had to find a way to increase the model size to improve the accuracy, without a

massive decrease in performance in terms of speed [4]. The reason why we laid out some

simplified examples of single models and their execution cost, is to get a better under-

standing as to why ramping up the size of these models to fit the size of the memory will

result in a huge decrease in performance because they would demand so many math oper-

ations to execute one index. This problem became the important design-space challenge

the authors had to figure out.

Another reason why using a single model is problematic, is that it becomes hard to reduce

the prediction error in a very big dataset to a size where it would then be sufficient to

execute a last-mile search. In an example used in he original paper [18], the authors state

that to reduce the prediction error from 100M to an order of hundreds is difficult with

a single machine learning model, while reducing he prediction error from 100M to 10k,

15

and from 10k to 100 is much easier. This is because the model then only has to model a

subset of the original data size.

Because of the challenges, they decided to utilize an idea called hierarchy of experts,

with inspiration from the work ”The Sparsely-Gated Mixtrure-of-Experts Layer” [27].

The key idea is that instead of training one single model, a hierarchy of models is trained,

where each model specialized in one subset of the data. This is an idea that has been well

researched in the machine learning community, and in the next sub chapter we briefly

explain the origins of the mixture of experts work.

3.4.2 Hierarchy of experts

The term ’Hierarchy of Experts’ were introduced all the way back in 1994 by the Jordan

and Jacobs[16]. They proposed a system to solve nonlinear supervised learning problems

by dividing the input space into a nested set of regions, and to train a number of models,

each of which specializes in one of the regions. They called each of the specialized models

’experts’. The system also contained managing models called ’gating networks’, which

looks at the input data, and decides which model to rely on for that particular input data.

The hierarchical mixture of experts architecture is essentially a tree of experts and gating

networks, where all the experts sit at the leaf nodes. The architecture is shown in Figure

3.4. Each expert produce an output vector for each input vector. The gating networks

receive a vector as input and produce outputs that are a subset of the data from the input

space.

16

Figure 3.4: Two layer hierarchy of experts network [16]

This approach was better than just averaging models in a way that does not depend on

the particular training case. Because the models specializes in a subset of training cases,

each model does not need to be trained on data where they are not picked by the gating

networks. This way they can ignore all the data that they are not good at modeling. The

key idea is to make each expert focus on predicting the right answer for the cases where

it is already doing better than the other experts. Generally, this system does not take very

good advantage of the data for smaller datasets, as the data have to be fragmented over

all the different experts. This means that for small dataset, it can’t be expected to do very

well. It can, however, make very good use of very large datasets.

The authors of the first learned index considered a similar approach to the original work of

hierarchy of experts[16] when trying to train the model end-to-end. The main challenge

with using this approach is the way the gating networks choose which expert to give the

input to. They choose the next expert by multiplying the input by a trainable weight

matrix, and then applying a Softmax function. The Softmax function is a generalization

of the logistic function to multiply dimensions, and is used to normalize the output of

the network to a probability distribution that is being used to choose the experts. This

becomes very inefficient when the system has a large number of models, e.g 100.000,

which is the amount they used in Learned Index. The performance would suffer because

17

a search has to be performed to find the max of the soft-max at every gate.

3.5 Recursive Model Index(RMI)

Since the release of the mixture of experts work, there have been published a lot of lit-

erature on modeling multiple experts in machine learning. The particular model that the

authors of the first learned index ended up basing their model on is called ”Sparsely-gated

Mixture-of-Experts Layer” [27]. The main difference from the original mixture of experts

work, is that this sparsely-gated model, as the name suggests, have trainable gating net-

works that only selects a sparse combination of experts to process for each input. This

inspired the Recursive Model Index(RMI) approach. Simply explained, the RMI archi-

tecture is a tree-like structure of models, where the model on top takes in a key as input

and produces a position prediction as an output. The model then uses that output to select

another model. This process occurs recursively until the last model predicts a position

very close to the keys correct position in the array. A simple representation from [18] is

shown in Figure 3.5. The whole model is recursively whittling down the amount of data

that the each model is expected to model well. This is done stage-wise, very similar to a

B-tree.

Figure 3.5: Staged Models [18]

18

One key idea with the RMI is that it can have different types of models in the hierarchy

of models. The models can range from simple linear functions to neural networks. What

type of model to choose for a given range of data depends on the complexity of the data

distribution in that range. We look closer at the implications of using different types of

models in the next section. If for a given input key, the model is only choosing linear

functions for each stage until it predicts a position, the whole model then becomes similar

to a piece-wise linear function. The difference is that in this case it’s not necessary to

perform a search of which piece it’s in at any point. Instead, the model is selecting the

next model based on a series of multiplications. This idea is the foundation of the learned

indexes FITing-Tree and PGM-Index.

Formally, the model for predicting a position y ∈ [0,N), given an input-key x, can be

written as f (x). The training loss formula for the top layer L0 in the RMI is then the fol-

lowing: L0 = ∑(x,y)(f0(x)− y)2 [18]. In machine learning terminology, the loss function

is an evaluation of how well a model is evaluating data. There exists many different types

of loss functions, each specified for the each model type. The RMI deals with trying to

predict a continuous index y based on an input x, which is called a regression prediction.

The goal is therefore that the training loss for the model should be lowered for each stage

down the RMI hierarchy.

If the prediction is far off from the actual data, which is the actual index in this case,

the loss function would give a high number. The training loss formula is computing the

squared difference between the index prediction and the actual index. Because of the

squaring of the loss, predictions that are far away from actual index are penalized heavily

in comparison to less deviated predictions. To put this in simple terms, what this formula

is computing is how far off the actual index is it possible to get by going down one stage

in the hierarchy.

After training the model at stage 0, the model k at stage l then have the prediction formula:

fl
(k)(x). Similar to stage 0, the loss function for all models in stage l is:

19

Figure 3.6: Model loss (Ll) [18]

We see here that the function fl
(k)(x) is recursively predicting a position based on the

previous prediction fl−1
(k)(x). Each stage is trained in iterations with loss Ll until the

model is complete[18]. Each iteration is one pass over the data. A big difference from

the RMI to a B-tree, and to a tree structure in general, is that each model in the RMI

does not have to be the same size, like each node in the B-tree. This is because multiple

models at one stage may choose the same model in the stage below, as shown in Figure

3.5, where both Model 2.1 and Model 2.2 chooses Model 3.2. As with the hierarchy of

experts work[27], the predictions can be looked at as the next model that should know

how to model that key-input even better. To clarify - the different models in the RMI

are each trained on a subset of the data, but the predictions they make are actual position

estimates, not a range.

An important benefit of the RMI architecture, is that the size of the whole model does not

affect the cost of executing an index. Because the output from one stage is used directly

at the stage below, the model does not need to perform any searching between the stages.

This way only the models that are used to predict the index needs to be activated when

running the index, which means that the model complexity does not affect the model

size. As mentioned earlier, with no searching between the stages only leaves a series of

multiplications. The whole index can therefore fit into a sparse matrix multiplication. This

leaves a huge potential for performance benefits by using TPU’s and GPU’s to calculate

the indexes in the future.

20

3.6 The potential for GPU’s & TPU’s for learned indexes

As stated earlier, a concern relating to using neural networks to learn the distribution of

datasets, is the high cost of executing and scaling the large amount of math operations

needed. Graphic Processing Units(GPU) and Tensor Processing Units(TPU) are being

increasingly upgraded, and are the important back-bones to be able to meet the high com-

putational demands of neural networks. Because of the performance benefits of utilizing

hardware for neural networks, and the fact that most CPU’s have SIMD capabilities, the

authors of the first learned index[18] speculates that in the cost of executing ML models

might be negligible in the future, and states many times that GPU/TPUs will make the

idea of learned indexes even more valuable. All the experiments with the first learned

index was run with normal general instruction CPU, and even then showed promising

results.

Google’s and Nvidia’s TPU’s can perform thousands of neural net operations per second[2].

Building the index structures to compliment and use the rapidly developing processing in

the future leaves a huge potential for performance increases. An example of utilizing

hardware for learned indexes is the learned index APEX[20], released in mid February of

2022. APEX is an index structure that is optimized for Persistent Memory(PM). APEX

offers high performance, persistence, concurrency and instant recovery. This learned in-

dex is based on the learned index ALEX[10].

3.7 Results from novel experiments with the first learned
index

The results showed in Figure 3.7 shows the performance of a 2-stage RMI model versus

a read-optimized B-tree. The 4 rows for the Learned Index shows the results for different

stage sizes - how many models there are in the second stage. The B-tree is run with

5 different page-sizes. The B-tree with a page size of 128 keys is grayed out as the

reference point, as this configuration gave the best results for the B-tree. For all B-Tree

experiments they used 64-bit keys and 64-bit payload/value[18]. All of the datasets in

21

Figure 3.7 are Integer datasets, where two of them are real world datasets containing map

data and weblogs, both with 200 million entries. The third dataset is a synthetic dataset

with a logarithmic distribution of 190M unique keys.

Figure 3.7: Learned Index vs B-Tree [18]

3.7.1 Optimal model types for a 2-stage RMI

The authors found that for the top layer in a 2-stage RMI, neural networks with two

hidden layers and 8-16 nodes in width worked the best. To tune the neural nets in the

first stage, they ran a simple grid search. A grid search defines a search space as a grid

of hyperparameter values and evaluate every position in the grid to find the best possible

configuration for the model. For the second stage, simple linear models worked the best.

This fits the presumptions described previously where a neural network would be better

on the first pass because of the complexity of the data distributions, and for the last-mile

prediction, linear models are optimal, as the added complexity of the neural networks are

not necessary.

22

Figure 3.8: Two stage RMI - example

Figure 3.8 shows a simplified example of a 2 stage RMI with a two-layer neural network at

the first stage, and 200k linear models at the second stage. For the three different datasets

the lookup times with this RMI configuration were 86ns for the maps dataset, 126ns for

the weblogs data set and 146ns for the logarithmic data distribution. For almost all the

different configurations, the learned index is up to 1.5× 3× faster in speed, and up to

two orders of magnitude smaller in size. We see that the amount of models in the second

stage has a lot of impact on both size and lookup time. For the map data the lookup time

does not change a lot for the different second stage sizes. This makes sense because the

keys in the map datasets are longitudes of user events, which are mostly linear and have

few irregularities[18]. This scenario shows that when the distribution is easy to learn the

amount of models in the last stage has less impact on performance. The weblogs datasets

have unique request timestamps as keys, and are much harder to learn, which explains

why adding more linear models increase performance to such a degree.

23

Chapter 4

FITing-Tree

The first learned index created much interest within the database community, and created

interest for people to continue to build upon the ideas from [18]. One of the challenges

with the RMI that were addressed, is that the model size and query time trade-off can be

quite difficult to control because the size and the performance of the RMI depends on the

actual distribution of the input data and the complexity of the models that are being used.

This motivated a novel index structure called FITing-Tree[13]. The FITing-Tree is the

first learned index to use piece-wise linear functions, with a error bound that is defined

at construction. FITing-Tree uses a B+ tree to index the linear functions. Just like the

RMI, it combines learned models and traditional structures, the difference being that the

RMI uses B-trees as a fallback method if the learned models are not able to model the

distribution sufficiently well, while the FIT-ting Tree uses the B-tree in its actual index

structure.

The piece-wise linear functions used in the FIT-ting tree approximates the CDF of the data

the same way the models used in the first learned index does. The error bound is therefore

a fixed constant that defines the maximum distance between the prediction and the actual

position of the key that is being looked up. This index structure has two parameters

to manage the space-time trade-off, and finding a suitable error bound constant. These

24

parameters are is lookup latency(ns) and storage budget(MB)[13]. The novelty of this

index structure is the ability to specify this space-time trade-off to FIT a given scenario

based on the error bound specification, as well as having support for paging and inserts.

The structure is therefore addressing some of the important key challenges of Learned

Index.

The FITing-Tree introduces many important concepts that have been adopted by the

learned index PGM, which we cover in the next chapter. This is the main reason why

we cover this the FITing-Tree in this thesis. Even though the authors of the PGM-index

took inspiration from the FITing-Tree, they state in the original paper that; ”The com-

putation of the linear models residing in the leaves of the FITing-tree is sub-optimal in

theory and inefficient in practice.”[12]. In this chapter, we look at the key concepts of the

FITing- tree’s design, how it manages to allow for inserts and its performance.

4.1 Piecewise Linear Approximation(PLA)

Piecewise linear functions are a well studied concept of mathematics and statistics. A

piecewise linear function contains a number of linear segments, also called pieces, defined

over an equal number of intervals. The entire piecewise linear approximation of a dataset

can be expressed with this formula:

F(x) =

a0 × x+b0 if x < p0

a1 × x+b1 if x ≥ p0 and x < p1

an × x+bn if x ≥ p1 and x < p2

...

an × x+bn if x ≥ pn and x < pn

A simple example of a piecewise linear approximation with n = 2 segments on the distri-

bution f (x) = x2 can be expressed like this:

25

Given an error bound ε , each segment should only consist of data points that are at most ε

away from the adhering linear approximation line. In other words, what defines a segment

is the region of data that can be reached by a linear equation at most ε way from the

prediction. The size of the error bound ε will therefore determine the size of each segment

and the total amount of segments needed. This means that there exists an optimal number

of segments for a piecewise linear approximation with a given error bound ε for a given

dataset. There exists several optimal piecewise linear approximation algorithms, but they

are often expensive in terms of memory and/or execution runtime[13]. One example

of this is a dynamic programming algorithm[24], which have a runtime complexity of

O(n3) and memory complexity of O(n). In the next chapter, we see how the PGM-Index

actually have an algorithm that have a linear time complexity while finding the exact

optimal number of segments based on an error constant ε .

4.2 FITing-Tree design

As a default, the FITing-Tree have a B+ tree at its inner nodes. This may, however,

be replaced by other structures. Instead of having fixed sized pages at the leaf nodes,

as with a standard B+ tree, the FITing-Tree have linear functions at each leaf node to

approximate one region of data. Each linear model points to a segment of data that is

at most the error bound ε away from the linear approximation. Each segment is sorted

by key, but successive segments does not have to be allocated contiguously, like the the

pages at the leaf nodes of B-trees. Figure 4.2 shows an example of a clustered FIT-ting

tree model. The FIT-ting tree saves memory consumption by only needing to save the

starting key of a segment, the slope of the linear function and a pointer to a segment

needs to be saved at each leaf node, much like how a B-tree saves memory consumption

by only needing to index the first record of every page. The structure also supports non-

26

clustered index by adding a fourth layer in the design, in which they called the indirection

layer. The indirection layer is a list of pointers that is the same size as the data, but sorted

by key. This secondary index method can be used to improve performance for queries

over attributes that are not sorted and contains duplicates. When discussing further, we

have focused on the clustered FITing-Tree.

Figure 4.2: Clustered FITing-Tree model[13]

4.2.1 Segmentation algorithm

To support inserts, while staying efficient, the authors of the FITing-Tree found that they

needed to find a segmentation algorithm that is linear in time and only requires one pass

over the data. All optimal segment algorithms were therefore out of the question. They

found a solution that was quite fast, had constant memory usage and guarantees the max-

imum error specification[13]. The FITing-Tree utilized an algorithm called the Shrinking

Cone. The shrinking cone algorithm is built bottom up, by extending the each segment

without violating the error bound ε .

27

Figure 4.3: Shrinking cone[13]

The algorithm they made is very similar to the an algorithm called Feasible Space Window

(FSW) [24], the difference being that Shrinking Cone only considers increasing functions,

which in the case of indexes would be sorted datasets. The shrinking cone algorithm may

also create disjoint segments[13]. The first step in algorithm is to create a segment with

a origin point. The next point that is added creates a ”cone” from the origin point that

is the error constant ε away from the second point. This process continues until a point

is not within the cone of a previous point, then that point becomes the origin point of a

new segment. Figure 4.3 shows an example of Shrinking Cone, where point 4 is outside

the previous cone and does therefore not satisfy the constraints. This means means that

there will be at least one point within the previous points that does not satisfy the error

threshold if the segment contained all those points. The new point will therefore instead

become the origin point of a new segment. They evaluated the amount of segments in the

ShrinkingCone algorithm on real world datasets, and compared the results to the optimal

amount of segments. They found a ratio difference was around between 1.05 in the best

case and 1.6 in the worst case.

28

4.3 Lookup & insert strategy

Lookup

As stated earlier the FITing Tree uses a B+ tree at it’s base - so to perform a point

lookup, the first step is to traverse the B+ tree from the root by using standard traversal al-

gorithms[13]. The runtime complexity for finding the segment that the input key belongs

to is O(logb((p)), where b is the number of pointers to child nodes within the tree, also

called the fanout of the tree, and p is the number of segments. Then, the approximated

position within the segment are given by simply subtracting the key from the start element

of the segment, multiplied by the slope of the segment;

pred pos = (key− segment start)× segment slope

After the finding the approximated position, a binary search is performed until the true

position is found. For range-queries, there are often many segments that needs to be

searched, which means that for a clustered FITing-Tree where the segments are aligned

contiguously, the FITing-Tree can search all the start positions of contiguous segments

until the start key is outside the range-request, and retrieve all the indexes between the

start and the end of the requested range.

In-place insert

The authors of the FITing-Tree considered two different insert approaches, the first one

being an in-place strategy. In applications where the database always needs to remain

sorted, new records needs to be inserted in-place, which means that the index is inserted

into its correct position at insertion-time. This is quite normal for many databases, and a

typical B+tree utilizes an in-place insertion strategy by leaving empty space in each page

for new records. When the page is full, the leaf node where the full resides splits in two,

and the resulting changes propagates up the tree. It becomes more complicated for the

FITing-Tree because of its error bound guarantee. Because the error of the inserted key

and the interpolated prediction is not known, there has to be performed a check anywhere

the key moves. Naturally, the keys surrounding the inserted key also needs to be moved to

either side to remain a sorted order. This means that in the worst case - all the keys in the

29

segment needs to move, all without violating the error guarantee. This process appears

to be awkward as you have to check the error for all the keys that should be moved. The

solution they came up with is to extend every page size to be the segment size +2ε . The

segment is always placed in the middle of the page, such that keys can be moved in either

direction without violating the error guarantee specified by the user. The whole in-place

insert strategy is shown below:

• Locate the position within the page where the index should be placed

• Check if the index is to the right or the left of the middle of the segment

• Shift all keys one step in the opposite direction

• When the page fills up:

– Re-approximate the segment with the Shrinking Cone algorithm

– New segments that are created are propagated up the tree, and old segments

are deleted

Delta insert

When order guarantees are not important, a delta insert strategy can be used for better

performance. The delta insert approach is simpler and more straight forward than insert-

ing in-place. Instead of moving keys, every segment has its own sorted buffer where new

keys are added. When the buffer is full it is merged with the original segment and re-

approximated. It is important to note that the result after re-approximation could be the

same as it was before, if none of the keys violates the error bound ε . This method does

change how to run an index, because the error threshold needs to add the size of the buffer

to the user specified error bound. The extra error is added in the background without the

user knowing. This approach drastically removes overhead by not having to move keys

around, and have a better overall performance than the in-place strategy, as shown in the

tests on real world datasets from [13]. It shows that the delta strategy performs better for

30

higher error thresholds, which makes sense because then the buffers are larger and the

structure can perform fewer merging operations and re-approximations. For lower error

thresholds, the in-place performance worked the best. This is because when the error is

smaller there is created more segments with fewer keys within each one, thus, having

fewer keys that needs to be shifted for each insert.

4.4 FITing-Tree performance

The lookup performance of the FITing-Tree is comparable with a implementation of a

B+tree called the STX-tree[28]. The performance was comparable to that of a traditional

structure, but it did not offer significant increase in performance for any index size for

any of the real world datasets that they tested on. The space consumption, however, were

reduced in up to four orders of magnitude. This clearly shows how a learned index may

be used for index compression. The delta-insert strategy had a comparable performance

to a B+tree that uses fixed size paging, but had a significantly worse performance than a

full B+tree implementation. The FITing-Tree could not handle as big of a writeload as

the full B+ tree. The reason for this is because of its need to split the nodes when they

reaches its maximum size. The FITing-Tree also had a slightly lower insert throughput

than a B+ tree with fixed size paging, because of its need to re-execute the segmentation

process.

The FITing-Tree has a simple, yet elegant design, and works great for compression. The

lookup and insert throughput is, however, not that impressive. The FITing-Tree have a

high search cost that only depends on the disk-page size, which means that it cannot take

full advantage to the trends in the data distribution. This search cost grows with the node

size, which slows down the query operations[12].

31

Chapter 5

PGM-Index

Both Learned Index and FITing-Tree brought much interest to the authors of the Piece-

wise Geometric Model Index(PGM-Index)[12]. Like the FITing-Tree, the PGM-Index

is a structure consisting of piecewise linear approximations, but addresses some of the

FITing-Tree’s key limitations. The PGM-Index offers updates and inserts and is therefore

fully dynamic, while constructing a recursive system of linear models that all have the

optimal number of segments based on a given error constraint, by utilizing both learning

and geometry. The PGM-Index does not rely on any traditional data structures, and is

therefore the first fully learned index, unlike the RMI and the FITing-Tree. The structure

is flexible, and offers different configurations, including Compressed PGM-Index.

In this chapter we look at how the recursive structure of linear models is constructed, and

how running indexes on the structure works, how the they construct the optimal number

of segment in linear time(O(n). We also cover the three different configurations of PGM,

one of which we use for our tests in Chapter 7. Because of its flexibility and performance

both in speed and compression, we believe that the PGM is the state of the art learned

index in its line of approach.

32

5.1 Optimal Piecewise Linear Approximation

As discussed in Chapter 4, there exists an optimal number of segments in a piecewise

linear approximation(PLA). The optimal number of segments is the minimal amount of

segments needed to approximate a set of points with a given error bound ε . The FITing-

Tree used the heuristic approach ShrinkingCone with a linear time complexity O(n), but

yields a number of segments which is comparable to the optimal number of segments at

best, and performed even worse in practise. The FITing-Tree authors only considered

complex algorithms to find the optimal amount of segments, such as dynamic program-

ming, which yields a time complexity of O(n3). The authors of PGM-Index noticed that

the problem of finding the optimal amount of segments have been well studied for other

problems, such as lossy compression and similarity search in time series[6][7][5].

5.1.1 Geometric segmentation algorithm

The segmentation algorithm used in the PGM is a implementation of the optimal seg-

mentation algorithm from [32], which makes use of the result that for a set of points that

is non decreasing in their x-coordinates, there exists a streaming algorithm that constructs

the optimal number of segments with a linear time complexity O(n), based on an error

constant ε . These algorithms make the use of geometry, and take the optimal PLA-model

problem and reduce it to a geometric problem of constructing convex hulls of a set of

points.

With a sorted set of keys k, the segmentation process starts by encapsulating a convex hull

around the key ki to ki + 1. For every increment of i, a check is performed to see if the

height of the convex hull is lower than 2ε . If the rectangle enclosing the convex hull is

within the bound, the set is extended with the new key ki +1. When a key is outside the

bound, a segment is constructed by the line that cuts the rectangle of height 2ε in half. To

clarify; the straight line y = ax+ b is then the actual segment, and is saved as two floats

and one key.

33

(a) (b)

(c) (d)

Figure 5.1: Segmentation process

Figure 5.1 shows a visualisation of the segmentation process. Figure 5.1a shows a set of

keys in a Cartesian plane, and sub figure 5.1b shows a convex hull in red wrapped around

the seven first keys after iteration i = 6 from the first key k0, and a rectangle in blue that is

still within a error constraint 2ε . After incriminating i one step further as shown in 5.1c,

the height of the rectangle is no longer within the error bounds. Therefore, a straight line

is formed in the previous iteration, cutting the rectangle in two equal halves, as shown in

Figure 5.1d. This is now the first segment, and the process is restarted again from the next

point. This process takes linear execution time and space usage O(n).

34

5.2 Model structure

5.2.1 Indexing the PLA-model

After having the optimal PLA-model, the next step is to index the different segments

within the model. The indexes for the segments are necessary for being able to search

for a specific key among the segments/linear models. As discussed, the FITing-Tree used

a B+tree as a default structure to index all the segments. The PGM could also have

used structures like B-trees on at its inner nodes to be used for searching among the

keys, but it would then not fully take advantage of the fact that a single linear model;

y = key× slope+ intercept takes a constant space and query time. The authors of PGM

found a way to construct a recursive system where every level, including the root node of

the structure, only consist of one PLA-model.

Figure 5.2: Mapping from key to position in simplified PGM-index[31]

35

The process of building the structure is quite simple. The first step is to execute the

optimal segmentation algorithm on an array A based on error ε . This will form the bottom

layer in the recursive structure, consisting of the linear equation(key, slope and intercept)

of all the segments. Then, the first key of every segment is put together to a new sub-array

of A. The segmentation algorithm is then computed on this sub-array to form a new layer.

This process is done until the segmentation process only yields one single linear model.

The PLA-model with one single layer will form the root node of the recursive structure,

as shown in Figure 5.2, where s11 is the final PLA-model constructed from the algorithm.

Figure 5.3: PGM-Index Construction Pseudo Code[12]

The PGM structure is built bottom-up. This is interestingly, in total contrast to the RMI,

where the construction of the recursive structure begins at the root node. What this differ-

ence means practically is that with the RMI, the most general model for the whole dataset

is constructed first, and then the construction process is iterated, the models get increas-

ingly more precise, whereas in the construction of the PGM index, the most precise model

is built first, and the models are getting increasingly more generalized as the process is

iterated.

36

5.2.2 Running a lookup operation

Figure 5.4: Lookup operation on PGM-index[12]

Figure 5.4 shows an example from [12] of a lookup operation on a key k = 76. A good

way of getting an understanding as to how the recursive PGM structure works with no

indexing of the segments is to go through an example. A detailed walk-through of the

query operation can be found in [12], but to get an easier understanding, we provide a

concise walk-through with further explanation of the the steps, while only using the most

necessary mathematical notations. We go through the query operation shown in Figure

5.4 of looking up key k = 76 on array A, with error guarantee ε = 1 in the following steps:

1. levels[0]

The process start at the root node of the structure(levels[0]). The key k = 2 which

is already in the equation from the building process, is replaced with the lookup

key k = 76. The slope and intercept remains the same. Then, the linear equation is

computed.

37

2. levels[1]

The result y of the linear equation at the root node is the position of the next level.

In this example y = 1, so we find Level[1][1]. From this position, a binary search is

performed to find k = 76 from position [y−ε to y+ε] = [1−1,1+1] = [0,2]. The

searching range from position 0−2 are depicted with the light blue bracket. From

the search we found that key k = 76 falls between 31 and 102. level[1][1] is then

computed after replacing key k = 31 with lookup keyk = 76.

3. levels[2]

The result y of the linear equation at level[1] equals to 3. We therefore find level[2][3].

We then search for k = 76 from position [y−ε , y+ε] = [3−1,3+1] = [2,4]. From

the search in the previous step we found that key k = 76 is bigger than the key k = 71

in position 4, and since this is the right-most position within our error bound, we

compute levels[2][4] after replacing key k = 71 with lookup key k = 76.

4. Array A

Because the last linear model was computed from the bottom layer in the structure,

the linear equation equals a position in the actual array A at most ε away from

from the actual position. The equation in levels[2][4] equals to 17, so we search

for the lookup key from position [y− ε , y+ ε] = [17− 1,17+ 1] = [16,18]. The

binary search within A finds the correct key at position 18, which is ε away from

the prediction from levels[2][4].

5.3 Insertion strategy

As with the FITing-Tree, insertions becomes more complicated for PGM-Index than with

traditional structures, because of the error guarantee. An insertion may have a time-

complexity of if a key can be inserted at the end of an array A while not violating the

error constraint, which is the case in some real world scenarios like for time series. For

38

many scenarios this is not the case. When a key is to be inserted into a random position in

array A, an insert strategy based on the merges from the logarithmic approach of the Log

Structured Merge Tree(LSM-tree)[25] is used. The algorithm is modified to work for a

learned index, and takes a logarithmic insertion time.

The approach starts by considering a series of PGM indexes built over sets S0..,Sb of of

keys. These sets are empty or have a size of 2i where i ranges from 0 to the worst case

θ(log(n)). For an input key x, the first empty set Si is found and a new PGM-index is

constructed with the union of that first empty set, all the previous sets and x. The merged

set becomes the new set Si, and the other sets are emptied. After this merge, x is in its

correct position in the sorted set Si. The union have a linear execution time because all

the sets are sorted.[12]

The reason why the inserts take O(log(n) execution time is because the maximum amount

of merges for a given any inserted key isθ(log(n), and the full set of merges might in-

clude all inserted keys. The linear time complexity O(1) of each merge then gives a time

complexity of O(log(n)) for every insert.

5.4 Compressed PGM-Index

PGM offers a configuration called Compressed PGM-Index, which should lower the space

consumption of the index compared the the default configuration. We test the perform-

ance/space usage trade-off of the compressed configuration compared to the default PGM

in Chapter 7. As seen in the construction process of the PGM, there are created many

ε-approximate segments that all consists of linear functions; key×slope+ intercept. The

process already yields the optimal number of segments, so the way to compress the space

consumption even further is to compress each segment by compressing the slopes and

intercepts at each segment.

The intercept in a segment s j can be compressed by utilizing the fact that an intercept j

finds a key k in s j computing the segment with the intercept equal to k−key j. this intercept

39

can then be stored as an integer, thus saving space[12]. The intercepts can be accessed in

O(1) time by utilizing the succinct data structure from [26], by exploiting the fact that n

is always bigger than the intercept, thus being able to reduce the problem of accessing the

intercept to that of finding the rank(intercept, n).

The compression of the slopes are more difficult, and the authors had to construct a novel

algorithm to solve the compression problem. The algorithm creates a list of all the slopes,

and encodes the slopes into one of the slopes that is higher in the hierarchy of segments,

as the slope is then still guaranteed to be within the scope of the higher level segment. The

number of slopes that needs to be saved is then reduced. The algorithm finds the smallest

amount of unique slopes that needs to exist in the PGM-index while still preserving the

error bound ε .

40

Chapter 6

ALEX

ALEX is an in-memory, updatable learned index that builds upon the key insights and

RMI approach used in Learned Index[18], by recursively constructing a tree shaped struc-

ture of learned models. ALEX addresses some of its key challenges, and introduces some

novel technical contributions. One of the main drawbacks of the original RMI was that

it was not suited well for supporting Dynamic workloads. The main reason for this was

that it used a sorted and dense array. The cost for moving records around to make space

for new inserts would become high, much like we saw with the FITing-Tree’s in-place

strategy. With inserts in the original RMI, the model predictions would also get worse

as the dataset changes over time, because they are trained for a certain areas in the dis-

tribution and would need to be retrained often. In this Chapter, we cover the technical

contributions of ALEX, and its key differences from Learned Index. We go through how

these contributions makes up an updatable data structure with great performance, as well

as cover the process of running different query operations on the structure.

41

6.1 Technical contributions

ALEX does not include neural nets

One of the characteristics of Learned Index was that the models residing in the RMI

structure could be a variety of different models, ranging from linear models to deep neural

networks, depending on what gave the best performance at each level. Usually neural

nets were only used for the top level of the RMI for complex patterns. The authors of

ALEX learned from conversations with the authors of [18] that the performance gain of

having the option to choose neural nets over linear models were not worth it because of its

added complexity. The authors of ALEX also state that they have independently verified

this[10]. ALEX does therefore not continue with this hybrid index layout, and instead

only uses linear models at every level of the structure.

Exponential search

After the predictions from the linear models, there has to be performed a local search

within the error bounds to find the exact position of the record. The authors of ALEX

found that exponential search worked better than the binary search method used in Learned

Index. They found that when the models are accurate enough, and the predictions were

close to the correct position, there was really no need for the nodes within the structure to

know the actual error bounds because of the use of exponential search.

Model-based insertion

Before inserting a record, ALEX runs a prediction on the key to check for what position

the key would have been predicted to reside in. They called this method model-based

insertion. Learned Index never modifies the position of keys in order to fit the models.

The Model-based insertions increase the accuracy of the models, and therefore decreases

the lookup delay.

42

Gapped Arrays

ALEX uses a way to allocate free space at the data nodes at the leaf level of the struc-

ture, which is called Gapped Array. The idea is similar to An adaptive packed-memory

array[3], which is an array of size Θ(N) with N elements that keeps gaps in between the

elements such that only a minimal number of records needs to be shifted for every insert

or delete. The B+Tree also keeps allocated space for inserts, but have the space allocated

at the end of the array. Gapped Arrays work especially well in conjunction with exponen-

tial search. A bitmap is stored to efficiently be able to skip gaps when searching within

a node, that checks whether a position in the array is a gap or a record. The searching is

always executed over the bitmap instead of the actual array for lower space consumption.

ALEX is constructed with bulk loading

ALEX supports bulk loading operations. Bulk loading is a concept that is used when you

need to support importing of large amounts of data in a short period of time, and is done

through the structure of the particular database system. ALEX uses bulk loading when

constructing the structure, either at initialization or at retraining. The Bulk loading is a

greedy algorithm based on linear cost models that for each node decide if the nodes should

be internal nodes that is used for redirecting, or data nodes. The Bulk load algorithm also

decide the fanout of the tree.

Dynamic RMI

One of the drawbacks of the original RMI is that it had a static dept of two or three.

If ALEX used a static RMI, it would hurt the insert performance if the distribution is

hard to model[10]. ALEX can be updated dynamically at runtime by using linear cost

models that decide if nodes should update. ALEX therefore creates linear models when

its needed, and the structure grows deeper and wider until the data nodes approximate the

same number of keys [11].

43

6.2 Model structure

The ALEX structure is similar to the recursive structure of Learned Index, where the

position computed from one node is used to find the next model. One key difference,

as stated above, is that ALEX only contains linear regression models at all levels of the

structure. A model of ALEX’s are shown in 6.1. The computation from the linear models

choose which pointer to traverse down the structure. In contrast to PGM-Index, ALEX’s

data nodes only stores two floats for the slope and intercept, and no default key. All

the nodes which is above the leaf level(internal nodes), contain an array of pointers to

children nodes in addition to the linear regression model. The amount of pointers are

always a power of 2, which allows the nodes to split without retraining the nodes at lower

levels. The First learned index does not require nodes to split, because of not having so

possibility of inserts. We cover ALEX’s expansion and splitting mechanisms for its nodes

in Section 4.

Figure 6.1: ALEX Design[10]

44

The RMI in the first Learned Index have models that are fit to the data distribution, which

leads to the fact that the more accurate the models are, the data nodes become more

similar in size. Having nodes of equal size is not the goal of ALEX. Instead, the goal of

the models is to partition the keys such that the data nodes at the leaf level have a data

distribution that is as linear as possible, such that the linear models can effectively fit the

keys. ALEX reaches this goal by having a flexible way to partition the space, by finding

out what part of its data have a linear trend. Figure 6.2a shows a visualization of how an

internal node may split its key-space [0,1) to two data nodes and one internal node. The

RMI in the first index would either assign all of the key space to only data nodes or only

internal nodes. Figure 6.2b Shows the CDF of the key space [0,1). The first data node

is responsible for keys from[0,1/4), and the second data node are responsible for the key

space from [1/2,1), both of which have linear trends.

(a) Data nodes for key space[0,1)
(b) CDF for key space [0,1)

Figure 6.2: Internal nodes allow different resolutions in different parts of the key

space[10]

45

6.3 Query operations

6.3.1 Lookup and range queries

Performing a lookup operation on ALEX is straight forward. Figure 6.1 shows a lookup

operation, where the red arrows indicate the traversal down the model structure. Given

an input key, the internal node computes a location in the array of pointers. This process

continues until a data node is reached. The linear model in the data node computes a

prediction of the lookup keys position within the array of the data node. If the predicted

position is not exact, exponential search is then performed until the exact position if found.

Performing range queries are performed by performing a lookup for the lowest key in the

lookup range, and then performs a scan over the bitmaps of the next data nodes until the

last key in the range is found.

6.3.2 Inserts

To insert a record, the key that is to be inserted is used to compute the traversal from the

root node to the data node, the same way as a lookup is performed. When a data node is

reached, model-based insertion is performed by executing the data nodes linear model to

predict where in the Gapped Array the key should be placed. If the predicted position is

occupied by another key, a new gap is created, by shifting the other keys in the direction

of the nearest gap. The key is then inserted into that gap. If the predicted position is

already a gap, the key is inserted and the process is complete. If the data node is full,

ALEX expands or splits the data node to create more space. We cover these mechanisms

in the next section.

Insertion in the Gapped Array is similar to Gapped Insertion Sort, or Library Sort. Stand-

ard Insertion Sort have a complexity of O(n2), because each sort takes O(n) time. They

showed in [insertion-sort] that when introducing evenly distributed gaps, the insertion

time complexity is O(logn) with high probability. This also applies to insertion into the

Gapped Arrays of ALEX. This insertion complexity is interestingly the same as for the

PGM-index.

46

6.4 Node expansion and node splits

If the distribution of keys changes after several inserts, then some leaves will become

overloaded with data. The nodes in ALEX’s structure therefore needs to be able to expand

or split to make space for new inserts. The authors implemented a metric to decide when

a data node should split or expand. They implemented upper and lower density limits

which are a number between 0 and 1, where 0 is empty and 1 is full. The default limits in

ALEX are set to be 0.6 and 0.8. Its important that the data nodes never actually becomes

full, because the performance of inserts would suffer as the number of gaps in the data

node decreases. A B+tree also keeps a density metric, and have a similar upper and lower

density limits for its leaf nodes[14].

Figure 6.3: ALEX Node Expansion[10]

To expand a node, a new Gapped Array is allocated with the size of the number of al-

located key divided by the lower density limits. The data node is at at the lower density

limit after expansion with the added gaps. Figure 6.3 shows a simple example of a node

expansion. The nodes can use this expansion mechanism until the nodes have reached a

maximum node size. If the node violates the upper density limits while also having max-

imum node size, a node split is performed. The new nodes after a split are responsible for

half the keys each.

A split may be done sideways like in a typical B+Tree, or downwards. A downwards

split converts the old node to a inner node and creates a number of child nodes. This

47

is very similar to what happens in the initial construction of the ALEX structure. The

result is that ALEX grows increasingly deeper, possible slowing down queries until a

total reconstruction is performed[11]. A node may also split before the maximum node

size is reached if is is more efficient. This is calculated with a linear cost model that

evaluates the lookup performance based on (a) average number of exponential search

iterations, and (b) average number of shifts for inserts.[10].

48

Chapter 7

Benchmark

In this chapter we run a series of tests on the two general purpose state of the art in-

dexes. In the method section, we explain how the tests are conducted and what types

of datasets are used and why. The tests are run with three different workloads, which is

read-only, 50/50 read/write and write only. The results show how the two indexes per-

forms for all the different workloads, data distributions and dataset sizes. The y-axis of

the graphs are logarithmic, so for some tests it may be hard to see the magnitude of the

differences of some results. We therefore added some additional visualizations of the

results where only one specific workload or data distribution is showed. For PGM-Index

we have added additional tests for the compressed configuration, as well as model build

times. ALEX’s performance metric is in operations per second, while for PGM-Index

we use nanoseconds per operation. At the end we show the results of ALEX and PGM

compared against each other, and discuss these results. For the comparison all metrics are

converted to nanoseconds per operation.

49

7.1 Method

7.1.1 Benchmark tests

Both ALEX and PGM-Index have open source implementations in C++[15][22], which

we have used for the tests for our benchmark. We refer to a single test as the accumulated

query performance for both either ALEX or PGM-Index for a specific query workload

for a specific dataset distribution and size. Both projects offer the possibility to run the

indexes on custom datasets and workloads. The projects each have unique options for

running the indexes, i.e choosing different configurations for PGM-Index, and choosing

bulk load sizes for ALEX. The projects have an option to run a simple benchmark, which

runs a user-specified number of indexes. We have only made slight configurations to the

source codes, which was solely to display additional information and to make the ALEX

accept the same file format as we used for PGM. The tests have been run in their respective

projects in isolation, but have been run with the exact same datasets and workloads. All

the tests have been conducted on the same system: Linux-5.4.091-generic-x86 with an

Intel Core i7-8565U CPU and 16GB of RAM. The tests have been conducted before the

start of writing this thesis, during a preparatory project with course id IT3915.

PGM-Index benchmark

When running the C++ benchmark for PGM-Index, random indexes are generated, where

each index is anywhere from 0 to dataset size -1. Each index is run and the PGM-Index

returns a structure ”ApproxPos” containing the approximate position of the key in se-

quence and the bounds of a range with the size of 2ε + 1. The sought key is guaranteed

to be found if present. The indexes are run in batches, and we chose the same batch size

of 10% of the dataset size for both PGM and ALEX. The dataset sizes ranges from 10 to

25 million, so the amount of queries per batch will range from 10 to 250000. We calcu-

late the average performance of the query operations of all the batches for each test. We

choose a few default values for the error bound ε for each batch, and calculate the average

of those results to get a general result for each dataset.

50

ALEX benchmark

ALEX’s C++ implementation as mentioned also have a benchmark option. The bench-

mark takes in a handful of arguments, including bulk-load size of initialized keys, insert

fraction and batch size. We choose the batch size as for PGM at 10% of the dataset size.

When running the ALEX benchmark the cumulative throughput for all the batches are

calculated. For the tests we have bulk loaded ALEX with 50% of the dataset size, except

for the tests with the biggest dataset size of 25 million keys, as the computer used for test-

ing could not manage it. For that specific dataset size we had to reduce the bulk load size

to 30% of the dataset size. The bulk loaded keys are combined with randomly generated

payloads.

7.1.2 Datasets

The main tests will be run on two different synthetic data distributions that we created.

The first distribution is simply signed integers with completely random values. The

second dataset consists of pseudo-random signed integers that makes up a triangular dis-

tribution. We want to be able to see how well the two index structures manages to run

query operations on two different patterns, one of which is uniformly distributed but has

quite big gaps in the key values, and one which has a clearer pattern and is more dense.

We go more into detail as to how and why we used these distributions below. For each

of the distributions, we have made 7 datasets of different sizes, which all will be used for

the tests. The dataset sizes are 102, 103, 104, 105, 106, 107 and 2.5∗107. Each of the 14

datasets have 64bit signed integer keys, and are stored in separate binary files. We sort

the keys before saving them in the files. This is because neither ALEX nor PGM-Index

have functionality to sort the datasets before running the benchmarks.

51

Uniform distribution

(a) 102 keys (b) 103 keys (c) 104 keys

Figure 7.1: Uniform distribution datasets

The first dataset consists of randomly generated integers which creates a uniform distri-

bution of keys. The CDF of the distribution will resemble a straight line [y = x] the bigger

the dataset gets. This is visualized in Figure 7.1, that shows the CDF of the first three

sizes of the uniform distribution. Both ALEX and PGM uses linear approximations to

model data, so the linear trend in this dataset should be fairly easy to model. It should not

matter that the value of the keys are far in-between in this dataset, because approxima-

tions capture trends in the data, and are agnostic to key density, where sparse keys can be

captured as well as a trend with dense keys[12]. Even though this is a synthetic dataset,

there are many real world scenarios where big datasets have a uniform data distribution.

Examples are the YCSB dataset[9] and datasets containing randomly sampled Facebook

ID’s[30]. Both of these examples have been used to test learned indexes, such as ALEX

in their original paper[10] and the SOSD-Benchmark[21].

52

Triangular Distribution

Figure 7.2: Triangular dataset of size 104 - Histogram

The second data distribution that we use for the tests are created with a triangular distri-

bution of keys. A triangular distribution is a continuous probability distribution shaped

like a triangle. The formula for creating the values doesn’t create random values, but have

more weight towards a certain number. The value of the keys will be closer to each other

towards that number, and farther apart at the ends of the distribution. We use the Python

package NumPy’s[1] implementation of the triangular distribution. The formula is shown

below:

P(x; l,m,r) =

2(x−l)

(r−l)(m−l) for l ≤ x ≤ m,

2(r−x
(r−l)(r−m) for m ≤ x ≤,

0 otherwise.

The parameters are chosen such that the numbers may be any integer, but the the lower

and upper bounds are always filled out, but with more weight towards a certain number.

53

(a) 102 keys (b) 103 keys (c) 104 keys

Figure 7.3: Triangular distribution - CDF

When this data distribution is sorted by key, the CDF becomes a logarithmic distribution.

This becomes more apparent the bigger the datasets become. This is visualized in Figure

7.3. A logarithmic distribution for a dataset is a typical real world scenario. An example

of this are be timestamp indexes where each key represents a time of day, where a cer-

tain time of the day is posted more frequently than the rest. Another example are book

popularity on amazon, where each key represents the popularity of a book. A logarithmic

distribution have been used to test learned indexes in [10][21][12][13].

54

7.2 Results

7.2.1 ALEX

Figure 7.4: ALEX performance

Figure 7.4 shows ALEX’s performance results. We are most interested in the largest data-

set sizes, as they are the most relevant for real world big data scenarios, so we mostly

refer to them when comparing results. ALEX performed significantly worse on the uni-

form dataset overall. The read performance on the biggest dataset were 7 million ops/sec

on the triangular dataset and 14.9 million ops/sec on the uniform dataset, a difference

of 2×. ALEX performed 233 thousand writes per second on the uniform distribution,

while performing slightly over 5 million writes per second on the triangular distribution

records, a difference of over 21×. The trend regarding performance for different dataset

sizes seems to be that performance increases up until the size of 106 records, and then

starts declining.

55

(a) Triangular Distribution (b) Uniform Distribution

Figure 7.5: ALEX Performance - isolated dataset distributions

Figure 7.5 shows the results from the different data distributions in isolation. We see a

trend where throughput starts decreasing from 10 to 25 million records in the triangular

distribution, while being more stable at that same gap in the uniform dataset. The read-

only workload on the uniform distributions is close to the results of the mixed workload of

the triangle distribution at 8 million ops/sec, which is under half the amount of operations

of the read-heavy workload of the triangular distribution.

56

7.2.2 PGM

Default PGM

(a) All datasets
(b) Largest datasets

Figure 7.6: PGM Performance

Figure 7.6a shows the main performance results. There is a trend in which the perform-

ance increase up until dataset sizes of 105 and 106. For the biggest datasets, PGM are

performing similarly with all the workloads. Figure 7.6b shows a magnified graph of the

two biggest dataset sizes. interestingly, on the biggest dataset, PGM had the fastest ac-

cumulated query time with the mixed workload on the triangular dataset at 271.9ns per

operation. At the biggest dataset, the difference in query time between the best and worst

configuration was only 65ns.

57

Compressed PGM

(a) Read performance (b) Memory usage

Figure 7.7: PGM-Index Compressed PGM-Index

We tested and compared the default configuration of PGM-index and Compressed PGM-

Index. Figure 7.7 shows the read performance and memory usage of the two configur-

ations. An interesting observation is that for smaller dataset sizes, the compressed con-

figuration is actually faster than the default configuration, as well as taking more space.

From the dataset size of 105 and higher the compressed configuration takes up less space

and performs slower than the default configuration, as we would expect.

(a) Memory usage (b) Model build times

Figure 7.8

58

At 2.5 million records, compressed configuration had a 26.7% memory reduction, with

25.7% decrease in query time. For 10 million records, there were 26.4% memory reduc-

tion, but with only 18.3% decrease in query time. On the dataset with 1 million records,

there were 24.189% memory reduction, with 16.76% decrease in speed. The trend seems

to be that the compressed configuration works better for larger datasets. These tests ran

on the datasets with the logarithmic data distribution. The results from the uniform dis-

tribution were similar. The results presented in [12] showed a memory saving of the

compressed configuration of up to 52%, with the highest query time reduction of 24.5%.

In our test with the 25 million records datasets the performance reduction were a couple

of percent worse than their worst case.

There were a noticeable difference in model build times between default and compressed

configuration, visualized in Figure 7.8b. The build time increases the larger the dataset

becomes, with a maximum increase of 7.4% for the largest dataset.

7.3 ALEX & PGM-Index comparison

(a) Mixed Workload (b) Write-only Workload

Figure 7.9: ALEX and PGM Performance

59

For the mixed and write-heavy workload, ALEX performs significantly worse than PGM-

Index on the uniform distribution, but faster on the triangular distribution. The most

notable trend is that PGM-Index performs very consistent between the two distributions,

while ALEX is varying to a much higher degree between the data distributions. ALEX’s

query time on the triangular dataset is better than PGM for all three workloads.

Figure 7.10: ALEX and PGM - Read-only Workload

For the read only workload, ALEX performs better than PGM on both datasets of 10

and 25 million keys. PGM-Index had consistent results for both datasets and performed

slightly below and above 300ns for the two biggest dataset sizes. ran the indexes on

slightly above and below 300 nanoseconds. The best read performance of ALEX with 67

nanoseconds per operation on the uniform distribution, 4× less time than PGM.

60

7.4 Discussion

7.4.1 Limitations

There are some important limitations to the tests that we have conducted. The first lim-

itation is the dataset sizes. As mentioned, we are mostly interested in results from the

biggest dataset sizes, as they are the most relevant for real-world big data scenarios. The

datasets used in the papers of ALEX and PGM, as well as the SOSD-benchmark have

sizes of 190M keys and upwards. It would be interesting to see how if the tendencies of

the results continued for even bigger datasets. The authors of ALEX states that the true

power of ALEX is shown when used on really large datasets.

Another noteworthy limitation of our tests is that build times and memory usage stats are

not shown when running ALEX[22]. Because of this we do not have a comparison of

these statistics between ALEX and PGM in our benchmark. When comparing the two

index structures, we only look at query time for the different workloads. To get the whole

picture we need to also look at the space/time trade-off both of the two learned indexes.

If these state of the art learned indexes, or similar structures, are to replace traditional

structures like B+trees in modern database systems, these statistics have to be considered.

7.4.2 Query performance

Both PGM and ALEX is made for bigger datasets, and it is interesting to see how the

results stabilize on the dataset of 10 and 25 million keys. The biggest takeaway from the

read performance results is that that ALEX had the greatest read-performance overall for

the most relevant dataset sizes, with a significant amount. One thing to note is that the

rate at which the read performance is decreasing from dataset sizes of 10 million keys to

25 million keys is higher for ALEX than for PGM, so if this trend continues for bigger

dataset sizes, the gap in read-performance would shrink. This does however not seem to

be the case when comparing our results to the results from ALEX in their original paper.

In [10], ALEX had a throughput of 15 million reads/sec on a logarithmic data distribution,

and around 10 million reads/sec on a uniform distribution. For our tests ALEX also had

61

a read-performance of around 15 million reads/sec on a logarithmic distribution, while

performing a bit worse with 7 million reads/sec on the uniform distribution. The trends

on different data distributions are the exact same for our benchmark. The dataset sizes

they used were over 7 times larger than our biggest datasets, showing that the distribution

is the main factor in determining the read-performance.

The difference in performance between the different workloads for PGM-Index was very

small. This is also true for ALEX on the logarithmic distribution, but not on the uniform

distribution. For the write-only workloads [10] reports that ALEX had a throughput of

slightly above 4 million writes/sec on the logarithmic distribution and around 3 million

writes/sec on the uniform dataset. ALEX performed worse on our uniform dataset with

only 233 thousand writes/sec, although had a better performance on the logarithmic data-

set with 5 million writes/sec. The reason for this is unclear. It could possibly have to

do with the key-values that were generated in our uniform dataset, not yielding any clear

patterns for ALEX to model. However, PGM-Index had roughly the same performance

on both distributions.

7.5 Conclusion

Our tests confirms that ALEX and PGM performs very similar on our system as on tests

conducted by the authors of PGM and ALEX on similar data distributions. ALEX had

a greater read performance than PGM-index overall on all datasets, while PGM had a

better write performance on the uniform data distribution. PGM showed consistent results

between the two data distributions for all workloads. It is impossible to draw a conclusion

to which learned index is better based of this benchmark, given the limitations and the

scale of the tests. However, we did provide a novel side by side comparison, where

both structures showed very similar results to those conducted by the original authors.

The versatility both indexes showed by being able to handle both reads and writes with

high throughput further indicates the possibility for learned index structures to be able to

replace general purpose, traditional structures in modern database systems.

62

Bibliography

[1] URL: https://numpy.org/.

[2] An in-depth look at Google’s first tensor processing unit (TPU) — google cloud

blog. URL: https://cloud.google.com/blog/products/ai-machine-learning/an-in-

depth-look-at-googles-first-tensor-processing-unit-tpu.

[3] Michael A. Bender and Haodong Hu. ‘An Adaptive Packed-Memory Array’. In:

32.4 (Nov. 2007), 26–es. ISSN: 0362-5915. DOI: 10.1145/1292609.1292616. URL:

https://doi.org/10.1145/1292609.1292616.

[4] Alex Beutel and Google Ed Chi. Stanford Seminar - The Case for Learned In-

dex Structures. Stanford. 2018. URL: https : / /www . youtube . com/watch ? v=

NaqJO7rrXy0&t=850s&ab channel=StanfordOnline.

[5] Chiranjeeb Buragohain, Nisheeth Shrivastava and Subhash Suri. ‘Space Efficient

Streaming Algorithms for the Maximum Error Histogram’. In: 2007 IEEE 23rd

International Conference on Data Engineering. 2007, pp. 1026–1035. DOI: 10 .

1109/ICDE.2007.368961.

[6] Danny Z. Chen and Haitao Wang. ‘Approximating Points by a Piecewise Linear

Function: I’. In: Proceedings of the 20th International Symposium on Algorithms

and Computation. ISAAC ’09. Honolulu, Hawaii: Springer-Verlag, 2009, pp. 224–

233. ISBN: 9783642106309. DOI: 10.1007/978-3-642-10631-6 24. URL: https:

//doi.org/10.1007/978-3-642-10631-6 24.

63

https://numpy.org/
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://doi.org/10.1145/1292609.1292616
https://doi.org/10.1145/1292609.1292616
https://www.youtube.com/watch?v=NaqJO7rrXy0&t=850s&ab_channel=StanfordOnline
https://www.youtube.com/watch?v=NaqJO7rrXy0&t=850s&ab_channel=StanfordOnline
https://doi.org/10.1109/ICDE.2007.368961
https://doi.org/10.1109/ICDE.2007.368961
https://doi.org/10.1007/978-3-642-10631-6_24
https://doi.org/10.1007/978-3-642-10631-6_24
https://doi.org/10.1007/978-3-642-10631-6_24

[7] Qiuxia Chen et al. ‘Indexable PLA for Efficient Similarity Search’. In: VLDB.

2007.

[8] Convex hull using divide and conquer algorithm. Sept. 2018. URL: https://www.

geeksforgeeks.org/convex-hull-using-divide-and-conquer-algorithm/.

[9] Brian F. Cooper et al. ‘Benchmarking Cloud Serving Systems with YCSB’. In:

Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC ’10. Indiana-

polis, Indiana, USA: Association for Computing Machinery, 2010, pp. 143–154.

ISBN: 9781450300360. DOI: 10.1145/1807128.1807152. URL: https://doi.org/

10.1145/1807128.1807152.

[10] Jialin Ding et al. ‘ALEX: An Updatable Adaptive Learned Index’. In: Proceedings

of the 2020 ACM SIGMOD International Conference on Management of Data.

SIGMOD ’20. Portland, OR, USA: Association for Computing Machinery, 2020,

pp. 969–984. ISBN: 9781450367356. DOI: 10.1145/3318464.3389711. URL: https:

//doi.org/10.1145/3318464.3389711.

[11] Paolo Ferragina and Giorgio Vinciguerra. ‘Learned Data Structures’. In: Apr. 2020,

pp. 5–41. ISBN: 978-3-030-43883-8. DOI: 10.1007/978-3-030-43883-8 2.

[12] Paolo Ferragina and Giorgio Vinciguerra. ‘The PGM-index: a fully-dynamic com-

pressed learned index with provable worst-case bounds’. In: PVLDB 13.8 (2020),

pp. 1162–1175. ISSN: 2150-8097. DOI: 10.14778/3389133.3389135. URL: https:

//pgm.di.unipi.it.

[13] Alex Galakatos et al. ‘FIT-ting tree’. In: Proceedings of the 2019 International

Conference on Management of Data (June 2019). DOI: 10.1145/3299869.3319860.

URL: http://dx.doi.org/10.1145/3299869.3319860.

[14] Goetz Graefe and Harumi Kuno. ‘Modern B-tree techniques’. In: 2011 IEEE 27th

International Conference on Data Engineering. 2011, pp. 1370–1373. DOI: 10 .

1109/ICDE.2011.5767956.

[15] Gvinciguerra. Gvinciguerra/PGM-index: state-of-the-art learned data structure that

enables fast lookup, predecessor, range searches and updates in arrays of billions

64

https://www.geeksforgeeks.org/convex-hull-using-divide-and-conquer-algorithm/
https://www.geeksforgeeks.org/convex-hull-using-divide-and-conquer-algorithm/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1007/978-3-030-43883-8_2
https://doi.org/10.14778/3389133.3389135
https://pgm.di.unipi.it
https://pgm.di.unipi.it
https://doi.org/10.1145/3299869.3319860
http://dx.doi.org/10.1145/3299869.3319860
https://doi.org/10.1109/ICDE.2011.5767956
https://doi.org/10.1109/ICDE.2011.5767956

of items using orders of magnitude less space than traditional indexes. URL: https:

//github.com/gvinciguerra/PGM-index.

[16] Michael Jordan and Robert Jacobs. ‘Hierarchical mixtures of experts and the’. In:

Neural computation 6 (Jan. 1994), pp. 181–.

[17] Andreas Kipf et al. ‘RadixSpline: a single-pass learned index’. In: Proceedings of

the Third International Workshop on Exploiting Artificial Intelligence Techniques

for Data Management, aiDM@SIGMOD 2020, Portland, Oregon, USA, June 19,

2020. 2020, 5:1–5:5. DOI: 10.1145/3401071.3401659. URL: https://doi.org/10.

1145/3401071.3401659.

[18] Tim Kraska et al. ‘The Case for Learned Index Structures’. In: Proceedings of

the 2018 International Conference on Management of Data. SIGMOD ’18. Hou-

ston, TX, USA: Association for Computing Machinery, 2018, pp. 489–504. ISBN:

9781450347037. DOI: 10.1145/3183713.3196909. URL: https://doi.org/10.1145/

3183713.3196909.

[19] Pengfei Li et al. ‘LISA: A Learned Index Structure for Spatial Data’. In: Proceed-

ings of the 2020 ACM SIGMOD International Conference on Management of Data.

SIGMOD ’20. Portland, OR, USA: Association for Computing Machinery, 2020,

pp. 2119–2133. ISBN: 9781450367356. DOI: 10 .1145/3318464 .3389703. URL:

https://doi.org/10.1145/3318464.3389703.

[20] Baotong Lu et al. ‘APEX’. In: Proceedings of the VLDB Endowment 15.3 (Nov.

2021), pp. 597–610. ISSN: 2150-8097. DOI: 10.14778/3494124.3494141. URL:

http://dx.doi.org/10.14778/3494124.3494141.

[21] Ryan Marcus et al. Benchmarking Learned Indexes. 2020. arXiv: 2006 . 12804

[cs.DB].

[22] Microsoft. Microsoft/Alex: A Library for building an in-memory, Adaptive Learned

index. URL: https://github.com/microsoft/ALEX.

[23] ML: Underfitting and overfitting. Oct. 2021. URL: https://www.geeksforgeeks.

org/underfitting-and-overfitting-in-machine-learning/.

65

https://github.com/gvinciguerra/PGM-index
https://github.com/gvinciguerra/PGM-index
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.14778/3494124.3494141
http://dx.doi.org/10.14778/3494124.3494141
https://arxiv.org/abs/2006.12804
https://arxiv.org/abs/2006.12804
https://github.com/microsoft/ALEX
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

[24] ‘Novel Online Methods for Time Series Segmentation’. In: IEEE Transactions on

Knowledge and Data Engineering 20.12 (2008), pp. 1616–1626. DOI: 10.1109/

TKDE.2008.29.

[25] Patrick E. O’Neil et al. ‘The Log-Structured Merge-Tree (LSM-Tree).’ In: Acta

Inf. 33.4 (1996), pp. 351–385. URL: http://dblp.uni-trier.de/db/journals/acta/

acta33.html#ONeilCGO96.

[26] Daisuke Okanohara and Kunihiko Sadakane. Practical Entropy-Compressed Rank/Select

Dictionary. 2006. DOI: 10.48550/ARXIV.CS/0610001. URL: https://arxiv.org/

abs/cs/0610001.

[27] Noam Shazeer et al. Outrageously Large Neural Networks: The Sparsely-Gated

Mixture-of-Experts Layer. 2017. DOI: 10.48550/ARXIV.1701.06538. URL: https:

//arxiv.org/abs/1701.06538.

[28] STX B+ Tree C++ template classes. URL: https://panthema.net/2007/stx-btree/.

[29] Tensorflow. URL: https://www.tensorflow.org/.

[30] Peter Van Sandt, Yannis Chronis and Jignesh M. Patel. ‘Efficiently Searching In-

Memory Sorted Arrays: Revenge of the Interpolation Search?’ In: Proceedings of

the 2019 International Conference on Management of Data. SIGMOD ’19. Am-

sterdam, Netherlands: Association for Computing Machinery, 2019, pp. 36–53.

ISBN: 9781450356435. DOI: 10.1145/3299869.3300075. URL: https://doi.org/

10.1145/3299869.3300075.

[31] Giorgio Vinciguerra, Paolo Ferragina and Michele Miccinesi. ‘Superseding tradi-

tional indexes by orchestrating learning and geometry’. In: (Mar. 2019).

[32] Qing Xie et al. ‘Maximum error-bounded Piecewise Linear Representation for on-

line stream approximation’. In: The VLDB Journal 23 (Dec. 2014), pp. 915–937.

DOI: 10.1007/s00778-014-0355-0.

66

https://doi.org/10.1109/TKDE.2008.29
https://doi.org/10.1109/TKDE.2008.29
http://dblp.uni-trier.de/db/journals/acta/acta33.html#ONeilCGO96
http://dblp.uni-trier.de/db/journals/acta/acta33.html#ONeilCGO96
https://doi.org/10.48550/ARXIV.CS/0610001
https://arxiv.org/abs/cs/0610001
https://arxiv.org/abs/cs/0610001
https://doi.org/10.48550/ARXIV.1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://panthema.net/2007/stx-btree/
https://www.tensorflow.org/
https://doi.org/10.1145/3299869.3300075
https://doi.org/10.1145/3299869.3300075
https://doi.org/10.1145/3299869.3300075
https://doi.org/10.1007/s00778-014-0355-0

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Simen Sælevik Tengs

State of the Art Learned Index
Structures

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Preface
	List of Figures
	Introduction
	Purpose and motivation
	Research questions
	Thesis content

	Background & Terminology
	Convex hull
	Index structure
	B+ Tree
	Indexes represented in the Cartesian Plane
	Why overfitting is desired for read-only databases

	The first learned index structure
	Semantic guarantees
	Assumptions and limitations
	Approximating the Cumulative Distribution Function
	Model type
	A single deep or wide model
	Hierarchy of experts

	Recursive Model Index(RMI)
	The potential for GPU's & TPU's for learned indexes
	Results from novel experiments with the first learned index
	Optimal model types for a 2-stage RMI

	FITing-Tree
	Piecewise Linear Approximation(PLA)
	FITing-Tree design
	Segmentation algorithm

	Lookup & insert strategy
	FITing-Tree performance

	PGM-Index
	Optimal Piecewise Linear Approximation
	Geometric segmentation algorithm

	Model structure
	Indexing the PLA-model
	Running a lookup operation

	Insertion strategy
	Compressed PGM-Index

	ALEX
	Technical contributions
	Model structure
	Query operations
	Lookup and range queries
	Inserts

	Node expansion and node splits

	Benchmark
	Method
	Benchmark tests
	Datasets

	Results
	ALEX
	PGM

	ALEX & PGM-Index comparison
	Discussion
	Limitations
	Query performance

	Conclusion

